Merge tag 'perf-core-for-mingo-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
f315e3fa
JK
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
30321c7b 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 170
072bb0aa
MG
171/*
172 * true if a page was allocated from pfmemalloc reserves for network-based
173 * swap
174 */
175static bool pfmemalloc_active __read_mostly;
176
1da177e4
LT
177/*
178 * struct array_cache
179 *
1da177e4
LT
180 * Purpose:
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
184 *
185 * The limit is stored in the per-cpu structure to reduce the data cache
186 * footprint.
187 *
188 */
189struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
bda5b655 194 void *entry[]; /*
a737b3e2
AM
195 * Must have this definition in here for the proper
196 * alignment of array_cache. Also simplifies accessing
197 * the entries.
072bb0aa
MG
198 *
199 * Entries should not be directly dereferenced as
200 * entries belonging to slabs marked pfmemalloc will
201 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 202 */
1da177e4
LT
203};
204
c8522a3a
JK
205struct alien_cache {
206 spinlock_t lock;
207 struct array_cache ac;
208};
209
072bb0aa
MG
210#define SLAB_OBJ_PFMEMALLOC 1
211static inline bool is_obj_pfmemalloc(void *objp)
212{
213 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214}
215
216static inline void set_obj_pfmemalloc(void **objp)
217{
218 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 return;
220}
221
222static inline void clear_obj_pfmemalloc(void **objp)
223{
224 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225}
226
a737b3e2
AM
227/*
228 * bootstrap: The caches do not work without cpuarrays anymore, but the
229 * cpuarrays are allocated from the generic caches...
1da177e4
LT
230 */
231#define BOOT_CPUCACHE_ENTRIES 1
232struct arraycache_init {
233 struct array_cache cache;
b28a02de 234 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
235};
236
e498be7d
CL
237/*
238 * Need this for bootstrapping a per node allocator.
239 */
bf0dea23 240#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 241static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 242#define CACHE_CACHE 0
bf0dea23 243#define SIZE_NODE (MAX_NUMNODES)
e498be7d 244
ed11d9eb 245static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 246 struct kmem_cache_node *n, int tofree);
ed11d9eb 247static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
248 int node, struct list_head *list);
249static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 250static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 251static void cache_reap(struct work_struct *unused);
ed11d9eb 252
e0a42726
IM
253static int slab_early_init = 1;
254
ce8eb6c4 255#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 256
ce8eb6c4 257static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
258{
259 INIT_LIST_HEAD(&parent->slabs_full);
260 INIT_LIST_HEAD(&parent->slabs_partial);
261 INIT_LIST_HEAD(&parent->slabs_free);
262 parent->shared = NULL;
263 parent->alien = NULL;
2e1217cf 264 parent->colour_next = 0;
e498be7d
CL
265 spin_lock_init(&parent->list_lock);
266 parent->free_objects = 0;
267 parent->free_touched = 0;
268}
269
a737b3e2
AM
270#define MAKE_LIST(cachep, listp, slab, nodeid) \
271 do { \
272 INIT_LIST_HEAD(listp); \
18bf8541 273 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
274 } while (0)
275
a737b3e2
AM
276#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
277 do { \
e498be7d
CL
278 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
279 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
280 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
281 } while (0)
1da177e4 282
1da177e4
LT
283#define CFLGS_OFF_SLAB (0x80000000UL)
284#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
285
286#define BATCHREFILL_LIMIT 16
a737b3e2
AM
287/*
288 * Optimization question: fewer reaps means less probability for unnessary
289 * cpucache drain/refill cycles.
1da177e4 290 *
dc6f3f27 291 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
292 * which could lock up otherwise freeable slabs.
293 */
5f0985bb
JZ
294#define REAPTIMEOUT_AC (2*HZ)
295#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
296
297#if STATS
298#define STATS_INC_ACTIVE(x) ((x)->num_active++)
299#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
300#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
301#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 302#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
303#define STATS_SET_HIGH(x) \
304 do { \
305 if ((x)->num_active > (x)->high_mark) \
306 (x)->high_mark = (x)->num_active; \
307 } while (0)
1da177e4
LT
308#define STATS_INC_ERR(x) ((x)->errors++)
309#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 310#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 311#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
312#define STATS_SET_FREEABLE(x, i) \
313 do { \
314 if ((x)->max_freeable < i) \
315 (x)->max_freeable = i; \
316 } while (0)
1da177e4
LT
317#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
318#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
319#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
320#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
321#else
322#define STATS_INC_ACTIVE(x) do { } while (0)
323#define STATS_DEC_ACTIVE(x) do { } while (0)
324#define STATS_INC_ALLOCED(x) do { } while (0)
325#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 326#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
327#define STATS_SET_HIGH(x) do { } while (0)
328#define STATS_INC_ERR(x) do { } while (0)
329#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 330#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 331#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 332#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
333#define STATS_INC_ALLOCHIT(x) do { } while (0)
334#define STATS_INC_ALLOCMISS(x) do { } while (0)
335#define STATS_INC_FREEHIT(x) do { } while (0)
336#define STATS_INC_FREEMISS(x) do { } while (0)
337#endif
338
339#if DEBUG
1da177e4 340
a737b3e2
AM
341/*
342 * memory layout of objects:
1da177e4 343 * 0 : objp
3dafccf2 344 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
345 * the end of an object is aligned with the end of the real
346 * allocation. Catches writes behind the end of the allocation.
3dafccf2 347 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 348 * redzone word.
3dafccf2 349 * cachep->obj_offset: The real object.
3b0efdfa
CL
350 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
351 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 352 * [BYTES_PER_WORD long]
1da177e4 353 */
343e0d7a 354static int obj_offset(struct kmem_cache *cachep)
1da177e4 355{
3dafccf2 356 return cachep->obj_offset;
1da177e4
LT
357}
358
b46b8f19 359static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
360{
361 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
362 return (unsigned long long*) (objp + obj_offset(cachep) -
363 sizeof(unsigned long long));
1da177e4
LT
364}
365
b46b8f19 366static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
367{
368 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
369 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 370 return (unsigned long long *)(objp + cachep->size -
b46b8f19 371 sizeof(unsigned long long) -
87a927c7 372 REDZONE_ALIGN);
3b0efdfa 373 return (unsigned long long *) (objp + cachep->size -
b46b8f19 374 sizeof(unsigned long long));
1da177e4
LT
375}
376
343e0d7a 377static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
378{
379 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 380 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
381}
382
383#else
384
3dafccf2 385#define obj_offset(x) 0
b46b8f19
DW
386#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
387#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
388#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
389
390#endif
391
03787301
JK
392#define OBJECT_FREE (0)
393#define OBJECT_ACTIVE (1)
394
395#ifdef CONFIG_DEBUG_SLAB_LEAK
396
397static void set_obj_status(struct page *page, int idx, int val)
398{
399 int freelist_size;
400 char *status;
401 struct kmem_cache *cachep = page->slab_cache;
402
403 freelist_size = cachep->num * sizeof(freelist_idx_t);
404 status = (char *)page->freelist + freelist_size;
405 status[idx] = val;
406}
407
408static inline unsigned int get_obj_status(struct page *page, int idx)
409{
410 int freelist_size;
411 char *status;
412 struct kmem_cache *cachep = page->slab_cache;
413
414 freelist_size = cachep->num * sizeof(freelist_idx_t);
415 status = (char *)page->freelist + freelist_size;
416
417 return status[idx];
418}
419
420#else
421static inline void set_obj_status(struct page *page, int idx, int val) {}
422
423#endif
424
1da177e4 425/*
3df1cccd
DR
426 * Do not go above this order unless 0 objects fit into the slab or
427 * overridden on the command line.
1da177e4 428 */
543585cc
DR
429#define SLAB_MAX_ORDER_HI 1
430#define SLAB_MAX_ORDER_LO 0
431static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 432static bool slab_max_order_set __initdata;
1da177e4 433
6ed5eb22
PE
434static inline struct kmem_cache *virt_to_cache(const void *obj)
435{
b49af68f 436 struct page *page = virt_to_head_page(obj);
35026088 437 return page->slab_cache;
6ed5eb22
PE
438}
439
8456a648 440static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
441 unsigned int idx)
442{
8456a648 443 return page->s_mem + cache->size * idx;
8fea4e96
PE
444}
445
6a2d7a95 446/*
3b0efdfa
CL
447 * We want to avoid an expensive divide : (offset / cache->size)
448 * Using the fact that size is a constant for a particular cache,
449 * we can replace (offset / cache->size) by
6a2d7a95
ED
450 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
451 */
452static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 453 const struct page *page, void *obj)
8fea4e96 454{
8456a648 455 u32 offset = (obj - page->s_mem);
6a2d7a95 456 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
457}
458
1da177e4 459/* internal cache of cache description objs */
9b030cb8 460static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
461 .batchcount = 1,
462 .limit = BOOT_CPUCACHE_ENTRIES,
463 .shared = 1,
3b0efdfa 464 .size = sizeof(struct kmem_cache),
b28a02de 465 .name = "kmem_cache",
1da177e4
LT
466};
467
edcad250
JK
468#define BAD_ALIEN_MAGIC 0x01020304ul
469
1871e52c 470static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 471
343e0d7a 472static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 473{
bf0dea23 474 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
475}
476
03787301
JK
477static size_t calculate_freelist_size(int nr_objs, size_t align)
478{
479 size_t freelist_size;
480
481 freelist_size = nr_objs * sizeof(freelist_idx_t);
482 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
483 freelist_size += nr_objs * sizeof(char);
484
485 if (align)
486 freelist_size = ALIGN(freelist_size, align);
487
488 return freelist_size;
489}
490
9cef2e2b
JK
491static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
492 size_t idx_size, size_t align)
1da177e4 493{
9cef2e2b 494 int nr_objs;
03787301 495 size_t remained_size;
9cef2e2b 496 size_t freelist_size;
03787301 497 int extra_space = 0;
9cef2e2b 498
03787301
JK
499 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
500 extra_space = sizeof(char);
9cef2e2b
JK
501 /*
502 * Ignore padding for the initial guess. The padding
503 * is at most @align-1 bytes, and @buffer_size is at
504 * least @align. In the worst case, this result will
505 * be one greater than the number of objects that fit
506 * into the memory allocation when taking the padding
507 * into account.
508 */
03787301 509 nr_objs = slab_size / (buffer_size + idx_size + extra_space);
9cef2e2b
JK
510
511 /*
512 * This calculated number will be either the right
513 * amount, or one greater than what we want.
514 */
03787301
JK
515 remained_size = slab_size - nr_objs * buffer_size;
516 freelist_size = calculate_freelist_size(nr_objs, align);
517 if (remained_size < freelist_size)
9cef2e2b
JK
518 nr_objs--;
519
520 return nr_objs;
fbaccacf 521}
1da177e4 522
a737b3e2
AM
523/*
524 * Calculate the number of objects and left-over bytes for a given buffer size.
525 */
fbaccacf
SR
526static void cache_estimate(unsigned long gfporder, size_t buffer_size,
527 size_t align, int flags, size_t *left_over,
528 unsigned int *num)
529{
530 int nr_objs;
531 size_t mgmt_size;
532 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 533
fbaccacf
SR
534 /*
535 * The slab management structure can be either off the slab or
536 * on it. For the latter case, the memory allocated for a
537 * slab is used for:
538 *
16025177 539 * - One unsigned int for each object
fbaccacf
SR
540 * - Padding to respect alignment of @align
541 * - @buffer_size bytes for each object
542 *
543 * If the slab management structure is off the slab, then the
544 * alignment will already be calculated into the size. Because
545 * the slabs are all pages aligned, the objects will be at the
546 * correct alignment when allocated.
547 */
548 if (flags & CFLGS_OFF_SLAB) {
549 mgmt_size = 0;
550 nr_objs = slab_size / buffer_size;
551
fbaccacf 552 } else {
9cef2e2b 553 nr_objs = calculate_nr_objs(slab_size, buffer_size,
a41adfaa 554 sizeof(freelist_idx_t), align);
03787301 555 mgmt_size = calculate_freelist_size(nr_objs, align);
fbaccacf
SR
556 }
557 *num = nr_objs;
558 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
559}
560
f28510d3 561#if DEBUG
d40cee24 562#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 563
a737b3e2
AM
564static void __slab_error(const char *function, struct kmem_cache *cachep,
565 char *msg)
1da177e4
LT
566{
567 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 568 function, cachep->name, msg);
1da177e4 569 dump_stack();
373d4d09 570 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 571}
f28510d3 572#endif
1da177e4 573
3395ee05
PM
574/*
575 * By default on NUMA we use alien caches to stage the freeing of
576 * objects allocated from other nodes. This causes massive memory
577 * inefficiencies when using fake NUMA setup to split memory into a
578 * large number of small nodes, so it can be disabled on the command
579 * line
580 */
581
582static int use_alien_caches __read_mostly = 1;
583static int __init noaliencache_setup(char *s)
584{
585 use_alien_caches = 0;
586 return 1;
587}
588__setup("noaliencache", noaliencache_setup);
589
3df1cccd
DR
590static int __init slab_max_order_setup(char *str)
591{
592 get_option(&str, &slab_max_order);
593 slab_max_order = slab_max_order < 0 ? 0 :
594 min(slab_max_order, MAX_ORDER - 1);
595 slab_max_order_set = true;
596
597 return 1;
598}
599__setup("slab_max_order=", slab_max_order_setup);
600
8fce4d8e
CL
601#ifdef CONFIG_NUMA
602/*
603 * Special reaping functions for NUMA systems called from cache_reap().
604 * These take care of doing round robin flushing of alien caches (containing
605 * objects freed on different nodes from which they were allocated) and the
606 * flushing of remote pcps by calling drain_node_pages.
607 */
1871e52c 608static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
609
610static void init_reap_node(int cpu)
611{
612 int node;
613
7d6e6d09 614 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 615 if (node == MAX_NUMNODES)
442295c9 616 node = first_node(node_online_map);
8fce4d8e 617
1871e52c 618 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
619}
620
621static void next_reap_node(void)
622{
909ea964 623 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 624
8fce4d8e
CL
625 node = next_node(node, node_online_map);
626 if (unlikely(node >= MAX_NUMNODES))
627 node = first_node(node_online_map);
909ea964 628 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
629}
630
631#else
632#define init_reap_node(cpu) do { } while (0)
633#define next_reap_node(void) do { } while (0)
634#endif
635
1da177e4
LT
636/*
637 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
638 * via the workqueue/eventd.
639 * Add the CPU number into the expiration time to minimize the possibility of
640 * the CPUs getting into lockstep and contending for the global cache chain
641 * lock.
642 */
0db0628d 643static void start_cpu_timer(int cpu)
1da177e4 644{
1871e52c 645 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
646
647 /*
648 * When this gets called from do_initcalls via cpucache_init(),
649 * init_workqueues() has already run, so keventd will be setup
650 * at that time.
651 */
52bad64d 652 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 653 init_reap_node(cpu);
203b42f7 654 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
655 schedule_delayed_work_on(cpu, reap_work,
656 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
657 }
658}
659
1fe00d50 660static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 661{
d5cff635
CM
662 /*
663 * The array_cache structures contain pointers to free object.
25985edc 664 * However, when such objects are allocated or transferred to another
d5cff635
CM
665 * cache the pointers are not cleared and they could be counted as
666 * valid references during a kmemleak scan. Therefore, kmemleak must
667 * not scan such objects.
668 */
1fe00d50
JK
669 kmemleak_no_scan(ac);
670 if (ac) {
671 ac->avail = 0;
672 ac->limit = limit;
673 ac->batchcount = batch;
674 ac->touched = 0;
1da177e4 675 }
1fe00d50
JK
676}
677
678static struct array_cache *alloc_arraycache(int node, int entries,
679 int batchcount, gfp_t gfp)
680{
5e804789 681 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
682 struct array_cache *ac = NULL;
683
684 ac = kmalloc_node(memsize, gfp, node);
685 init_arraycache(ac, entries, batchcount);
686 return ac;
1da177e4
LT
687}
688
8456a648 689static inline bool is_slab_pfmemalloc(struct page *page)
072bb0aa 690{
072bb0aa
MG
691 return PageSlabPfmemalloc(page);
692}
693
694/* Clears pfmemalloc_active if no slabs have pfmalloc set */
695static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
696 struct array_cache *ac)
697{
18bf8541 698 struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
8456a648 699 struct page *page;
072bb0aa
MG
700 unsigned long flags;
701
702 if (!pfmemalloc_active)
703 return;
704
ce8eb6c4 705 spin_lock_irqsave(&n->list_lock, flags);
8456a648
JK
706 list_for_each_entry(page, &n->slabs_full, lru)
707 if (is_slab_pfmemalloc(page))
072bb0aa
MG
708 goto out;
709
8456a648
JK
710 list_for_each_entry(page, &n->slabs_partial, lru)
711 if (is_slab_pfmemalloc(page))
072bb0aa
MG
712 goto out;
713
8456a648
JK
714 list_for_each_entry(page, &n->slabs_free, lru)
715 if (is_slab_pfmemalloc(page))
072bb0aa
MG
716 goto out;
717
718 pfmemalloc_active = false;
719out:
ce8eb6c4 720 spin_unlock_irqrestore(&n->list_lock, flags);
072bb0aa
MG
721}
722
381760ea 723static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
724 gfp_t flags, bool force_refill)
725{
726 int i;
727 void *objp = ac->entry[--ac->avail];
728
729 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
730 if (unlikely(is_obj_pfmemalloc(objp))) {
ce8eb6c4 731 struct kmem_cache_node *n;
072bb0aa
MG
732
733 if (gfp_pfmemalloc_allowed(flags)) {
734 clear_obj_pfmemalloc(&objp);
735 return objp;
736 }
737
738 /* The caller cannot use PFMEMALLOC objects, find another one */
d014dc2e 739 for (i = 0; i < ac->avail; i++) {
072bb0aa
MG
740 /* If a !PFMEMALLOC object is found, swap them */
741 if (!is_obj_pfmemalloc(ac->entry[i])) {
742 objp = ac->entry[i];
743 ac->entry[i] = ac->entry[ac->avail];
744 ac->entry[ac->avail] = objp;
745 return objp;
746 }
747 }
748
749 /*
750 * If there are empty slabs on the slabs_free list and we are
751 * being forced to refill the cache, mark this one !pfmemalloc.
752 */
18bf8541 753 n = get_node(cachep, numa_mem_id());
ce8eb6c4 754 if (!list_empty(&n->slabs_free) && force_refill) {
8456a648 755 struct page *page = virt_to_head_page(objp);
7ecccf9d 756 ClearPageSlabPfmemalloc(page);
072bb0aa
MG
757 clear_obj_pfmemalloc(&objp);
758 recheck_pfmemalloc_active(cachep, ac);
759 return objp;
760 }
761
762 /* No !PFMEMALLOC objects available */
763 ac->avail++;
764 objp = NULL;
765 }
766
767 return objp;
768}
769
381760ea
MG
770static inline void *ac_get_obj(struct kmem_cache *cachep,
771 struct array_cache *ac, gfp_t flags, bool force_refill)
772{
773 void *objp;
774
775 if (unlikely(sk_memalloc_socks()))
776 objp = __ac_get_obj(cachep, ac, flags, force_refill);
777 else
778 objp = ac->entry[--ac->avail];
779
780 return objp;
781}
782
d3aec344
JK
783static noinline void *__ac_put_obj(struct kmem_cache *cachep,
784 struct array_cache *ac, void *objp)
072bb0aa
MG
785{
786 if (unlikely(pfmemalloc_active)) {
787 /* Some pfmemalloc slabs exist, check if this is one */
30c29bea 788 struct page *page = virt_to_head_page(objp);
072bb0aa
MG
789 if (PageSlabPfmemalloc(page))
790 set_obj_pfmemalloc(&objp);
791 }
792
381760ea
MG
793 return objp;
794}
795
796static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
797 void *objp)
798{
799 if (unlikely(sk_memalloc_socks()))
800 objp = __ac_put_obj(cachep, ac, objp);
801
072bb0aa
MG
802 ac->entry[ac->avail++] = objp;
803}
804
3ded175a
CL
805/*
806 * Transfer objects in one arraycache to another.
807 * Locking must be handled by the caller.
808 *
809 * Return the number of entries transferred.
810 */
811static int transfer_objects(struct array_cache *to,
812 struct array_cache *from, unsigned int max)
813{
814 /* Figure out how many entries to transfer */
732eacc0 815 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
816
817 if (!nr)
818 return 0;
819
820 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
821 sizeof(void *) *nr);
822
823 from->avail -= nr;
824 to->avail += nr;
3ded175a
CL
825 return nr;
826}
827
765c4507
CL
828#ifndef CONFIG_NUMA
829
830#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 831#define reap_alien(cachep, n) do { } while (0)
765c4507 832
c8522a3a
JK
833static inline struct alien_cache **alloc_alien_cache(int node,
834 int limit, gfp_t gfp)
765c4507 835{
edcad250 836 return (struct alien_cache **)BAD_ALIEN_MAGIC;
765c4507
CL
837}
838
c8522a3a 839static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
840{
841}
842
843static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
844{
845 return 0;
846}
847
848static inline void *alternate_node_alloc(struct kmem_cache *cachep,
849 gfp_t flags)
850{
851 return NULL;
852}
853
8b98c169 854static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
855 gfp_t flags, int nodeid)
856{
857 return NULL;
858}
859
4167e9b2
DR
860static inline gfp_t gfp_exact_node(gfp_t flags)
861{
862 return flags;
863}
864
765c4507
CL
865#else /* CONFIG_NUMA */
866
8b98c169 867static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 868static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 869
c8522a3a
JK
870static struct alien_cache *__alloc_alien_cache(int node, int entries,
871 int batch, gfp_t gfp)
872{
5e804789 873 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
874 struct alien_cache *alc = NULL;
875
876 alc = kmalloc_node(memsize, gfp, node);
877 init_arraycache(&alc->ac, entries, batch);
49dfc304 878 spin_lock_init(&alc->lock);
c8522a3a
JK
879 return alc;
880}
881
882static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 883{
c8522a3a 884 struct alien_cache **alc_ptr;
5e804789 885 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
886 int i;
887
888 if (limit > 1)
889 limit = 12;
c8522a3a
JK
890 alc_ptr = kzalloc_node(memsize, gfp, node);
891 if (!alc_ptr)
892 return NULL;
893
894 for_each_node(i) {
895 if (i == node || !node_online(i))
896 continue;
897 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
898 if (!alc_ptr[i]) {
899 for (i--; i >= 0; i--)
900 kfree(alc_ptr[i]);
901 kfree(alc_ptr);
902 return NULL;
e498be7d
CL
903 }
904 }
c8522a3a 905 return alc_ptr;
e498be7d
CL
906}
907
c8522a3a 908static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
909{
910 int i;
911
c8522a3a 912 if (!alc_ptr)
e498be7d 913 return;
e498be7d 914 for_each_node(i)
c8522a3a
JK
915 kfree(alc_ptr[i]);
916 kfree(alc_ptr);
e498be7d
CL
917}
918
343e0d7a 919static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
920 struct array_cache *ac, int node,
921 struct list_head *list)
e498be7d 922{
18bf8541 923 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
924
925 if (ac->avail) {
ce8eb6c4 926 spin_lock(&n->list_lock);
e00946fe
CL
927 /*
928 * Stuff objects into the remote nodes shared array first.
929 * That way we could avoid the overhead of putting the objects
930 * into the free lists and getting them back later.
931 */
ce8eb6c4
CL
932 if (n->shared)
933 transfer_objects(n->shared, ac, ac->limit);
e00946fe 934
833b706c 935 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 936 ac->avail = 0;
ce8eb6c4 937 spin_unlock(&n->list_lock);
e498be7d
CL
938 }
939}
940
8fce4d8e
CL
941/*
942 * Called from cache_reap() to regularly drain alien caches round robin.
943 */
ce8eb6c4 944static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 945{
909ea964 946 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 947
ce8eb6c4 948 if (n->alien) {
c8522a3a
JK
949 struct alien_cache *alc = n->alien[node];
950 struct array_cache *ac;
951
952 if (alc) {
953 ac = &alc->ac;
49dfc304 954 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
955 LIST_HEAD(list);
956
957 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 958 spin_unlock_irq(&alc->lock);
833b706c 959 slabs_destroy(cachep, &list);
c8522a3a 960 }
8fce4d8e
CL
961 }
962 }
963}
964
a737b3e2 965static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 966 struct alien_cache **alien)
e498be7d 967{
b28a02de 968 int i = 0;
c8522a3a 969 struct alien_cache *alc;
e498be7d
CL
970 struct array_cache *ac;
971 unsigned long flags;
972
973 for_each_online_node(i) {
c8522a3a
JK
974 alc = alien[i];
975 if (alc) {
833b706c
JK
976 LIST_HEAD(list);
977
c8522a3a 978 ac = &alc->ac;
49dfc304 979 spin_lock_irqsave(&alc->lock, flags);
833b706c 980 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 981 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 982 slabs_destroy(cachep, &list);
e498be7d
CL
983 }
984 }
985}
729bd0b7 986
25c4f304
JK
987static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
988 int node, int page_node)
729bd0b7 989{
ce8eb6c4 990 struct kmem_cache_node *n;
c8522a3a
JK
991 struct alien_cache *alien = NULL;
992 struct array_cache *ac;
97654dfa 993 LIST_HEAD(list);
1ca4cb24 994
18bf8541 995 n = get_node(cachep, node);
729bd0b7 996 STATS_INC_NODEFREES(cachep);
25c4f304
JK
997 if (n->alien && n->alien[page_node]) {
998 alien = n->alien[page_node];
c8522a3a 999 ac = &alien->ac;
49dfc304 1000 spin_lock(&alien->lock);
c8522a3a 1001 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 1002 STATS_INC_ACOVERFLOW(cachep);
25c4f304 1003 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 1004 }
c8522a3a 1005 ac_put_obj(cachep, ac, objp);
49dfc304 1006 spin_unlock(&alien->lock);
833b706c 1007 slabs_destroy(cachep, &list);
729bd0b7 1008 } else {
25c4f304 1009 n = get_node(cachep, page_node);
18bf8541 1010 spin_lock(&n->list_lock);
25c4f304 1011 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 1012 spin_unlock(&n->list_lock);
97654dfa 1013 slabs_destroy(cachep, &list);
729bd0b7
PE
1014 }
1015 return 1;
1016}
25c4f304
JK
1017
1018static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1019{
1020 int page_node = page_to_nid(virt_to_page(objp));
1021 int node = numa_mem_id();
1022 /*
1023 * Make sure we are not freeing a object from another node to the array
1024 * cache on this cpu.
1025 */
1026 if (likely(node == page_node))
1027 return 0;
1028
1029 return __cache_free_alien(cachep, objp, node, page_node);
1030}
4167e9b2
DR
1031
1032/*
1033 * Construct gfp mask to allocate from a specific node but do not invoke reclaim
1034 * or warn about failures.
1035 */
1036static inline gfp_t gfp_exact_node(gfp_t flags)
1037{
1038 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_WAIT;
1039}
e498be7d
CL
1040#endif
1041
8f9f8d9e 1042/*
6a67368c 1043 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 1044 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 1045 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 1046 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
1047 * already in use.
1048 *
18004c5d 1049 * Must hold slab_mutex.
8f9f8d9e 1050 */
6a67368c 1051static int init_cache_node_node(int node)
8f9f8d9e
DR
1052{
1053 struct kmem_cache *cachep;
ce8eb6c4 1054 struct kmem_cache_node *n;
5e804789 1055 const size_t memsize = sizeof(struct kmem_cache_node);
8f9f8d9e 1056
18004c5d 1057 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e 1058 /*
5f0985bb 1059 * Set up the kmem_cache_node for cpu before we can
8f9f8d9e
DR
1060 * begin anything. Make sure some other cpu on this
1061 * node has not already allocated this
1062 */
18bf8541
CL
1063 n = get_node(cachep, node);
1064 if (!n) {
ce8eb6c4
CL
1065 n = kmalloc_node(memsize, GFP_KERNEL, node);
1066 if (!n)
8f9f8d9e 1067 return -ENOMEM;
ce8eb6c4 1068 kmem_cache_node_init(n);
5f0985bb
JZ
1069 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1070 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
8f9f8d9e
DR
1071
1072 /*
5f0985bb
JZ
1073 * The kmem_cache_nodes don't come and go as CPUs
1074 * come and go. slab_mutex is sufficient
8f9f8d9e
DR
1075 * protection here.
1076 */
ce8eb6c4 1077 cachep->node[node] = n;
8f9f8d9e
DR
1078 }
1079
18bf8541
CL
1080 spin_lock_irq(&n->list_lock);
1081 n->free_limit =
8f9f8d9e
DR
1082 (1 + nr_cpus_node(node)) *
1083 cachep->batchcount + cachep->num;
18bf8541 1084 spin_unlock_irq(&n->list_lock);
8f9f8d9e
DR
1085 }
1086 return 0;
1087}
1088
0fa8103b
WL
1089static inline int slabs_tofree(struct kmem_cache *cachep,
1090 struct kmem_cache_node *n)
1091{
1092 return (n->free_objects + cachep->num - 1) / cachep->num;
1093}
1094
0db0628d 1095static void cpuup_canceled(long cpu)
fbf1e473
AM
1096{
1097 struct kmem_cache *cachep;
ce8eb6c4 1098 struct kmem_cache_node *n = NULL;
7d6e6d09 1099 int node = cpu_to_mem(cpu);
a70f7302 1100 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1101
18004c5d 1102 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1103 struct array_cache *nc;
1104 struct array_cache *shared;
c8522a3a 1105 struct alien_cache **alien;
97654dfa 1106 LIST_HEAD(list);
fbf1e473 1107
18bf8541 1108 n = get_node(cachep, node);
ce8eb6c4 1109 if (!n)
bf0dea23 1110 continue;
fbf1e473 1111
ce8eb6c4 1112 spin_lock_irq(&n->list_lock);
fbf1e473 1113
ce8eb6c4
CL
1114 /* Free limit for this kmem_cache_node */
1115 n->free_limit -= cachep->batchcount;
bf0dea23
JK
1116
1117 /* cpu is dead; no one can alloc from it. */
1118 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1119 if (nc) {
97654dfa 1120 free_block(cachep, nc->entry, nc->avail, node, &list);
bf0dea23
JK
1121 nc->avail = 0;
1122 }
fbf1e473 1123
58463c1f 1124 if (!cpumask_empty(mask)) {
ce8eb6c4 1125 spin_unlock_irq(&n->list_lock);
bf0dea23 1126 goto free_slab;
fbf1e473
AM
1127 }
1128
ce8eb6c4 1129 shared = n->shared;
fbf1e473
AM
1130 if (shared) {
1131 free_block(cachep, shared->entry,
97654dfa 1132 shared->avail, node, &list);
ce8eb6c4 1133 n->shared = NULL;
fbf1e473
AM
1134 }
1135
ce8eb6c4
CL
1136 alien = n->alien;
1137 n->alien = NULL;
fbf1e473 1138
ce8eb6c4 1139 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1140
1141 kfree(shared);
1142 if (alien) {
1143 drain_alien_cache(cachep, alien);
1144 free_alien_cache(alien);
1145 }
bf0dea23
JK
1146
1147free_slab:
97654dfa 1148 slabs_destroy(cachep, &list);
fbf1e473
AM
1149 }
1150 /*
1151 * In the previous loop, all the objects were freed to
1152 * the respective cache's slabs, now we can go ahead and
1153 * shrink each nodelist to its limit.
1154 */
18004c5d 1155 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1156 n = get_node(cachep, node);
ce8eb6c4 1157 if (!n)
fbf1e473 1158 continue;
0fa8103b 1159 drain_freelist(cachep, n, slabs_tofree(cachep, n));
fbf1e473
AM
1160 }
1161}
1162
0db0628d 1163static int cpuup_prepare(long cpu)
1da177e4 1164{
343e0d7a 1165 struct kmem_cache *cachep;
ce8eb6c4 1166 struct kmem_cache_node *n = NULL;
7d6e6d09 1167 int node = cpu_to_mem(cpu);
8f9f8d9e 1168 int err;
1da177e4 1169
fbf1e473
AM
1170 /*
1171 * We need to do this right in the beginning since
1172 * alloc_arraycache's are going to use this list.
1173 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1174 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1175 */
6a67368c 1176 err = init_cache_node_node(node);
8f9f8d9e
DR
1177 if (err < 0)
1178 goto bad;
fbf1e473
AM
1179
1180 /*
1181 * Now we can go ahead with allocating the shared arrays and
1182 * array caches
1183 */
18004c5d 1184 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473 1185 struct array_cache *shared = NULL;
c8522a3a 1186 struct alien_cache **alien = NULL;
fbf1e473 1187
fbf1e473
AM
1188 if (cachep->shared) {
1189 shared = alloc_arraycache(node,
1190 cachep->shared * cachep->batchcount,
83b519e8 1191 0xbaadf00d, GFP_KERNEL);
bf0dea23 1192 if (!shared)
1da177e4 1193 goto bad;
fbf1e473
AM
1194 }
1195 if (use_alien_caches) {
83b519e8 1196 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1197 if (!alien) {
1198 kfree(shared);
fbf1e473 1199 goto bad;
12d00f6a 1200 }
fbf1e473 1201 }
18bf8541 1202 n = get_node(cachep, node);
ce8eb6c4 1203 BUG_ON(!n);
fbf1e473 1204
ce8eb6c4
CL
1205 spin_lock_irq(&n->list_lock);
1206 if (!n->shared) {
fbf1e473
AM
1207 /*
1208 * We are serialised from CPU_DEAD or
1209 * CPU_UP_CANCELLED by the cpucontrol lock
1210 */
ce8eb6c4 1211 n->shared = shared;
fbf1e473
AM
1212 shared = NULL;
1213 }
4484ebf1 1214#ifdef CONFIG_NUMA
ce8eb6c4
CL
1215 if (!n->alien) {
1216 n->alien = alien;
fbf1e473 1217 alien = NULL;
1da177e4 1218 }
fbf1e473 1219#endif
ce8eb6c4 1220 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1221 kfree(shared);
1222 free_alien_cache(alien);
1223 }
ce79ddc8 1224
fbf1e473
AM
1225 return 0;
1226bad:
12d00f6a 1227 cpuup_canceled(cpu);
fbf1e473
AM
1228 return -ENOMEM;
1229}
1230
0db0628d 1231static int cpuup_callback(struct notifier_block *nfb,
fbf1e473
AM
1232 unsigned long action, void *hcpu)
1233{
1234 long cpu = (long)hcpu;
1235 int err = 0;
1236
1237 switch (action) {
fbf1e473
AM
1238 case CPU_UP_PREPARE:
1239 case CPU_UP_PREPARE_FROZEN:
18004c5d 1240 mutex_lock(&slab_mutex);
fbf1e473 1241 err = cpuup_prepare(cpu);
18004c5d 1242 mutex_unlock(&slab_mutex);
1da177e4
LT
1243 break;
1244 case CPU_ONLINE:
8bb78442 1245 case CPU_ONLINE_FROZEN:
1da177e4
LT
1246 start_cpu_timer(cpu);
1247 break;
1248#ifdef CONFIG_HOTPLUG_CPU
5830c590 1249 case CPU_DOWN_PREPARE:
8bb78442 1250 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1251 /*
18004c5d 1252 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1253 * held so that if cache_reap() is invoked it cannot do
1254 * anything expensive but will only modify reap_work
1255 * and reschedule the timer.
1256 */
afe2c511 1257 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1258 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1259 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1260 break;
1261 case CPU_DOWN_FAILED:
8bb78442 1262 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1263 start_cpu_timer(cpu);
1264 break;
1da177e4 1265 case CPU_DEAD:
8bb78442 1266 case CPU_DEAD_FROZEN:
4484ebf1
RT
1267 /*
1268 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1269 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1270 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1271 * memory from the node of the cpu going down. The node
4484ebf1
RT
1272 * structure is usually allocated from kmem_cache_create() and
1273 * gets destroyed at kmem_cache_destroy().
1274 */
183ff22b 1275 /* fall through */
8f5be20b 1276#endif
1da177e4 1277 case CPU_UP_CANCELED:
8bb78442 1278 case CPU_UP_CANCELED_FROZEN:
18004c5d 1279 mutex_lock(&slab_mutex);
fbf1e473 1280 cpuup_canceled(cpu);
18004c5d 1281 mutex_unlock(&slab_mutex);
1da177e4 1282 break;
1da177e4 1283 }
eac40680 1284 return notifier_from_errno(err);
1da177e4
LT
1285}
1286
0db0628d 1287static struct notifier_block cpucache_notifier = {
74b85f37
CS
1288 &cpuup_callback, NULL, 0
1289};
1da177e4 1290
8f9f8d9e
DR
1291#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1292/*
1293 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1294 * Returns -EBUSY if all objects cannot be drained so that the node is not
1295 * removed.
1296 *
18004c5d 1297 * Must hold slab_mutex.
8f9f8d9e 1298 */
6a67368c 1299static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1300{
1301 struct kmem_cache *cachep;
1302 int ret = 0;
1303
18004c5d 1304 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1305 struct kmem_cache_node *n;
8f9f8d9e 1306
18bf8541 1307 n = get_node(cachep, node);
ce8eb6c4 1308 if (!n)
8f9f8d9e
DR
1309 continue;
1310
0fa8103b 1311 drain_freelist(cachep, n, slabs_tofree(cachep, n));
8f9f8d9e 1312
ce8eb6c4
CL
1313 if (!list_empty(&n->slabs_full) ||
1314 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1315 ret = -EBUSY;
1316 break;
1317 }
1318 }
1319 return ret;
1320}
1321
1322static int __meminit slab_memory_callback(struct notifier_block *self,
1323 unsigned long action, void *arg)
1324{
1325 struct memory_notify *mnb = arg;
1326 int ret = 0;
1327 int nid;
1328
1329 nid = mnb->status_change_nid;
1330 if (nid < 0)
1331 goto out;
1332
1333 switch (action) {
1334 case MEM_GOING_ONLINE:
18004c5d 1335 mutex_lock(&slab_mutex);
6a67368c 1336 ret = init_cache_node_node(nid);
18004c5d 1337 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1338 break;
1339 case MEM_GOING_OFFLINE:
18004c5d 1340 mutex_lock(&slab_mutex);
6a67368c 1341 ret = drain_cache_node_node(nid);
18004c5d 1342 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1343 break;
1344 case MEM_ONLINE:
1345 case MEM_OFFLINE:
1346 case MEM_CANCEL_ONLINE:
1347 case MEM_CANCEL_OFFLINE:
1348 break;
1349 }
1350out:
5fda1bd5 1351 return notifier_from_errno(ret);
8f9f8d9e
DR
1352}
1353#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1354
e498be7d 1355/*
ce8eb6c4 1356 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1357 */
6744f087 1358static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1359 int nodeid)
e498be7d 1360{
6744f087 1361 struct kmem_cache_node *ptr;
e498be7d 1362
6744f087 1363 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1364 BUG_ON(!ptr);
1365
6744f087 1366 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1367 /*
1368 * Do not assume that spinlocks can be initialized via memcpy:
1369 */
1370 spin_lock_init(&ptr->list_lock);
1371
e498be7d 1372 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1373 cachep->node[nodeid] = ptr;
e498be7d
CL
1374}
1375
556a169d 1376/*
ce8eb6c4
CL
1377 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1378 * size of kmem_cache_node.
556a169d 1379 */
ce8eb6c4 1380static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1381{
1382 int node;
1383
1384 for_each_online_node(node) {
ce8eb6c4 1385 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1386 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1387 REAPTIMEOUT_NODE +
1388 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1389 }
1390}
1391
a737b3e2
AM
1392/*
1393 * Initialisation. Called after the page allocator have been initialised and
1394 * before smp_init().
1da177e4
LT
1395 */
1396void __init kmem_cache_init(void)
1397{
e498be7d
CL
1398 int i;
1399
68126702
JK
1400 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1401 sizeof(struct rcu_head));
9b030cb8
CL
1402 kmem_cache = &kmem_cache_boot;
1403
b6e68bc1 1404 if (num_possible_nodes() == 1)
62918a03
SS
1405 use_alien_caches = 0;
1406
3c583465 1407 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1408 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1409
1da177e4
LT
1410 /*
1411 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1412 * page orders on machines with more than 32MB of memory if
1413 * not overridden on the command line.
1da177e4 1414 */
3df1cccd 1415 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1416 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1417
1da177e4
LT
1418 /* Bootstrap is tricky, because several objects are allocated
1419 * from caches that do not exist yet:
9b030cb8
CL
1420 * 1) initialize the kmem_cache cache: it contains the struct
1421 * kmem_cache structures of all caches, except kmem_cache itself:
1422 * kmem_cache is statically allocated.
e498be7d 1423 * Initially an __init data area is used for the head array and the
ce8eb6c4 1424 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1425 * array at the end of the bootstrap.
1da177e4 1426 * 2) Create the first kmalloc cache.
343e0d7a 1427 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1428 * An __init data area is used for the head array.
1429 * 3) Create the remaining kmalloc caches, with minimally sized
1430 * head arrays.
9b030cb8 1431 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1432 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1433 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1434 * the other cache's with kmalloc allocated memory.
1435 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1436 */
1437
9b030cb8 1438 /* 1) create the kmem_cache */
1da177e4 1439
8da3430d 1440 /*
b56efcf0 1441 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1442 */
2f9baa9f 1443 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1444 offsetof(struct kmem_cache, node) +
6744f087 1445 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1446 SLAB_HWCACHE_ALIGN);
1447 list_add(&kmem_cache->list, &slab_caches);
bf0dea23 1448 slab_state = PARTIAL;
1da177e4 1449
a737b3e2 1450 /*
bf0dea23
JK
1451 * Initialize the caches that provide memory for the kmem_cache_node
1452 * structures first. Without this, further allocations will bug.
e498be7d 1453 */
bf0dea23 1454 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
ce8eb6c4 1455 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
bf0dea23 1456 slab_state = PARTIAL_NODE;
34cc6990 1457 setup_kmalloc_cache_index_table();
e498be7d 1458
e0a42726
IM
1459 slab_early_init = 0;
1460
ce8eb6c4 1461 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1462 {
1ca4cb24
PE
1463 int nid;
1464
9c09a95c 1465 for_each_online_node(nid) {
ce8eb6c4 1466 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1467
bf0dea23 1468 init_list(kmalloc_caches[INDEX_NODE],
ce8eb6c4 1469 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1470 }
1471 }
1da177e4 1472
f97d5f63 1473 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1474}
1475
1476void __init kmem_cache_init_late(void)
1477{
1478 struct kmem_cache *cachep;
1479
97d06609 1480 slab_state = UP;
52cef189 1481
8429db5c 1482 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1483 mutex_lock(&slab_mutex);
1484 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1485 if (enable_cpucache(cachep, GFP_NOWAIT))
1486 BUG();
18004c5d 1487 mutex_unlock(&slab_mutex);
056c6241 1488
97d06609
CL
1489 /* Done! */
1490 slab_state = FULL;
1491
a737b3e2
AM
1492 /*
1493 * Register a cpu startup notifier callback that initializes
1494 * cpu_cache_get for all new cpus
1da177e4
LT
1495 */
1496 register_cpu_notifier(&cpucache_notifier);
1da177e4 1497
8f9f8d9e
DR
1498#ifdef CONFIG_NUMA
1499 /*
1500 * Register a memory hotplug callback that initializes and frees
6a67368c 1501 * node.
8f9f8d9e
DR
1502 */
1503 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1504#endif
1505
a737b3e2
AM
1506 /*
1507 * The reap timers are started later, with a module init call: That part
1508 * of the kernel is not yet operational.
1da177e4
LT
1509 */
1510}
1511
1512static int __init cpucache_init(void)
1513{
1514 int cpu;
1515
a737b3e2
AM
1516 /*
1517 * Register the timers that return unneeded pages to the page allocator
1da177e4 1518 */
e498be7d 1519 for_each_online_cpu(cpu)
a737b3e2 1520 start_cpu_timer(cpu);
a164f896
GC
1521
1522 /* Done! */
97d06609 1523 slab_state = FULL;
1da177e4
LT
1524 return 0;
1525}
1da177e4
LT
1526__initcall(cpucache_init);
1527
8bdec192
RA
1528static noinline void
1529slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1530{
9a02d699 1531#if DEBUG
ce8eb6c4 1532 struct kmem_cache_node *n;
8456a648 1533 struct page *page;
8bdec192
RA
1534 unsigned long flags;
1535 int node;
9a02d699
DR
1536 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1537 DEFAULT_RATELIMIT_BURST);
1538
1539 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1540 return;
8bdec192
RA
1541
1542 printk(KERN_WARNING
1543 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1544 nodeid, gfpflags);
1545 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1546 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1547
18bf8541 1548 for_each_kmem_cache_node(cachep, node, n) {
8bdec192
RA
1549 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1550 unsigned long active_slabs = 0, num_slabs = 0;
1551
ce8eb6c4 1552 spin_lock_irqsave(&n->list_lock, flags);
8456a648 1553 list_for_each_entry(page, &n->slabs_full, lru) {
8bdec192
RA
1554 active_objs += cachep->num;
1555 active_slabs++;
1556 }
8456a648
JK
1557 list_for_each_entry(page, &n->slabs_partial, lru) {
1558 active_objs += page->active;
8bdec192
RA
1559 active_slabs++;
1560 }
8456a648 1561 list_for_each_entry(page, &n->slabs_free, lru)
8bdec192
RA
1562 num_slabs++;
1563
ce8eb6c4
CL
1564 free_objects += n->free_objects;
1565 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1566
1567 num_slabs += active_slabs;
1568 num_objs = num_slabs * cachep->num;
1569 printk(KERN_WARNING
1570 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1571 node, active_slabs, num_slabs, active_objs, num_objs,
1572 free_objects);
1573 }
9a02d699 1574#endif
8bdec192
RA
1575}
1576
1da177e4 1577/*
8a7d9b43
WSH
1578 * Interface to system's page allocator. No need to hold the
1579 * kmem_cache_node ->list_lock.
1da177e4
LT
1580 *
1581 * If we requested dmaable memory, we will get it. Even if we
1582 * did not request dmaable memory, we might get it, but that
1583 * would be relatively rare and ignorable.
1584 */
0c3aa83e
JK
1585static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1586 int nodeid)
1da177e4
LT
1587{
1588 struct page *page;
e1b6aa6f 1589 int nr_pages;
765c4507 1590
a618e89f 1591 flags |= cachep->allocflags;
e12ba74d
MG
1592 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1593 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1594
5dfb4175
VD
1595 if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1596 return NULL;
1597
96db800f 1598 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192 1599 if (!page) {
5dfb4175 1600 memcg_uncharge_slab(cachep, cachep->gfporder);
9a02d699 1601 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1602 return NULL;
8bdec192 1603 }
1da177e4 1604
b37f1dd0 1605 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
2f064f34 1606 if (page_is_pfmemalloc(page))
072bb0aa
MG
1607 pfmemalloc_active = true;
1608
e1b6aa6f 1609 nr_pages = (1 << cachep->gfporder);
1da177e4 1610 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1611 add_zone_page_state(page_zone(page),
1612 NR_SLAB_RECLAIMABLE, nr_pages);
1613 else
1614 add_zone_page_state(page_zone(page),
1615 NR_SLAB_UNRECLAIMABLE, nr_pages);
a57a4988 1616 __SetPageSlab(page);
2f064f34 1617 if (page_is_pfmemalloc(page))
a57a4988 1618 SetPageSlabPfmemalloc(page);
072bb0aa 1619
b1eeab67
VN
1620 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1621 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1622
1623 if (cachep->ctor)
1624 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1625 else
1626 kmemcheck_mark_unallocated_pages(page, nr_pages);
1627 }
c175eea4 1628
0c3aa83e 1629 return page;
1da177e4
LT
1630}
1631
1632/*
1633 * Interface to system's page release.
1634 */
0c3aa83e 1635static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1636{
a57a4988 1637 const unsigned long nr_freed = (1 << cachep->gfporder);
1da177e4 1638
b1eeab67 1639 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1640
972d1a7b
CL
1641 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1642 sub_zone_page_state(page_zone(page),
1643 NR_SLAB_RECLAIMABLE, nr_freed);
1644 else
1645 sub_zone_page_state(page_zone(page),
1646 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f 1647
a57a4988 1648 BUG_ON(!PageSlab(page));
73293c2f 1649 __ClearPageSlabPfmemalloc(page);
a57a4988 1650 __ClearPageSlab(page);
8456a648
JK
1651 page_mapcount_reset(page);
1652 page->mapping = NULL;
1f458cbf 1653
1da177e4
LT
1654 if (current->reclaim_state)
1655 current->reclaim_state->reclaimed_slab += nr_freed;
5dfb4175
VD
1656 __free_pages(page, cachep->gfporder);
1657 memcg_uncharge_slab(cachep, cachep->gfporder);
1da177e4
LT
1658}
1659
1660static void kmem_rcu_free(struct rcu_head *head)
1661{
68126702
JK
1662 struct kmem_cache *cachep;
1663 struct page *page;
1da177e4 1664
68126702
JK
1665 page = container_of(head, struct page, rcu_head);
1666 cachep = page->slab_cache;
1667
1668 kmem_freepages(cachep, page);
1da177e4
LT
1669}
1670
1671#if DEBUG
1672
1673#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1674static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1675 unsigned long caller)
1da177e4 1676{
8c138bc0 1677 int size = cachep->object_size;
1da177e4 1678
3dafccf2 1679 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1680
b28a02de 1681 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1682 return;
1683
b28a02de
PE
1684 *addr++ = 0x12345678;
1685 *addr++ = caller;
1686 *addr++ = smp_processor_id();
1687 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1688 {
1689 unsigned long *sptr = &caller;
1690 unsigned long svalue;
1691
1692 while (!kstack_end(sptr)) {
1693 svalue = *sptr++;
1694 if (kernel_text_address(svalue)) {
b28a02de 1695 *addr++ = svalue;
1da177e4
LT
1696 size -= sizeof(unsigned long);
1697 if (size <= sizeof(unsigned long))
1698 break;
1699 }
1700 }
1701
1702 }
b28a02de 1703 *addr++ = 0x87654321;
1da177e4
LT
1704}
1705#endif
1706
343e0d7a 1707static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1708{
8c138bc0 1709 int size = cachep->object_size;
3dafccf2 1710 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1711
1712 memset(addr, val, size);
b28a02de 1713 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1714}
1715
1716static void dump_line(char *data, int offset, int limit)
1717{
1718 int i;
aa83aa40
DJ
1719 unsigned char error = 0;
1720 int bad_count = 0;
1721
fdde6abb 1722 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1723 for (i = 0; i < limit; i++) {
1724 if (data[offset + i] != POISON_FREE) {
1725 error = data[offset + i];
1726 bad_count++;
1727 }
aa83aa40 1728 }
fdde6abb
SAS
1729 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1730 &data[offset], limit, 1);
aa83aa40
DJ
1731
1732 if (bad_count == 1) {
1733 error ^= POISON_FREE;
1734 if (!(error & (error - 1))) {
1735 printk(KERN_ERR "Single bit error detected. Probably "
1736 "bad RAM.\n");
1737#ifdef CONFIG_X86
1738 printk(KERN_ERR "Run memtest86+ or a similar memory "
1739 "test tool.\n");
1740#else
1741 printk(KERN_ERR "Run a memory test tool.\n");
1742#endif
1743 }
1744 }
1da177e4
LT
1745}
1746#endif
1747
1748#if DEBUG
1749
343e0d7a 1750static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1751{
1752 int i, size;
1753 char *realobj;
1754
1755 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1756 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1757 *dbg_redzone1(cachep, objp),
1758 *dbg_redzone2(cachep, objp));
1da177e4
LT
1759 }
1760
1761 if (cachep->flags & SLAB_STORE_USER) {
071361d3
JP
1762 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1763 *dbg_userword(cachep, objp),
1764 *dbg_userword(cachep, objp));
1da177e4 1765 }
3dafccf2 1766 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1767 size = cachep->object_size;
b28a02de 1768 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1769 int limit;
1770 limit = 16;
b28a02de
PE
1771 if (i + limit > size)
1772 limit = size - i;
1da177e4
LT
1773 dump_line(realobj, i, limit);
1774 }
1775}
1776
343e0d7a 1777static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1778{
1779 char *realobj;
1780 int size, i;
1781 int lines = 0;
1782
3dafccf2 1783 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1784 size = cachep->object_size;
1da177e4 1785
b28a02de 1786 for (i = 0; i < size; i++) {
1da177e4 1787 char exp = POISON_FREE;
b28a02de 1788 if (i == size - 1)
1da177e4
LT
1789 exp = POISON_END;
1790 if (realobj[i] != exp) {
1791 int limit;
1792 /* Mismatch ! */
1793 /* Print header */
1794 if (lines == 0) {
b28a02de 1795 printk(KERN_ERR
face37f5
DJ
1796 "Slab corruption (%s): %s start=%p, len=%d\n",
1797 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
1798 print_objinfo(cachep, objp, 0);
1799 }
1800 /* Hexdump the affected line */
b28a02de 1801 i = (i / 16) * 16;
1da177e4 1802 limit = 16;
b28a02de
PE
1803 if (i + limit > size)
1804 limit = size - i;
1da177e4
LT
1805 dump_line(realobj, i, limit);
1806 i += 16;
1807 lines++;
1808 /* Limit to 5 lines */
1809 if (lines > 5)
1810 break;
1811 }
1812 }
1813 if (lines != 0) {
1814 /* Print some data about the neighboring objects, if they
1815 * exist:
1816 */
8456a648 1817 struct page *page = virt_to_head_page(objp);
8fea4e96 1818 unsigned int objnr;
1da177e4 1819
8456a648 1820 objnr = obj_to_index(cachep, page, objp);
1da177e4 1821 if (objnr) {
8456a648 1822 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1823 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1824 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1825 realobj, size);
1da177e4
LT
1826 print_objinfo(cachep, objp, 2);
1827 }
b28a02de 1828 if (objnr + 1 < cachep->num) {
8456a648 1829 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1830 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1831 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1832 realobj, size);
1da177e4
LT
1833 print_objinfo(cachep, objp, 2);
1834 }
1835 }
1836}
1837#endif
1838
12dd36fa 1839#if DEBUG
8456a648
JK
1840static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1841 struct page *page)
1da177e4 1842{
1da177e4
LT
1843 int i;
1844 for (i = 0; i < cachep->num; i++) {
8456a648 1845 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1846
1847 if (cachep->flags & SLAB_POISON) {
1848#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 1849 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 1850 OFF_SLAB(cachep))
b28a02de 1851 kernel_map_pages(virt_to_page(objp),
3b0efdfa 1852 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
1853 else
1854 check_poison_obj(cachep, objp);
1855#else
1856 check_poison_obj(cachep, objp);
1857#endif
1858 }
1859 if (cachep->flags & SLAB_RED_ZONE) {
1860 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1861 slab_error(cachep, "start of a freed object "
b28a02de 1862 "was overwritten");
1da177e4
LT
1863 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1864 slab_error(cachep, "end of a freed object "
b28a02de 1865 "was overwritten");
1da177e4 1866 }
1da177e4 1867 }
12dd36fa 1868}
1da177e4 1869#else
8456a648
JK
1870static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1871 struct page *page)
12dd36fa 1872{
12dd36fa 1873}
1da177e4
LT
1874#endif
1875
911851e6
RD
1876/**
1877 * slab_destroy - destroy and release all objects in a slab
1878 * @cachep: cache pointer being destroyed
cb8ee1a3 1879 * @page: page pointer being destroyed
911851e6 1880 *
8a7d9b43
WSH
1881 * Destroy all the objs in a slab page, and release the mem back to the system.
1882 * Before calling the slab page must have been unlinked from the cache. The
1883 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1884 */
8456a648 1885static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1886{
7e007355 1887 void *freelist;
12dd36fa 1888
8456a648
JK
1889 freelist = page->freelist;
1890 slab_destroy_debugcheck(cachep, page);
1da177e4 1891 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
68126702
JK
1892 struct rcu_head *head;
1893
1894 /*
1895 * RCU free overloads the RCU head over the LRU.
1896 * slab_page has been overloeaded over the LRU,
1897 * however it is not used from now on so that
1898 * we can use it safely.
1899 */
1900 head = (void *)&page->rcu_head;
1901 call_rcu(head, kmem_rcu_free);
1da177e4 1902
1da177e4 1903 } else {
0c3aa83e 1904 kmem_freepages(cachep, page);
1da177e4 1905 }
68126702
JK
1906
1907 /*
8456a648 1908 * From now on, we don't use freelist
68126702
JK
1909 * although actual page can be freed in rcu context
1910 */
1911 if (OFF_SLAB(cachep))
8456a648 1912 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1913}
1914
97654dfa
JK
1915static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1916{
1917 struct page *page, *n;
1918
1919 list_for_each_entry_safe(page, n, list, lru) {
1920 list_del(&page->lru);
1921 slab_destroy(cachep, page);
1922 }
1923}
1924
4d268eba 1925/**
a70773dd
RD
1926 * calculate_slab_order - calculate size (page order) of slabs
1927 * @cachep: pointer to the cache that is being created
1928 * @size: size of objects to be created in this cache.
1929 * @align: required alignment for the objects.
1930 * @flags: slab allocation flags
1931 *
1932 * Also calculates the number of objects per slab.
4d268eba
PE
1933 *
1934 * This could be made much more intelligent. For now, try to avoid using
1935 * high order pages for slabs. When the gfp() functions are more friendly
1936 * towards high-order requests, this should be changed.
1937 */
a737b3e2 1938static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1939 size_t size, size_t align, unsigned long flags)
4d268eba 1940{
b1ab41c4 1941 unsigned long offslab_limit;
4d268eba 1942 size_t left_over = 0;
9888e6fa 1943 int gfporder;
4d268eba 1944
0aa817f0 1945 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1946 unsigned int num;
1947 size_t remainder;
1948
9888e6fa 1949 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1950 if (!num)
1951 continue;
9888e6fa 1952
f315e3fa
JK
1953 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1954 if (num > SLAB_OBJ_MAX_NUM)
1955 break;
1956
b1ab41c4 1957 if (flags & CFLGS_OFF_SLAB) {
03787301 1958 size_t freelist_size_per_obj = sizeof(freelist_idx_t);
b1ab41c4
IM
1959 /*
1960 * Max number of objs-per-slab for caches which
1961 * use off-slab slabs. Needed to avoid a possible
1962 * looping condition in cache_grow().
1963 */
03787301
JK
1964 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
1965 freelist_size_per_obj += sizeof(char);
8456a648 1966 offslab_limit = size;
03787301 1967 offslab_limit /= freelist_size_per_obj;
b1ab41c4
IM
1968
1969 if (num > offslab_limit)
1970 break;
1971 }
4d268eba 1972
9888e6fa 1973 /* Found something acceptable - save it away */
4d268eba 1974 cachep->num = num;
9888e6fa 1975 cachep->gfporder = gfporder;
4d268eba
PE
1976 left_over = remainder;
1977
f78bb8ad
LT
1978 /*
1979 * A VFS-reclaimable slab tends to have most allocations
1980 * as GFP_NOFS and we really don't want to have to be allocating
1981 * higher-order pages when we are unable to shrink dcache.
1982 */
1983 if (flags & SLAB_RECLAIM_ACCOUNT)
1984 break;
1985
4d268eba
PE
1986 /*
1987 * Large number of objects is good, but very large slabs are
1988 * currently bad for the gfp()s.
1989 */
543585cc 1990 if (gfporder >= slab_max_order)
4d268eba
PE
1991 break;
1992
9888e6fa
LT
1993 /*
1994 * Acceptable internal fragmentation?
1995 */
a737b3e2 1996 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1997 break;
1998 }
1999 return left_over;
2000}
2001
bf0dea23
JK
2002static struct array_cache __percpu *alloc_kmem_cache_cpus(
2003 struct kmem_cache *cachep, int entries, int batchcount)
2004{
2005 int cpu;
2006 size_t size;
2007 struct array_cache __percpu *cpu_cache;
2008
2009 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 2010 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
2011
2012 if (!cpu_cache)
2013 return NULL;
2014
2015 for_each_possible_cpu(cpu) {
2016 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
2017 entries, batchcount);
2018 }
2019
2020 return cpu_cache;
2021}
2022
83b519e8 2023static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2024{
97d06609 2025 if (slab_state >= FULL)
83b519e8 2026 return enable_cpucache(cachep, gfp);
2ed3a4ef 2027
bf0dea23
JK
2028 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
2029 if (!cachep->cpu_cache)
2030 return 1;
2031
97d06609 2032 if (slab_state == DOWN) {
bf0dea23
JK
2033 /* Creation of first cache (kmem_cache). */
2034 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 2035 } else if (slab_state == PARTIAL) {
bf0dea23
JK
2036 /* For kmem_cache_node */
2037 set_up_node(cachep, SIZE_NODE);
f30cf7d1 2038 } else {
bf0dea23 2039 int node;
f30cf7d1 2040
bf0dea23
JK
2041 for_each_online_node(node) {
2042 cachep->node[node] = kmalloc_node(
2043 sizeof(struct kmem_cache_node), gfp, node);
2044 BUG_ON(!cachep->node[node]);
2045 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
2046 }
2047 }
bf0dea23 2048
6a67368c 2049 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
2050 jiffies + REAPTIMEOUT_NODE +
2051 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
2052
2053 cpu_cache_get(cachep)->avail = 0;
2054 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2055 cpu_cache_get(cachep)->batchcount = 1;
2056 cpu_cache_get(cachep)->touched = 0;
2057 cachep->batchcount = 1;
2058 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2059 return 0;
f30cf7d1
PE
2060}
2061
12220dea
JK
2062unsigned long kmem_cache_flags(unsigned long object_size,
2063 unsigned long flags, const char *name,
2064 void (*ctor)(void *))
2065{
2066 return flags;
2067}
2068
2069struct kmem_cache *
2070__kmem_cache_alias(const char *name, size_t size, size_t align,
2071 unsigned long flags, void (*ctor)(void *))
2072{
2073 struct kmem_cache *cachep;
2074
2075 cachep = find_mergeable(size, align, flags, name, ctor);
2076 if (cachep) {
2077 cachep->refcount++;
2078
2079 /*
2080 * Adjust the object sizes so that we clear
2081 * the complete object on kzalloc.
2082 */
2083 cachep->object_size = max_t(int, cachep->object_size, size);
2084 }
2085 return cachep;
2086}
2087
1da177e4 2088/**
039363f3 2089 * __kmem_cache_create - Create a cache.
a755b76a 2090 * @cachep: cache management descriptor
1da177e4 2091 * @flags: SLAB flags
1da177e4
LT
2092 *
2093 * Returns a ptr to the cache on success, NULL on failure.
2094 * Cannot be called within a int, but can be interrupted.
20c2df83 2095 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2096 *
1da177e4
LT
2097 * The flags are
2098 *
2099 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2100 * to catch references to uninitialised memory.
2101 *
2102 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2103 * for buffer overruns.
2104 *
1da177e4
LT
2105 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2106 * cacheline. This can be beneficial if you're counting cycles as closely
2107 * as davem.
2108 */
278b1bb1 2109int
8a13a4cc 2110__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4 2111{
d4a5fca5
DR
2112 size_t left_over, freelist_size;
2113 size_t ralign = BYTES_PER_WORD;
83b519e8 2114 gfp_t gfp;
278b1bb1 2115 int err;
8a13a4cc 2116 size_t size = cachep->size;
1da177e4 2117
1da177e4 2118#if DEBUG
1da177e4
LT
2119#if FORCED_DEBUG
2120 /*
2121 * Enable redzoning and last user accounting, except for caches with
2122 * large objects, if the increased size would increase the object size
2123 * above the next power of two: caches with object sizes just above a
2124 * power of two have a significant amount of internal fragmentation.
2125 */
87a927c7
DW
2126 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2127 2 * sizeof(unsigned long long)))
b28a02de 2128 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2129 if (!(flags & SLAB_DESTROY_BY_RCU))
2130 flags |= SLAB_POISON;
2131#endif
2132 if (flags & SLAB_DESTROY_BY_RCU)
2133 BUG_ON(flags & SLAB_POISON);
2134#endif
1da177e4 2135
a737b3e2
AM
2136 /*
2137 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2138 * unaligned accesses for some archs when redzoning is used, and makes
2139 * sure any on-slab bufctl's are also correctly aligned.
2140 */
b28a02de
PE
2141 if (size & (BYTES_PER_WORD - 1)) {
2142 size += (BYTES_PER_WORD - 1);
2143 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2144 }
2145
87a927c7
DW
2146 if (flags & SLAB_RED_ZONE) {
2147 ralign = REDZONE_ALIGN;
2148 /* If redzoning, ensure that the second redzone is suitably
2149 * aligned, by adjusting the object size accordingly. */
2150 size += REDZONE_ALIGN - 1;
2151 size &= ~(REDZONE_ALIGN - 1);
2152 }
ca5f9703 2153
a44b56d3 2154 /* 3) caller mandated alignment */
8a13a4cc
CL
2155 if (ralign < cachep->align) {
2156 ralign = cachep->align;
1da177e4 2157 }
3ff84a7f
PE
2158 /* disable debug if necessary */
2159 if (ralign > __alignof__(unsigned long long))
a44b56d3 2160 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2161 /*
ca5f9703 2162 * 4) Store it.
1da177e4 2163 */
8a13a4cc 2164 cachep->align = ralign;
1da177e4 2165
83b519e8
PE
2166 if (slab_is_available())
2167 gfp = GFP_KERNEL;
2168 else
2169 gfp = GFP_NOWAIT;
2170
1da177e4 2171#if DEBUG
1da177e4 2172
ca5f9703
PE
2173 /*
2174 * Both debugging options require word-alignment which is calculated
2175 * into align above.
2176 */
1da177e4 2177 if (flags & SLAB_RED_ZONE) {
1da177e4 2178 /* add space for red zone words */
3ff84a7f
PE
2179 cachep->obj_offset += sizeof(unsigned long long);
2180 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2181 }
2182 if (flags & SLAB_STORE_USER) {
ca5f9703 2183 /* user store requires one word storage behind the end of
87a927c7
DW
2184 * the real object. But if the second red zone needs to be
2185 * aligned to 64 bits, we must allow that much space.
1da177e4 2186 */
87a927c7
DW
2187 if (flags & SLAB_RED_ZONE)
2188 size += REDZONE_ALIGN;
2189 else
2190 size += BYTES_PER_WORD;
1da177e4
LT
2191 }
2192#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
03a2d2a3
JK
2193 /*
2194 * To activate debug pagealloc, off-slab management is necessary
2195 * requirement. In early phase of initialization, small sized slab
2196 * doesn't get initialized so it would not be possible. So, we need
2197 * to check size >= 256. It guarantees that all necessary small
2198 * sized slab is initialized in current slab initialization sequence.
2199 */
2200 if (!slab_early_init && size >= kmalloc_size(INDEX_NODE) &&
2201 size >= 256 && cachep->object_size > cache_line_size() &&
2202 ALIGN(size, cachep->align) < PAGE_SIZE) {
608da7e3 2203 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
1da177e4
LT
2204 size = PAGE_SIZE;
2205 }
2206#endif
2207#endif
2208
e0a42726
IM
2209 /*
2210 * Determine if the slab management is 'on' or 'off' slab.
2211 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2212 * it too early on. Always use on-slab management when
2213 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2214 */
8fc9cf42 2215 if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
e7cb55b9 2216 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2217 /*
2218 * Size is large, assume best to place the slab management obj
2219 * off-slab (should allow better packing of objs).
2220 */
2221 flags |= CFLGS_OFF_SLAB;
2222
8a13a4cc 2223 size = ALIGN(size, cachep->align);
f315e3fa
JK
2224 /*
2225 * We should restrict the number of objects in a slab to implement
2226 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2227 */
2228 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2229 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
1da177e4 2230
8a13a4cc 2231 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
1da177e4 2232
8a13a4cc 2233 if (!cachep->num)
278b1bb1 2234 return -E2BIG;
1da177e4 2235
03787301 2236 freelist_size = calculate_freelist_size(cachep->num, cachep->align);
1da177e4
LT
2237
2238 /*
2239 * If the slab has been placed off-slab, and we have enough space then
2240 * move it on-slab. This is at the expense of any extra colouring.
2241 */
8456a648 2242 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
1da177e4 2243 flags &= ~CFLGS_OFF_SLAB;
8456a648 2244 left_over -= freelist_size;
1da177e4
LT
2245 }
2246
2247 if (flags & CFLGS_OFF_SLAB) {
2248 /* really off slab. No need for manual alignment */
03787301 2249 freelist_size = calculate_freelist_size(cachep->num, 0);
67461365
RL
2250
2251#ifdef CONFIG_PAGE_POISONING
2252 /* If we're going to use the generic kernel_map_pages()
2253 * poisoning, then it's going to smash the contents of
2254 * the redzone and userword anyhow, so switch them off.
2255 */
2256 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2257 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2258#endif
1da177e4
LT
2259 }
2260
2261 cachep->colour_off = cache_line_size();
2262 /* Offset must be a multiple of the alignment. */
8a13a4cc
CL
2263 if (cachep->colour_off < cachep->align)
2264 cachep->colour_off = cachep->align;
b28a02de 2265 cachep->colour = left_over / cachep->colour_off;
8456a648 2266 cachep->freelist_size = freelist_size;
1da177e4 2267 cachep->flags = flags;
a57a4988 2268 cachep->allocflags = __GFP_COMP;
4b51d669 2269 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2270 cachep->allocflags |= GFP_DMA;
3b0efdfa 2271 cachep->size = size;
6a2d7a95 2272 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2273
e5ac9c5a 2274 if (flags & CFLGS_OFF_SLAB) {
8456a648 2275 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
e5ac9c5a 2276 /*
5f0985bb 2277 * This is a possibility for one of the kmalloc_{dma,}_caches.
e5ac9c5a 2278 * But since we go off slab only for object size greater than
5f0985bb
JZ
2279 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2280 * in ascending order,this should not happen at all.
e5ac9c5a
RT
2281 * But leave a BUG_ON for some lucky dude.
2282 */
8456a648 2283 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
e5ac9c5a 2284 }
1da177e4 2285
278b1bb1
CL
2286 err = setup_cpu_cache(cachep, gfp);
2287 if (err) {
12c3667f 2288 __kmem_cache_shutdown(cachep);
278b1bb1 2289 return err;
2ed3a4ef 2290 }
1da177e4 2291
278b1bb1 2292 return 0;
1da177e4 2293}
1da177e4
LT
2294
2295#if DEBUG
2296static void check_irq_off(void)
2297{
2298 BUG_ON(!irqs_disabled());
2299}
2300
2301static void check_irq_on(void)
2302{
2303 BUG_ON(irqs_disabled());
2304}
2305
343e0d7a 2306static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2307{
2308#ifdef CONFIG_SMP
2309 check_irq_off();
18bf8541 2310 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2311#endif
2312}
e498be7d 2313
343e0d7a 2314static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2315{
2316#ifdef CONFIG_SMP
2317 check_irq_off();
18bf8541 2318 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2319#endif
2320}
2321
1da177e4
LT
2322#else
2323#define check_irq_off() do { } while(0)
2324#define check_irq_on() do { } while(0)
2325#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2326#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2327#endif
2328
ce8eb6c4 2329static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
aab2207c
CL
2330 struct array_cache *ac,
2331 int force, int node);
2332
1da177e4
LT
2333static void do_drain(void *arg)
2334{
a737b3e2 2335 struct kmem_cache *cachep = arg;
1da177e4 2336 struct array_cache *ac;
7d6e6d09 2337 int node = numa_mem_id();
18bf8541 2338 struct kmem_cache_node *n;
97654dfa 2339 LIST_HEAD(list);
1da177e4
LT
2340
2341 check_irq_off();
9a2dba4b 2342 ac = cpu_cache_get(cachep);
18bf8541
CL
2343 n = get_node(cachep, node);
2344 spin_lock(&n->list_lock);
97654dfa 2345 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2346 spin_unlock(&n->list_lock);
97654dfa 2347 slabs_destroy(cachep, &list);
1da177e4
LT
2348 ac->avail = 0;
2349}
2350
343e0d7a 2351static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2352{
ce8eb6c4 2353 struct kmem_cache_node *n;
e498be7d
CL
2354 int node;
2355
15c8b6c1 2356 on_each_cpu(do_drain, cachep, 1);
1da177e4 2357 check_irq_on();
18bf8541
CL
2358 for_each_kmem_cache_node(cachep, node, n)
2359 if (n->alien)
ce8eb6c4 2360 drain_alien_cache(cachep, n->alien);
a4523a8b 2361
18bf8541
CL
2362 for_each_kmem_cache_node(cachep, node, n)
2363 drain_array(cachep, n, n->shared, 1, node);
1da177e4
LT
2364}
2365
ed11d9eb
CL
2366/*
2367 * Remove slabs from the list of free slabs.
2368 * Specify the number of slabs to drain in tofree.
2369 *
2370 * Returns the actual number of slabs released.
2371 */
2372static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2373 struct kmem_cache_node *n, int tofree)
1da177e4 2374{
ed11d9eb
CL
2375 struct list_head *p;
2376 int nr_freed;
8456a648 2377 struct page *page;
1da177e4 2378
ed11d9eb 2379 nr_freed = 0;
ce8eb6c4 2380 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2381
ce8eb6c4
CL
2382 spin_lock_irq(&n->list_lock);
2383 p = n->slabs_free.prev;
2384 if (p == &n->slabs_free) {
2385 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2386 goto out;
2387 }
1da177e4 2388
8456a648 2389 page = list_entry(p, struct page, lru);
1da177e4 2390#if DEBUG
8456a648 2391 BUG_ON(page->active);
1da177e4 2392#endif
8456a648 2393 list_del(&page->lru);
ed11d9eb
CL
2394 /*
2395 * Safe to drop the lock. The slab is no longer linked
2396 * to the cache.
2397 */
ce8eb6c4
CL
2398 n->free_objects -= cache->num;
2399 spin_unlock_irq(&n->list_lock);
8456a648 2400 slab_destroy(cache, page);
ed11d9eb 2401 nr_freed++;
1da177e4 2402 }
ed11d9eb
CL
2403out:
2404 return nr_freed;
1da177e4
LT
2405}
2406
d6e0b7fa 2407int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
e498be7d 2408{
18bf8541
CL
2409 int ret = 0;
2410 int node;
ce8eb6c4 2411 struct kmem_cache_node *n;
e498be7d
CL
2412
2413 drain_cpu_caches(cachep);
2414
2415 check_irq_on();
18bf8541 2416 for_each_kmem_cache_node(cachep, node, n) {
0fa8103b 2417 drain_freelist(cachep, n, slabs_tofree(cachep, n));
ed11d9eb 2418
ce8eb6c4
CL
2419 ret += !list_empty(&n->slabs_full) ||
2420 !list_empty(&n->slabs_partial);
e498be7d
CL
2421 }
2422 return (ret ? 1 : 0);
2423}
2424
945cf2b6 2425int __kmem_cache_shutdown(struct kmem_cache *cachep)
1da177e4 2426{
12c3667f 2427 int i;
ce8eb6c4 2428 struct kmem_cache_node *n;
d6e0b7fa 2429 int rc = __kmem_cache_shrink(cachep, false);
1da177e4 2430
12c3667f
CL
2431 if (rc)
2432 return rc;
1da177e4 2433
bf0dea23 2434 free_percpu(cachep->cpu_cache);
1da177e4 2435
ce8eb6c4 2436 /* NUMA: free the node structures */
18bf8541
CL
2437 for_each_kmem_cache_node(cachep, i, n) {
2438 kfree(n->shared);
2439 free_alien_cache(n->alien);
2440 kfree(n);
2441 cachep->node[i] = NULL;
12c3667f
CL
2442 }
2443 return 0;
1da177e4 2444}
1da177e4 2445
e5ac9c5a
RT
2446/*
2447 * Get the memory for a slab management obj.
5f0985bb
JZ
2448 *
2449 * For a slab cache when the slab descriptor is off-slab, the
2450 * slab descriptor can't come from the same cache which is being created,
2451 * Because if it is the case, that means we defer the creation of
2452 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2453 * And we eventually call down to __kmem_cache_create(), which
2454 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2455 * This is a "chicken-and-egg" problem.
2456 *
2457 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2458 * which are all initialized during kmem_cache_init().
e5ac9c5a 2459 */
7e007355 2460static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2461 struct page *page, int colour_off,
2462 gfp_t local_flags, int nodeid)
1da177e4 2463{
7e007355 2464 void *freelist;
0c3aa83e 2465 void *addr = page_address(page);
b28a02de 2466
1da177e4
LT
2467 if (OFF_SLAB(cachep)) {
2468 /* Slab management obj is off-slab. */
8456a648 2469 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2470 local_flags, nodeid);
8456a648 2471 if (!freelist)
1da177e4
LT
2472 return NULL;
2473 } else {
8456a648
JK
2474 freelist = addr + colour_off;
2475 colour_off += cachep->freelist_size;
1da177e4 2476 }
8456a648
JK
2477 page->active = 0;
2478 page->s_mem = addr + colour_off;
2479 return freelist;
1da177e4
LT
2480}
2481
7cc68973 2482static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2483{
a41adfaa 2484 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2485}
2486
2487static inline void set_free_obj(struct page *page,
7cc68973 2488 unsigned int idx, freelist_idx_t val)
e5c58dfd 2489{
a41adfaa 2490 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2491}
2492
343e0d7a 2493static void cache_init_objs(struct kmem_cache *cachep,
8456a648 2494 struct page *page)
1da177e4
LT
2495{
2496 int i;
2497
2498 for (i = 0; i < cachep->num; i++) {
8456a648 2499 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
2500#if DEBUG
2501 /* need to poison the objs? */
2502 if (cachep->flags & SLAB_POISON)
2503 poison_obj(cachep, objp, POISON_FREE);
2504 if (cachep->flags & SLAB_STORE_USER)
2505 *dbg_userword(cachep, objp) = NULL;
2506
2507 if (cachep->flags & SLAB_RED_ZONE) {
2508 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2509 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2510 }
2511 /*
a737b3e2
AM
2512 * Constructors are not allowed to allocate memory from the same
2513 * cache which they are a constructor for. Otherwise, deadlock.
2514 * They must also be threaded.
1da177e4
LT
2515 */
2516 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2517 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2518
2519 if (cachep->flags & SLAB_RED_ZONE) {
2520 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2521 slab_error(cachep, "constructor overwrote the"
b28a02de 2522 " end of an object");
1da177e4
LT
2523 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2524 slab_error(cachep, "constructor overwrote the"
b28a02de 2525 " start of an object");
1da177e4 2526 }
3b0efdfa 2527 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2528 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2529 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2530 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2531#else
2532 if (cachep->ctor)
51cc5068 2533 cachep->ctor(objp);
1da177e4 2534#endif
03787301 2535 set_obj_status(page, i, OBJECT_FREE);
e5c58dfd 2536 set_free_obj(page, i, i);
1da177e4 2537 }
1da177e4
LT
2538}
2539
343e0d7a 2540static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2541{
4b51d669
CL
2542 if (CONFIG_ZONE_DMA_FLAG) {
2543 if (flags & GFP_DMA)
a618e89f 2544 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2545 else
a618e89f 2546 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2547 }
1da177e4
LT
2548}
2549
8456a648 2550static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
a737b3e2 2551 int nodeid)
78d382d7 2552{
b1cb0982 2553 void *objp;
78d382d7 2554
e5c58dfd 2555 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2556 page->active++;
78d382d7 2557#if DEBUG
1ea991b0 2558 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7 2559#endif
78d382d7
MD
2560
2561 return objp;
2562}
2563
8456a648 2564static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
a737b3e2 2565 void *objp, int nodeid)
78d382d7 2566{
8456a648 2567 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2568#if DEBUG
16025177 2569 unsigned int i;
b1cb0982 2570
78d382d7 2571 /* Verify that the slab belongs to the intended node */
1ea991b0 2572 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7 2573
b1cb0982 2574 /* Verify double free bug */
8456a648 2575 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2576 if (get_free_obj(page, i) == objnr) {
b1cb0982
JK
2577 printk(KERN_ERR "slab: double free detected in cache "
2578 "'%s', objp %p\n", cachep->name, objp);
2579 BUG();
2580 }
78d382d7
MD
2581 }
2582#endif
8456a648 2583 page->active--;
e5c58dfd 2584 set_free_obj(page, page->active, objnr);
78d382d7
MD
2585}
2586
4776874f
PE
2587/*
2588 * Map pages beginning at addr to the given cache and slab. This is required
2589 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2590 * virtual address for kfree, ksize, and slab debugging.
4776874f 2591 */
8456a648 2592static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2593 void *freelist)
1da177e4 2594{
a57a4988 2595 page->slab_cache = cache;
8456a648 2596 page->freelist = freelist;
1da177e4
LT
2597}
2598
2599/*
2600 * Grow (by 1) the number of slabs within a cache. This is called by
2601 * kmem_cache_alloc() when there are no active objs left in a cache.
2602 */
3c517a61 2603static int cache_grow(struct kmem_cache *cachep,
0c3aa83e 2604 gfp_t flags, int nodeid, struct page *page)
1da177e4 2605{
7e007355 2606 void *freelist;
b28a02de
PE
2607 size_t offset;
2608 gfp_t local_flags;
ce8eb6c4 2609 struct kmem_cache_node *n;
1da177e4 2610
a737b3e2
AM
2611 /*
2612 * Be lazy and only check for valid flags here, keeping it out of the
2613 * critical path in kmem_cache_alloc().
1da177e4 2614 */
c871ac4e
AM
2615 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2616 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2617 BUG();
2618 }
6cb06229 2619 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2620
ce8eb6c4 2621 /* Take the node list lock to change the colour_next on this node */
1da177e4 2622 check_irq_off();
18bf8541 2623 n = get_node(cachep, nodeid);
ce8eb6c4 2624 spin_lock(&n->list_lock);
1da177e4
LT
2625
2626 /* Get colour for the slab, and cal the next value. */
ce8eb6c4
CL
2627 offset = n->colour_next;
2628 n->colour_next++;
2629 if (n->colour_next >= cachep->colour)
2630 n->colour_next = 0;
2631 spin_unlock(&n->list_lock);
1da177e4 2632
2e1217cf 2633 offset *= cachep->colour_off;
1da177e4
LT
2634
2635 if (local_flags & __GFP_WAIT)
2636 local_irq_enable();
2637
2638 /*
2639 * The test for missing atomic flag is performed here, rather than
2640 * the more obvious place, simply to reduce the critical path length
2641 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2642 * will eventually be caught here (where it matters).
2643 */
2644 kmem_flagcheck(cachep, flags);
2645
a737b3e2
AM
2646 /*
2647 * Get mem for the objs. Attempt to allocate a physical page from
2648 * 'nodeid'.
e498be7d 2649 */
0c3aa83e
JK
2650 if (!page)
2651 page = kmem_getpages(cachep, local_flags, nodeid);
2652 if (!page)
1da177e4
LT
2653 goto failed;
2654
2655 /* Get slab management. */
8456a648 2656 freelist = alloc_slabmgmt(cachep, page, offset,
6cb06229 2657 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
8456a648 2658 if (!freelist)
1da177e4
LT
2659 goto opps1;
2660
8456a648 2661 slab_map_pages(cachep, page, freelist);
1da177e4 2662
8456a648 2663 cache_init_objs(cachep, page);
1da177e4
LT
2664
2665 if (local_flags & __GFP_WAIT)
2666 local_irq_disable();
2667 check_irq_off();
ce8eb6c4 2668 spin_lock(&n->list_lock);
1da177e4
LT
2669
2670 /* Make slab active. */
8456a648 2671 list_add_tail(&page->lru, &(n->slabs_free));
1da177e4 2672 STATS_INC_GROWN(cachep);
ce8eb6c4
CL
2673 n->free_objects += cachep->num;
2674 spin_unlock(&n->list_lock);
1da177e4 2675 return 1;
a737b3e2 2676opps1:
0c3aa83e 2677 kmem_freepages(cachep, page);
a737b3e2 2678failed:
1da177e4
LT
2679 if (local_flags & __GFP_WAIT)
2680 local_irq_disable();
2681 return 0;
2682}
2683
2684#if DEBUG
2685
2686/*
2687 * Perform extra freeing checks:
2688 * - detect bad pointers.
2689 * - POISON/RED_ZONE checking
1da177e4
LT
2690 */
2691static void kfree_debugcheck(const void *objp)
2692{
1da177e4
LT
2693 if (!virt_addr_valid(objp)) {
2694 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2695 (unsigned long)objp);
2696 BUG();
1da177e4 2697 }
1da177e4
LT
2698}
2699
58ce1fd5
PE
2700static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2701{
b46b8f19 2702 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2703
2704 redzone1 = *dbg_redzone1(cache, obj);
2705 redzone2 = *dbg_redzone2(cache, obj);
2706
2707 /*
2708 * Redzone is ok.
2709 */
2710 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2711 return;
2712
2713 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2714 slab_error(cache, "double free detected");
2715 else
2716 slab_error(cache, "memory outside object was overwritten");
2717
b46b8f19 2718 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2719 obj, redzone1, redzone2);
2720}
2721
343e0d7a 2722static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2723 unsigned long caller)
1da177e4 2724{
1da177e4 2725 unsigned int objnr;
8456a648 2726 struct page *page;
1da177e4 2727
80cbd911
MW
2728 BUG_ON(virt_to_cache(objp) != cachep);
2729
3dafccf2 2730 objp -= obj_offset(cachep);
1da177e4 2731 kfree_debugcheck(objp);
b49af68f 2732 page = virt_to_head_page(objp);
1da177e4 2733
1da177e4 2734 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2735 verify_redzone_free(cachep, objp);
1da177e4
LT
2736 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2737 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2738 }
2739 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2740 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 2741
8456a648 2742 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2743
2744 BUG_ON(objnr >= cachep->num);
8456a648 2745 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2746
03787301 2747 set_obj_status(page, objnr, OBJECT_FREE);
1da177e4
LT
2748 if (cachep->flags & SLAB_POISON) {
2749#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2750 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
7c0cb9c6 2751 store_stackinfo(cachep, objp, caller);
b28a02de 2752 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2753 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2754 } else {
2755 poison_obj(cachep, objp, POISON_FREE);
2756 }
2757#else
2758 poison_obj(cachep, objp, POISON_FREE);
2759#endif
2760 }
2761 return objp;
2762}
2763
1da177e4
LT
2764#else
2765#define kfree_debugcheck(x) do { } while(0)
2766#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2767#endif
2768
072bb0aa
MG
2769static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2770 bool force_refill)
1da177e4
LT
2771{
2772 int batchcount;
ce8eb6c4 2773 struct kmem_cache_node *n;
1da177e4 2774 struct array_cache *ac;
1ca4cb24
PE
2775 int node;
2776
1da177e4 2777 check_irq_off();
7d6e6d09 2778 node = numa_mem_id();
072bb0aa
MG
2779 if (unlikely(force_refill))
2780 goto force_grow;
2781retry:
9a2dba4b 2782 ac = cpu_cache_get(cachep);
1da177e4
LT
2783 batchcount = ac->batchcount;
2784 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2785 /*
2786 * If there was little recent activity on this cache, then
2787 * perform only a partial refill. Otherwise we could generate
2788 * refill bouncing.
1da177e4
LT
2789 */
2790 batchcount = BATCHREFILL_LIMIT;
2791 }
18bf8541 2792 n = get_node(cachep, node);
e498be7d 2793
ce8eb6c4
CL
2794 BUG_ON(ac->avail > 0 || !n);
2795 spin_lock(&n->list_lock);
1da177e4 2796
3ded175a 2797 /* See if we can refill from the shared array */
ce8eb6c4
CL
2798 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2799 n->shared->touched = 1;
3ded175a 2800 goto alloc_done;
44b57f1c 2801 }
3ded175a 2802
1da177e4
LT
2803 while (batchcount > 0) {
2804 struct list_head *entry;
8456a648 2805 struct page *page;
1da177e4 2806 /* Get slab alloc is to come from. */
ce8eb6c4
CL
2807 entry = n->slabs_partial.next;
2808 if (entry == &n->slabs_partial) {
2809 n->free_touched = 1;
2810 entry = n->slabs_free.next;
2811 if (entry == &n->slabs_free)
1da177e4
LT
2812 goto must_grow;
2813 }
2814
8456a648 2815 page = list_entry(entry, struct page, lru);
1da177e4 2816 check_spinlock_acquired(cachep);
714b8171
PE
2817
2818 /*
2819 * The slab was either on partial or free list so
2820 * there must be at least one object available for
2821 * allocation.
2822 */
8456a648 2823 BUG_ON(page->active >= cachep->num);
714b8171 2824
8456a648 2825 while (page->active < cachep->num && batchcount--) {
1da177e4
LT
2826 STATS_INC_ALLOCED(cachep);
2827 STATS_INC_ACTIVE(cachep);
2828 STATS_SET_HIGH(cachep);
2829
8456a648 2830 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
072bb0aa 2831 node));
1da177e4 2832 }
1da177e4
LT
2833
2834 /* move slabp to correct slabp list: */
8456a648
JK
2835 list_del(&page->lru);
2836 if (page->active == cachep->num)
34bf6ef9 2837 list_add(&page->lru, &n->slabs_full);
1da177e4 2838 else
34bf6ef9 2839 list_add(&page->lru, &n->slabs_partial);
1da177e4
LT
2840 }
2841
a737b3e2 2842must_grow:
ce8eb6c4 2843 n->free_objects -= ac->avail;
a737b3e2 2844alloc_done:
ce8eb6c4 2845 spin_unlock(&n->list_lock);
1da177e4
LT
2846
2847 if (unlikely(!ac->avail)) {
2848 int x;
072bb0aa 2849force_grow:
4167e9b2 2850 x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
e498be7d 2851
a737b3e2 2852 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2853 ac = cpu_cache_get(cachep);
51cd8e6f 2854 node = numa_mem_id();
072bb0aa
MG
2855
2856 /* no objects in sight? abort */
2857 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
2858 return NULL;
2859
a737b3e2 2860 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2861 goto retry;
2862 }
2863 ac->touched = 1;
072bb0aa
MG
2864
2865 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
2866}
2867
a737b3e2
AM
2868static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2869 gfp_t flags)
1da177e4
LT
2870{
2871 might_sleep_if(flags & __GFP_WAIT);
2872#if DEBUG
2873 kmem_flagcheck(cachep, flags);
2874#endif
2875}
2876
2877#if DEBUG
a737b3e2 2878static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 2879 gfp_t flags, void *objp, unsigned long caller)
1da177e4 2880{
03787301
JK
2881 struct page *page;
2882
b28a02de 2883 if (!objp)
1da177e4 2884 return objp;
b28a02de 2885 if (cachep->flags & SLAB_POISON) {
1da177e4 2886#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2887 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 2888 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2889 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2890 else
2891 check_poison_obj(cachep, objp);
2892#else
2893 check_poison_obj(cachep, objp);
2894#endif
2895 poison_obj(cachep, objp, POISON_INUSE);
2896 }
2897 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2898 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
2899
2900 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2901 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2902 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2903 slab_error(cachep, "double free, or memory outside"
2904 " object was overwritten");
b28a02de 2905 printk(KERN_ERR
b46b8f19 2906 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
2907 objp, *dbg_redzone1(cachep, objp),
2908 *dbg_redzone2(cachep, objp));
1da177e4
LT
2909 }
2910 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2911 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2912 }
03787301
JK
2913
2914 page = virt_to_head_page(objp);
2915 set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
3dafccf2 2916 objp += obj_offset(cachep);
4f104934 2917 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 2918 cachep->ctor(objp);
7ea466f2
TH
2919 if (ARCH_SLAB_MINALIGN &&
2920 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 2921 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 2922 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 2923 }
1da177e4
LT
2924 return objp;
2925}
2926#else
2927#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2928#endif
2929
773ff60e 2930static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502 2931{
8a9c61d4 2932 if (unlikely(cachep == kmem_cache))
773ff60e 2933 return false;
8a8b6502 2934
8c138bc0 2935 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
2936}
2937
343e0d7a 2938static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2939{
b28a02de 2940 void *objp;
1da177e4 2941 struct array_cache *ac;
072bb0aa 2942 bool force_refill = false;
1da177e4 2943
5c382300 2944 check_irq_off();
8a8b6502 2945
9a2dba4b 2946 ac = cpu_cache_get(cachep);
1da177e4 2947 if (likely(ac->avail)) {
1da177e4 2948 ac->touched = 1;
072bb0aa
MG
2949 objp = ac_get_obj(cachep, ac, flags, false);
2950
ddbf2e83 2951 /*
072bb0aa
MG
2952 * Allow for the possibility all avail objects are not allowed
2953 * by the current flags
ddbf2e83 2954 */
072bb0aa
MG
2955 if (objp) {
2956 STATS_INC_ALLOCHIT(cachep);
2957 goto out;
2958 }
2959 force_refill = true;
1da177e4 2960 }
072bb0aa
MG
2961
2962 STATS_INC_ALLOCMISS(cachep);
2963 objp = cache_alloc_refill(cachep, flags, force_refill);
2964 /*
2965 * the 'ac' may be updated by cache_alloc_refill(),
2966 * and kmemleak_erase() requires its correct value.
2967 */
2968 ac = cpu_cache_get(cachep);
2969
2970out:
d5cff635
CM
2971 /*
2972 * To avoid a false negative, if an object that is in one of the
2973 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2974 * treat the array pointers as a reference to the object.
2975 */
f3d8b53a
O
2976 if (objp)
2977 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
2978 return objp;
2979}
2980
e498be7d 2981#ifdef CONFIG_NUMA
c61afb18 2982/*
2ad654bc 2983 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
2984 *
2985 * If we are in_interrupt, then process context, including cpusets and
2986 * mempolicy, may not apply and should not be used for allocation policy.
2987 */
2988static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2989{
2990 int nid_alloc, nid_here;
2991
765c4507 2992 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 2993 return NULL;
7d6e6d09 2994 nid_alloc = nid_here = numa_mem_id();
c61afb18 2995 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 2996 nid_alloc = cpuset_slab_spread_node();
c61afb18 2997 else if (current->mempolicy)
2a389610 2998 nid_alloc = mempolicy_slab_node();
c61afb18 2999 if (nid_alloc != nid_here)
8b98c169 3000 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3001 return NULL;
3002}
3003
765c4507
CL
3004/*
3005 * Fallback function if there was no memory available and no objects on a
3c517a61 3006 * certain node and fall back is permitted. First we scan all the
6a67368c 3007 * available node for available objects. If that fails then we
3c517a61
CL
3008 * perform an allocation without specifying a node. This allows the page
3009 * allocator to do its reclaim / fallback magic. We then insert the
3010 * slab into the proper nodelist and then allocate from it.
765c4507 3011 */
8c8cc2c1 3012static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3013{
8c8cc2c1
PE
3014 struct zonelist *zonelist;
3015 gfp_t local_flags;
dd1a239f 3016 struct zoneref *z;
54a6eb5c
MG
3017 struct zone *zone;
3018 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3019 void *obj = NULL;
3c517a61 3020 int nid;
cc9a6c87 3021 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3022
3023 if (flags & __GFP_THISNODE)
3024 return NULL;
3025
6cb06229 3026 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3027
cc9a6c87 3028retry_cpuset:
d26914d1 3029 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3030 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3031
3c517a61
CL
3032retry:
3033 /*
3034 * Look through allowed nodes for objects available
3035 * from existing per node queues.
3036 */
54a6eb5c
MG
3037 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3038 nid = zone_to_nid(zone);
aedb0eb1 3039
061d7074 3040 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3041 get_node(cache, nid) &&
3042 get_node(cache, nid)->free_objects) {
3c517a61 3043 obj = ____cache_alloc_node(cache,
4167e9b2 3044 gfp_exact_node(flags), nid);
481c5346
CL
3045 if (obj)
3046 break;
3047 }
3c517a61
CL
3048 }
3049
cfce6604 3050 if (!obj) {
3c517a61
CL
3051 /*
3052 * This allocation will be performed within the constraints
3053 * of the current cpuset / memory policy requirements.
3054 * We may trigger various forms of reclaim on the allowed
3055 * set and go into memory reserves if necessary.
3056 */
0c3aa83e
JK
3057 struct page *page;
3058
dd47ea75
CL
3059 if (local_flags & __GFP_WAIT)
3060 local_irq_enable();
3061 kmem_flagcheck(cache, flags);
0c3aa83e 3062 page = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3063 if (local_flags & __GFP_WAIT)
3064 local_irq_disable();
0c3aa83e 3065 if (page) {
3c517a61
CL
3066 /*
3067 * Insert into the appropriate per node queues
3068 */
0c3aa83e
JK
3069 nid = page_to_nid(page);
3070 if (cache_grow(cache, flags, nid, page)) {
3c517a61 3071 obj = ____cache_alloc_node(cache,
4167e9b2 3072 gfp_exact_node(flags), nid);
3c517a61
CL
3073 if (!obj)
3074 /*
3075 * Another processor may allocate the
3076 * objects in the slab since we are
3077 * not holding any locks.
3078 */
3079 goto retry;
3080 } else {
b6a60451 3081 /* cache_grow already freed obj */
3c517a61
CL
3082 obj = NULL;
3083 }
3084 }
aedb0eb1 3085 }
cc9a6c87 3086
d26914d1 3087 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3088 goto retry_cpuset;
765c4507
CL
3089 return obj;
3090}
3091
e498be7d
CL
3092/*
3093 * A interface to enable slab creation on nodeid
1da177e4 3094 */
8b98c169 3095static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3096 int nodeid)
e498be7d
CL
3097{
3098 struct list_head *entry;
8456a648 3099 struct page *page;
ce8eb6c4 3100 struct kmem_cache_node *n;
b28a02de 3101 void *obj;
b28a02de
PE
3102 int x;
3103
7c3fbbdd 3104 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3105 n = get_node(cachep, nodeid);
ce8eb6c4 3106 BUG_ON(!n);
b28a02de 3107
a737b3e2 3108retry:
ca3b9b91 3109 check_irq_off();
ce8eb6c4
CL
3110 spin_lock(&n->list_lock);
3111 entry = n->slabs_partial.next;
3112 if (entry == &n->slabs_partial) {
3113 n->free_touched = 1;
3114 entry = n->slabs_free.next;
3115 if (entry == &n->slabs_free)
b28a02de
PE
3116 goto must_grow;
3117 }
3118
8456a648 3119 page = list_entry(entry, struct page, lru);
b28a02de 3120 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3121
3122 STATS_INC_NODEALLOCS(cachep);
3123 STATS_INC_ACTIVE(cachep);
3124 STATS_SET_HIGH(cachep);
3125
8456a648 3126 BUG_ON(page->active == cachep->num);
b28a02de 3127
8456a648 3128 obj = slab_get_obj(cachep, page, nodeid);
ce8eb6c4 3129 n->free_objects--;
b28a02de 3130 /* move slabp to correct slabp list: */
8456a648 3131 list_del(&page->lru);
b28a02de 3132
8456a648
JK
3133 if (page->active == cachep->num)
3134 list_add(&page->lru, &n->slabs_full);
a737b3e2 3135 else
8456a648 3136 list_add(&page->lru, &n->slabs_partial);
e498be7d 3137
ce8eb6c4 3138 spin_unlock(&n->list_lock);
b28a02de 3139 goto done;
e498be7d 3140
a737b3e2 3141must_grow:
ce8eb6c4 3142 spin_unlock(&n->list_lock);
4167e9b2 3143 x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
765c4507
CL
3144 if (x)
3145 goto retry;
1da177e4 3146
8c8cc2c1 3147 return fallback_alloc(cachep, flags);
e498be7d 3148
a737b3e2 3149done:
b28a02de 3150 return obj;
e498be7d 3151}
8c8cc2c1 3152
8c8cc2c1 3153static __always_inline void *
48356303 3154slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3155 unsigned long caller)
8c8cc2c1
PE
3156{
3157 unsigned long save_flags;
3158 void *ptr;
7d6e6d09 3159 int slab_node = numa_mem_id();
8c8cc2c1 3160
dcce284a 3161 flags &= gfp_allowed_mask;
7e85ee0c 3162
cf40bd16
NP
3163 lockdep_trace_alloc(flags);
3164
773ff60e 3165 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3166 return NULL;
3167
d79923fa
GC
3168 cachep = memcg_kmem_get_cache(cachep, flags);
3169
8c8cc2c1
PE
3170 cache_alloc_debugcheck_before(cachep, flags);
3171 local_irq_save(save_flags);
3172
eacbbae3 3173 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3174 nodeid = slab_node;
8c8cc2c1 3175
18bf8541 3176 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3177 /* Node not bootstrapped yet */
3178 ptr = fallback_alloc(cachep, flags);
3179 goto out;
3180 }
3181
7d6e6d09 3182 if (nodeid == slab_node) {
8c8cc2c1
PE
3183 /*
3184 * Use the locally cached objects if possible.
3185 * However ____cache_alloc does not allow fallback
3186 * to other nodes. It may fail while we still have
3187 * objects on other nodes available.
3188 */
3189 ptr = ____cache_alloc(cachep, flags);
3190 if (ptr)
3191 goto out;
3192 }
3193 /* ___cache_alloc_node can fall back to other nodes */
3194 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3195 out:
3196 local_irq_restore(save_flags);
3197 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3198 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3199 flags);
8c8cc2c1 3200
5087c822 3201 if (likely(ptr)) {
8c138bc0 3202 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
5087c822
JP
3203 if (unlikely(flags & __GFP_ZERO))
3204 memset(ptr, 0, cachep->object_size);
3205 }
d07dbea4 3206
8135be5a 3207 memcg_kmem_put_cache(cachep);
8c8cc2c1
PE
3208 return ptr;
3209}
3210
3211static __always_inline void *
3212__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3213{
3214 void *objp;
3215
2ad654bc 3216 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3217 objp = alternate_node_alloc(cache, flags);
3218 if (objp)
3219 goto out;
3220 }
3221 objp = ____cache_alloc(cache, flags);
3222
3223 /*
3224 * We may just have run out of memory on the local node.
3225 * ____cache_alloc_node() knows how to locate memory on other nodes
3226 */
7d6e6d09
LS
3227 if (!objp)
3228 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3229
3230 out:
3231 return objp;
3232}
3233#else
3234
3235static __always_inline void *
3236__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3237{
3238 return ____cache_alloc(cachep, flags);
3239}
3240
3241#endif /* CONFIG_NUMA */
3242
3243static __always_inline void *
48356303 3244slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3245{
3246 unsigned long save_flags;
3247 void *objp;
3248
dcce284a 3249 flags &= gfp_allowed_mask;
7e85ee0c 3250
cf40bd16
NP
3251 lockdep_trace_alloc(flags);
3252
773ff60e 3253 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3254 return NULL;
3255
d79923fa
GC
3256 cachep = memcg_kmem_get_cache(cachep, flags);
3257
8c8cc2c1
PE
3258 cache_alloc_debugcheck_before(cachep, flags);
3259 local_irq_save(save_flags);
3260 objp = __do_cache_alloc(cachep, flags);
3261 local_irq_restore(save_flags);
3262 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3263 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3264 flags);
8c8cc2c1
PE
3265 prefetchw(objp);
3266
5087c822 3267 if (likely(objp)) {
8c138bc0 3268 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
5087c822
JP
3269 if (unlikely(flags & __GFP_ZERO))
3270 memset(objp, 0, cachep->object_size);
3271 }
d07dbea4 3272
8135be5a 3273 memcg_kmem_put_cache(cachep);
8c8cc2c1
PE
3274 return objp;
3275}
e498be7d
CL
3276
3277/*
5f0985bb 3278 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3279 * @list: List of detached free slabs should be freed by caller
e498be7d 3280 */
97654dfa
JK
3281static void free_block(struct kmem_cache *cachep, void **objpp,
3282 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3283{
3284 int i;
25c063fb 3285 struct kmem_cache_node *n = get_node(cachep, node);
1da177e4
LT
3286
3287 for (i = 0; i < nr_objects; i++) {
072bb0aa 3288 void *objp;
8456a648 3289 struct page *page;
1da177e4 3290
072bb0aa
MG
3291 clear_obj_pfmemalloc(&objpp[i]);
3292 objp = objpp[i];
3293
8456a648 3294 page = virt_to_head_page(objp);
8456a648 3295 list_del(&page->lru);
ff69416e 3296 check_spinlock_acquired_node(cachep, node);
8456a648 3297 slab_put_obj(cachep, page, objp, node);
1da177e4 3298 STATS_DEC_ACTIVE(cachep);
ce8eb6c4 3299 n->free_objects++;
1da177e4
LT
3300
3301 /* fixup slab chains */
8456a648 3302 if (page->active == 0) {
ce8eb6c4
CL
3303 if (n->free_objects > n->free_limit) {
3304 n->free_objects -= cachep->num;
97654dfa 3305 list_add_tail(&page->lru, list);
1da177e4 3306 } else {
8456a648 3307 list_add(&page->lru, &n->slabs_free);
1da177e4
LT
3308 }
3309 } else {
3310 /* Unconditionally move a slab to the end of the
3311 * partial list on free - maximum time for the
3312 * other objects to be freed, too.
3313 */
8456a648 3314 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3315 }
3316 }
3317}
3318
343e0d7a 3319static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3320{
3321 int batchcount;
ce8eb6c4 3322 struct kmem_cache_node *n;
7d6e6d09 3323 int node = numa_mem_id();
97654dfa 3324 LIST_HEAD(list);
1da177e4
LT
3325
3326 batchcount = ac->batchcount;
3327#if DEBUG
3328 BUG_ON(!batchcount || batchcount > ac->avail);
3329#endif
3330 check_irq_off();
18bf8541 3331 n = get_node(cachep, node);
ce8eb6c4
CL
3332 spin_lock(&n->list_lock);
3333 if (n->shared) {
3334 struct array_cache *shared_array = n->shared;
b28a02de 3335 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3336 if (max) {
3337 if (batchcount > max)
3338 batchcount = max;
e498be7d 3339 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3340 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3341 shared_array->avail += batchcount;
3342 goto free_done;
3343 }
3344 }
3345
97654dfa 3346 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3347free_done:
1da177e4
LT
3348#if STATS
3349 {
3350 int i = 0;
3351 struct list_head *p;
3352
ce8eb6c4
CL
3353 p = n->slabs_free.next;
3354 while (p != &(n->slabs_free)) {
8456a648 3355 struct page *page;
1da177e4 3356
8456a648
JK
3357 page = list_entry(p, struct page, lru);
3358 BUG_ON(page->active);
1da177e4
LT
3359
3360 i++;
3361 p = p->next;
3362 }
3363 STATS_SET_FREEABLE(cachep, i);
3364 }
3365#endif
ce8eb6c4 3366 spin_unlock(&n->list_lock);
97654dfa 3367 slabs_destroy(cachep, &list);
1da177e4 3368 ac->avail -= batchcount;
a737b3e2 3369 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3370}
3371
3372/*
a737b3e2
AM
3373 * Release an obj back to its cache. If the obj has a constructed state, it must
3374 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3375 */
a947eb95 3376static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3377 unsigned long caller)
1da177e4 3378{
9a2dba4b 3379 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3380
3381 check_irq_off();
d5cff635 3382 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3383 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3384
8c138bc0 3385 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3386
1807a1aa
SS
3387 /*
3388 * Skip calling cache_free_alien() when the platform is not numa.
3389 * This will avoid cache misses that happen while accessing slabp (which
3390 * is per page memory reference) to get nodeid. Instead use a global
3391 * variable to skip the call, which is mostly likely to be present in
3392 * the cache.
3393 */
b6e68bc1 3394 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3395 return;
3396
3d880194 3397 if (ac->avail < ac->limit) {
1da177e4 3398 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3399 } else {
3400 STATS_INC_FREEMISS(cachep);
3401 cache_flusharray(cachep, ac);
1da177e4 3402 }
42c8c99c 3403
072bb0aa 3404 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3405}
3406
3407/**
3408 * kmem_cache_alloc - Allocate an object
3409 * @cachep: The cache to allocate from.
3410 * @flags: See kmalloc().
3411 *
3412 * Allocate an object from this cache. The flags are only relevant
3413 * if the cache has no available objects.
3414 */
343e0d7a 3415void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3416{
48356303 3417 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3418
ca2b84cb 3419 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3420 cachep->object_size, cachep->size, flags);
36555751
EGM
3421
3422 return ret;
1da177e4
LT
3423}
3424EXPORT_SYMBOL(kmem_cache_alloc);
3425
484748f0
CL
3426void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3427{
3428 __kmem_cache_free_bulk(s, size, p);
3429}
3430EXPORT_SYMBOL(kmem_cache_free_bulk);
3431
3432bool kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3433 void **p)
3434{
3435 return __kmem_cache_alloc_bulk(s, flags, size, p);
3436}
3437EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3438
0f24f128 3439#ifdef CONFIG_TRACING
85beb586 3440void *
4052147c 3441kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3442{
85beb586
SR
3443 void *ret;
3444
48356303 3445 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3446
3447 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3448 size, cachep->size, flags);
85beb586 3449 return ret;
36555751 3450}
85beb586 3451EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3452#endif
3453
1da177e4 3454#ifdef CONFIG_NUMA
d0d04b78
ZL
3455/**
3456 * kmem_cache_alloc_node - Allocate an object on the specified node
3457 * @cachep: The cache to allocate from.
3458 * @flags: See kmalloc().
3459 * @nodeid: node number of the target node.
3460 *
3461 * Identical to kmem_cache_alloc but it will allocate memory on the given
3462 * node, which can improve the performance for cpu bound structures.
3463 *
3464 * Fallback to other node is possible if __GFP_THISNODE is not set.
3465 */
8b98c169
CH
3466void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3467{
48356303 3468 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3469
ca2b84cb 3470 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3471 cachep->object_size, cachep->size,
ca2b84cb 3472 flags, nodeid);
36555751
EGM
3473
3474 return ret;
8b98c169 3475}
1da177e4
LT
3476EXPORT_SYMBOL(kmem_cache_alloc_node);
3477
0f24f128 3478#ifdef CONFIG_TRACING
4052147c 3479void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3480 gfp_t flags,
4052147c
EG
3481 int nodeid,
3482 size_t size)
36555751 3483{
85beb586
SR
3484 void *ret;
3485
592f4145 3486 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3487
85beb586 3488 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3489 size, cachep->size,
85beb586
SR
3490 flags, nodeid);
3491 return ret;
36555751 3492}
85beb586 3493EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3494#endif
3495
8b98c169 3496static __always_inline void *
7c0cb9c6 3497__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3498{
343e0d7a 3499 struct kmem_cache *cachep;
97e2bde4 3500
2c59dd65 3501 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3502 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3503 return cachep;
4052147c 3504 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3505}
8b98c169 3506
8b98c169
CH
3507void *__kmalloc_node(size_t size, gfp_t flags, int node)
3508{
7c0cb9c6 3509 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3510}
dbe5e69d 3511EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3512
3513void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3514 int node, unsigned long caller)
8b98c169 3515{
7c0cb9c6 3516 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3517}
3518EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3519#endif /* CONFIG_NUMA */
1da177e4
LT
3520
3521/**
800590f5 3522 * __do_kmalloc - allocate memory
1da177e4 3523 * @size: how many bytes of memory are required.
800590f5 3524 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3525 * @caller: function caller for debug tracking of the caller
1da177e4 3526 */
7fd6b141 3527static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3528 unsigned long caller)
1da177e4 3529{
343e0d7a 3530 struct kmem_cache *cachep;
36555751 3531 void *ret;
1da177e4 3532
2c59dd65 3533 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3534 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3535 return cachep;
48356303 3536 ret = slab_alloc(cachep, flags, caller);
36555751 3537
7c0cb9c6 3538 trace_kmalloc(caller, ret,
3b0efdfa 3539 size, cachep->size, flags);
36555751
EGM
3540
3541 return ret;
7fd6b141
PE
3542}
3543
7fd6b141
PE
3544void *__kmalloc(size_t size, gfp_t flags)
3545{
7c0cb9c6 3546 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3547}
3548EXPORT_SYMBOL(__kmalloc);
3549
ce71e27c 3550void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3551{
7c0cb9c6 3552 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3553}
3554EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3555
1da177e4
LT
3556/**
3557 * kmem_cache_free - Deallocate an object
3558 * @cachep: The cache the allocation was from.
3559 * @objp: The previously allocated object.
3560 *
3561 * Free an object which was previously allocated from this
3562 * cache.
3563 */
343e0d7a 3564void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3565{
3566 unsigned long flags;
b9ce5ef4
GC
3567 cachep = cache_from_obj(cachep, objp);
3568 if (!cachep)
3569 return;
1da177e4
LT
3570
3571 local_irq_save(flags);
d97d476b 3572 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3573 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3574 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3575 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3576 local_irq_restore(flags);
36555751 3577
ca2b84cb 3578 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3579}
3580EXPORT_SYMBOL(kmem_cache_free);
3581
1da177e4
LT
3582/**
3583 * kfree - free previously allocated memory
3584 * @objp: pointer returned by kmalloc.
3585 *
80e93eff
PE
3586 * If @objp is NULL, no operation is performed.
3587 *
1da177e4
LT
3588 * Don't free memory not originally allocated by kmalloc()
3589 * or you will run into trouble.
3590 */
3591void kfree(const void *objp)
3592{
343e0d7a 3593 struct kmem_cache *c;
1da177e4
LT
3594 unsigned long flags;
3595
2121db74
PE
3596 trace_kfree(_RET_IP_, objp);
3597
6cb8f913 3598 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3599 return;
3600 local_irq_save(flags);
3601 kfree_debugcheck(objp);
6ed5eb22 3602 c = virt_to_cache(objp);
8c138bc0
CL
3603 debug_check_no_locks_freed(objp, c->object_size);
3604
3605 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3606 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3607 local_irq_restore(flags);
3608}
3609EXPORT_SYMBOL(kfree);
3610
e498be7d 3611/*
ce8eb6c4 3612 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3613 */
5f0985bb 3614static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3615{
3616 int node;
ce8eb6c4 3617 struct kmem_cache_node *n;
cafeb02e 3618 struct array_cache *new_shared;
c8522a3a 3619 struct alien_cache **new_alien = NULL;
e498be7d 3620
9c09a95c 3621 for_each_online_node(node) {
cafeb02e 3622
b455def2
L
3623 if (use_alien_caches) {
3624 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3625 if (!new_alien)
3626 goto fail;
3627 }
cafeb02e 3628
63109846
ED
3629 new_shared = NULL;
3630 if (cachep->shared) {
3631 new_shared = alloc_arraycache(node,
0718dc2a 3632 cachep->shared*cachep->batchcount,
83b519e8 3633 0xbaadf00d, gfp);
63109846
ED
3634 if (!new_shared) {
3635 free_alien_cache(new_alien);
3636 goto fail;
3637 }
0718dc2a 3638 }
cafeb02e 3639
18bf8541 3640 n = get_node(cachep, node);
ce8eb6c4
CL
3641 if (n) {
3642 struct array_cache *shared = n->shared;
97654dfa 3643 LIST_HEAD(list);
cafeb02e 3644
ce8eb6c4 3645 spin_lock_irq(&n->list_lock);
e498be7d 3646
cafeb02e 3647 if (shared)
0718dc2a 3648 free_block(cachep, shared->entry,
97654dfa 3649 shared->avail, node, &list);
e498be7d 3650
ce8eb6c4
CL
3651 n->shared = new_shared;
3652 if (!n->alien) {
3653 n->alien = new_alien;
e498be7d
CL
3654 new_alien = NULL;
3655 }
ce8eb6c4 3656 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3657 cachep->batchcount + cachep->num;
ce8eb6c4 3658 spin_unlock_irq(&n->list_lock);
97654dfa 3659 slabs_destroy(cachep, &list);
cafeb02e 3660 kfree(shared);
e498be7d
CL
3661 free_alien_cache(new_alien);
3662 continue;
3663 }
ce8eb6c4
CL
3664 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3665 if (!n) {
0718dc2a
CL
3666 free_alien_cache(new_alien);
3667 kfree(new_shared);
e498be7d 3668 goto fail;
0718dc2a 3669 }
e498be7d 3670
ce8eb6c4 3671 kmem_cache_node_init(n);
5f0985bb
JZ
3672 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3673 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
ce8eb6c4
CL
3674 n->shared = new_shared;
3675 n->alien = new_alien;
3676 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3677 cachep->batchcount + cachep->num;
ce8eb6c4 3678 cachep->node[node] = n;
e498be7d 3679 }
cafeb02e 3680 return 0;
0718dc2a 3681
a737b3e2 3682fail:
3b0efdfa 3683 if (!cachep->list.next) {
0718dc2a
CL
3684 /* Cache is not active yet. Roll back what we did */
3685 node--;
3686 while (node >= 0) {
18bf8541
CL
3687 n = get_node(cachep, node);
3688 if (n) {
ce8eb6c4
CL
3689 kfree(n->shared);
3690 free_alien_cache(n->alien);
3691 kfree(n);
6a67368c 3692 cachep->node[node] = NULL;
0718dc2a
CL
3693 }
3694 node--;
3695 }
3696 }
cafeb02e 3697 return -ENOMEM;
e498be7d
CL
3698}
3699
18004c5d 3700/* Always called with the slab_mutex held */
943a451a 3701static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3702 int batchcount, int shared, gfp_t gfp)
1da177e4 3703{
bf0dea23
JK
3704 struct array_cache __percpu *cpu_cache, *prev;
3705 int cpu;
1da177e4 3706
bf0dea23
JK
3707 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3708 if (!cpu_cache)
d2e7b7d0
SS
3709 return -ENOMEM;
3710
bf0dea23
JK
3711 prev = cachep->cpu_cache;
3712 cachep->cpu_cache = cpu_cache;
3713 kick_all_cpus_sync();
e498be7d 3714
1da177e4 3715 check_irq_on();
1da177e4
LT
3716 cachep->batchcount = batchcount;
3717 cachep->limit = limit;
e498be7d 3718 cachep->shared = shared;
1da177e4 3719
bf0dea23
JK
3720 if (!prev)
3721 goto alloc_node;
3722
3723 for_each_online_cpu(cpu) {
97654dfa 3724 LIST_HEAD(list);
18bf8541
CL
3725 int node;
3726 struct kmem_cache_node *n;
bf0dea23 3727 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3728
bf0dea23 3729 node = cpu_to_mem(cpu);
18bf8541
CL
3730 n = get_node(cachep, node);
3731 spin_lock_irq(&n->list_lock);
bf0dea23 3732 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3733 spin_unlock_irq(&n->list_lock);
97654dfa 3734 slabs_destroy(cachep, &list);
1da177e4 3735 }
bf0dea23
JK
3736 free_percpu(prev);
3737
3738alloc_node:
5f0985bb 3739 return alloc_kmem_cache_node(cachep, gfp);
1da177e4
LT
3740}
3741
943a451a
GC
3742static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3743 int batchcount, int shared, gfp_t gfp)
3744{
3745 int ret;
426589f5 3746 struct kmem_cache *c;
943a451a
GC
3747
3748 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3749
3750 if (slab_state < FULL)
3751 return ret;
3752
3753 if ((ret < 0) || !is_root_cache(cachep))
3754 return ret;
3755
426589f5
VD
3756 lockdep_assert_held(&slab_mutex);
3757 for_each_memcg_cache(c, cachep) {
3758 /* return value determined by the root cache only */
3759 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3760 }
3761
3762 return ret;
3763}
3764
18004c5d 3765/* Called with slab_mutex held always */
83b519e8 3766static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3767{
3768 int err;
943a451a
GC
3769 int limit = 0;
3770 int shared = 0;
3771 int batchcount = 0;
3772
3773 if (!is_root_cache(cachep)) {
3774 struct kmem_cache *root = memcg_root_cache(cachep);
3775 limit = root->limit;
3776 shared = root->shared;
3777 batchcount = root->batchcount;
3778 }
1da177e4 3779
943a451a
GC
3780 if (limit && shared && batchcount)
3781 goto skip_setup;
a737b3e2
AM
3782 /*
3783 * The head array serves three purposes:
1da177e4
LT
3784 * - create a LIFO ordering, i.e. return objects that are cache-warm
3785 * - reduce the number of spinlock operations.
a737b3e2 3786 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3787 * bufctl chains: array operations are cheaper.
3788 * The numbers are guessed, we should auto-tune as described by
3789 * Bonwick.
3790 */
3b0efdfa 3791 if (cachep->size > 131072)
1da177e4 3792 limit = 1;
3b0efdfa 3793 else if (cachep->size > PAGE_SIZE)
1da177e4 3794 limit = 8;
3b0efdfa 3795 else if (cachep->size > 1024)
1da177e4 3796 limit = 24;
3b0efdfa 3797 else if (cachep->size > 256)
1da177e4
LT
3798 limit = 54;
3799 else
3800 limit = 120;
3801
a737b3e2
AM
3802 /*
3803 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3804 * allocation behaviour: Most allocs on one cpu, most free operations
3805 * on another cpu. For these cases, an efficient object passing between
3806 * cpus is necessary. This is provided by a shared array. The array
3807 * replaces Bonwick's magazine layer.
3808 * On uniprocessor, it's functionally equivalent (but less efficient)
3809 * to a larger limit. Thus disabled by default.
3810 */
3811 shared = 0;
3b0efdfa 3812 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3813 shared = 8;
1da177e4
LT
3814
3815#if DEBUG
a737b3e2
AM
3816 /*
3817 * With debugging enabled, large batchcount lead to excessively long
3818 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3819 */
3820 if (limit > 32)
3821 limit = 32;
3822#endif
943a451a
GC
3823 batchcount = (limit + 1) / 2;
3824skip_setup:
3825 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4
LT
3826 if (err)
3827 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3828 cachep->name, -err);
2ed3a4ef 3829 return err;
1da177e4
LT
3830}
3831
1b55253a 3832/*
ce8eb6c4
CL
3833 * Drain an array if it contains any elements taking the node lock only if
3834 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3835 * if drain_array() is used on the shared array.
1b55253a 3836 */
ce8eb6c4 3837static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
1b55253a 3838 struct array_cache *ac, int force, int node)
1da177e4 3839{
97654dfa 3840 LIST_HEAD(list);
1da177e4
LT
3841 int tofree;
3842
1b55253a
CL
3843 if (!ac || !ac->avail)
3844 return;
1da177e4
LT
3845 if (ac->touched && !force) {
3846 ac->touched = 0;
b18e7e65 3847 } else {
ce8eb6c4 3848 spin_lock_irq(&n->list_lock);
b18e7e65
CL
3849 if (ac->avail) {
3850 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3851 if (tofree > ac->avail)
3852 tofree = (ac->avail + 1) / 2;
97654dfa 3853 free_block(cachep, ac->entry, tofree, node, &list);
b18e7e65
CL
3854 ac->avail -= tofree;
3855 memmove(ac->entry, &(ac->entry[tofree]),
3856 sizeof(void *) * ac->avail);
3857 }
ce8eb6c4 3858 spin_unlock_irq(&n->list_lock);
97654dfa 3859 slabs_destroy(cachep, &list);
1da177e4
LT
3860 }
3861}
3862
3863/**
3864 * cache_reap - Reclaim memory from caches.
05fb6bf0 3865 * @w: work descriptor
1da177e4
LT
3866 *
3867 * Called from workqueue/eventd every few seconds.
3868 * Purpose:
3869 * - clear the per-cpu caches for this CPU.
3870 * - return freeable pages to the main free memory pool.
3871 *
a737b3e2
AM
3872 * If we cannot acquire the cache chain mutex then just give up - we'll try
3873 * again on the next iteration.
1da177e4 3874 */
7c5cae36 3875static void cache_reap(struct work_struct *w)
1da177e4 3876{
7a7c381d 3877 struct kmem_cache *searchp;
ce8eb6c4 3878 struct kmem_cache_node *n;
7d6e6d09 3879 int node = numa_mem_id();
bf6aede7 3880 struct delayed_work *work = to_delayed_work(w);
1da177e4 3881
18004c5d 3882 if (!mutex_trylock(&slab_mutex))
1da177e4 3883 /* Give up. Setup the next iteration. */
7c5cae36 3884 goto out;
1da177e4 3885
18004c5d 3886 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
3887 check_irq_on();
3888
35386e3b 3889 /*
ce8eb6c4 3890 * We only take the node lock if absolutely necessary and we
35386e3b
CL
3891 * have established with reasonable certainty that
3892 * we can do some work if the lock was obtained.
3893 */
18bf8541 3894 n = get_node(searchp, node);
35386e3b 3895
ce8eb6c4 3896 reap_alien(searchp, n);
1da177e4 3897
ce8eb6c4 3898 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
1da177e4 3899
35386e3b
CL
3900 /*
3901 * These are racy checks but it does not matter
3902 * if we skip one check or scan twice.
3903 */
ce8eb6c4 3904 if (time_after(n->next_reap, jiffies))
35386e3b 3905 goto next;
1da177e4 3906
5f0985bb 3907 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 3908
ce8eb6c4 3909 drain_array(searchp, n, n->shared, 0, node);
1da177e4 3910
ce8eb6c4
CL
3911 if (n->free_touched)
3912 n->free_touched = 0;
ed11d9eb
CL
3913 else {
3914 int freed;
1da177e4 3915
ce8eb6c4 3916 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
3917 5 * searchp->num - 1) / (5 * searchp->num));
3918 STATS_ADD_REAPED(searchp, freed);
3919 }
35386e3b 3920next:
1da177e4
LT
3921 cond_resched();
3922 }
3923 check_irq_on();
18004c5d 3924 mutex_unlock(&slab_mutex);
8fce4d8e 3925 next_reap_node();
7c5cae36 3926out:
a737b3e2 3927 /* Set up the next iteration */
5f0985bb 3928 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
3929}
3930
158a9624 3931#ifdef CONFIG_SLABINFO
0d7561c6 3932void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 3933{
8456a648 3934 struct page *page;
b28a02de
PE
3935 unsigned long active_objs;
3936 unsigned long num_objs;
3937 unsigned long active_slabs = 0;
3938 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3939 const char *name;
1da177e4 3940 char *error = NULL;
e498be7d 3941 int node;
ce8eb6c4 3942 struct kmem_cache_node *n;
1da177e4 3943
1da177e4
LT
3944 active_objs = 0;
3945 num_slabs = 0;
18bf8541 3946 for_each_kmem_cache_node(cachep, node, n) {
e498be7d 3947
ca3b9b91 3948 check_irq_on();
ce8eb6c4 3949 spin_lock_irq(&n->list_lock);
e498be7d 3950
8456a648
JK
3951 list_for_each_entry(page, &n->slabs_full, lru) {
3952 if (page->active != cachep->num && !error)
e498be7d
CL
3953 error = "slabs_full accounting error";
3954 active_objs += cachep->num;
3955 active_slabs++;
3956 }
8456a648
JK
3957 list_for_each_entry(page, &n->slabs_partial, lru) {
3958 if (page->active == cachep->num && !error)
106a74e1 3959 error = "slabs_partial accounting error";
8456a648 3960 if (!page->active && !error)
106a74e1 3961 error = "slabs_partial accounting error";
8456a648 3962 active_objs += page->active;
e498be7d
CL
3963 active_slabs++;
3964 }
8456a648
JK
3965 list_for_each_entry(page, &n->slabs_free, lru) {
3966 if (page->active && !error)
106a74e1 3967 error = "slabs_free accounting error";
e498be7d
CL
3968 num_slabs++;
3969 }
ce8eb6c4
CL
3970 free_objects += n->free_objects;
3971 if (n->shared)
3972 shared_avail += n->shared->avail;
e498be7d 3973
ce8eb6c4 3974 spin_unlock_irq(&n->list_lock);
1da177e4 3975 }
b28a02de
PE
3976 num_slabs += active_slabs;
3977 num_objs = num_slabs * cachep->num;
e498be7d 3978 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3979 error = "free_objects accounting error";
3980
b28a02de 3981 name = cachep->name;
1da177e4
LT
3982 if (error)
3983 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3984
0d7561c6
GC
3985 sinfo->active_objs = active_objs;
3986 sinfo->num_objs = num_objs;
3987 sinfo->active_slabs = active_slabs;
3988 sinfo->num_slabs = num_slabs;
3989 sinfo->shared_avail = shared_avail;
3990 sinfo->limit = cachep->limit;
3991 sinfo->batchcount = cachep->batchcount;
3992 sinfo->shared = cachep->shared;
3993 sinfo->objects_per_slab = cachep->num;
3994 sinfo->cache_order = cachep->gfporder;
3995}
3996
3997void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3998{
1da177e4 3999#if STATS
ce8eb6c4 4000 { /* node stats */
1da177e4
LT
4001 unsigned long high = cachep->high_mark;
4002 unsigned long allocs = cachep->num_allocations;
4003 unsigned long grown = cachep->grown;
4004 unsigned long reaped = cachep->reaped;
4005 unsigned long errors = cachep->errors;
4006 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4007 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4008 unsigned long node_frees = cachep->node_frees;
fb7faf33 4009 unsigned long overflows = cachep->node_overflow;
1da177e4 4010
e92dd4fd
JP
4011 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4012 "%4lu %4lu %4lu %4lu %4lu",
4013 allocs, high, grown,
4014 reaped, errors, max_freeable, node_allocs,
4015 node_frees, overflows);
1da177e4
LT
4016 }
4017 /* cpu stats */
4018 {
4019 unsigned long allochit = atomic_read(&cachep->allochit);
4020 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4021 unsigned long freehit = atomic_read(&cachep->freehit);
4022 unsigned long freemiss = atomic_read(&cachep->freemiss);
4023
4024 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4025 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4026 }
4027#endif
1da177e4
LT
4028}
4029
1da177e4
LT
4030#define MAX_SLABINFO_WRITE 128
4031/**
4032 * slabinfo_write - Tuning for the slab allocator
4033 * @file: unused
4034 * @buffer: user buffer
4035 * @count: data length
4036 * @ppos: unused
4037 */
b7454ad3 4038ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4039 size_t count, loff_t *ppos)
1da177e4 4040{
b28a02de 4041 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4042 int limit, batchcount, shared, res;
7a7c381d 4043 struct kmem_cache *cachep;
b28a02de 4044
1da177e4
LT
4045 if (count > MAX_SLABINFO_WRITE)
4046 return -EINVAL;
4047 if (copy_from_user(&kbuf, buffer, count))
4048 return -EFAULT;
b28a02de 4049 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4050
4051 tmp = strchr(kbuf, ' ');
4052 if (!tmp)
4053 return -EINVAL;
4054 *tmp = '\0';
4055 tmp++;
4056 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4057 return -EINVAL;
4058
4059 /* Find the cache in the chain of caches. */
18004c5d 4060 mutex_lock(&slab_mutex);
1da177e4 4061 res = -EINVAL;
18004c5d 4062 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4063 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4064 if (limit < 1 || batchcount < 1 ||
4065 batchcount > limit || shared < 0) {
e498be7d 4066 res = 0;
1da177e4 4067 } else {
e498be7d 4068 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4069 batchcount, shared,
4070 GFP_KERNEL);
1da177e4
LT
4071 }
4072 break;
4073 }
4074 }
18004c5d 4075 mutex_unlock(&slab_mutex);
1da177e4
LT
4076 if (res >= 0)
4077 res = count;
4078 return res;
4079}
871751e2
AV
4080
4081#ifdef CONFIG_DEBUG_SLAB_LEAK
4082
871751e2
AV
4083static inline int add_caller(unsigned long *n, unsigned long v)
4084{
4085 unsigned long *p;
4086 int l;
4087 if (!v)
4088 return 1;
4089 l = n[1];
4090 p = n + 2;
4091 while (l) {
4092 int i = l/2;
4093 unsigned long *q = p + 2 * i;
4094 if (*q == v) {
4095 q[1]++;
4096 return 1;
4097 }
4098 if (*q > v) {
4099 l = i;
4100 } else {
4101 p = q + 2;
4102 l -= i + 1;
4103 }
4104 }
4105 if (++n[1] == n[0])
4106 return 0;
4107 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4108 p[0] = v;
4109 p[1] = 1;
4110 return 1;
4111}
4112
8456a648
JK
4113static void handle_slab(unsigned long *n, struct kmem_cache *c,
4114 struct page *page)
871751e2
AV
4115{
4116 void *p;
03787301 4117 int i;
b1cb0982 4118
871751e2
AV
4119 if (n[0] == n[1])
4120 return;
8456a648 4121 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
03787301 4122 if (get_obj_status(page, i) != OBJECT_ACTIVE)
871751e2 4123 continue;
b1cb0982 4124
871751e2
AV
4125 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4126 return;
4127 }
4128}
4129
4130static void show_symbol(struct seq_file *m, unsigned long address)
4131{
4132#ifdef CONFIG_KALLSYMS
871751e2 4133 unsigned long offset, size;
9281acea 4134 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4135
a5c43dae 4136 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4137 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4138 if (modname[0])
871751e2
AV
4139 seq_printf(m, " [%s]", modname);
4140 return;
4141 }
4142#endif
4143 seq_printf(m, "%p", (void *)address);
4144}
4145
4146static int leaks_show(struct seq_file *m, void *p)
4147{
0672aa7c 4148 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4149 struct page *page;
ce8eb6c4 4150 struct kmem_cache_node *n;
871751e2 4151 const char *name;
db845067 4152 unsigned long *x = m->private;
871751e2
AV
4153 int node;
4154 int i;
4155
4156 if (!(cachep->flags & SLAB_STORE_USER))
4157 return 0;
4158 if (!(cachep->flags & SLAB_RED_ZONE))
4159 return 0;
4160
4161 /* OK, we can do it */
4162
db845067 4163 x[1] = 0;
871751e2 4164
18bf8541 4165 for_each_kmem_cache_node(cachep, node, n) {
871751e2
AV
4166
4167 check_irq_on();
ce8eb6c4 4168 spin_lock_irq(&n->list_lock);
871751e2 4169
8456a648
JK
4170 list_for_each_entry(page, &n->slabs_full, lru)
4171 handle_slab(x, cachep, page);
4172 list_for_each_entry(page, &n->slabs_partial, lru)
4173 handle_slab(x, cachep, page);
ce8eb6c4 4174 spin_unlock_irq(&n->list_lock);
871751e2
AV
4175 }
4176 name = cachep->name;
db845067 4177 if (x[0] == x[1]) {
871751e2 4178 /* Increase the buffer size */
18004c5d 4179 mutex_unlock(&slab_mutex);
db845067 4180 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4181 if (!m->private) {
4182 /* Too bad, we are really out */
db845067 4183 m->private = x;
18004c5d 4184 mutex_lock(&slab_mutex);
871751e2
AV
4185 return -ENOMEM;
4186 }
db845067
CL
4187 *(unsigned long *)m->private = x[0] * 2;
4188 kfree(x);
18004c5d 4189 mutex_lock(&slab_mutex);
871751e2
AV
4190 /* Now make sure this entry will be retried */
4191 m->count = m->size;
4192 return 0;
4193 }
db845067
CL
4194 for (i = 0; i < x[1]; i++) {
4195 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4196 show_symbol(m, x[2*i+2]);
871751e2
AV
4197 seq_putc(m, '\n');
4198 }
d2e7b7d0 4199
871751e2
AV
4200 return 0;
4201}
4202
a0ec95a8 4203static const struct seq_operations slabstats_op = {
1df3b26f 4204 .start = slab_start,
276a2439
WL
4205 .next = slab_next,
4206 .stop = slab_stop,
871751e2
AV
4207 .show = leaks_show,
4208};
a0ec95a8
AD
4209
4210static int slabstats_open(struct inode *inode, struct file *file)
4211{
b208ce32
RJ
4212 unsigned long *n;
4213
4214 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4215 if (!n)
4216 return -ENOMEM;
4217
4218 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4219
4220 return 0;
a0ec95a8
AD
4221}
4222
4223static const struct file_operations proc_slabstats_operations = {
4224 .open = slabstats_open,
4225 .read = seq_read,
4226 .llseek = seq_lseek,
4227 .release = seq_release_private,
4228};
4229#endif
4230
4231static int __init slab_proc_init(void)
4232{
4233#ifdef CONFIG_DEBUG_SLAB_LEAK
4234 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4235#endif
a0ec95a8
AD
4236 return 0;
4237}
4238module_init(slab_proc_init);
1da177e4
LT
4239#endif
4240
00e145b6
MS
4241/**
4242 * ksize - get the actual amount of memory allocated for a given object
4243 * @objp: Pointer to the object
4244 *
4245 * kmalloc may internally round up allocations and return more memory
4246 * than requested. ksize() can be used to determine the actual amount of
4247 * memory allocated. The caller may use this additional memory, even though
4248 * a smaller amount of memory was initially specified with the kmalloc call.
4249 * The caller must guarantee that objp points to a valid object previously
4250 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4251 * must not be freed during the duration of the call.
4252 */
fd76bab2 4253size_t ksize(const void *objp)
1da177e4 4254{
ef8b4520
CL
4255 BUG_ON(!objp);
4256 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4257 return 0;
1da177e4 4258
8c138bc0 4259 return virt_to_cache(objp)->object_size;
1da177e4 4260}
b1aabecd 4261EXPORT_SYMBOL(ksize);