mm: generalize putback scan functions
[linux-2.6-block.git] / mm / slab.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
183ff22b 30 * slabs and you must pass objects with the same initializations to
1da177e4
LT
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
a737b3e2 54 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
343e0d7a 59 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
18004c5d 72 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
e498be7d
CL
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
88 */
89
1da177e4
LT
90#include <linux/slab.h>
91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
a0ec95a8 99#include <linux/proc_fs.h>
1da177e4
LT
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
3f8c2452 119#include <linux/sched/task_stack.h>
1da177e4 120
381760ea
MG
121#include <net/sock.h>
122
1da177e4
LT
123#include <asm/cacheflush.h>
124#include <asm/tlbflush.h>
125#include <asm/page.h>
126
4dee6b64
SR
127#include <trace/events/kmem.h>
128
072bb0aa
MG
129#include "internal.h"
130
b9ce5ef4
GC
131#include "slab.h"
132
1da177e4 133/*
50953fe9 134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143#ifdef CONFIG_DEBUG_SLAB
144#define DEBUG 1
145#define STATS 1
146#define FORCED_DEBUG 1
147#else
148#define DEBUG 0
149#define STATS 0
150#define FORCED_DEBUG 0
151#endif
152
1da177e4
LT
153/* Shouldn't this be in a header file somewhere? */
154#define BYTES_PER_WORD sizeof(void *)
87a927c7 155#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 156
1da177e4
LT
157#ifndef ARCH_KMALLOC_FLAGS
158#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159#endif
160
f315e3fa
JK
161#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164#if FREELIST_BYTE_INDEX
165typedef unsigned char freelist_idx_t;
166#else
167typedef unsigned short freelist_idx_t;
168#endif
169
30321c7b 170#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 171
1da177e4
LT
172/*
173 * struct array_cache
174 *
1da177e4
LT
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
bda5b655 189 void *entry[]; /*
a737b3e2
AM
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
a737b3e2 193 */
1da177e4
LT
194};
195
c8522a3a
JK
196struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199};
200
e498be7d
CL
201/*
202 * Need this for bootstrapping a per node allocator.
203 */
bf0dea23 204#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 205static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 206#define CACHE_CACHE 0
bf0dea23 207#define SIZE_NODE (MAX_NUMNODES)
e498be7d 208
ed11d9eb 209static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 210 struct kmem_cache_node *n, int tofree);
ed11d9eb 211static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
212 int node, struct list_head *list);
213static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 214static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 215static void cache_reap(struct work_struct *unused);
ed11d9eb 216
76b342bd
JK
217static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
e0a42726
IM
222static int slab_early_init = 1;
223
ce8eb6c4 224#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 225
ce8eb6c4 226static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
227{
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
bf00bd34 231 parent->total_slabs = 0;
f728b0a5 232 parent->free_slabs = 0;
e498be7d
CL
233 parent->shared = NULL;
234 parent->alien = NULL;
2e1217cf 235 parent->colour_next = 0;
e498be7d
CL
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239}
240
a737b3e2
AM
241#define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
18bf8541 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
245 } while (0)
246
a737b3e2
AM
247#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
e498be7d
CL
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
1da177e4 253
4fd0b46e
AD
254#define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255#define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
b03a017b 256#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
1da177e4
LT
257#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259#define BATCHREFILL_LIMIT 16
a737b3e2
AM
260/*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
1da177e4 263 *
dc6f3f27 264 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
265 * which could lock up otherwise freeable slabs.
266 */
5f0985bb
JZ
267#define REAPTIMEOUT_AC (2*HZ)
268#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
269
270#if STATS
271#define STATS_INC_ACTIVE(x) ((x)->num_active++)
272#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 275#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
276#define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
1da177e4
LT
281#define STATS_INC_ERR(x) ((x)->errors++)
282#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 283#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 284#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
285#define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
1da177e4
LT
290#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294#else
295#define STATS_INC_ACTIVE(x) do { } while (0)
296#define STATS_DEC_ACTIVE(x) do { } while (0)
297#define STATS_INC_ALLOCED(x) do { } while (0)
298#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 299#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
300#define STATS_SET_HIGH(x) do { } while (0)
301#define STATS_INC_ERR(x) do { } while (0)
302#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 303#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 304#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 305#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
306#define STATS_INC_ALLOCHIT(x) do { } while (0)
307#define STATS_INC_ALLOCMISS(x) do { } while (0)
308#define STATS_INC_FREEHIT(x) do { } while (0)
309#define STATS_INC_FREEMISS(x) do { } while (0)
310#endif
311
312#if DEBUG
1da177e4 313
a737b3e2
AM
314/*
315 * memory layout of objects:
1da177e4 316 * 0 : objp
3dafccf2 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
3dafccf2 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 321 * redzone word.
3dafccf2 322 * cachep->obj_offset: The real object.
3b0efdfa
CL
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 325 * [BYTES_PER_WORD long]
1da177e4 326 */
343e0d7a 327static int obj_offset(struct kmem_cache *cachep)
1da177e4 328{
3dafccf2 329 return cachep->obj_offset;
1da177e4
LT
330}
331
b46b8f19 332static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
333{
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
1da177e4
LT
337}
338
b46b8f19 339static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
340{
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 343 return (unsigned long long *)(objp + cachep->size -
b46b8f19 344 sizeof(unsigned long long) -
87a927c7 345 REDZONE_ALIGN);
3b0efdfa 346 return (unsigned long long *) (objp + cachep->size -
b46b8f19 347 sizeof(unsigned long long));
1da177e4
LT
348}
349
343e0d7a 350static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
351{
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
354}
355
356#else
357
3dafccf2 358#define obj_offset(x) 0
b46b8f19
DW
359#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
361#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363#endif
364
03787301
JK
365#ifdef CONFIG_DEBUG_SLAB_LEAK
366
d31676df 367static inline bool is_store_user_clean(struct kmem_cache *cachep)
03787301 368{
d31676df
JK
369 return atomic_read(&cachep->store_user_clean) == 1;
370}
03787301 371
d31676df
JK
372static inline void set_store_user_clean(struct kmem_cache *cachep)
373{
374 atomic_set(&cachep->store_user_clean, 1);
375}
03787301 376
d31676df
JK
377static inline void set_store_user_dirty(struct kmem_cache *cachep)
378{
379 if (is_store_user_clean(cachep))
380 atomic_set(&cachep->store_user_clean, 0);
03787301
JK
381}
382
383#else
d31676df 384static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
03787301
JK
385
386#endif
387
1da177e4 388/*
3df1cccd
DR
389 * Do not go above this order unless 0 objects fit into the slab or
390 * overridden on the command line.
1da177e4 391 */
543585cc
DR
392#define SLAB_MAX_ORDER_HI 1
393#define SLAB_MAX_ORDER_LO 0
394static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 395static bool slab_max_order_set __initdata;
1da177e4 396
6ed5eb22
PE
397static inline struct kmem_cache *virt_to_cache(const void *obj)
398{
b49af68f 399 struct page *page = virt_to_head_page(obj);
35026088 400 return page->slab_cache;
6ed5eb22
PE
401}
402
8456a648 403static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
404 unsigned int idx)
405{
8456a648 406 return page->s_mem + cache->size * idx;
8fea4e96
PE
407}
408
6fb92430 409#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 410/* internal cache of cache description objs */
9b030cb8 411static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
412 .batchcount = 1,
413 .limit = BOOT_CPUCACHE_ENTRIES,
414 .shared = 1,
3b0efdfa 415 .size = sizeof(struct kmem_cache),
b28a02de 416 .name = "kmem_cache",
1da177e4
LT
417};
418
1871e52c 419static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 420
343e0d7a 421static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 422{
bf0dea23 423 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
424}
425
a737b3e2
AM
426/*
427 * Calculate the number of objects and left-over bytes for a given buffer size.
428 */
70f75067 429static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
d50112ed 430 slab_flags_t flags, size_t *left_over)
fbaccacf 431{
70f75067 432 unsigned int num;
fbaccacf 433 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 434
fbaccacf
SR
435 /*
436 * The slab management structure can be either off the slab or
437 * on it. For the latter case, the memory allocated for a
438 * slab is used for:
439 *
fbaccacf 440 * - @buffer_size bytes for each object
2e6b3602
JK
441 * - One freelist_idx_t for each object
442 *
443 * We don't need to consider alignment of freelist because
444 * freelist will be at the end of slab page. The objects will be
445 * at the correct alignment.
fbaccacf
SR
446 *
447 * If the slab management structure is off the slab, then the
448 * alignment will already be calculated into the size. Because
449 * the slabs are all pages aligned, the objects will be at the
450 * correct alignment when allocated.
451 */
b03a017b 452 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
70f75067 453 num = slab_size / buffer_size;
2e6b3602 454 *left_over = slab_size % buffer_size;
fbaccacf 455 } else {
70f75067 456 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
2e6b3602
JK
457 *left_over = slab_size %
458 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 459 }
70f75067
JK
460
461 return num;
1da177e4
LT
462}
463
f28510d3 464#if DEBUG
d40cee24 465#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 466
a737b3e2
AM
467static void __slab_error(const char *function, struct kmem_cache *cachep,
468 char *msg)
1da177e4 469{
1170532b 470 pr_err("slab error in %s(): cache `%s': %s\n",
b28a02de 471 function, cachep->name, msg);
1da177e4 472 dump_stack();
373d4d09 473 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 474}
f28510d3 475#endif
1da177e4 476
3395ee05
PM
477/*
478 * By default on NUMA we use alien caches to stage the freeing of
479 * objects allocated from other nodes. This causes massive memory
480 * inefficiencies when using fake NUMA setup to split memory into a
481 * large number of small nodes, so it can be disabled on the command
482 * line
483 */
484
485static int use_alien_caches __read_mostly = 1;
486static int __init noaliencache_setup(char *s)
487{
488 use_alien_caches = 0;
489 return 1;
490}
491__setup("noaliencache", noaliencache_setup);
492
3df1cccd
DR
493static int __init slab_max_order_setup(char *str)
494{
495 get_option(&str, &slab_max_order);
496 slab_max_order = slab_max_order < 0 ? 0 :
497 min(slab_max_order, MAX_ORDER - 1);
498 slab_max_order_set = true;
499
500 return 1;
501}
502__setup("slab_max_order=", slab_max_order_setup);
503
8fce4d8e
CL
504#ifdef CONFIG_NUMA
505/*
506 * Special reaping functions for NUMA systems called from cache_reap().
507 * These take care of doing round robin flushing of alien caches (containing
508 * objects freed on different nodes from which they were allocated) and the
509 * flushing of remote pcps by calling drain_node_pages.
510 */
1871e52c 511static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
512
513static void init_reap_node(int cpu)
514{
0edaf86c
AM
515 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
516 node_online_map);
8fce4d8e
CL
517}
518
519static void next_reap_node(void)
520{
909ea964 521 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 522
0edaf86c 523 node = next_node_in(node, node_online_map);
909ea964 524 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
525}
526
527#else
528#define init_reap_node(cpu) do { } while (0)
529#define next_reap_node(void) do { } while (0)
530#endif
531
1da177e4
LT
532/*
533 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
534 * via the workqueue/eventd.
535 * Add the CPU number into the expiration time to minimize the possibility of
536 * the CPUs getting into lockstep and contending for the global cache chain
537 * lock.
538 */
0db0628d 539static void start_cpu_timer(int cpu)
1da177e4 540{
1871e52c 541 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4 542
eac0337a 543 if (reap_work->work.func == NULL) {
8fce4d8e 544 init_reap_node(cpu);
203b42f7 545 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
546 schedule_delayed_work_on(cpu, reap_work,
547 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
548 }
549}
550
1fe00d50 551static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 552{
1fe00d50
JK
553 if (ac) {
554 ac->avail = 0;
555 ac->limit = limit;
556 ac->batchcount = batch;
557 ac->touched = 0;
1da177e4 558 }
1fe00d50
JK
559}
560
561static struct array_cache *alloc_arraycache(int node, int entries,
562 int batchcount, gfp_t gfp)
563{
5e804789 564 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
565 struct array_cache *ac = NULL;
566
567 ac = kmalloc_node(memsize, gfp, node);
92d1d07d
QC
568 /*
569 * The array_cache structures contain pointers to free object.
570 * However, when such objects are allocated or transferred to another
571 * cache the pointers are not cleared and they could be counted as
572 * valid references during a kmemleak scan. Therefore, kmemleak must
573 * not scan such objects.
574 */
575 kmemleak_no_scan(ac);
1fe00d50
JK
576 init_arraycache(ac, entries, batchcount);
577 return ac;
1da177e4
LT
578}
579
f68f8ddd
JK
580static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
581 struct page *page, void *objp)
072bb0aa 582{
f68f8ddd
JK
583 struct kmem_cache_node *n;
584 int page_node;
585 LIST_HEAD(list);
072bb0aa 586
f68f8ddd
JK
587 page_node = page_to_nid(page);
588 n = get_node(cachep, page_node);
381760ea 589
f68f8ddd
JK
590 spin_lock(&n->list_lock);
591 free_block(cachep, &objp, 1, page_node, &list);
592 spin_unlock(&n->list_lock);
381760ea 593
f68f8ddd 594 slabs_destroy(cachep, &list);
072bb0aa
MG
595}
596
3ded175a
CL
597/*
598 * Transfer objects in one arraycache to another.
599 * Locking must be handled by the caller.
600 *
601 * Return the number of entries transferred.
602 */
603static int transfer_objects(struct array_cache *to,
604 struct array_cache *from, unsigned int max)
605{
606 /* Figure out how many entries to transfer */
732eacc0 607 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
608
609 if (!nr)
610 return 0;
611
612 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
613 sizeof(void *) *nr);
614
615 from->avail -= nr;
616 to->avail += nr;
3ded175a
CL
617 return nr;
618}
619
765c4507
CL
620#ifndef CONFIG_NUMA
621
622#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 623#define reap_alien(cachep, n) do { } while (0)
765c4507 624
c8522a3a
JK
625static inline struct alien_cache **alloc_alien_cache(int node,
626 int limit, gfp_t gfp)
765c4507 627{
8888177e 628 return NULL;
765c4507
CL
629}
630
c8522a3a 631static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
632{
633}
634
635static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
636{
637 return 0;
638}
639
640static inline void *alternate_node_alloc(struct kmem_cache *cachep,
641 gfp_t flags)
642{
643 return NULL;
644}
645
8b98c169 646static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
647 gfp_t flags, int nodeid)
648{
649 return NULL;
650}
651
4167e9b2
DR
652static inline gfp_t gfp_exact_node(gfp_t flags)
653{
444eb2a4 654 return flags & ~__GFP_NOFAIL;
4167e9b2
DR
655}
656
765c4507
CL
657#else /* CONFIG_NUMA */
658
8b98c169 659static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 660static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 661
c8522a3a
JK
662static struct alien_cache *__alloc_alien_cache(int node, int entries,
663 int batch, gfp_t gfp)
664{
5e804789 665 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
666 struct alien_cache *alc = NULL;
667
668 alc = kmalloc_node(memsize, gfp, node);
09c2e76e 669 if (alc) {
92d1d07d 670 kmemleak_no_scan(alc);
09c2e76e
CL
671 init_arraycache(&alc->ac, entries, batch);
672 spin_lock_init(&alc->lock);
673 }
c8522a3a
JK
674 return alc;
675}
676
677static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 678{
c8522a3a 679 struct alien_cache **alc_ptr;
e498be7d
CL
680 int i;
681
682 if (limit > 1)
683 limit = 12;
b9726c26 684 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
c8522a3a
JK
685 if (!alc_ptr)
686 return NULL;
687
688 for_each_node(i) {
689 if (i == node || !node_online(i))
690 continue;
691 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
692 if (!alc_ptr[i]) {
693 for (i--; i >= 0; i--)
694 kfree(alc_ptr[i]);
695 kfree(alc_ptr);
696 return NULL;
e498be7d
CL
697 }
698 }
c8522a3a 699 return alc_ptr;
e498be7d
CL
700}
701
c8522a3a 702static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
703{
704 int i;
705
c8522a3a 706 if (!alc_ptr)
e498be7d 707 return;
e498be7d 708 for_each_node(i)
c8522a3a
JK
709 kfree(alc_ptr[i]);
710 kfree(alc_ptr);
e498be7d
CL
711}
712
343e0d7a 713static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
714 struct array_cache *ac, int node,
715 struct list_head *list)
e498be7d 716{
18bf8541 717 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
718
719 if (ac->avail) {
ce8eb6c4 720 spin_lock(&n->list_lock);
e00946fe
CL
721 /*
722 * Stuff objects into the remote nodes shared array first.
723 * That way we could avoid the overhead of putting the objects
724 * into the free lists and getting them back later.
725 */
ce8eb6c4
CL
726 if (n->shared)
727 transfer_objects(n->shared, ac, ac->limit);
e00946fe 728
833b706c 729 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 730 ac->avail = 0;
ce8eb6c4 731 spin_unlock(&n->list_lock);
e498be7d
CL
732 }
733}
734
8fce4d8e
CL
735/*
736 * Called from cache_reap() to regularly drain alien caches round robin.
737 */
ce8eb6c4 738static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 739{
909ea964 740 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 741
ce8eb6c4 742 if (n->alien) {
c8522a3a
JK
743 struct alien_cache *alc = n->alien[node];
744 struct array_cache *ac;
745
746 if (alc) {
747 ac = &alc->ac;
49dfc304 748 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
749 LIST_HEAD(list);
750
751 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 752 spin_unlock_irq(&alc->lock);
833b706c 753 slabs_destroy(cachep, &list);
c8522a3a 754 }
8fce4d8e
CL
755 }
756 }
757}
758
a737b3e2 759static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 760 struct alien_cache **alien)
e498be7d 761{
b28a02de 762 int i = 0;
c8522a3a 763 struct alien_cache *alc;
e498be7d
CL
764 struct array_cache *ac;
765 unsigned long flags;
766
767 for_each_online_node(i) {
c8522a3a
JK
768 alc = alien[i];
769 if (alc) {
833b706c
JK
770 LIST_HEAD(list);
771
c8522a3a 772 ac = &alc->ac;
49dfc304 773 spin_lock_irqsave(&alc->lock, flags);
833b706c 774 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 775 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 776 slabs_destroy(cachep, &list);
e498be7d
CL
777 }
778 }
779}
729bd0b7 780
25c4f304
JK
781static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
782 int node, int page_node)
729bd0b7 783{
ce8eb6c4 784 struct kmem_cache_node *n;
c8522a3a
JK
785 struct alien_cache *alien = NULL;
786 struct array_cache *ac;
97654dfa 787 LIST_HEAD(list);
1ca4cb24 788
18bf8541 789 n = get_node(cachep, node);
729bd0b7 790 STATS_INC_NODEFREES(cachep);
25c4f304
JK
791 if (n->alien && n->alien[page_node]) {
792 alien = n->alien[page_node];
c8522a3a 793 ac = &alien->ac;
49dfc304 794 spin_lock(&alien->lock);
c8522a3a 795 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 796 STATS_INC_ACOVERFLOW(cachep);
25c4f304 797 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 798 }
f68f8ddd 799 ac->entry[ac->avail++] = objp;
49dfc304 800 spin_unlock(&alien->lock);
833b706c 801 slabs_destroy(cachep, &list);
729bd0b7 802 } else {
25c4f304 803 n = get_node(cachep, page_node);
18bf8541 804 spin_lock(&n->list_lock);
25c4f304 805 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 806 spin_unlock(&n->list_lock);
97654dfa 807 slabs_destroy(cachep, &list);
729bd0b7
PE
808 }
809 return 1;
810}
25c4f304
JK
811
812static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
813{
814 int page_node = page_to_nid(virt_to_page(objp));
815 int node = numa_mem_id();
816 /*
817 * Make sure we are not freeing a object from another node to the array
818 * cache on this cpu.
819 */
820 if (likely(node == page_node))
821 return 0;
822
823 return __cache_free_alien(cachep, objp, node, page_node);
824}
4167e9b2
DR
825
826/*
444eb2a4
MG
827 * Construct gfp mask to allocate from a specific node but do not reclaim or
828 * warn about failures.
4167e9b2
DR
829 */
830static inline gfp_t gfp_exact_node(gfp_t flags)
831{
444eb2a4 832 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
4167e9b2 833}
e498be7d
CL
834#endif
835
ded0ecf6
JK
836static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
837{
838 struct kmem_cache_node *n;
839
840 /*
841 * Set up the kmem_cache_node for cpu before we can
842 * begin anything. Make sure some other cpu on this
843 * node has not already allocated this
844 */
845 n = get_node(cachep, node);
846 if (n) {
847 spin_lock_irq(&n->list_lock);
848 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
849 cachep->num;
850 spin_unlock_irq(&n->list_lock);
851
852 return 0;
853 }
854
855 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
856 if (!n)
857 return -ENOMEM;
858
859 kmem_cache_node_init(n);
860 n->next_reap = jiffies + REAPTIMEOUT_NODE +
861 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
862
863 n->free_limit =
864 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
865
866 /*
867 * The kmem_cache_nodes don't come and go as CPUs
868 * come and go. slab_mutex is sufficient
869 * protection here.
870 */
871 cachep->node[node] = n;
872
873 return 0;
874}
875
6731d4f1 876#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
8f9f8d9e 877/*
6a67368c 878 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 879 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 880 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 881 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
882 * already in use.
883 *
18004c5d 884 * Must hold slab_mutex.
8f9f8d9e 885 */
6a67368c 886static int init_cache_node_node(int node)
8f9f8d9e 887{
ded0ecf6 888 int ret;
8f9f8d9e 889 struct kmem_cache *cachep;
8f9f8d9e 890
18004c5d 891 list_for_each_entry(cachep, &slab_caches, list) {
ded0ecf6
JK
892 ret = init_cache_node(cachep, node, GFP_KERNEL);
893 if (ret)
894 return ret;
8f9f8d9e 895 }
ded0ecf6 896
8f9f8d9e
DR
897 return 0;
898}
6731d4f1 899#endif
8f9f8d9e 900
c3d332b6
JK
901static int setup_kmem_cache_node(struct kmem_cache *cachep,
902 int node, gfp_t gfp, bool force_change)
903{
904 int ret = -ENOMEM;
905 struct kmem_cache_node *n;
906 struct array_cache *old_shared = NULL;
907 struct array_cache *new_shared = NULL;
908 struct alien_cache **new_alien = NULL;
909 LIST_HEAD(list);
910
911 if (use_alien_caches) {
912 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
913 if (!new_alien)
914 goto fail;
915 }
916
917 if (cachep->shared) {
918 new_shared = alloc_arraycache(node,
919 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
920 if (!new_shared)
921 goto fail;
922 }
923
924 ret = init_cache_node(cachep, node, gfp);
925 if (ret)
926 goto fail;
927
928 n = get_node(cachep, node);
929 spin_lock_irq(&n->list_lock);
930 if (n->shared && force_change) {
931 free_block(cachep, n->shared->entry,
932 n->shared->avail, node, &list);
933 n->shared->avail = 0;
934 }
935
936 if (!n->shared || force_change) {
937 old_shared = n->shared;
938 n->shared = new_shared;
939 new_shared = NULL;
940 }
941
942 if (!n->alien) {
943 n->alien = new_alien;
944 new_alien = NULL;
945 }
946
947 spin_unlock_irq(&n->list_lock);
948 slabs_destroy(cachep, &list);
949
801faf0d
JK
950 /*
951 * To protect lockless access to n->shared during irq disabled context.
952 * If n->shared isn't NULL in irq disabled context, accessing to it is
953 * guaranteed to be valid until irq is re-enabled, because it will be
6564a25e 954 * freed after synchronize_rcu().
801faf0d 955 */
86d9f485 956 if (old_shared && force_change)
6564a25e 957 synchronize_rcu();
801faf0d 958
c3d332b6
JK
959fail:
960 kfree(old_shared);
961 kfree(new_shared);
962 free_alien_cache(new_alien);
963
964 return ret;
965}
966
6731d4f1
SAS
967#ifdef CONFIG_SMP
968
0db0628d 969static void cpuup_canceled(long cpu)
fbf1e473
AM
970{
971 struct kmem_cache *cachep;
ce8eb6c4 972 struct kmem_cache_node *n = NULL;
7d6e6d09 973 int node = cpu_to_mem(cpu);
a70f7302 974 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 975
18004c5d 976 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
977 struct array_cache *nc;
978 struct array_cache *shared;
c8522a3a 979 struct alien_cache **alien;
97654dfa 980 LIST_HEAD(list);
fbf1e473 981
18bf8541 982 n = get_node(cachep, node);
ce8eb6c4 983 if (!n)
bf0dea23 984 continue;
fbf1e473 985
ce8eb6c4 986 spin_lock_irq(&n->list_lock);
fbf1e473 987
ce8eb6c4
CL
988 /* Free limit for this kmem_cache_node */
989 n->free_limit -= cachep->batchcount;
bf0dea23
JK
990
991 /* cpu is dead; no one can alloc from it. */
992 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
517f9f1e
LR
993 free_block(cachep, nc->entry, nc->avail, node, &list);
994 nc->avail = 0;
fbf1e473 995
58463c1f 996 if (!cpumask_empty(mask)) {
ce8eb6c4 997 spin_unlock_irq(&n->list_lock);
bf0dea23 998 goto free_slab;
fbf1e473
AM
999 }
1000
ce8eb6c4 1001 shared = n->shared;
fbf1e473
AM
1002 if (shared) {
1003 free_block(cachep, shared->entry,
97654dfa 1004 shared->avail, node, &list);
ce8eb6c4 1005 n->shared = NULL;
fbf1e473
AM
1006 }
1007
ce8eb6c4
CL
1008 alien = n->alien;
1009 n->alien = NULL;
fbf1e473 1010
ce8eb6c4 1011 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1012
1013 kfree(shared);
1014 if (alien) {
1015 drain_alien_cache(cachep, alien);
1016 free_alien_cache(alien);
1017 }
bf0dea23
JK
1018
1019free_slab:
97654dfa 1020 slabs_destroy(cachep, &list);
fbf1e473
AM
1021 }
1022 /*
1023 * In the previous loop, all the objects were freed to
1024 * the respective cache's slabs, now we can go ahead and
1025 * shrink each nodelist to its limit.
1026 */
18004c5d 1027 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1028 n = get_node(cachep, node);
ce8eb6c4 1029 if (!n)
fbf1e473 1030 continue;
a5aa63a5 1031 drain_freelist(cachep, n, INT_MAX);
fbf1e473
AM
1032 }
1033}
1034
0db0628d 1035static int cpuup_prepare(long cpu)
1da177e4 1036{
343e0d7a 1037 struct kmem_cache *cachep;
7d6e6d09 1038 int node = cpu_to_mem(cpu);
8f9f8d9e 1039 int err;
1da177e4 1040
fbf1e473
AM
1041 /*
1042 * We need to do this right in the beginning since
1043 * alloc_arraycache's are going to use this list.
1044 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1045 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1046 */
6a67368c 1047 err = init_cache_node_node(node);
8f9f8d9e
DR
1048 if (err < 0)
1049 goto bad;
fbf1e473
AM
1050
1051 /*
1052 * Now we can go ahead with allocating the shared arrays and
1053 * array caches
1054 */
18004c5d 1055 list_for_each_entry(cachep, &slab_caches, list) {
c3d332b6
JK
1056 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1057 if (err)
1058 goto bad;
fbf1e473 1059 }
ce79ddc8 1060
fbf1e473
AM
1061 return 0;
1062bad:
12d00f6a 1063 cpuup_canceled(cpu);
fbf1e473
AM
1064 return -ENOMEM;
1065}
1066
6731d4f1 1067int slab_prepare_cpu(unsigned int cpu)
fbf1e473 1068{
6731d4f1 1069 int err;
fbf1e473 1070
6731d4f1
SAS
1071 mutex_lock(&slab_mutex);
1072 err = cpuup_prepare(cpu);
1073 mutex_unlock(&slab_mutex);
1074 return err;
1075}
1076
1077/*
1078 * This is called for a failed online attempt and for a successful
1079 * offline.
1080 *
1081 * Even if all the cpus of a node are down, we don't free the
1082 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1083 * a kmalloc allocation from another cpu for memory from the node of
1084 * the cpu going down. The list3 structure is usually allocated from
1085 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1086 */
1087int slab_dead_cpu(unsigned int cpu)
1088{
1089 mutex_lock(&slab_mutex);
1090 cpuup_canceled(cpu);
1091 mutex_unlock(&slab_mutex);
1092 return 0;
1093}
8f5be20b 1094#endif
6731d4f1
SAS
1095
1096static int slab_online_cpu(unsigned int cpu)
1097{
1098 start_cpu_timer(cpu);
1099 return 0;
1da177e4
LT
1100}
1101
6731d4f1
SAS
1102static int slab_offline_cpu(unsigned int cpu)
1103{
1104 /*
1105 * Shutdown cache reaper. Note that the slab_mutex is held so
1106 * that if cache_reap() is invoked it cannot do anything
1107 * expensive but will only modify reap_work and reschedule the
1108 * timer.
1109 */
1110 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1111 /* Now the cache_reaper is guaranteed to be not running. */
1112 per_cpu(slab_reap_work, cpu).work.func = NULL;
1113 return 0;
1114}
1da177e4 1115
8f9f8d9e
DR
1116#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1117/*
1118 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1119 * Returns -EBUSY if all objects cannot be drained so that the node is not
1120 * removed.
1121 *
18004c5d 1122 * Must hold slab_mutex.
8f9f8d9e 1123 */
6a67368c 1124static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1125{
1126 struct kmem_cache *cachep;
1127 int ret = 0;
1128
18004c5d 1129 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1130 struct kmem_cache_node *n;
8f9f8d9e 1131
18bf8541 1132 n = get_node(cachep, node);
ce8eb6c4 1133 if (!n)
8f9f8d9e
DR
1134 continue;
1135
a5aa63a5 1136 drain_freelist(cachep, n, INT_MAX);
8f9f8d9e 1137
ce8eb6c4
CL
1138 if (!list_empty(&n->slabs_full) ||
1139 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1140 ret = -EBUSY;
1141 break;
1142 }
1143 }
1144 return ret;
1145}
1146
1147static int __meminit slab_memory_callback(struct notifier_block *self,
1148 unsigned long action, void *arg)
1149{
1150 struct memory_notify *mnb = arg;
1151 int ret = 0;
1152 int nid;
1153
1154 nid = mnb->status_change_nid;
1155 if (nid < 0)
1156 goto out;
1157
1158 switch (action) {
1159 case MEM_GOING_ONLINE:
18004c5d 1160 mutex_lock(&slab_mutex);
6a67368c 1161 ret = init_cache_node_node(nid);
18004c5d 1162 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1163 break;
1164 case MEM_GOING_OFFLINE:
18004c5d 1165 mutex_lock(&slab_mutex);
6a67368c 1166 ret = drain_cache_node_node(nid);
18004c5d 1167 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1168 break;
1169 case MEM_ONLINE:
1170 case MEM_OFFLINE:
1171 case MEM_CANCEL_ONLINE:
1172 case MEM_CANCEL_OFFLINE:
1173 break;
1174 }
1175out:
5fda1bd5 1176 return notifier_from_errno(ret);
8f9f8d9e
DR
1177}
1178#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1179
e498be7d 1180/*
ce8eb6c4 1181 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1182 */
6744f087 1183static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1184 int nodeid)
e498be7d 1185{
6744f087 1186 struct kmem_cache_node *ptr;
e498be7d 1187
6744f087 1188 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1189 BUG_ON(!ptr);
1190
6744f087 1191 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1192 /*
1193 * Do not assume that spinlocks can be initialized via memcpy:
1194 */
1195 spin_lock_init(&ptr->list_lock);
1196
e498be7d 1197 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1198 cachep->node[nodeid] = ptr;
e498be7d
CL
1199}
1200
556a169d 1201/*
ce8eb6c4
CL
1202 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1203 * size of kmem_cache_node.
556a169d 1204 */
ce8eb6c4 1205static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1206{
1207 int node;
1208
1209 for_each_online_node(node) {
ce8eb6c4 1210 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1211 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1212 REAPTIMEOUT_NODE +
1213 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1214 }
1215}
1216
a737b3e2
AM
1217/*
1218 * Initialisation. Called after the page allocator have been initialised and
1219 * before smp_init().
1da177e4
LT
1220 */
1221void __init kmem_cache_init(void)
1222{
e498be7d
CL
1223 int i;
1224
9b030cb8
CL
1225 kmem_cache = &kmem_cache_boot;
1226
8888177e 1227 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
62918a03
SS
1228 use_alien_caches = 0;
1229
3c583465 1230 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1231 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1232
1da177e4
LT
1233 /*
1234 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1235 * page orders on machines with more than 32MB of memory if
1236 * not overridden on the command line.
1da177e4 1237 */
ca79b0c2 1238 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
543585cc 1239 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1240
1da177e4
LT
1241 /* Bootstrap is tricky, because several objects are allocated
1242 * from caches that do not exist yet:
9b030cb8
CL
1243 * 1) initialize the kmem_cache cache: it contains the struct
1244 * kmem_cache structures of all caches, except kmem_cache itself:
1245 * kmem_cache is statically allocated.
e498be7d 1246 * Initially an __init data area is used for the head array and the
ce8eb6c4 1247 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1248 * array at the end of the bootstrap.
1da177e4 1249 * 2) Create the first kmalloc cache.
343e0d7a 1250 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1251 * An __init data area is used for the head array.
1252 * 3) Create the remaining kmalloc caches, with minimally sized
1253 * head arrays.
9b030cb8 1254 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1255 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1256 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1257 * the other cache's with kmalloc allocated memory.
1258 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1259 */
1260
9b030cb8 1261 /* 1) create the kmem_cache */
1da177e4 1262
8da3430d 1263 /*
b56efcf0 1264 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1265 */
2f9baa9f 1266 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1267 offsetof(struct kmem_cache, node) +
6744f087 1268 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 1269 SLAB_HWCACHE_ALIGN, 0, 0);
2f9baa9f 1270 list_add(&kmem_cache->list, &slab_caches);
880cd276 1271 memcg_link_cache(kmem_cache);
bf0dea23 1272 slab_state = PARTIAL;
1da177e4 1273
a737b3e2 1274 /*
bf0dea23
JK
1275 * Initialize the caches that provide memory for the kmem_cache_node
1276 * structures first. Without this, further allocations will bug.
e498be7d 1277 */
cc252eae 1278 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
af3b5f87 1279 kmalloc_info[INDEX_NODE].name,
6c0c21ad
DW
1280 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
1281 0, kmalloc_size(INDEX_NODE));
bf0dea23 1282 slab_state = PARTIAL_NODE;
34cc6990 1283 setup_kmalloc_cache_index_table();
e498be7d 1284
e0a42726
IM
1285 slab_early_init = 0;
1286
ce8eb6c4 1287 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1288 {
1ca4cb24
PE
1289 int nid;
1290
9c09a95c 1291 for_each_online_node(nid) {
ce8eb6c4 1292 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1293
cc252eae 1294 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
ce8eb6c4 1295 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1296 }
1297 }
1da177e4 1298
f97d5f63 1299 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1300}
1301
1302void __init kmem_cache_init_late(void)
1303{
1304 struct kmem_cache *cachep;
1305
8429db5c 1306 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1307 mutex_lock(&slab_mutex);
1308 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1309 if (enable_cpucache(cachep, GFP_NOWAIT))
1310 BUG();
18004c5d 1311 mutex_unlock(&slab_mutex);
056c6241 1312
97d06609
CL
1313 /* Done! */
1314 slab_state = FULL;
1315
8f9f8d9e
DR
1316#ifdef CONFIG_NUMA
1317 /*
1318 * Register a memory hotplug callback that initializes and frees
6a67368c 1319 * node.
8f9f8d9e
DR
1320 */
1321 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1322#endif
1323
a737b3e2
AM
1324 /*
1325 * The reap timers are started later, with a module init call: That part
1326 * of the kernel is not yet operational.
1da177e4
LT
1327 */
1328}
1329
1330static int __init cpucache_init(void)
1331{
6731d4f1 1332 int ret;
1da177e4 1333
a737b3e2
AM
1334 /*
1335 * Register the timers that return unneeded pages to the page allocator
1da177e4 1336 */
6731d4f1
SAS
1337 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1338 slab_online_cpu, slab_offline_cpu);
1339 WARN_ON(ret < 0);
a164f896 1340
1da177e4
LT
1341 return 0;
1342}
1da177e4
LT
1343__initcall(cpucache_init);
1344
8bdec192
RA
1345static noinline void
1346slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1347{
9a02d699 1348#if DEBUG
ce8eb6c4 1349 struct kmem_cache_node *n;
8bdec192
RA
1350 unsigned long flags;
1351 int node;
9a02d699
DR
1352 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1353 DEFAULT_RATELIMIT_BURST);
1354
1355 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1356 return;
8bdec192 1357
5b3810e5
VB
1358 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1359 nodeid, gfpflags, &gfpflags);
1360 pr_warn(" cache: %s, object size: %d, order: %d\n",
3b0efdfa 1361 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1362
18bf8541 1363 for_each_kmem_cache_node(cachep, node, n) {
bf00bd34 1364 unsigned long total_slabs, free_slabs, free_objs;
8bdec192 1365
ce8eb6c4 1366 spin_lock_irqsave(&n->list_lock, flags);
bf00bd34
DR
1367 total_slabs = n->total_slabs;
1368 free_slabs = n->free_slabs;
1369 free_objs = n->free_objects;
ce8eb6c4 1370 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192 1371
bf00bd34
DR
1372 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1373 node, total_slabs - free_slabs, total_slabs,
1374 (total_slabs * cachep->num) - free_objs,
1375 total_slabs * cachep->num);
8bdec192 1376 }
9a02d699 1377#endif
8bdec192
RA
1378}
1379
1da177e4 1380/*
8a7d9b43
WSH
1381 * Interface to system's page allocator. No need to hold the
1382 * kmem_cache_node ->list_lock.
1da177e4
LT
1383 *
1384 * If we requested dmaable memory, we will get it. Even if we
1385 * did not request dmaable memory, we might get it, but that
1386 * would be relatively rare and ignorable.
1387 */
0c3aa83e
JK
1388static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1389 int nodeid)
1da177e4
LT
1390{
1391 struct page *page;
e1b6aa6f 1392 int nr_pages;
765c4507 1393
a618e89f 1394 flags |= cachep->allocflags;
e1b6aa6f 1395
75f296d9 1396 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
8bdec192 1397 if (!page) {
9a02d699 1398 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1399 return NULL;
8bdec192 1400 }
1da177e4 1401
f3ccb2c4
VD
1402 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1403 __free_pages(page, cachep->gfporder);
1404 return NULL;
1405 }
1406
e1b6aa6f 1407 nr_pages = (1 << cachep->gfporder);
1da177e4 1408 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
7779f212 1409 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
972d1a7b 1410 else
7779f212 1411 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
f68f8ddd 1412
a57a4988 1413 __SetPageSlab(page);
f68f8ddd
JK
1414 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1415 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
a57a4988 1416 SetPageSlabPfmemalloc(page);
072bb0aa 1417
0c3aa83e 1418 return page;
1da177e4
LT
1419}
1420
1421/*
1422 * Interface to system's page release.
1423 */
0c3aa83e 1424static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1425{
27ee57c9
VD
1426 int order = cachep->gfporder;
1427 unsigned long nr_freed = (1 << order);
1da177e4 1428
972d1a7b 1429 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
7779f212 1430 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
972d1a7b 1431 else
7779f212 1432 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
73293c2f 1433
a57a4988 1434 BUG_ON(!PageSlab(page));
73293c2f 1435 __ClearPageSlabPfmemalloc(page);
a57a4988 1436 __ClearPageSlab(page);
8456a648
JK
1437 page_mapcount_reset(page);
1438 page->mapping = NULL;
1f458cbf 1439
1da177e4
LT
1440 if (current->reclaim_state)
1441 current->reclaim_state->reclaimed_slab += nr_freed;
27ee57c9
VD
1442 memcg_uncharge_slab(page, order, cachep);
1443 __free_pages(page, order);
1da177e4
LT
1444}
1445
1446static void kmem_rcu_free(struct rcu_head *head)
1447{
68126702
JK
1448 struct kmem_cache *cachep;
1449 struct page *page;
1da177e4 1450
68126702
JK
1451 page = container_of(head, struct page, rcu_head);
1452 cachep = page->slab_cache;
1453
1454 kmem_freepages(cachep, page);
1da177e4
LT
1455}
1456
1457#if DEBUG
40b44137
JK
1458static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1459{
1460 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1461 (cachep->size % PAGE_SIZE) == 0)
1462 return true;
1463
1464 return false;
1465}
1da177e4
LT
1466
1467#ifdef CONFIG_DEBUG_PAGEALLOC
80552f0f 1468static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
40b44137
JK
1469{
1470 if (!is_debug_pagealloc_cache(cachep))
1471 return;
1472
40b44137
JK
1473 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1474}
1475
1476#else
1477static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
80552f0f 1478 int map) {}
40b44137 1479
1da177e4
LT
1480#endif
1481
343e0d7a 1482static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1483{
8c138bc0 1484 int size = cachep->object_size;
3dafccf2 1485 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1486
1487 memset(addr, val, size);
b28a02de 1488 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1489}
1490
1491static void dump_line(char *data, int offset, int limit)
1492{
1493 int i;
aa83aa40
DJ
1494 unsigned char error = 0;
1495 int bad_count = 0;
1496
1170532b 1497 pr_err("%03x: ", offset);
aa83aa40
DJ
1498 for (i = 0; i < limit; i++) {
1499 if (data[offset + i] != POISON_FREE) {
1500 error = data[offset + i];
1501 bad_count++;
1502 }
aa83aa40 1503 }
fdde6abb
SAS
1504 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1505 &data[offset], limit, 1);
aa83aa40
DJ
1506
1507 if (bad_count == 1) {
1508 error ^= POISON_FREE;
1509 if (!(error & (error - 1))) {
1170532b 1510 pr_err("Single bit error detected. Probably bad RAM.\n");
aa83aa40 1511#ifdef CONFIG_X86
1170532b 1512 pr_err("Run memtest86+ or a similar memory test tool.\n");
aa83aa40 1513#else
1170532b 1514 pr_err("Run a memory test tool.\n");
aa83aa40
DJ
1515#endif
1516 }
1517 }
1da177e4
LT
1518}
1519#endif
1520
1521#if DEBUG
1522
343e0d7a 1523static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1524{
1525 int i, size;
1526 char *realobj;
1527
1528 if (cachep->flags & SLAB_RED_ZONE) {
1170532b
JP
1529 pr_err("Redzone: 0x%llx/0x%llx\n",
1530 *dbg_redzone1(cachep, objp),
1531 *dbg_redzone2(cachep, objp));
1da177e4
LT
1532 }
1533
85c3e4a5
GU
1534 if (cachep->flags & SLAB_STORE_USER)
1535 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
3dafccf2 1536 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1537 size = cachep->object_size;
b28a02de 1538 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1539 int limit;
1540 limit = 16;
b28a02de
PE
1541 if (i + limit > size)
1542 limit = size - i;
1da177e4
LT
1543 dump_line(realobj, i, limit);
1544 }
1545}
1546
343e0d7a 1547static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1548{
1549 char *realobj;
1550 int size, i;
1551 int lines = 0;
1552
40b44137
JK
1553 if (is_debug_pagealloc_cache(cachep))
1554 return;
1555
3dafccf2 1556 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1557 size = cachep->object_size;
1da177e4 1558
b28a02de 1559 for (i = 0; i < size; i++) {
1da177e4 1560 char exp = POISON_FREE;
b28a02de 1561 if (i == size - 1)
1da177e4
LT
1562 exp = POISON_END;
1563 if (realobj[i] != exp) {
1564 int limit;
1565 /* Mismatch ! */
1566 /* Print header */
1567 if (lines == 0) {
85c3e4a5 1568 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1170532b
JP
1569 print_tainted(), cachep->name,
1570 realobj, size);
1da177e4
LT
1571 print_objinfo(cachep, objp, 0);
1572 }
1573 /* Hexdump the affected line */
b28a02de 1574 i = (i / 16) * 16;
1da177e4 1575 limit = 16;
b28a02de
PE
1576 if (i + limit > size)
1577 limit = size - i;
1da177e4
LT
1578 dump_line(realobj, i, limit);
1579 i += 16;
1580 lines++;
1581 /* Limit to 5 lines */
1582 if (lines > 5)
1583 break;
1584 }
1585 }
1586 if (lines != 0) {
1587 /* Print some data about the neighboring objects, if they
1588 * exist:
1589 */
8456a648 1590 struct page *page = virt_to_head_page(objp);
8fea4e96 1591 unsigned int objnr;
1da177e4 1592
8456a648 1593 objnr = obj_to_index(cachep, page, objp);
1da177e4 1594 if (objnr) {
8456a648 1595 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1596 realobj = (char *)objp + obj_offset(cachep);
85c3e4a5 1597 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1da177e4
LT
1598 print_objinfo(cachep, objp, 2);
1599 }
b28a02de 1600 if (objnr + 1 < cachep->num) {
8456a648 1601 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1602 realobj = (char *)objp + obj_offset(cachep);
85c3e4a5 1603 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1da177e4
LT
1604 print_objinfo(cachep, objp, 2);
1605 }
1606 }
1607}
1608#endif
1609
12dd36fa 1610#if DEBUG
8456a648
JK
1611static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1612 struct page *page)
1da177e4 1613{
1da177e4 1614 int i;
b03a017b
JK
1615
1616 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1617 poison_obj(cachep, page->freelist - obj_offset(cachep),
1618 POISON_FREE);
1619 }
1620
1da177e4 1621 for (i = 0; i < cachep->num; i++) {
8456a648 1622 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1623
1624 if (cachep->flags & SLAB_POISON) {
1da177e4 1625 check_poison_obj(cachep, objp);
80552f0f 1626 slab_kernel_map(cachep, objp, 1);
1da177e4
LT
1627 }
1628 if (cachep->flags & SLAB_RED_ZONE) {
1629 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 1630 slab_error(cachep, "start of a freed object was overwritten");
1da177e4 1631 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 1632 slab_error(cachep, "end of a freed object was overwritten");
1da177e4 1633 }
1da177e4 1634 }
12dd36fa 1635}
1da177e4 1636#else
8456a648
JK
1637static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1638 struct page *page)
12dd36fa 1639{
12dd36fa 1640}
1da177e4
LT
1641#endif
1642
911851e6
RD
1643/**
1644 * slab_destroy - destroy and release all objects in a slab
1645 * @cachep: cache pointer being destroyed
cb8ee1a3 1646 * @page: page pointer being destroyed
911851e6 1647 *
8a7d9b43
WSH
1648 * Destroy all the objs in a slab page, and release the mem back to the system.
1649 * Before calling the slab page must have been unlinked from the cache. The
1650 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1651 */
8456a648 1652static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1653{
7e007355 1654 void *freelist;
12dd36fa 1655
8456a648
JK
1656 freelist = page->freelist;
1657 slab_destroy_debugcheck(cachep, page);
5f0d5a3a 1658 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
bc4f610d
KS
1659 call_rcu(&page->rcu_head, kmem_rcu_free);
1660 else
0c3aa83e 1661 kmem_freepages(cachep, page);
68126702
JK
1662
1663 /*
8456a648 1664 * From now on, we don't use freelist
68126702
JK
1665 * although actual page can be freed in rcu context
1666 */
1667 if (OFF_SLAB(cachep))
8456a648 1668 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1669}
1670
97654dfa
JK
1671static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1672{
1673 struct page *page, *n;
1674
16cb0ec7
TH
1675 list_for_each_entry_safe(page, n, list, slab_list) {
1676 list_del(&page->slab_list);
97654dfa
JK
1677 slab_destroy(cachep, page);
1678 }
1679}
1680
4d268eba 1681/**
a70773dd
RD
1682 * calculate_slab_order - calculate size (page order) of slabs
1683 * @cachep: pointer to the cache that is being created
1684 * @size: size of objects to be created in this cache.
a70773dd
RD
1685 * @flags: slab allocation flags
1686 *
1687 * Also calculates the number of objects per slab.
4d268eba
PE
1688 *
1689 * This could be made much more intelligent. For now, try to avoid using
1690 * high order pages for slabs. When the gfp() functions are more friendly
1691 * towards high-order requests, this should be changed.
a862f68a
MR
1692 *
1693 * Return: number of left-over bytes in a slab
4d268eba 1694 */
a737b3e2 1695static size_t calculate_slab_order(struct kmem_cache *cachep,
d50112ed 1696 size_t size, slab_flags_t flags)
4d268eba
PE
1697{
1698 size_t left_over = 0;
9888e6fa 1699 int gfporder;
4d268eba 1700
0aa817f0 1701 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1702 unsigned int num;
1703 size_t remainder;
1704
70f75067 1705 num = cache_estimate(gfporder, size, flags, &remainder);
4d268eba
PE
1706 if (!num)
1707 continue;
9888e6fa 1708
f315e3fa
JK
1709 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1710 if (num > SLAB_OBJ_MAX_NUM)
1711 break;
1712
b1ab41c4 1713 if (flags & CFLGS_OFF_SLAB) {
3217fd9b
JK
1714 struct kmem_cache *freelist_cache;
1715 size_t freelist_size;
1716
1717 freelist_size = num * sizeof(freelist_idx_t);
1718 freelist_cache = kmalloc_slab(freelist_size, 0u);
1719 if (!freelist_cache)
1720 continue;
1721
b1ab41c4 1722 /*
3217fd9b 1723 * Needed to avoid possible looping condition
76b342bd 1724 * in cache_grow_begin()
b1ab41c4 1725 */
3217fd9b
JK
1726 if (OFF_SLAB(freelist_cache))
1727 continue;
b1ab41c4 1728
3217fd9b
JK
1729 /* check if off slab has enough benefit */
1730 if (freelist_cache->size > cachep->size / 2)
1731 continue;
b1ab41c4 1732 }
4d268eba 1733
9888e6fa 1734 /* Found something acceptable - save it away */
4d268eba 1735 cachep->num = num;
9888e6fa 1736 cachep->gfporder = gfporder;
4d268eba
PE
1737 left_over = remainder;
1738
f78bb8ad
LT
1739 /*
1740 * A VFS-reclaimable slab tends to have most allocations
1741 * as GFP_NOFS and we really don't want to have to be allocating
1742 * higher-order pages when we are unable to shrink dcache.
1743 */
1744 if (flags & SLAB_RECLAIM_ACCOUNT)
1745 break;
1746
4d268eba
PE
1747 /*
1748 * Large number of objects is good, but very large slabs are
1749 * currently bad for the gfp()s.
1750 */
543585cc 1751 if (gfporder >= slab_max_order)
4d268eba
PE
1752 break;
1753
9888e6fa
LT
1754 /*
1755 * Acceptable internal fragmentation?
1756 */
a737b3e2 1757 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1758 break;
1759 }
1760 return left_over;
1761}
1762
bf0dea23
JK
1763static struct array_cache __percpu *alloc_kmem_cache_cpus(
1764 struct kmem_cache *cachep, int entries, int batchcount)
1765{
1766 int cpu;
1767 size_t size;
1768 struct array_cache __percpu *cpu_cache;
1769
1770 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1771 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1772
1773 if (!cpu_cache)
1774 return NULL;
1775
1776 for_each_possible_cpu(cpu) {
1777 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1778 entries, batchcount);
1779 }
1780
1781 return cpu_cache;
1782}
1783
bd721ea7 1784static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1785{
97d06609 1786 if (slab_state >= FULL)
83b519e8 1787 return enable_cpucache(cachep, gfp);
2ed3a4ef 1788
bf0dea23
JK
1789 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1790 if (!cachep->cpu_cache)
1791 return 1;
1792
97d06609 1793 if (slab_state == DOWN) {
bf0dea23
JK
1794 /* Creation of first cache (kmem_cache). */
1795 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1796 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1797 /* For kmem_cache_node */
1798 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1799 } else {
bf0dea23 1800 int node;
f30cf7d1 1801
bf0dea23
JK
1802 for_each_online_node(node) {
1803 cachep->node[node] = kmalloc_node(
1804 sizeof(struct kmem_cache_node), gfp, node);
1805 BUG_ON(!cachep->node[node]);
1806 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1807 }
1808 }
bf0dea23 1809
6a67368c 1810 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1811 jiffies + REAPTIMEOUT_NODE +
1812 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1813
1814 cpu_cache_get(cachep)->avail = 0;
1815 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1816 cpu_cache_get(cachep)->batchcount = 1;
1817 cpu_cache_get(cachep)->touched = 0;
1818 cachep->batchcount = 1;
1819 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1820 return 0;
f30cf7d1
PE
1821}
1822
0293d1fd 1823slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1824 slab_flags_t flags, const char *name,
12220dea
JK
1825 void (*ctor)(void *))
1826{
1827 return flags;
1828}
1829
1830struct kmem_cache *
f4957d5b 1831__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 1832 slab_flags_t flags, void (*ctor)(void *))
12220dea
JK
1833{
1834 struct kmem_cache *cachep;
1835
1836 cachep = find_mergeable(size, align, flags, name, ctor);
1837 if (cachep) {
1838 cachep->refcount++;
1839
1840 /*
1841 * Adjust the object sizes so that we clear
1842 * the complete object on kzalloc.
1843 */
1844 cachep->object_size = max_t(int, cachep->object_size, size);
1845 }
1846 return cachep;
1847}
1848
b03a017b 1849static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
d50112ed 1850 size_t size, slab_flags_t flags)
b03a017b
JK
1851{
1852 size_t left;
1853
1854 cachep->num = 0;
1855
5f0d5a3a 1856 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
b03a017b
JK
1857 return false;
1858
1859 left = calculate_slab_order(cachep, size,
1860 flags | CFLGS_OBJFREELIST_SLAB);
1861 if (!cachep->num)
1862 return false;
1863
1864 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1865 return false;
1866
1867 cachep->colour = left / cachep->colour_off;
1868
1869 return true;
1870}
1871
158e319b 1872static bool set_off_slab_cache(struct kmem_cache *cachep,
d50112ed 1873 size_t size, slab_flags_t flags)
158e319b
JK
1874{
1875 size_t left;
1876
1877 cachep->num = 0;
1878
1879 /*
3217fd9b
JK
1880 * Always use on-slab management when SLAB_NOLEAKTRACE
1881 * to avoid recursive calls into kmemleak.
158e319b 1882 */
158e319b
JK
1883 if (flags & SLAB_NOLEAKTRACE)
1884 return false;
1885
1886 /*
1887 * Size is large, assume best to place the slab management obj
1888 * off-slab (should allow better packing of objs).
1889 */
1890 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1891 if (!cachep->num)
1892 return false;
1893
1894 /*
1895 * If the slab has been placed off-slab, and we have enough space then
1896 * move it on-slab. This is at the expense of any extra colouring.
1897 */
1898 if (left >= cachep->num * sizeof(freelist_idx_t))
1899 return false;
1900
1901 cachep->colour = left / cachep->colour_off;
1902
1903 return true;
1904}
1905
1906static bool set_on_slab_cache(struct kmem_cache *cachep,
d50112ed 1907 size_t size, slab_flags_t flags)
158e319b
JK
1908{
1909 size_t left;
1910
1911 cachep->num = 0;
1912
1913 left = calculate_slab_order(cachep, size, flags);
1914 if (!cachep->num)
1915 return false;
1916
1917 cachep->colour = left / cachep->colour_off;
1918
1919 return true;
1920}
1921
1da177e4 1922/**
039363f3 1923 * __kmem_cache_create - Create a cache.
a755b76a 1924 * @cachep: cache management descriptor
1da177e4 1925 * @flags: SLAB flags
1da177e4
LT
1926 *
1927 * Returns a ptr to the cache on success, NULL on failure.
1928 * Cannot be called within a int, but can be interrupted.
20c2df83 1929 * The @ctor is run when new pages are allocated by the cache.
1da177e4 1930 *
1da177e4
LT
1931 * The flags are
1932 *
1933 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1934 * to catch references to uninitialised memory.
1935 *
1936 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1937 * for buffer overruns.
1938 *
1da177e4
LT
1939 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1940 * cacheline. This can be beneficial if you're counting cycles as closely
1941 * as davem.
a862f68a
MR
1942 *
1943 * Return: a pointer to the created cache or %NULL in case of error
1da177e4 1944 */
d50112ed 1945int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1da177e4 1946{
d4a5fca5 1947 size_t ralign = BYTES_PER_WORD;
83b519e8 1948 gfp_t gfp;
278b1bb1 1949 int err;
be4a7988 1950 unsigned int size = cachep->size;
1da177e4 1951
1da177e4 1952#if DEBUG
1da177e4
LT
1953#if FORCED_DEBUG
1954 /*
1955 * Enable redzoning and last user accounting, except for caches with
1956 * large objects, if the increased size would increase the object size
1957 * above the next power of two: caches with object sizes just above a
1958 * power of two have a significant amount of internal fragmentation.
1959 */
87a927c7
DW
1960 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1961 2 * sizeof(unsigned long long)))
b28a02de 1962 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
5f0d5a3a 1963 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1da177e4
LT
1964 flags |= SLAB_POISON;
1965#endif
1da177e4 1966#endif
1da177e4 1967
a737b3e2
AM
1968 /*
1969 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
1970 * unaligned accesses for some archs when redzoning is used, and makes
1971 * sure any on-slab bufctl's are also correctly aligned.
1972 */
e0771950 1973 size = ALIGN(size, BYTES_PER_WORD);
1da177e4 1974
87a927c7
DW
1975 if (flags & SLAB_RED_ZONE) {
1976 ralign = REDZONE_ALIGN;
1977 /* If redzoning, ensure that the second redzone is suitably
1978 * aligned, by adjusting the object size accordingly. */
e0771950 1979 size = ALIGN(size, REDZONE_ALIGN);
87a927c7 1980 }
ca5f9703 1981
a44b56d3 1982 /* 3) caller mandated alignment */
8a13a4cc
CL
1983 if (ralign < cachep->align) {
1984 ralign = cachep->align;
1da177e4 1985 }
3ff84a7f
PE
1986 /* disable debug if necessary */
1987 if (ralign > __alignof__(unsigned long long))
a44b56d3 1988 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 1989 /*
ca5f9703 1990 * 4) Store it.
1da177e4 1991 */
8a13a4cc 1992 cachep->align = ralign;
158e319b
JK
1993 cachep->colour_off = cache_line_size();
1994 /* Offset must be a multiple of the alignment. */
1995 if (cachep->colour_off < cachep->align)
1996 cachep->colour_off = cachep->align;
1da177e4 1997
83b519e8
PE
1998 if (slab_is_available())
1999 gfp = GFP_KERNEL;
2000 else
2001 gfp = GFP_NOWAIT;
2002
1da177e4 2003#if DEBUG
1da177e4 2004
ca5f9703
PE
2005 /*
2006 * Both debugging options require word-alignment which is calculated
2007 * into align above.
2008 */
1da177e4 2009 if (flags & SLAB_RED_ZONE) {
1da177e4 2010 /* add space for red zone words */
3ff84a7f
PE
2011 cachep->obj_offset += sizeof(unsigned long long);
2012 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2013 }
2014 if (flags & SLAB_STORE_USER) {
ca5f9703 2015 /* user store requires one word storage behind the end of
87a927c7
DW
2016 * the real object. But if the second red zone needs to be
2017 * aligned to 64 bits, we must allow that much space.
1da177e4 2018 */
87a927c7
DW
2019 if (flags & SLAB_RED_ZONE)
2020 size += REDZONE_ALIGN;
2021 else
2022 size += BYTES_PER_WORD;
1da177e4 2023 }
832a15d2
JK
2024#endif
2025
7ed2f9e6
AP
2026 kasan_cache_create(cachep, &size, &flags);
2027
832a15d2
JK
2028 size = ALIGN(size, cachep->align);
2029 /*
2030 * We should restrict the number of objects in a slab to implement
2031 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2032 */
2033 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2034 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2035
2036#if DEBUG
03a2d2a3
JK
2037 /*
2038 * To activate debug pagealloc, off-slab management is necessary
2039 * requirement. In early phase of initialization, small sized slab
2040 * doesn't get initialized so it would not be possible. So, we need
2041 * to check size >= 256. It guarantees that all necessary small
2042 * sized slab is initialized in current slab initialization sequence.
2043 */
40323278 2044 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
f3a3c320
JK
2045 size >= 256 && cachep->object_size > cache_line_size()) {
2046 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2047 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2048
2049 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2050 flags |= CFLGS_OFF_SLAB;
2051 cachep->obj_offset += tmp_size - size;
2052 size = tmp_size;
2053 goto done;
2054 }
2055 }
1da177e4 2056 }
1da177e4
LT
2057#endif
2058
b03a017b
JK
2059 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2060 flags |= CFLGS_OBJFREELIST_SLAB;
2061 goto done;
2062 }
2063
158e319b 2064 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2065 flags |= CFLGS_OFF_SLAB;
158e319b 2066 goto done;
832a15d2 2067 }
1da177e4 2068
158e319b
JK
2069 if (set_on_slab_cache(cachep, size, flags))
2070 goto done;
1da177e4 2071
158e319b 2072 return -E2BIG;
1da177e4 2073
158e319b
JK
2074done:
2075 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2076 cachep->flags = flags;
a57a4988 2077 cachep->allocflags = __GFP_COMP;
a3187e43 2078 if (flags & SLAB_CACHE_DMA)
a618e89f 2079 cachep->allocflags |= GFP_DMA;
6d6ea1e9
NB
2080 if (flags & SLAB_CACHE_DMA32)
2081 cachep->allocflags |= GFP_DMA32;
a3ba0744
DR
2082 if (flags & SLAB_RECLAIM_ACCOUNT)
2083 cachep->allocflags |= __GFP_RECLAIMABLE;
3b0efdfa 2084 cachep->size = size;
6a2d7a95 2085 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2086
40b44137
JK
2087#if DEBUG
2088 /*
2089 * If we're going to use the generic kernel_map_pages()
2090 * poisoning, then it's going to smash the contents of
2091 * the redzone and userword anyhow, so switch them off.
2092 */
2093 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2094 (cachep->flags & SLAB_POISON) &&
2095 is_debug_pagealloc_cache(cachep))
2096 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2097#endif
2098
2099 if (OFF_SLAB(cachep)) {
158e319b
JK
2100 cachep->freelist_cache =
2101 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2102 }
1da177e4 2103
278b1bb1
CL
2104 err = setup_cpu_cache(cachep, gfp);
2105 if (err) {
52b4b950 2106 __kmem_cache_release(cachep);
278b1bb1 2107 return err;
2ed3a4ef 2108 }
1da177e4 2109
278b1bb1 2110 return 0;
1da177e4 2111}
1da177e4
LT
2112
2113#if DEBUG
2114static void check_irq_off(void)
2115{
2116 BUG_ON(!irqs_disabled());
2117}
2118
2119static void check_irq_on(void)
2120{
2121 BUG_ON(irqs_disabled());
2122}
2123
18726ca8
JK
2124static void check_mutex_acquired(void)
2125{
2126 BUG_ON(!mutex_is_locked(&slab_mutex));
2127}
2128
343e0d7a 2129static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2130{
2131#ifdef CONFIG_SMP
2132 check_irq_off();
18bf8541 2133 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2134#endif
2135}
e498be7d 2136
343e0d7a 2137static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2138{
2139#ifdef CONFIG_SMP
2140 check_irq_off();
18bf8541 2141 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2142#endif
2143}
2144
1da177e4
LT
2145#else
2146#define check_irq_off() do { } while(0)
2147#define check_irq_on() do { } while(0)
18726ca8 2148#define check_mutex_acquired() do { } while(0)
1da177e4 2149#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2150#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2151#endif
2152
18726ca8
JK
2153static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2154 int node, bool free_all, struct list_head *list)
2155{
2156 int tofree;
2157
2158 if (!ac || !ac->avail)
2159 return;
2160
2161 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2162 if (tofree > ac->avail)
2163 tofree = (ac->avail + 1) / 2;
2164
2165 free_block(cachep, ac->entry, tofree, node, list);
2166 ac->avail -= tofree;
2167 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2168}
aab2207c 2169
1da177e4
LT
2170static void do_drain(void *arg)
2171{
a737b3e2 2172 struct kmem_cache *cachep = arg;
1da177e4 2173 struct array_cache *ac;
7d6e6d09 2174 int node = numa_mem_id();
18bf8541 2175 struct kmem_cache_node *n;
97654dfa 2176 LIST_HEAD(list);
1da177e4
LT
2177
2178 check_irq_off();
9a2dba4b 2179 ac = cpu_cache_get(cachep);
18bf8541
CL
2180 n = get_node(cachep, node);
2181 spin_lock(&n->list_lock);
97654dfa 2182 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2183 spin_unlock(&n->list_lock);
97654dfa 2184 slabs_destroy(cachep, &list);
1da177e4
LT
2185 ac->avail = 0;
2186}
2187
343e0d7a 2188static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2189{
ce8eb6c4 2190 struct kmem_cache_node *n;
e498be7d 2191 int node;
18726ca8 2192 LIST_HEAD(list);
e498be7d 2193
15c8b6c1 2194 on_each_cpu(do_drain, cachep, 1);
1da177e4 2195 check_irq_on();
18bf8541
CL
2196 for_each_kmem_cache_node(cachep, node, n)
2197 if (n->alien)
ce8eb6c4 2198 drain_alien_cache(cachep, n->alien);
a4523a8b 2199
18726ca8
JK
2200 for_each_kmem_cache_node(cachep, node, n) {
2201 spin_lock_irq(&n->list_lock);
2202 drain_array_locked(cachep, n->shared, node, true, &list);
2203 spin_unlock_irq(&n->list_lock);
2204
2205 slabs_destroy(cachep, &list);
2206 }
1da177e4
LT
2207}
2208
ed11d9eb
CL
2209/*
2210 * Remove slabs from the list of free slabs.
2211 * Specify the number of slabs to drain in tofree.
2212 *
2213 * Returns the actual number of slabs released.
2214 */
2215static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2216 struct kmem_cache_node *n, int tofree)
1da177e4 2217{
ed11d9eb
CL
2218 struct list_head *p;
2219 int nr_freed;
8456a648 2220 struct page *page;
1da177e4 2221
ed11d9eb 2222 nr_freed = 0;
ce8eb6c4 2223 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2224
ce8eb6c4
CL
2225 spin_lock_irq(&n->list_lock);
2226 p = n->slabs_free.prev;
2227 if (p == &n->slabs_free) {
2228 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2229 goto out;
2230 }
1da177e4 2231
16cb0ec7
TH
2232 page = list_entry(p, struct page, slab_list);
2233 list_del(&page->slab_list);
f728b0a5 2234 n->free_slabs--;
bf00bd34 2235 n->total_slabs--;
ed11d9eb
CL
2236 /*
2237 * Safe to drop the lock. The slab is no longer linked
2238 * to the cache.
2239 */
ce8eb6c4
CL
2240 n->free_objects -= cache->num;
2241 spin_unlock_irq(&n->list_lock);
8456a648 2242 slab_destroy(cache, page);
ed11d9eb 2243 nr_freed++;
1da177e4 2244 }
ed11d9eb
CL
2245out:
2246 return nr_freed;
1da177e4
LT
2247}
2248
f9e13c0a
SB
2249bool __kmem_cache_empty(struct kmem_cache *s)
2250{
2251 int node;
2252 struct kmem_cache_node *n;
2253
2254 for_each_kmem_cache_node(s, node, n)
2255 if (!list_empty(&n->slabs_full) ||
2256 !list_empty(&n->slabs_partial))
2257 return false;
2258 return true;
2259}
2260
c9fc5864 2261int __kmem_cache_shrink(struct kmem_cache *cachep)
e498be7d 2262{
18bf8541
CL
2263 int ret = 0;
2264 int node;
ce8eb6c4 2265 struct kmem_cache_node *n;
e498be7d
CL
2266
2267 drain_cpu_caches(cachep);
2268
2269 check_irq_on();
18bf8541 2270 for_each_kmem_cache_node(cachep, node, n) {
a5aa63a5 2271 drain_freelist(cachep, n, INT_MAX);
ed11d9eb 2272
ce8eb6c4
CL
2273 ret += !list_empty(&n->slabs_full) ||
2274 !list_empty(&n->slabs_partial);
e498be7d
CL
2275 }
2276 return (ret ? 1 : 0);
2277}
2278
c9fc5864
TH
2279#ifdef CONFIG_MEMCG
2280void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2281{
2282 __kmem_cache_shrink(cachep);
2283}
2284#endif
2285
945cf2b6 2286int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950 2287{
c9fc5864 2288 return __kmem_cache_shrink(cachep);
52b4b950
DS
2289}
2290
2291void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2292{
12c3667f 2293 int i;
ce8eb6c4 2294 struct kmem_cache_node *n;
1da177e4 2295
c7ce4f60
TG
2296 cache_random_seq_destroy(cachep);
2297
bf0dea23 2298 free_percpu(cachep->cpu_cache);
1da177e4 2299
ce8eb6c4 2300 /* NUMA: free the node structures */
18bf8541
CL
2301 for_each_kmem_cache_node(cachep, i, n) {
2302 kfree(n->shared);
2303 free_alien_cache(n->alien);
2304 kfree(n);
2305 cachep->node[i] = NULL;
12c3667f 2306 }
1da177e4 2307}
1da177e4 2308
e5ac9c5a
RT
2309/*
2310 * Get the memory for a slab management obj.
5f0985bb
JZ
2311 *
2312 * For a slab cache when the slab descriptor is off-slab, the
2313 * slab descriptor can't come from the same cache which is being created,
2314 * Because if it is the case, that means we defer the creation of
2315 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2316 * And we eventually call down to __kmem_cache_create(), which
2317 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2318 * This is a "chicken-and-egg" problem.
2319 *
2320 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2321 * which are all initialized during kmem_cache_init().
e5ac9c5a 2322 */
7e007355 2323static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2324 struct page *page, int colour_off,
2325 gfp_t local_flags, int nodeid)
1da177e4 2326{
7e007355 2327 void *freelist;
0c3aa83e 2328 void *addr = page_address(page);
b28a02de 2329
51dedad0 2330 page->s_mem = addr + colour_off;
2e6b3602
JK
2331 page->active = 0;
2332
b03a017b
JK
2333 if (OBJFREELIST_SLAB(cachep))
2334 freelist = NULL;
2335 else if (OFF_SLAB(cachep)) {
1da177e4 2336 /* Slab management obj is off-slab. */
8456a648 2337 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2338 local_flags, nodeid);
8456a648 2339 if (!freelist)
1da177e4
LT
2340 return NULL;
2341 } else {
2e6b3602
JK
2342 /* We will use last bytes at the slab for freelist */
2343 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2344 cachep->freelist_size;
1da177e4 2345 }
2e6b3602 2346
8456a648 2347 return freelist;
1da177e4
LT
2348}
2349
7cc68973 2350static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2351{
a41adfaa 2352 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2353}
2354
2355static inline void set_free_obj(struct page *page,
7cc68973 2356 unsigned int idx, freelist_idx_t val)
e5c58dfd 2357{
a41adfaa 2358 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2359}
2360
10b2e9e8 2361static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
1da177e4 2362{
10b2e9e8 2363#if DEBUG
1da177e4
LT
2364 int i;
2365
2366 for (i = 0; i < cachep->num; i++) {
8456a648 2367 void *objp = index_to_obj(cachep, page, i);
10b2e9e8 2368
1da177e4
LT
2369 if (cachep->flags & SLAB_STORE_USER)
2370 *dbg_userword(cachep, objp) = NULL;
2371
2372 if (cachep->flags & SLAB_RED_ZONE) {
2373 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2374 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2375 }
2376 /*
a737b3e2
AM
2377 * Constructors are not allowed to allocate memory from the same
2378 * cache which they are a constructor for. Otherwise, deadlock.
2379 * They must also be threaded.
1da177e4 2380 */
7ed2f9e6
AP
2381 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2382 kasan_unpoison_object_data(cachep,
2383 objp + obj_offset(cachep));
51cc5068 2384 cachep->ctor(objp + obj_offset(cachep));
7ed2f9e6
AP
2385 kasan_poison_object_data(
2386 cachep, objp + obj_offset(cachep));
2387 }
1da177e4
LT
2388
2389 if (cachep->flags & SLAB_RED_ZONE) {
2390 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 2391 slab_error(cachep, "constructor overwrote the end of an object");
1da177e4 2392 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 2393 slab_error(cachep, "constructor overwrote the start of an object");
1da177e4 2394 }
40b44137
JK
2395 /* need to poison the objs? */
2396 if (cachep->flags & SLAB_POISON) {
2397 poison_obj(cachep, objp, POISON_FREE);
80552f0f 2398 slab_kernel_map(cachep, objp, 0);
40b44137 2399 }
10b2e9e8 2400 }
1da177e4 2401#endif
10b2e9e8
JK
2402}
2403
c7ce4f60
TG
2404#ifdef CONFIG_SLAB_FREELIST_RANDOM
2405/* Hold information during a freelist initialization */
2406union freelist_init_state {
2407 struct {
2408 unsigned int pos;
7c00fce9 2409 unsigned int *list;
c7ce4f60 2410 unsigned int count;
c7ce4f60
TG
2411 };
2412 struct rnd_state rnd_state;
2413};
2414
2415/*
2416 * Initialize the state based on the randomization methode available.
2417 * return true if the pre-computed list is available, false otherwize.
2418 */
2419static bool freelist_state_initialize(union freelist_init_state *state,
2420 struct kmem_cache *cachep,
2421 unsigned int count)
2422{
2423 bool ret;
2424 unsigned int rand;
2425
2426 /* Use best entropy available to define a random shift */
7c00fce9 2427 rand = get_random_int();
c7ce4f60
TG
2428
2429 /* Use a random state if the pre-computed list is not available */
2430 if (!cachep->random_seq) {
2431 prandom_seed_state(&state->rnd_state, rand);
2432 ret = false;
2433 } else {
2434 state->list = cachep->random_seq;
2435 state->count = count;
c4e490cf 2436 state->pos = rand % count;
c7ce4f60
TG
2437 ret = true;
2438 }
2439 return ret;
2440}
2441
2442/* Get the next entry on the list and randomize it using a random shift */
2443static freelist_idx_t next_random_slot(union freelist_init_state *state)
2444{
c4e490cf
JS
2445 if (state->pos >= state->count)
2446 state->pos = 0;
2447 return state->list[state->pos++];
c7ce4f60
TG
2448}
2449
7c00fce9
TG
2450/* Swap two freelist entries */
2451static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2452{
2453 swap(((freelist_idx_t *)page->freelist)[a],
2454 ((freelist_idx_t *)page->freelist)[b]);
2455}
2456
c7ce4f60
TG
2457/*
2458 * Shuffle the freelist initialization state based on pre-computed lists.
2459 * return true if the list was successfully shuffled, false otherwise.
2460 */
2461static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2462{
7c00fce9 2463 unsigned int objfreelist = 0, i, rand, count = cachep->num;
c7ce4f60
TG
2464 union freelist_init_state state;
2465 bool precomputed;
2466
2467 if (count < 2)
2468 return false;
2469
2470 precomputed = freelist_state_initialize(&state, cachep, count);
2471
2472 /* Take a random entry as the objfreelist */
2473 if (OBJFREELIST_SLAB(cachep)) {
2474 if (!precomputed)
2475 objfreelist = count - 1;
2476 else
2477 objfreelist = next_random_slot(&state);
2478 page->freelist = index_to_obj(cachep, page, objfreelist) +
2479 obj_offset(cachep);
2480 count--;
2481 }
2482
2483 /*
2484 * On early boot, generate the list dynamically.
2485 * Later use a pre-computed list for speed.
2486 */
2487 if (!precomputed) {
7c00fce9
TG
2488 for (i = 0; i < count; i++)
2489 set_free_obj(page, i, i);
2490
2491 /* Fisher-Yates shuffle */
2492 for (i = count - 1; i > 0; i--) {
2493 rand = prandom_u32_state(&state.rnd_state);
2494 rand %= (i + 1);
2495 swap_free_obj(page, i, rand);
2496 }
c7ce4f60
TG
2497 } else {
2498 for (i = 0; i < count; i++)
2499 set_free_obj(page, i, next_random_slot(&state));
2500 }
2501
2502 if (OBJFREELIST_SLAB(cachep))
2503 set_free_obj(page, cachep->num - 1, objfreelist);
2504
2505 return true;
2506}
2507#else
2508static inline bool shuffle_freelist(struct kmem_cache *cachep,
2509 struct page *page)
2510{
2511 return false;
2512}
2513#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2514
10b2e9e8
JK
2515static void cache_init_objs(struct kmem_cache *cachep,
2516 struct page *page)
2517{
2518 int i;
7ed2f9e6 2519 void *objp;
c7ce4f60 2520 bool shuffled;
10b2e9e8
JK
2521
2522 cache_init_objs_debug(cachep, page);
2523
c7ce4f60
TG
2524 /* Try to randomize the freelist if enabled */
2525 shuffled = shuffle_freelist(cachep, page);
2526
2527 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
b03a017b
JK
2528 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2529 obj_offset(cachep);
2530 }
2531
10b2e9e8 2532 for (i = 0; i < cachep->num; i++) {
b3cbd9bf 2533 objp = index_to_obj(cachep, page, i);
4d176711 2534 objp = kasan_init_slab_obj(cachep, objp);
b3cbd9bf 2535
10b2e9e8 2536 /* constructor could break poison info */
7ed2f9e6 2537 if (DEBUG == 0 && cachep->ctor) {
7ed2f9e6
AP
2538 kasan_unpoison_object_data(cachep, objp);
2539 cachep->ctor(objp);
2540 kasan_poison_object_data(cachep, objp);
2541 }
10b2e9e8 2542
c7ce4f60
TG
2543 if (!shuffled)
2544 set_free_obj(page, i, i);
1da177e4 2545 }
1da177e4
LT
2546}
2547
260b61dd 2548static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2549{
b1cb0982 2550 void *objp;
78d382d7 2551
e5c58dfd 2552 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2553 page->active++;
78d382d7 2554
d31676df
JK
2555#if DEBUG
2556 if (cachep->flags & SLAB_STORE_USER)
2557 set_store_user_dirty(cachep);
2558#endif
2559
78d382d7
MD
2560 return objp;
2561}
2562
260b61dd
JK
2563static void slab_put_obj(struct kmem_cache *cachep,
2564 struct page *page, void *objp)
78d382d7 2565{
8456a648 2566 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2567#if DEBUG
16025177 2568 unsigned int i;
b1cb0982 2569
b1cb0982 2570 /* Verify double free bug */
8456a648 2571 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2572 if (get_free_obj(page, i) == objnr) {
85c3e4a5 2573 pr_err("slab: double free detected in cache '%s', objp %px\n",
756a025f 2574 cachep->name, objp);
b1cb0982
JK
2575 BUG();
2576 }
78d382d7
MD
2577 }
2578#endif
8456a648 2579 page->active--;
b03a017b
JK
2580 if (!page->freelist)
2581 page->freelist = objp + obj_offset(cachep);
2582
e5c58dfd 2583 set_free_obj(page, page->active, objnr);
78d382d7
MD
2584}
2585
4776874f
PE
2586/*
2587 * Map pages beginning at addr to the given cache and slab. This is required
2588 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2589 * virtual address for kfree, ksize, and slab debugging.
4776874f 2590 */
8456a648 2591static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2592 void *freelist)
1da177e4 2593{
a57a4988 2594 page->slab_cache = cache;
8456a648 2595 page->freelist = freelist;
1da177e4
LT
2596}
2597
2598/*
2599 * Grow (by 1) the number of slabs within a cache. This is called by
2600 * kmem_cache_alloc() when there are no active objs left in a cache.
2601 */
76b342bd
JK
2602static struct page *cache_grow_begin(struct kmem_cache *cachep,
2603 gfp_t flags, int nodeid)
1da177e4 2604{
7e007355 2605 void *freelist;
b28a02de
PE
2606 size_t offset;
2607 gfp_t local_flags;
511e3a05 2608 int page_node;
ce8eb6c4 2609 struct kmem_cache_node *n;
511e3a05 2610 struct page *page;
1da177e4 2611
a737b3e2
AM
2612 /*
2613 * Be lazy and only check for valid flags here, keeping it out of the
2614 * critical path in kmem_cache_alloc().
1da177e4 2615 */
c871ac4e 2616 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 2617 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
2618 flags &= ~GFP_SLAB_BUG_MASK;
2619 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2620 invalid_mask, &invalid_mask, flags, &flags);
2621 dump_stack();
c871ac4e 2622 }
128227e7 2623 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
6cb06229 2624 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2625
1da177e4 2626 check_irq_off();
d0164adc 2627 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2628 local_irq_enable();
2629
a737b3e2
AM
2630 /*
2631 * Get mem for the objs. Attempt to allocate a physical page from
2632 * 'nodeid'.
e498be7d 2633 */
511e3a05 2634 page = kmem_getpages(cachep, local_flags, nodeid);
0c3aa83e 2635 if (!page)
1da177e4
LT
2636 goto failed;
2637
511e3a05
JK
2638 page_node = page_to_nid(page);
2639 n = get_node(cachep, page_node);
03d1d43a
JK
2640
2641 /* Get colour for the slab, and cal the next value. */
2642 n->colour_next++;
2643 if (n->colour_next >= cachep->colour)
2644 n->colour_next = 0;
2645
2646 offset = n->colour_next;
2647 if (offset >= cachep->colour)
2648 offset = 0;
2649
2650 offset *= cachep->colour_off;
2651
51dedad0
AK
2652 /*
2653 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2654 * page_address() in the latter returns a non-tagged pointer,
2655 * as it should be for slab pages.
2656 */
2657 kasan_poison_slab(page);
2658
1da177e4 2659 /* Get slab management. */
8456a648 2660 freelist = alloc_slabmgmt(cachep, page, offset,
511e3a05 2661 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
b03a017b 2662 if (OFF_SLAB(cachep) && !freelist)
1da177e4
LT
2663 goto opps1;
2664
8456a648 2665 slab_map_pages(cachep, page, freelist);
1da177e4 2666
8456a648 2667 cache_init_objs(cachep, page);
1da177e4 2668
d0164adc 2669 if (gfpflags_allow_blocking(local_flags))
1da177e4 2670 local_irq_disable();
1da177e4 2671
76b342bd
JK
2672 return page;
2673
a737b3e2 2674opps1:
0c3aa83e 2675 kmem_freepages(cachep, page);
a737b3e2 2676failed:
d0164adc 2677 if (gfpflags_allow_blocking(local_flags))
1da177e4 2678 local_irq_disable();
76b342bd
JK
2679 return NULL;
2680}
2681
2682static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2683{
2684 struct kmem_cache_node *n;
2685 void *list = NULL;
2686
2687 check_irq_off();
2688
2689 if (!page)
2690 return;
2691
16cb0ec7 2692 INIT_LIST_HEAD(&page->slab_list);
76b342bd
JK
2693 n = get_node(cachep, page_to_nid(page));
2694
2695 spin_lock(&n->list_lock);
bf00bd34 2696 n->total_slabs++;
f728b0a5 2697 if (!page->active) {
16cb0ec7 2698 list_add_tail(&page->slab_list, &n->slabs_free);
f728b0a5 2699 n->free_slabs++;
bf00bd34 2700 } else
76b342bd 2701 fixup_slab_list(cachep, n, page, &list);
07a63c41 2702
76b342bd
JK
2703 STATS_INC_GROWN(cachep);
2704 n->free_objects += cachep->num - page->active;
2705 spin_unlock(&n->list_lock);
2706
2707 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2708}
2709
2710#if DEBUG
2711
2712/*
2713 * Perform extra freeing checks:
2714 * - detect bad pointers.
2715 * - POISON/RED_ZONE checking
1da177e4
LT
2716 */
2717static void kfree_debugcheck(const void *objp)
2718{
1da177e4 2719 if (!virt_addr_valid(objp)) {
1170532b 2720 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
b28a02de
PE
2721 (unsigned long)objp);
2722 BUG();
1da177e4 2723 }
1da177e4
LT
2724}
2725
58ce1fd5
PE
2726static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2727{
b46b8f19 2728 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2729
2730 redzone1 = *dbg_redzone1(cache, obj);
2731 redzone2 = *dbg_redzone2(cache, obj);
2732
2733 /*
2734 * Redzone is ok.
2735 */
2736 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2737 return;
2738
2739 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2740 slab_error(cache, "double free detected");
2741 else
2742 slab_error(cache, "memory outside object was overwritten");
2743
85c3e4a5 2744 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
1170532b 2745 obj, redzone1, redzone2);
58ce1fd5
PE
2746}
2747
343e0d7a 2748static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2749 unsigned long caller)
1da177e4 2750{
1da177e4 2751 unsigned int objnr;
8456a648 2752 struct page *page;
1da177e4 2753
80cbd911
MW
2754 BUG_ON(virt_to_cache(objp) != cachep);
2755
3dafccf2 2756 objp -= obj_offset(cachep);
1da177e4 2757 kfree_debugcheck(objp);
b49af68f 2758 page = virt_to_head_page(objp);
1da177e4 2759
1da177e4 2760 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2761 verify_redzone_free(cachep, objp);
1da177e4
LT
2762 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2763 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2764 }
d31676df
JK
2765 if (cachep->flags & SLAB_STORE_USER) {
2766 set_store_user_dirty(cachep);
7c0cb9c6 2767 *dbg_userword(cachep, objp) = (void *)caller;
d31676df 2768 }
1da177e4 2769
8456a648 2770 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2771
2772 BUG_ON(objnr >= cachep->num);
8456a648 2773 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2774
1da177e4 2775 if (cachep->flags & SLAB_POISON) {
1da177e4 2776 poison_obj(cachep, objp, POISON_FREE);
80552f0f 2777 slab_kernel_map(cachep, objp, 0);
1da177e4
LT
2778 }
2779 return objp;
2780}
2781
1da177e4
LT
2782#else
2783#define kfree_debugcheck(x) do { } while(0)
2784#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2785#endif
2786
b03a017b
JK
2787static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2788 void **list)
2789{
2790#if DEBUG
2791 void *next = *list;
2792 void *objp;
2793
2794 while (next) {
2795 objp = next - obj_offset(cachep);
2796 next = *(void **)next;
2797 poison_obj(cachep, objp, POISON_FREE);
2798 }
2799#endif
2800}
2801
d8410234 2802static inline void fixup_slab_list(struct kmem_cache *cachep,
b03a017b
JK
2803 struct kmem_cache_node *n, struct page *page,
2804 void **list)
d8410234
JK
2805{
2806 /* move slabp to correct slabp list: */
16cb0ec7 2807 list_del(&page->slab_list);
b03a017b 2808 if (page->active == cachep->num) {
16cb0ec7 2809 list_add(&page->slab_list, &n->slabs_full);
b03a017b
JK
2810 if (OBJFREELIST_SLAB(cachep)) {
2811#if DEBUG
2812 /* Poisoning will be done without holding the lock */
2813 if (cachep->flags & SLAB_POISON) {
2814 void **objp = page->freelist;
2815
2816 *objp = *list;
2817 *list = objp;
2818 }
2819#endif
2820 page->freelist = NULL;
2821 }
2822 } else
16cb0ec7 2823 list_add(&page->slab_list, &n->slabs_partial);
d8410234
JK
2824}
2825
f68f8ddd
JK
2826/* Try to find non-pfmemalloc slab if needed */
2827static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
bf00bd34 2828 struct page *page, bool pfmemalloc)
f68f8ddd
JK
2829{
2830 if (!page)
2831 return NULL;
2832
2833 if (pfmemalloc)
2834 return page;
2835
2836 if (!PageSlabPfmemalloc(page))
2837 return page;
2838
2839 /* No need to keep pfmemalloc slab if we have enough free objects */
2840 if (n->free_objects > n->free_limit) {
2841 ClearPageSlabPfmemalloc(page);
2842 return page;
2843 }
2844
2845 /* Move pfmemalloc slab to the end of list to speed up next search */
16cb0ec7 2846 list_del(&page->slab_list);
bf00bd34 2847 if (!page->active) {
16cb0ec7 2848 list_add_tail(&page->slab_list, &n->slabs_free);
bf00bd34 2849 n->free_slabs++;
f728b0a5 2850 } else
16cb0ec7 2851 list_add_tail(&page->slab_list, &n->slabs_partial);
f68f8ddd 2852
16cb0ec7 2853 list_for_each_entry(page, &n->slabs_partial, slab_list) {
f68f8ddd
JK
2854 if (!PageSlabPfmemalloc(page))
2855 return page;
2856 }
2857
f728b0a5 2858 n->free_touched = 1;
16cb0ec7 2859 list_for_each_entry(page, &n->slabs_free, slab_list) {
f728b0a5 2860 if (!PageSlabPfmemalloc(page)) {
bf00bd34 2861 n->free_slabs--;
f68f8ddd 2862 return page;
f728b0a5 2863 }
f68f8ddd
JK
2864 }
2865
2866 return NULL;
2867}
2868
2869static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
7aa0d227
GT
2870{
2871 struct page *page;
2872
f728b0a5 2873 assert_spin_locked(&n->list_lock);
16cb0ec7
TH
2874 page = list_first_entry_or_null(&n->slabs_partial, struct page,
2875 slab_list);
7aa0d227
GT
2876 if (!page) {
2877 n->free_touched = 1;
bf00bd34 2878 page = list_first_entry_or_null(&n->slabs_free, struct page,
16cb0ec7 2879 slab_list);
f728b0a5 2880 if (page)
bf00bd34 2881 n->free_slabs--;
7aa0d227
GT
2882 }
2883
f68f8ddd 2884 if (sk_memalloc_socks())
bf00bd34 2885 page = get_valid_first_slab(n, page, pfmemalloc);
f68f8ddd 2886
7aa0d227
GT
2887 return page;
2888}
2889
f68f8ddd
JK
2890static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2891 struct kmem_cache_node *n, gfp_t flags)
2892{
2893 struct page *page;
2894 void *obj;
2895 void *list = NULL;
2896
2897 if (!gfp_pfmemalloc_allowed(flags))
2898 return NULL;
2899
2900 spin_lock(&n->list_lock);
2901 page = get_first_slab(n, true);
2902 if (!page) {
2903 spin_unlock(&n->list_lock);
2904 return NULL;
2905 }
2906
2907 obj = slab_get_obj(cachep, page);
2908 n->free_objects--;
2909
2910 fixup_slab_list(cachep, n, page, &list);
2911
2912 spin_unlock(&n->list_lock);
2913 fixup_objfreelist_debug(cachep, &list);
2914
2915 return obj;
2916}
2917
213b4695
JK
2918/*
2919 * Slab list should be fixed up by fixup_slab_list() for existing slab
2920 * or cache_grow_end() for new slab
2921 */
2922static __always_inline int alloc_block(struct kmem_cache *cachep,
2923 struct array_cache *ac, struct page *page, int batchcount)
2924{
2925 /*
2926 * There must be at least one object available for
2927 * allocation.
2928 */
2929 BUG_ON(page->active >= cachep->num);
2930
2931 while (page->active < cachep->num && batchcount--) {
2932 STATS_INC_ALLOCED(cachep);
2933 STATS_INC_ACTIVE(cachep);
2934 STATS_SET_HIGH(cachep);
2935
2936 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2937 }
2938
2939 return batchcount;
2940}
2941
f68f8ddd 2942static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2943{
2944 int batchcount;
ce8eb6c4 2945 struct kmem_cache_node *n;
801faf0d 2946 struct array_cache *ac, *shared;
1ca4cb24 2947 int node;
b03a017b 2948 void *list = NULL;
76b342bd 2949 struct page *page;
1ca4cb24 2950
1da177e4 2951 check_irq_off();
7d6e6d09 2952 node = numa_mem_id();
f68f8ddd 2953
9a2dba4b 2954 ac = cpu_cache_get(cachep);
1da177e4
LT
2955 batchcount = ac->batchcount;
2956 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2957 /*
2958 * If there was little recent activity on this cache, then
2959 * perform only a partial refill. Otherwise we could generate
2960 * refill bouncing.
1da177e4
LT
2961 */
2962 batchcount = BATCHREFILL_LIMIT;
2963 }
18bf8541 2964 n = get_node(cachep, node);
e498be7d 2965
ce8eb6c4 2966 BUG_ON(ac->avail > 0 || !n);
801faf0d
JK
2967 shared = READ_ONCE(n->shared);
2968 if (!n->free_objects && (!shared || !shared->avail))
2969 goto direct_grow;
2970
ce8eb6c4 2971 spin_lock(&n->list_lock);
801faf0d 2972 shared = READ_ONCE(n->shared);
1da177e4 2973
3ded175a 2974 /* See if we can refill from the shared array */
801faf0d
JK
2975 if (shared && transfer_objects(ac, shared, batchcount)) {
2976 shared->touched = 1;
3ded175a 2977 goto alloc_done;
44b57f1c 2978 }
3ded175a 2979
1da177e4 2980 while (batchcount > 0) {
1da177e4 2981 /* Get slab alloc is to come from. */
f68f8ddd 2982 page = get_first_slab(n, false);
7aa0d227
GT
2983 if (!page)
2984 goto must_grow;
1da177e4 2985
1da177e4 2986 check_spinlock_acquired(cachep);
714b8171 2987
213b4695 2988 batchcount = alloc_block(cachep, ac, page, batchcount);
b03a017b 2989 fixup_slab_list(cachep, n, page, &list);
1da177e4
LT
2990 }
2991
a737b3e2 2992must_grow:
ce8eb6c4 2993 n->free_objects -= ac->avail;
a737b3e2 2994alloc_done:
ce8eb6c4 2995 spin_unlock(&n->list_lock);
b03a017b 2996 fixup_objfreelist_debug(cachep, &list);
1da177e4 2997
801faf0d 2998direct_grow:
1da177e4 2999 if (unlikely(!ac->avail)) {
f68f8ddd
JK
3000 /* Check if we can use obj in pfmemalloc slab */
3001 if (sk_memalloc_socks()) {
3002 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3003
3004 if (obj)
3005 return obj;
3006 }
3007
76b342bd 3008 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
e498be7d 3009
76b342bd
JK
3010 /*
3011 * cache_grow_begin() can reenable interrupts,
3012 * then ac could change.
3013 */
9a2dba4b 3014 ac = cpu_cache_get(cachep);
213b4695
JK
3015 if (!ac->avail && page)
3016 alloc_block(cachep, ac, page, batchcount);
3017 cache_grow_end(cachep, page);
072bb0aa 3018
213b4695 3019 if (!ac->avail)
1da177e4 3020 return NULL;
1da177e4
LT
3021 }
3022 ac->touched = 1;
072bb0aa 3023
f68f8ddd 3024 return ac->entry[--ac->avail];
1da177e4
LT
3025}
3026
a737b3e2
AM
3027static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3028 gfp_t flags)
1da177e4 3029{
d0164adc 3030 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
3031}
3032
3033#if DEBUG
a737b3e2 3034static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3035 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3036{
128227e7 3037 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
b28a02de 3038 if (!objp)
1da177e4 3039 return objp;
b28a02de 3040 if (cachep->flags & SLAB_POISON) {
1da177e4 3041 check_poison_obj(cachep, objp);
80552f0f 3042 slab_kernel_map(cachep, objp, 1);
1da177e4
LT
3043 poison_obj(cachep, objp, POISON_INUSE);
3044 }
3045 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3046 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3047
3048 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3049 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3050 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
756a025f 3051 slab_error(cachep, "double free, or memory outside object was overwritten");
85c3e4a5 3052 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
1170532b
JP
3053 objp, *dbg_redzone1(cachep, objp),
3054 *dbg_redzone2(cachep, objp));
1da177e4
LT
3055 }
3056 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3057 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3058 }
03787301 3059
3dafccf2 3060 objp += obj_offset(cachep);
4f104934 3061 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3062 cachep->ctor(objp);
7ea466f2
TH
3063 if (ARCH_SLAB_MINALIGN &&
3064 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
85c3e4a5 3065 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3066 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3067 }
1da177e4
LT
3068 return objp;
3069}
3070#else
3071#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3072#endif
3073
343e0d7a 3074static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3075{
b28a02de 3076 void *objp;
1da177e4
LT
3077 struct array_cache *ac;
3078
5c382300 3079 check_irq_off();
8a8b6502 3080
9a2dba4b 3081 ac = cpu_cache_get(cachep);
1da177e4 3082 if (likely(ac->avail)) {
1da177e4 3083 ac->touched = 1;
f68f8ddd 3084 objp = ac->entry[--ac->avail];
072bb0aa 3085
f68f8ddd
JK
3086 STATS_INC_ALLOCHIT(cachep);
3087 goto out;
1da177e4 3088 }
072bb0aa
MG
3089
3090 STATS_INC_ALLOCMISS(cachep);
f68f8ddd 3091 objp = cache_alloc_refill(cachep, flags);
072bb0aa
MG
3092 /*
3093 * the 'ac' may be updated by cache_alloc_refill(),
3094 * and kmemleak_erase() requires its correct value.
3095 */
3096 ac = cpu_cache_get(cachep);
3097
3098out:
d5cff635
CM
3099 /*
3100 * To avoid a false negative, if an object that is in one of the
3101 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3102 * treat the array pointers as a reference to the object.
3103 */
f3d8b53a
O
3104 if (objp)
3105 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3106 return objp;
3107}
3108
e498be7d 3109#ifdef CONFIG_NUMA
c61afb18 3110/*
2ad654bc 3111 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
3112 *
3113 * If we are in_interrupt, then process context, including cpusets and
3114 * mempolicy, may not apply and should not be used for allocation policy.
3115 */
3116static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3117{
3118 int nid_alloc, nid_here;
3119
765c4507 3120 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3121 return NULL;
7d6e6d09 3122 nid_alloc = nid_here = numa_mem_id();
c61afb18 3123 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3124 nid_alloc = cpuset_slab_spread_node();
c61afb18 3125 else if (current->mempolicy)
2a389610 3126 nid_alloc = mempolicy_slab_node();
c61afb18 3127 if (nid_alloc != nid_here)
8b98c169 3128 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3129 return NULL;
3130}
3131
765c4507
CL
3132/*
3133 * Fallback function if there was no memory available and no objects on a
3c517a61 3134 * certain node and fall back is permitted. First we scan all the
6a67368c 3135 * available node for available objects. If that fails then we
3c517a61
CL
3136 * perform an allocation without specifying a node. This allows the page
3137 * allocator to do its reclaim / fallback magic. We then insert the
3138 * slab into the proper nodelist and then allocate from it.
765c4507 3139 */
8c8cc2c1 3140static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3141{
8c8cc2c1 3142 struct zonelist *zonelist;
dd1a239f 3143 struct zoneref *z;
54a6eb5c
MG
3144 struct zone *zone;
3145 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3146 void *obj = NULL;
76b342bd 3147 struct page *page;
3c517a61 3148 int nid;
cc9a6c87 3149 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3150
3151 if (flags & __GFP_THISNODE)
3152 return NULL;
3153
cc9a6c87 3154retry_cpuset:
d26914d1 3155 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3156 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3157
3c517a61
CL
3158retry:
3159 /*
3160 * Look through allowed nodes for objects available
3161 * from existing per node queues.
3162 */
54a6eb5c
MG
3163 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3164 nid = zone_to_nid(zone);
aedb0eb1 3165
061d7074 3166 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3167 get_node(cache, nid) &&
3168 get_node(cache, nid)->free_objects) {
3c517a61 3169 obj = ____cache_alloc_node(cache,
4167e9b2 3170 gfp_exact_node(flags), nid);
481c5346
CL
3171 if (obj)
3172 break;
3173 }
3c517a61
CL
3174 }
3175
cfce6604 3176 if (!obj) {
3c517a61
CL
3177 /*
3178 * This allocation will be performed within the constraints
3179 * of the current cpuset / memory policy requirements.
3180 * We may trigger various forms of reclaim on the allowed
3181 * set and go into memory reserves if necessary.
3182 */
76b342bd
JK
3183 page = cache_grow_begin(cache, flags, numa_mem_id());
3184 cache_grow_end(cache, page);
3185 if (page) {
3186 nid = page_to_nid(page);
511e3a05
JK
3187 obj = ____cache_alloc_node(cache,
3188 gfp_exact_node(flags), nid);
0c3aa83e 3189
3c517a61 3190 /*
511e3a05
JK
3191 * Another processor may allocate the objects in
3192 * the slab since we are not holding any locks.
3c517a61 3193 */
511e3a05
JK
3194 if (!obj)
3195 goto retry;
3c517a61 3196 }
aedb0eb1 3197 }
cc9a6c87 3198
d26914d1 3199 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3200 goto retry_cpuset;
765c4507
CL
3201 return obj;
3202}
3203
e498be7d
CL
3204/*
3205 * A interface to enable slab creation on nodeid
1da177e4 3206 */
8b98c169 3207static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3208 int nodeid)
e498be7d 3209{
8456a648 3210 struct page *page;
ce8eb6c4 3211 struct kmem_cache_node *n;
213b4695 3212 void *obj = NULL;
b03a017b 3213 void *list = NULL;
b28a02de 3214
7c3fbbdd 3215 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3216 n = get_node(cachep, nodeid);
ce8eb6c4 3217 BUG_ON(!n);
b28a02de 3218
ca3b9b91 3219 check_irq_off();
ce8eb6c4 3220 spin_lock(&n->list_lock);
f68f8ddd 3221 page = get_first_slab(n, false);
7aa0d227
GT
3222 if (!page)
3223 goto must_grow;
b28a02de 3224
b28a02de 3225 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3226
3227 STATS_INC_NODEALLOCS(cachep);
3228 STATS_INC_ACTIVE(cachep);
3229 STATS_SET_HIGH(cachep);
3230
8456a648 3231 BUG_ON(page->active == cachep->num);
b28a02de 3232
260b61dd 3233 obj = slab_get_obj(cachep, page);
ce8eb6c4 3234 n->free_objects--;
b28a02de 3235
b03a017b 3236 fixup_slab_list(cachep, n, page, &list);
e498be7d 3237
ce8eb6c4 3238 spin_unlock(&n->list_lock);
b03a017b 3239 fixup_objfreelist_debug(cachep, &list);
213b4695 3240 return obj;
e498be7d 3241
a737b3e2 3242must_grow:
ce8eb6c4 3243 spin_unlock(&n->list_lock);
76b342bd 3244 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
213b4695
JK
3245 if (page) {
3246 /* This slab isn't counted yet so don't update free_objects */
3247 obj = slab_get_obj(cachep, page);
3248 }
76b342bd 3249 cache_grow_end(cachep, page);
1da177e4 3250
213b4695 3251 return obj ? obj : fallback_alloc(cachep, flags);
e498be7d 3252}
8c8cc2c1 3253
8c8cc2c1 3254static __always_inline void *
48356303 3255slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3256 unsigned long caller)
8c8cc2c1
PE
3257{
3258 unsigned long save_flags;
3259 void *ptr;
7d6e6d09 3260 int slab_node = numa_mem_id();
8c8cc2c1 3261
dcce284a 3262 flags &= gfp_allowed_mask;
011eceaf
JDB
3263 cachep = slab_pre_alloc_hook(cachep, flags);
3264 if (unlikely(!cachep))
824ebef1
AM
3265 return NULL;
3266
8c8cc2c1
PE
3267 cache_alloc_debugcheck_before(cachep, flags);
3268 local_irq_save(save_flags);
3269
eacbbae3 3270 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3271 nodeid = slab_node;
8c8cc2c1 3272
18bf8541 3273 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3274 /* Node not bootstrapped yet */
3275 ptr = fallback_alloc(cachep, flags);
3276 goto out;
3277 }
3278
7d6e6d09 3279 if (nodeid == slab_node) {
8c8cc2c1
PE
3280 /*
3281 * Use the locally cached objects if possible.
3282 * However ____cache_alloc does not allow fallback
3283 * to other nodes. It may fail while we still have
3284 * objects on other nodes available.
3285 */
3286 ptr = ____cache_alloc(cachep, flags);
3287 if (ptr)
3288 goto out;
3289 }
3290 /* ___cache_alloc_node can fall back to other nodes */
3291 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3292 out:
3293 local_irq_restore(save_flags);
3294 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3295
d5e3ed66
JDB
3296 if (unlikely(flags & __GFP_ZERO) && ptr)
3297 memset(ptr, 0, cachep->object_size);
d07dbea4 3298
d5e3ed66 3299 slab_post_alloc_hook(cachep, flags, 1, &ptr);
8c8cc2c1
PE
3300 return ptr;
3301}
3302
3303static __always_inline void *
3304__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3305{
3306 void *objp;
3307
2ad654bc 3308 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3309 objp = alternate_node_alloc(cache, flags);
3310 if (objp)
3311 goto out;
3312 }
3313 objp = ____cache_alloc(cache, flags);
3314
3315 /*
3316 * We may just have run out of memory on the local node.
3317 * ____cache_alloc_node() knows how to locate memory on other nodes
3318 */
7d6e6d09
LS
3319 if (!objp)
3320 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3321
3322 out:
3323 return objp;
3324}
3325#else
3326
3327static __always_inline void *
3328__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3329{
3330 return ____cache_alloc(cachep, flags);
3331}
3332
3333#endif /* CONFIG_NUMA */
3334
3335static __always_inline void *
48356303 3336slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3337{
3338 unsigned long save_flags;
3339 void *objp;
3340
dcce284a 3341 flags &= gfp_allowed_mask;
011eceaf
JDB
3342 cachep = slab_pre_alloc_hook(cachep, flags);
3343 if (unlikely(!cachep))
824ebef1
AM
3344 return NULL;
3345
8c8cc2c1
PE
3346 cache_alloc_debugcheck_before(cachep, flags);
3347 local_irq_save(save_flags);
3348 objp = __do_cache_alloc(cachep, flags);
3349 local_irq_restore(save_flags);
3350 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3351 prefetchw(objp);
3352
d5e3ed66
JDB
3353 if (unlikely(flags & __GFP_ZERO) && objp)
3354 memset(objp, 0, cachep->object_size);
d07dbea4 3355
d5e3ed66 3356 slab_post_alloc_hook(cachep, flags, 1, &objp);
8c8cc2c1
PE
3357 return objp;
3358}
e498be7d
CL
3359
3360/*
5f0985bb 3361 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3362 * @list: List of detached free slabs should be freed by caller
e498be7d 3363 */
97654dfa
JK
3364static void free_block(struct kmem_cache *cachep, void **objpp,
3365 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3366{
3367 int i;
25c063fb 3368 struct kmem_cache_node *n = get_node(cachep, node);
6052b788
JK
3369 struct page *page;
3370
3371 n->free_objects += nr_objects;
1da177e4
LT
3372
3373 for (i = 0; i < nr_objects; i++) {
072bb0aa 3374 void *objp;
8456a648 3375 struct page *page;
1da177e4 3376
072bb0aa
MG
3377 objp = objpp[i];
3378
8456a648 3379 page = virt_to_head_page(objp);
16cb0ec7 3380 list_del(&page->slab_list);
ff69416e 3381 check_spinlock_acquired_node(cachep, node);
260b61dd 3382 slab_put_obj(cachep, page, objp);
1da177e4 3383 STATS_DEC_ACTIVE(cachep);
1da177e4
LT
3384
3385 /* fixup slab chains */
f728b0a5 3386 if (page->active == 0) {
16cb0ec7 3387 list_add(&page->slab_list, &n->slabs_free);
f728b0a5 3388 n->free_slabs++;
f728b0a5 3389 } else {
1da177e4
LT
3390 /* Unconditionally move a slab to the end of the
3391 * partial list on free - maximum time for the
3392 * other objects to be freed, too.
3393 */
16cb0ec7 3394 list_add_tail(&page->slab_list, &n->slabs_partial);
1da177e4
LT
3395 }
3396 }
6052b788
JK
3397
3398 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3399 n->free_objects -= cachep->num;
3400
16cb0ec7
TH
3401 page = list_last_entry(&n->slabs_free, struct page, slab_list);
3402 list_move(&page->slab_list, list);
f728b0a5 3403 n->free_slabs--;
bf00bd34 3404 n->total_slabs--;
6052b788 3405 }
1da177e4
LT
3406}
3407
343e0d7a 3408static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3409{
3410 int batchcount;
ce8eb6c4 3411 struct kmem_cache_node *n;
7d6e6d09 3412 int node = numa_mem_id();
97654dfa 3413 LIST_HEAD(list);
1da177e4
LT
3414
3415 batchcount = ac->batchcount;
260b61dd 3416
1da177e4 3417 check_irq_off();
18bf8541 3418 n = get_node(cachep, node);
ce8eb6c4
CL
3419 spin_lock(&n->list_lock);
3420 if (n->shared) {
3421 struct array_cache *shared_array = n->shared;
b28a02de 3422 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3423 if (max) {
3424 if (batchcount > max)
3425 batchcount = max;
e498be7d 3426 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3427 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3428 shared_array->avail += batchcount;
3429 goto free_done;
3430 }
3431 }
3432
97654dfa 3433 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3434free_done:
1da177e4
LT
3435#if STATS
3436 {
3437 int i = 0;
73c0219d 3438 struct page *page;
1da177e4 3439
16cb0ec7 3440 list_for_each_entry(page, &n->slabs_free, slab_list) {
8456a648 3441 BUG_ON(page->active);
1da177e4
LT
3442
3443 i++;
1da177e4
LT
3444 }
3445 STATS_SET_FREEABLE(cachep, i);
3446 }
3447#endif
ce8eb6c4 3448 spin_unlock(&n->list_lock);
97654dfa 3449 slabs_destroy(cachep, &list);
1da177e4 3450 ac->avail -= batchcount;
a737b3e2 3451 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3452}
3453
3454/*
a737b3e2
AM
3455 * Release an obj back to its cache. If the obj has a constructed state, it must
3456 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3457 */
ee3ce779
DV
3458static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3459 unsigned long caller)
1da177e4 3460{
55834c59 3461 /* Put the object into the quarantine, don't touch it for now. */
ee3ce779 3462 if (kasan_slab_free(cachep, objp, _RET_IP_))
55834c59
AP
3463 return;
3464
3465 ___cache_free(cachep, objp, caller);
3466}
1da177e4 3467
55834c59
AP
3468void ___cache_free(struct kmem_cache *cachep, void *objp,
3469 unsigned long caller)
3470{
3471 struct array_cache *ac = cpu_cache_get(cachep);
7ed2f9e6 3472
1da177e4 3473 check_irq_off();
d5cff635 3474 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3475 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3476
1807a1aa
SS
3477 /*
3478 * Skip calling cache_free_alien() when the platform is not numa.
3479 * This will avoid cache misses that happen while accessing slabp (which
3480 * is per page memory reference) to get nodeid. Instead use a global
3481 * variable to skip the call, which is mostly likely to be present in
3482 * the cache.
3483 */
b6e68bc1 3484 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3485 return;
3486
3d880194 3487 if (ac->avail < ac->limit) {
1da177e4 3488 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3489 } else {
3490 STATS_INC_FREEMISS(cachep);
3491 cache_flusharray(cachep, ac);
1da177e4 3492 }
42c8c99c 3493
f68f8ddd
JK
3494 if (sk_memalloc_socks()) {
3495 struct page *page = virt_to_head_page(objp);
3496
3497 if (unlikely(PageSlabPfmemalloc(page))) {
3498 cache_free_pfmemalloc(cachep, page, objp);
3499 return;
3500 }
3501 }
3502
3503 ac->entry[ac->avail++] = objp;
1da177e4
LT
3504}
3505
3506/**
3507 * kmem_cache_alloc - Allocate an object
3508 * @cachep: The cache to allocate from.
3509 * @flags: See kmalloc().
3510 *
3511 * Allocate an object from this cache. The flags are only relevant
3512 * if the cache has no available objects.
a862f68a
MR
3513 *
3514 * Return: pointer to the new object or %NULL in case of error
1da177e4 3515 */
343e0d7a 3516void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3517{
48356303 3518 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3519
ca2b84cb 3520 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3521 cachep->object_size, cachep->size, flags);
36555751
EGM
3522
3523 return ret;
1da177e4
LT
3524}
3525EXPORT_SYMBOL(kmem_cache_alloc);
3526
7b0501dd
JDB
3527static __always_inline void
3528cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3529 size_t size, void **p, unsigned long caller)
3530{
3531 size_t i;
3532
3533 for (i = 0; i < size; i++)
3534 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3535}
3536
865762a8 3537int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3538 void **p)
484748f0 3539{
2a777eac
JDB
3540 size_t i;
3541
3542 s = slab_pre_alloc_hook(s, flags);
3543 if (!s)
3544 return 0;
3545
3546 cache_alloc_debugcheck_before(s, flags);
3547
3548 local_irq_disable();
3549 for (i = 0; i < size; i++) {
3550 void *objp = __do_cache_alloc(s, flags);
3551
2a777eac
JDB
3552 if (unlikely(!objp))
3553 goto error;
3554 p[i] = objp;
3555 }
3556 local_irq_enable();
3557
7b0501dd
JDB
3558 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3559
2a777eac
JDB
3560 /* Clear memory outside IRQ disabled section */
3561 if (unlikely(flags & __GFP_ZERO))
3562 for (i = 0; i < size; i++)
3563 memset(p[i], 0, s->object_size);
3564
3565 slab_post_alloc_hook(s, flags, size, p);
3566 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3567 return size;
3568error:
3569 local_irq_enable();
7b0501dd 3570 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
2a777eac
JDB
3571 slab_post_alloc_hook(s, flags, i, p);
3572 __kmem_cache_free_bulk(s, i, p);
3573 return 0;
484748f0
CL
3574}
3575EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3576
0f24f128 3577#ifdef CONFIG_TRACING
85beb586 3578void *
4052147c 3579kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3580{
85beb586
SR
3581 void *ret;
3582
48356303 3583 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586 3584
0116523c 3585 ret = kasan_kmalloc(cachep, ret, size, flags);
85beb586 3586 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3587 size, cachep->size, flags);
85beb586 3588 return ret;
36555751 3589}
85beb586 3590EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3591#endif
3592
1da177e4 3593#ifdef CONFIG_NUMA
d0d04b78
ZL
3594/**
3595 * kmem_cache_alloc_node - Allocate an object on the specified node
3596 * @cachep: The cache to allocate from.
3597 * @flags: See kmalloc().
3598 * @nodeid: node number of the target node.
3599 *
3600 * Identical to kmem_cache_alloc but it will allocate memory on the given
3601 * node, which can improve the performance for cpu bound structures.
3602 *
3603 * Fallback to other node is possible if __GFP_THISNODE is not set.
a862f68a
MR
3604 *
3605 * Return: pointer to the new object or %NULL in case of error
d0d04b78 3606 */
8b98c169
CH
3607void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3608{
48356303 3609 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3610
ca2b84cb 3611 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3612 cachep->object_size, cachep->size,
ca2b84cb 3613 flags, nodeid);
36555751
EGM
3614
3615 return ret;
8b98c169 3616}
1da177e4
LT
3617EXPORT_SYMBOL(kmem_cache_alloc_node);
3618
0f24f128 3619#ifdef CONFIG_TRACING
4052147c 3620void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3621 gfp_t flags,
4052147c
EG
3622 int nodeid,
3623 size_t size)
36555751 3624{
85beb586
SR
3625 void *ret;
3626
592f4145 3627 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
505f5dcb 3628
0116523c 3629 ret = kasan_kmalloc(cachep, ret, size, flags);
85beb586 3630 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3631 size, cachep->size,
85beb586
SR
3632 flags, nodeid);
3633 return ret;
36555751 3634}
85beb586 3635EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3636#endif
3637
8b98c169 3638static __always_inline void *
7c0cb9c6 3639__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3640{
343e0d7a 3641 struct kmem_cache *cachep;
7ed2f9e6 3642 void *ret;
97e2bde4 3643
61448479
DV
3644 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3645 return NULL;
2c59dd65 3646 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3647 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3648 return cachep;
7ed2f9e6 3649 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
0116523c 3650 ret = kasan_kmalloc(cachep, ret, size, flags);
7ed2f9e6
AP
3651
3652 return ret;
97e2bde4 3653}
8b98c169 3654
8b98c169
CH
3655void *__kmalloc_node(size_t size, gfp_t flags, int node)
3656{
7c0cb9c6 3657 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3658}
dbe5e69d 3659EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3660
3661void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3662 int node, unsigned long caller)
8b98c169 3663{
7c0cb9c6 3664 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3665}
3666EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3667#endif /* CONFIG_NUMA */
1da177e4
LT
3668
3669/**
800590f5 3670 * __do_kmalloc - allocate memory
1da177e4 3671 * @size: how many bytes of memory are required.
800590f5 3672 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3673 * @caller: function caller for debug tracking of the caller
a862f68a
MR
3674 *
3675 * Return: pointer to the allocated memory or %NULL in case of error
1da177e4 3676 */
7fd6b141 3677static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3678 unsigned long caller)
1da177e4 3679{
343e0d7a 3680 struct kmem_cache *cachep;
36555751 3681 void *ret;
1da177e4 3682
61448479
DV
3683 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3684 return NULL;
2c59dd65 3685 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3686 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3687 return cachep;
48356303 3688 ret = slab_alloc(cachep, flags, caller);
36555751 3689
0116523c 3690 ret = kasan_kmalloc(cachep, ret, size, flags);
7c0cb9c6 3691 trace_kmalloc(caller, ret,
3b0efdfa 3692 size, cachep->size, flags);
36555751
EGM
3693
3694 return ret;
7fd6b141
PE
3695}
3696
7fd6b141
PE
3697void *__kmalloc(size_t size, gfp_t flags)
3698{
7c0cb9c6 3699 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3700}
3701EXPORT_SYMBOL(__kmalloc);
3702
ce71e27c 3703void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3704{
7c0cb9c6 3705 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3706}
3707EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3708
1da177e4
LT
3709/**
3710 * kmem_cache_free - Deallocate an object
3711 * @cachep: The cache the allocation was from.
3712 * @objp: The previously allocated object.
3713 *
3714 * Free an object which was previously allocated from this
3715 * cache.
3716 */
343e0d7a 3717void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3718{
3719 unsigned long flags;
b9ce5ef4
GC
3720 cachep = cache_from_obj(cachep, objp);
3721 if (!cachep)
3722 return;
1da177e4
LT
3723
3724 local_irq_save(flags);
d97d476b 3725 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3726 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3727 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3728 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3729 local_irq_restore(flags);
36555751 3730
ca2b84cb 3731 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3732}
3733EXPORT_SYMBOL(kmem_cache_free);
3734
e6cdb58d
JDB
3735void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3736{
3737 struct kmem_cache *s;
3738 size_t i;
3739
3740 local_irq_disable();
3741 for (i = 0; i < size; i++) {
3742 void *objp = p[i];
3743
ca257195
JDB
3744 if (!orig_s) /* called via kfree_bulk */
3745 s = virt_to_cache(objp);
3746 else
3747 s = cache_from_obj(orig_s, objp);
e6cdb58d
JDB
3748
3749 debug_check_no_locks_freed(objp, s->object_size);
3750 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3751 debug_check_no_obj_freed(objp, s->object_size);
3752
3753 __cache_free(s, objp, _RET_IP_);
3754 }
3755 local_irq_enable();
3756
3757 /* FIXME: add tracing */
3758}
3759EXPORT_SYMBOL(kmem_cache_free_bulk);
3760
1da177e4
LT
3761/**
3762 * kfree - free previously allocated memory
3763 * @objp: pointer returned by kmalloc.
3764 *
80e93eff
PE
3765 * If @objp is NULL, no operation is performed.
3766 *
1da177e4
LT
3767 * Don't free memory not originally allocated by kmalloc()
3768 * or you will run into trouble.
3769 */
3770void kfree(const void *objp)
3771{
343e0d7a 3772 struct kmem_cache *c;
1da177e4
LT
3773 unsigned long flags;
3774
2121db74
PE
3775 trace_kfree(_RET_IP_, objp);
3776
6cb8f913 3777 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3778 return;
3779 local_irq_save(flags);
3780 kfree_debugcheck(objp);
6ed5eb22 3781 c = virt_to_cache(objp);
8c138bc0
CL
3782 debug_check_no_locks_freed(objp, c->object_size);
3783
3784 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3785 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3786 local_irq_restore(flags);
3787}
3788EXPORT_SYMBOL(kfree);
3789
e498be7d 3790/*
ce8eb6c4 3791 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3792 */
c3d332b6 3793static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
e498be7d 3794{
c3d332b6 3795 int ret;
e498be7d 3796 int node;
ce8eb6c4 3797 struct kmem_cache_node *n;
e498be7d 3798
9c09a95c 3799 for_each_online_node(node) {
c3d332b6
JK
3800 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3801 if (ret)
e498be7d
CL
3802 goto fail;
3803
e498be7d 3804 }
c3d332b6 3805
cafeb02e 3806 return 0;
0718dc2a 3807
a737b3e2 3808fail:
3b0efdfa 3809 if (!cachep->list.next) {
0718dc2a
CL
3810 /* Cache is not active yet. Roll back what we did */
3811 node--;
3812 while (node >= 0) {
18bf8541
CL
3813 n = get_node(cachep, node);
3814 if (n) {
ce8eb6c4
CL
3815 kfree(n->shared);
3816 free_alien_cache(n->alien);
3817 kfree(n);
6a67368c 3818 cachep->node[node] = NULL;
0718dc2a
CL
3819 }
3820 node--;
3821 }
3822 }
cafeb02e 3823 return -ENOMEM;
e498be7d
CL
3824}
3825
18004c5d 3826/* Always called with the slab_mutex held */
943a451a 3827static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3828 int batchcount, int shared, gfp_t gfp)
1da177e4 3829{
bf0dea23
JK
3830 struct array_cache __percpu *cpu_cache, *prev;
3831 int cpu;
1da177e4 3832
bf0dea23
JK
3833 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3834 if (!cpu_cache)
d2e7b7d0
SS
3835 return -ENOMEM;
3836
bf0dea23
JK
3837 prev = cachep->cpu_cache;
3838 cachep->cpu_cache = cpu_cache;
a87c75fb
GT
3839 /*
3840 * Without a previous cpu_cache there's no need to synchronize remote
3841 * cpus, so skip the IPIs.
3842 */
3843 if (prev)
3844 kick_all_cpus_sync();
e498be7d 3845
1da177e4 3846 check_irq_on();
1da177e4
LT
3847 cachep->batchcount = batchcount;
3848 cachep->limit = limit;
e498be7d 3849 cachep->shared = shared;
1da177e4 3850
bf0dea23 3851 if (!prev)
c3d332b6 3852 goto setup_node;
bf0dea23
JK
3853
3854 for_each_online_cpu(cpu) {
97654dfa 3855 LIST_HEAD(list);
18bf8541
CL
3856 int node;
3857 struct kmem_cache_node *n;
bf0dea23 3858 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3859
bf0dea23 3860 node = cpu_to_mem(cpu);
18bf8541
CL
3861 n = get_node(cachep, node);
3862 spin_lock_irq(&n->list_lock);
bf0dea23 3863 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3864 spin_unlock_irq(&n->list_lock);
97654dfa 3865 slabs_destroy(cachep, &list);
1da177e4 3866 }
bf0dea23
JK
3867 free_percpu(prev);
3868
c3d332b6
JK
3869setup_node:
3870 return setup_kmem_cache_nodes(cachep, gfp);
1da177e4
LT
3871}
3872
943a451a
GC
3873static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3874 int batchcount, int shared, gfp_t gfp)
3875{
3876 int ret;
426589f5 3877 struct kmem_cache *c;
943a451a
GC
3878
3879 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3880
3881 if (slab_state < FULL)
3882 return ret;
3883
3884 if ((ret < 0) || !is_root_cache(cachep))
3885 return ret;
3886
426589f5
VD
3887 lockdep_assert_held(&slab_mutex);
3888 for_each_memcg_cache(c, cachep) {
3889 /* return value determined by the root cache only */
3890 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3891 }
3892
3893 return ret;
3894}
3895
18004c5d 3896/* Called with slab_mutex held always */
83b519e8 3897static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3898{
3899 int err;
943a451a
GC
3900 int limit = 0;
3901 int shared = 0;
3902 int batchcount = 0;
3903
7c00fce9 3904 err = cache_random_seq_create(cachep, cachep->num, gfp);
c7ce4f60
TG
3905 if (err)
3906 goto end;
3907
943a451a
GC
3908 if (!is_root_cache(cachep)) {
3909 struct kmem_cache *root = memcg_root_cache(cachep);
3910 limit = root->limit;
3911 shared = root->shared;
3912 batchcount = root->batchcount;
3913 }
1da177e4 3914
943a451a
GC
3915 if (limit && shared && batchcount)
3916 goto skip_setup;
a737b3e2
AM
3917 /*
3918 * The head array serves three purposes:
1da177e4
LT
3919 * - create a LIFO ordering, i.e. return objects that are cache-warm
3920 * - reduce the number of spinlock operations.
a737b3e2 3921 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3922 * bufctl chains: array operations are cheaper.
3923 * The numbers are guessed, we should auto-tune as described by
3924 * Bonwick.
3925 */
3b0efdfa 3926 if (cachep->size > 131072)
1da177e4 3927 limit = 1;
3b0efdfa 3928 else if (cachep->size > PAGE_SIZE)
1da177e4 3929 limit = 8;
3b0efdfa 3930 else if (cachep->size > 1024)
1da177e4 3931 limit = 24;
3b0efdfa 3932 else if (cachep->size > 256)
1da177e4
LT
3933 limit = 54;
3934 else
3935 limit = 120;
3936
a737b3e2
AM
3937 /*
3938 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3939 * allocation behaviour: Most allocs on one cpu, most free operations
3940 * on another cpu. For these cases, an efficient object passing between
3941 * cpus is necessary. This is provided by a shared array. The array
3942 * replaces Bonwick's magazine layer.
3943 * On uniprocessor, it's functionally equivalent (but less efficient)
3944 * to a larger limit. Thus disabled by default.
3945 */
3946 shared = 0;
3b0efdfa 3947 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3948 shared = 8;
1da177e4
LT
3949
3950#if DEBUG
a737b3e2
AM
3951 /*
3952 * With debugging enabled, large batchcount lead to excessively long
3953 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3954 */
3955 if (limit > 32)
3956 limit = 32;
3957#endif
943a451a
GC
3958 batchcount = (limit + 1) / 2;
3959skip_setup:
3960 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
c7ce4f60 3961end:
1da177e4 3962 if (err)
1170532b 3963 pr_err("enable_cpucache failed for %s, error %d\n",
b28a02de 3964 cachep->name, -err);
2ed3a4ef 3965 return err;
1da177e4
LT
3966}
3967
1b55253a 3968/*
ce8eb6c4
CL
3969 * Drain an array if it contains any elements taking the node lock only if
3970 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3971 * if drain_array() is used on the shared array.
1b55253a 3972 */
ce8eb6c4 3973static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
18726ca8 3974 struct array_cache *ac, int node)
1da177e4 3975{
97654dfa 3976 LIST_HEAD(list);
18726ca8
JK
3977
3978 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3979 check_mutex_acquired();
1da177e4 3980
1b55253a
CL
3981 if (!ac || !ac->avail)
3982 return;
18726ca8
JK
3983
3984 if (ac->touched) {
1da177e4 3985 ac->touched = 0;
18726ca8 3986 return;
1da177e4 3987 }
18726ca8
JK
3988
3989 spin_lock_irq(&n->list_lock);
3990 drain_array_locked(cachep, ac, node, false, &list);
3991 spin_unlock_irq(&n->list_lock);
3992
3993 slabs_destroy(cachep, &list);
1da177e4
LT
3994}
3995
3996/**
3997 * cache_reap - Reclaim memory from caches.
05fb6bf0 3998 * @w: work descriptor
1da177e4
LT
3999 *
4000 * Called from workqueue/eventd every few seconds.
4001 * Purpose:
4002 * - clear the per-cpu caches for this CPU.
4003 * - return freeable pages to the main free memory pool.
4004 *
a737b3e2
AM
4005 * If we cannot acquire the cache chain mutex then just give up - we'll try
4006 * again on the next iteration.
1da177e4 4007 */
7c5cae36 4008static void cache_reap(struct work_struct *w)
1da177e4 4009{
7a7c381d 4010 struct kmem_cache *searchp;
ce8eb6c4 4011 struct kmem_cache_node *n;
7d6e6d09 4012 int node = numa_mem_id();
bf6aede7 4013 struct delayed_work *work = to_delayed_work(w);
1da177e4 4014
18004c5d 4015 if (!mutex_trylock(&slab_mutex))
1da177e4 4016 /* Give up. Setup the next iteration. */
7c5cae36 4017 goto out;
1da177e4 4018
18004c5d 4019 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4020 check_irq_on();
4021
35386e3b 4022 /*
ce8eb6c4 4023 * We only take the node lock if absolutely necessary and we
35386e3b
CL
4024 * have established with reasonable certainty that
4025 * we can do some work if the lock was obtained.
4026 */
18bf8541 4027 n = get_node(searchp, node);
35386e3b 4028
ce8eb6c4 4029 reap_alien(searchp, n);
1da177e4 4030
18726ca8 4031 drain_array(searchp, n, cpu_cache_get(searchp), node);
1da177e4 4032
35386e3b
CL
4033 /*
4034 * These are racy checks but it does not matter
4035 * if we skip one check or scan twice.
4036 */
ce8eb6c4 4037 if (time_after(n->next_reap, jiffies))
35386e3b 4038 goto next;
1da177e4 4039
5f0985bb 4040 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 4041
18726ca8 4042 drain_array(searchp, n, n->shared, node);
1da177e4 4043
ce8eb6c4
CL
4044 if (n->free_touched)
4045 n->free_touched = 0;
ed11d9eb
CL
4046 else {
4047 int freed;
1da177e4 4048
ce8eb6c4 4049 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4050 5 * searchp->num - 1) / (5 * searchp->num));
4051 STATS_ADD_REAPED(searchp, freed);
4052 }
35386e3b 4053next:
1da177e4
LT
4054 cond_resched();
4055 }
4056 check_irq_on();
18004c5d 4057 mutex_unlock(&slab_mutex);
8fce4d8e 4058 next_reap_node();
7c5cae36 4059out:
a737b3e2 4060 /* Set up the next iteration */
a9f2a846
VB
4061 schedule_delayed_work_on(smp_processor_id(), work,
4062 round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
4063}
4064
0d7561c6 4065void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4066{
f728b0a5 4067 unsigned long active_objs, num_objs, active_slabs;
bf00bd34
DR
4068 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4069 unsigned long free_slabs = 0;
e498be7d 4070 int node;
ce8eb6c4 4071 struct kmem_cache_node *n;
1da177e4 4072
18bf8541 4073 for_each_kmem_cache_node(cachep, node, n) {
ca3b9b91 4074 check_irq_on();
ce8eb6c4 4075 spin_lock_irq(&n->list_lock);
e498be7d 4076
bf00bd34
DR
4077 total_slabs += n->total_slabs;
4078 free_slabs += n->free_slabs;
f728b0a5 4079 free_objs += n->free_objects;
07a63c41 4080
ce8eb6c4
CL
4081 if (n->shared)
4082 shared_avail += n->shared->avail;
e498be7d 4083
ce8eb6c4 4084 spin_unlock_irq(&n->list_lock);
1da177e4 4085 }
bf00bd34
DR
4086 num_objs = total_slabs * cachep->num;
4087 active_slabs = total_slabs - free_slabs;
f728b0a5 4088 active_objs = num_objs - free_objs;
1da177e4 4089
0d7561c6
GC
4090 sinfo->active_objs = active_objs;
4091 sinfo->num_objs = num_objs;
4092 sinfo->active_slabs = active_slabs;
bf00bd34 4093 sinfo->num_slabs = total_slabs;
0d7561c6
GC
4094 sinfo->shared_avail = shared_avail;
4095 sinfo->limit = cachep->limit;
4096 sinfo->batchcount = cachep->batchcount;
4097 sinfo->shared = cachep->shared;
4098 sinfo->objects_per_slab = cachep->num;
4099 sinfo->cache_order = cachep->gfporder;
4100}
4101
4102void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4103{
1da177e4 4104#if STATS
ce8eb6c4 4105 { /* node stats */
1da177e4
LT
4106 unsigned long high = cachep->high_mark;
4107 unsigned long allocs = cachep->num_allocations;
4108 unsigned long grown = cachep->grown;
4109 unsigned long reaped = cachep->reaped;
4110 unsigned long errors = cachep->errors;
4111 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4112 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4113 unsigned long node_frees = cachep->node_frees;
fb7faf33 4114 unsigned long overflows = cachep->node_overflow;
1da177e4 4115
756a025f 4116 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
e92dd4fd
JP
4117 allocs, high, grown,
4118 reaped, errors, max_freeable, node_allocs,
4119 node_frees, overflows);
1da177e4
LT
4120 }
4121 /* cpu stats */
4122 {
4123 unsigned long allochit = atomic_read(&cachep->allochit);
4124 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4125 unsigned long freehit = atomic_read(&cachep->freehit);
4126 unsigned long freemiss = atomic_read(&cachep->freemiss);
4127
4128 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4129 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4130 }
4131#endif
1da177e4
LT
4132}
4133
1da177e4
LT
4134#define MAX_SLABINFO_WRITE 128
4135/**
4136 * slabinfo_write - Tuning for the slab allocator
4137 * @file: unused
4138 * @buffer: user buffer
4139 * @count: data length
4140 * @ppos: unused
a862f68a
MR
4141 *
4142 * Return: %0 on success, negative error code otherwise.
1da177e4 4143 */
b7454ad3 4144ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4145 size_t count, loff_t *ppos)
1da177e4 4146{
b28a02de 4147 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4148 int limit, batchcount, shared, res;
7a7c381d 4149 struct kmem_cache *cachep;
b28a02de 4150
1da177e4
LT
4151 if (count > MAX_SLABINFO_WRITE)
4152 return -EINVAL;
4153 if (copy_from_user(&kbuf, buffer, count))
4154 return -EFAULT;
b28a02de 4155 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4156
4157 tmp = strchr(kbuf, ' ');
4158 if (!tmp)
4159 return -EINVAL;
4160 *tmp = '\0';
4161 tmp++;
4162 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4163 return -EINVAL;
4164
4165 /* Find the cache in the chain of caches. */
18004c5d 4166 mutex_lock(&slab_mutex);
1da177e4 4167 res = -EINVAL;
18004c5d 4168 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4169 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4170 if (limit < 1 || batchcount < 1 ||
4171 batchcount > limit || shared < 0) {
e498be7d 4172 res = 0;
1da177e4 4173 } else {
e498be7d 4174 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4175 batchcount, shared,
4176 GFP_KERNEL);
1da177e4
LT
4177 }
4178 break;
4179 }
4180 }
18004c5d 4181 mutex_unlock(&slab_mutex);
1da177e4
LT
4182 if (res >= 0)
4183 res = count;
4184 return res;
4185}
871751e2
AV
4186
4187#ifdef CONFIG_DEBUG_SLAB_LEAK
4188
871751e2
AV
4189static inline int add_caller(unsigned long *n, unsigned long v)
4190{
4191 unsigned long *p;
4192 int l;
4193 if (!v)
4194 return 1;
4195 l = n[1];
4196 p = n + 2;
4197 while (l) {
4198 int i = l/2;
4199 unsigned long *q = p + 2 * i;
4200 if (*q == v) {
4201 q[1]++;
4202 return 1;
4203 }
4204 if (*q > v) {
4205 l = i;
4206 } else {
4207 p = q + 2;
4208 l -= i + 1;
4209 }
4210 }
4211 if (++n[1] == n[0])
4212 return 0;
4213 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4214 p[0] = v;
4215 p[1] = 1;
4216 return 1;
4217}
4218
8456a648
JK
4219static void handle_slab(unsigned long *n, struct kmem_cache *c,
4220 struct page *page)
871751e2
AV
4221{
4222 void *p;
d31676df
JK
4223 int i, j;
4224 unsigned long v;
b1cb0982 4225
871751e2
AV
4226 if (n[0] == n[1])
4227 return;
8456a648 4228 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
d31676df
JK
4229 bool active = true;
4230
4231 for (j = page->active; j < c->num; j++) {
4232 if (get_free_obj(page, j) == i) {
4233 active = false;
4234 break;
4235 }
4236 }
4237
4238 if (!active)
871751e2 4239 continue;
b1cb0982 4240
d31676df
JK
4241 /*
4242 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4243 * mapping is established when actual object allocation and
4244 * we could mistakenly access the unmapped object in the cpu
4245 * cache.
4246 */
4247 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4248 continue;
4249
4250 if (!add_caller(n, v))
871751e2
AV
4251 return;
4252 }
4253}
4254
4255static void show_symbol(struct seq_file *m, unsigned long address)
4256{
4257#ifdef CONFIG_KALLSYMS
871751e2 4258 unsigned long offset, size;
9281acea 4259 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4260
a5c43dae 4261 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4262 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4263 if (modname[0])
871751e2
AV
4264 seq_printf(m, " [%s]", modname);
4265 return;
4266 }
4267#endif
85c3e4a5 4268 seq_printf(m, "%px", (void *)address);
871751e2
AV
4269}
4270
4271static int leaks_show(struct seq_file *m, void *p)
4272{
fcf88917
QC
4273 struct kmem_cache *cachep = list_entry(p, struct kmem_cache,
4274 root_caches_node);
8456a648 4275 struct page *page;
ce8eb6c4 4276 struct kmem_cache_node *n;
871751e2 4277 const char *name;
db845067 4278 unsigned long *x = m->private;
871751e2
AV
4279 int node;
4280 int i;
4281
4282 if (!(cachep->flags & SLAB_STORE_USER))
4283 return 0;
4284 if (!(cachep->flags & SLAB_RED_ZONE))
4285 return 0;
4286
d31676df
JK
4287 /*
4288 * Set store_user_clean and start to grab stored user information
4289 * for all objects on this cache. If some alloc/free requests comes
4290 * during the processing, information would be wrong so restart
4291 * whole processing.
4292 */
4293 do {
d31676df 4294 drain_cpu_caches(cachep);
745e1014
QC
4295 /*
4296 * drain_cpu_caches() could make kmemleak_object and
4297 * debug_objects_cache dirty, so reset afterwards.
4298 */
4299 set_store_user_clean(cachep);
d31676df
JK
4300
4301 x[1] = 0;
871751e2 4302
d31676df 4303 for_each_kmem_cache_node(cachep, node, n) {
871751e2 4304
d31676df
JK
4305 check_irq_on();
4306 spin_lock_irq(&n->list_lock);
871751e2 4307
16cb0ec7 4308 list_for_each_entry(page, &n->slabs_full, slab_list)
d31676df 4309 handle_slab(x, cachep, page);
16cb0ec7 4310 list_for_each_entry(page, &n->slabs_partial, slab_list)
d31676df
JK
4311 handle_slab(x, cachep, page);
4312 spin_unlock_irq(&n->list_lock);
4313 }
4314 } while (!is_store_user_clean(cachep));
871751e2 4315
871751e2 4316 name = cachep->name;
db845067 4317 if (x[0] == x[1]) {
871751e2 4318 /* Increase the buffer size */
18004c5d 4319 mutex_unlock(&slab_mutex);
6396bb22
KC
4320 m->private = kcalloc(x[0] * 4, sizeof(unsigned long),
4321 GFP_KERNEL);
871751e2
AV
4322 if (!m->private) {
4323 /* Too bad, we are really out */
db845067 4324 m->private = x;
18004c5d 4325 mutex_lock(&slab_mutex);
871751e2
AV
4326 return -ENOMEM;
4327 }
db845067
CL
4328 *(unsigned long *)m->private = x[0] * 2;
4329 kfree(x);
18004c5d 4330 mutex_lock(&slab_mutex);
871751e2
AV
4331 /* Now make sure this entry will be retried */
4332 m->count = m->size;
4333 return 0;
4334 }
db845067
CL
4335 for (i = 0; i < x[1]; i++) {
4336 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4337 show_symbol(m, x[2*i+2]);
871751e2
AV
4338 seq_putc(m, '\n');
4339 }
d2e7b7d0 4340
871751e2
AV
4341 return 0;
4342}
4343
a0ec95a8 4344static const struct seq_operations slabstats_op = {
1df3b26f 4345 .start = slab_start,
276a2439
WL
4346 .next = slab_next,
4347 .stop = slab_stop,
871751e2
AV
4348 .show = leaks_show,
4349};
a0ec95a8
AD
4350
4351static int slabstats_open(struct inode *inode, struct file *file)
4352{
b208ce32
RJ
4353 unsigned long *n;
4354
4355 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4356 if (!n)
4357 return -ENOMEM;
4358
4359 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4360
4361 return 0;
a0ec95a8
AD
4362}
4363
4364static const struct file_operations proc_slabstats_operations = {
4365 .open = slabstats_open,
4366 .read = seq_read,
4367 .llseek = seq_lseek,
4368 .release = seq_release_private,
4369};
4370#endif
4371
4372static int __init slab_proc_init(void)
4373{
4374#ifdef CONFIG_DEBUG_SLAB_LEAK
4375 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4376#endif
a0ec95a8
AD
4377 return 0;
4378}
4379module_init(slab_proc_init);
1da177e4 4380
04385fc5
KC
4381#ifdef CONFIG_HARDENED_USERCOPY
4382/*
afcc90f8
KC
4383 * Rejects incorrectly sized objects and objects that are to be copied
4384 * to/from userspace but do not fall entirely within the containing slab
4385 * cache's usercopy region.
04385fc5
KC
4386 *
4387 * Returns NULL if check passes, otherwise const char * to name of cache
4388 * to indicate an error.
4389 */
f4e6e289
KC
4390void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4391 bool to_user)
04385fc5
KC
4392{
4393 struct kmem_cache *cachep;
4394 unsigned int objnr;
4395 unsigned long offset;
4396
219667c2
AK
4397 ptr = kasan_reset_tag(ptr);
4398
04385fc5
KC
4399 /* Find and validate object. */
4400 cachep = page->slab_cache;
4401 objnr = obj_to_index(cachep, page, (void *)ptr);
4402 BUG_ON(objnr >= cachep->num);
4403
4404 /* Find offset within object. */
4405 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4406
afcc90f8
KC
4407 /* Allow address range falling entirely within usercopy region. */
4408 if (offset >= cachep->useroffset &&
4409 offset - cachep->useroffset <= cachep->usersize &&
4410 n <= cachep->useroffset - offset + cachep->usersize)
f4e6e289 4411 return;
04385fc5 4412
afcc90f8
KC
4413 /*
4414 * If the copy is still within the allocated object, produce
4415 * a warning instead of rejecting the copy. This is intended
4416 * to be a temporary method to find any missing usercopy
4417 * whitelists.
4418 */
2d891fbc
KC
4419 if (usercopy_fallback &&
4420 offset <= cachep->object_size &&
afcc90f8
KC
4421 n <= cachep->object_size - offset) {
4422 usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4423 return;
4424 }
04385fc5 4425
f4e6e289 4426 usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
04385fc5
KC
4427}
4428#endif /* CONFIG_HARDENED_USERCOPY */
4429
00e145b6
MS
4430/**
4431 * ksize - get the actual amount of memory allocated for a given object
4432 * @objp: Pointer to the object
4433 *
4434 * kmalloc may internally round up allocations and return more memory
4435 * than requested. ksize() can be used to determine the actual amount of
4436 * memory allocated. The caller may use this additional memory, even though
4437 * a smaller amount of memory was initially specified with the kmalloc call.
4438 * The caller must guarantee that objp points to a valid object previously
4439 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4440 * must not be freed during the duration of the call.
a862f68a
MR
4441 *
4442 * Return: size of the actual memory used by @objp in bytes
00e145b6 4443 */
fd76bab2 4444size_t ksize(const void *objp)
1da177e4 4445{
7ed2f9e6
AP
4446 size_t size;
4447
ef8b4520
CL
4448 BUG_ON(!objp);
4449 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4450 return 0;
1da177e4 4451
7ed2f9e6
AP
4452 size = virt_to_cache(objp)->object_size;
4453 /* We assume that ksize callers could use the whole allocated area,
4454 * so we need to unpoison this area.
4455 */
4ebb31a4 4456 kasan_unpoison_shadow(objp, size);
7ed2f9e6
AP
4457
4458 return size;
1da177e4 4459}
b1aabecd 4460EXPORT_SYMBOL(ksize);