net/mlx4_core: Fix reset flow when in command polling mode
[linux-2.6-block.git] / mm / slab.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
183ff22b 30 * slabs and you must pass objects with the same initializations to
1da177e4
LT
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
a737b3e2 54 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
343e0d7a 59 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
18004c5d 72 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
e498be7d
CL
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
88 */
89
1da177e4
LT
90#include <linux/slab.h>
91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
a0ec95a8 99#include <linux/proc_fs.h>
1da177e4
LT
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
3f8c2452 119#include <linux/sched/task_stack.h>
1da177e4 120
381760ea
MG
121#include <net/sock.h>
122
1da177e4
LT
123#include <asm/cacheflush.h>
124#include <asm/tlbflush.h>
125#include <asm/page.h>
126
4dee6b64
SR
127#include <trace/events/kmem.h>
128
072bb0aa
MG
129#include "internal.h"
130
b9ce5ef4
GC
131#include "slab.h"
132
1da177e4 133/*
50953fe9 134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143#ifdef CONFIG_DEBUG_SLAB
144#define DEBUG 1
145#define STATS 1
146#define FORCED_DEBUG 1
147#else
148#define DEBUG 0
149#define STATS 0
150#define FORCED_DEBUG 0
151#endif
152
1da177e4
LT
153/* Shouldn't this be in a header file somewhere? */
154#define BYTES_PER_WORD sizeof(void *)
87a927c7 155#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 156
1da177e4
LT
157#ifndef ARCH_KMALLOC_FLAGS
158#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159#endif
160
f315e3fa
JK
161#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164#if FREELIST_BYTE_INDEX
165typedef unsigned char freelist_idx_t;
166#else
167typedef unsigned short freelist_idx_t;
168#endif
169
30321c7b 170#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 171
1da177e4
LT
172/*
173 * struct array_cache
174 *
1da177e4
LT
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
bda5b655 189 void *entry[]; /*
a737b3e2
AM
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
a737b3e2 193 */
1da177e4
LT
194};
195
c8522a3a
JK
196struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199};
200
e498be7d
CL
201/*
202 * Need this for bootstrapping a per node allocator.
203 */
bf0dea23 204#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 205static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 206#define CACHE_CACHE 0
bf0dea23 207#define SIZE_NODE (MAX_NUMNODES)
e498be7d 208
ed11d9eb 209static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 210 struct kmem_cache_node *n, int tofree);
ed11d9eb 211static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
212 int node, struct list_head *list);
213static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 214static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 215static void cache_reap(struct work_struct *unused);
ed11d9eb 216
76b342bd
JK
217static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
e0a42726
IM
222static int slab_early_init = 1;
223
ce8eb6c4 224#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 225
ce8eb6c4 226static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
227{
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
bf00bd34 231 parent->total_slabs = 0;
f728b0a5 232 parent->free_slabs = 0;
e498be7d
CL
233 parent->shared = NULL;
234 parent->alien = NULL;
2e1217cf 235 parent->colour_next = 0;
e498be7d
CL
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239}
240
a737b3e2
AM
241#define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
18bf8541 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
245 } while (0)
246
a737b3e2
AM
247#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
e498be7d
CL
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
1da177e4 253
4fd0b46e
AD
254#define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255#define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
b03a017b 256#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
1da177e4
LT
257#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259#define BATCHREFILL_LIMIT 16
a737b3e2
AM
260/*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
1da177e4 263 *
dc6f3f27 264 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
265 * which could lock up otherwise freeable slabs.
266 */
5f0985bb
JZ
267#define REAPTIMEOUT_AC (2*HZ)
268#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
269
270#if STATS
271#define STATS_INC_ACTIVE(x) ((x)->num_active++)
272#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 275#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
276#define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
1da177e4
LT
281#define STATS_INC_ERR(x) ((x)->errors++)
282#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 283#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 284#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
285#define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
1da177e4
LT
290#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294#else
295#define STATS_INC_ACTIVE(x) do { } while (0)
296#define STATS_DEC_ACTIVE(x) do { } while (0)
297#define STATS_INC_ALLOCED(x) do { } while (0)
298#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 299#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
300#define STATS_SET_HIGH(x) do { } while (0)
301#define STATS_INC_ERR(x) do { } while (0)
302#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 303#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 304#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 305#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
306#define STATS_INC_ALLOCHIT(x) do { } while (0)
307#define STATS_INC_ALLOCMISS(x) do { } while (0)
308#define STATS_INC_FREEHIT(x) do { } while (0)
309#define STATS_INC_FREEMISS(x) do { } while (0)
310#endif
311
312#if DEBUG
1da177e4 313
a737b3e2
AM
314/*
315 * memory layout of objects:
1da177e4 316 * 0 : objp
3dafccf2 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
3dafccf2 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 321 * redzone word.
3dafccf2 322 * cachep->obj_offset: The real object.
3b0efdfa
CL
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 325 * [BYTES_PER_WORD long]
1da177e4 326 */
343e0d7a 327static int obj_offset(struct kmem_cache *cachep)
1da177e4 328{
3dafccf2 329 return cachep->obj_offset;
1da177e4
LT
330}
331
b46b8f19 332static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
333{
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
1da177e4
LT
337}
338
b46b8f19 339static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
340{
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 343 return (unsigned long long *)(objp + cachep->size -
b46b8f19 344 sizeof(unsigned long long) -
87a927c7 345 REDZONE_ALIGN);
3b0efdfa 346 return (unsigned long long *) (objp + cachep->size -
b46b8f19 347 sizeof(unsigned long long));
1da177e4
LT
348}
349
343e0d7a 350static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
351{
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
354}
355
356#else
357
3dafccf2 358#define obj_offset(x) 0
b46b8f19
DW
359#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
361#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363#endif
364
03787301
JK
365#ifdef CONFIG_DEBUG_SLAB_LEAK
366
d31676df 367static inline bool is_store_user_clean(struct kmem_cache *cachep)
03787301 368{
d31676df
JK
369 return atomic_read(&cachep->store_user_clean) == 1;
370}
03787301 371
d31676df
JK
372static inline void set_store_user_clean(struct kmem_cache *cachep)
373{
374 atomic_set(&cachep->store_user_clean, 1);
375}
03787301 376
d31676df
JK
377static inline void set_store_user_dirty(struct kmem_cache *cachep)
378{
379 if (is_store_user_clean(cachep))
380 atomic_set(&cachep->store_user_clean, 0);
03787301
JK
381}
382
383#else
d31676df 384static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
03787301
JK
385
386#endif
387
1da177e4 388/*
3df1cccd
DR
389 * Do not go above this order unless 0 objects fit into the slab or
390 * overridden on the command line.
1da177e4 391 */
543585cc
DR
392#define SLAB_MAX_ORDER_HI 1
393#define SLAB_MAX_ORDER_LO 0
394static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 395static bool slab_max_order_set __initdata;
1da177e4 396
6ed5eb22
PE
397static inline struct kmem_cache *virt_to_cache(const void *obj)
398{
b49af68f 399 struct page *page = virt_to_head_page(obj);
35026088 400 return page->slab_cache;
6ed5eb22
PE
401}
402
8456a648 403static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
404 unsigned int idx)
405{
8456a648 406 return page->s_mem + cache->size * idx;
8fea4e96
PE
407}
408
6fb92430 409#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 410/* internal cache of cache description objs */
9b030cb8 411static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
412 .batchcount = 1,
413 .limit = BOOT_CPUCACHE_ENTRIES,
414 .shared = 1,
3b0efdfa 415 .size = sizeof(struct kmem_cache),
b28a02de 416 .name = "kmem_cache",
1da177e4
LT
417};
418
1871e52c 419static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 420
343e0d7a 421static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 422{
bf0dea23 423 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
424}
425
a737b3e2
AM
426/*
427 * Calculate the number of objects and left-over bytes for a given buffer size.
428 */
70f75067 429static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
d50112ed 430 slab_flags_t flags, size_t *left_over)
fbaccacf 431{
70f75067 432 unsigned int num;
fbaccacf 433 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 434
fbaccacf
SR
435 /*
436 * The slab management structure can be either off the slab or
437 * on it. For the latter case, the memory allocated for a
438 * slab is used for:
439 *
fbaccacf 440 * - @buffer_size bytes for each object
2e6b3602
JK
441 * - One freelist_idx_t for each object
442 *
443 * We don't need to consider alignment of freelist because
444 * freelist will be at the end of slab page. The objects will be
445 * at the correct alignment.
fbaccacf
SR
446 *
447 * If the slab management structure is off the slab, then the
448 * alignment will already be calculated into the size. Because
449 * the slabs are all pages aligned, the objects will be at the
450 * correct alignment when allocated.
451 */
b03a017b 452 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
70f75067 453 num = slab_size / buffer_size;
2e6b3602 454 *left_over = slab_size % buffer_size;
fbaccacf 455 } else {
70f75067 456 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
2e6b3602
JK
457 *left_over = slab_size %
458 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 459 }
70f75067
JK
460
461 return num;
1da177e4
LT
462}
463
f28510d3 464#if DEBUG
d40cee24 465#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 466
a737b3e2
AM
467static void __slab_error(const char *function, struct kmem_cache *cachep,
468 char *msg)
1da177e4 469{
1170532b 470 pr_err("slab error in %s(): cache `%s': %s\n",
b28a02de 471 function, cachep->name, msg);
1da177e4 472 dump_stack();
373d4d09 473 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 474}
f28510d3 475#endif
1da177e4 476
3395ee05
PM
477/*
478 * By default on NUMA we use alien caches to stage the freeing of
479 * objects allocated from other nodes. This causes massive memory
480 * inefficiencies when using fake NUMA setup to split memory into a
481 * large number of small nodes, so it can be disabled on the command
482 * line
483 */
484
485static int use_alien_caches __read_mostly = 1;
486static int __init noaliencache_setup(char *s)
487{
488 use_alien_caches = 0;
489 return 1;
490}
491__setup("noaliencache", noaliencache_setup);
492
3df1cccd
DR
493static int __init slab_max_order_setup(char *str)
494{
495 get_option(&str, &slab_max_order);
496 slab_max_order = slab_max_order < 0 ? 0 :
497 min(slab_max_order, MAX_ORDER - 1);
498 slab_max_order_set = true;
499
500 return 1;
501}
502__setup("slab_max_order=", slab_max_order_setup);
503
8fce4d8e
CL
504#ifdef CONFIG_NUMA
505/*
506 * Special reaping functions for NUMA systems called from cache_reap().
507 * These take care of doing round robin flushing of alien caches (containing
508 * objects freed on different nodes from which they were allocated) and the
509 * flushing of remote pcps by calling drain_node_pages.
510 */
1871e52c 511static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
512
513static void init_reap_node(int cpu)
514{
0edaf86c
AM
515 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
516 node_online_map);
8fce4d8e
CL
517}
518
519static void next_reap_node(void)
520{
909ea964 521 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 522
0edaf86c 523 node = next_node_in(node, node_online_map);
909ea964 524 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
525}
526
527#else
528#define init_reap_node(cpu) do { } while (0)
529#define next_reap_node(void) do { } while (0)
530#endif
531
1da177e4
LT
532/*
533 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
534 * via the workqueue/eventd.
535 * Add the CPU number into the expiration time to minimize the possibility of
536 * the CPUs getting into lockstep and contending for the global cache chain
537 * lock.
538 */
0db0628d 539static void start_cpu_timer(int cpu)
1da177e4 540{
1871e52c 541 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4 542
eac0337a 543 if (reap_work->work.func == NULL) {
8fce4d8e 544 init_reap_node(cpu);
203b42f7 545 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
546 schedule_delayed_work_on(cpu, reap_work,
547 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
548 }
549}
550
1fe00d50 551static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 552{
d5cff635
CM
553 /*
554 * The array_cache structures contain pointers to free object.
25985edc 555 * However, when such objects are allocated or transferred to another
d5cff635
CM
556 * cache the pointers are not cleared and they could be counted as
557 * valid references during a kmemleak scan. Therefore, kmemleak must
558 * not scan such objects.
559 */
1fe00d50
JK
560 kmemleak_no_scan(ac);
561 if (ac) {
562 ac->avail = 0;
563 ac->limit = limit;
564 ac->batchcount = batch;
565 ac->touched = 0;
1da177e4 566 }
1fe00d50
JK
567}
568
569static struct array_cache *alloc_arraycache(int node, int entries,
570 int batchcount, gfp_t gfp)
571{
5e804789 572 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
573 struct array_cache *ac = NULL;
574
575 ac = kmalloc_node(memsize, gfp, node);
576 init_arraycache(ac, entries, batchcount);
577 return ac;
1da177e4
LT
578}
579
f68f8ddd
JK
580static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
581 struct page *page, void *objp)
072bb0aa 582{
f68f8ddd
JK
583 struct kmem_cache_node *n;
584 int page_node;
585 LIST_HEAD(list);
072bb0aa 586
f68f8ddd
JK
587 page_node = page_to_nid(page);
588 n = get_node(cachep, page_node);
381760ea 589
f68f8ddd
JK
590 spin_lock(&n->list_lock);
591 free_block(cachep, &objp, 1, page_node, &list);
592 spin_unlock(&n->list_lock);
381760ea 593
f68f8ddd 594 slabs_destroy(cachep, &list);
072bb0aa
MG
595}
596
3ded175a
CL
597/*
598 * Transfer objects in one arraycache to another.
599 * Locking must be handled by the caller.
600 *
601 * Return the number of entries transferred.
602 */
603static int transfer_objects(struct array_cache *to,
604 struct array_cache *from, unsigned int max)
605{
606 /* Figure out how many entries to transfer */
732eacc0 607 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
608
609 if (!nr)
610 return 0;
611
612 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
613 sizeof(void *) *nr);
614
615 from->avail -= nr;
616 to->avail += nr;
3ded175a
CL
617 return nr;
618}
619
765c4507
CL
620#ifndef CONFIG_NUMA
621
622#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 623#define reap_alien(cachep, n) do { } while (0)
765c4507 624
c8522a3a
JK
625static inline struct alien_cache **alloc_alien_cache(int node,
626 int limit, gfp_t gfp)
765c4507 627{
8888177e 628 return NULL;
765c4507
CL
629}
630
c8522a3a 631static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
632{
633}
634
635static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
636{
637 return 0;
638}
639
640static inline void *alternate_node_alloc(struct kmem_cache *cachep,
641 gfp_t flags)
642{
643 return NULL;
644}
645
8b98c169 646static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
647 gfp_t flags, int nodeid)
648{
649 return NULL;
650}
651
4167e9b2
DR
652static inline gfp_t gfp_exact_node(gfp_t flags)
653{
444eb2a4 654 return flags & ~__GFP_NOFAIL;
4167e9b2
DR
655}
656
765c4507
CL
657#else /* CONFIG_NUMA */
658
8b98c169 659static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 660static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 661
c8522a3a
JK
662static struct alien_cache *__alloc_alien_cache(int node, int entries,
663 int batch, gfp_t gfp)
664{
5e804789 665 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
666 struct alien_cache *alc = NULL;
667
668 alc = kmalloc_node(memsize, gfp, node);
09c2e76e
CL
669 if (alc) {
670 init_arraycache(&alc->ac, entries, batch);
671 spin_lock_init(&alc->lock);
672 }
c8522a3a
JK
673 return alc;
674}
675
676static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 677{
c8522a3a 678 struct alien_cache **alc_ptr;
5e804789 679 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
680 int i;
681
682 if (limit > 1)
683 limit = 12;
c8522a3a
JK
684 alc_ptr = kzalloc_node(memsize, gfp, node);
685 if (!alc_ptr)
686 return NULL;
687
688 for_each_node(i) {
689 if (i == node || !node_online(i))
690 continue;
691 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
692 if (!alc_ptr[i]) {
693 for (i--; i >= 0; i--)
694 kfree(alc_ptr[i]);
695 kfree(alc_ptr);
696 return NULL;
e498be7d
CL
697 }
698 }
c8522a3a 699 return alc_ptr;
e498be7d
CL
700}
701
c8522a3a 702static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
703{
704 int i;
705
c8522a3a 706 if (!alc_ptr)
e498be7d 707 return;
e498be7d 708 for_each_node(i)
c8522a3a
JK
709 kfree(alc_ptr[i]);
710 kfree(alc_ptr);
e498be7d
CL
711}
712
343e0d7a 713static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
714 struct array_cache *ac, int node,
715 struct list_head *list)
e498be7d 716{
18bf8541 717 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
718
719 if (ac->avail) {
ce8eb6c4 720 spin_lock(&n->list_lock);
e00946fe
CL
721 /*
722 * Stuff objects into the remote nodes shared array first.
723 * That way we could avoid the overhead of putting the objects
724 * into the free lists and getting them back later.
725 */
ce8eb6c4
CL
726 if (n->shared)
727 transfer_objects(n->shared, ac, ac->limit);
e00946fe 728
833b706c 729 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 730 ac->avail = 0;
ce8eb6c4 731 spin_unlock(&n->list_lock);
e498be7d
CL
732 }
733}
734
8fce4d8e
CL
735/*
736 * Called from cache_reap() to regularly drain alien caches round robin.
737 */
ce8eb6c4 738static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 739{
909ea964 740 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 741
ce8eb6c4 742 if (n->alien) {
c8522a3a
JK
743 struct alien_cache *alc = n->alien[node];
744 struct array_cache *ac;
745
746 if (alc) {
747 ac = &alc->ac;
49dfc304 748 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
749 LIST_HEAD(list);
750
751 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 752 spin_unlock_irq(&alc->lock);
833b706c 753 slabs_destroy(cachep, &list);
c8522a3a 754 }
8fce4d8e
CL
755 }
756 }
757}
758
a737b3e2 759static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 760 struct alien_cache **alien)
e498be7d 761{
b28a02de 762 int i = 0;
c8522a3a 763 struct alien_cache *alc;
e498be7d
CL
764 struct array_cache *ac;
765 unsigned long flags;
766
767 for_each_online_node(i) {
c8522a3a
JK
768 alc = alien[i];
769 if (alc) {
833b706c
JK
770 LIST_HEAD(list);
771
c8522a3a 772 ac = &alc->ac;
49dfc304 773 spin_lock_irqsave(&alc->lock, flags);
833b706c 774 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 775 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 776 slabs_destroy(cachep, &list);
e498be7d
CL
777 }
778 }
779}
729bd0b7 780
25c4f304
JK
781static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
782 int node, int page_node)
729bd0b7 783{
ce8eb6c4 784 struct kmem_cache_node *n;
c8522a3a
JK
785 struct alien_cache *alien = NULL;
786 struct array_cache *ac;
97654dfa 787 LIST_HEAD(list);
1ca4cb24 788
18bf8541 789 n = get_node(cachep, node);
729bd0b7 790 STATS_INC_NODEFREES(cachep);
25c4f304
JK
791 if (n->alien && n->alien[page_node]) {
792 alien = n->alien[page_node];
c8522a3a 793 ac = &alien->ac;
49dfc304 794 spin_lock(&alien->lock);
c8522a3a 795 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 796 STATS_INC_ACOVERFLOW(cachep);
25c4f304 797 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 798 }
f68f8ddd 799 ac->entry[ac->avail++] = objp;
49dfc304 800 spin_unlock(&alien->lock);
833b706c 801 slabs_destroy(cachep, &list);
729bd0b7 802 } else {
25c4f304 803 n = get_node(cachep, page_node);
18bf8541 804 spin_lock(&n->list_lock);
25c4f304 805 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 806 spin_unlock(&n->list_lock);
97654dfa 807 slabs_destroy(cachep, &list);
729bd0b7
PE
808 }
809 return 1;
810}
25c4f304
JK
811
812static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
813{
814 int page_node = page_to_nid(virt_to_page(objp));
815 int node = numa_mem_id();
816 /*
817 * Make sure we are not freeing a object from another node to the array
818 * cache on this cpu.
819 */
820 if (likely(node == page_node))
821 return 0;
822
823 return __cache_free_alien(cachep, objp, node, page_node);
824}
4167e9b2
DR
825
826/*
444eb2a4
MG
827 * Construct gfp mask to allocate from a specific node but do not reclaim or
828 * warn about failures.
4167e9b2
DR
829 */
830static inline gfp_t gfp_exact_node(gfp_t flags)
831{
444eb2a4 832 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
4167e9b2 833}
e498be7d
CL
834#endif
835
ded0ecf6
JK
836static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
837{
838 struct kmem_cache_node *n;
839
840 /*
841 * Set up the kmem_cache_node for cpu before we can
842 * begin anything. Make sure some other cpu on this
843 * node has not already allocated this
844 */
845 n = get_node(cachep, node);
846 if (n) {
847 spin_lock_irq(&n->list_lock);
848 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
849 cachep->num;
850 spin_unlock_irq(&n->list_lock);
851
852 return 0;
853 }
854
855 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
856 if (!n)
857 return -ENOMEM;
858
859 kmem_cache_node_init(n);
860 n->next_reap = jiffies + REAPTIMEOUT_NODE +
861 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
862
863 n->free_limit =
864 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
865
866 /*
867 * The kmem_cache_nodes don't come and go as CPUs
868 * come and go. slab_mutex is sufficient
869 * protection here.
870 */
871 cachep->node[node] = n;
872
873 return 0;
874}
875
6731d4f1 876#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
8f9f8d9e 877/*
6a67368c 878 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 879 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 880 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 881 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
882 * already in use.
883 *
18004c5d 884 * Must hold slab_mutex.
8f9f8d9e 885 */
6a67368c 886static int init_cache_node_node(int node)
8f9f8d9e 887{
ded0ecf6 888 int ret;
8f9f8d9e 889 struct kmem_cache *cachep;
8f9f8d9e 890
18004c5d 891 list_for_each_entry(cachep, &slab_caches, list) {
ded0ecf6
JK
892 ret = init_cache_node(cachep, node, GFP_KERNEL);
893 if (ret)
894 return ret;
8f9f8d9e 895 }
ded0ecf6 896
8f9f8d9e
DR
897 return 0;
898}
6731d4f1 899#endif
8f9f8d9e 900
c3d332b6
JK
901static int setup_kmem_cache_node(struct kmem_cache *cachep,
902 int node, gfp_t gfp, bool force_change)
903{
904 int ret = -ENOMEM;
905 struct kmem_cache_node *n;
906 struct array_cache *old_shared = NULL;
907 struct array_cache *new_shared = NULL;
908 struct alien_cache **new_alien = NULL;
909 LIST_HEAD(list);
910
911 if (use_alien_caches) {
912 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
913 if (!new_alien)
914 goto fail;
915 }
916
917 if (cachep->shared) {
918 new_shared = alloc_arraycache(node,
919 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
920 if (!new_shared)
921 goto fail;
922 }
923
924 ret = init_cache_node(cachep, node, gfp);
925 if (ret)
926 goto fail;
927
928 n = get_node(cachep, node);
929 spin_lock_irq(&n->list_lock);
930 if (n->shared && force_change) {
931 free_block(cachep, n->shared->entry,
932 n->shared->avail, node, &list);
933 n->shared->avail = 0;
934 }
935
936 if (!n->shared || force_change) {
937 old_shared = n->shared;
938 n->shared = new_shared;
939 new_shared = NULL;
940 }
941
942 if (!n->alien) {
943 n->alien = new_alien;
944 new_alien = NULL;
945 }
946
947 spin_unlock_irq(&n->list_lock);
948 slabs_destroy(cachep, &list);
949
801faf0d
JK
950 /*
951 * To protect lockless access to n->shared during irq disabled context.
952 * If n->shared isn't NULL in irq disabled context, accessing to it is
953 * guaranteed to be valid until irq is re-enabled, because it will be
6564a25e 954 * freed after synchronize_rcu().
801faf0d 955 */
86d9f485 956 if (old_shared && force_change)
6564a25e 957 synchronize_rcu();
801faf0d 958
c3d332b6
JK
959fail:
960 kfree(old_shared);
961 kfree(new_shared);
962 free_alien_cache(new_alien);
963
964 return ret;
965}
966
6731d4f1
SAS
967#ifdef CONFIG_SMP
968
0db0628d 969static void cpuup_canceled(long cpu)
fbf1e473
AM
970{
971 struct kmem_cache *cachep;
ce8eb6c4 972 struct kmem_cache_node *n = NULL;
7d6e6d09 973 int node = cpu_to_mem(cpu);
a70f7302 974 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 975
18004c5d 976 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
977 struct array_cache *nc;
978 struct array_cache *shared;
c8522a3a 979 struct alien_cache **alien;
97654dfa 980 LIST_HEAD(list);
fbf1e473 981
18bf8541 982 n = get_node(cachep, node);
ce8eb6c4 983 if (!n)
bf0dea23 984 continue;
fbf1e473 985
ce8eb6c4 986 spin_lock_irq(&n->list_lock);
fbf1e473 987
ce8eb6c4
CL
988 /* Free limit for this kmem_cache_node */
989 n->free_limit -= cachep->batchcount;
bf0dea23
JK
990
991 /* cpu is dead; no one can alloc from it. */
992 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
993 if (nc) {
97654dfa 994 free_block(cachep, nc->entry, nc->avail, node, &list);
bf0dea23
JK
995 nc->avail = 0;
996 }
fbf1e473 997
58463c1f 998 if (!cpumask_empty(mask)) {
ce8eb6c4 999 spin_unlock_irq(&n->list_lock);
bf0dea23 1000 goto free_slab;
fbf1e473
AM
1001 }
1002
ce8eb6c4 1003 shared = n->shared;
fbf1e473
AM
1004 if (shared) {
1005 free_block(cachep, shared->entry,
97654dfa 1006 shared->avail, node, &list);
ce8eb6c4 1007 n->shared = NULL;
fbf1e473
AM
1008 }
1009
ce8eb6c4
CL
1010 alien = n->alien;
1011 n->alien = NULL;
fbf1e473 1012
ce8eb6c4 1013 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1014
1015 kfree(shared);
1016 if (alien) {
1017 drain_alien_cache(cachep, alien);
1018 free_alien_cache(alien);
1019 }
bf0dea23
JK
1020
1021free_slab:
97654dfa 1022 slabs_destroy(cachep, &list);
fbf1e473
AM
1023 }
1024 /*
1025 * In the previous loop, all the objects were freed to
1026 * the respective cache's slabs, now we can go ahead and
1027 * shrink each nodelist to its limit.
1028 */
18004c5d 1029 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1030 n = get_node(cachep, node);
ce8eb6c4 1031 if (!n)
fbf1e473 1032 continue;
a5aa63a5 1033 drain_freelist(cachep, n, INT_MAX);
fbf1e473
AM
1034 }
1035}
1036
0db0628d 1037static int cpuup_prepare(long cpu)
1da177e4 1038{
343e0d7a 1039 struct kmem_cache *cachep;
7d6e6d09 1040 int node = cpu_to_mem(cpu);
8f9f8d9e 1041 int err;
1da177e4 1042
fbf1e473
AM
1043 /*
1044 * We need to do this right in the beginning since
1045 * alloc_arraycache's are going to use this list.
1046 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1047 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1048 */
6a67368c 1049 err = init_cache_node_node(node);
8f9f8d9e
DR
1050 if (err < 0)
1051 goto bad;
fbf1e473
AM
1052
1053 /*
1054 * Now we can go ahead with allocating the shared arrays and
1055 * array caches
1056 */
18004c5d 1057 list_for_each_entry(cachep, &slab_caches, list) {
c3d332b6
JK
1058 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1059 if (err)
1060 goto bad;
fbf1e473 1061 }
ce79ddc8 1062
fbf1e473
AM
1063 return 0;
1064bad:
12d00f6a 1065 cpuup_canceled(cpu);
fbf1e473
AM
1066 return -ENOMEM;
1067}
1068
6731d4f1 1069int slab_prepare_cpu(unsigned int cpu)
fbf1e473 1070{
6731d4f1 1071 int err;
fbf1e473 1072
6731d4f1
SAS
1073 mutex_lock(&slab_mutex);
1074 err = cpuup_prepare(cpu);
1075 mutex_unlock(&slab_mutex);
1076 return err;
1077}
1078
1079/*
1080 * This is called for a failed online attempt and for a successful
1081 * offline.
1082 *
1083 * Even if all the cpus of a node are down, we don't free the
1084 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1085 * a kmalloc allocation from another cpu for memory from the node of
1086 * the cpu going down. The list3 structure is usually allocated from
1087 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1088 */
1089int slab_dead_cpu(unsigned int cpu)
1090{
1091 mutex_lock(&slab_mutex);
1092 cpuup_canceled(cpu);
1093 mutex_unlock(&slab_mutex);
1094 return 0;
1095}
8f5be20b 1096#endif
6731d4f1
SAS
1097
1098static int slab_online_cpu(unsigned int cpu)
1099{
1100 start_cpu_timer(cpu);
1101 return 0;
1da177e4
LT
1102}
1103
6731d4f1
SAS
1104static int slab_offline_cpu(unsigned int cpu)
1105{
1106 /*
1107 * Shutdown cache reaper. Note that the slab_mutex is held so
1108 * that if cache_reap() is invoked it cannot do anything
1109 * expensive but will only modify reap_work and reschedule the
1110 * timer.
1111 */
1112 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1113 /* Now the cache_reaper is guaranteed to be not running. */
1114 per_cpu(slab_reap_work, cpu).work.func = NULL;
1115 return 0;
1116}
1da177e4 1117
8f9f8d9e
DR
1118#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1119/*
1120 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1121 * Returns -EBUSY if all objects cannot be drained so that the node is not
1122 * removed.
1123 *
18004c5d 1124 * Must hold slab_mutex.
8f9f8d9e 1125 */
6a67368c 1126static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1127{
1128 struct kmem_cache *cachep;
1129 int ret = 0;
1130
18004c5d 1131 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1132 struct kmem_cache_node *n;
8f9f8d9e 1133
18bf8541 1134 n = get_node(cachep, node);
ce8eb6c4 1135 if (!n)
8f9f8d9e
DR
1136 continue;
1137
a5aa63a5 1138 drain_freelist(cachep, n, INT_MAX);
8f9f8d9e 1139
ce8eb6c4
CL
1140 if (!list_empty(&n->slabs_full) ||
1141 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1142 ret = -EBUSY;
1143 break;
1144 }
1145 }
1146 return ret;
1147}
1148
1149static int __meminit slab_memory_callback(struct notifier_block *self,
1150 unsigned long action, void *arg)
1151{
1152 struct memory_notify *mnb = arg;
1153 int ret = 0;
1154 int nid;
1155
1156 nid = mnb->status_change_nid;
1157 if (nid < 0)
1158 goto out;
1159
1160 switch (action) {
1161 case MEM_GOING_ONLINE:
18004c5d 1162 mutex_lock(&slab_mutex);
6a67368c 1163 ret = init_cache_node_node(nid);
18004c5d 1164 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1165 break;
1166 case MEM_GOING_OFFLINE:
18004c5d 1167 mutex_lock(&slab_mutex);
6a67368c 1168 ret = drain_cache_node_node(nid);
18004c5d 1169 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1170 break;
1171 case MEM_ONLINE:
1172 case MEM_OFFLINE:
1173 case MEM_CANCEL_ONLINE:
1174 case MEM_CANCEL_OFFLINE:
1175 break;
1176 }
1177out:
5fda1bd5 1178 return notifier_from_errno(ret);
8f9f8d9e
DR
1179}
1180#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1181
e498be7d 1182/*
ce8eb6c4 1183 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1184 */
6744f087 1185static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1186 int nodeid)
e498be7d 1187{
6744f087 1188 struct kmem_cache_node *ptr;
e498be7d 1189
6744f087 1190 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1191 BUG_ON(!ptr);
1192
6744f087 1193 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1194 /*
1195 * Do not assume that spinlocks can be initialized via memcpy:
1196 */
1197 spin_lock_init(&ptr->list_lock);
1198
e498be7d 1199 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1200 cachep->node[nodeid] = ptr;
e498be7d
CL
1201}
1202
556a169d 1203/*
ce8eb6c4
CL
1204 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1205 * size of kmem_cache_node.
556a169d 1206 */
ce8eb6c4 1207static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1208{
1209 int node;
1210
1211 for_each_online_node(node) {
ce8eb6c4 1212 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1213 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1214 REAPTIMEOUT_NODE +
1215 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1216 }
1217}
1218
a737b3e2
AM
1219/*
1220 * Initialisation. Called after the page allocator have been initialised and
1221 * before smp_init().
1da177e4
LT
1222 */
1223void __init kmem_cache_init(void)
1224{
e498be7d
CL
1225 int i;
1226
9b030cb8
CL
1227 kmem_cache = &kmem_cache_boot;
1228
8888177e 1229 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
62918a03
SS
1230 use_alien_caches = 0;
1231
3c583465 1232 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1233 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1234
1da177e4
LT
1235 /*
1236 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1237 * page orders on machines with more than 32MB of memory if
1238 * not overridden on the command line.
1da177e4 1239 */
ca79b0c2 1240 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
543585cc 1241 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1242
1da177e4
LT
1243 /* Bootstrap is tricky, because several objects are allocated
1244 * from caches that do not exist yet:
9b030cb8
CL
1245 * 1) initialize the kmem_cache cache: it contains the struct
1246 * kmem_cache structures of all caches, except kmem_cache itself:
1247 * kmem_cache is statically allocated.
e498be7d 1248 * Initially an __init data area is used for the head array and the
ce8eb6c4 1249 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1250 * array at the end of the bootstrap.
1da177e4 1251 * 2) Create the first kmalloc cache.
343e0d7a 1252 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1253 * An __init data area is used for the head array.
1254 * 3) Create the remaining kmalloc caches, with minimally sized
1255 * head arrays.
9b030cb8 1256 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1257 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1258 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1259 * the other cache's with kmalloc allocated memory.
1260 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1261 */
1262
9b030cb8 1263 /* 1) create the kmem_cache */
1da177e4 1264
8da3430d 1265 /*
b56efcf0 1266 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1267 */
2f9baa9f 1268 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1269 offsetof(struct kmem_cache, node) +
6744f087 1270 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 1271 SLAB_HWCACHE_ALIGN, 0, 0);
2f9baa9f 1272 list_add(&kmem_cache->list, &slab_caches);
880cd276 1273 memcg_link_cache(kmem_cache);
bf0dea23 1274 slab_state = PARTIAL;
1da177e4 1275
a737b3e2 1276 /*
bf0dea23
JK
1277 * Initialize the caches that provide memory for the kmem_cache_node
1278 * structures first. Without this, further allocations will bug.
e498be7d 1279 */
cc252eae 1280 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
af3b5f87 1281 kmalloc_info[INDEX_NODE].name,
6c0c21ad
DW
1282 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
1283 0, kmalloc_size(INDEX_NODE));
bf0dea23 1284 slab_state = PARTIAL_NODE;
34cc6990 1285 setup_kmalloc_cache_index_table();
e498be7d 1286
e0a42726
IM
1287 slab_early_init = 0;
1288
ce8eb6c4 1289 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1290 {
1ca4cb24
PE
1291 int nid;
1292
9c09a95c 1293 for_each_online_node(nid) {
ce8eb6c4 1294 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1295
cc252eae 1296 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
ce8eb6c4 1297 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1298 }
1299 }
1da177e4 1300
f97d5f63 1301 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1302}
1303
1304void __init kmem_cache_init_late(void)
1305{
1306 struct kmem_cache *cachep;
1307
8429db5c 1308 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1309 mutex_lock(&slab_mutex);
1310 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1311 if (enable_cpucache(cachep, GFP_NOWAIT))
1312 BUG();
18004c5d 1313 mutex_unlock(&slab_mutex);
056c6241 1314
97d06609
CL
1315 /* Done! */
1316 slab_state = FULL;
1317
8f9f8d9e
DR
1318#ifdef CONFIG_NUMA
1319 /*
1320 * Register a memory hotplug callback that initializes and frees
6a67368c 1321 * node.
8f9f8d9e
DR
1322 */
1323 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1324#endif
1325
a737b3e2
AM
1326 /*
1327 * The reap timers are started later, with a module init call: That part
1328 * of the kernel is not yet operational.
1da177e4
LT
1329 */
1330}
1331
1332static int __init cpucache_init(void)
1333{
6731d4f1 1334 int ret;
1da177e4 1335
a737b3e2
AM
1336 /*
1337 * Register the timers that return unneeded pages to the page allocator
1da177e4 1338 */
6731d4f1
SAS
1339 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1340 slab_online_cpu, slab_offline_cpu);
1341 WARN_ON(ret < 0);
a164f896 1342
1da177e4
LT
1343 return 0;
1344}
1da177e4
LT
1345__initcall(cpucache_init);
1346
8bdec192
RA
1347static noinline void
1348slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1349{
9a02d699 1350#if DEBUG
ce8eb6c4 1351 struct kmem_cache_node *n;
8bdec192
RA
1352 unsigned long flags;
1353 int node;
9a02d699
DR
1354 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1355 DEFAULT_RATELIMIT_BURST);
1356
1357 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1358 return;
8bdec192 1359
5b3810e5
VB
1360 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1361 nodeid, gfpflags, &gfpflags);
1362 pr_warn(" cache: %s, object size: %d, order: %d\n",
3b0efdfa 1363 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1364
18bf8541 1365 for_each_kmem_cache_node(cachep, node, n) {
bf00bd34 1366 unsigned long total_slabs, free_slabs, free_objs;
8bdec192 1367
ce8eb6c4 1368 spin_lock_irqsave(&n->list_lock, flags);
bf00bd34
DR
1369 total_slabs = n->total_slabs;
1370 free_slabs = n->free_slabs;
1371 free_objs = n->free_objects;
ce8eb6c4 1372 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192 1373
bf00bd34
DR
1374 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1375 node, total_slabs - free_slabs, total_slabs,
1376 (total_slabs * cachep->num) - free_objs,
1377 total_slabs * cachep->num);
8bdec192 1378 }
9a02d699 1379#endif
8bdec192
RA
1380}
1381
1da177e4 1382/*
8a7d9b43
WSH
1383 * Interface to system's page allocator. No need to hold the
1384 * kmem_cache_node ->list_lock.
1da177e4
LT
1385 *
1386 * If we requested dmaable memory, we will get it. Even if we
1387 * did not request dmaable memory, we might get it, but that
1388 * would be relatively rare and ignorable.
1389 */
0c3aa83e
JK
1390static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1391 int nodeid)
1da177e4
LT
1392{
1393 struct page *page;
e1b6aa6f 1394 int nr_pages;
765c4507 1395
a618e89f 1396 flags |= cachep->allocflags;
e1b6aa6f 1397
75f296d9 1398 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
8bdec192 1399 if (!page) {
9a02d699 1400 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1401 return NULL;
8bdec192 1402 }
1da177e4 1403
f3ccb2c4
VD
1404 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1405 __free_pages(page, cachep->gfporder);
1406 return NULL;
1407 }
1408
e1b6aa6f 1409 nr_pages = (1 << cachep->gfporder);
1da177e4 1410 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
7779f212 1411 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
972d1a7b 1412 else
7779f212 1413 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
f68f8ddd 1414
a57a4988 1415 __SetPageSlab(page);
f68f8ddd
JK
1416 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1417 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
a57a4988 1418 SetPageSlabPfmemalloc(page);
072bb0aa 1419
0c3aa83e 1420 return page;
1da177e4
LT
1421}
1422
1423/*
1424 * Interface to system's page release.
1425 */
0c3aa83e 1426static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1427{
27ee57c9
VD
1428 int order = cachep->gfporder;
1429 unsigned long nr_freed = (1 << order);
1da177e4 1430
972d1a7b 1431 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
7779f212 1432 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
972d1a7b 1433 else
7779f212 1434 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
73293c2f 1435
a57a4988 1436 BUG_ON(!PageSlab(page));
73293c2f 1437 __ClearPageSlabPfmemalloc(page);
a57a4988 1438 __ClearPageSlab(page);
8456a648
JK
1439 page_mapcount_reset(page);
1440 page->mapping = NULL;
1f458cbf 1441
1da177e4
LT
1442 if (current->reclaim_state)
1443 current->reclaim_state->reclaimed_slab += nr_freed;
27ee57c9
VD
1444 memcg_uncharge_slab(page, order, cachep);
1445 __free_pages(page, order);
1da177e4
LT
1446}
1447
1448static void kmem_rcu_free(struct rcu_head *head)
1449{
68126702
JK
1450 struct kmem_cache *cachep;
1451 struct page *page;
1da177e4 1452
68126702
JK
1453 page = container_of(head, struct page, rcu_head);
1454 cachep = page->slab_cache;
1455
1456 kmem_freepages(cachep, page);
1da177e4
LT
1457}
1458
1459#if DEBUG
40b44137
JK
1460static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1461{
1462 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1463 (cachep->size % PAGE_SIZE) == 0)
1464 return true;
1465
1466 return false;
1467}
1da177e4
LT
1468
1469#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1470static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1471 unsigned long caller)
1da177e4 1472{
8c138bc0 1473 int size = cachep->object_size;
1da177e4 1474
3dafccf2 1475 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1476
b28a02de 1477 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1478 return;
1479
b28a02de
PE
1480 *addr++ = 0x12345678;
1481 *addr++ = caller;
1482 *addr++ = smp_processor_id();
1483 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1484 {
1485 unsigned long *sptr = &caller;
1486 unsigned long svalue;
1487
1488 while (!kstack_end(sptr)) {
1489 svalue = *sptr++;
1490 if (kernel_text_address(svalue)) {
b28a02de 1491 *addr++ = svalue;
1da177e4
LT
1492 size -= sizeof(unsigned long);
1493 if (size <= sizeof(unsigned long))
1494 break;
1495 }
1496 }
1497
1498 }
b28a02de 1499 *addr++ = 0x87654321;
1da177e4 1500}
40b44137
JK
1501
1502static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1503 int map, unsigned long caller)
1504{
1505 if (!is_debug_pagealloc_cache(cachep))
1506 return;
1507
1508 if (caller)
1509 store_stackinfo(cachep, objp, caller);
1510
1511 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1512}
1513
1514#else
1515static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1516 int map, unsigned long caller) {}
1517
1da177e4
LT
1518#endif
1519
343e0d7a 1520static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1521{
8c138bc0 1522 int size = cachep->object_size;
3dafccf2 1523 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1524
1525 memset(addr, val, size);
b28a02de 1526 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1527}
1528
1529static void dump_line(char *data, int offset, int limit)
1530{
1531 int i;
aa83aa40
DJ
1532 unsigned char error = 0;
1533 int bad_count = 0;
1534
1170532b 1535 pr_err("%03x: ", offset);
aa83aa40
DJ
1536 for (i = 0; i < limit; i++) {
1537 if (data[offset + i] != POISON_FREE) {
1538 error = data[offset + i];
1539 bad_count++;
1540 }
aa83aa40 1541 }
fdde6abb
SAS
1542 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1543 &data[offset], limit, 1);
aa83aa40
DJ
1544
1545 if (bad_count == 1) {
1546 error ^= POISON_FREE;
1547 if (!(error & (error - 1))) {
1170532b 1548 pr_err("Single bit error detected. Probably bad RAM.\n");
aa83aa40 1549#ifdef CONFIG_X86
1170532b 1550 pr_err("Run memtest86+ or a similar memory test tool.\n");
aa83aa40 1551#else
1170532b 1552 pr_err("Run a memory test tool.\n");
aa83aa40
DJ
1553#endif
1554 }
1555 }
1da177e4
LT
1556}
1557#endif
1558
1559#if DEBUG
1560
343e0d7a 1561static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1562{
1563 int i, size;
1564 char *realobj;
1565
1566 if (cachep->flags & SLAB_RED_ZONE) {
1170532b
JP
1567 pr_err("Redzone: 0x%llx/0x%llx\n",
1568 *dbg_redzone1(cachep, objp),
1569 *dbg_redzone2(cachep, objp));
1da177e4
LT
1570 }
1571
85c3e4a5
GU
1572 if (cachep->flags & SLAB_STORE_USER)
1573 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
3dafccf2 1574 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1575 size = cachep->object_size;
b28a02de 1576 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1577 int limit;
1578 limit = 16;
b28a02de
PE
1579 if (i + limit > size)
1580 limit = size - i;
1da177e4
LT
1581 dump_line(realobj, i, limit);
1582 }
1583}
1584
343e0d7a 1585static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1586{
1587 char *realobj;
1588 int size, i;
1589 int lines = 0;
1590
40b44137
JK
1591 if (is_debug_pagealloc_cache(cachep))
1592 return;
1593
3dafccf2 1594 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1595 size = cachep->object_size;
1da177e4 1596
b28a02de 1597 for (i = 0; i < size; i++) {
1da177e4 1598 char exp = POISON_FREE;
b28a02de 1599 if (i == size - 1)
1da177e4
LT
1600 exp = POISON_END;
1601 if (realobj[i] != exp) {
1602 int limit;
1603 /* Mismatch ! */
1604 /* Print header */
1605 if (lines == 0) {
85c3e4a5 1606 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1170532b
JP
1607 print_tainted(), cachep->name,
1608 realobj, size);
1da177e4
LT
1609 print_objinfo(cachep, objp, 0);
1610 }
1611 /* Hexdump the affected line */
b28a02de 1612 i = (i / 16) * 16;
1da177e4 1613 limit = 16;
b28a02de
PE
1614 if (i + limit > size)
1615 limit = size - i;
1da177e4
LT
1616 dump_line(realobj, i, limit);
1617 i += 16;
1618 lines++;
1619 /* Limit to 5 lines */
1620 if (lines > 5)
1621 break;
1622 }
1623 }
1624 if (lines != 0) {
1625 /* Print some data about the neighboring objects, if they
1626 * exist:
1627 */
8456a648 1628 struct page *page = virt_to_head_page(objp);
8fea4e96 1629 unsigned int objnr;
1da177e4 1630
8456a648 1631 objnr = obj_to_index(cachep, page, objp);
1da177e4 1632 if (objnr) {
8456a648 1633 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1634 realobj = (char *)objp + obj_offset(cachep);
85c3e4a5 1635 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1da177e4
LT
1636 print_objinfo(cachep, objp, 2);
1637 }
b28a02de 1638 if (objnr + 1 < cachep->num) {
8456a648 1639 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1640 realobj = (char *)objp + obj_offset(cachep);
85c3e4a5 1641 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1da177e4
LT
1642 print_objinfo(cachep, objp, 2);
1643 }
1644 }
1645}
1646#endif
1647
12dd36fa 1648#if DEBUG
8456a648
JK
1649static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1650 struct page *page)
1da177e4 1651{
1da177e4 1652 int i;
b03a017b
JK
1653
1654 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1655 poison_obj(cachep, page->freelist - obj_offset(cachep),
1656 POISON_FREE);
1657 }
1658
1da177e4 1659 for (i = 0; i < cachep->num; i++) {
8456a648 1660 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1661
1662 if (cachep->flags & SLAB_POISON) {
1da177e4 1663 check_poison_obj(cachep, objp);
40b44137 1664 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
1665 }
1666 if (cachep->flags & SLAB_RED_ZONE) {
1667 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 1668 slab_error(cachep, "start of a freed object was overwritten");
1da177e4 1669 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 1670 slab_error(cachep, "end of a freed object was overwritten");
1da177e4 1671 }
1da177e4 1672 }
12dd36fa 1673}
1da177e4 1674#else
8456a648
JK
1675static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1676 struct page *page)
12dd36fa 1677{
12dd36fa 1678}
1da177e4
LT
1679#endif
1680
911851e6
RD
1681/**
1682 * slab_destroy - destroy and release all objects in a slab
1683 * @cachep: cache pointer being destroyed
cb8ee1a3 1684 * @page: page pointer being destroyed
911851e6 1685 *
8a7d9b43
WSH
1686 * Destroy all the objs in a slab page, and release the mem back to the system.
1687 * Before calling the slab page must have been unlinked from the cache. The
1688 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1689 */
8456a648 1690static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1691{
7e007355 1692 void *freelist;
12dd36fa 1693
8456a648
JK
1694 freelist = page->freelist;
1695 slab_destroy_debugcheck(cachep, page);
5f0d5a3a 1696 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
bc4f610d
KS
1697 call_rcu(&page->rcu_head, kmem_rcu_free);
1698 else
0c3aa83e 1699 kmem_freepages(cachep, page);
68126702
JK
1700
1701 /*
8456a648 1702 * From now on, we don't use freelist
68126702
JK
1703 * although actual page can be freed in rcu context
1704 */
1705 if (OFF_SLAB(cachep))
8456a648 1706 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1707}
1708
97654dfa
JK
1709static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1710{
1711 struct page *page, *n;
1712
1713 list_for_each_entry_safe(page, n, list, lru) {
1714 list_del(&page->lru);
1715 slab_destroy(cachep, page);
1716 }
1717}
1718
4d268eba 1719/**
a70773dd
RD
1720 * calculate_slab_order - calculate size (page order) of slabs
1721 * @cachep: pointer to the cache that is being created
1722 * @size: size of objects to be created in this cache.
a70773dd
RD
1723 * @flags: slab allocation flags
1724 *
1725 * Also calculates the number of objects per slab.
4d268eba
PE
1726 *
1727 * This could be made much more intelligent. For now, try to avoid using
1728 * high order pages for slabs. When the gfp() functions are more friendly
1729 * towards high-order requests, this should be changed.
1730 */
a737b3e2 1731static size_t calculate_slab_order(struct kmem_cache *cachep,
d50112ed 1732 size_t size, slab_flags_t flags)
4d268eba
PE
1733{
1734 size_t left_over = 0;
9888e6fa 1735 int gfporder;
4d268eba 1736
0aa817f0 1737 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1738 unsigned int num;
1739 size_t remainder;
1740
70f75067 1741 num = cache_estimate(gfporder, size, flags, &remainder);
4d268eba
PE
1742 if (!num)
1743 continue;
9888e6fa 1744
f315e3fa
JK
1745 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1746 if (num > SLAB_OBJ_MAX_NUM)
1747 break;
1748
b1ab41c4 1749 if (flags & CFLGS_OFF_SLAB) {
3217fd9b
JK
1750 struct kmem_cache *freelist_cache;
1751 size_t freelist_size;
1752
1753 freelist_size = num * sizeof(freelist_idx_t);
1754 freelist_cache = kmalloc_slab(freelist_size, 0u);
1755 if (!freelist_cache)
1756 continue;
1757
b1ab41c4 1758 /*
3217fd9b 1759 * Needed to avoid possible looping condition
76b342bd 1760 * in cache_grow_begin()
b1ab41c4 1761 */
3217fd9b
JK
1762 if (OFF_SLAB(freelist_cache))
1763 continue;
b1ab41c4 1764
3217fd9b
JK
1765 /* check if off slab has enough benefit */
1766 if (freelist_cache->size > cachep->size / 2)
1767 continue;
b1ab41c4 1768 }
4d268eba 1769
9888e6fa 1770 /* Found something acceptable - save it away */
4d268eba 1771 cachep->num = num;
9888e6fa 1772 cachep->gfporder = gfporder;
4d268eba
PE
1773 left_over = remainder;
1774
f78bb8ad
LT
1775 /*
1776 * A VFS-reclaimable slab tends to have most allocations
1777 * as GFP_NOFS and we really don't want to have to be allocating
1778 * higher-order pages when we are unable to shrink dcache.
1779 */
1780 if (flags & SLAB_RECLAIM_ACCOUNT)
1781 break;
1782
4d268eba
PE
1783 /*
1784 * Large number of objects is good, but very large slabs are
1785 * currently bad for the gfp()s.
1786 */
543585cc 1787 if (gfporder >= slab_max_order)
4d268eba
PE
1788 break;
1789
9888e6fa
LT
1790 /*
1791 * Acceptable internal fragmentation?
1792 */
a737b3e2 1793 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1794 break;
1795 }
1796 return left_over;
1797}
1798
bf0dea23
JK
1799static struct array_cache __percpu *alloc_kmem_cache_cpus(
1800 struct kmem_cache *cachep, int entries, int batchcount)
1801{
1802 int cpu;
1803 size_t size;
1804 struct array_cache __percpu *cpu_cache;
1805
1806 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1807 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1808
1809 if (!cpu_cache)
1810 return NULL;
1811
1812 for_each_possible_cpu(cpu) {
1813 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1814 entries, batchcount);
1815 }
1816
1817 return cpu_cache;
1818}
1819
bd721ea7 1820static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1821{
97d06609 1822 if (slab_state >= FULL)
83b519e8 1823 return enable_cpucache(cachep, gfp);
2ed3a4ef 1824
bf0dea23
JK
1825 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1826 if (!cachep->cpu_cache)
1827 return 1;
1828
97d06609 1829 if (slab_state == DOWN) {
bf0dea23
JK
1830 /* Creation of first cache (kmem_cache). */
1831 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1832 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1833 /* For kmem_cache_node */
1834 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1835 } else {
bf0dea23 1836 int node;
f30cf7d1 1837
bf0dea23
JK
1838 for_each_online_node(node) {
1839 cachep->node[node] = kmalloc_node(
1840 sizeof(struct kmem_cache_node), gfp, node);
1841 BUG_ON(!cachep->node[node]);
1842 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1843 }
1844 }
bf0dea23 1845
6a67368c 1846 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1847 jiffies + REAPTIMEOUT_NODE +
1848 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1849
1850 cpu_cache_get(cachep)->avail = 0;
1851 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1852 cpu_cache_get(cachep)->batchcount = 1;
1853 cpu_cache_get(cachep)->touched = 0;
1854 cachep->batchcount = 1;
1855 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1856 return 0;
f30cf7d1
PE
1857}
1858
0293d1fd 1859slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1860 slab_flags_t flags, const char *name,
12220dea
JK
1861 void (*ctor)(void *))
1862{
1863 return flags;
1864}
1865
1866struct kmem_cache *
f4957d5b 1867__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 1868 slab_flags_t flags, void (*ctor)(void *))
12220dea
JK
1869{
1870 struct kmem_cache *cachep;
1871
1872 cachep = find_mergeable(size, align, flags, name, ctor);
1873 if (cachep) {
1874 cachep->refcount++;
1875
1876 /*
1877 * Adjust the object sizes so that we clear
1878 * the complete object on kzalloc.
1879 */
1880 cachep->object_size = max_t(int, cachep->object_size, size);
1881 }
1882 return cachep;
1883}
1884
b03a017b 1885static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
d50112ed 1886 size_t size, slab_flags_t flags)
b03a017b
JK
1887{
1888 size_t left;
1889
1890 cachep->num = 0;
1891
5f0d5a3a 1892 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
b03a017b
JK
1893 return false;
1894
1895 left = calculate_slab_order(cachep, size,
1896 flags | CFLGS_OBJFREELIST_SLAB);
1897 if (!cachep->num)
1898 return false;
1899
1900 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1901 return false;
1902
1903 cachep->colour = left / cachep->colour_off;
1904
1905 return true;
1906}
1907
158e319b 1908static bool set_off_slab_cache(struct kmem_cache *cachep,
d50112ed 1909 size_t size, slab_flags_t flags)
158e319b
JK
1910{
1911 size_t left;
1912
1913 cachep->num = 0;
1914
1915 /*
3217fd9b
JK
1916 * Always use on-slab management when SLAB_NOLEAKTRACE
1917 * to avoid recursive calls into kmemleak.
158e319b 1918 */
158e319b
JK
1919 if (flags & SLAB_NOLEAKTRACE)
1920 return false;
1921
1922 /*
1923 * Size is large, assume best to place the slab management obj
1924 * off-slab (should allow better packing of objs).
1925 */
1926 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1927 if (!cachep->num)
1928 return false;
1929
1930 /*
1931 * If the slab has been placed off-slab, and we have enough space then
1932 * move it on-slab. This is at the expense of any extra colouring.
1933 */
1934 if (left >= cachep->num * sizeof(freelist_idx_t))
1935 return false;
1936
1937 cachep->colour = left / cachep->colour_off;
1938
1939 return true;
1940}
1941
1942static bool set_on_slab_cache(struct kmem_cache *cachep,
d50112ed 1943 size_t size, slab_flags_t flags)
158e319b
JK
1944{
1945 size_t left;
1946
1947 cachep->num = 0;
1948
1949 left = calculate_slab_order(cachep, size, flags);
1950 if (!cachep->num)
1951 return false;
1952
1953 cachep->colour = left / cachep->colour_off;
1954
1955 return true;
1956}
1957
1da177e4 1958/**
039363f3 1959 * __kmem_cache_create - Create a cache.
a755b76a 1960 * @cachep: cache management descriptor
1da177e4 1961 * @flags: SLAB flags
1da177e4
LT
1962 *
1963 * Returns a ptr to the cache on success, NULL on failure.
1964 * Cannot be called within a int, but can be interrupted.
20c2df83 1965 * The @ctor is run when new pages are allocated by the cache.
1da177e4 1966 *
1da177e4
LT
1967 * The flags are
1968 *
1969 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1970 * to catch references to uninitialised memory.
1971 *
1972 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1973 * for buffer overruns.
1974 *
1da177e4
LT
1975 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1976 * cacheline. This can be beneficial if you're counting cycles as closely
1977 * as davem.
1978 */
d50112ed 1979int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1da177e4 1980{
d4a5fca5 1981 size_t ralign = BYTES_PER_WORD;
83b519e8 1982 gfp_t gfp;
278b1bb1 1983 int err;
be4a7988 1984 unsigned int size = cachep->size;
1da177e4 1985
1da177e4 1986#if DEBUG
1da177e4
LT
1987#if FORCED_DEBUG
1988 /*
1989 * Enable redzoning and last user accounting, except for caches with
1990 * large objects, if the increased size would increase the object size
1991 * above the next power of two: caches with object sizes just above a
1992 * power of two have a significant amount of internal fragmentation.
1993 */
87a927c7
DW
1994 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1995 2 * sizeof(unsigned long long)))
b28a02de 1996 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
5f0d5a3a 1997 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1da177e4
LT
1998 flags |= SLAB_POISON;
1999#endif
1da177e4 2000#endif
1da177e4 2001
a737b3e2
AM
2002 /*
2003 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2004 * unaligned accesses for some archs when redzoning is used, and makes
2005 * sure any on-slab bufctl's are also correctly aligned.
2006 */
e0771950 2007 size = ALIGN(size, BYTES_PER_WORD);
1da177e4 2008
87a927c7
DW
2009 if (flags & SLAB_RED_ZONE) {
2010 ralign = REDZONE_ALIGN;
2011 /* If redzoning, ensure that the second redzone is suitably
2012 * aligned, by adjusting the object size accordingly. */
e0771950 2013 size = ALIGN(size, REDZONE_ALIGN);
87a927c7 2014 }
ca5f9703 2015
a44b56d3 2016 /* 3) caller mandated alignment */
8a13a4cc
CL
2017 if (ralign < cachep->align) {
2018 ralign = cachep->align;
1da177e4 2019 }
3ff84a7f
PE
2020 /* disable debug if necessary */
2021 if (ralign > __alignof__(unsigned long long))
a44b56d3 2022 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2023 /*
ca5f9703 2024 * 4) Store it.
1da177e4 2025 */
8a13a4cc 2026 cachep->align = ralign;
158e319b
JK
2027 cachep->colour_off = cache_line_size();
2028 /* Offset must be a multiple of the alignment. */
2029 if (cachep->colour_off < cachep->align)
2030 cachep->colour_off = cachep->align;
1da177e4 2031
83b519e8
PE
2032 if (slab_is_available())
2033 gfp = GFP_KERNEL;
2034 else
2035 gfp = GFP_NOWAIT;
2036
1da177e4 2037#if DEBUG
1da177e4 2038
ca5f9703
PE
2039 /*
2040 * Both debugging options require word-alignment which is calculated
2041 * into align above.
2042 */
1da177e4 2043 if (flags & SLAB_RED_ZONE) {
1da177e4 2044 /* add space for red zone words */
3ff84a7f
PE
2045 cachep->obj_offset += sizeof(unsigned long long);
2046 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2047 }
2048 if (flags & SLAB_STORE_USER) {
ca5f9703 2049 /* user store requires one word storage behind the end of
87a927c7
DW
2050 * the real object. But if the second red zone needs to be
2051 * aligned to 64 bits, we must allow that much space.
1da177e4 2052 */
87a927c7
DW
2053 if (flags & SLAB_RED_ZONE)
2054 size += REDZONE_ALIGN;
2055 else
2056 size += BYTES_PER_WORD;
1da177e4 2057 }
832a15d2
JK
2058#endif
2059
7ed2f9e6
AP
2060 kasan_cache_create(cachep, &size, &flags);
2061
832a15d2
JK
2062 size = ALIGN(size, cachep->align);
2063 /*
2064 * We should restrict the number of objects in a slab to implement
2065 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2066 */
2067 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2068 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2069
2070#if DEBUG
03a2d2a3
JK
2071 /*
2072 * To activate debug pagealloc, off-slab management is necessary
2073 * requirement. In early phase of initialization, small sized slab
2074 * doesn't get initialized so it would not be possible. So, we need
2075 * to check size >= 256. It guarantees that all necessary small
2076 * sized slab is initialized in current slab initialization sequence.
2077 */
40323278 2078 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
f3a3c320
JK
2079 size >= 256 && cachep->object_size > cache_line_size()) {
2080 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2081 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2082
2083 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2084 flags |= CFLGS_OFF_SLAB;
2085 cachep->obj_offset += tmp_size - size;
2086 size = tmp_size;
2087 goto done;
2088 }
2089 }
1da177e4 2090 }
1da177e4
LT
2091#endif
2092
b03a017b
JK
2093 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2094 flags |= CFLGS_OBJFREELIST_SLAB;
2095 goto done;
2096 }
2097
158e319b 2098 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2099 flags |= CFLGS_OFF_SLAB;
158e319b 2100 goto done;
832a15d2 2101 }
1da177e4 2102
158e319b
JK
2103 if (set_on_slab_cache(cachep, size, flags))
2104 goto done;
1da177e4 2105
158e319b 2106 return -E2BIG;
1da177e4 2107
158e319b
JK
2108done:
2109 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2110 cachep->flags = flags;
a57a4988 2111 cachep->allocflags = __GFP_COMP;
a3187e43 2112 if (flags & SLAB_CACHE_DMA)
a618e89f 2113 cachep->allocflags |= GFP_DMA;
a3ba0744
DR
2114 if (flags & SLAB_RECLAIM_ACCOUNT)
2115 cachep->allocflags |= __GFP_RECLAIMABLE;
3b0efdfa 2116 cachep->size = size;
6a2d7a95 2117 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2118
40b44137
JK
2119#if DEBUG
2120 /*
2121 * If we're going to use the generic kernel_map_pages()
2122 * poisoning, then it's going to smash the contents of
2123 * the redzone and userword anyhow, so switch them off.
2124 */
2125 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2126 (cachep->flags & SLAB_POISON) &&
2127 is_debug_pagealloc_cache(cachep))
2128 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2129#endif
2130
2131 if (OFF_SLAB(cachep)) {
158e319b
JK
2132 cachep->freelist_cache =
2133 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2134 }
1da177e4 2135
278b1bb1
CL
2136 err = setup_cpu_cache(cachep, gfp);
2137 if (err) {
52b4b950 2138 __kmem_cache_release(cachep);
278b1bb1 2139 return err;
2ed3a4ef 2140 }
1da177e4 2141
278b1bb1 2142 return 0;
1da177e4 2143}
1da177e4
LT
2144
2145#if DEBUG
2146static void check_irq_off(void)
2147{
2148 BUG_ON(!irqs_disabled());
2149}
2150
2151static void check_irq_on(void)
2152{
2153 BUG_ON(irqs_disabled());
2154}
2155
18726ca8
JK
2156static void check_mutex_acquired(void)
2157{
2158 BUG_ON(!mutex_is_locked(&slab_mutex));
2159}
2160
343e0d7a 2161static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2162{
2163#ifdef CONFIG_SMP
2164 check_irq_off();
18bf8541 2165 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2166#endif
2167}
e498be7d 2168
343e0d7a 2169static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2170{
2171#ifdef CONFIG_SMP
2172 check_irq_off();
18bf8541 2173 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2174#endif
2175}
2176
1da177e4
LT
2177#else
2178#define check_irq_off() do { } while(0)
2179#define check_irq_on() do { } while(0)
18726ca8 2180#define check_mutex_acquired() do { } while(0)
1da177e4 2181#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2182#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2183#endif
2184
18726ca8
JK
2185static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2186 int node, bool free_all, struct list_head *list)
2187{
2188 int tofree;
2189
2190 if (!ac || !ac->avail)
2191 return;
2192
2193 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2194 if (tofree > ac->avail)
2195 tofree = (ac->avail + 1) / 2;
2196
2197 free_block(cachep, ac->entry, tofree, node, list);
2198 ac->avail -= tofree;
2199 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2200}
aab2207c 2201
1da177e4
LT
2202static void do_drain(void *arg)
2203{
a737b3e2 2204 struct kmem_cache *cachep = arg;
1da177e4 2205 struct array_cache *ac;
7d6e6d09 2206 int node = numa_mem_id();
18bf8541 2207 struct kmem_cache_node *n;
97654dfa 2208 LIST_HEAD(list);
1da177e4
LT
2209
2210 check_irq_off();
9a2dba4b 2211 ac = cpu_cache_get(cachep);
18bf8541
CL
2212 n = get_node(cachep, node);
2213 spin_lock(&n->list_lock);
97654dfa 2214 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2215 spin_unlock(&n->list_lock);
97654dfa 2216 slabs_destroy(cachep, &list);
1da177e4
LT
2217 ac->avail = 0;
2218}
2219
343e0d7a 2220static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2221{
ce8eb6c4 2222 struct kmem_cache_node *n;
e498be7d 2223 int node;
18726ca8 2224 LIST_HEAD(list);
e498be7d 2225
15c8b6c1 2226 on_each_cpu(do_drain, cachep, 1);
1da177e4 2227 check_irq_on();
18bf8541
CL
2228 for_each_kmem_cache_node(cachep, node, n)
2229 if (n->alien)
ce8eb6c4 2230 drain_alien_cache(cachep, n->alien);
a4523a8b 2231
18726ca8
JK
2232 for_each_kmem_cache_node(cachep, node, n) {
2233 spin_lock_irq(&n->list_lock);
2234 drain_array_locked(cachep, n->shared, node, true, &list);
2235 spin_unlock_irq(&n->list_lock);
2236
2237 slabs_destroy(cachep, &list);
2238 }
1da177e4
LT
2239}
2240
ed11d9eb
CL
2241/*
2242 * Remove slabs from the list of free slabs.
2243 * Specify the number of slabs to drain in tofree.
2244 *
2245 * Returns the actual number of slabs released.
2246 */
2247static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2248 struct kmem_cache_node *n, int tofree)
1da177e4 2249{
ed11d9eb
CL
2250 struct list_head *p;
2251 int nr_freed;
8456a648 2252 struct page *page;
1da177e4 2253
ed11d9eb 2254 nr_freed = 0;
ce8eb6c4 2255 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2256
ce8eb6c4
CL
2257 spin_lock_irq(&n->list_lock);
2258 p = n->slabs_free.prev;
2259 if (p == &n->slabs_free) {
2260 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2261 goto out;
2262 }
1da177e4 2263
8456a648 2264 page = list_entry(p, struct page, lru);
8456a648 2265 list_del(&page->lru);
f728b0a5 2266 n->free_slabs--;
bf00bd34 2267 n->total_slabs--;
ed11d9eb
CL
2268 /*
2269 * Safe to drop the lock. The slab is no longer linked
2270 * to the cache.
2271 */
ce8eb6c4
CL
2272 n->free_objects -= cache->num;
2273 spin_unlock_irq(&n->list_lock);
8456a648 2274 slab_destroy(cache, page);
ed11d9eb 2275 nr_freed++;
1da177e4 2276 }
ed11d9eb
CL
2277out:
2278 return nr_freed;
1da177e4
LT
2279}
2280
f9e13c0a
SB
2281bool __kmem_cache_empty(struct kmem_cache *s)
2282{
2283 int node;
2284 struct kmem_cache_node *n;
2285
2286 for_each_kmem_cache_node(s, node, n)
2287 if (!list_empty(&n->slabs_full) ||
2288 !list_empty(&n->slabs_partial))
2289 return false;
2290 return true;
2291}
2292
c9fc5864 2293int __kmem_cache_shrink(struct kmem_cache *cachep)
e498be7d 2294{
18bf8541
CL
2295 int ret = 0;
2296 int node;
ce8eb6c4 2297 struct kmem_cache_node *n;
e498be7d
CL
2298
2299 drain_cpu_caches(cachep);
2300
2301 check_irq_on();
18bf8541 2302 for_each_kmem_cache_node(cachep, node, n) {
a5aa63a5 2303 drain_freelist(cachep, n, INT_MAX);
ed11d9eb 2304
ce8eb6c4
CL
2305 ret += !list_empty(&n->slabs_full) ||
2306 !list_empty(&n->slabs_partial);
e498be7d
CL
2307 }
2308 return (ret ? 1 : 0);
2309}
2310
c9fc5864
TH
2311#ifdef CONFIG_MEMCG
2312void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2313{
2314 __kmem_cache_shrink(cachep);
2315}
2316#endif
2317
945cf2b6 2318int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950 2319{
c9fc5864 2320 return __kmem_cache_shrink(cachep);
52b4b950
DS
2321}
2322
2323void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2324{
12c3667f 2325 int i;
ce8eb6c4 2326 struct kmem_cache_node *n;
1da177e4 2327
c7ce4f60
TG
2328 cache_random_seq_destroy(cachep);
2329
bf0dea23 2330 free_percpu(cachep->cpu_cache);
1da177e4 2331
ce8eb6c4 2332 /* NUMA: free the node structures */
18bf8541
CL
2333 for_each_kmem_cache_node(cachep, i, n) {
2334 kfree(n->shared);
2335 free_alien_cache(n->alien);
2336 kfree(n);
2337 cachep->node[i] = NULL;
12c3667f 2338 }
1da177e4 2339}
1da177e4 2340
e5ac9c5a
RT
2341/*
2342 * Get the memory for a slab management obj.
5f0985bb
JZ
2343 *
2344 * For a slab cache when the slab descriptor is off-slab, the
2345 * slab descriptor can't come from the same cache which is being created,
2346 * Because if it is the case, that means we defer the creation of
2347 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2348 * And we eventually call down to __kmem_cache_create(), which
2349 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2350 * This is a "chicken-and-egg" problem.
2351 *
2352 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2353 * which are all initialized during kmem_cache_init().
e5ac9c5a 2354 */
7e007355 2355static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2356 struct page *page, int colour_off,
2357 gfp_t local_flags, int nodeid)
1da177e4 2358{
7e007355 2359 void *freelist;
0c3aa83e 2360 void *addr = page_address(page);
b28a02de 2361
51dedad0 2362 page->s_mem = addr + colour_off;
2e6b3602
JK
2363 page->active = 0;
2364
b03a017b
JK
2365 if (OBJFREELIST_SLAB(cachep))
2366 freelist = NULL;
2367 else if (OFF_SLAB(cachep)) {
1da177e4 2368 /* Slab management obj is off-slab. */
8456a648 2369 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2370 local_flags, nodeid);
51dedad0 2371 freelist = kasan_reset_tag(freelist);
8456a648 2372 if (!freelist)
1da177e4
LT
2373 return NULL;
2374 } else {
2e6b3602
JK
2375 /* We will use last bytes at the slab for freelist */
2376 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2377 cachep->freelist_size;
1da177e4 2378 }
2e6b3602 2379
8456a648 2380 return freelist;
1da177e4
LT
2381}
2382
7cc68973 2383static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2384{
a41adfaa 2385 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2386}
2387
2388static inline void set_free_obj(struct page *page,
7cc68973 2389 unsigned int idx, freelist_idx_t val)
e5c58dfd 2390{
a41adfaa 2391 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2392}
2393
10b2e9e8 2394static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
1da177e4 2395{
10b2e9e8 2396#if DEBUG
1da177e4
LT
2397 int i;
2398
2399 for (i = 0; i < cachep->num; i++) {
8456a648 2400 void *objp = index_to_obj(cachep, page, i);
10b2e9e8 2401
1da177e4
LT
2402 if (cachep->flags & SLAB_STORE_USER)
2403 *dbg_userword(cachep, objp) = NULL;
2404
2405 if (cachep->flags & SLAB_RED_ZONE) {
2406 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2407 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2408 }
2409 /*
a737b3e2
AM
2410 * Constructors are not allowed to allocate memory from the same
2411 * cache which they are a constructor for. Otherwise, deadlock.
2412 * They must also be threaded.
1da177e4 2413 */
7ed2f9e6
AP
2414 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2415 kasan_unpoison_object_data(cachep,
2416 objp + obj_offset(cachep));
51cc5068 2417 cachep->ctor(objp + obj_offset(cachep));
7ed2f9e6
AP
2418 kasan_poison_object_data(
2419 cachep, objp + obj_offset(cachep));
2420 }
1da177e4
LT
2421
2422 if (cachep->flags & SLAB_RED_ZONE) {
2423 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 2424 slab_error(cachep, "constructor overwrote the end of an object");
1da177e4 2425 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 2426 slab_error(cachep, "constructor overwrote the start of an object");
1da177e4 2427 }
40b44137
JK
2428 /* need to poison the objs? */
2429 if (cachep->flags & SLAB_POISON) {
2430 poison_obj(cachep, objp, POISON_FREE);
2431 slab_kernel_map(cachep, objp, 0, 0);
2432 }
10b2e9e8 2433 }
1da177e4 2434#endif
10b2e9e8
JK
2435}
2436
c7ce4f60
TG
2437#ifdef CONFIG_SLAB_FREELIST_RANDOM
2438/* Hold information during a freelist initialization */
2439union freelist_init_state {
2440 struct {
2441 unsigned int pos;
7c00fce9 2442 unsigned int *list;
c7ce4f60 2443 unsigned int count;
c7ce4f60
TG
2444 };
2445 struct rnd_state rnd_state;
2446};
2447
2448/*
2449 * Initialize the state based on the randomization methode available.
2450 * return true if the pre-computed list is available, false otherwize.
2451 */
2452static bool freelist_state_initialize(union freelist_init_state *state,
2453 struct kmem_cache *cachep,
2454 unsigned int count)
2455{
2456 bool ret;
2457 unsigned int rand;
2458
2459 /* Use best entropy available to define a random shift */
7c00fce9 2460 rand = get_random_int();
c7ce4f60
TG
2461
2462 /* Use a random state if the pre-computed list is not available */
2463 if (!cachep->random_seq) {
2464 prandom_seed_state(&state->rnd_state, rand);
2465 ret = false;
2466 } else {
2467 state->list = cachep->random_seq;
2468 state->count = count;
c4e490cf 2469 state->pos = rand % count;
c7ce4f60
TG
2470 ret = true;
2471 }
2472 return ret;
2473}
2474
2475/* Get the next entry on the list and randomize it using a random shift */
2476static freelist_idx_t next_random_slot(union freelist_init_state *state)
2477{
c4e490cf
JS
2478 if (state->pos >= state->count)
2479 state->pos = 0;
2480 return state->list[state->pos++];
c7ce4f60
TG
2481}
2482
7c00fce9
TG
2483/* Swap two freelist entries */
2484static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2485{
2486 swap(((freelist_idx_t *)page->freelist)[a],
2487 ((freelist_idx_t *)page->freelist)[b]);
2488}
2489
c7ce4f60
TG
2490/*
2491 * Shuffle the freelist initialization state based on pre-computed lists.
2492 * return true if the list was successfully shuffled, false otherwise.
2493 */
2494static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2495{
7c00fce9 2496 unsigned int objfreelist = 0, i, rand, count = cachep->num;
c7ce4f60
TG
2497 union freelist_init_state state;
2498 bool precomputed;
2499
2500 if (count < 2)
2501 return false;
2502
2503 precomputed = freelist_state_initialize(&state, cachep, count);
2504
2505 /* Take a random entry as the objfreelist */
2506 if (OBJFREELIST_SLAB(cachep)) {
2507 if (!precomputed)
2508 objfreelist = count - 1;
2509 else
2510 objfreelist = next_random_slot(&state);
2511 page->freelist = index_to_obj(cachep, page, objfreelist) +
2512 obj_offset(cachep);
2513 count--;
2514 }
2515
2516 /*
2517 * On early boot, generate the list dynamically.
2518 * Later use a pre-computed list for speed.
2519 */
2520 if (!precomputed) {
7c00fce9
TG
2521 for (i = 0; i < count; i++)
2522 set_free_obj(page, i, i);
2523
2524 /* Fisher-Yates shuffle */
2525 for (i = count - 1; i > 0; i--) {
2526 rand = prandom_u32_state(&state.rnd_state);
2527 rand %= (i + 1);
2528 swap_free_obj(page, i, rand);
2529 }
c7ce4f60
TG
2530 } else {
2531 for (i = 0; i < count; i++)
2532 set_free_obj(page, i, next_random_slot(&state));
2533 }
2534
2535 if (OBJFREELIST_SLAB(cachep))
2536 set_free_obj(page, cachep->num - 1, objfreelist);
2537
2538 return true;
2539}
2540#else
2541static inline bool shuffle_freelist(struct kmem_cache *cachep,
2542 struct page *page)
2543{
2544 return false;
2545}
2546#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2547
10b2e9e8
JK
2548static void cache_init_objs(struct kmem_cache *cachep,
2549 struct page *page)
2550{
2551 int i;
7ed2f9e6 2552 void *objp;
c7ce4f60 2553 bool shuffled;
10b2e9e8
JK
2554
2555 cache_init_objs_debug(cachep, page);
2556
c7ce4f60
TG
2557 /* Try to randomize the freelist if enabled */
2558 shuffled = shuffle_freelist(cachep, page);
2559
2560 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
b03a017b
JK
2561 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2562 obj_offset(cachep);
2563 }
2564
10b2e9e8 2565 for (i = 0; i < cachep->num; i++) {
b3cbd9bf 2566 objp = index_to_obj(cachep, page, i);
4d176711 2567 objp = kasan_init_slab_obj(cachep, objp);
b3cbd9bf 2568
10b2e9e8 2569 /* constructor could break poison info */
7ed2f9e6 2570 if (DEBUG == 0 && cachep->ctor) {
7ed2f9e6
AP
2571 kasan_unpoison_object_data(cachep, objp);
2572 cachep->ctor(objp);
2573 kasan_poison_object_data(cachep, objp);
2574 }
10b2e9e8 2575
c7ce4f60
TG
2576 if (!shuffled)
2577 set_free_obj(page, i, i);
1da177e4 2578 }
1da177e4
LT
2579}
2580
260b61dd 2581static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2582{
b1cb0982 2583 void *objp;
78d382d7 2584
e5c58dfd 2585 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2586 page->active++;
78d382d7 2587
d31676df
JK
2588#if DEBUG
2589 if (cachep->flags & SLAB_STORE_USER)
2590 set_store_user_dirty(cachep);
2591#endif
2592
78d382d7
MD
2593 return objp;
2594}
2595
260b61dd
JK
2596static void slab_put_obj(struct kmem_cache *cachep,
2597 struct page *page, void *objp)
78d382d7 2598{
8456a648 2599 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2600#if DEBUG
16025177 2601 unsigned int i;
b1cb0982 2602
b1cb0982 2603 /* Verify double free bug */
8456a648 2604 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2605 if (get_free_obj(page, i) == objnr) {
85c3e4a5 2606 pr_err("slab: double free detected in cache '%s', objp %px\n",
756a025f 2607 cachep->name, objp);
b1cb0982
JK
2608 BUG();
2609 }
78d382d7
MD
2610 }
2611#endif
8456a648 2612 page->active--;
b03a017b
JK
2613 if (!page->freelist)
2614 page->freelist = objp + obj_offset(cachep);
2615
e5c58dfd 2616 set_free_obj(page, page->active, objnr);
78d382d7
MD
2617}
2618
4776874f
PE
2619/*
2620 * Map pages beginning at addr to the given cache and slab. This is required
2621 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2622 * virtual address for kfree, ksize, and slab debugging.
4776874f 2623 */
8456a648 2624static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2625 void *freelist)
1da177e4 2626{
a57a4988 2627 page->slab_cache = cache;
8456a648 2628 page->freelist = freelist;
1da177e4
LT
2629}
2630
2631/*
2632 * Grow (by 1) the number of slabs within a cache. This is called by
2633 * kmem_cache_alloc() when there are no active objs left in a cache.
2634 */
76b342bd
JK
2635static struct page *cache_grow_begin(struct kmem_cache *cachep,
2636 gfp_t flags, int nodeid)
1da177e4 2637{
7e007355 2638 void *freelist;
b28a02de
PE
2639 size_t offset;
2640 gfp_t local_flags;
511e3a05 2641 int page_node;
ce8eb6c4 2642 struct kmem_cache_node *n;
511e3a05 2643 struct page *page;
1da177e4 2644
a737b3e2
AM
2645 /*
2646 * Be lazy and only check for valid flags here, keeping it out of the
2647 * critical path in kmem_cache_alloc().
1da177e4 2648 */
c871ac4e 2649 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 2650 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
2651 flags &= ~GFP_SLAB_BUG_MASK;
2652 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2653 invalid_mask, &invalid_mask, flags, &flags);
2654 dump_stack();
c871ac4e 2655 }
128227e7 2656 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
6cb06229 2657 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2658
1da177e4 2659 check_irq_off();
d0164adc 2660 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2661 local_irq_enable();
2662
a737b3e2
AM
2663 /*
2664 * Get mem for the objs. Attempt to allocate a physical page from
2665 * 'nodeid'.
e498be7d 2666 */
511e3a05 2667 page = kmem_getpages(cachep, local_flags, nodeid);
0c3aa83e 2668 if (!page)
1da177e4
LT
2669 goto failed;
2670
511e3a05
JK
2671 page_node = page_to_nid(page);
2672 n = get_node(cachep, page_node);
03d1d43a
JK
2673
2674 /* Get colour for the slab, and cal the next value. */
2675 n->colour_next++;
2676 if (n->colour_next >= cachep->colour)
2677 n->colour_next = 0;
2678
2679 offset = n->colour_next;
2680 if (offset >= cachep->colour)
2681 offset = 0;
2682
2683 offset *= cachep->colour_off;
2684
51dedad0
AK
2685 /*
2686 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2687 * page_address() in the latter returns a non-tagged pointer,
2688 * as it should be for slab pages.
2689 */
2690 kasan_poison_slab(page);
2691
1da177e4 2692 /* Get slab management. */
8456a648 2693 freelist = alloc_slabmgmt(cachep, page, offset,
511e3a05 2694 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
b03a017b 2695 if (OFF_SLAB(cachep) && !freelist)
1da177e4
LT
2696 goto opps1;
2697
8456a648 2698 slab_map_pages(cachep, page, freelist);
1da177e4 2699
8456a648 2700 cache_init_objs(cachep, page);
1da177e4 2701
d0164adc 2702 if (gfpflags_allow_blocking(local_flags))
1da177e4 2703 local_irq_disable();
1da177e4 2704
76b342bd
JK
2705 return page;
2706
a737b3e2 2707opps1:
0c3aa83e 2708 kmem_freepages(cachep, page);
a737b3e2 2709failed:
d0164adc 2710 if (gfpflags_allow_blocking(local_flags))
1da177e4 2711 local_irq_disable();
76b342bd
JK
2712 return NULL;
2713}
2714
2715static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2716{
2717 struct kmem_cache_node *n;
2718 void *list = NULL;
2719
2720 check_irq_off();
2721
2722 if (!page)
2723 return;
2724
2725 INIT_LIST_HEAD(&page->lru);
2726 n = get_node(cachep, page_to_nid(page));
2727
2728 spin_lock(&n->list_lock);
bf00bd34 2729 n->total_slabs++;
f728b0a5 2730 if (!page->active) {
76b342bd 2731 list_add_tail(&page->lru, &(n->slabs_free));
f728b0a5 2732 n->free_slabs++;
bf00bd34 2733 } else
76b342bd 2734 fixup_slab_list(cachep, n, page, &list);
07a63c41 2735
76b342bd
JK
2736 STATS_INC_GROWN(cachep);
2737 n->free_objects += cachep->num - page->active;
2738 spin_unlock(&n->list_lock);
2739
2740 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2741}
2742
2743#if DEBUG
2744
2745/*
2746 * Perform extra freeing checks:
2747 * - detect bad pointers.
2748 * - POISON/RED_ZONE checking
1da177e4
LT
2749 */
2750static void kfree_debugcheck(const void *objp)
2751{
1da177e4 2752 if (!virt_addr_valid(objp)) {
1170532b 2753 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
b28a02de
PE
2754 (unsigned long)objp);
2755 BUG();
1da177e4 2756 }
1da177e4
LT
2757}
2758
58ce1fd5
PE
2759static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2760{
b46b8f19 2761 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2762
2763 redzone1 = *dbg_redzone1(cache, obj);
2764 redzone2 = *dbg_redzone2(cache, obj);
2765
2766 /*
2767 * Redzone is ok.
2768 */
2769 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2770 return;
2771
2772 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2773 slab_error(cache, "double free detected");
2774 else
2775 slab_error(cache, "memory outside object was overwritten");
2776
85c3e4a5 2777 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
1170532b 2778 obj, redzone1, redzone2);
58ce1fd5
PE
2779}
2780
343e0d7a 2781static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2782 unsigned long caller)
1da177e4 2783{
1da177e4 2784 unsigned int objnr;
8456a648 2785 struct page *page;
1da177e4 2786
80cbd911
MW
2787 BUG_ON(virt_to_cache(objp) != cachep);
2788
3dafccf2 2789 objp -= obj_offset(cachep);
1da177e4 2790 kfree_debugcheck(objp);
b49af68f 2791 page = virt_to_head_page(objp);
1da177e4 2792
1da177e4 2793 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2794 verify_redzone_free(cachep, objp);
1da177e4
LT
2795 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2796 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2797 }
d31676df
JK
2798 if (cachep->flags & SLAB_STORE_USER) {
2799 set_store_user_dirty(cachep);
7c0cb9c6 2800 *dbg_userword(cachep, objp) = (void *)caller;
d31676df 2801 }
1da177e4 2802
8456a648 2803 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2804
2805 BUG_ON(objnr >= cachep->num);
8456a648 2806 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2807
1da177e4 2808 if (cachep->flags & SLAB_POISON) {
1da177e4 2809 poison_obj(cachep, objp, POISON_FREE);
40b44137 2810 slab_kernel_map(cachep, objp, 0, caller);
1da177e4
LT
2811 }
2812 return objp;
2813}
2814
1da177e4
LT
2815#else
2816#define kfree_debugcheck(x) do { } while(0)
2817#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2818#endif
2819
b03a017b
JK
2820static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2821 void **list)
2822{
2823#if DEBUG
2824 void *next = *list;
2825 void *objp;
2826
2827 while (next) {
2828 objp = next - obj_offset(cachep);
2829 next = *(void **)next;
2830 poison_obj(cachep, objp, POISON_FREE);
2831 }
2832#endif
2833}
2834
d8410234 2835static inline void fixup_slab_list(struct kmem_cache *cachep,
b03a017b
JK
2836 struct kmem_cache_node *n, struct page *page,
2837 void **list)
d8410234
JK
2838{
2839 /* move slabp to correct slabp list: */
2840 list_del(&page->lru);
b03a017b 2841 if (page->active == cachep->num) {
d8410234 2842 list_add(&page->lru, &n->slabs_full);
b03a017b
JK
2843 if (OBJFREELIST_SLAB(cachep)) {
2844#if DEBUG
2845 /* Poisoning will be done without holding the lock */
2846 if (cachep->flags & SLAB_POISON) {
2847 void **objp = page->freelist;
2848
2849 *objp = *list;
2850 *list = objp;
2851 }
2852#endif
2853 page->freelist = NULL;
2854 }
2855 } else
d8410234
JK
2856 list_add(&page->lru, &n->slabs_partial);
2857}
2858
f68f8ddd
JK
2859/* Try to find non-pfmemalloc slab if needed */
2860static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
bf00bd34 2861 struct page *page, bool pfmemalloc)
f68f8ddd
JK
2862{
2863 if (!page)
2864 return NULL;
2865
2866 if (pfmemalloc)
2867 return page;
2868
2869 if (!PageSlabPfmemalloc(page))
2870 return page;
2871
2872 /* No need to keep pfmemalloc slab if we have enough free objects */
2873 if (n->free_objects > n->free_limit) {
2874 ClearPageSlabPfmemalloc(page);
2875 return page;
2876 }
2877
2878 /* Move pfmemalloc slab to the end of list to speed up next search */
2879 list_del(&page->lru);
bf00bd34 2880 if (!page->active) {
f68f8ddd 2881 list_add_tail(&page->lru, &n->slabs_free);
bf00bd34 2882 n->free_slabs++;
f728b0a5 2883 } else
f68f8ddd
JK
2884 list_add_tail(&page->lru, &n->slabs_partial);
2885
2886 list_for_each_entry(page, &n->slabs_partial, lru) {
2887 if (!PageSlabPfmemalloc(page))
2888 return page;
2889 }
2890
f728b0a5 2891 n->free_touched = 1;
f68f8ddd 2892 list_for_each_entry(page, &n->slabs_free, lru) {
f728b0a5 2893 if (!PageSlabPfmemalloc(page)) {
bf00bd34 2894 n->free_slabs--;
f68f8ddd 2895 return page;
f728b0a5 2896 }
f68f8ddd
JK
2897 }
2898
2899 return NULL;
2900}
2901
2902static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
7aa0d227
GT
2903{
2904 struct page *page;
2905
f728b0a5 2906 assert_spin_locked(&n->list_lock);
bf00bd34 2907 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
7aa0d227
GT
2908 if (!page) {
2909 n->free_touched = 1;
bf00bd34
DR
2910 page = list_first_entry_or_null(&n->slabs_free, struct page,
2911 lru);
f728b0a5 2912 if (page)
bf00bd34 2913 n->free_slabs--;
7aa0d227
GT
2914 }
2915
f68f8ddd 2916 if (sk_memalloc_socks())
bf00bd34 2917 page = get_valid_first_slab(n, page, pfmemalloc);
f68f8ddd 2918
7aa0d227
GT
2919 return page;
2920}
2921
f68f8ddd
JK
2922static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2923 struct kmem_cache_node *n, gfp_t flags)
2924{
2925 struct page *page;
2926 void *obj;
2927 void *list = NULL;
2928
2929 if (!gfp_pfmemalloc_allowed(flags))
2930 return NULL;
2931
2932 spin_lock(&n->list_lock);
2933 page = get_first_slab(n, true);
2934 if (!page) {
2935 spin_unlock(&n->list_lock);
2936 return NULL;
2937 }
2938
2939 obj = slab_get_obj(cachep, page);
2940 n->free_objects--;
2941
2942 fixup_slab_list(cachep, n, page, &list);
2943
2944 spin_unlock(&n->list_lock);
2945 fixup_objfreelist_debug(cachep, &list);
2946
2947 return obj;
2948}
2949
213b4695
JK
2950/*
2951 * Slab list should be fixed up by fixup_slab_list() for existing slab
2952 * or cache_grow_end() for new slab
2953 */
2954static __always_inline int alloc_block(struct kmem_cache *cachep,
2955 struct array_cache *ac, struct page *page, int batchcount)
2956{
2957 /*
2958 * There must be at least one object available for
2959 * allocation.
2960 */
2961 BUG_ON(page->active >= cachep->num);
2962
2963 while (page->active < cachep->num && batchcount--) {
2964 STATS_INC_ALLOCED(cachep);
2965 STATS_INC_ACTIVE(cachep);
2966 STATS_SET_HIGH(cachep);
2967
2968 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2969 }
2970
2971 return batchcount;
2972}
2973
f68f8ddd 2974static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2975{
2976 int batchcount;
ce8eb6c4 2977 struct kmem_cache_node *n;
801faf0d 2978 struct array_cache *ac, *shared;
1ca4cb24 2979 int node;
b03a017b 2980 void *list = NULL;
76b342bd 2981 struct page *page;
1ca4cb24 2982
1da177e4 2983 check_irq_off();
7d6e6d09 2984 node = numa_mem_id();
f68f8ddd 2985
9a2dba4b 2986 ac = cpu_cache_get(cachep);
1da177e4
LT
2987 batchcount = ac->batchcount;
2988 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2989 /*
2990 * If there was little recent activity on this cache, then
2991 * perform only a partial refill. Otherwise we could generate
2992 * refill bouncing.
1da177e4
LT
2993 */
2994 batchcount = BATCHREFILL_LIMIT;
2995 }
18bf8541 2996 n = get_node(cachep, node);
e498be7d 2997
ce8eb6c4 2998 BUG_ON(ac->avail > 0 || !n);
801faf0d
JK
2999 shared = READ_ONCE(n->shared);
3000 if (!n->free_objects && (!shared || !shared->avail))
3001 goto direct_grow;
3002
ce8eb6c4 3003 spin_lock(&n->list_lock);
801faf0d 3004 shared = READ_ONCE(n->shared);
1da177e4 3005
3ded175a 3006 /* See if we can refill from the shared array */
801faf0d
JK
3007 if (shared && transfer_objects(ac, shared, batchcount)) {
3008 shared->touched = 1;
3ded175a 3009 goto alloc_done;
44b57f1c 3010 }
3ded175a 3011
1da177e4 3012 while (batchcount > 0) {
1da177e4 3013 /* Get slab alloc is to come from. */
f68f8ddd 3014 page = get_first_slab(n, false);
7aa0d227
GT
3015 if (!page)
3016 goto must_grow;
1da177e4 3017
1da177e4 3018 check_spinlock_acquired(cachep);
714b8171 3019
213b4695 3020 batchcount = alloc_block(cachep, ac, page, batchcount);
b03a017b 3021 fixup_slab_list(cachep, n, page, &list);
1da177e4
LT
3022 }
3023
a737b3e2 3024must_grow:
ce8eb6c4 3025 n->free_objects -= ac->avail;
a737b3e2 3026alloc_done:
ce8eb6c4 3027 spin_unlock(&n->list_lock);
b03a017b 3028 fixup_objfreelist_debug(cachep, &list);
1da177e4 3029
801faf0d 3030direct_grow:
1da177e4 3031 if (unlikely(!ac->avail)) {
f68f8ddd
JK
3032 /* Check if we can use obj in pfmemalloc slab */
3033 if (sk_memalloc_socks()) {
3034 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3035
3036 if (obj)
3037 return obj;
3038 }
3039
76b342bd 3040 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
e498be7d 3041
76b342bd
JK
3042 /*
3043 * cache_grow_begin() can reenable interrupts,
3044 * then ac could change.
3045 */
9a2dba4b 3046 ac = cpu_cache_get(cachep);
213b4695
JK
3047 if (!ac->avail && page)
3048 alloc_block(cachep, ac, page, batchcount);
3049 cache_grow_end(cachep, page);
072bb0aa 3050
213b4695 3051 if (!ac->avail)
1da177e4 3052 return NULL;
1da177e4
LT
3053 }
3054 ac->touched = 1;
072bb0aa 3055
f68f8ddd 3056 return ac->entry[--ac->avail];
1da177e4
LT
3057}
3058
a737b3e2
AM
3059static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3060 gfp_t flags)
1da177e4 3061{
d0164adc 3062 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
3063}
3064
3065#if DEBUG
a737b3e2 3066static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3067 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3068{
128227e7 3069 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
b28a02de 3070 if (!objp)
1da177e4 3071 return objp;
b28a02de 3072 if (cachep->flags & SLAB_POISON) {
1da177e4 3073 check_poison_obj(cachep, objp);
40b44137 3074 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
3075 poison_obj(cachep, objp, POISON_INUSE);
3076 }
3077 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3078 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3079
3080 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3081 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3082 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
756a025f 3083 slab_error(cachep, "double free, or memory outside object was overwritten");
85c3e4a5 3084 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
1170532b
JP
3085 objp, *dbg_redzone1(cachep, objp),
3086 *dbg_redzone2(cachep, objp));
1da177e4
LT
3087 }
3088 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3089 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3090 }
03787301 3091
3dafccf2 3092 objp += obj_offset(cachep);
4f104934 3093 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3094 cachep->ctor(objp);
7ea466f2
TH
3095 if (ARCH_SLAB_MINALIGN &&
3096 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
85c3e4a5 3097 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3098 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3099 }
1da177e4
LT
3100 return objp;
3101}
3102#else
3103#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3104#endif
3105
343e0d7a 3106static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3107{
b28a02de 3108 void *objp;
1da177e4
LT
3109 struct array_cache *ac;
3110
5c382300 3111 check_irq_off();
8a8b6502 3112
9a2dba4b 3113 ac = cpu_cache_get(cachep);
1da177e4 3114 if (likely(ac->avail)) {
1da177e4 3115 ac->touched = 1;
f68f8ddd 3116 objp = ac->entry[--ac->avail];
072bb0aa 3117
f68f8ddd
JK
3118 STATS_INC_ALLOCHIT(cachep);
3119 goto out;
1da177e4 3120 }
072bb0aa
MG
3121
3122 STATS_INC_ALLOCMISS(cachep);
f68f8ddd 3123 objp = cache_alloc_refill(cachep, flags);
072bb0aa
MG
3124 /*
3125 * the 'ac' may be updated by cache_alloc_refill(),
3126 * and kmemleak_erase() requires its correct value.
3127 */
3128 ac = cpu_cache_get(cachep);
3129
3130out:
d5cff635
CM
3131 /*
3132 * To avoid a false negative, if an object that is in one of the
3133 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3134 * treat the array pointers as a reference to the object.
3135 */
f3d8b53a
O
3136 if (objp)
3137 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3138 return objp;
3139}
3140
e498be7d 3141#ifdef CONFIG_NUMA
c61afb18 3142/*
2ad654bc 3143 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
3144 *
3145 * If we are in_interrupt, then process context, including cpusets and
3146 * mempolicy, may not apply and should not be used for allocation policy.
3147 */
3148static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3149{
3150 int nid_alloc, nid_here;
3151
765c4507 3152 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3153 return NULL;
7d6e6d09 3154 nid_alloc = nid_here = numa_mem_id();
c61afb18 3155 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3156 nid_alloc = cpuset_slab_spread_node();
c61afb18 3157 else if (current->mempolicy)
2a389610 3158 nid_alloc = mempolicy_slab_node();
c61afb18 3159 if (nid_alloc != nid_here)
8b98c169 3160 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3161 return NULL;
3162}
3163
765c4507
CL
3164/*
3165 * Fallback function if there was no memory available and no objects on a
3c517a61 3166 * certain node and fall back is permitted. First we scan all the
6a67368c 3167 * available node for available objects. If that fails then we
3c517a61
CL
3168 * perform an allocation without specifying a node. This allows the page
3169 * allocator to do its reclaim / fallback magic. We then insert the
3170 * slab into the proper nodelist and then allocate from it.
765c4507 3171 */
8c8cc2c1 3172static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3173{
8c8cc2c1 3174 struct zonelist *zonelist;
dd1a239f 3175 struct zoneref *z;
54a6eb5c
MG
3176 struct zone *zone;
3177 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3178 void *obj = NULL;
76b342bd 3179 struct page *page;
3c517a61 3180 int nid;
cc9a6c87 3181 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3182
3183 if (flags & __GFP_THISNODE)
3184 return NULL;
3185
cc9a6c87 3186retry_cpuset:
d26914d1 3187 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3188 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3189
3c517a61
CL
3190retry:
3191 /*
3192 * Look through allowed nodes for objects available
3193 * from existing per node queues.
3194 */
54a6eb5c
MG
3195 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3196 nid = zone_to_nid(zone);
aedb0eb1 3197
061d7074 3198 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3199 get_node(cache, nid) &&
3200 get_node(cache, nid)->free_objects) {
3c517a61 3201 obj = ____cache_alloc_node(cache,
4167e9b2 3202 gfp_exact_node(flags), nid);
481c5346
CL
3203 if (obj)
3204 break;
3205 }
3c517a61
CL
3206 }
3207
cfce6604 3208 if (!obj) {
3c517a61
CL
3209 /*
3210 * This allocation will be performed within the constraints
3211 * of the current cpuset / memory policy requirements.
3212 * We may trigger various forms of reclaim on the allowed
3213 * set and go into memory reserves if necessary.
3214 */
76b342bd
JK
3215 page = cache_grow_begin(cache, flags, numa_mem_id());
3216 cache_grow_end(cache, page);
3217 if (page) {
3218 nid = page_to_nid(page);
511e3a05
JK
3219 obj = ____cache_alloc_node(cache,
3220 gfp_exact_node(flags), nid);
0c3aa83e 3221
3c517a61 3222 /*
511e3a05
JK
3223 * Another processor may allocate the objects in
3224 * the slab since we are not holding any locks.
3c517a61 3225 */
511e3a05
JK
3226 if (!obj)
3227 goto retry;
3c517a61 3228 }
aedb0eb1 3229 }
cc9a6c87 3230
d26914d1 3231 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3232 goto retry_cpuset;
765c4507
CL
3233 return obj;
3234}
3235
e498be7d
CL
3236/*
3237 * A interface to enable slab creation on nodeid
1da177e4 3238 */
8b98c169 3239static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3240 int nodeid)
e498be7d 3241{
8456a648 3242 struct page *page;
ce8eb6c4 3243 struct kmem_cache_node *n;
213b4695 3244 void *obj = NULL;
b03a017b 3245 void *list = NULL;
b28a02de 3246
7c3fbbdd 3247 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3248 n = get_node(cachep, nodeid);
ce8eb6c4 3249 BUG_ON(!n);
b28a02de 3250
ca3b9b91 3251 check_irq_off();
ce8eb6c4 3252 spin_lock(&n->list_lock);
f68f8ddd 3253 page = get_first_slab(n, false);
7aa0d227
GT
3254 if (!page)
3255 goto must_grow;
b28a02de 3256
b28a02de 3257 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3258
3259 STATS_INC_NODEALLOCS(cachep);
3260 STATS_INC_ACTIVE(cachep);
3261 STATS_SET_HIGH(cachep);
3262
8456a648 3263 BUG_ON(page->active == cachep->num);
b28a02de 3264
260b61dd 3265 obj = slab_get_obj(cachep, page);
ce8eb6c4 3266 n->free_objects--;
b28a02de 3267
b03a017b 3268 fixup_slab_list(cachep, n, page, &list);
e498be7d 3269
ce8eb6c4 3270 spin_unlock(&n->list_lock);
b03a017b 3271 fixup_objfreelist_debug(cachep, &list);
213b4695 3272 return obj;
e498be7d 3273
a737b3e2 3274must_grow:
ce8eb6c4 3275 spin_unlock(&n->list_lock);
76b342bd 3276 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
213b4695
JK
3277 if (page) {
3278 /* This slab isn't counted yet so don't update free_objects */
3279 obj = slab_get_obj(cachep, page);
3280 }
76b342bd 3281 cache_grow_end(cachep, page);
1da177e4 3282
213b4695 3283 return obj ? obj : fallback_alloc(cachep, flags);
e498be7d 3284}
8c8cc2c1 3285
8c8cc2c1 3286static __always_inline void *
48356303 3287slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3288 unsigned long caller)
8c8cc2c1
PE
3289{
3290 unsigned long save_flags;
3291 void *ptr;
7d6e6d09 3292 int slab_node = numa_mem_id();
8c8cc2c1 3293
dcce284a 3294 flags &= gfp_allowed_mask;
011eceaf
JDB
3295 cachep = slab_pre_alloc_hook(cachep, flags);
3296 if (unlikely(!cachep))
824ebef1
AM
3297 return NULL;
3298
8c8cc2c1
PE
3299 cache_alloc_debugcheck_before(cachep, flags);
3300 local_irq_save(save_flags);
3301
eacbbae3 3302 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3303 nodeid = slab_node;
8c8cc2c1 3304
18bf8541 3305 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3306 /* Node not bootstrapped yet */
3307 ptr = fallback_alloc(cachep, flags);
3308 goto out;
3309 }
3310
7d6e6d09 3311 if (nodeid == slab_node) {
8c8cc2c1
PE
3312 /*
3313 * Use the locally cached objects if possible.
3314 * However ____cache_alloc does not allow fallback
3315 * to other nodes. It may fail while we still have
3316 * objects on other nodes available.
3317 */
3318 ptr = ____cache_alloc(cachep, flags);
3319 if (ptr)
3320 goto out;
3321 }
3322 /* ___cache_alloc_node can fall back to other nodes */
3323 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3324 out:
3325 local_irq_restore(save_flags);
3326 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3327
d5e3ed66
JDB
3328 if (unlikely(flags & __GFP_ZERO) && ptr)
3329 memset(ptr, 0, cachep->object_size);
d07dbea4 3330
d5e3ed66 3331 slab_post_alloc_hook(cachep, flags, 1, &ptr);
8c8cc2c1
PE
3332 return ptr;
3333}
3334
3335static __always_inline void *
3336__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3337{
3338 void *objp;
3339
2ad654bc 3340 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3341 objp = alternate_node_alloc(cache, flags);
3342 if (objp)
3343 goto out;
3344 }
3345 objp = ____cache_alloc(cache, flags);
3346
3347 /*
3348 * We may just have run out of memory on the local node.
3349 * ____cache_alloc_node() knows how to locate memory on other nodes
3350 */
7d6e6d09
LS
3351 if (!objp)
3352 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3353
3354 out:
3355 return objp;
3356}
3357#else
3358
3359static __always_inline void *
3360__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3361{
3362 return ____cache_alloc(cachep, flags);
3363}
3364
3365#endif /* CONFIG_NUMA */
3366
3367static __always_inline void *
48356303 3368slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3369{
3370 unsigned long save_flags;
3371 void *objp;
3372
dcce284a 3373 flags &= gfp_allowed_mask;
011eceaf
JDB
3374 cachep = slab_pre_alloc_hook(cachep, flags);
3375 if (unlikely(!cachep))
824ebef1
AM
3376 return NULL;
3377
8c8cc2c1
PE
3378 cache_alloc_debugcheck_before(cachep, flags);
3379 local_irq_save(save_flags);
3380 objp = __do_cache_alloc(cachep, flags);
3381 local_irq_restore(save_flags);
3382 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3383 prefetchw(objp);
3384
d5e3ed66
JDB
3385 if (unlikely(flags & __GFP_ZERO) && objp)
3386 memset(objp, 0, cachep->object_size);
d07dbea4 3387
d5e3ed66 3388 slab_post_alloc_hook(cachep, flags, 1, &objp);
8c8cc2c1
PE
3389 return objp;
3390}
e498be7d
CL
3391
3392/*
5f0985bb 3393 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3394 * @list: List of detached free slabs should be freed by caller
e498be7d 3395 */
97654dfa
JK
3396static void free_block(struct kmem_cache *cachep, void **objpp,
3397 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3398{
3399 int i;
25c063fb 3400 struct kmem_cache_node *n = get_node(cachep, node);
6052b788
JK
3401 struct page *page;
3402
3403 n->free_objects += nr_objects;
1da177e4
LT
3404
3405 for (i = 0; i < nr_objects; i++) {
072bb0aa 3406 void *objp;
8456a648 3407 struct page *page;
1da177e4 3408
072bb0aa
MG
3409 objp = objpp[i];
3410
8456a648 3411 page = virt_to_head_page(objp);
8456a648 3412 list_del(&page->lru);
ff69416e 3413 check_spinlock_acquired_node(cachep, node);
260b61dd 3414 slab_put_obj(cachep, page, objp);
1da177e4 3415 STATS_DEC_ACTIVE(cachep);
1da177e4
LT
3416
3417 /* fixup slab chains */
f728b0a5 3418 if (page->active == 0) {
6052b788 3419 list_add(&page->lru, &n->slabs_free);
f728b0a5 3420 n->free_slabs++;
f728b0a5 3421 } else {
1da177e4
LT
3422 /* Unconditionally move a slab to the end of the
3423 * partial list on free - maximum time for the
3424 * other objects to be freed, too.
3425 */
8456a648 3426 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3427 }
3428 }
6052b788
JK
3429
3430 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3431 n->free_objects -= cachep->num;
3432
3433 page = list_last_entry(&n->slabs_free, struct page, lru);
de24baec 3434 list_move(&page->lru, list);
f728b0a5 3435 n->free_slabs--;
bf00bd34 3436 n->total_slabs--;
6052b788 3437 }
1da177e4
LT
3438}
3439
343e0d7a 3440static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3441{
3442 int batchcount;
ce8eb6c4 3443 struct kmem_cache_node *n;
7d6e6d09 3444 int node = numa_mem_id();
97654dfa 3445 LIST_HEAD(list);
1da177e4
LT
3446
3447 batchcount = ac->batchcount;
260b61dd 3448
1da177e4 3449 check_irq_off();
18bf8541 3450 n = get_node(cachep, node);
ce8eb6c4
CL
3451 spin_lock(&n->list_lock);
3452 if (n->shared) {
3453 struct array_cache *shared_array = n->shared;
b28a02de 3454 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3455 if (max) {
3456 if (batchcount > max)
3457 batchcount = max;
e498be7d 3458 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3459 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3460 shared_array->avail += batchcount;
3461 goto free_done;
3462 }
3463 }
3464
97654dfa 3465 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3466free_done:
1da177e4
LT
3467#if STATS
3468 {
3469 int i = 0;
73c0219d 3470 struct page *page;
1da177e4 3471
73c0219d 3472 list_for_each_entry(page, &n->slabs_free, lru) {
8456a648 3473 BUG_ON(page->active);
1da177e4
LT
3474
3475 i++;
1da177e4
LT
3476 }
3477 STATS_SET_FREEABLE(cachep, i);
3478 }
3479#endif
ce8eb6c4 3480 spin_unlock(&n->list_lock);
97654dfa 3481 slabs_destroy(cachep, &list);
1da177e4 3482 ac->avail -= batchcount;
a737b3e2 3483 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3484}
3485
3486/*
a737b3e2
AM
3487 * Release an obj back to its cache. If the obj has a constructed state, it must
3488 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3489 */
ee3ce779
DV
3490static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3491 unsigned long caller)
1da177e4 3492{
55834c59 3493 /* Put the object into the quarantine, don't touch it for now. */
ee3ce779 3494 if (kasan_slab_free(cachep, objp, _RET_IP_))
55834c59
AP
3495 return;
3496
3497 ___cache_free(cachep, objp, caller);
3498}
1da177e4 3499
55834c59
AP
3500void ___cache_free(struct kmem_cache *cachep, void *objp,
3501 unsigned long caller)
3502{
3503 struct array_cache *ac = cpu_cache_get(cachep);
7ed2f9e6 3504
1da177e4 3505 check_irq_off();
d5cff635 3506 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3507 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3508
1807a1aa
SS
3509 /*
3510 * Skip calling cache_free_alien() when the platform is not numa.
3511 * This will avoid cache misses that happen while accessing slabp (which
3512 * is per page memory reference) to get nodeid. Instead use a global
3513 * variable to skip the call, which is mostly likely to be present in
3514 * the cache.
3515 */
b6e68bc1 3516 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3517 return;
3518
3d880194 3519 if (ac->avail < ac->limit) {
1da177e4 3520 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3521 } else {
3522 STATS_INC_FREEMISS(cachep);
3523 cache_flusharray(cachep, ac);
1da177e4 3524 }
42c8c99c 3525
f68f8ddd
JK
3526 if (sk_memalloc_socks()) {
3527 struct page *page = virt_to_head_page(objp);
3528
3529 if (unlikely(PageSlabPfmemalloc(page))) {
3530 cache_free_pfmemalloc(cachep, page, objp);
3531 return;
3532 }
3533 }
3534
3535 ac->entry[ac->avail++] = objp;
1da177e4
LT
3536}
3537
3538/**
3539 * kmem_cache_alloc - Allocate an object
3540 * @cachep: The cache to allocate from.
3541 * @flags: See kmalloc().
3542 *
3543 * Allocate an object from this cache. The flags are only relevant
3544 * if the cache has no available objects.
3545 */
343e0d7a 3546void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3547{
48356303 3548 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3549
ca2b84cb 3550 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3551 cachep->object_size, cachep->size, flags);
36555751
EGM
3552
3553 return ret;
1da177e4
LT
3554}
3555EXPORT_SYMBOL(kmem_cache_alloc);
3556
7b0501dd
JDB
3557static __always_inline void
3558cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3559 size_t size, void **p, unsigned long caller)
3560{
3561 size_t i;
3562
3563 for (i = 0; i < size; i++)
3564 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3565}
3566
865762a8 3567int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3568 void **p)
484748f0 3569{
2a777eac
JDB
3570 size_t i;
3571
3572 s = slab_pre_alloc_hook(s, flags);
3573 if (!s)
3574 return 0;
3575
3576 cache_alloc_debugcheck_before(s, flags);
3577
3578 local_irq_disable();
3579 for (i = 0; i < size; i++) {
3580 void *objp = __do_cache_alloc(s, flags);
3581
2a777eac
JDB
3582 if (unlikely(!objp))
3583 goto error;
3584 p[i] = objp;
3585 }
3586 local_irq_enable();
3587
7b0501dd
JDB
3588 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3589
2a777eac
JDB
3590 /* Clear memory outside IRQ disabled section */
3591 if (unlikely(flags & __GFP_ZERO))
3592 for (i = 0; i < size; i++)
3593 memset(p[i], 0, s->object_size);
3594
3595 slab_post_alloc_hook(s, flags, size, p);
3596 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3597 return size;
3598error:
3599 local_irq_enable();
7b0501dd 3600 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
2a777eac
JDB
3601 slab_post_alloc_hook(s, flags, i, p);
3602 __kmem_cache_free_bulk(s, i, p);
3603 return 0;
484748f0
CL
3604}
3605EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3606
0f24f128 3607#ifdef CONFIG_TRACING
85beb586 3608void *
4052147c 3609kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3610{
85beb586
SR
3611 void *ret;
3612
48356303 3613 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586 3614
0116523c 3615 ret = kasan_kmalloc(cachep, ret, size, flags);
85beb586 3616 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3617 size, cachep->size, flags);
85beb586 3618 return ret;
36555751 3619}
85beb586 3620EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3621#endif
3622
1da177e4 3623#ifdef CONFIG_NUMA
d0d04b78
ZL
3624/**
3625 * kmem_cache_alloc_node - Allocate an object on the specified node
3626 * @cachep: The cache to allocate from.
3627 * @flags: See kmalloc().
3628 * @nodeid: node number of the target node.
3629 *
3630 * Identical to kmem_cache_alloc but it will allocate memory on the given
3631 * node, which can improve the performance for cpu bound structures.
3632 *
3633 * Fallback to other node is possible if __GFP_THISNODE is not set.
3634 */
8b98c169
CH
3635void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3636{
48356303 3637 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3638
ca2b84cb 3639 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3640 cachep->object_size, cachep->size,
ca2b84cb 3641 flags, nodeid);
36555751
EGM
3642
3643 return ret;
8b98c169 3644}
1da177e4
LT
3645EXPORT_SYMBOL(kmem_cache_alloc_node);
3646
0f24f128 3647#ifdef CONFIG_TRACING
4052147c 3648void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3649 gfp_t flags,
4052147c
EG
3650 int nodeid,
3651 size_t size)
36555751 3652{
85beb586
SR
3653 void *ret;
3654
592f4145 3655 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
505f5dcb 3656
0116523c 3657 ret = kasan_kmalloc(cachep, ret, size, flags);
85beb586 3658 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3659 size, cachep->size,
85beb586
SR
3660 flags, nodeid);
3661 return ret;
36555751 3662}
85beb586 3663EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3664#endif
3665
8b98c169 3666static __always_inline void *
7c0cb9c6 3667__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3668{
343e0d7a 3669 struct kmem_cache *cachep;
7ed2f9e6 3670 void *ret;
97e2bde4 3671
61448479
DV
3672 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3673 return NULL;
2c59dd65 3674 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3675 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3676 return cachep;
7ed2f9e6 3677 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
0116523c 3678 ret = kasan_kmalloc(cachep, ret, size, flags);
7ed2f9e6
AP
3679
3680 return ret;
97e2bde4 3681}
8b98c169 3682
8b98c169
CH
3683void *__kmalloc_node(size_t size, gfp_t flags, int node)
3684{
7c0cb9c6 3685 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3686}
dbe5e69d 3687EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3688
3689void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3690 int node, unsigned long caller)
8b98c169 3691{
7c0cb9c6 3692 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3693}
3694EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3695#endif /* CONFIG_NUMA */
1da177e4
LT
3696
3697/**
800590f5 3698 * __do_kmalloc - allocate memory
1da177e4 3699 * @size: how many bytes of memory are required.
800590f5 3700 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3701 * @caller: function caller for debug tracking of the caller
1da177e4 3702 */
7fd6b141 3703static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3704 unsigned long caller)
1da177e4 3705{
343e0d7a 3706 struct kmem_cache *cachep;
36555751 3707 void *ret;
1da177e4 3708
61448479
DV
3709 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3710 return NULL;
2c59dd65 3711 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3712 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3713 return cachep;
48356303 3714 ret = slab_alloc(cachep, flags, caller);
36555751 3715
0116523c 3716 ret = kasan_kmalloc(cachep, ret, size, flags);
7c0cb9c6 3717 trace_kmalloc(caller, ret,
3b0efdfa 3718 size, cachep->size, flags);
36555751
EGM
3719
3720 return ret;
7fd6b141
PE
3721}
3722
7fd6b141
PE
3723void *__kmalloc(size_t size, gfp_t flags)
3724{
7c0cb9c6 3725 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3726}
3727EXPORT_SYMBOL(__kmalloc);
3728
ce71e27c 3729void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3730{
7c0cb9c6 3731 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3732}
3733EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3734
1da177e4
LT
3735/**
3736 * kmem_cache_free - Deallocate an object
3737 * @cachep: The cache the allocation was from.
3738 * @objp: The previously allocated object.
3739 *
3740 * Free an object which was previously allocated from this
3741 * cache.
3742 */
343e0d7a 3743void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3744{
3745 unsigned long flags;
b9ce5ef4
GC
3746 cachep = cache_from_obj(cachep, objp);
3747 if (!cachep)
3748 return;
1da177e4
LT
3749
3750 local_irq_save(flags);
d97d476b 3751 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3752 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3753 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3754 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3755 local_irq_restore(flags);
36555751 3756
ca2b84cb 3757 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3758}
3759EXPORT_SYMBOL(kmem_cache_free);
3760
e6cdb58d
JDB
3761void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3762{
3763 struct kmem_cache *s;
3764 size_t i;
3765
3766 local_irq_disable();
3767 for (i = 0; i < size; i++) {
3768 void *objp = p[i];
3769
ca257195
JDB
3770 if (!orig_s) /* called via kfree_bulk */
3771 s = virt_to_cache(objp);
3772 else
3773 s = cache_from_obj(orig_s, objp);
e6cdb58d
JDB
3774
3775 debug_check_no_locks_freed(objp, s->object_size);
3776 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3777 debug_check_no_obj_freed(objp, s->object_size);
3778
3779 __cache_free(s, objp, _RET_IP_);
3780 }
3781 local_irq_enable();
3782
3783 /* FIXME: add tracing */
3784}
3785EXPORT_SYMBOL(kmem_cache_free_bulk);
3786
1da177e4
LT
3787/**
3788 * kfree - free previously allocated memory
3789 * @objp: pointer returned by kmalloc.
3790 *
80e93eff
PE
3791 * If @objp is NULL, no operation is performed.
3792 *
1da177e4
LT
3793 * Don't free memory not originally allocated by kmalloc()
3794 * or you will run into trouble.
3795 */
3796void kfree(const void *objp)
3797{
343e0d7a 3798 struct kmem_cache *c;
1da177e4
LT
3799 unsigned long flags;
3800
2121db74
PE
3801 trace_kfree(_RET_IP_, objp);
3802
6cb8f913 3803 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3804 return;
3805 local_irq_save(flags);
3806 kfree_debugcheck(objp);
6ed5eb22 3807 c = virt_to_cache(objp);
8c138bc0
CL
3808 debug_check_no_locks_freed(objp, c->object_size);
3809
3810 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3811 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3812 local_irq_restore(flags);
3813}
3814EXPORT_SYMBOL(kfree);
3815
e498be7d 3816/*
ce8eb6c4 3817 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3818 */
c3d332b6 3819static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
e498be7d 3820{
c3d332b6 3821 int ret;
e498be7d 3822 int node;
ce8eb6c4 3823 struct kmem_cache_node *n;
e498be7d 3824
9c09a95c 3825 for_each_online_node(node) {
c3d332b6
JK
3826 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3827 if (ret)
e498be7d
CL
3828 goto fail;
3829
e498be7d 3830 }
c3d332b6 3831
cafeb02e 3832 return 0;
0718dc2a 3833
a737b3e2 3834fail:
3b0efdfa 3835 if (!cachep->list.next) {
0718dc2a
CL
3836 /* Cache is not active yet. Roll back what we did */
3837 node--;
3838 while (node >= 0) {
18bf8541
CL
3839 n = get_node(cachep, node);
3840 if (n) {
ce8eb6c4
CL
3841 kfree(n->shared);
3842 free_alien_cache(n->alien);
3843 kfree(n);
6a67368c 3844 cachep->node[node] = NULL;
0718dc2a
CL
3845 }
3846 node--;
3847 }
3848 }
cafeb02e 3849 return -ENOMEM;
e498be7d
CL
3850}
3851
18004c5d 3852/* Always called with the slab_mutex held */
943a451a 3853static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3854 int batchcount, int shared, gfp_t gfp)
1da177e4 3855{
bf0dea23
JK
3856 struct array_cache __percpu *cpu_cache, *prev;
3857 int cpu;
1da177e4 3858
bf0dea23
JK
3859 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3860 if (!cpu_cache)
d2e7b7d0
SS
3861 return -ENOMEM;
3862
bf0dea23
JK
3863 prev = cachep->cpu_cache;
3864 cachep->cpu_cache = cpu_cache;
a87c75fb
GT
3865 /*
3866 * Without a previous cpu_cache there's no need to synchronize remote
3867 * cpus, so skip the IPIs.
3868 */
3869 if (prev)
3870 kick_all_cpus_sync();
e498be7d 3871
1da177e4 3872 check_irq_on();
1da177e4
LT
3873 cachep->batchcount = batchcount;
3874 cachep->limit = limit;
e498be7d 3875 cachep->shared = shared;
1da177e4 3876
bf0dea23 3877 if (!prev)
c3d332b6 3878 goto setup_node;
bf0dea23
JK
3879
3880 for_each_online_cpu(cpu) {
97654dfa 3881 LIST_HEAD(list);
18bf8541
CL
3882 int node;
3883 struct kmem_cache_node *n;
bf0dea23 3884 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3885
bf0dea23 3886 node = cpu_to_mem(cpu);
18bf8541
CL
3887 n = get_node(cachep, node);
3888 spin_lock_irq(&n->list_lock);
bf0dea23 3889 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3890 spin_unlock_irq(&n->list_lock);
97654dfa 3891 slabs_destroy(cachep, &list);
1da177e4 3892 }
bf0dea23
JK
3893 free_percpu(prev);
3894
c3d332b6
JK
3895setup_node:
3896 return setup_kmem_cache_nodes(cachep, gfp);
1da177e4
LT
3897}
3898
943a451a
GC
3899static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3900 int batchcount, int shared, gfp_t gfp)
3901{
3902 int ret;
426589f5 3903 struct kmem_cache *c;
943a451a
GC
3904
3905 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3906
3907 if (slab_state < FULL)
3908 return ret;
3909
3910 if ((ret < 0) || !is_root_cache(cachep))
3911 return ret;
3912
426589f5
VD
3913 lockdep_assert_held(&slab_mutex);
3914 for_each_memcg_cache(c, cachep) {
3915 /* return value determined by the root cache only */
3916 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3917 }
3918
3919 return ret;
3920}
3921
18004c5d 3922/* Called with slab_mutex held always */
83b519e8 3923static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3924{
3925 int err;
943a451a
GC
3926 int limit = 0;
3927 int shared = 0;
3928 int batchcount = 0;
3929
7c00fce9 3930 err = cache_random_seq_create(cachep, cachep->num, gfp);
c7ce4f60
TG
3931 if (err)
3932 goto end;
3933
943a451a
GC
3934 if (!is_root_cache(cachep)) {
3935 struct kmem_cache *root = memcg_root_cache(cachep);
3936 limit = root->limit;
3937 shared = root->shared;
3938 batchcount = root->batchcount;
3939 }
1da177e4 3940
943a451a
GC
3941 if (limit && shared && batchcount)
3942 goto skip_setup;
a737b3e2
AM
3943 /*
3944 * The head array serves three purposes:
1da177e4
LT
3945 * - create a LIFO ordering, i.e. return objects that are cache-warm
3946 * - reduce the number of spinlock operations.
a737b3e2 3947 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3948 * bufctl chains: array operations are cheaper.
3949 * The numbers are guessed, we should auto-tune as described by
3950 * Bonwick.
3951 */
3b0efdfa 3952 if (cachep->size > 131072)
1da177e4 3953 limit = 1;
3b0efdfa 3954 else if (cachep->size > PAGE_SIZE)
1da177e4 3955 limit = 8;
3b0efdfa 3956 else if (cachep->size > 1024)
1da177e4 3957 limit = 24;
3b0efdfa 3958 else if (cachep->size > 256)
1da177e4
LT
3959 limit = 54;
3960 else
3961 limit = 120;
3962
a737b3e2
AM
3963 /*
3964 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3965 * allocation behaviour: Most allocs on one cpu, most free operations
3966 * on another cpu. For these cases, an efficient object passing between
3967 * cpus is necessary. This is provided by a shared array. The array
3968 * replaces Bonwick's magazine layer.
3969 * On uniprocessor, it's functionally equivalent (but less efficient)
3970 * to a larger limit. Thus disabled by default.
3971 */
3972 shared = 0;
3b0efdfa 3973 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3974 shared = 8;
1da177e4
LT
3975
3976#if DEBUG
a737b3e2
AM
3977 /*
3978 * With debugging enabled, large batchcount lead to excessively long
3979 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3980 */
3981 if (limit > 32)
3982 limit = 32;
3983#endif
943a451a
GC
3984 batchcount = (limit + 1) / 2;
3985skip_setup:
3986 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
c7ce4f60 3987end:
1da177e4 3988 if (err)
1170532b 3989 pr_err("enable_cpucache failed for %s, error %d\n",
b28a02de 3990 cachep->name, -err);
2ed3a4ef 3991 return err;
1da177e4
LT
3992}
3993
1b55253a 3994/*
ce8eb6c4
CL
3995 * Drain an array if it contains any elements taking the node lock only if
3996 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3997 * if drain_array() is used on the shared array.
1b55253a 3998 */
ce8eb6c4 3999static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
18726ca8 4000 struct array_cache *ac, int node)
1da177e4 4001{
97654dfa 4002 LIST_HEAD(list);
18726ca8
JK
4003
4004 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4005 check_mutex_acquired();
1da177e4 4006
1b55253a
CL
4007 if (!ac || !ac->avail)
4008 return;
18726ca8
JK
4009
4010 if (ac->touched) {
1da177e4 4011 ac->touched = 0;
18726ca8 4012 return;
1da177e4 4013 }
18726ca8
JK
4014
4015 spin_lock_irq(&n->list_lock);
4016 drain_array_locked(cachep, ac, node, false, &list);
4017 spin_unlock_irq(&n->list_lock);
4018
4019 slabs_destroy(cachep, &list);
1da177e4
LT
4020}
4021
4022/**
4023 * cache_reap - Reclaim memory from caches.
05fb6bf0 4024 * @w: work descriptor
1da177e4
LT
4025 *
4026 * Called from workqueue/eventd every few seconds.
4027 * Purpose:
4028 * - clear the per-cpu caches for this CPU.
4029 * - return freeable pages to the main free memory pool.
4030 *
a737b3e2
AM
4031 * If we cannot acquire the cache chain mutex then just give up - we'll try
4032 * again on the next iteration.
1da177e4 4033 */
7c5cae36 4034static void cache_reap(struct work_struct *w)
1da177e4 4035{
7a7c381d 4036 struct kmem_cache *searchp;
ce8eb6c4 4037 struct kmem_cache_node *n;
7d6e6d09 4038 int node = numa_mem_id();
bf6aede7 4039 struct delayed_work *work = to_delayed_work(w);
1da177e4 4040
18004c5d 4041 if (!mutex_trylock(&slab_mutex))
1da177e4 4042 /* Give up. Setup the next iteration. */
7c5cae36 4043 goto out;
1da177e4 4044
18004c5d 4045 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4046 check_irq_on();
4047
35386e3b 4048 /*
ce8eb6c4 4049 * We only take the node lock if absolutely necessary and we
35386e3b
CL
4050 * have established with reasonable certainty that
4051 * we can do some work if the lock was obtained.
4052 */
18bf8541 4053 n = get_node(searchp, node);
35386e3b 4054
ce8eb6c4 4055 reap_alien(searchp, n);
1da177e4 4056
18726ca8 4057 drain_array(searchp, n, cpu_cache_get(searchp), node);
1da177e4 4058
35386e3b
CL
4059 /*
4060 * These are racy checks but it does not matter
4061 * if we skip one check or scan twice.
4062 */
ce8eb6c4 4063 if (time_after(n->next_reap, jiffies))
35386e3b 4064 goto next;
1da177e4 4065
5f0985bb 4066 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 4067
18726ca8 4068 drain_array(searchp, n, n->shared, node);
1da177e4 4069
ce8eb6c4
CL
4070 if (n->free_touched)
4071 n->free_touched = 0;
ed11d9eb
CL
4072 else {
4073 int freed;
1da177e4 4074
ce8eb6c4 4075 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4076 5 * searchp->num - 1) / (5 * searchp->num));
4077 STATS_ADD_REAPED(searchp, freed);
4078 }
35386e3b 4079next:
1da177e4
LT
4080 cond_resched();
4081 }
4082 check_irq_on();
18004c5d 4083 mutex_unlock(&slab_mutex);
8fce4d8e 4084 next_reap_node();
7c5cae36 4085out:
a737b3e2 4086 /* Set up the next iteration */
a9f2a846
VB
4087 schedule_delayed_work_on(smp_processor_id(), work,
4088 round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
4089}
4090
0d7561c6 4091void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4092{
f728b0a5 4093 unsigned long active_objs, num_objs, active_slabs;
bf00bd34
DR
4094 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4095 unsigned long free_slabs = 0;
e498be7d 4096 int node;
ce8eb6c4 4097 struct kmem_cache_node *n;
1da177e4 4098
18bf8541 4099 for_each_kmem_cache_node(cachep, node, n) {
ca3b9b91 4100 check_irq_on();
ce8eb6c4 4101 spin_lock_irq(&n->list_lock);
e498be7d 4102
bf00bd34
DR
4103 total_slabs += n->total_slabs;
4104 free_slabs += n->free_slabs;
f728b0a5 4105 free_objs += n->free_objects;
07a63c41 4106
ce8eb6c4
CL
4107 if (n->shared)
4108 shared_avail += n->shared->avail;
e498be7d 4109
ce8eb6c4 4110 spin_unlock_irq(&n->list_lock);
1da177e4 4111 }
bf00bd34
DR
4112 num_objs = total_slabs * cachep->num;
4113 active_slabs = total_slabs - free_slabs;
f728b0a5 4114 active_objs = num_objs - free_objs;
1da177e4 4115
0d7561c6
GC
4116 sinfo->active_objs = active_objs;
4117 sinfo->num_objs = num_objs;
4118 sinfo->active_slabs = active_slabs;
bf00bd34 4119 sinfo->num_slabs = total_slabs;
0d7561c6
GC
4120 sinfo->shared_avail = shared_avail;
4121 sinfo->limit = cachep->limit;
4122 sinfo->batchcount = cachep->batchcount;
4123 sinfo->shared = cachep->shared;
4124 sinfo->objects_per_slab = cachep->num;
4125 sinfo->cache_order = cachep->gfporder;
4126}
4127
4128void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4129{
1da177e4 4130#if STATS
ce8eb6c4 4131 { /* node stats */
1da177e4
LT
4132 unsigned long high = cachep->high_mark;
4133 unsigned long allocs = cachep->num_allocations;
4134 unsigned long grown = cachep->grown;
4135 unsigned long reaped = cachep->reaped;
4136 unsigned long errors = cachep->errors;
4137 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4138 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4139 unsigned long node_frees = cachep->node_frees;
fb7faf33 4140 unsigned long overflows = cachep->node_overflow;
1da177e4 4141
756a025f 4142 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
e92dd4fd
JP
4143 allocs, high, grown,
4144 reaped, errors, max_freeable, node_allocs,
4145 node_frees, overflows);
1da177e4
LT
4146 }
4147 /* cpu stats */
4148 {
4149 unsigned long allochit = atomic_read(&cachep->allochit);
4150 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4151 unsigned long freehit = atomic_read(&cachep->freehit);
4152 unsigned long freemiss = atomic_read(&cachep->freemiss);
4153
4154 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4155 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4156 }
4157#endif
1da177e4
LT
4158}
4159
1da177e4
LT
4160#define MAX_SLABINFO_WRITE 128
4161/**
4162 * slabinfo_write - Tuning for the slab allocator
4163 * @file: unused
4164 * @buffer: user buffer
4165 * @count: data length
4166 * @ppos: unused
4167 */
b7454ad3 4168ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4169 size_t count, loff_t *ppos)
1da177e4 4170{
b28a02de 4171 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4172 int limit, batchcount, shared, res;
7a7c381d 4173 struct kmem_cache *cachep;
b28a02de 4174
1da177e4
LT
4175 if (count > MAX_SLABINFO_WRITE)
4176 return -EINVAL;
4177 if (copy_from_user(&kbuf, buffer, count))
4178 return -EFAULT;
b28a02de 4179 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4180
4181 tmp = strchr(kbuf, ' ');
4182 if (!tmp)
4183 return -EINVAL;
4184 *tmp = '\0';
4185 tmp++;
4186 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4187 return -EINVAL;
4188
4189 /* Find the cache in the chain of caches. */
18004c5d 4190 mutex_lock(&slab_mutex);
1da177e4 4191 res = -EINVAL;
18004c5d 4192 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4193 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4194 if (limit < 1 || batchcount < 1 ||
4195 batchcount > limit || shared < 0) {
e498be7d 4196 res = 0;
1da177e4 4197 } else {
e498be7d 4198 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4199 batchcount, shared,
4200 GFP_KERNEL);
1da177e4
LT
4201 }
4202 break;
4203 }
4204 }
18004c5d 4205 mutex_unlock(&slab_mutex);
1da177e4
LT
4206 if (res >= 0)
4207 res = count;
4208 return res;
4209}
871751e2
AV
4210
4211#ifdef CONFIG_DEBUG_SLAB_LEAK
4212
871751e2
AV
4213static inline int add_caller(unsigned long *n, unsigned long v)
4214{
4215 unsigned long *p;
4216 int l;
4217 if (!v)
4218 return 1;
4219 l = n[1];
4220 p = n + 2;
4221 while (l) {
4222 int i = l/2;
4223 unsigned long *q = p + 2 * i;
4224 if (*q == v) {
4225 q[1]++;
4226 return 1;
4227 }
4228 if (*q > v) {
4229 l = i;
4230 } else {
4231 p = q + 2;
4232 l -= i + 1;
4233 }
4234 }
4235 if (++n[1] == n[0])
4236 return 0;
4237 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4238 p[0] = v;
4239 p[1] = 1;
4240 return 1;
4241}
4242
8456a648
JK
4243static void handle_slab(unsigned long *n, struct kmem_cache *c,
4244 struct page *page)
871751e2
AV
4245{
4246 void *p;
d31676df
JK
4247 int i, j;
4248 unsigned long v;
b1cb0982 4249
871751e2
AV
4250 if (n[0] == n[1])
4251 return;
8456a648 4252 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
d31676df
JK
4253 bool active = true;
4254
4255 for (j = page->active; j < c->num; j++) {
4256 if (get_free_obj(page, j) == i) {
4257 active = false;
4258 break;
4259 }
4260 }
4261
4262 if (!active)
871751e2 4263 continue;
b1cb0982 4264
d31676df
JK
4265 /*
4266 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4267 * mapping is established when actual object allocation and
4268 * we could mistakenly access the unmapped object in the cpu
4269 * cache.
4270 */
4271 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4272 continue;
4273
4274 if (!add_caller(n, v))
871751e2
AV
4275 return;
4276 }
4277}
4278
4279static void show_symbol(struct seq_file *m, unsigned long address)
4280{
4281#ifdef CONFIG_KALLSYMS
871751e2 4282 unsigned long offset, size;
9281acea 4283 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4284
a5c43dae 4285 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4286 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4287 if (modname[0])
871751e2
AV
4288 seq_printf(m, " [%s]", modname);
4289 return;
4290 }
4291#endif
85c3e4a5 4292 seq_printf(m, "%px", (void *)address);
871751e2
AV
4293}
4294
4295static int leaks_show(struct seq_file *m, void *p)
4296{
0672aa7c 4297 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4298 struct page *page;
ce8eb6c4 4299 struct kmem_cache_node *n;
871751e2 4300 const char *name;
db845067 4301 unsigned long *x = m->private;
871751e2
AV
4302 int node;
4303 int i;
4304
4305 if (!(cachep->flags & SLAB_STORE_USER))
4306 return 0;
4307 if (!(cachep->flags & SLAB_RED_ZONE))
4308 return 0;
4309
d31676df
JK
4310 /*
4311 * Set store_user_clean and start to grab stored user information
4312 * for all objects on this cache. If some alloc/free requests comes
4313 * during the processing, information would be wrong so restart
4314 * whole processing.
4315 */
4316 do {
4317 set_store_user_clean(cachep);
4318 drain_cpu_caches(cachep);
4319
4320 x[1] = 0;
871751e2 4321
d31676df 4322 for_each_kmem_cache_node(cachep, node, n) {
871751e2 4323
d31676df
JK
4324 check_irq_on();
4325 spin_lock_irq(&n->list_lock);
871751e2 4326
d31676df
JK
4327 list_for_each_entry(page, &n->slabs_full, lru)
4328 handle_slab(x, cachep, page);
4329 list_for_each_entry(page, &n->slabs_partial, lru)
4330 handle_slab(x, cachep, page);
4331 spin_unlock_irq(&n->list_lock);
4332 }
4333 } while (!is_store_user_clean(cachep));
871751e2 4334
871751e2 4335 name = cachep->name;
db845067 4336 if (x[0] == x[1]) {
871751e2 4337 /* Increase the buffer size */
18004c5d 4338 mutex_unlock(&slab_mutex);
6396bb22
KC
4339 m->private = kcalloc(x[0] * 4, sizeof(unsigned long),
4340 GFP_KERNEL);
871751e2
AV
4341 if (!m->private) {
4342 /* Too bad, we are really out */
db845067 4343 m->private = x;
18004c5d 4344 mutex_lock(&slab_mutex);
871751e2
AV
4345 return -ENOMEM;
4346 }
db845067
CL
4347 *(unsigned long *)m->private = x[0] * 2;
4348 kfree(x);
18004c5d 4349 mutex_lock(&slab_mutex);
871751e2
AV
4350 /* Now make sure this entry will be retried */
4351 m->count = m->size;
4352 return 0;
4353 }
db845067
CL
4354 for (i = 0; i < x[1]; i++) {
4355 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4356 show_symbol(m, x[2*i+2]);
871751e2
AV
4357 seq_putc(m, '\n');
4358 }
d2e7b7d0 4359
871751e2
AV
4360 return 0;
4361}
4362
a0ec95a8 4363static const struct seq_operations slabstats_op = {
1df3b26f 4364 .start = slab_start,
276a2439
WL
4365 .next = slab_next,
4366 .stop = slab_stop,
871751e2
AV
4367 .show = leaks_show,
4368};
a0ec95a8
AD
4369
4370static int slabstats_open(struct inode *inode, struct file *file)
4371{
b208ce32
RJ
4372 unsigned long *n;
4373
4374 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4375 if (!n)
4376 return -ENOMEM;
4377
4378 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4379
4380 return 0;
a0ec95a8
AD
4381}
4382
4383static const struct file_operations proc_slabstats_operations = {
4384 .open = slabstats_open,
4385 .read = seq_read,
4386 .llseek = seq_lseek,
4387 .release = seq_release_private,
4388};
4389#endif
4390
4391static int __init slab_proc_init(void)
4392{
4393#ifdef CONFIG_DEBUG_SLAB_LEAK
4394 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4395#endif
a0ec95a8
AD
4396 return 0;
4397}
4398module_init(slab_proc_init);
1da177e4 4399
04385fc5
KC
4400#ifdef CONFIG_HARDENED_USERCOPY
4401/*
afcc90f8
KC
4402 * Rejects incorrectly sized objects and objects that are to be copied
4403 * to/from userspace but do not fall entirely within the containing slab
4404 * cache's usercopy region.
04385fc5
KC
4405 *
4406 * Returns NULL if check passes, otherwise const char * to name of cache
4407 * to indicate an error.
4408 */
f4e6e289
KC
4409void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4410 bool to_user)
04385fc5
KC
4411{
4412 struct kmem_cache *cachep;
4413 unsigned int objnr;
4414 unsigned long offset;
4415
219667c2
AK
4416 ptr = kasan_reset_tag(ptr);
4417
04385fc5
KC
4418 /* Find and validate object. */
4419 cachep = page->slab_cache;
4420 objnr = obj_to_index(cachep, page, (void *)ptr);
4421 BUG_ON(objnr >= cachep->num);
4422
4423 /* Find offset within object. */
4424 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4425
afcc90f8
KC
4426 /* Allow address range falling entirely within usercopy region. */
4427 if (offset >= cachep->useroffset &&
4428 offset - cachep->useroffset <= cachep->usersize &&
4429 n <= cachep->useroffset - offset + cachep->usersize)
f4e6e289 4430 return;
04385fc5 4431
afcc90f8
KC
4432 /*
4433 * If the copy is still within the allocated object, produce
4434 * a warning instead of rejecting the copy. This is intended
4435 * to be a temporary method to find any missing usercopy
4436 * whitelists.
4437 */
2d891fbc
KC
4438 if (usercopy_fallback &&
4439 offset <= cachep->object_size &&
afcc90f8
KC
4440 n <= cachep->object_size - offset) {
4441 usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4442 return;
4443 }
04385fc5 4444
f4e6e289 4445 usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
04385fc5
KC
4446}
4447#endif /* CONFIG_HARDENED_USERCOPY */
4448
00e145b6
MS
4449/**
4450 * ksize - get the actual amount of memory allocated for a given object
4451 * @objp: Pointer to the object
4452 *
4453 * kmalloc may internally round up allocations and return more memory
4454 * than requested. ksize() can be used to determine the actual amount of
4455 * memory allocated. The caller may use this additional memory, even though
4456 * a smaller amount of memory was initially specified with the kmalloc call.
4457 * The caller must guarantee that objp points to a valid object previously
4458 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4459 * must not be freed during the duration of the call.
4460 */
fd76bab2 4461size_t ksize(const void *objp)
1da177e4 4462{
7ed2f9e6
AP
4463 size_t size;
4464
ef8b4520
CL
4465 BUG_ON(!objp);
4466 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4467 return 0;
1da177e4 4468
7ed2f9e6
AP
4469 size = virt_to_cache(objp)->object_size;
4470 /* We assume that ksize callers could use the whole allocated area,
4471 * so we need to unpoison this area.
4472 */
4ebb31a4 4473 kasan_unpoison_shadow(objp, size);
7ed2f9e6
AP
4474
4475 return size;
1da177e4 4476}
b1aabecd 4477EXPORT_SYMBOL(ksize);