XArray: Add xa_cmpxchg_irq and xa_cmpxchg_bh
[linux-2.6-block.git] / mm / slab.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
183ff22b 30 * slabs and you must pass objects with the same initializations to
1da177e4
LT
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
a737b3e2 54 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
343e0d7a 59 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
18004c5d 72 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
e498be7d
CL
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
88 */
89
1da177e4
LT
90#include <linux/slab.h>
91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
a0ec95a8 99#include <linux/proc_fs.h>
1da177e4
LT
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
3f8c2452 119#include <linux/sched/task_stack.h>
1da177e4 120
381760ea
MG
121#include <net/sock.h>
122
1da177e4
LT
123#include <asm/cacheflush.h>
124#include <asm/tlbflush.h>
125#include <asm/page.h>
126
4dee6b64
SR
127#include <trace/events/kmem.h>
128
072bb0aa
MG
129#include "internal.h"
130
b9ce5ef4
GC
131#include "slab.h"
132
1da177e4 133/*
50953fe9 134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143#ifdef CONFIG_DEBUG_SLAB
144#define DEBUG 1
145#define STATS 1
146#define FORCED_DEBUG 1
147#else
148#define DEBUG 0
149#define STATS 0
150#define FORCED_DEBUG 0
151#endif
152
1da177e4
LT
153/* Shouldn't this be in a header file somewhere? */
154#define BYTES_PER_WORD sizeof(void *)
87a927c7 155#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 156
1da177e4
LT
157#ifndef ARCH_KMALLOC_FLAGS
158#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159#endif
160
f315e3fa
JK
161#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164#if FREELIST_BYTE_INDEX
165typedef unsigned char freelist_idx_t;
166#else
167typedef unsigned short freelist_idx_t;
168#endif
169
30321c7b 170#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 171
1da177e4
LT
172/*
173 * struct array_cache
174 *
1da177e4
LT
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
bda5b655 189 void *entry[]; /*
a737b3e2
AM
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
a737b3e2 193 */
1da177e4
LT
194};
195
c8522a3a
JK
196struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199};
200
e498be7d
CL
201/*
202 * Need this for bootstrapping a per node allocator.
203 */
bf0dea23 204#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 205static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 206#define CACHE_CACHE 0
bf0dea23 207#define SIZE_NODE (MAX_NUMNODES)
e498be7d 208
ed11d9eb 209static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 210 struct kmem_cache_node *n, int tofree);
ed11d9eb 211static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
212 int node, struct list_head *list);
213static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 214static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 215static void cache_reap(struct work_struct *unused);
ed11d9eb 216
76b342bd
JK
217static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
e0a42726
IM
222static int slab_early_init = 1;
223
ce8eb6c4 224#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 225
ce8eb6c4 226static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
227{
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
bf00bd34 231 parent->total_slabs = 0;
f728b0a5 232 parent->free_slabs = 0;
e498be7d
CL
233 parent->shared = NULL;
234 parent->alien = NULL;
2e1217cf 235 parent->colour_next = 0;
e498be7d
CL
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239}
240
a737b3e2
AM
241#define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
18bf8541 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
245 } while (0)
246
a737b3e2
AM
247#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
e498be7d
CL
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
1da177e4 253
4fd0b46e
AD
254#define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255#define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
b03a017b 256#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
1da177e4
LT
257#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259#define BATCHREFILL_LIMIT 16
a737b3e2
AM
260/*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
1da177e4 263 *
dc6f3f27 264 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
265 * which could lock up otherwise freeable slabs.
266 */
5f0985bb
JZ
267#define REAPTIMEOUT_AC (2*HZ)
268#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
269
270#if STATS
271#define STATS_INC_ACTIVE(x) ((x)->num_active++)
272#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 275#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
276#define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
1da177e4
LT
281#define STATS_INC_ERR(x) ((x)->errors++)
282#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 283#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 284#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
285#define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
1da177e4
LT
290#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294#else
295#define STATS_INC_ACTIVE(x) do { } while (0)
296#define STATS_DEC_ACTIVE(x) do { } while (0)
297#define STATS_INC_ALLOCED(x) do { } while (0)
298#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 299#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
300#define STATS_SET_HIGH(x) do { } while (0)
301#define STATS_INC_ERR(x) do { } while (0)
302#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 303#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 304#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 305#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
306#define STATS_INC_ALLOCHIT(x) do { } while (0)
307#define STATS_INC_ALLOCMISS(x) do { } while (0)
308#define STATS_INC_FREEHIT(x) do { } while (0)
309#define STATS_INC_FREEMISS(x) do { } while (0)
310#endif
311
312#if DEBUG
1da177e4 313
a737b3e2
AM
314/*
315 * memory layout of objects:
1da177e4 316 * 0 : objp
3dafccf2 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
3dafccf2 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 321 * redzone word.
3dafccf2 322 * cachep->obj_offset: The real object.
3b0efdfa
CL
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 325 * [BYTES_PER_WORD long]
1da177e4 326 */
343e0d7a 327static int obj_offset(struct kmem_cache *cachep)
1da177e4 328{
3dafccf2 329 return cachep->obj_offset;
1da177e4
LT
330}
331
b46b8f19 332static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
333{
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
1da177e4
LT
337}
338
b46b8f19 339static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
340{
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 343 return (unsigned long long *)(objp + cachep->size -
b46b8f19 344 sizeof(unsigned long long) -
87a927c7 345 REDZONE_ALIGN);
3b0efdfa 346 return (unsigned long long *) (objp + cachep->size -
b46b8f19 347 sizeof(unsigned long long));
1da177e4
LT
348}
349
343e0d7a 350static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
351{
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
354}
355
356#else
357
3dafccf2 358#define obj_offset(x) 0
b46b8f19
DW
359#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
361#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363#endif
364
03787301
JK
365#ifdef CONFIG_DEBUG_SLAB_LEAK
366
d31676df 367static inline bool is_store_user_clean(struct kmem_cache *cachep)
03787301 368{
d31676df
JK
369 return atomic_read(&cachep->store_user_clean) == 1;
370}
03787301 371
d31676df
JK
372static inline void set_store_user_clean(struct kmem_cache *cachep)
373{
374 atomic_set(&cachep->store_user_clean, 1);
375}
03787301 376
d31676df
JK
377static inline void set_store_user_dirty(struct kmem_cache *cachep)
378{
379 if (is_store_user_clean(cachep))
380 atomic_set(&cachep->store_user_clean, 0);
03787301
JK
381}
382
383#else
d31676df 384static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
03787301
JK
385
386#endif
387
1da177e4 388/*
3df1cccd
DR
389 * Do not go above this order unless 0 objects fit into the slab or
390 * overridden on the command line.
1da177e4 391 */
543585cc
DR
392#define SLAB_MAX_ORDER_HI 1
393#define SLAB_MAX_ORDER_LO 0
394static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 395static bool slab_max_order_set __initdata;
1da177e4 396
6ed5eb22
PE
397static inline struct kmem_cache *virt_to_cache(const void *obj)
398{
b49af68f 399 struct page *page = virt_to_head_page(obj);
35026088 400 return page->slab_cache;
6ed5eb22
PE
401}
402
8456a648 403static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
404 unsigned int idx)
405{
8456a648 406 return page->s_mem + cache->size * idx;
8fea4e96
PE
407}
408
6a2d7a95 409/*
3b0efdfa
CL
410 * We want to avoid an expensive divide : (offset / cache->size)
411 * Using the fact that size is a constant for a particular cache,
412 * we can replace (offset / cache->size) by
6a2d7a95
ED
413 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
414 */
415static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 416 const struct page *page, void *obj)
8fea4e96 417{
8456a648 418 u32 offset = (obj - page->s_mem);
6a2d7a95 419 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
420}
421
6fb92430 422#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 423/* internal cache of cache description objs */
9b030cb8 424static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
425 .batchcount = 1,
426 .limit = BOOT_CPUCACHE_ENTRIES,
427 .shared = 1,
3b0efdfa 428 .size = sizeof(struct kmem_cache),
b28a02de 429 .name = "kmem_cache",
1da177e4
LT
430};
431
1871e52c 432static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 433
343e0d7a 434static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 435{
bf0dea23 436 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
437}
438
a737b3e2
AM
439/*
440 * Calculate the number of objects and left-over bytes for a given buffer size.
441 */
70f75067 442static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
d50112ed 443 slab_flags_t flags, size_t *left_over)
fbaccacf 444{
70f75067 445 unsigned int num;
fbaccacf 446 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 447
fbaccacf
SR
448 /*
449 * The slab management structure can be either off the slab or
450 * on it. For the latter case, the memory allocated for a
451 * slab is used for:
452 *
fbaccacf 453 * - @buffer_size bytes for each object
2e6b3602
JK
454 * - One freelist_idx_t for each object
455 *
456 * We don't need to consider alignment of freelist because
457 * freelist will be at the end of slab page. The objects will be
458 * at the correct alignment.
fbaccacf
SR
459 *
460 * If the slab management structure is off the slab, then the
461 * alignment will already be calculated into the size. Because
462 * the slabs are all pages aligned, the objects will be at the
463 * correct alignment when allocated.
464 */
b03a017b 465 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
70f75067 466 num = slab_size / buffer_size;
2e6b3602 467 *left_over = slab_size % buffer_size;
fbaccacf 468 } else {
70f75067 469 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
2e6b3602
JK
470 *left_over = slab_size %
471 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 472 }
70f75067
JK
473
474 return num;
1da177e4
LT
475}
476
f28510d3 477#if DEBUG
d40cee24 478#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 479
a737b3e2
AM
480static void __slab_error(const char *function, struct kmem_cache *cachep,
481 char *msg)
1da177e4 482{
1170532b 483 pr_err("slab error in %s(): cache `%s': %s\n",
b28a02de 484 function, cachep->name, msg);
1da177e4 485 dump_stack();
373d4d09 486 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 487}
f28510d3 488#endif
1da177e4 489
3395ee05
PM
490/*
491 * By default on NUMA we use alien caches to stage the freeing of
492 * objects allocated from other nodes. This causes massive memory
493 * inefficiencies when using fake NUMA setup to split memory into a
494 * large number of small nodes, so it can be disabled on the command
495 * line
496 */
497
498static int use_alien_caches __read_mostly = 1;
499static int __init noaliencache_setup(char *s)
500{
501 use_alien_caches = 0;
502 return 1;
503}
504__setup("noaliencache", noaliencache_setup);
505
3df1cccd
DR
506static int __init slab_max_order_setup(char *str)
507{
508 get_option(&str, &slab_max_order);
509 slab_max_order = slab_max_order < 0 ? 0 :
510 min(slab_max_order, MAX_ORDER - 1);
511 slab_max_order_set = true;
512
513 return 1;
514}
515__setup("slab_max_order=", slab_max_order_setup);
516
8fce4d8e
CL
517#ifdef CONFIG_NUMA
518/*
519 * Special reaping functions for NUMA systems called from cache_reap().
520 * These take care of doing round robin flushing of alien caches (containing
521 * objects freed on different nodes from which they were allocated) and the
522 * flushing of remote pcps by calling drain_node_pages.
523 */
1871e52c 524static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
525
526static void init_reap_node(int cpu)
527{
0edaf86c
AM
528 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
529 node_online_map);
8fce4d8e
CL
530}
531
532static void next_reap_node(void)
533{
909ea964 534 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 535
0edaf86c 536 node = next_node_in(node, node_online_map);
909ea964 537 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
538}
539
540#else
541#define init_reap_node(cpu) do { } while (0)
542#define next_reap_node(void) do { } while (0)
543#endif
544
1da177e4
LT
545/*
546 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
547 * via the workqueue/eventd.
548 * Add the CPU number into the expiration time to minimize the possibility of
549 * the CPUs getting into lockstep and contending for the global cache chain
550 * lock.
551 */
0db0628d 552static void start_cpu_timer(int cpu)
1da177e4 553{
1871e52c 554 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4 555
eac0337a 556 if (reap_work->work.func == NULL) {
8fce4d8e 557 init_reap_node(cpu);
203b42f7 558 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
559 schedule_delayed_work_on(cpu, reap_work,
560 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
561 }
562}
563
1fe00d50 564static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 565{
d5cff635
CM
566 /*
567 * The array_cache structures contain pointers to free object.
25985edc 568 * However, when such objects are allocated or transferred to another
d5cff635
CM
569 * cache the pointers are not cleared and they could be counted as
570 * valid references during a kmemleak scan. Therefore, kmemleak must
571 * not scan such objects.
572 */
1fe00d50
JK
573 kmemleak_no_scan(ac);
574 if (ac) {
575 ac->avail = 0;
576 ac->limit = limit;
577 ac->batchcount = batch;
578 ac->touched = 0;
1da177e4 579 }
1fe00d50
JK
580}
581
582static struct array_cache *alloc_arraycache(int node, int entries,
583 int batchcount, gfp_t gfp)
584{
5e804789 585 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
586 struct array_cache *ac = NULL;
587
588 ac = kmalloc_node(memsize, gfp, node);
589 init_arraycache(ac, entries, batchcount);
590 return ac;
1da177e4
LT
591}
592
f68f8ddd
JK
593static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
594 struct page *page, void *objp)
072bb0aa 595{
f68f8ddd
JK
596 struct kmem_cache_node *n;
597 int page_node;
598 LIST_HEAD(list);
072bb0aa 599
f68f8ddd
JK
600 page_node = page_to_nid(page);
601 n = get_node(cachep, page_node);
381760ea 602
f68f8ddd
JK
603 spin_lock(&n->list_lock);
604 free_block(cachep, &objp, 1, page_node, &list);
605 spin_unlock(&n->list_lock);
381760ea 606
f68f8ddd 607 slabs_destroy(cachep, &list);
072bb0aa
MG
608}
609
3ded175a
CL
610/*
611 * Transfer objects in one arraycache to another.
612 * Locking must be handled by the caller.
613 *
614 * Return the number of entries transferred.
615 */
616static int transfer_objects(struct array_cache *to,
617 struct array_cache *from, unsigned int max)
618{
619 /* Figure out how many entries to transfer */
732eacc0 620 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
621
622 if (!nr)
623 return 0;
624
625 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
626 sizeof(void *) *nr);
627
628 from->avail -= nr;
629 to->avail += nr;
3ded175a
CL
630 return nr;
631}
632
765c4507
CL
633#ifndef CONFIG_NUMA
634
635#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 636#define reap_alien(cachep, n) do { } while (0)
765c4507 637
c8522a3a
JK
638static inline struct alien_cache **alloc_alien_cache(int node,
639 int limit, gfp_t gfp)
765c4507 640{
8888177e 641 return NULL;
765c4507
CL
642}
643
c8522a3a 644static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
645{
646}
647
648static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
649{
650 return 0;
651}
652
653static inline void *alternate_node_alloc(struct kmem_cache *cachep,
654 gfp_t flags)
655{
656 return NULL;
657}
658
8b98c169 659static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
660 gfp_t flags, int nodeid)
661{
662 return NULL;
663}
664
4167e9b2
DR
665static inline gfp_t gfp_exact_node(gfp_t flags)
666{
444eb2a4 667 return flags & ~__GFP_NOFAIL;
4167e9b2
DR
668}
669
765c4507
CL
670#else /* CONFIG_NUMA */
671
8b98c169 672static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 673static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 674
c8522a3a
JK
675static struct alien_cache *__alloc_alien_cache(int node, int entries,
676 int batch, gfp_t gfp)
677{
5e804789 678 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
679 struct alien_cache *alc = NULL;
680
681 alc = kmalloc_node(memsize, gfp, node);
682 init_arraycache(&alc->ac, entries, batch);
49dfc304 683 spin_lock_init(&alc->lock);
c8522a3a
JK
684 return alc;
685}
686
687static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 688{
c8522a3a 689 struct alien_cache **alc_ptr;
5e804789 690 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
691 int i;
692
693 if (limit > 1)
694 limit = 12;
c8522a3a
JK
695 alc_ptr = kzalloc_node(memsize, gfp, node);
696 if (!alc_ptr)
697 return NULL;
698
699 for_each_node(i) {
700 if (i == node || !node_online(i))
701 continue;
702 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
703 if (!alc_ptr[i]) {
704 for (i--; i >= 0; i--)
705 kfree(alc_ptr[i]);
706 kfree(alc_ptr);
707 return NULL;
e498be7d
CL
708 }
709 }
c8522a3a 710 return alc_ptr;
e498be7d
CL
711}
712
c8522a3a 713static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
714{
715 int i;
716
c8522a3a 717 if (!alc_ptr)
e498be7d 718 return;
e498be7d 719 for_each_node(i)
c8522a3a
JK
720 kfree(alc_ptr[i]);
721 kfree(alc_ptr);
e498be7d
CL
722}
723
343e0d7a 724static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
725 struct array_cache *ac, int node,
726 struct list_head *list)
e498be7d 727{
18bf8541 728 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
729
730 if (ac->avail) {
ce8eb6c4 731 spin_lock(&n->list_lock);
e00946fe
CL
732 /*
733 * Stuff objects into the remote nodes shared array first.
734 * That way we could avoid the overhead of putting the objects
735 * into the free lists and getting them back later.
736 */
ce8eb6c4
CL
737 if (n->shared)
738 transfer_objects(n->shared, ac, ac->limit);
e00946fe 739
833b706c 740 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 741 ac->avail = 0;
ce8eb6c4 742 spin_unlock(&n->list_lock);
e498be7d
CL
743 }
744}
745
8fce4d8e
CL
746/*
747 * Called from cache_reap() to regularly drain alien caches round robin.
748 */
ce8eb6c4 749static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 750{
909ea964 751 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 752
ce8eb6c4 753 if (n->alien) {
c8522a3a
JK
754 struct alien_cache *alc = n->alien[node];
755 struct array_cache *ac;
756
757 if (alc) {
758 ac = &alc->ac;
49dfc304 759 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
760 LIST_HEAD(list);
761
762 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 763 spin_unlock_irq(&alc->lock);
833b706c 764 slabs_destroy(cachep, &list);
c8522a3a 765 }
8fce4d8e
CL
766 }
767 }
768}
769
a737b3e2 770static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 771 struct alien_cache **alien)
e498be7d 772{
b28a02de 773 int i = 0;
c8522a3a 774 struct alien_cache *alc;
e498be7d
CL
775 struct array_cache *ac;
776 unsigned long flags;
777
778 for_each_online_node(i) {
c8522a3a
JK
779 alc = alien[i];
780 if (alc) {
833b706c
JK
781 LIST_HEAD(list);
782
c8522a3a 783 ac = &alc->ac;
49dfc304 784 spin_lock_irqsave(&alc->lock, flags);
833b706c 785 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 786 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 787 slabs_destroy(cachep, &list);
e498be7d
CL
788 }
789 }
790}
729bd0b7 791
25c4f304
JK
792static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
793 int node, int page_node)
729bd0b7 794{
ce8eb6c4 795 struct kmem_cache_node *n;
c8522a3a
JK
796 struct alien_cache *alien = NULL;
797 struct array_cache *ac;
97654dfa 798 LIST_HEAD(list);
1ca4cb24 799
18bf8541 800 n = get_node(cachep, node);
729bd0b7 801 STATS_INC_NODEFREES(cachep);
25c4f304
JK
802 if (n->alien && n->alien[page_node]) {
803 alien = n->alien[page_node];
c8522a3a 804 ac = &alien->ac;
49dfc304 805 spin_lock(&alien->lock);
c8522a3a 806 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 807 STATS_INC_ACOVERFLOW(cachep);
25c4f304 808 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 809 }
f68f8ddd 810 ac->entry[ac->avail++] = objp;
49dfc304 811 spin_unlock(&alien->lock);
833b706c 812 slabs_destroy(cachep, &list);
729bd0b7 813 } else {
25c4f304 814 n = get_node(cachep, page_node);
18bf8541 815 spin_lock(&n->list_lock);
25c4f304 816 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 817 spin_unlock(&n->list_lock);
97654dfa 818 slabs_destroy(cachep, &list);
729bd0b7
PE
819 }
820 return 1;
821}
25c4f304
JK
822
823static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
824{
825 int page_node = page_to_nid(virt_to_page(objp));
826 int node = numa_mem_id();
827 /*
828 * Make sure we are not freeing a object from another node to the array
829 * cache on this cpu.
830 */
831 if (likely(node == page_node))
832 return 0;
833
834 return __cache_free_alien(cachep, objp, node, page_node);
835}
4167e9b2
DR
836
837/*
444eb2a4
MG
838 * Construct gfp mask to allocate from a specific node but do not reclaim or
839 * warn about failures.
4167e9b2
DR
840 */
841static inline gfp_t gfp_exact_node(gfp_t flags)
842{
444eb2a4 843 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
4167e9b2 844}
e498be7d
CL
845#endif
846
ded0ecf6
JK
847static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
848{
849 struct kmem_cache_node *n;
850
851 /*
852 * Set up the kmem_cache_node for cpu before we can
853 * begin anything. Make sure some other cpu on this
854 * node has not already allocated this
855 */
856 n = get_node(cachep, node);
857 if (n) {
858 spin_lock_irq(&n->list_lock);
859 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
860 cachep->num;
861 spin_unlock_irq(&n->list_lock);
862
863 return 0;
864 }
865
866 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
867 if (!n)
868 return -ENOMEM;
869
870 kmem_cache_node_init(n);
871 n->next_reap = jiffies + REAPTIMEOUT_NODE +
872 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
873
874 n->free_limit =
875 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
876
877 /*
878 * The kmem_cache_nodes don't come and go as CPUs
879 * come and go. slab_mutex is sufficient
880 * protection here.
881 */
882 cachep->node[node] = n;
883
884 return 0;
885}
886
6731d4f1 887#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
8f9f8d9e 888/*
6a67368c 889 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 890 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 891 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 892 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
893 * already in use.
894 *
18004c5d 895 * Must hold slab_mutex.
8f9f8d9e 896 */
6a67368c 897static int init_cache_node_node(int node)
8f9f8d9e 898{
ded0ecf6 899 int ret;
8f9f8d9e 900 struct kmem_cache *cachep;
8f9f8d9e 901
18004c5d 902 list_for_each_entry(cachep, &slab_caches, list) {
ded0ecf6
JK
903 ret = init_cache_node(cachep, node, GFP_KERNEL);
904 if (ret)
905 return ret;
8f9f8d9e 906 }
ded0ecf6 907
8f9f8d9e
DR
908 return 0;
909}
6731d4f1 910#endif
8f9f8d9e 911
c3d332b6
JK
912static int setup_kmem_cache_node(struct kmem_cache *cachep,
913 int node, gfp_t gfp, bool force_change)
914{
915 int ret = -ENOMEM;
916 struct kmem_cache_node *n;
917 struct array_cache *old_shared = NULL;
918 struct array_cache *new_shared = NULL;
919 struct alien_cache **new_alien = NULL;
920 LIST_HEAD(list);
921
922 if (use_alien_caches) {
923 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
924 if (!new_alien)
925 goto fail;
926 }
927
928 if (cachep->shared) {
929 new_shared = alloc_arraycache(node,
930 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
931 if (!new_shared)
932 goto fail;
933 }
934
935 ret = init_cache_node(cachep, node, gfp);
936 if (ret)
937 goto fail;
938
939 n = get_node(cachep, node);
940 spin_lock_irq(&n->list_lock);
941 if (n->shared && force_change) {
942 free_block(cachep, n->shared->entry,
943 n->shared->avail, node, &list);
944 n->shared->avail = 0;
945 }
946
947 if (!n->shared || force_change) {
948 old_shared = n->shared;
949 n->shared = new_shared;
950 new_shared = NULL;
951 }
952
953 if (!n->alien) {
954 n->alien = new_alien;
955 new_alien = NULL;
956 }
957
958 spin_unlock_irq(&n->list_lock);
959 slabs_destroy(cachep, &list);
960
801faf0d
JK
961 /*
962 * To protect lockless access to n->shared during irq disabled context.
963 * If n->shared isn't NULL in irq disabled context, accessing to it is
964 * guaranteed to be valid until irq is re-enabled, because it will be
965 * freed after synchronize_sched().
966 */
86d9f485 967 if (old_shared && force_change)
801faf0d
JK
968 synchronize_sched();
969
c3d332b6
JK
970fail:
971 kfree(old_shared);
972 kfree(new_shared);
973 free_alien_cache(new_alien);
974
975 return ret;
976}
977
6731d4f1
SAS
978#ifdef CONFIG_SMP
979
0db0628d 980static void cpuup_canceled(long cpu)
fbf1e473
AM
981{
982 struct kmem_cache *cachep;
ce8eb6c4 983 struct kmem_cache_node *n = NULL;
7d6e6d09 984 int node = cpu_to_mem(cpu);
a70f7302 985 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 986
18004c5d 987 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
988 struct array_cache *nc;
989 struct array_cache *shared;
c8522a3a 990 struct alien_cache **alien;
97654dfa 991 LIST_HEAD(list);
fbf1e473 992
18bf8541 993 n = get_node(cachep, node);
ce8eb6c4 994 if (!n)
bf0dea23 995 continue;
fbf1e473 996
ce8eb6c4 997 spin_lock_irq(&n->list_lock);
fbf1e473 998
ce8eb6c4
CL
999 /* Free limit for this kmem_cache_node */
1000 n->free_limit -= cachep->batchcount;
bf0dea23
JK
1001
1002 /* cpu is dead; no one can alloc from it. */
1003 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1004 if (nc) {
97654dfa 1005 free_block(cachep, nc->entry, nc->avail, node, &list);
bf0dea23
JK
1006 nc->avail = 0;
1007 }
fbf1e473 1008
58463c1f 1009 if (!cpumask_empty(mask)) {
ce8eb6c4 1010 spin_unlock_irq(&n->list_lock);
bf0dea23 1011 goto free_slab;
fbf1e473
AM
1012 }
1013
ce8eb6c4 1014 shared = n->shared;
fbf1e473
AM
1015 if (shared) {
1016 free_block(cachep, shared->entry,
97654dfa 1017 shared->avail, node, &list);
ce8eb6c4 1018 n->shared = NULL;
fbf1e473
AM
1019 }
1020
ce8eb6c4
CL
1021 alien = n->alien;
1022 n->alien = NULL;
fbf1e473 1023
ce8eb6c4 1024 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1025
1026 kfree(shared);
1027 if (alien) {
1028 drain_alien_cache(cachep, alien);
1029 free_alien_cache(alien);
1030 }
bf0dea23
JK
1031
1032free_slab:
97654dfa 1033 slabs_destroy(cachep, &list);
fbf1e473
AM
1034 }
1035 /*
1036 * In the previous loop, all the objects were freed to
1037 * the respective cache's slabs, now we can go ahead and
1038 * shrink each nodelist to its limit.
1039 */
18004c5d 1040 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1041 n = get_node(cachep, node);
ce8eb6c4 1042 if (!n)
fbf1e473 1043 continue;
a5aa63a5 1044 drain_freelist(cachep, n, INT_MAX);
fbf1e473
AM
1045 }
1046}
1047
0db0628d 1048static int cpuup_prepare(long cpu)
1da177e4 1049{
343e0d7a 1050 struct kmem_cache *cachep;
7d6e6d09 1051 int node = cpu_to_mem(cpu);
8f9f8d9e 1052 int err;
1da177e4 1053
fbf1e473
AM
1054 /*
1055 * We need to do this right in the beginning since
1056 * alloc_arraycache's are going to use this list.
1057 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1058 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1059 */
6a67368c 1060 err = init_cache_node_node(node);
8f9f8d9e
DR
1061 if (err < 0)
1062 goto bad;
fbf1e473
AM
1063
1064 /*
1065 * Now we can go ahead with allocating the shared arrays and
1066 * array caches
1067 */
18004c5d 1068 list_for_each_entry(cachep, &slab_caches, list) {
c3d332b6
JK
1069 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1070 if (err)
1071 goto bad;
fbf1e473 1072 }
ce79ddc8 1073
fbf1e473
AM
1074 return 0;
1075bad:
12d00f6a 1076 cpuup_canceled(cpu);
fbf1e473
AM
1077 return -ENOMEM;
1078}
1079
6731d4f1 1080int slab_prepare_cpu(unsigned int cpu)
fbf1e473 1081{
6731d4f1 1082 int err;
fbf1e473 1083
6731d4f1
SAS
1084 mutex_lock(&slab_mutex);
1085 err = cpuup_prepare(cpu);
1086 mutex_unlock(&slab_mutex);
1087 return err;
1088}
1089
1090/*
1091 * This is called for a failed online attempt and for a successful
1092 * offline.
1093 *
1094 * Even if all the cpus of a node are down, we don't free the
1095 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1096 * a kmalloc allocation from another cpu for memory from the node of
1097 * the cpu going down. The list3 structure is usually allocated from
1098 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1099 */
1100int slab_dead_cpu(unsigned int cpu)
1101{
1102 mutex_lock(&slab_mutex);
1103 cpuup_canceled(cpu);
1104 mutex_unlock(&slab_mutex);
1105 return 0;
1106}
8f5be20b 1107#endif
6731d4f1
SAS
1108
1109static int slab_online_cpu(unsigned int cpu)
1110{
1111 start_cpu_timer(cpu);
1112 return 0;
1da177e4
LT
1113}
1114
6731d4f1
SAS
1115static int slab_offline_cpu(unsigned int cpu)
1116{
1117 /*
1118 * Shutdown cache reaper. Note that the slab_mutex is held so
1119 * that if cache_reap() is invoked it cannot do anything
1120 * expensive but will only modify reap_work and reschedule the
1121 * timer.
1122 */
1123 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1124 /* Now the cache_reaper is guaranteed to be not running. */
1125 per_cpu(slab_reap_work, cpu).work.func = NULL;
1126 return 0;
1127}
1da177e4 1128
8f9f8d9e
DR
1129#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1130/*
1131 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1132 * Returns -EBUSY if all objects cannot be drained so that the node is not
1133 * removed.
1134 *
18004c5d 1135 * Must hold slab_mutex.
8f9f8d9e 1136 */
6a67368c 1137static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1138{
1139 struct kmem_cache *cachep;
1140 int ret = 0;
1141
18004c5d 1142 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1143 struct kmem_cache_node *n;
8f9f8d9e 1144
18bf8541 1145 n = get_node(cachep, node);
ce8eb6c4 1146 if (!n)
8f9f8d9e
DR
1147 continue;
1148
a5aa63a5 1149 drain_freelist(cachep, n, INT_MAX);
8f9f8d9e 1150
ce8eb6c4
CL
1151 if (!list_empty(&n->slabs_full) ||
1152 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1153 ret = -EBUSY;
1154 break;
1155 }
1156 }
1157 return ret;
1158}
1159
1160static int __meminit slab_memory_callback(struct notifier_block *self,
1161 unsigned long action, void *arg)
1162{
1163 struct memory_notify *mnb = arg;
1164 int ret = 0;
1165 int nid;
1166
1167 nid = mnb->status_change_nid;
1168 if (nid < 0)
1169 goto out;
1170
1171 switch (action) {
1172 case MEM_GOING_ONLINE:
18004c5d 1173 mutex_lock(&slab_mutex);
6a67368c 1174 ret = init_cache_node_node(nid);
18004c5d 1175 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1176 break;
1177 case MEM_GOING_OFFLINE:
18004c5d 1178 mutex_lock(&slab_mutex);
6a67368c 1179 ret = drain_cache_node_node(nid);
18004c5d 1180 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1181 break;
1182 case MEM_ONLINE:
1183 case MEM_OFFLINE:
1184 case MEM_CANCEL_ONLINE:
1185 case MEM_CANCEL_OFFLINE:
1186 break;
1187 }
1188out:
5fda1bd5 1189 return notifier_from_errno(ret);
8f9f8d9e
DR
1190}
1191#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1192
e498be7d 1193/*
ce8eb6c4 1194 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1195 */
6744f087 1196static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1197 int nodeid)
e498be7d 1198{
6744f087 1199 struct kmem_cache_node *ptr;
e498be7d 1200
6744f087 1201 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1202 BUG_ON(!ptr);
1203
6744f087 1204 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1205 /*
1206 * Do not assume that spinlocks can be initialized via memcpy:
1207 */
1208 spin_lock_init(&ptr->list_lock);
1209
e498be7d 1210 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1211 cachep->node[nodeid] = ptr;
e498be7d
CL
1212}
1213
556a169d 1214/*
ce8eb6c4
CL
1215 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1216 * size of kmem_cache_node.
556a169d 1217 */
ce8eb6c4 1218static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1219{
1220 int node;
1221
1222 for_each_online_node(node) {
ce8eb6c4 1223 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1224 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1225 REAPTIMEOUT_NODE +
1226 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1227 }
1228}
1229
a737b3e2
AM
1230/*
1231 * Initialisation. Called after the page allocator have been initialised and
1232 * before smp_init().
1da177e4
LT
1233 */
1234void __init kmem_cache_init(void)
1235{
e498be7d
CL
1236 int i;
1237
9b030cb8
CL
1238 kmem_cache = &kmem_cache_boot;
1239
8888177e 1240 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
62918a03
SS
1241 use_alien_caches = 0;
1242
3c583465 1243 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1244 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1245
1da177e4
LT
1246 /*
1247 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1248 * page orders on machines with more than 32MB of memory if
1249 * not overridden on the command line.
1da177e4 1250 */
3df1cccd 1251 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1252 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1253
1da177e4
LT
1254 /* Bootstrap is tricky, because several objects are allocated
1255 * from caches that do not exist yet:
9b030cb8
CL
1256 * 1) initialize the kmem_cache cache: it contains the struct
1257 * kmem_cache structures of all caches, except kmem_cache itself:
1258 * kmem_cache is statically allocated.
e498be7d 1259 * Initially an __init data area is used for the head array and the
ce8eb6c4 1260 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1261 * array at the end of the bootstrap.
1da177e4 1262 * 2) Create the first kmalloc cache.
343e0d7a 1263 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1264 * An __init data area is used for the head array.
1265 * 3) Create the remaining kmalloc caches, with minimally sized
1266 * head arrays.
9b030cb8 1267 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1268 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1269 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1270 * the other cache's with kmalloc allocated memory.
1271 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1272 */
1273
9b030cb8 1274 /* 1) create the kmem_cache */
1da177e4 1275
8da3430d 1276 /*
b56efcf0 1277 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1278 */
2f9baa9f 1279 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1280 offsetof(struct kmem_cache, node) +
6744f087 1281 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 1282 SLAB_HWCACHE_ALIGN, 0, 0);
2f9baa9f 1283 list_add(&kmem_cache->list, &slab_caches);
880cd276 1284 memcg_link_cache(kmem_cache);
bf0dea23 1285 slab_state = PARTIAL;
1da177e4 1286
a737b3e2 1287 /*
bf0dea23
JK
1288 * Initialize the caches that provide memory for the kmem_cache_node
1289 * structures first. Without this, further allocations will bug.
e498be7d 1290 */
cc252eae 1291 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
af3b5f87 1292 kmalloc_info[INDEX_NODE].name,
6c0c21ad
DW
1293 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
1294 0, kmalloc_size(INDEX_NODE));
bf0dea23 1295 slab_state = PARTIAL_NODE;
34cc6990 1296 setup_kmalloc_cache_index_table();
e498be7d 1297
e0a42726
IM
1298 slab_early_init = 0;
1299
ce8eb6c4 1300 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1301 {
1ca4cb24
PE
1302 int nid;
1303
9c09a95c 1304 for_each_online_node(nid) {
ce8eb6c4 1305 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1306
cc252eae 1307 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
ce8eb6c4 1308 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1309 }
1310 }
1da177e4 1311
f97d5f63 1312 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1313}
1314
1315void __init kmem_cache_init_late(void)
1316{
1317 struct kmem_cache *cachep;
1318
8429db5c 1319 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1320 mutex_lock(&slab_mutex);
1321 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1322 if (enable_cpucache(cachep, GFP_NOWAIT))
1323 BUG();
18004c5d 1324 mutex_unlock(&slab_mutex);
056c6241 1325
97d06609
CL
1326 /* Done! */
1327 slab_state = FULL;
1328
8f9f8d9e
DR
1329#ifdef CONFIG_NUMA
1330 /*
1331 * Register a memory hotplug callback that initializes and frees
6a67368c 1332 * node.
8f9f8d9e
DR
1333 */
1334 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1335#endif
1336
a737b3e2
AM
1337 /*
1338 * The reap timers are started later, with a module init call: That part
1339 * of the kernel is not yet operational.
1da177e4
LT
1340 */
1341}
1342
1343static int __init cpucache_init(void)
1344{
6731d4f1 1345 int ret;
1da177e4 1346
a737b3e2
AM
1347 /*
1348 * Register the timers that return unneeded pages to the page allocator
1da177e4 1349 */
6731d4f1
SAS
1350 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1351 slab_online_cpu, slab_offline_cpu);
1352 WARN_ON(ret < 0);
a164f896 1353
1da177e4
LT
1354 return 0;
1355}
1da177e4
LT
1356__initcall(cpucache_init);
1357
8bdec192
RA
1358static noinline void
1359slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1360{
9a02d699 1361#if DEBUG
ce8eb6c4 1362 struct kmem_cache_node *n;
8bdec192
RA
1363 unsigned long flags;
1364 int node;
9a02d699
DR
1365 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1366 DEFAULT_RATELIMIT_BURST);
1367
1368 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1369 return;
8bdec192 1370
5b3810e5
VB
1371 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1372 nodeid, gfpflags, &gfpflags);
1373 pr_warn(" cache: %s, object size: %d, order: %d\n",
3b0efdfa 1374 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1375
18bf8541 1376 for_each_kmem_cache_node(cachep, node, n) {
bf00bd34 1377 unsigned long total_slabs, free_slabs, free_objs;
8bdec192 1378
ce8eb6c4 1379 spin_lock_irqsave(&n->list_lock, flags);
bf00bd34
DR
1380 total_slabs = n->total_slabs;
1381 free_slabs = n->free_slabs;
1382 free_objs = n->free_objects;
ce8eb6c4 1383 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192 1384
bf00bd34
DR
1385 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1386 node, total_slabs - free_slabs, total_slabs,
1387 (total_slabs * cachep->num) - free_objs,
1388 total_slabs * cachep->num);
8bdec192 1389 }
9a02d699 1390#endif
8bdec192
RA
1391}
1392
1da177e4 1393/*
8a7d9b43
WSH
1394 * Interface to system's page allocator. No need to hold the
1395 * kmem_cache_node ->list_lock.
1da177e4
LT
1396 *
1397 * If we requested dmaable memory, we will get it. Even if we
1398 * did not request dmaable memory, we might get it, but that
1399 * would be relatively rare and ignorable.
1400 */
0c3aa83e
JK
1401static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1402 int nodeid)
1da177e4
LT
1403{
1404 struct page *page;
e1b6aa6f 1405 int nr_pages;
765c4507 1406
a618e89f 1407 flags |= cachep->allocflags;
e1b6aa6f 1408
75f296d9 1409 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
8bdec192 1410 if (!page) {
9a02d699 1411 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1412 return NULL;
8bdec192 1413 }
1da177e4 1414
f3ccb2c4
VD
1415 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1416 __free_pages(page, cachep->gfporder);
1417 return NULL;
1418 }
1419
e1b6aa6f 1420 nr_pages = (1 << cachep->gfporder);
1da177e4 1421 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
7779f212 1422 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
972d1a7b 1423 else
7779f212 1424 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
f68f8ddd 1425
a57a4988 1426 __SetPageSlab(page);
f68f8ddd
JK
1427 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1428 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
a57a4988 1429 SetPageSlabPfmemalloc(page);
072bb0aa 1430
0c3aa83e 1431 return page;
1da177e4
LT
1432}
1433
1434/*
1435 * Interface to system's page release.
1436 */
0c3aa83e 1437static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1438{
27ee57c9
VD
1439 int order = cachep->gfporder;
1440 unsigned long nr_freed = (1 << order);
1da177e4 1441
972d1a7b 1442 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
7779f212 1443 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
972d1a7b 1444 else
7779f212 1445 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
73293c2f 1446
a57a4988 1447 BUG_ON(!PageSlab(page));
73293c2f 1448 __ClearPageSlabPfmemalloc(page);
a57a4988 1449 __ClearPageSlab(page);
8456a648
JK
1450 page_mapcount_reset(page);
1451 page->mapping = NULL;
1f458cbf 1452
1da177e4
LT
1453 if (current->reclaim_state)
1454 current->reclaim_state->reclaimed_slab += nr_freed;
27ee57c9
VD
1455 memcg_uncharge_slab(page, order, cachep);
1456 __free_pages(page, order);
1da177e4
LT
1457}
1458
1459static void kmem_rcu_free(struct rcu_head *head)
1460{
68126702
JK
1461 struct kmem_cache *cachep;
1462 struct page *page;
1da177e4 1463
68126702
JK
1464 page = container_of(head, struct page, rcu_head);
1465 cachep = page->slab_cache;
1466
1467 kmem_freepages(cachep, page);
1da177e4
LT
1468}
1469
1470#if DEBUG
40b44137
JK
1471static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1472{
1473 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1474 (cachep->size % PAGE_SIZE) == 0)
1475 return true;
1476
1477 return false;
1478}
1da177e4
LT
1479
1480#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1481static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1482 unsigned long caller)
1da177e4 1483{
8c138bc0 1484 int size = cachep->object_size;
1da177e4 1485
3dafccf2 1486 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1487
b28a02de 1488 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1489 return;
1490
b28a02de
PE
1491 *addr++ = 0x12345678;
1492 *addr++ = caller;
1493 *addr++ = smp_processor_id();
1494 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1495 {
1496 unsigned long *sptr = &caller;
1497 unsigned long svalue;
1498
1499 while (!kstack_end(sptr)) {
1500 svalue = *sptr++;
1501 if (kernel_text_address(svalue)) {
b28a02de 1502 *addr++ = svalue;
1da177e4
LT
1503 size -= sizeof(unsigned long);
1504 if (size <= sizeof(unsigned long))
1505 break;
1506 }
1507 }
1508
1509 }
b28a02de 1510 *addr++ = 0x87654321;
1da177e4 1511}
40b44137
JK
1512
1513static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1514 int map, unsigned long caller)
1515{
1516 if (!is_debug_pagealloc_cache(cachep))
1517 return;
1518
1519 if (caller)
1520 store_stackinfo(cachep, objp, caller);
1521
1522 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1523}
1524
1525#else
1526static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1527 int map, unsigned long caller) {}
1528
1da177e4
LT
1529#endif
1530
343e0d7a 1531static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1532{
8c138bc0 1533 int size = cachep->object_size;
3dafccf2 1534 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1535
1536 memset(addr, val, size);
b28a02de 1537 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1538}
1539
1540static void dump_line(char *data, int offset, int limit)
1541{
1542 int i;
aa83aa40
DJ
1543 unsigned char error = 0;
1544 int bad_count = 0;
1545
1170532b 1546 pr_err("%03x: ", offset);
aa83aa40
DJ
1547 for (i = 0; i < limit; i++) {
1548 if (data[offset + i] != POISON_FREE) {
1549 error = data[offset + i];
1550 bad_count++;
1551 }
aa83aa40 1552 }
fdde6abb
SAS
1553 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1554 &data[offset], limit, 1);
aa83aa40
DJ
1555
1556 if (bad_count == 1) {
1557 error ^= POISON_FREE;
1558 if (!(error & (error - 1))) {
1170532b 1559 pr_err("Single bit error detected. Probably bad RAM.\n");
aa83aa40 1560#ifdef CONFIG_X86
1170532b 1561 pr_err("Run memtest86+ or a similar memory test tool.\n");
aa83aa40 1562#else
1170532b 1563 pr_err("Run a memory test tool.\n");
aa83aa40
DJ
1564#endif
1565 }
1566 }
1da177e4
LT
1567}
1568#endif
1569
1570#if DEBUG
1571
343e0d7a 1572static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1573{
1574 int i, size;
1575 char *realobj;
1576
1577 if (cachep->flags & SLAB_RED_ZONE) {
1170532b
JP
1578 pr_err("Redzone: 0x%llx/0x%llx\n",
1579 *dbg_redzone1(cachep, objp),
1580 *dbg_redzone2(cachep, objp));
1da177e4
LT
1581 }
1582
85c3e4a5
GU
1583 if (cachep->flags & SLAB_STORE_USER)
1584 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
3dafccf2 1585 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1586 size = cachep->object_size;
b28a02de 1587 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1588 int limit;
1589 limit = 16;
b28a02de
PE
1590 if (i + limit > size)
1591 limit = size - i;
1da177e4
LT
1592 dump_line(realobj, i, limit);
1593 }
1594}
1595
343e0d7a 1596static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1597{
1598 char *realobj;
1599 int size, i;
1600 int lines = 0;
1601
40b44137
JK
1602 if (is_debug_pagealloc_cache(cachep))
1603 return;
1604
3dafccf2 1605 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1606 size = cachep->object_size;
1da177e4 1607
b28a02de 1608 for (i = 0; i < size; i++) {
1da177e4 1609 char exp = POISON_FREE;
b28a02de 1610 if (i == size - 1)
1da177e4
LT
1611 exp = POISON_END;
1612 if (realobj[i] != exp) {
1613 int limit;
1614 /* Mismatch ! */
1615 /* Print header */
1616 if (lines == 0) {
85c3e4a5 1617 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1170532b
JP
1618 print_tainted(), cachep->name,
1619 realobj, size);
1da177e4
LT
1620 print_objinfo(cachep, objp, 0);
1621 }
1622 /* Hexdump the affected line */
b28a02de 1623 i = (i / 16) * 16;
1da177e4 1624 limit = 16;
b28a02de
PE
1625 if (i + limit > size)
1626 limit = size - i;
1da177e4
LT
1627 dump_line(realobj, i, limit);
1628 i += 16;
1629 lines++;
1630 /* Limit to 5 lines */
1631 if (lines > 5)
1632 break;
1633 }
1634 }
1635 if (lines != 0) {
1636 /* Print some data about the neighboring objects, if they
1637 * exist:
1638 */
8456a648 1639 struct page *page = virt_to_head_page(objp);
8fea4e96 1640 unsigned int objnr;
1da177e4 1641
8456a648 1642 objnr = obj_to_index(cachep, page, objp);
1da177e4 1643 if (objnr) {
8456a648 1644 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1645 realobj = (char *)objp + obj_offset(cachep);
85c3e4a5 1646 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1da177e4
LT
1647 print_objinfo(cachep, objp, 2);
1648 }
b28a02de 1649 if (objnr + 1 < cachep->num) {
8456a648 1650 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1651 realobj = (char *)objp + obj_offset(cachep);
85c3e4a5 1652 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1da177e4
LT
1653 print_objinfo(cachep, objp, 2);
1654 }
1655 }
1656}
1657#endif
1658
12dd36fa 1659#if DEBUG
8456a648
JK
1660static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1661 struct page *page)
1da177e4 1662{
1da177e4 1663 int i;
b03a017b
JK
1664
1665 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1666 poison_obj(cachep, page->freelist - obj_offset(cachep),
1667 POISON_FREE);
1668 }
1669
1da177e4 1670 for (i = 0; i < cachep->num; i++) {
8456a648 1671 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1672
1673 if (cachep->flags & SLAB_POISON) {
1da177e4 1674 check_poison_obj(cachep, objp);
40b44137 1675 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
1676 }
1677 if (cachep->flags & SLAB_RED_ZONE) {
1678 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 1679 slab_error(cachep, "start of a freed object was overwritten");
1da177e4 1680 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 1681 slab_error(cachep, "end of a freed object was overwritten");
1da177e4 1682 }
1da177e4 1683 }
12dd36fa 1684}
1da177e4 1685#else
8456a648
JK
1686static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1687 struct page *page)
12dd36fa 1688{
12dd36fa 1689}
1da177e4
LT
1690#endif
1691
911851e6
RD
1692/**
1693 * slab_destroy - destroy and release all objects in a slab
1694 * @cachep: cache pointer being destroyed
cb8ee1a3 1695 * @page: page pointer being destroyed
911851e6 1696 *
8a7d9b43
WSH
1697 * Destroy all the objs in a slab page, and release the mem back to the system.
1698 * Before calling the slab page must have been unlinked from the cache. The
1699 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1700 */
8456a648 1701static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1702{
7e007355 1703 void *freelist;
12dd36fa 1704
8456a648
JK
1705 freelist = page->freelist;
1706 slab_destroy_debugcheck(cachep, page);
5f0d5a3a 1707 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
bc4f610d
KS
1708 call_rcu(&page->rcu_head, kmem_rcu_free);
1709 else
0c3aa83e 1710 kmem_freepages(cachep, page);
68126702
JK
1711
1712 /*
8456a648 1713 * From now on, we don't use freelist
68126702
JK
1714 * although actual page can be freed in rcu context
1715 */
1716 if (OFF_SLAB(cachep))
8456a648 1717 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1718}
1719
97654dfa
JK
1720static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1721{
1722 struct page *page, *n;
1723
1724 list_for_each_entry_safe(page, n, list, lru) {
1725 list_del(&page->lru);
1726 slab_destroy(cachep, page);
1727 }
1728}
1729
4d268eba 1730/**
a70773dd
RD
1731 * calculate_slab_order - calculate size (page order) of slabs
1732 * @cachep: pointer to the cache that is being created
1733 * @size: size of objects to be created in this cache.
a70773dd
RD
1734 * @flags: slab allocation flags
1735 *
1736 * Also calculates the number of objects per slab.
4d268eba
PE
1737 *
1738 * This could be made much more intelligent. For now, try to avoid using
1739 * high order pages for slabs. When the gfp() functions are more friendly
1740 * towards high-order requests, this should be changed.
1741 */
a737b3e2 1742static size_t calculate_slab_order(struct kmem_cache *cachep,
d50112ed 1743 size_t size, slab_flags_t flags)
4d268eba
PE
1744{
1745 size_t left_over = 0;
9888e6fa 1746 int gfporder;
4d268eba 1747
0aa817f0 1748 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1749 unsigned int num;
1750 size_t remainder;
1751
70f75067 1752 num = cache_estimate(gfporder, size, flags, &remainder);
4d268eba
PE
1753 if (!num)
1754 continue;
9888e6fa 1755
f315e3fa
JK
1756 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1757 if (num > SLAB_OBJ_MAX_NUM)
1758 break;
1759
b1ab41c4 1760 if (flags & CFLGS_OFF_SLAB) {
3217fd9b
JK
1761 struct kmem_cache *freelist_cache;
1762 size_t freelist_size;
1763
1764 freelist_size = num * sizeof(freelist_idx_t);
1765 freelist_cache = kmalloc_slab(freelist_size, 0u);
1766 if (!freelist_cache)
1767 continue;
1768
b1ab41c4 1769 /*
3217fd9b 1770 * Needed to avoid possible looping condition
76b342bd 1771 * in cache_grow_begin()
b1ab41c4 1772 */
3217fd9b
JK
1773 if (OFF_SLAB(freelist_cache))
1774 continue;
b1ab41c4 1775
3217fd9b
JK
1776 /* check if off slab has enough benefit */
1777 if (freelist_cache->size > cachep->size / 2)
1778 continue;
b1ab41c4 1779 }
4d268eba 1780
9888e6fa 1781 /* Found something acceptable - save it away */
4d268eba 1782 cachep->num = num;
9888e6fa 1783 cachep->gfporder = gfporder;
4d268eba
PE
1784 left_over = remainder;
1785
f78bb8ad
LT
1786 /*
1787 * A VFS-reclaimable slab tends to have most allocations
1788 * as GFP_NOFS and we really don't want to have to be allocating
1789 * higher-order pages when we are unable to shrink dcache.
1790 */
1791 if (flags & SLAB_RECLAIM_ACCOUNT)
1792 break;
1793
4d268eba
PE
1794 /*
1795 * Large number of objects is good, but very large slabs are
1796 * currently bad for the gfp()s.
1797 */
543585cc 1798 if (gfporder >= slab_max_order)
4d268eba
PE
1799 break;
1800
9888e6fa
LT
1801 /*
1802 * Acceptable internal fragmentation?
1803 */
a737b3e2 1804 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1805 break;
1806 }
1807 return left_over;
1808}
1809
bf0dea23
JK
1810static struct array_cache __percpu *alloc_kmem_cache_cpus(
1811 struct kmem_cache *cachep, int entries, int batchcount)
1812{
1813 int cpu;
1814 size_t size;
1815 struct array_cache __percpu *cpu_cache;
1816
1817 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1818 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1819
1820 if (!cpu_cache)
1821 return NULL;
1822
1823 for_each_possible_cpu(cpu) {
1824 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1825 entries, batchcount);
1826 }
1827
1828 return cpu_cache;
1829}
1830
bd721ea7 1831static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1832{
97d06609 1833 if (slab_state >= FULL)
83b519e8 1834 return enable_cpucache(cachep, gfp);
2ed3a4ef 1835
bf0dea23
JK
1836 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1837 if (!cachep->cpu_cache)
1838 return 1;
1839
97d06609 1840 if (slab_state == DOWN) {
bf0dea23
JK
1841 /* Creation of first cache (kmem_cache). */
1842 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1843 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1844 /* For kmem_cache_node */
1845 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1846 } else {
bf0dea23 1847 int node;
f30cf7d1 1848
bf0dea23
JK
1849 for_each_online_node(node) {
1850 cachep->node[node] = kmalloc_node(
1851 sizeof(struct kmem_cache_node), gfp, node);
1852 BUG_ON(!cachep->node[node]);
1853 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1854 }
1855 }
bf0dea23 1856
6a67368c 1857 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1858 jiffies + REAPTIMEOUT_NODE +
1859 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1860
1861 cpu_cache_get(cachep)->avail = 0;
1862 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1863 cpu_cache_get(cachep)->batchcount = 1;
1864 cpu_cache_get(cachep)->touched = 0;
1865 cachep->batchcount = 1;
1866 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1867 return 0;
f30cf7d1
PE
1868}
1869
0293d1fd 1870slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1871 slab_flags_t flags, const char *name,
12220dea
JK
1872 void (*ctor)(void *))
1873{
1874 return flags;
1875}
1876
1877struct kmem_cache *
f4957d5b 1878__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 1879 slab_flags_t flags, void (*ctor)(void *))
12220dea
JK
1880{
1881 struct kmem_cache *cachep;
1882
1883 cachep = find_mergeable(size, align, flags, name, ctor);
1884 if (cachep) {
1885 cachep->refcount++;
1886
1887 /*
1888 * Adjust the object sizes so that we clear
1889 * the complete object on kzalloc.
1890 */
1891 cachep->object_size = max_t(int, cachep->object_size, size);
1892 }
1893 return cachep;
1894}
1895
b03a017b 1896static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
d50112ed 1897 size_t size, slab_flags_t flags)
b03a017b
JK
1898{
1899 size_t left;
1900
1901 cachep->num = 0;
1902
5f0d5a3a 1903 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
b03a017b
JK
1904 return false;
1905
1906 left = calculate_slab_order(cachep, size,
1907 flags | CFLGS_OBJFREELIST_SLAB);
1908 if (!cachep->num)
1909 return false;
1910
1911 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1912 return false;
1913
1914 cachep->colour = left / cachep->colour_off;
1915
1916 return true;
1917}
1918
158e319b 1919static bool set_off_slab_cache(struct kmem_cache *cachep,
d50112ed 1920 size_t size, slab_flags_t flags)
158e319b
JK
1921{
1922 size_t left;
1923
1924 cachep->num = 0;
1925
1926 /*
3217fd9b
JK
1927 * Always use on-slab management when SLAB_NOLEAKTRACE
1928 * to avoid recursive calls into kmemleak.
158e319b 1929 */
158e319b
JK
1930 if (flags & SLAB_NOLEAKTRACE)
1931 return false;
1932
1933 /*
1934 * Size is large, assume best to place the slab management obj
1935 * off-slab (should allow better packing of objs).
1936 */
1937 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1938 if (!cachep->num)
1939 return false;
1940
1941 /*
1942 * If the slab has been placed off-slab, and we have enough space then
1943 * move it on-slab. This is at the expense of any extra colouring.
1944 */
1945 if (left >= cachep->num * sizeof(freelist_idx_t))
1946 return false;
1947
1948 cachep->colour = left / cachep->colour_off;
1949
1950 return true;
1951}
1952
1953static bool set_on_slab_cache(struct kmem_cache *cachep,
d50112ed 1954 size_t size, slab_flags_t flags)
158e319b
JK
1955{
1956 size_t left;
1957
1958 cachep->num = 0;
1959
1960 left = calculate_slab_order(cachep, size, flags);
1961 if (!cachep->num)
1962 return false;
1963
1964 cachep->colour = left / cachep->colour_off;
1965
1966 return true;
1967}
1968
1da177e4 1969/**
039363f3 1970 * __kmem_cache_create - Create a cache.
a755b76a 1971 * @cachep: cache management descriptor
1da177e4 1972 * @flags: SLAB flags
1da177e4
LT
1973 *
1974 * Returns a ptr to the cache on success, NULL on failure.
1975 * Cannot be called within a int, but can be interrupted.
20c2df83 1976 * The @ctor is run when new pages are allocated by the cache.
1da177e4 1977 *
1da177e4
LT
1978 * The flags are
1979 *
1980 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1981 * to catch references to uninitialised memory.
1982 *
1983 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1984 * for buffer overruns.
1985 *
1da177e4
LT
1986 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1987 * cacheline. This can be beneficial if you're counting cycles as closely
1988 * as davem.
1989 */
d50112ed 1990int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1da177e4 1991{
d4a5fca5 1992 size_t ralign = BYTES_PER_WORD;
83b519e8 1993 gfp_t gfp;
278b1bb1 1994 int err;
be4a7988 1995 unsigned int size = cachep->size;
1da177e4 1996
1da177e4 1997#if DEBUG
1da177e4
LT
1998#if FORCED_DEBUG
1999 /*
2000 * Enable redzoning and last user accounting, except for caches with
2001 * large objects, if the increased size would increase the object size
2002 * above the next power of two: caches with object sizes just above a
2003 * power of two have a significant amount of internal fragmentation.
2004 */
87a927c7
DW
2005 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2006 2 * sizeof(unsigned long long)))
b28a02de 2007 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
5f0d5a3a 2008 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1da177e4
LT
2009 flags |= SLAB_POISON;
2010#endif
1da177e4 2011#endif
1da177e4 2012
a737b3e2
AM
2013 /*
2014 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2015 * unaligned accesses for some archs when redzoning is used, and makes
2016 * sure any on-slab bufctl's are also correctly aligned.
2017 */
e0771950 2018 size = ALIGN(size, BYTES_PER_WORD);
1da177e4 2019
87a927c7
DW
2020 if (flags & SLAB_RED_ZONE) {
2021 ralign = REDZONE_ALIGN;
2022 /* If redzoning, ensure that the second redzone is suitably
2023 * aligned, by adjusting the object size accordingly. */
e0771950 2024 size = ALIGN(size, REDZONE_ALIGN);
87a927c7 2025 }
ca5f9703 2026
a44b56d3 2027 /* 3) caller mandated alignment */
8a13a4cc
CL
2028 if (ralign < cachep->align) {
2029 ralign = cachep->align;
1da177e4 2030 }
3ff84a7f
PE
2031 /* disable debug if necessary */
2032 if (ralign > __alignof__(unsigned long long))
a44b56d3 2033 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2034 /*
ca5f9703 2035 * 4) Store it.
1da177e4 2036 */
8a13a4cc 2037 cachep->align = ralign;
158e319b
JK
2038 cachep->colour_off = cache_line_size();
2039 /* Offset must be a multiple of the alignment. */
2040 if (cachep->colour_off < cachep->align)
2041 cachep->colour_off = cachep->align;
1da177e4 2042
83b519e8
PE
2043 if (slab_is_available())
2044 gfp = GFP_KERNEL;
2045 else
2046 gfp = GFP_NOWAIT;
2047
1da177e4 2048#if DEBUG
1da177e4 2049
ca5f9703
PE
2050 /*
2051 * Both debugging options require word-alignment which is calculated
2052 * into align above.
2053 */
1da177e4 2054 if (flags & SLAB_RED_ZONE) {
1da177e4 2055 /* add space for red zone words */
3ff84a7f
PE
2056 cachep->obj_offset += sizeof(unsigned long long);
2057 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2058 }
2059 if (flags & SLAB_STORE_USER) {
ca5f9703 2060 /* user store requires one word storage behind the end of
87a927c7
DW
2061 * the real object. But if the second red zone needs to be
2062 * aligned to 64 bits, we must allow that much space.
1da177e4 2063 */
87a927c7
DW
2064 if (flags & SLAB_RED_ZONE)
2065 size += REDZONE_ALIGN;
2066 else
2067 size += BYTES_PER_WORD;
1da177e4 2068 }
832a15d2
JK
2069#endif
2070
7ed2f9e6
AP
2071 kasan_cache_create(cachep, &size, &flags);
2072
832a15d2
JK
2073 size = ALIGN(size, cachep->align);
2074 /*
2075 * We should restrict the number of objects in a slab to implement
2076 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2077 */
2078 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2079 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2080
2081#if DEBUG
03a2d2a3
JK
2082 /*
2083 * To activate debug pagealloc, off-slab management is necessary
2084 * requirement. In early phase of initialization, small sized slab
2085 * doesn't get initialized so it would not be possible. So, we need
2086 * to check size >= 256. It guarantees that all necessary small
2087 * sized slab is initialized in current slab initialization sequence.
2088 */
40323278 2089 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
f3a3c320
JK
2090 size >= 256 && cachep->object_size > cache_line_size()) {
2091 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2092 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2093
2094 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2095 flags |= CFLGS_OFF_SLAB;
2096 cachep->obj_offset += tmp_size - size;
2097 size = tmp_size;
2098 goto done;
2099 }
2100 }
1da177e4 2101 }
1da177e4
LT
2102#endif
2103
b03a017b
JK
2104 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2105 flags |= CFLGS_OBJFREELIST_SLAB;
2106 goto done;
2107 }
2108
158e319b 2109 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2110 flags |= CFLGS_OFF_SLAB;
158e319b 2111 goto done;
832a15d2 2112 }
1da177e4 2113
158e319b
JK
2114 if (set_on_slab_cache(cachep, size, flags))
2115 goto done;
1da177e4 2116
158e319b 2117 return -E2BIG;
1da177e4 2118
158e319b
JK
2119done:
2120 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2121 cachep->flags = flags;
a57a4988 2122 cachep->allocflags = __GFP_COMP;
a3187e43 2123 if (flags & SLAB_CACHE_DMA)
a618e89f 2124 cachep->allocflags |= GFP_DMA;
a3ba0744
DR
2125 if (flags & SLAB_RECLAIM_ACCOUNT)
2126 cachep->allocflags |= __GFP_RECLAIMABLE;
3b0efdfa 2127 cachep->size = size;
6a2d7a95 2128 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2129
40b44137
JK
2130#if DEBUG
2131 /*
2132 * If we're going to use the generic kernel_map_pages()
2133 * poisoning, then it's going to smash the contents of
2134 * the redzone and userword anyhow, so switch them off.
2135 */
2136 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2137 (cachep->flags & SLAB_POISON) &&
2138 is_debug_pagealloc_cache(cachep))
2139 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2140#endif
2141
2142 if (OFF_SLAB(cachep)) {
158e319b
JK
2143 cachep->freelist_cache =
2144 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2145 }
1da177e4 2146
278b1bb1
CL
2147 err = setup_cpu_cache(cachep, gfp);
2148 if (err) {
52b4b950 2149 __kmem_cache_release(cachep);
278b1bb1 2150 return err;
2ed3a4ef 2151 }
1da177e4 2152
278b1bb1 2153 return 0;
1da177e4 2154}
1da177e4
LT
2155
2156#if DEBUG
2157static void check_irq_off(void)
2158{
2159 BUG_ON(!irqs_disabled());
2160}
2161
2162static void check_irq_on(void)
2163{
2164 BUG_ON(irqs_disabled());
2165}
2166
18726ca8
JK
2167static void check_mutex_acquired(void)
2168{
2169 BUG_ON(!mutex_is_locked(&slab_mutex));
2170}
2171
343e0d7a 2172static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2173{
2174#ifdef CONFIG_SMP
2175 check_irq_off();
18bf8541 2176 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2177#endif
2178}
e498be7d 2179
343e0d7a 2180static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2181{
2182#ifdef CONFIG_SMP
2183 check_irq_off();
18bf8541 2184 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2185#endif
2186}
2187
1da177e4
LT
2188#else
2189#define check_irq_off() do { } while(0)
2190#define check_irq_on() do { } while(0)
18726ca8 2191#define check_mutex_acquired() do { } while(0)
1da177e4 2192#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2193#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2194#endif
2195
18726ca8
JK
2196static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2197 int node, bool free_all, struct list_head *list)
2198{
2199 int tofree;
2200
2201 if (!ac || !ac->avail)
2202 return;
2203
2204 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2205 if (tofree > ac->avail)
2206 tofree = (ac->avail + 1) / 2;
2207
2208 free_block(cachep, ac->entry, tofree, node, list);
2209 ac->avail -= tofree;
2210 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2211}
aab2207c 2212
1da177e4
LT
2213static void do_drain(void *arg)
2214{
a737b3e2 2215 struct kmem_cache *cachep = arg;
1da177e4 2216 struct array_cache *ac;
7d6e6d09 2217 int node = numa_mem_id();
18bf8541 2218 struct kmem_cache_node *n;
97654dfa 2219 LIST_HEAD(list);
1da177e4
LT
2220
2221 check_irq_off();
9a2dba4b 2222 ac = cpu_cache_get(cachep);
18bf8541
CL
2223 n = get_node(cachep, node);
2224 spin_lock(&n->list_lock);
97654dfa 2225 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2226 spin_unlock(&n->list_lock);
97654dfa 2227 slabs_destroy(cachep, &list);
1da177e4
LT
2228 ac->avail = 0;
2229}
2230
343e0d7a 2231static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2232{
ce8eb6c4 2233 struct kmem_cache_node *n;
e498be7d 2234 int node;
18726ca8 2235 LIST_HEAD(list);
e498be7d 2236
15c8b6c1 2237 on_each_cpu(do_drain, cachep, 1);
1da177e4 2238 check_irq_on();
18bf8541
CL
2239 for_each_kmem_cache_node(cachep, node, n)
2240 if (n->alien)
ce8eb6c4 2241 drain_alien_cache(cachep, n->alien);
a4523a8b 2242
18726ca8
JK
2243 for_each_kmem_cache_node(cachep, node, n) {
2244 spin_lock_irq(&n->list_lock);
2245 drain_array_locked(cachep, n->shared, node, true, &list);
2246 spin_unlock_irq(&n->list_lock);
2247
2248 slabs_destroy(cachep, &list);
2249 }
1da177e4
LT
2250}
2251
ed11d9eb
CL
2252/*
2253 * Remove slabs from the list of free slabs.
2254 * Specify the number of slabs to drain in tofree.
2255 *
2256 * Returns the actual number of slabs released.
2257 */
2258static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2259 struct kmem_cache_node *n, int tofree)
1da177e4 2260{
ed11d9eb
CL
2261 struct list_head *p;
2262 int nr_freed;
8456a648 2263 struct page *page;
1da177e4 2264
ed11d9eb 2265 nr_freed = 0;
ce8eb6c4 2266 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2267
ce8eb6c4
CL
2268 spin_lock_irq(&n->list_lock);
2269 p = n->slabs_free.prev;
2270 if (p == &n->slabs_free) {
2271 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2272 goto out;
2273 }
1da177e4 2274
8456a648 2275 page = list_entry(p, struct page, lru);
8456a648 2276 list_del(&page->lru);
f728b0a5 2277 n->free_slabs--;
bf00bd34 2278 n->total_slabs--;
ed11d9eb
CL
2279 /*
2280 * Safe to drop the lock. The slab is no longer linked
2281 * to the cache.
2282 */
ce8eb6c4
CL
2283 n->free_objects -= cache->num;
2284 spin_unlock_irq(&n->list_lock);
8456a648 2285 slab_destroy(cache, page);
ed11d9eb 2286 nr_freed++;
1da177e4 2287 }
ed11d9eb
CL
2288out:
2289 return nr_freed;
1da177e4
LT
2290}
2291
f9e13c0a
SB
2292bool __kmem_cache_empty(struct kmem_cache *s)
2293{
2294 int node;
2295 struct kmem_cache_node *n;
2296
2297 for_each_kmem_cache_node(s, node, n)
2298 if (!list_empty(&n->slabs_full) ||
2299 !list_empty(&n->slabs_partial))
2300 return false;
2301 return true;
2302}
2303
c9fc5864 2304int __kmem_cache_shrink(struct kmem_cache *cachep)
e498be7d 2305{
18bf8541
CL
2306 int ret = 0;
2307 int node;
ce8eb6c4 2308 struct kmem_cache_node *n;
e498be7d
CL
2309
2310 drain_cpu_caches(cachep);
2311
2312 check_irq_on();
18bf8541 2313 for_each_kmem_cache_node(cachep, node, n) {
a5aa63a5 2314 drain_freelist(cachep, n, INT_MAX);
ed11d9eb 2315
ce8eb6c4
CL
2316 ret += !list_empty(&n->slabs_full) ||
2317 !list_empty(&n->slabs_partial);
e498be7d
CL
2318 }
2319 return (ret ? 1 : 0);
2320}
2321
c9fc5864
TH
2322#ifdef CONFIG_MEMCG
2323void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2324{
2325 __kmem_cache_shrink(cachep);
2326}
2327#endif
2328
945cf2b6 2329int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950 2330{
c9fc5864 2331 return __kmem_cache_shrink(cachep);
52b4b950
DS
2332}
2333
2334void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2335{
12c3667f 2336 int i;
ce8eb6c4 2337 struct kmem_cache_node *n;
1da177e4 2338
c7ce4f60
TG
2339 cache_random_seq_destroy(cachep);
2340
bf0dea23 2341 free_percpu(cachep->cpu_cache);
1da177e4 2342
ce8eb6c4 2343 /* NUMA: free the node structures */
18bf8541
CL
2344 for_each_kmem_cache_node(cachep, i, n) {
2345 kfree(n->shared);
2346 free_alien_cache(n->alien);
2347 kfree(n);
2348 cachep->node[i] = NULL;
12c3667f 2349 }
1da177e4 2350}
1da177e4 2351
e5ac9c5a
RT
2352/*
2353 * Get the memory for a slab management obj.
5f0985bb
JZ
2354 *
2355 * For a slab cache when the slab descriptor is off-slab, the
2356 * slab descriptor can't come from the same cache which is being created,
2357 * Because if it is the case, that means we defer the creation of
2358 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2359 * And we eventually call down to __kmem_cache_create(), which
2360 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2361 * This is a "chicken-and-egg" problem.
2362 *
2363 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2364 * which are all initialized during kmem_cache_init().
e5ac9c5a 2365 */
7e007355 2366static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2367 struct page *page, int colour_off,
2368 gfp_t local_flags, int nodeid)
1da177e4 2369{
7e007355 2370 void *freelist;
0c3aa83e 2371 void *addr = page_address(page);
b28a02de 2372
2e6b3602
JK
2373 page->s_mem = addr + colour_off;
2374 page->active = 0;
2375
b03a017b
JK
2376 if (OBJFREELIST_SLAB(cachep))
2377 freelist = NULL;
2378 else if (OFF_SLAB(cachep)) {
1da177e4 2379 /* Slab management obj is off-slab. */
8456a648 2380 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2381 local_flags, nodeid);
8456a648 2382 if (!freelist)
1da177e4
LT
2383 return NULL;
2384 } else {
2e6b3602
JK
2385 /* We will use last bytes at the slab for freelist */
2386 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2387 cachep->freelist_size;
1da177e4 2388 }
2e6b3602 2389
8456a648 2390 return freelist;
1da177e4
LT
2391}
2392
7cc68973 2393static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2394{
a41adfaa 2395 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2396}
2397
2398static inline void set_free_obj(struct page *page,
7cc68973 2399 unsigned int idx, freelist_idx_t val)
e5c58dfd 2400{
a41adfaa 2401 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2402}
2403
10b2e9e8 2404static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
1da177e4 2405{
10b2e9e8 2406#if DEBUG
1da177e4
LT
2407 int i;
2408
2409 for (i = 0; i < cachep->num; i++) {
8456a648 2410 void *objp = index_to_obj(cachep, page, i);
10b2e9e8 2411
1da177e4
LT
2412 if (cachep->flags & SLAB_STORE_USER)
2413 *dbg_userword(cachep, objp) = NULL;
2414
2415 if (cachep->flags & SLAB_RED_ZONE) {
2416 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2417 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2418 }
2419 /*
a737b3e2
AM
2420 * Constructors are not allowed to allocate memory from the same
2421 * cache which they are a constructor for. Otherwise, deadlock.
2422 * They must also be threaded.
1da177e4 2423 */
7ed2f9e6
AP
2424 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2425 kasan_unpoison_object_data(cachep,
2426 objp + obj_offset(cachep));
51cc5068 2427 cachep->ctor(objp + obj_offset(cachep));
7ed2f9e6
AP
2428 kasan_poison_object_data(
2429 cachep, objp + obj_offset(cachep));
2430 }
1da177e4
LT
2431
2432 if (cachep->flags & SLAB_RED_ZONE) {
2433 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 2434 slab_error(cachep, "constructor overwrote the end of an object");
1da177e4 2435 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 2436 slab_error(cachep, "constructor overwrote the start of an object");
1da177e4 2437 }
40b44137
JK
2438 /* need to poison the objs? */
2439 if (cachep->flags & SLAB_POISON) {
2440 poison_obj(cachep, objp, POISON_FREE);
2441 slab_kernel_map(cachep, objp, 0, 0);
2442 }
10b2e9e8 2443 }
1da177e4 2444#endif
10b2e9e8
JK
2445}
2446
c7ce4f60
TG
2447#ifdef CONFIG_SLAB_FREELIST_RANDOM
2448/* Hold information during a freelist initialization */
2449union freelist_init_state {
2450 struct {
2451 unsigned int pos;
7c00fce9 2452 unsigned int *list;
c7ce4f60 2453 unsigned int count;
c7ce4f60
TG
2454 };
2455 struct rnd_state rnd_state;
2456};
2457
2458/*
2459 * Initialize the state based on the randomization methode available.
2460 * return true if the pre-computed list is available, false otherwize.
2461 */
2462static bool freelist_state_initialize(union freelist_init_state *state,
2463 struct kmem_cache *cachep,
2464 unsigned int count)
2465{
2466 bool ret;
2467 unsigned int rand;
2468
2469 /* Use best entropy available to define a random shift */
7c00fce9 2470 rand = get_random_int();
c7ce4f60
TG
2471
2472 /* Use a random state if the pre-computed list is not available */
2473 if (!cachep->random_seq) {
2474 prandom_seed_state(&state->rnd_state, rand);
2475 ret = false;
2476 } else {
2477 state->list = cachep->random_seq;
2478 state->count = count;
c4e490cf 2479 state->pos = rand % count;
c7ce4f60
TG
2480 ret = true;
2481 }
2482 return ret;
2483}
2484
2485/* Get the next entry on the list and randomize it using a random shift */
2486static freelist_idx_t next_random_slot(union freelist_init_state *state)
2487{
c4e490cf
JS
2488 if (state->pos >= state->count)
2489 state->pos = 0;
2490 return state->list[state->pos++];
c7ce4f60
TG
2491}
2492
7c00fce9
TG
2493/* Swap two freelist entries */
2494static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2495{
2496 swap(((freelist_idx_t *)page->freelist)[a],
2497 ((freelist_idx_t *)page->freelist)[b]);
2498}
2499
c7ce4f60
TG
2500/*
2501 * Shuffle the freelist initialization state based on pre-computed lists.
2502 * return true if the list was successfully shuffled, false otherwise.
2503 */
2504static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2505{
7c00fce9 2506 unsigned int objfreelist = 0, i, rand, count = cachep->num;
c7ce4f60
TG
2507 union freelist_init_state state;
2508 bool precomputed;
2509
2510 if (count < 2)
2511 return false;
2512
2513 precomputed = freelist_state_initialize(&state, cachep, count);
2514
2515 /* Take a random entry as the objfreelist */
2516 if (OBJFREELIST_SLAB(cachep)) {
2517 if (!precomputed)
2518 objfreelist = count - 1;
2519 else
2520 objfreelist = next_random_slot(&state);
2521 page->freelist = index_to_obj(cachep, page, objfreelist) +
2522 obj_offset(cachep);
2523 count--;
2524 }
2525
2526 /*
2527 * On early boot, generate the list dynamically.
2528 * Later use a pre-computed list for speed.
2529 */
2530 if (!precomputed) {
7c00fce9
TG
2531 for (i = 0; i < count; i++)
2532 set_free_obj(page, i, i);
2533
2534 /* Fisher-Yates shuffle */
2535 for (i = count - 1; i > 0; i--) {
2536 rand = prandom_u32_state(&state.rnd_state);
2537 rand %= (i + 1);
2538 swap_free_obj(page, i, rand);
2539 }
c7ce4f60
TG
2540 } else {
2541 for (i = 0; i < count; i++)
2542 set_free_obj(page, i, next_random_slot(&state));
2543 }
2544
2545 if (OBJFREELIST_SLAB(cachep))
2546 set_free_obj(page, cachep->num - 1, objfreelist);
2547
2548 return true;
2549}
2550#else
2551static inline bool shuffle_freelist(struct kmem_cache *cachep,
2552 struct page *page)
2553{
2554 return false;
2555}
2556#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2557
10b2e9e8
JK
2558static void cache_init_objs(struct kmem_cache *cachep,
2559 struct page *page)
2560{
2561 int i;
7ed2f9e6 2562 void *objp;
c7ce4f60 2563 bool shuffled;
10b2e9e8
JK
2564
2565 cache_init_objs_debug(cachep, page);
2566
c7ce4f60
TG
2567 /* Try to randomize the freelist if enabled */
2568 shuffled = shuffle_freelist(cachep, page);
2569
2570 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
b03a017b
JK
2571 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2572 obj_offset(cachep);
2573 }
2574
10b2e9e8 2575 for (i = 0; i < cachep->num; i++) {
b3cbd9bf
AR
2576 objp = index_to_obj(cachep, page, i);
2577 kasan_init_slab_obj(cachep, objp);
2578
10b2e9e8 2579 /* constructor could break poison info */
7ed2f9e6 2580 if (DEBUG == 0 && cachep->ctor) {
7ed2f9e6
AP
2581 kasan_unpoison_object_data(cachep, objp);
2582 cachep->ctor(objp);
2583 kasan_poison_object_data(cachep, objp);
2584 }
10b2e9e8 2585
c7ce4f60
TG
2586 if (!shuffled)
2587 set_free_obj(page, i, i);
1da177e4 2588 }
1da177e4
LT
2589}
2590
260b61dd 2591static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2592{
b1cb0982 2593 void *objp;
78d382d7 2594
e5c58dfd 2595 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2596 page->active++;
78d382d7 2597
d31676df
JK
2598#if DEBUG
2599 if (cachep->flags & SLAB_STORE_USER)
2600 set_store_user_dirty(cachep);
2601#endif
2602
78d382d7
MD
2603 return objp;
2604}
2605
260b61dd
JK
2606static void slab_put_obj(struct kmem_cache *cachep,
2607 struct page *page, void *objp)
78d382d7 2608{
8456a648 2609 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2610#if DEBUG
16025177 2611 unsigned int i;
b1cb0982 2612
b1cb0982 2613 /* Verify double free bug */
8456a648 2614 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2615 if (get_free_obj(page, i) == objnr) {
85c3e4a5 2616 pr_err("slab: double free detected in cache '%s', objp %px\n",
756a025f 2617 cachep->name, objp);
b1cb0982
JK
2618 BUG();
2619 }
78d382d7
MD
2620 }
2621#endif
8456a648 2622 page->active--;
b03a017b
JK
2623 if (!page->freelist)
2624 page->freelist = objp + obj_offset(cachep);
2625
e5c58dfd 2626 set_free_obj(page, page->active, objnr);
78d382d7
MD
2627}
2628
4776874f
PE
2629/*
2630 * Map pages beginning at addr to the given cache and slab. This is required
2631 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2632 * virtual address for kfree, ksize, and slab debugging.
4776874f 2633 */
8456a648 2634static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2635 void *freelist)
1da177e4 2636{
a57a4988 2637 page->slab_cache = cache;
8456a648 2638 page->freelist = freelist;
1da177e4
LT
2639}
2640
2641/*
2642 * Grow (by 1) the number of slabs within a cache. This is called by
2643 * kmem_cache_alloc() when there are no active objs left in a cache.
2644 */
76b342bd
JK
2645static struct page *cache_grow_begin(struct kmem_cache *cachep,
2646 gfp_t flags, int nodeid)
1da177e4 2647{
7e007355 2648 void *freelist;
b28a02de
PE
2649 size_t offset;
2650 gfp_t local_flags;
511e3a05 2651 int page_node;
ce8eb6c4 2652 struct kmem_cache_node *n;
511e3a05 2653 struct page *page;
1da177e4 2654
a737b3e2
AM
2655 /*
2656 * Be lazy and only check for valid flags here, keeping it out of the
2657 * critical path in kmem_cache_alloc().
1da177e4 2658 */
c871ac4e 2659 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 2660 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
2661 flags &= ~GFP_SLAB_BUG_MASK;
2662 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2663 invalid_mask, &invalid_mask, flags, &flags);
2664 dump_stack();
c871ac4e 2665 }
128227e7 2666 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
6cb06229 2667 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2668
1da177e4 2669 check_irq_off();
d0164adc 2670 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2671 local_irq_enable();
2672
a737b3e2
AM
2673 /*
2674 * Get mem for the objs. Attempt to allocate a physical page from
2675 * 'nodeid'.
e498be7d 2676 */
511e3a05 2677 page = kmem_getpages(cachep, local_flags, nodeid);
0c3aa83e 2678 if (!page)
1da177e4
LT
2679 goto failed;
2680
511e3a05
JK
2681 page_node = page_to_nid(page);
2682 n = get_node(cachep, page_node);
03d1d43a
JK
2683
2684 /* Get colour for the slab, and cal the next value. */
2685 n->colour_next++;
2686 if (n->colour_next >= cachep->colour)
2687 n->colour_next = 0;
2688
2689 offset = n->colour_next;
2690 if (offset >= cachep->colour)
2691 offset = 0;
2692
2693 offset *= cachep->colour_off;
2694
1da177e4 2695 /* Get slab management. */
8456a648 2696 freelist = alloc_slabmgmt(cachep, page, offset,
511e3a05 2697 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
b03a017b 2698 if (OFF_SLAB(cachep) && !freelist)
1da177e4
LT
2699 goto opps1;
2700
8456a648 2701 slab_map_pages(cachep, page, freelist);
1da177e4 2702
7ed2f9e6 2703 kasan_poison_slab(page);
8456a648 2704 cache_init_objs(cachep, page);
1da177e4 2705
d0164adc 2706 if (gfpflags_allow_blocking(local_flags))
1da177e4 2707 local_irq_disable();
1da177e4 2708
76b342bd
JK
2709 return page;
2710
a737b3e2 2711opps1:
0c3aa83e 2712 kmem_freepages(cachep, page);
a737b3e2 2713failed:
d0164adc 2714 if (gfpflags_allow_blocking(local_flags))
1da177e4 2715 local_irq_disable();
76b342bd
JK
2716 return NULL;
2717}
2718
2719static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2720{
2721 struct kmem_cache_node *n;
2722 void *list = NULL;
2723
2724 check_irq_off();
2725
2726 if (!page)
2727 return;
2728
2729 INIT_LIST_HEAD(&page->lru);
2730 n = get_node(cachep, page_to_nid(page));
2731
2732 spin_lock(&n->list_lock);
bf00bd34 2733 n->total_slabs++;
f728b0a5 2734 if (!page->active) {
76b342bd 2735 list_add_tail(&page->lru, &(n->slabs_free));
f728b0a5 2736 n->free_slabs++;
bf00bd34 2737 } else
76b342bd 2738 fixup_slab_list(cachep, n, page, &list);
07a63c41 2739
76b342bd
JK
2740 STATS_INC_GROWN(cachep);
2741 n->free_objects += cachep->num - page->active;
2742 spin_unlock(&n->list_lock);
2743
2744 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2745}
2746
2747#if DEBUG
2748
2749/*
2750 * Perform extra freeing checks:
2751 * - detect bad pointers.
2752 * - POISON/RED_ZONE checking
1da177e4
LT
2753 */
2754static void kfree_debugcheck(const void *objp)
2755{
1da177e4 2756 if (!virt_addr_valid(objp)) {
1170532b 2757 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
b28a02de
PE
2758 (unsigned long)objp);
2759 BUG();
1da177e4 2760 }
1da177e4
LT
2761}
2762
58ce1fd5
PE
2763static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2764{
b46b8f19 2765 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2766
2767 redzone1 = *dbg_redzone1(cache, obj);
2768 redzone2 = *dbg_redzone2(cache, obj);
2769
2770 /*
2771 * Redzone is ok.
2772 */
2773 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2774 return;
2775
2776 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2777 slab_error(cache, "double free detected");
2778 else
2779 slab_error(cache, "memory outside object was overwritten");
2780
85c3e4a5 2781 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
1170532b 2782 obj, redzone1, redzone2);
58ce1fd5
PE
2783}
2784
343e0d7a 2785static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2786 unsigned long caller)
1da177e4 2787{
1da177e4 2788 unsigned int objnr;
8456a648 2789 struct page *page;
1da177e4 2790
80cbd911
MW
2791 BUG_ON(virt_to_cache(objp) != cachep);
2792
3dafccf2 2793 objp -= obj_offset(cachep);
1da177e4 2794 kfree_debugcheck(objp);
b49af68f 2795 page = virt_to_head_page(objp);
1da177e4 2796
1da177e4 2797 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2798 verify_redzone_free(cachep, objp);
1da177e4
LT
2799 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2800 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2801 }
d31676df
JK
2802 if (cachep->flags & SLAB_STORE_USER) {
2803 set_store_user_dirty(cachep);
7c0cb9c6 2804 *dbg_userword(cachep, objp) = (void *)caller;
d31676df 2805 }
1da177e4 2806
8456a648 2807 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2808
2809 BUG_ON(objnr >= cachep->num);
8456a648 2810 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2811
1da177e4 2812 if (cachep->flags & SLAB_POISON) {
1da177e4 2813 poison_obj(cachep, objp, POISON_FREE);
40b44137 2814 slab_kernel_map(cachep, objp, 0, caller);
1da177e4
LT
2815 }
2816 return objp;
2817}
2818
1da177e4
LT
2819#else
2820#define kfree_debugcheck(x) do { } while(0)
2821#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2822#endif
2823
b03a017b
JK
2824static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2825 void **list)
2826{
2827#if DEBUG
2828 void *next = *list;
2829 void *objp;
2830
2831 while (next) {
2832 objp = next - obj_offset(cachep);
2833 next = *(void **)next;
2834 poison_obj(cachep, objp, POISON_FREE);
2835 }
2836#endif
2837}
2838
d8410234 2839static inline void fixup_slab_list(struct kmem_cache *cachep,
b03a017b
JK
2840 struct kmem_cache_node *n, struct page *page,
2841 void **list)
d8410234
JK
2842{
2843 /* move slabp to correct slabp list: */
2844 list_del(&page->lru);
b03a017b 2845 if (page->active == cachep->num) {
d8410234 2846 list_add(&page->lru, &n->slabs_full);
b03a017b
JK
2847 if (OBJFREELIST_SLAB(cachep)) {
2848#if DEBUG
2849 /* Poisoning will be done without holding the lock */
2850 if (cachep->flags & SLAB_POISON) {
2851 void **objp = page->freelist;
2852
2853 *objp = *list;
2854 *list = objp;
2855 }
2856#endif
2857 page->freelist = NULL;
2858 }
2859 } else
d8410234
JK
2860 list_add(&page->lru, &n->slabs_partial);
2861}
2862
f68f8ddd
JK
2863/* Try to find non-pfmemalloc slab if needed */
2864static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
bf00bd34 2865 struct page *page, bool pfmemalloc)
f68f8ddd
JK
2866{
2867 if (!page)
2868 return NULL;
2869
2870 if (pfmemalloc)
2871 return page;
2872
2873 if (!PageSlabPfmemalloc(page))
2874 return page;
2875
2876 /* No need to keep pfmemalloc slab if we have enough free objects */
2877 if (n->free_objects > n->free_limit) {
2878 ClearPageSlabPfmemalloc(page);
2879 return page;
2880 }
2881
2882 /* Move pfmemalloc slab to the end of list to speed up next search */
2883 list_del(&page->lru);
bf00bd34 2884 if (!page->active) {
f68f8ddd 2885 list_add_tail(&page->lru, &n->slabs_free);
bf00bd34 2886 n->free_slabs++;
f728b0a5 2887 } else
f68f8ddd
JK
2888 list_add_tail(&page->lru, &n->slabs_partial);
2889
2890 list_for_each_entry(page, &n->slabs_partial, lru) {
2891 if (!PageSlabPfmemalloc(page))
2892 return page;
2893 }
2894
f728b0a5 2895 n->free_touched = 1;
f68f8ddd 2896 list_for_each_entry(page, &n->slabs_free, lru) {
f728b0a5 2897 if (!PageSlabPfmemalloc(page)) {
bf00bd34 2898 n->free_slabs--;
f68f8ddd 2899 return page;
f728b0a5 2900 }
f68f8ddd
JK
2901 }
2902
2903 return NULL;
2904}
2905
2906static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
7aa0d227
GT
2907{
2908 struct page *page;
2909
f728b0a5 2910 assert_spin_locked(&n->list_lock);
bf00bd34 2911 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
7aa0d227
GT
2912 if (!page) {
2913 n->free_touched = 1;
bf00bd34
DR
2914 page = list_first_entry_or_null(&n->slabs_free, struct page,
2915 lru);
f728b0a5 2916 if (page)
bf00bd34 2917 n->free_slabs--;
7aa0d227
GT
2918 }
2919
f68f8ddd 2920 if (sk_memalloc_socks())
bf00bd34 2921 page = get_valid_first_slab(n, page, pfmemalloc);
f68f8ddd 2922
7aa0d227
GT
2923 return page;
2924}
2925
f68f8ddd
JK
2926static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2927 struct kmem_cache_node *n, gfp_t flags)
2928{
2929 struct page *page;
2930 void *obj;
2931 void *list = NULL;
2932
2933 if (!gfp_pfmemalloc_allowed(flags))
2934 return NULL;
2935
2936 spin_lock(&n->list_lock);
2937 page = get_first_slab(n, true);
2938 if (!page) {
2939 spin_unlock(&n->list_lock);
2940 return NULL;
2941 }
2942
2943 obj = slab_get_obj(cachep, page);
2944 n->free_objects--;
2945
2946 fixup_slab_list(cachep, n, page, &list);
2947
2948 spin_unlock(&n->list_lock);
2949 fixup_objfreelist_debug(cachep, &list);
2950
2951 return obj;
2952}
2953
213b4695
JK
2954/*
2955 * Slab list should be fixed up by fixup_slab_list() for existing slab
2956 * or cache_grow_end() for new slab
2957 */
2958static __always_inline int alloc_block(struct kmem_cache *cachep,
2959 struct array_cache *ac, struct page *page, int batchcount)
2960{
2961 /*
2962 * There must be at least one object available for
2963 * allocation.
2964 */
2965 BUG_ON(page->active >= cachep->num);
2966
2967 while (page->active < cachep->num && batchcount--) {
2968 STATS_INC_ALLOCED(cachep);
2969 STATS_INC_ACTIVE(cachep);
2970 STATS_SET_HIGH(cachep);
2971
2972 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2973 }
2974
2975 return batchcount;
2976}
2977
f68f8ddd 2978static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2979{
2980 int batchcount;
ce8eb6c4 2981 struct kmem_cache_node *n;
801faf0d 2982 struct array_cache *ac, *shared;
1ca4cb24 2983 int node;
b03a017b 2984 void *list = NULL;
76b342bd 2985 struct page *page;
1ca4cb24 2986
1da177e4 2987 check_irq_off();
7d6e6d09 2988 node = numa_mem_id();
f68f8ddd 2989
9a2dba4b 2990 ac = cpu_cache_get(cachep);
1da177e4
LT
2991 batchcount = ac->batchcount;
2992 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2993 /*
2994 * If there was little recent activity on this cache, then
2995 * perform only a partial refill. Otherwise we could generate
2996 * refill bouncing.
1da177e4
LT
2997 */
2998 batchcount = BATCHREFILL_LIMIT;
2999 }
18bf8541 3000 n = get_node(cachep, node);
e498be7d 3001
ce8eb6c4 3002 BUG_ON(ac->avail > 0 || !n);
801faf0d
JK
3003 shared = READ_ONCE(n->shared);
3004 if (!n->free_objects && (!shared || !shared->avail))
3005 goto direct_grow;
3006
ce8eb6c4 3007 spin_lock(&n->list_lock);
801faf0d 3008 shared = READ_ONCE(n->shared);
1da177e4 3009
3ded175a 3010 /* See if we can refill from the shared array */
801faf0d
JK
3011 if (shared && transfer_objects(ac, shared, batchcount)) {
3012 shared->touched = 1;
3ded175a 3013 goto alloc_done;
44b57f1c 3014 }
3ded175a 3015
1da177e4 3016 while (batchcount > 0) {
1da177e4 3017 /* Get slab alloc is to come from. */
f68f8ddd 3018 page = get_first_slab(n, false);
7aa0d227
GT
3019 if (!page)
3020 goto must_grow;
1da177e4 3021
1da177e4 3022 check_spinlock_acquired(cachep);
714b8171 3023
213b4695 3024 batchcount = alloc_block(cachep, ac, page, batchcount);
b03a017b 3025 fixup_slab_list(cachep, n, page, &list);
1da177e4
LT
3026 }
3027
a737b3e2 3028must_grow:
ce8eb6c4 3029 n->free_objects -= ac->avail;
a737b3e2 3030alloc_done:
ce8eb6c4 3031 spin_unlock(&n->list_lock);
b03a017b 3032 fixup_objfreelist_debug(cachep, &list);
1da177e4 3033
801faf0d 3034direct_grow:
1da177e4 3035 if (unlikely(!ac->avail)) {
f68f8ddd
JK
3036 /* Check if we can use obj in pfmemalloc slab */
3037 if (sk_memalloc_socks()) {
3038 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3039
3040 if (obj)
3041 return obj;
3042 }
3043
76b342bd 3044 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
e498be7d 3045
76b342bd
JK
3046 /*
3047 * cache_grow_begin() can reenable interrupts,
3048 * then ac could change.
3049 */
9a2dba4b 3050 ac = cpu_cache_get(cachep);
213b4695
JK
3051 if (!ac->avail && page)
3052 alloc_block(cachep, ac, page, batchcount);
3053 cache_grow_end(cachep, page);
072bb0aa 3054
213b4695 3055 if (!ac->avail)
1da177e4 3056 return NULL;
1da177e4
LT
3057 }
3058 ac->touched = 1;
072bb0aa 3059
f68f8ddd 3060 return ac->entry[--ac->avail];
1da177e4
LT
3061}
3062
a737b3e2
AM
3063static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3064 gfp_t flags)
1da177e4 3065{
d0164adc 3066 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
3067}
3068
3069#if DEBUG
a737b3e2 3070static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3071 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3072{
128227e7 3073 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
b28a02de 3074 if (!objp)
1da177e4 3075 return objp;
b28a02de 3076 if (cachep->flags & SLAB_POISON) {
1da177e4 3077 check_poison_obj(cachep, objp);
40b44137 3078 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
3079 poison_obj(cachep, objp, POISON_INUSE);
3080 }
3081 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3082 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3083
3084 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3085 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3086 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
756a025f 3087 slab_error(cachep, "double free, or memory outside object was overwritten");
85c3e4a5 3088 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
1170532b
JP
3089 objp, *dbg_redzone1(cachep, objp),
3090 *dbg_redzone2(cachep, objp));
1da177e4
LT
3091 }
3092 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3093 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3094 }
03787301 3095
3dafccf2 3096 objp += obj_offset(cachep);
4f104934 3097 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3098 cachep->ctor(objp);
7ea466f2
TH
3099 if (ARCH_SLAB_MINALIGN &&
3100 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
85c3e4a5 3101 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3102 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3103 }
1da177e4
LT
3104 return objp;
3105}
3106#else
3107#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3108#endif
3109
343e0d7a 3110static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3111{
b28a02de 3112 void *objp;
1da177e4
LT
3113 struct array_cache *ac;
3114
5c382300 3115 check_irq_off();
8a8b6502 3116
9a2dba4b 3117 ac = cpu_cache_get(cachep);
1da177e4 3118 if (likely(ac->avail)) {
1da177e4 3119 ac->touched = 1;
f68f8ddd 3120 objp = ac->entry[--ac->avail];
072bb0aa 3121
f68f8ddd
JK
3122 STATS_INC_ALLOCHIT(cachep);
3123 goto out;
1da177e4 3124 }
072bb0aa
MG
3125
3126 STATS_INC_ALLOCMISS(cachep);
f68f8ddd 3127 objp = cache_alloc_refill(cachep, flags);
072bb0aa
MG
3128 /*
3129 * the 'ac' may be updated by cache_alloc_refill(),
3130 * and kmemleak_erase() requires its correct value.
3131 */
3132 ac = cpu_cache_get(cachep);
3133
3134out:
d5cff635
CM
3135 /*
3136 * To avoid a false negative, if an object that is in one of the
3137 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3138 * treat the array pointers as a reference to the object.
3139 */
f3d8b53a
O
3140 if (objp)
3141 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3142 return objp;
3143}
3144
e498be7d 3145#ifdef CONFIG_NUMA
c61afb18 3146/*
2ad654bc 3147 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
3148 *
3149 * If we are in_interrupt, then process context, including cpusets and
3150 * mempolicy, may not apply and should not be used for allocation policy.
3151 */
3152static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3153{
3154 int nid_alloc, nid_here;
3155
765c4507 3156 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3157 return NULL;
7d6e6d09 3158 nid_alloc = nid_here = numa_mem_id();
c61afb18 3159 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3160 nid_alloc = cpuset_slab_spread_node();
c61afb18 3161 else if (current->mempolicy)
2a389610 3162 nid_alloc = mempolicy_slab_node();
c61afb18 3163 if (nid_alloc != nid_here)
8b98c169 3164 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3165 return NULL;
3166}
3167
765c4507
CL
3168/*
3169 * Fallback function if there was no memory available and no objects on a
3c517a61 3170 * certain node and fall back is permitted. First we scan all the
6a67368c 3171 * available node for available objects. If that fails then we
3c517a61
CL
3172 * perform an allocation without specifying a node. This allows the page
3173 * allocator to do its reclaim / fallback magic. We then insert the
3174 * slab into the proper nodelist and then allocate from it.
765c4507 3175 */
8c8cc2c1 3176static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3177{
8c8cc2c1 3178 struct zonelist *zonelist;
dd1a239f 3179 struct zoneref *z;
54a6eb5c
MG
3180 struct zone *zone;
3181 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3182 void *obj = NULL;
76b342bd 3183 struct page *page;
3c517a61 3184 int nid;
cc9a6c87 3185 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3186
3187 if (flags & __GFP_THISNODE)
3188 return NULL;
3189
cc9a6c87 3190retry_cpuset:
d26914d1 3191 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3192 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3193
3c517a61
CL
3194retry:
3195 /*
3196 * Look through allowed nodes for objects available
3197 * from existing per node queues.
3198 */
54a6eb5c
MG
3199 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3200 nid = zone_to_nid(zone);
aedb0eb1 3201
061d7074 3202 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3203 get_node(cache, nid) &&
3204 get_node(cache, nid)->free_objects) {
3c517a61 3205 obj = ____cache_alloc_node(cache,
4167e9b2 3206 gfp_exact_node(flags), nid);
481c5346
CL
3207 if (obj)
3208 break;
3209 }
3c517a61
CL
3210 }
3211
cfce6604 3212 if (!obj) {
3c517a61
CL
3213 /*
3214 * This allocation will be performed within the constraints
3215 * of the current cpuset / memory policy requirements.
3216 * We may trigger various forms of reclaim on the allowed
3217 * set and go into memory reserves if necessary.
3218 */
76b342bd
JK
3219 page = cache_grow_begin(cache, flags, numa_mem_id());
3220 cache_grow_end(cache, page);
3221 if (page) {
3222 nid = page_to_nid(page);
511e3a05
JK
3223 obj = ____cache_alloc_node(cache,
3224 gfp_exact_node(flags), nid);
0c3aa83e 3225
3c517a61 3226 /*
511e3a05
JK
3227 * Another processor may allocate the objects in
3228 * the slab since we are not holding any locks.
3c517a61 3229 */
511e3a05
JK
3230 if (!obj)
3231 goto retry;
3c517a61 3232 }
aedb0eb1 3233 }
cc9a6c87 3234
d26914d1 3235 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3236 goto retry_cpuset;
765c4507
CL
3237 return obj;
3238}
3239
e498be7d
CL
3240/*
3241 * A interface to enable slab creation on nodeid
1da177e4 3242 */
8b98c169 3243static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3244 int nodeid)
e498be7d 3245{
8456a648 3246 struct page *page;
ce8eb6c4 3247 struct kmem_cache_node *n;
213b4695 3248 void *obj = NULL;
b03a017b 3249 void *list = NULL;
b28a02de 3250
7c3fbbdd 3251 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3252 n = get_node(cachep, nodeid);
ce8eb6c4 3253 BUG_ON(!n);
b28a02de 3254
ca3b9b91 3255 check_irq_off();
ce8eb6c4 3256 spin_lock(&n->list_lock);
f68f8ddd 3257 page = get_first_slab(n, false);
7aa0d227
GT
3258 if (!page)
3259 goto must_grow;
b28a02de 3260
b28a02de 3261 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3262
3263 STATS_INC_NODEALLOCS(cachep);
3264 STATS_INC_ACTIVE(cachep);
3265 STATS_SET_HIGH(cachep);
3266
8456a648 3267 BUG_ON(page->active == cachep->num);
b28a02de 3268
260b61dd 3269 obj = slab_get_obj(cachep, page);
ce8eb6c4 3270 n->free_objects--;
b28a02de 3271
b03a017b 3272 fixup_slab_list(cachep, n, page, &list);
e498be7d 3273
ce8eb6c4 3274 spin_unlock(&n->list_lock);
b03a017b 3275 fixup_objfreelist_debug(cachep, &list);
213b4695 3276 return obj;
e498be7d 3277
a737b3e2 3278must_grow:
ce8eb6c4 3279 spin_unlock(&n->list_lock);
76b342bd 3280 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
213b4695
JK
3281 if (page) {
3282 /* This slab isn't counted yet so don't update free_objects */
3283 obj = slab_get_obj(cachep, page);
3284 }
76b342bd 3285 cache_grow_end(cachep, page);
1da177e4 3286
213b4695 3287 return obj ? obj : fallback_alloc(cachep, flags);
e498be7d 3288}
8c8cc2c1 3289
8c8cc2c1 3290static __always_inline void *
48356303 3291slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3292 unsigned long caller)
8c8cc2c1
PE
3293{
3294 unsigned long save_flags;
3295 void *ptr;
7d6e6d09 3296 int slab_node = numa_mem_id();
8c8cc2c1 3297
dcce284a 3298 flags &= gfp_allowed_mask;
011eceaf
JDB
3299 cachep = slab_pre_alloc_hook(cachep, flags);
3300 if (unlikely(!cachep))
824ebef1
AM
3301 return NULL;
3302
8c8cc2c1
PE
3303 cache_alloc_debugcheck_before(cachep, flags);
3304 local_irq_save(save_flags);
3305
eacbbae3 3306 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3307 nodeid = slab_node;
8c8cc2c1 3308
18bf8541 3309 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3310 /* Node not bootstrapped yet */
3311 ptr = fallback_alloc(cachep, flags);
3312 goto out;
3313 }
3314
7d6e6d09 3315 if (nodeid == slab_node) {
8c8cc2c1
PE
3316 /*
3317 * Use the locally cached objects if possible.
3318 * However ____cache_alloc does not allow fallback
3319 * to other nodes. It may fail while we still have
3320 * objects on other nodes available.
3321 */
3322 ptr = ____cache_alloc(cachep, flags);
3323 if (ptr)
3324 goto out;
3325 }
3326 /* ___cache_alloc_node can fall back to other nodes */
3327 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3328 out:
3329 local_irq_restore(save_flags);
3330 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3331
d5e3ed66
JDB
3332 if (unlikely(flags & __GFP_ZERO) && ptr)
3333 memset(ptr, 0, cachep->object_size);
d07dbea4 3334
d5e3ed66 3335 slab_post_alloc_hook(cachep, flags, 1, &ptr);
8c8cc2c1
PE
3336 return ptr;
3337}
3338
3339static __always_inline void *
3340__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3341{
3342 void *objp;
3343
2ad654bc 3344 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3345 objp = alternate_node_alloc(cache, flags);
3346 if (objp)
3347 goto out;
3348 }
3349 objp = ____cache_alloc(cache, flags);
3350
3351 /*
3352 * We may just have run out of memory on the local node.
3353 * ____cache_alloc_node() knows how to locate memory on other nodes
3354 */
7d6e6d09
LS
3355 if (!objp)
3356 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3357
3358 out:
3359 return objp;
3360}
3361#else
3362
3363static __always_inline void *
3364__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3365{
3366 return ____cache_alloc(cachep, flags);
3367}
3368
3369#endif /* CONFIG_NUMA */
3370
3371static __always_inline void *
48356303 3372slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3373{
3374 unsigned long save_flags;
3375 void *objp;
3376
dcce284a 3377 flags &= gfp_allowed_mask;
011eceaf
JDB
3378 cachep = slab_pre_alloc_hook(cachep, flags);
3379 if (unlikely(!cachep))
824ebef1
AM
3380 return NULL;
3381
8c8cc2c1
PE
3382 cache_alloc_debugcheck_before(cachep, flags);
3383 local_irq_save(save_flags);
3384 objp = __do_cache_alloc(cachep, flags);
3385 local_irq_restore(save_flags);
3386 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3387 prefetchw(objp);
3388
d5e3ed66
JDB
3389 if (unlikely(flags & __GFP_ZERO) && objp)
3390 memset(objp, 0, cachep->object_size);
d07dbea4 3391
d5e3ed66 3392 slab_post_alloc_hook(cachep, flags, 1, &objp);
8c8cc2c1
PE
3393 return objp;
3394}
e498be7d
CL
3395
3396/*
5f0985bb 3397 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3398 * @list: List of detached free slabs should be freed by caller
e498be7d 3399 */
97654dfa
JK
3400static void free_block(struct kmem_cache *cachep, void **objpp,
3401 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3402{
3403 int i;
25c063fb 3404 struct kmem_cache_node *n = get_node(cachep, node);
6052b788
JK
3405 struct page *page;
3406
3407 n->free_objects += nr_objects;
1da177e4
LT
3408
3409 for (i = 0; i < nr_objects; i++) {
072bb0aa 3410 void *objp;
8456a648 3411 struct page *page;
1da177e4 3412
072bb0aa
MG
3413 objp = objpp[i];
3414
8456a648 3415 page = virt_to_head_page(objp);
8456a648 3416 list_del(&page->lru);
ff69416e 3417 check_spinlock_acquired_node(cachep, node);
260b61dd 3418 slab_put_obj(cachep, page, objp);
1da177e4 3419 STATS_DEC_ACTIVE(cachep);
1da177e4
LT
3420
3421 /* fixup slab chains */
f728b0a5 3422 if (page->active == 0) {
6052b788 3423 list_add(&page->lru, &n->slabs_free);
f728b0a5 3424 n->free_slabs++;
f728b0a5 3425 } else {
1da177e4
LT
3426 /* Unconditionally move a slab to the end of the
3427 * partial list on free - maximum time for the
3428 * other objects to be freed, too.
3429 */
8456a648 3430 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3431 }
3432 }
6052b788
JK
3433
3434 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3435 n->free_objects -= cachep->num;
3436
3437 page = list_last_entry(&n->slabs_free, struct page, lru);
de24baec 3438 list_move(&page->lru, list);
f728b0a5 3439 n->free_slabs--;
bf00bd34 3440 n->total_slabs--;
6052b788 3441 }
1da177e4
LT
3442}
3443
343e0d7a 3444static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3445{
3446 int batchcount;
ce8eb6c4 3447 struct kmem_cache_node *n;
7d6e6d09 3448 int node = numa_mem_id();
97654dfa 3449 LIST_HEAD(list);
1da177e4
LT
3450
3451 batchcount = ac->batchcount;
260b61dd 3452
1da177e4 3453 check_irq_off();
18bf8541 3454 n = get_node(cachep, node);
ce8eb6c4
CL
3455 spin_lock(&n->list_lock);
3456 if (n->shared) {
3457 struct array_cache *shared_array = n->shared;
b28a02de 3458 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3459 if (max) {
3460 if (batchcount > max)
3461 batchcount = max;
e498be7d 3462 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3463 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3464 shared_array->avail += batchcount;
3465 goto free_done;
3466 }
3467 }
3468
97654dfa 3469 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3470free_done:
1da177e4
LT
3471#if STATS
3472 {
3473 int i = 0;
73c0219d 3474 struct page *page;
1da177e4 3475
73c0219d 3476 list_for_each_entry(page, &n->slabs_free, lru) {
8456a648 3477 BUG_ON(page->active);
1da177e4
LT
3478
3479 i++;
1da177e4
LT
3480 }
3481 STATS_SET_FREEABLE(cachep, i);
3482 }
3483#endif
ce8eb6c4 3484 spin_unlock(&n->list_lock);
97654dfa 3485 slabs_destroy(cachep, &list);
1da177e4 3486 ac->avail -= batchcount;
a737b3e2 3487 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3488}
3489
3490/*
a737b3e2
AM
3491 * Release an obj back to its cache. If the obj has a constructed state, it must
3492 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3493 */
ee3ce779
DV
3494static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3495 unsigned long caller)
1da177e4 3496{
55834c59 3497 /* Put the object into the quarantine, don't touch it for now. */
ee3ce779 3498 if (kasan_slab_free(cachep, objp, _RET_IP_))
55834c59
AP
3499 return;
3500
3501 ___cache_free(cachep, objp, caller);
3502}
1da177e4 3503
55834c59
AP
3504void ___cache_free(struct kmem_cache *cachep, void *objp,
3505 unsigned long caller)
3506{
3507 struct array_cache *ac = cpu_cache_get(cachep);
7ed2f9e6 3508
1da177e4 3509 check_irq_off();
d5cff635 3510 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3511 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3512
1807a1aa
SS
3513 /*
3514 * Skip calling cache_free_alien() when the platform is not numa.
3515 * This will avoid cache misses that happen while accessing slabp (which
3516 * is per page memory reference) to get nodeid. Instead use a global
3517 * variable to skip the call, which is mostly likely to be present in
3518 * the cache.
3519 */
b6e68bc1 3520 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3521 return;
3522
3d880194 3523 if (ac->avail < ac->limit) {
1da177e4 3524 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3525 } else {
3526 STATS_INC_FREEMISS(cachep);
3527 cache_flusharray(cachep, ac);
1da177e4 3528 }
42c8c99c 3529
f68f8ddd
JK
3530 if (sk_memalloc_socks()) {
3531 struct page *page = virt_to_head_page(objp);
3532
3533 if (unlikely(PageSlabPfmemalloc(page))) {
3534 cache_free_pfmemalloc(cachep, page, objp);
3535 return;
3536 }
3537 }
3538
3539 ac->entry[ac->avail++] = objp;
1da177e4
LT
3540}
3541
3542/**
3543 * kmem_cache_alloc - Allocate an object
3544 * @cachep: The cache to allocate from.
3545 * @flags: See kmalloc().
3546 *
3547 * Allocate an object from this cache. The flags are only relevant
3548 * if the cache has no available objects.
3549 */
343e0d7a 3550void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3551{
48356303 3552 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3553
505f5dcb 3554 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3555 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3556 cachep->object_size, cachep->size, flags);
36555751
EGM
3557
3558 return ret;
1da177e4
LT
3559}
3560EXPORT_SYMBOL(kmem_cache_alloc);
3561
7b0501dd
JDB
3562static __always_inline void
3563cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3564 size_t size, void **p, unsigned long caller)
3565{
3566 size_t i;
3567
3568 for (i = 0; i < size; i++)
3569 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3570}
3571
865762a8 3572int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3573 void **p)
484748f0 3574{
2a777eac
JDB
3575 size_t i;
3576
3577 s = slab_pre_alloc_hook(s, flags);
3578 if (!s)
3579 return 0;
3580
3581 cache_alloc_debugcheck_before(s, flags);
3582
3583 local_irq_disable();
3584 for (i = 0; i < size; i++) {
3585 void *objp = __do_cache_alloc(s, flags);
3586
2a777eac
JDB
3587 if (unlikely(!objp))
3588 goto error;
3589 p[i] = objp;
3590 }
3591 local_irq_enable();
3592
7b0501dd
JDB
3593 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3594
2a777eac
JDB
3595 /* Clear memory outside IRQ disabled section */
3596 if (unlikely(flags & __GFP_ZERO))
3597 for (i = 0; i < size; i++)
3598 memset(p[i], 0, s->object_size);
3599
3600 slab_post_alloc_hook(s, flags, size, p);
3601 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3602 return size;
3603error:
3604 local_irq_enable();
7b0501dd 3605 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
2a777eac
JDB
3606 slab_post_alloc_hook(s, flags, i, p);
3607 __kmem_cache_free_bulk(s, i, p);
3608 return 0;
484748f0
CL
3609}
3610EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3611
0f24f128 3612#ifdef CONFIG_TRACING
85beb586 3613void *
4052147c 3614kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3615{
85beb586
SR
3616 void *ret;
3617
48356303 3618 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586 3619
505f5dcb 3620 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3621 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3622 size, cachep->size, flags);
85beb586 3623 return ret;
36555751 3624}
85beb586 3625EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3626#endif
3627
1da177e4 3628#ifdef CONFIG_NUMA
d0d04b78
ZL
3629/**
3630 * kmem_cache_alloc_node - Allocate an object on the specified node
3631 * @cachep: The cache to allocate from.
3632 * @flags: See kmalloc().
3633 * @nodeid: node number of the target node.
3634 *
3635 * Identical to kmem_cache_alloc but it will allocate memory on the given
3636 * node, which can improve the performance for cpu bound structures.
3637 *
3638 * Fallback to other node is possible if __GFP_THISNODE is not set.
3639 */
8b98c169
CH
3640void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3641{
48356303 3642 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3643
505f5dcb 3644 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3645 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3646 cachep->object_size, cachep->size,
ca2b84cb 3647 flags, nodeid);
36555751
EGM
3648
3649 return ret;
8b98c169 3650}
1da177e4
LT
3651EXPORT_SYMBOL(kmem_cache_alloc_node);
3652
0f24f128 3653#ifdef CONFIG_TRACING
4052147c 3654void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3655 gfp_t flags,
4052147c
EG
3656 int nodeid,
3657 size_t size)
36555751 3658{
85beb586
SR
3659 void *ret;
3660
592f4145 3661 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
505f5dcb
AP
3662
3663 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3664 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3665 size, cachep->size,
85beb586
SR
3666 flags, nodeid);
3667 return ret;
36555751 3668}
85beb586 3669EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3670#endif
3671
8b98c169 3672static __always_inline void *
7c0cb9c6 3673__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3674{
343e0d7a 3675 struct kmem_cache *cachep;
7ed2f9e6 3676 void *ret;
97e2bde4 3677
61448479
DV
3678 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3679 return NULL;
2c59dd65 3680 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3681 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3682 return cachep;
7ed2f9e6 3683 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
505f5dcb 3684 kasan_kmalloc(cachep, ret, size, flags);
7ed2f9e6
AP
3685
3686 return ret;
97e2bde4 3687}
8b98c169 3688
8b98c169
CH
3689void *__kmalloc_node(size_t size, gfp_t flags, int node)
3690{
7c0cb9c6 3691 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3692}
dbe5e69d 3693EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3694
3695void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3696 int node, unsigned long caller)
8b98c169 3697{
7c0cb9c6 3698 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3699}
3700EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3701#endif /* CONFIG_NUMA */
1da177e4
LT
3702
3703/**
800590f5 3704 * __do_kmalloc - allocate memory
1da177e4 3705 * @size: how many bytes of memory are required.
800590f5 3706 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3707 * @caller: function caller for debug tracking of the caller
1da177e4 3708 */
7fd6b141 3709static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3710 unsigned long caller)
1da177e4 3711{
343e0d7a 3712 struct kmem_cache *cachep;
36555751 3713 void *ret;
1da177e4 3714
61448479
DV
3715 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3716 return NULL;
2c59dd65 3717 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3718 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3719 return cachep;
48356303 3720 ret = slab_alloc(cachep, flags, caller);
36555751 3721
505f5dcb 3722 kasan_kmalloc(cachep, ret, size, flags);
7c0cb9c6 3723 trace_kmalloc(caller, ret,
3b0efdfa 3724 size, cachep->size, flags);
36555751
EGM
3725
3726 return ret;
7fd6b141
PE
3727}
3728
7fd6b141
PE
3729void *__kmalloc(size_t size, gfp_t flags)
3730{
7c0cb9c6 3731 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3732}
3733EXPORT_SYMBOL(__kmalloc);
3734
ce71e27c 3735void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3736{
7c0cb9c6 3737 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3738}
3739EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3740
1da177e4
LT
3741/**
3742 * kmem_cache_free - Deallocate an object
3743 * @cachep: The cache the allocation was from.
3744 * @objp: The previously allocated object.
3745 *
3746 * Free an object which was previously allocated from this
3747 * cache.
3748 */
343e0d7a 3749void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3750{
3751 unsigned long flags;
b9ce5ef4
GC
3752 cachep = cache_from_obj(cachep, objp);
3753 if (!cachep)
3754 return;
1da177e4
LT
3755
3756 local_irq_save(flags);
d97d476b 3757 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3758 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3759 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3760 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3761 local_irq_restore(flags);
36555751 3762
ca2b84cb 3763 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3764}
3765EXPORT_SYMBOL(kmem_cache_free);
3766
e6cdb58d
JDB
3767void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3768{
3769 struct kmem_cache *s;
3770 size_t i;
3771
3772 local_irq_disable();
3773 for (i = 0; i < size; i++) {
3774 void *objp = p[i];
3775
ca257195
JDB
3776 if (!orig_s) /* called via kfree_bulk */
3777 s = virt_to_cache(objp);
3778 else
3779 s = cache_from_obj(orig_s, objp);
e6cdb58d
JDB
3780
3781 debug_check_no_locks_freed(objp, s->object_size);
3782 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3783 debug_check_no_obj_freed(objp, s->object_size);
3784
3785 __cache_free(s, objp, _RET_IP_);
3786 }
3787 local_irq_enable();
3788
3789 /* FIXME: add tracing */
3790}
3791EXPORT_SYMBOL(kmem_cache_free_bulk);
3792
1da177e4
LT
3793/**
3794 * kfree - free previously allocated memory
3795 * @objp: pointer returned by kmalloc.
3796 *
80e93eff
PE
3797 * If @objp is NULL, no operation is performed.
3798 *
1da177e4
LT
3799 * Don't free memory not originally allocated by kmalloc()
3800 * or you will run into trouble.
3801 */
3802void kfree(const void *objp)
3803{
343e0d7a 3804 struct kmem_cache *c;
1da177e4
LT
3805 unsigned long flags;
3806
2121db74
PE
3807 trace_kfree(_RET_IP_, objp);
3808
6cb8f913 3809 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3810 return;
3811 local_irq_save(flags);
3812 kfree_debugcheck(objp);
6ed5eb22 3813 c = virt_to_cache(objp);
8c138bc0
CL
3814 debug_check_no_locks_freed(objp, c->object_size);
3815
3816 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3817 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3818 local_irq_restore(flags);
3819}
3820EXPORT_SYMBOL(kfree);
3821
e498be7d 3822/*
ce8eb6c4 3823 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3824 */
c3d332b6 3825static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
e498be7d 3826{
c3d332b6 3827 int ret;
e498be7d 3828 int node;
ce8eb6c4 3829 struct kmem_cache_node *n;
e498be7d 3830
9c09a95c 3831 for_each_online_node(node) {
c3d332b6
JK
3832 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3833 if (ret)
e498be7d
CL
3834 goto fail;
3835
e498be7d 3836 }
c3d332b6 3837
cafeb02e 3838 return 0;
0718dc2a 3839
a737b3e2 3840fail:
3b0efdfa 3841 if (!cachep->list.next) {
0718dc2a
CL
3842 /* Cache is not active yet. Roll back what we did */
3843 node--;
3844 while (node >= 0) {
18bf8541
CL
3845 n = get_node(cachep, node);
3846 if (n) {
ce8eb6c4
CL
3847 kfree(n->shared);
3848 free_alien_cache(n->alien);
3849 kfree(n);
6a67368c 3850 cachep->node[node] = NULL;
0718dc2a
CL
3851 }
3852 node--;
3853 }
3854 }
cafeb02e 3855 return -ENOMEM;
e498be7d
CL
3856}
3857
18004c5d 3858/* Always called with the slab_mutex held */
943a451a 3859static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3860 int batchcount, int shared, gfp_t gfp)
1da177e4 3861{
bf0dea23
JK
3862 struct array_cache __percpu *cpu_cache, *prev;
3863 int cpu;
1da177e4 3864
bf0dea23
JK
3865 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3866 if (!cpu_cache)
d2e7b7d0
SS
3867 return -ENOMEM;
3868
bf0dea23
JK
3869 prev = cachep->cpu_cache;
3870 cachep->cpu_cache = cpu_cache;
a87c75fb
GT
3871 /*
3872 * Without a previous cpu_cache there's no need to synchronize remote
3873 * cpus, so skip the IPIs.
3874 */
3875 if (prev)
3876 kick_all_cpus_sync();
e498be7d 3877
1da177e4 3878 check_irq_on();
1da177e4
LT
3879 cachep->batchcount = batchcount;
3880 cachep->limit = limit;
e498be7d 3881 cachep->shared = shared;
1da177e4 3882
bf0dea23 3883 if (!prev)
c3d332b6 3884 goto setup_node;
bf0dea23
JK
3885
3886 for_each_online_cpu(cpu) {
97654dfa 3887 LIST_HEAD(list);
18bf8541
CL
3888 int node;
3889 struct kmem_cache_node *n;
bf0dea23 3890 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3891
bf0dea23 3892 node = cpu_to_mem(cpu);
18bf8541
CL
3893 n = get_node(cachep, node);
3894 spin_lock_irq(&n->list_lock);
bf0dea23 3895 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3896 spin_unlock_irq(&n->list_lock);
97654dfa 3897 slabs_destroy(cachep, &list);
1da177e4 3898 }
bf0dea23
JK
3899 free_percpu(prev);
3900
c3d332b6
JK
3901setup_node:
3902 return setup_kmem_cache_nodes(cachep, gfp);
1da177e4
LT
3903}
3904
943a451a
GC
3905static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3906 int batchcount, int shared, gfp_t gfp)
3907{
3908 int ret;
426589f5 3909 struct kmem_cache *c;
943a451a
GC
3910
3911 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3912
3913 if (slab_state < FULL)
3914 return ret;
3915
3916 if ((ret < 0) || !is_root_cache(cachep))
3917 return ret;
3918
426589f5
VD
3919 lockdep_assert_held(&slab_mutex);
3920 for_each_memcg_cache(c, cachep) {
3921 /* return value determined by the root cache only */
3922 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3923 }
3924
3925 return ret;
3926}
3927
18004c5d 3928/* Called with slab_mutex held always */
83b519e8 3929static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3930{
3931 int err;
943a451a
GC
3932 int limit = 0;
3933 int shared = 0;
3934 int batchcount = 0;
3935
7c00fce9 3936 err = cache_random_seq_create(cachep, cachep->num, gfp);
c7ce4f60
TG
3937 if (err)
3938 goto end;
3939
943a451a
GC
3940 if (!is_root_cache(cachep)) {
3941 struct kmem_cache *root = memcg_root_cache(cachep);
3942 limit = root->limit;
3943 shared = root->shared;
3944 batchcount = root->batchcount;
3945 }
1da177e4 3946
943a451a
GC
3947 if (limit && shared && batchcount)
3948 goto skip_setup;
a737b3e2
AM
3949 /*
3950 * The head array serves three purposes:
1da177e4
LT
3951 * - create a LIFO ordering, i.e. return objects that are cache-warm
3952 * - reduce the number of spinlock operations.
a737b3e2 3953 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3954 * bufctl chains: array operations are cheaper.
3955 * The numbers are guessed, we should auto-tune as described by
3956 * Bonwick.
3957 */
3b0efdfa 3958 if (cachep->size > 131072)
1da177e4 3959 limit = 1;
3b0efdfa 3960 else if (cachep->size > PAGE_SIZE)
1da177e4 3961 limit = 8;
3b0efdfa 3962 else if (cachep->size > 1024)
1da177e4 3963 limit = 24;
3b0efdfa 3964 else if (cachep->size > 256)
1da177e4
LT
3965 limit = 54;
3966 else
3967 limit = 120;
3968
a737b3e2
AM
3969 /*
3970 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3971 * allocation behaviour: Most allocs on one cpu, most free operations
3972 * on another cpu. For these cases, an efficient object passing between
3973 * cpus is necessary. This is provided by a shared array. The array
3974 * replaces Bonwick's magazine layer.
3975 * On uniprocessor, it's functionally equivalent (but less efficient)
3976 * to a larger limit. Thus disabled by default.
3977 */
3978 shared = 0;
3b0efdfa 3979 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3980 shared = 8;
1da177e4
LT
3981
3982#if DEBUG
a737b3e2
AM
3983 /*
3984 * With debugging enabled, large batchcount lead to excessively long
3985 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3986 */
3987 if (limit > 32)
3988 limit = 32;
3989#endif
943a451a
GC
3990 batchcount = (limit + 1) / 2;
3991skip_setup:
3992 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
c7ce4f60 3993end:
1da177e4 3994 if (err)
1170532b 3995 pr_err("enable_cpucache failed for %s, error %d\n",
b28a02de 3996 cachep->name, -err);
2ed3a4ef 3997 return err;
1da177e4
LT
3998}
3999
1b55253a 4000/*
ce8eb6c4
CL
4001 * Drain an array if it contains any elements taking the node lock only if
4002 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 4003 * if drain_array() is used on the shared array.
1b55253a 4004 */
ce8eb6c4 4005static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
18726ca8 4006 struct array_cache *ac, int node)
1da177e4 4007{
97654dfa 4008 LIST_HEAD(list);
18726ca8
JK
4009
4010 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4011 check_mutex_acquired();
1da177e4 4012
1b55253a
CL
4013 if (!ac || !ac->avail)
4014 return;
18726ca8
JK
4015
4016 if (ac->touched) {
1da177e4 4017 ac->touched = 0;
18726ca8 4018 return;
1da177e4 4019 }
18726ca8
JK
4020
4021 spin_lock_irq(&n->list_lock);
4022 drain_array_locked(cachep, ac, node, false, &list);
4023 spin_unlock_irq(&n->list_lock);
4024
4025 slabs_destroy(cachep, &list);
1da177e4
LT
4026}
4027
4028/**
4029 * cache_reap - Reclaim memory from caches.
05fb6bf0 4030 * @w: work descriptor
1da177e4
LT
4031 *
4032 * Called from workqueue/eventd every few seconds.
4033 * Purpose:
4034 * - clear the per-cpu caches for this CPU.
4035 * - return freeable pages to the main free memory pool.
4036 *
a737b3e2
AM
4037 * If we cannot acquire the cache chain mutex then just give up - we'll try
4038 * again on the next iteration.
1da177e4 4039 */
7c5cae36 4040static void cache_reap(struct work_struct *w)
1da177e4 4041{
7a7c381d 4042 struct kmem_cache *searchp;
ce8eb6c4 4043 struct kmem_cache_node *n;
7d6e6d09 4044 int node = numa_mem_id();
bf6aede7 4045 struct delayed_work *work = to_delayed_work(w);
1da177e4 4046
18004c5d 4047 if (!mutex_trylock(&slab_mutex))
1da177e4 4048 /* Give up. Setup the next iteration. */
7c5cae36 4049 goto out;
1da177e4 4050
18004c5d 4051 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4052 check_irq_on();
4053
35386e3b 4054 /*
ce8eb6c4 4055 * We only take the node lock if absolutely necessary and we
35386e3b
CL
4056 * have established with reasonable certainty that
4057 * we can do some work if the lock was obtained.
4058 */
18bf8541 4059 n = get_node(searchp, node);
35386e3b 4060
ce8eb6c4 4061 reap_alien(searchp, n);
1da177e4 4062
18726ca8 4063 drain_array(searchp, n, cpu_cache_get(searchp), node);
1da177e4 4064
35386e3b
CL
4065 /*
4066 * These are racy checks but it does not matter
4067 * if we skip one check or scan twice.
4068 */
ce8eb6c4 4069 if (time_after(n->next_reap, jiffies))
35386e3b 4070 goto next;
1da177e4 4071
5f0985bb 4072 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 4073
18726ca8 4074 drain_array(searchp, n, n->shared, node);
1da177e4 4075
ce8eb6c4
CL
4076 if (n->free_touched)
4077 n->free_touched = 0;
ed11d9eb
CL
4078 else {
4079 int freed;
1da177e4 4080
ce8eb6c4 4081 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4082 5 * searchp->num - 1) / (5 * searchp->num));
4083 STATS_ADD_REAPED(searchp, freed);
4084 }
35386e3b 4085next:
1da177e4
LT
4086 cond_resched();
4087 }
4088 check_irq_on();
18004c5d 4089 mutex_unlock(&slab_mutex);
8fce4d8e 4090 next_reap_node();
7c5cae36 4091out:
a737b3e2 4092 /* Set up the next iteration */
a9f2a846
VB
4093 schedule_delayed_work_on(smp_processor_id(), work,
4094 round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
4095}
4096
0d7561c6 4097void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4098{
f728b0a5 4099 unsigned long active_objs, num_objs, active_slabs;
bf00bd34
DR
4100 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4101 unsigned long free_slabs = 0;
e498be7d 4102 int node;
ce8eb6c4 4103 struct kmem_cache_node *n;
1da177e4 4104
18bf8541 4105 for_each_kmem_cache_node(cachep, node, n) {
ca3b9b91 4106 check_irq_on();
ce8eb6c4 4107 spin_lock_irq(&n->list_lock);
e498be7d 4108
bf00bd34
DR
4109 total_slabs += n->total_slabs;
4110 free_slabs += n->free_slabs;
f728b0a5 4111 free_objs += n->free_objects;
07a63c41 4112
ce8eb6c4
CL
4113 if (n->shared)
4114 shared_avail += n->shared->avail;
e498be7d 4115
ce8eb6c4 4116 spin_unlock_irq(&n->list_lock);
1da177e4 4117 }
bf00bd34
DR
4118 num_objs = total_slabs * cachep->num;
4119 active_slabs = total_slabs - free_slabs;
f728b0a5 4120 active_objs = num_objs - free_objs;
1da177e4 4121
0d7561c6
GC
4122 sinfo->active_objs = active_objs;
4123 sinfo->num_objs = num_objs;
4124 sinfo->active_slabs = active_slabs;
bf00bd34 4125 sinfo->num_slabs = total_slabs;
0d7561c6
GC
4126 sinfo->shared_avail = shared_avail;
4127 sinfo->limit = cachep->limit;
4128 sinfo->batchcount = cachep->batchcount;
4129 sinfo->shared = cachep->shared;
4130 sinfo->objects_per_slab = cachep->num;
4131 sinfo->cache_order = cachep->gfporder;
4132}
4133
4134void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4135{
1da177e4 4136#if STATS
ce8eb6c4 4137 { /* node stats */
1da177e4
LT
4138 unsigned long high = cachep->high_mark;
4139 unsigned long allocs = cachep->num_allocations;
4140 unsigned long grown = cachep->grown;
4141 unsigned long reaped = cachep->reaped;
4142 unsigned long errors = cachep->errors;
4143 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4144 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4145 unsigned long node_frees = cachep->node_frees;
fb7faf33 4146 unsigned long overflows = cachep->node_overflow;
1da177e4 4147
756a025f 4148 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
e92dd4fd
JP
4149 allocs, high, grown,
4150 reaped, errors, max_freeable, node_allocs,
4151 node_frees, overflows);
1da177e4
LT
4152 }
4153 /* cpu stats */
4154 {
4155 unsigned long allochit = atomic_read(&cachep->allochit);
4156 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4157 unsigned long freehit = atomic_read(&cachep->freehit);
4158 unsigned long freemiss = atomic_read(&cachep->freemiss);
4159
4160 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4161 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4162 }
4163#endif
1da177e4
LT
4164}
4165
1da177e4
LT
4166#define MAX_SLABINFO_WRITE 128
4167/**
4168 * slabinfo_write - Tuning for the slab allocator
4169 * @file: unused
4170 * @buffer: user buffer
4171 * @count: data length
4172 * @ppos: unused
4173 */
b7454ad3 4174ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4175 size_t count, loff_t *ppos)
1da177e4 4176{
b28a02de 4177 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4178 int limit, batchcount, shared, res;
7a7c381d 4179 struct kmem_cache *cachep;
b28a02de 4180
1da177e4
LT
4181 if (count > MAX_SLABINFO_WRITE)
4182 return -EINVAL;
4183 if (copy_from_user(&kbuf, buffer, count))
4184 return -EFAULT;
b28a02de 4185 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4186
4187 tmp = strchr(kbuf, ' ');
4188 if (!tmp)
4189 return -EINVAL;
4190 *tmp = '\0';
4191 tmp++;
4192 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4193 return -EINVAL;
4194
4195 /* Find the cache in the chain of caches. */
18004c5d 4196 mutex_lock(&slab_mutex);
1da177e4 4197 res = -EINVAL;
18004c5d 4198 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4199 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4200 if (limit < 1 || batchcount < 1 ||
4201 batchcount > limit || shared < 0) {
e498be7d 4202 res = 0;
1da177e4 4203 } else {
e498be7d 4204 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4205 batchcount, shared,
4206 GFP_KERNEL);
1da177e4
LT
4207 }
4208 break;
4209 }
4210 }
18004c5d 4211 mutex_unlock(&slab_mutex);
1da177e4
LT
4212 if (res >= 0)
4213 res = count;
4214 return res;
4215}
871751e2
AV
4216
4217#ifdef CONFIG_DEBUG_SLAB_LEAK
4218
871751e2
AV
4219static inline int add_caller(unsigned long *n, unsigned long v)
4220{
4221 unsigned long *p;
4222 int l;
4223 if (!v)
4224 return 1;
4225 l = n[1];
4226 p = n + 2;
4227 while (l) {
4228 int i = l/2;
4229 unsigned long *q = p + 2 * i;
4230 if (*q == v) {
4231 q[1]++;
4232 return 1;
4233 }
4234 if (*q > v) {
4235 l = i;
4236 } else {
4237 p = q + 2;
4238 l -= i + 1;
4239 }
4240 }
4241 if (++n[1] == n[0])
4242 return 0;
4243 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4244 p[0] = v;
4245 p[1] = 1;
4246 return 1;
4247}
4248
8456a648
JK
4249static void handle_slab(unsigned long *n, struct kmem_cache *c,
4250 struct page *page)
871751e2
AV
4251{
4252 void *p;
d31676df
JK
4253 int i, j;
4254 unsigned long v;
b1cb0982 4255
871751e2
AV
4256 if (n[0] == n[1])
4257 return;
8456a648 4258 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
d31676df
JK
4259 bool active = true;
4260
4261 for (j = page->active; j < c->num; j++) {
4262 if (get_free_obj(page, j) == i) {
4263 active = false;
4264 break;
4265 }
4266 }
4267
4268 if (!active)
871751e2 4269 continue;
b1cb0982 4270
d31676df
JK
4271 /*
4272 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4273 * mapping is established when actual object allocation and
4274 * we could mistakenly access the unmapped object in the cpu
4275 * cache.
4276 */
4277 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4278 continue;
4279
4280 if (!add_caller(n, v))
871751e2
AV
4281 return;
4282 }
4283}
4284
4285static void show_symbol(struct seq_file *m, unsigned long address)
4286{
4287#ifdef CONFIG_KALLSYMS
871751e2 4288 unsigned long offset, size;
9281acea 4289 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4290
a5c43dae 4291 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4292 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4293 if (modname[0])
871751e2
AV
4294 seq_printf(m, " [%s]", modname);
4295 return;
4296 }
4297#endif
85c3e4a5 4298 seq_printf(m, "%px", (void *)address);
871751e2
AV
4299}
4300
4301static int leaks_show(struct seq_file *m, void *p)
4302{
0672aa7c 4303 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4304 struct page *page;
ce8eb6c4 4305 struct kmem_cache_node *n;
871751e2 4306 const char *name;
db845067 4307 unsigned long *x = m->private;
871751e2
AV
4308 int node;
4309 int i;
4310
4311 if (!(cachep->flags & SLAB_STORE_USER))
4312 return 0;
4313 if (!(cachep->flags & SLAB_RED_ZONE))
4314 return 0;
4315
d31676df
JK
4316 /*
4317 * Set store_user_clean and start to grab stored user information
4318 * for all objects on this cache. If some alloc/free requests comes
4319 * during the processing, information would be wrong so restart
4320 * whole processing.
4321 */
4322 do {
4323 set_store_user_clean(cachep);
4324 drain_cpu_caches(cachep);
4325
4326 x[1] = 0;
871751e2 4327
d31676df 4328 for_each_kmem_cache_node(cachep, node, n) {
871751e2 4329
d31676df
JK
4330 check_irq_on();
4331 spin_lock_irq(&n->list_lock);
871751e2 4332
d31676df
JK
4333 list_for_each_entry(page, &n->slabs_full, lru)
4334 handle_slab(x, cachep, page);
4335 list_for_each_entry(page, &n->slabs_partial, lru)
4336 handle_slab(x, cachep, page);
4337 spin_unlock_irq(&n->list_lock);
4338 }
4339 } while (!is_store_user_clean(cachep));
871751e2 4340
871751e2 4341 name = cachep->name;
db845067 4342 if (x[0] == x[1]) {
871751e2 4343 /* Increase the buffer size */
18004c5d 4344 mutex_unlock(&slab_mutex);
6396bb22
KC
4345 m->private = kcalloc(x[0] * 4, sizeof(unsigned long),
4346 GFP_KERNEL);
871751e2
AV
4347 if (!m->private) {
4348 /* Too bad, we are really out */
db845067 4349 m->private = x;
18004c5d 4350 mutex_lock(&slab_mutex);
871751e2
AV
4351 return -ENOMEM;
4352 }
db845067
CL
4353 *(unsigned long *)m->private = x[0] * 2;
4354 kfree(x);
18004c5d 4355 mutex_lock(&slab_mutex);
871751e2
AV
4356 /* Now make sure this entry will be retried */
4357 m->count = m->size;
4358 return 0;
4359 }
db845067
CL
4360 for (i = 0; i < x[1]; i++) {
4361 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4362 show_symbol(m, x[2*i+2]);
871751e2
AV
4363 seq_putc(m, '\n');
4364 }
d2e7b7d0 4365
871751e2
AV
4366 return 0;
4367}
4368
a0ec95a8 4369static const struct seq_operations slabstats_op = {
1df3b26f 4370 .start = slab_start,
276a2439
WL
4371 .next = slab_next,
4372 .stop = slab_stop,
871751e2
AV
4373 .show = leaks_show,
4374};
a0ec95a8
AD
4375
4376static int slabstats_open(struct inode *inode, struct file *file)
4377{
b208ce32
RJ
4378 unsigned long *n;
4379
4380 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4381 if (!n)
4382 return -ENOMEM;
4383
4384 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4385
4386 return 0;
a0ec95a8
AD
4387}
4388
4389static const struct file_operations proc_slabstats_operations = {
4390 .open = slabstats_open,
4391 .read = seq_read,
4392 .llseek = seq_lseek,
4393 .release = seq_release_private,
4394};
4395#endif
4396
4397static int __init slab_proc_init(void)
4398{
4399#ifdef CONFIG_DEBUG_SLAB_LEAK
4400 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4401#endif
a0ec95a8
AD
4402 return 0;
4403}
4404module_init(slab_proc_init);
1da177e4 4405
04385fc5
KC
4406#ifdef CONFIG_HARDENED_USERCOPY
4407/*
afcc90f8
KC
4408 * Rejects incorrectly sized objects and objects that are to be copied
4409 * to/from userspace but do not fall entirely within the containing slab
4410 * cache's usercopy region.
04385fc5
KC
4411 *
4412 * Returns NULL if check passes, otherwise const char * to name of cache
4413 * to indicate an error.
4414 */
f4e6e289
KC
4415void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4416 bool to_user)
04385fc5
KC
4417{
4418 struct kmem_cache *cachep;
4419 unsigned int objnr;
4420 unsigned long offset;
4421
4422 /* Find and validate object. */
4423 cachep = page->slab_cache;
4424 objnr = obj_to_index(cachep, page, (void *)ptr);
4425 BUG_ON(objnr >= cachep->num);
4426
4427 /* Find offset within object. */
4428 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4429
afcc90f8
KC
4430 /* Allow address range falling entirely within usercopy region. */
4431 if (offset >= cachep->useroffset &&
4432 offset - cachep->useroffset <= cachep->usersize &&
4433 n <= cachep->useroffset - offset + cachep->usersize)
f4e6e289 4434 return;
04385fc5 4435
afcc90f8
KC
4436 /*
4437 * If the copy is still within the allocated object, produce
4438 * a warning instead of rejecting the copy. This is intended
4439 * to be a temporary method to find any missing usercopy
4440 * whitelists.
4441 */
2d891fbc
KC
4442 if (usercopy_fallback &&
4443 offset <= cachep->object_size &&
afcc90f8
KC
4444 n <= cachep->object_size - offset) {
4445 usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4446 return;
4447 }
04385fc5 4448
f4e6e289 4449 usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
04385fc5
KC
4450}
4451#endif /* CONFIG_HARDENED_USERCOPY */
4452
00e145b6
MS
4453/**
4454 * ksize - get the actual amount of memory allocated for a given object
4455 * @objp: Pointer to the object
4456 *
4457 * kmalloc may internally round up allocations and return more memory
4458 * than requested. ksize() can be used to determine the actual amount of
4459 * memory allocated. The caller may use this additional memory, even though
4460 * a smaller amount of memory was initially specified with the kmalloc call.
4461 * The caller must guarantee that objp points to a valid object previously
4462 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4463 * must not be freed during the duration of the call.
4464 */
fd76bab2 4465size_t ksize(const void *objp)
1da177e4 4466{
7ed2f9e6
AP
4467 size_t size;
4468
ef8b4520
CL
4469 BUG_ON(!objp);
4470 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4471 return 0;
1da177e4 4472
7ed2f9e6
AP
4473 size = virt_to_cache(objp)->object_size;
4474 /* We assume that ksize callers could use the whole allocated area,
4475 * so we need to unpoison this area.
4476 */
4ebb31a4 4477 kasan_unpoison_shadow(objp, size);
7ed2f9e6
AP
4478
4479 return size;
1da177e4 4480}
b1aabecd 4481EXPORT_SYMBOL(ksize);