block: Turn bvec_k{un,}map_irq() into static inline functions
[linux-2.6-block.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
5a0e3ad6 10#include <linux/slab.h>
1cc9be68
AV
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
ad5ebd2f 13#include <linux/jiffies.h>
1da177e4 14#include <linux/rbtree.h>
22e2c507 15#include <linux/ioprio.h>
7b679138 16#include <linux/blktrace_api.h>
e98ef89b 17#include "cfq.h"
1da177e4
LT
18
19/*
20 * tunables
21 */
fe094d98 22/* max queue in one round of service */
abc3c744 23static const int cfq_quantum = 8;
64100099 24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
25/* maximum backwards seek, in KiB */
26static const int cfq_back_max = 16 * 1024;
27/* penalty of a backwards seek */
28static const int cfq_back_penalty = 2;
64100099 29static const int cfq_slice_sync = HZ / 10;
3b18152c 30static int cfq_slice_async = HZ / 25;
64100099 31static const int cfq_slice_async_rq = 2;
caaa5f9f 32static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
33static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
34static const int cfq_hist_divisor = 4;
22e2c507 35
d9e7620e 36/*
0871714e 37 * offset from end of service tree
d9e7620e 38 */
0871714e 39#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
40
41/*
42 * below this threshold, we consider thinktime immediate
43 */
44#define CFQ_MIN_TT (2)
45
22e2c507 46#define CFQ_SLICE_SCALE (5)
45333d5a 47#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 48#define CFQ_SERVICE_SHIFT 12
22e2c507 49
3dde36dd 50#define CFQQ_SEEK_THR (sector_t)(8 * 100)
e9ce335d 51#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
41647e7a 52#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 53#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 54
fe094d98
JA
55#define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 57#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
7f1dc8a2 58#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
1da177e4 59
e18b890b
CL
60static struct kmem_cache *cfq_pool;
61static struct kmem_cache *cfq_ioc_pool;
1da177e4 62
245b2e70 63static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 64static struct completion *ioc_gone;
9a11b4ed 65static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 66
80b15c73
KK
67static DEFINE_SPINLOCK(cic_index_lock);
68static DEFINE_IDA(cic_index_ida);
69
22e2c507
JA
70#define CFQ_PRIO_LISTS IOPRIO_BE_NR
71#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
72#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
73
206dc69b 74#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 75#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 76
cc09e299
JA
77/*
78 * Most of our rbtree usage is for sorting with min extraction, so
79 * if we cache the leftmost node we don't have to walk down the tree
80 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
81 * move this into the elevator for the rq sorting as well.
82 */
83struct cfq_rb_root {
84 struct rb_root rb;
85 struct rb_node *left;
aa6f6a3d 86 unsigned count;
73e9ffdd 87 unsigned total_weight;
1fa8f6d6 88 u64 min_vdisktime;
25bc6b07 89 struct rb_node *active;
cc09e299 90};
73e9ffdd
RK
91#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
cc09e299 93
6118b70b
JA
94/*
95 * Per process-grouping structure
96 */
97struct cfq_queue {
98 /* reference count */
99 atomic_t ref;
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
122
dae739eb
VG
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
f75edf2d 125 unsigned int allocated_slice;
c4081ba5 126 unsigned int slice_dispatch;
dae739eb
VG
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
6118b70b
JA
129 unsigned long slice_end;
130 long slice_resid;
6118b70b
JA
131
132 /* pending metadata requests */
133 int meta_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
136
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class, org_ioprio_class;
140
c4081ba5
RK
141 pid_t pid;
142
3dde36dd 143 u32 seek_history;
b2c18e1e
JM
144 sector_t last_request_pos;
145
aa6f6a3d 146 struct cfq_rb_root *service_tree;
df5fe3e8 147 struct cfq_queue *new_cfqq;
cdb16e8f 148 struct cfq_group *cfqg;
ae30c286 149 struct cfq_group *orig_cfqg;
6118b70b
JA
150};
151
c0324a02 152/*
718eee05 153 * First index in the service_trees.
c0324a02
CZ
154 * IDLE is handled separately, so it has negative index
155 */
156enum wl_prio_t {
c0324a02 157 BE_WORKLOAD = 0,
615f0259
VG
158 RT_WORKLOAD = 1,
159 IDLE_WORKLOAD = 2,
c0324a02
CZ
160};
161
718eee05
CZ
162/*
163 * Second index in the service_trees.
164 */
165enum wl_type_t {
166 ASYNC_WORKLOAD = 0,
167 SYNC_NOIDLE_WORKLOAD = 1,
168 SYNC_WORKLOAD = 2
169};
170
cdb16e8f
VG
171/* This is per cgroup per device grouping structure */
172struct cfq_group {
1fa8f6d6
VG
173 /* group service_tree member */
174 struct rb_node rb_node;
175
176 /* group service_tree key */
177 u64 vdisktime;
25bc6b07 178 unsigned int weight;
1fa8f6d6
VG
179 bool on_st;
180
181 /* number of cfqq currently on this group */
182 int nr_cfqq;
183
58ff82f3
VG
184 /* Per group busy queus average. Useful for workload slice calc. */
185 unsigned int busy_queues_avg[2];
cdb16e8f
VG
186 /*
187 * rr lists of queues with requests, onle rr for each priority class.
188 * Counts are embedded in the cfq_rb_root
189 */
190 struct cfq_rb_root service_trees[2][3];
191 struct cfq_rb_root service_tree_idle;
dae739eb
VG
192
193 unsigned long saved_workload_slice;
194 enum wl_type_t saved_workload;
195 enum wl_prio_t saved_serving_prio;
25fb5169
VG
196 struct blkio_group blkg;
197#ifdef CONFIG_CFQ_GROUP_IOSCHED
198 struct hlist_node cfqd_node;
b1c35769 199 atomic_t ref;
25fb5169 200#endif
cdb16e8f 201};
718eee05 202
22e2c507
JA
203/*
204 * Per block device queue structure
205 */
1da177e4 206struct cfq_data {
165125e1 207 struct request_queue *queue;
1fa8f6d6
VG
208 /* Root service tree for cfq_groups */
209 struct cfq_rb_root grp_service_tree;
cdb16e8f 210 struct cfq_group root_group;
22e2c507 211
c0324a02
CZ
212 /*
213 * The priority currently being served
22e2c507 214 */
c0324a02 215 enum wl_prio_t serving_prio;
718eee05
CZ
216 enum wl_type_t serving_type;
217 unsigned long workload_expires;
cdb16e8f 218 struct cfq_group *serving_group;
a36e71f9
JA
219
220 /*
221 * Each priority tree is sorted by next_request position. These
222 * trees are used when determining if two or more queues are
223 * interleaving requests (see cfq_close_cooperator).
224 */
225 struct rb_root prio_trees[CFQ_PRIO_LISTS];
226
22e2c507
JA
227 unsigned int busy_queues;
228
53c583d2
CZ
229 int rq_in_driver;
230 int rq_in_flight[2];
45333d5a
AC
231
232 /*
233 * queue-depth detection
234 */
235 int rq_queued;
25776e35 236 int hw_tag;
e459dd08
CZ
237 /*
238 * hw_tag can be
239 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
240 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
241 * 0 => no NCQ
242 */
243 int hw_tag_est_depth;
244 unsigned int hw_tag_samples;
1da177e4 245
22e2c507
JA
246 /*
247 * idle window management
248 */
249 struct timer_list idle_slice_timer;
23e018a1 250 struct work_struct unplug_work;
1da177e4 251
22e2c507
JA
252 struct cfq_queue *active_queue;
253 struct cfq_io_context *active_cic;
22e2c507 254
c2dea2d1
VT
255 /*
256 * async queue for each priority case
257 */
258 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
259 struct cfq_queue *async_idle_cfqq;
15c31be4 260
6d048f53 261 sector_t last_position;
1da177e4 262
1da177e4
LT
263 /*
264 * tunables, see top of file
265 */
266 unsigned int cfq_quantum;
22e2c507 267 unsigned int cfq_fifo_expire[2];
1da177e4
LT
268 unsigned int cfq_back_penalty;
269 unsigned int cfq_back_max;
22e2c507
JA
270 unsigned int cfq_slice[2];
271 unsigned int cfq_slice_async_rq;
272 unsigned int cfq_slice_idle;
963b72fc 273 unsigned int cfq_latency;
ae30c286 274 unsigned int cfq_group_isolation;
d9ff4187 275
80b15c73 276 unsigned int cic_index;
d9ff4187 277 struct list_head cic_list;
1da177e4 278
6118b70b
JA
279 /*
280 * Fallback dummy cfqq for extreme OOM conditions
281 */
282 struct cfq_queue oom_cfqq;
365722bb 283
573412b2 284 unsigned long last_delayed_sync;
25fb5169
VG
285
286 /* List of cfq groups being managed on this device*/
287 struct hlist_head cfqg_list;
bb729bc9 288 struct rcu_head rcu;
1da177e4
LT
289};
290
25fb5169
VG
291static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
292
cdb16e8f
VG
293static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
294 enum wl_prio_t prio,
65b32a57 295 enum wl_type_t type)
c0324a02 296{
1fa8f6d6
VG
297 if (!cfqg)
298 return NULL;
299
c0324a02 300 if (prio == IDLE_WORKLOAD)
cdb16e8f 301 return &cfqg->service_tree_idle;
c0324a02 302
cdb16e8f 303 return &cfqg->service_trees[prio][type];
c0324a02
CZ
304}
305
3b18152c 306enum cfqq_state_flags {
b0b8d749
JA
307 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
308 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 309 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 310 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
311 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
312 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
313 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 314 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 315 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 316 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 317 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 318 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 319 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
320};
321
322#define CFQ_CFQQ_FNS(name) \
323static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
324{ \
fe094d98 325 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
326} \
327static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
328{ \
fe094d98 329 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
330} \
331static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
332{ \
fe094d98 333 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
334}
335
336CFQ_CFQQ_FNS(on_rr);
337CFQ_CFQQ_FNS(wait_request);
b029195d 338CFQ_CFQQ_FNS(must_dispatch);
3b18152c 339CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
340CFQ_CFQQ_FNS(fifo_expire);
341CFQ_CFQQ_FNS(idle_window);
342CFQ_CFQQ_FNS(prio_changed);
44f7c160 343CFQ_CFQQ_FNS(slice_new);
91fac317 344CFQ_CFQQ_FNS(sync);
a36e71f9 345CFQ_CFQQ_FNS(coop);
ae54abed 346CFQ_CFQQ_FNS(split_coop);
76280aff 347CFQ_CFQQ_FNS(deep);
f75edf2d 348CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
349#undef CFQ_CFQQ_FNS
350
afc24d49 351#ifdef CONFIG_CFQ_GROUP_IOSCHED
2868ef7b
VG
352#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
353 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
354 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
355 blkg_path(&(cfqq)->cfqg->blkg), ##args);
356
357#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
358 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
359 blkg_path(&(cfqg)->blkg), ##args); \
360
361#else
7b679138
JA
362#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
363 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
364#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
365#endif
7b679138
JA
366#define cfq_log(cfqd, fmt, args...) \
367 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
368
615f0259
VG
369/* Traverses through cfq group service trees */
370#define for_each_cfqg_st(cfqg, i, j, st) \
371 for (i = 0; i <= IDLE_WORKLOAD; i++) \
372 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
373 : &cfqg->service_tree_idle; \
374 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
375 (i == IDLE_WORKLOAD && j == 0); \
376 j++, st = i < IDLE_WORKLOAD ? \
377 &cfqg->service_trees[i][j]: NULL) \
378
379
c0324a02
CZ
380static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
381{
382 if (cfq_class_idle(cfqq))
383 return IDLE_WORKLOAD;
384 if (cfq_class_rt(cfqq))
385 return RT_WORKLOAD;
386 return BE_WORKLOAD;
387}
388
718eee05
CZ
389
390static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
391{
392 if (!cfq_cfqq_sync(cfqq))
393 return ASYNC_WORKLOAD;
394 if (!cfq_cfqq_idle_window(cfqq))
395 return SYNC_NOIDLE_WORKLOAD;
396 return SYNC_WORKLOAD;
397}
398
58ff82f3
VG
399static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
400 struct cfq_data *cfqd,
401 struct cfq_group *cfqg)
c0324a02
CZ
402{
403 if (wl == IDLE_WORKLOAD)
cdb16e8f 404 return cfqg->service_tree_idle.count;
c0324a02 405
cdb16e8f
VG
406 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
407 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
408 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
409}
410
f26bd1f0
VG
411static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
412 struct cfq_group *cfqg)
413{
414 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
415 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
416}
417
165125e1 418static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 419static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 420 struct io_context *, gfp_t);
4ac845a2 421static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
422 struct io_context *);
423
424static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 425 bool is_sync)
91fac317 426{
a6151c3a 427 return cic->cfqq[is_sync];
91fac317
VT
428}
429
430static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 431 struct cfq_queue *cfqq, bool is_sync)
91fac317 432{
a6151c3a 433 cic->cfqq[is_sync] = cfqq;
91fac317
VT
434}
435
bca4b914 436#define CIC_DEAD_KEY 1ul
80b15c73 437#define CIC_DEAD_INDEX_SHIFT 1
bca4b914
KK
438
439static inline void *cfqd_dead_key(struct cfq_data *cfqd)
440{
80b15c73 441 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
bca4b914
KK
442}
443
444static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
445{
446 struct cfq_data *cfqd = cic->key;
447
448 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
449 return NULL;
450
451 return cfqd;
452}
453
91fac317
VT
454/*
455 * We regard a request as SYNC, if it's either a read or has the SYNC bit
456 * set (in which case it could also be direct WRITE).
457 */
a6151c3a 458static inline bool cfq_bio_sync(struct bio *bio)
91fac317 459{
7b6d91da 460 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
91fac317 461}
1da177e4 462
99f95e52
AM
463/*
464 * scheduler run of queue, if there are requests pending and no one in the
465 * driver that will restart queueing
466 */
23e018a1 467static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 468{
7b679138
JA
469 if (cfqd->busy_queues) {
470 cfq_log(cfqd, "schedule dispatch");
23e018a1 471 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 472 }
99f95e52
AM
473}
474
165125e1 475static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
476{
477 struct cfq_data *cfqd = q->elevator->elevator_data;
478
f04a6424 479 return !cfqd->rq_queued;
99f95e52
AM
480}
481
44f7c160
JA
482/*
483 * Scale schedule slice based on io priority. Use the sync time slice only
484 * if a queue is marked sync and has sync io queued. A sync queue with async
485 * io only, should not get full sync slice length.
486 */
a6151c3a 487static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 488 unsigned short prio)
44f7c160 489{
d9e7620e 490 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 491
d9e7620e
JA
492 WARN_ON(prio >= IOPRIO_BE_NR);
493
494 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
495}
44f7c160 496
d9e7620e
JA
497static inline int
498cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
499{
500 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
501}
502
25bc6b07
VG
503static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
504{
505 u64 d = delta << CFQ_SERVICE_SHIFT;
506
507 d = d * BLKIO_WEIGHT_DEFAULT;
508 do_div(d, cfqg->weight);
509 return d;
510}
511
512static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
513{
514 s64 delta = (s64)(vdisktime - min_vdisktime);
515 if (delta > 0)
516 min_vdisktime = vdisktime;
517
518 return min_vdisktime;
519}
520
521static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
522{
523 s64 delta = (s64)(vdisktime - min_vdisktime);
524 if (delta < 0)
525 min_vdisktime = vdisktime;
526
527 return min_vdisktime;
528}
529
530static void update_min_vdisktime(struct cfq_rb_root *st)
531{
532 u64 vdisktime = st->min_vdisktime;
533 struct cfq_group *cfqg;
534
535 if (st->active) {
536 cfqg = rb_entry_cfqg(st->active);
537 vdisktime = cfqg->vdisktime;
538 }
539
540 if (st->left) {
541 cfqg = rb_entry_cfqg(st->left);
542 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
543 }
544
545 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
546}
547
5db5d642
CZ
548/*
549 * get averaged number of queues of RT/BE priority.
550 * average is updated, with a formula that gives more weight to higher numbers,
551 * to quickly follows sudden increases and decrease slowly
552 */
553
58ff82f3
VG
554static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
555 struct cfq_group *cfqg, bool rt)
5869619c 556{
5db5d642
CZ
557 unsigned min_q, max_q;
558 unsigned mult = cfq_hist_divisor - 1;
559 unsigned round = cfq_hist_divisor / 2;
58ff82f3 560 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 561
58ff82f3
VG
562 min_q = min(cfqg->busy_queues_avg[rt], busy);
563 max_q = max(cfqg->busy_queues_avg[rt], busy);
564 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 565 cfq_hist_divisor;
58ff82f3
VG
566 return cfqg->busy_queues_avg[rt];
567}
568
569static inline unsigned
570cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
571{
572 struct cfq_rb_root *st = &cfqd->grp_service_tree;
573
574 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
575}
576
44f7c160
JA
577static inline void
578cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
579{
5db5d642
CZ
580 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
581 if (cfqd->cfq_latency) {
58ff82f3
VG
582 /*
583 * interested queues (we consider only the ones with the same
584 * priority class in the cfq group)
585 */
586 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
587 cfq_class_rt(cfqq));
5db5d642
CZ
588 unsigned sync_slice = cfqd->cfq_slice[1];
589 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
590 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
591
592 if (expect_latency > group_slice) {
5db5d642
CZ
593 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
594 /* scale low_slice according to IO priority
595 * and sync vs async */
596 unsigned low_slice =
597 min(slice, base_low_slice * slice / sync_slice);
598 /* the adapted slice value is scaled to fit all iqs
599 * into the target latency */
58ff82f3 600 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
601 low_slice);
602 }
603 }
dae739eb 604 cfqq->slice_start = jiffies;
5db5d642 605 cfqq->slice_end = jiffies + slice;
f75edf2d 606 cfqq->allocated_slice = slice;
7b679138 607 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
608}
609
610/*
611 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
612 * isn't valid until the first request from the dispatch is activated
613 * and the slice time set.
614 */
a6151c3a 615static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
616{
617 if (cfq_cfqq_slice_new(cfqq))
618 return 0;
619 if (time_before(jiffies, cfqq->slice_end))
620 return 0;
621
622 return 1;
623}
624
1da177e4 625/*
5e705374 626 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 627 * We choose the request that is closest to the head right now. Distance
e8a99053 628 * behind the head is penalized and only allowed to a certain extent.
1da177e4 629 */
5e705374 630static struct request *
cf7c25cf 631cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 632{
cf7c25cf 633 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 634 unsigned long back_max;
e8a99053
AM
635#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
636#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
637 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 638
5e705374
JA
639 if (rq1 == NULL || rq1 == rq2)
640 return rq2;
641 if (rq2 == NULL)
642 return rq1;
9c2c38a1 643
5e705374
JA
644 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
645 return rq1;
646 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
647 return rq2;
7b6d91da 648 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
374f84ac 649 return rq1;
7b6d91da
CH
650 else if ((rq2->cmd_flags & REQ_META) &&
651 !(rq1->cmd_flags & REQ_META))
374f84ac 652 return rq2;
1da177e4 653
83096ebf
TH
654 s1 = blk_rq_pos(rq1);
655 s2 = blk_rq_pos(rq2);
1da177e4 656
1da177e4
LT
657 /*
658 * by definition, 1KiB is 2 sectors
659 */
660 back_max = cfqd->cfq_back_max * 2;
661
662 /*
663 * Strict one way elevator _except_ in the case where we allow
664 * short backward seeks which are biased as twice the cost of a
665 * similar forward seek.
666 */
667 if (s1 >= last)
668 d1 = s1 - last;
669 else if (s1 + back_max >= last)
670 d1 = (last - s1) * cfqd->cfq_back_penalty;
671 else
e8a99053 672 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
673
674 if (s2 >= last)
675 d2 = s2 - last;
676 else if (s2 + back_max >= last)
677 d2 = (last - s2) * cfqd->cfq_back_penalty;
678 else
e8a99053 679 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
680
681 /* Found required data */
e8a99053
AM
682
683 /*
684 * By doing switch() on the bit mask "wrap" we avoid having to
685 * check two variables for all permutations: --> faster!
686 */
687 switch (wrap) {
5e705374 688 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 689 if (d1 < d2)
5e705374 690 return rq1;
e8a99053 691 else if (d2 < d1)
5e705374 692 return rq2;
e8a99053
AM
693 else {
694 if (s1 >= s2)
5e705374 695 return rq1;
e8a99053 696 else
5e705374 697 return rq2;
e8a99053 698 }
1da177e4 699
e8a99053 700 case CFQ_RQ2_WRAP:
5e705374 701 return rq1;
e8a99053 702 case CFQ_RQ1_WRAP:
5e705374
JA
703 return rq2;
704 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
705 default:
706 /*
707 * Since both rqs are wrapped,
708 * start with the one that's further behind head
709 * (--> only *one* back seek required),
710 * since back seek takes more time than forward.
711 */
712 if (s1 <= s2)
5e705374 713 return rq1;
1da177e4 714 else
5e705374 715 return rq2;
1da177e4
LT
716 }
717}
718
498d3aa2
JA
719/*
720 * The below is leftmost cache rbtree addon
721 */
0871714e 722static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 723{
615f0259
VG
724 /* Service tree is empty */
725 if (!root->count)
726 return NULL;
727
cc09e299
JA
728 if (!root->left)
729 root->left = rb_first(&root->rb);
730
0871714e
JA
731 if (root->left)
732 return rb_entry(root->left, struct cfq_queue, rb_node);
733
734 return NULL;
cc09e299
JA
735}
736
1fa8f6d6
VG
737static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
738{
739 if (!root->left)
740 root->left = rb_first(&root->rb);
741
742 if (root->left)
743 return rb_entry_cfqg(root->left);
744
745 return NULL;
746}
747
a36e71f9
JA
748static void rb_erase_init(struct rb_node *n, struct rb_root *root)
749{
750 rb_erase(n, root);
751 RB_CLEAR_NODE(n);
752}
753
cc09e299
JA
754static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
755{
756 if (root->left == n)
757 root->left = NULL;
a36e71f9 758 rb_erase_init(n, &root->rb);
aa6f6a3d 759 --root->count;
cc09e299
JA
760}
761
1da177e4
LT
762/*
763 * would be nice to take fifo expire time into account as well
764 */
5e705374
JA
765static struct request *
766cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
767 struct request *last)
1da177e4 768{
21183b07
JA
769 struct rb_node *rbnext = rb_next(&last->rb_node);
770 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 771 struct request *next = NULL, *prev = NULL;
1da177e4 772
21183b07 773 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
774
775 if (rbprev)
5e705374 776 prev = rb_entry_rq(rbprev);
1da177e4 777
21183b07 778 if (rbnext)
5e705374 779 next = rb_entry_rq(rbnext);
21183b07
JA
780 else {
781 rbnext = rb_first(&cfqq->sort_list);
782 if (rbnext && rbnext != &last->rb_node)
5e705374 783 next = rb_entry_rq(rbnext);
21183b07 784 }
1da177e4 785
cf7c25cf 786 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
787}
788
d9e7620e
JA
789static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
790 struct cfq_queue *cfqq)
1da177e4 791{
d9e7620e
JA
792 /*
793 * just an approximation, should be ok.
794 */
cdb16e8f 795 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 796 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
797}
798
1fa8f6d6
VG
799static inline s64
800cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
801{
802 return cfqg->vdisktime - st->min_vdisktime;
803}
804
805static void
806__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
807{
808 struct rb_node **node = &st->rb.rb_node;
809 struct rb_node *parent = NULL;
810 struct cfq_group *__cfqg;
811 s64 key = cfqg_key(st, cfqg);
812 int left = 1;
813
814 while (*node != NULL) {
815 parent = *node;
816 __cfqg = rb_entry_cfqg(parent);
817
818 if (key < cfqg_key(st, __cfqg))
819 node = &parent->rb_left;
820 else {
821 node = &parent->rb_right;
822 left = 0;
823 }
824 }
825
826 if (left)
827 st->left = &cfqg->rb_node;
828
829 rb_link_node(&cfqg->rb_node, parent, node);
830 rb_insert_color(&cfqg->rb_node, &st->rb);
831}
832
833static void
834cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
835{
836 struct cfq_rb_root *st = &cfqd->grp_service_tree;
837 struct cfq_group *__cfqg;
838 struct rb_node *n;
839
840 cfqg->nr_cfqq++;
841 if (cfqg->on_st)
842 return;
843
844 /*
845 * Currently put the group at the end. Later implement something
846 * so that groups get lesser vtime based on their weights, so that
847 * if group does not loose all if it was not continously backlogged.
848 */
849 n = rb_last(&st->rb);
850 if (n) {
851 __cfqg = rb_entry_cfqg(n);
852 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
853 } else
854 cfqg->vdisktime = st->min_vdisktime;
855
856 __cfq_group_service_tree_add(st, cfqg);
857 cfqg->on_st = true;
58ff82f3 858 st->total_weight += cfqg->weight;
1fa8f6d6
VG
859}
860
861static void
862cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
863{
864 struct cfq_rb_root *st = &cfqd->grp_service_tree;
865
25bc6b07
VG
866 if (st->active == &cfqg->rb_node)
867 st->active = NULL;
868
1fa8f6d6
VG
869 BUG_ON(cfqg->nr_cfqq < 1);
870 cfqg->nr_cfqq--;
25bc6b07 871
1fa8f6d6
VG
872 /* If there are other cfq queues under this group, don't delete it */
873 if (cfqg->nr_cfqq)
874 return;
875
2868ef7b 876 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1fa8f6d6 877 cfqg->on_st = false;
58ff82f3 878 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
879 if (!RB_EMPTY_NODE(&cfqg->rb_node))
880 cfq_rb_erase(&cfqg->rb_node, st);
dae739eb 881 cfqg->saved_workload_slice = 0;
e98ef89b 882 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
883}
884
885static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
886{
f75edf2d 887 unsigned int slice_used;
dae739eb
VG
888
889 /*
890 * Queue got expired before even a single request completed or
891 * got expired immediately after first request completion.
892 */
893 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
894 /*
895 * Also charge the seek time incurred to the group, otherwise
896 * if there are mutiple queues in the group, each can dispatch
897 * a single request on seeky media and cause lots of seek time
898 * and group will never know it.
899 */
900 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
901 1);
902 } else {
903 slice_used = jiffies - cfqq->slice_start;
f75edf2d
VG
904 if (slice_used > cfqq->allocated_slice)
905 slice_used = cfqq->allocated_slice;
dae739eb
VG
906 }
907
9a0785b0 908 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
dae739eb
VG
909 return slice_used;
910}
911
912static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
e5ff082e 913 struct cfq_queue *cfqq)
dae739eb
VG
914{
915 struct cfq_rb_root *st = &cfqd->grp_service_tree;
f26bd1f0
VG
916 unsigned int used_sl, charge_sl;
917 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
918 - cfqg->service_tree_idle.count;
919
920 BUG_ON(nr_sync < 0);
921 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
dae739eb 922
f26bd1f0
VG
923 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
924 charge_sl = cfqq->allocated_slice;
dae739eb
VG
925
926 /* Can't update vdisktime while group is on service tree */
927 cfq_rb_erase(&cfqg->rb_node, st);
f26bd1f0 928 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
dae739eb
VG
929 __cfq_group_service_tree_add(st, cfqg);
930
931 /* This group is being expired. Save the context */
932 if (time_after(cfqd->workload_expires, jiffies)) {
933 cfqg->saved_workload_slice = cfqd->workload_expires
934 - jiffies;
935 cfqg->saved_workload = cfqd->serving_type;
936 cfqg->saved_serving_prio = cfqd->serving_prio;
937 } else
938 cfqg->saved_workload_slice = 0;
2868ef7b
VG
939
940 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
941 st->min_vdisktime);
e98ef89b
VG
942 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
943 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1fa8f6d6
VG
944}
945
25fb5169
VG
946#ifdef CONFIG_CFQ_GROUP_IOSCHED
947static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
948{
949 if (blkg)
950 return container_of(blkg, struct cfq_group, blkg);
951 return NULL;
952}
953
fe071437
VG
954void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
955 unsigned int weight)
f8d461d6
VG
956{
957 cfqg_of_blkg(blkg)->weight = weight;
958}
959
25fb5169
VG
960static struct cfq_group *
961cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
962{
963 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
964 struct cfq_group *cfqg = NULL;
965 void *key = cfqd;
966 int i, j;
967 struct cfq_rb_root *st;
22084190
VG
968 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
969 unsigned int major, minor;
25fb5169 970
25fb5169 971 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
a74b2ada
RB
972 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
973 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
974 cfqg->blkg.dev = MKDEV(major, minor);
975 goto done;
976 }
25fb5169
VG
977 if (cfqg || !create)
978 goto done;
979
980 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
981 if (!cfqg)
982 goto done;
983
25fb5169
VG
984 for_each_cfqg_st(cfqg, i, j, st)
985 *st = CFQ_RB_ROOT;
986 RB_CLEAR_NODE(&cfqg->rb_node);
987
b1c35769
VG
988 /*
989 * Take the initial reference that will be released on destroy
990 * This can be thought of a joint reference by cgroup and
991 * elevator which will be dropped by either elevator exit
992 * or cgroup deletion path depending on who is exiting first.
993 */
994 atomic_set(&cfqg->ref, 1);
995
25fb5169 996 /* Add group onto cgroup list */
22084190 997 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
e98ef89b 998 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
22084190 999 MKDEV(major, minor));
34d0f179 1000 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
25fb5169
VG
1001
1002 /* Add group on cfqd list */
1003 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1004
1005done:
25fb5169
VG
1006 return cfqg;
1007}
1008
1009/*
1010 * Search for the cfq group current task belongs to. If create = 1, then also
1011 * create the cfq group if it does not exist. request_queue lock must be held.
1012 */
1013static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1014{
1015 struct cgroup *cgroup;
1016 struct cfq_group *cfqg = NULL;
1017
1018 rcu_read_lock();
1019 cgroup = task_cgroup(current, blkio_subsys_id);
1020 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1021 if (!cfqg && create)
1022 cfqg = &cfqd->root_group;
1023 rcu_read_unlock();
1024 return cfqg;
1025}
1026
7f1dc8a2
VG
1027static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1028{
1029 atomic_inc(&cfqg->ref);
1030 return cfqg;
1031}
1032
25fb5169
VG
1033static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1034{
1035 /* Currently, all async queues are mapped to root group */
1036 if (!cfq_cfqq_sync(cfqq))
1037 cfqg = &cfqq->cfqd->root_group;
1038
1039 cfqq->cfqg = cfqg;
b1c35769
VG
1040 /* cfqq reference on cfqg */
1041 atomic_inc(&cfqq->cfqg->ref);
1042}
1043
1044static void cfq_put_cfqg(struct cfq_group *cfqg)
1045{
1046 struct cfq_rb_root *st;
1047 int i, j;
1048
1049 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1050 if (!atomic_dec_and_test(&cfqg->ref))
1051 return;
1052 for_each_cfqg_st(cfqg, i, j, st)
1053 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1054 kfree(cfqg);
1055}
1056
1057static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1058{
1059 /* Something wrong if we are trying to remove same group twice */
1060 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1061
1062 hlist_del_init(&cfqg->cfqd_node);
1063
1064 /*
1065 * Put the reference taken at the time of creation so that when all
1066 * queues are gone, group can be destroyed.
1067 */
1068 cfq_put_cfqg(cfqg);
1069}
1070
1071static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1072{
1073 struct hlist_node *pos, *n;
1074 struct cfq_group *cfqg;
1075
1076 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1077 /*
1078 * If cgroup removal path got to blk_group first and removed
1079 * it from cgroup list, then it will take care of destroying
1080 * cfqg also.
1081 */
e98ef89b 1082 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
b1c35769
VG
1083 cfq_destroy_cfqg(cfqd, cfqg);
1084 }
25fb5169 1085}
b1c35769
VG
1086
1087/*
1088 * Blk cgroup controller notification saying that blkio_group object is being
1089 * delinked as associated cgroup object is going away. That also means that
1090 * no new IO will come in this group. So get rid of this group as soon as
1091 * any pending IO in the group is finished.
1092 *
1093 * This function is called under rcu_read_lock(). key is the rcu protected
1094 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1095 * read lock.
1096 *
1097 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1098 * it should not be NULL as even if elevator was exiting, cgroup deltion
1099 * path got to it first.
1100 */
1101void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1102{
1103 unsigned long flags;
1104 struct cfq_data *cfqd = key;
1105
1106 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1107 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1108 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1109}
1110
25fb5169
VG
1111#else /* GROUP_IOSCHED */
1112static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1113{
1114 return &cfqd->root_group;
1115}
7f1dc8a2
VG
1116
1117static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1118{
50eaeb32 1119 return cfqg;
7f1dc8a2
VG
1120}
1121
25fb5169
VG
1122static inline void
1123cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1124 cfqq->cfqg = cfqg;
1125}
1126
b1c35769
VG
1127static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1128static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1129
25fb5169
VG
1130#endif /* GROUP_IOSCHED */
1131
498d3aa2 1132/*
c0324a02 1133 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1134 * requests waiting to be processed. It is sorted in the order that
1135 * we will service the queues.
1136 */
a36e71f9 1137static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1138 bool add_front)
d9e7620e 1139{
0871714e
JA
1140 struct rb_node **p, *parent;
1141 struct cfq_queue *__cfqq;
d9e7620e 1142 unsigned long rb_key;
c0324a02 1143 struct cfq_rb_root *service_tree;
498d3aa2 1144 int left;
dae739eb 1145 int new_cfqq = 1;
ae30c286
VG
1146 int group_changed = 0;
1147
1148#ifdef CONFIG_CFQ_GROUP_IOSCHED
1149 if (!cfqd->cfq_group_isolation
1150 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1151 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1152 /* Move this cfq to root group */
1153 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1154 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1155 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1156 cfqq->orig_cfqg = cfqq->cfqg;
1157 cfqq->cfqg = &cfqd->root_group;
1158 atomic_inc(&cfqd->root_group.ref);
1159 group_changed = 1;
1160 } else if (!cfqd->cfq_group_isolation
1161 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1162 /* cfqq is sequential now needs to go to its original group */
1163 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1164 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1165 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1166 cfq_put_cfqg(cfqq->cfqg);
1167 cfqq->cfqg = cfqq->orig_cfqg;
1168 cfqq->orig_cfqg = NULL;
1169 group_changed = 1;
1170 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1171 }
1172#endif
d9e7620e 1173
cdb16e8f 1174 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1175 cfqq_type(cfqq));
0871714e
JA
1176 if (cfq_class_idle(cfqq)) {
1177 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1178 parent = rb_last(&service_tree->rb);
0871714e
JA
1179 if (parent && parent != &cfqq->rb_node) {
1180 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1181 rb_key += __cfqq->rb_key;
1182 } else
1183 rb_key += jiffies;
1184 } else if (!add_front) {
b9c8946b
JA
1185 /*
1186 * Get our rb key offset. Subtract any residual slice
1187 * value carried from last service. A negative resid
1188 * count indicates slice overrun, and this should position
1189 * the next service time further away in the tree.
1190 */
edd75ffd 1191 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1192 rb_key -= cfqq->slice_resid;
edd75ffd 1193 cfqq->slice_resid = 0;
48e025e6
CZ
1194 } else {
1195 rb_key = -HZ;
aa6f6a3d 1196 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1197 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1198 }
1da177e4 1199
d9e7620e 1200 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1201 new_cfqq = 0;
99f9628a 1202 /*
d9e7620e 1203 * same position, nothing more to do
99f9628a 1204 */
c0324a02
CZ
1205 if (rb_key == cfqq->rb_key &&
1206 cfqq->service_tree == service_tree)
d9e7620e 1207 return;
1da177e4 1208
aa6f6a3d
CZ
1209 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1210 cfqq->service_tree = NULL;
1da177e4 1211 }
d9e7620e 1212
498d3aa2 1213 left = 1;
0871714e 1214 parent = NULL;
aa6f6a3d
CZ
1215 cfqq->service_tree = service_tree;
1216 p = &service_tree->rb.rb_node;
d9e7620e 1217 while (*p) {
67060e37 1218 struct rb_node **n;
cc09e299 1219
d9e7620e
JA
1220 parent = *p;
1221 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1222
0c534e0a 1223 /*
c0324a02 1224 * sort by key, that represents service time.
0c534e0a 1225 */
c0324a02 1226 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1227 n = &(*p)->rb_left;
c0324a02 1228 else {
67060e37 1229 n = &(*p)->rb_right;
cc09e299 1230 left = 0;
c0324a02 1231 }
67060e37
JA
1232
1233 p = n;
d9e7620e
JA
1234 }
1235
cc09e299 1236 if (left)
aa6f6a3d 1237 service_tree->left = &cfqq->rb_node;
cc09e299 1238
d9e7620e
JA
1239 cfqq->rb_key = rb_key;
1240 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1241 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1242 service_tree->count++;
ae30c286 1243 if ((add_front || !new_cfqq) && !group_changed)
dae739eb 1244 return;
1fa8f6d6 1245 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
1246}
1247
a36e71f9 1248static struct cfq_queue *
f2d1f0ae
JA
1249cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1250 sector_t sector, struct rb_node **ret_parent,
1251 struct rb_node ***rb_link)
a36e71f9 1252{
a36e71f9
JA
1253 struct rb_node **p, *parent;
1254 struct cfq_queue *cfqq = NULL;
1255
1256 parent = NULL;
1257 p = &root->rb_node;
1258 while (*p) {
1259 struct rb_node **n;
1260
1261 parent = *p;
1262 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1263
1264 /*
1265 * Sort strictly based on sector. Smallest to the left,
1266 * largest to the right.
1267 */
2e46e8b2 1268 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1269 n = &(*p)->rb_right;
2e46e8b2 1270 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1271 n = &(*p)->rb_left;
1272 else
1273 break;
1274 p = n;
3ac6c9f8 1275 cfqq = NULL;
a36e71f9
JA
1276 }
1277
1278 *ret_parent = parent;
1279 if (rb_link)
1280 *rb_link = p;
3ac6c9f8 1281 return cfqq;
a36e71f9
JA
1282}
1283
1284static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1285{
a36e71f9
JA
1286 struct rb_node **p, *parent;
1287 struct cfq_queue *__cfqq;
1288
f2d1f0ae
JA
1289 if (cfqq->p_root) {
1290 rb_erase(&cfqq->p_node, cfqq->p_root);
1291 cfqq->p_root = NULL;
1292 }
a36e71f9
JA
1293
1294 if (cfq_class_idle(cfqq))
1295 return;
1296 if (!cfqq->next_rq)
1297 return;
1298
f2d1f0ae 1299 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1300 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1301 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1302 if (!__cfqq) {
1303 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1304 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1305 } else
1306 cfqq->p_root = NULL;
a36e71f9
JA
1307}
1308
498d3aa2
JA
1309/*
1310 * Update cfqq's position in the service tree.
1311 */
edd75ffd 1312static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1313{
6d048f53
JA
1314 /*
1315 * Resorting requires the cfqq to be on the RR list already.
1316 */
a36e71f9 1317 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1318 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1319 cfq_prio_tree_add(cfqd, cfqq);
1320 }
6d048f53
JA
1321}
1322
1da177e4
LT
1323/*
1324 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1325 * the pending list according to last request service
1da177e4 1326 */
febffd61 1327static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1328{
7b679138 1329 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1330 BUG_ON(cfq_cfqq_on_rr(cfqq));
1331 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
1332 cfqd->busy_queues++;
1333
edd75ffd 1334 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1335}
1336
498d3aa2
JA
1337/*
1338 * Called when the cfqq no longer has requests pending, remove it from
1339 * the service tree.
1340 */
febffd61 1341static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1342{
7b679138 1343 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1344 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1345 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1346
aa6f6a3d
CZ
1347 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1348 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1349 cfqq->service_tree = NULL;
1350 }
f2d1f0ae
JA
1351 if (cfqq->p_root) {
1352 rb_erase(&cfqq->p_node, cfqq->p_root);
1353 cfqq->p_root = NULL;
1354 }
d9e7620e 1355
1fa8f6d6 1356 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1357 BUG_ON(!cfqd->busy_queues);
1358 cfqd->busy_queues--;
1359}
1360
1361/*
1362 * rb tree support functions
1363 */
febffd61 1364static void cfq_del_rq_rb(struct request *rq)
1da177e4 1365{
5e705374 1366 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1367 const int sync = rq_is_sync(rq);
1da177e4 1368
b4878f24
JA
1369 BUG_ON(!cfqq->queued[sync]);
1370 cfqq->queued[sync]--;
1da177e4 1371
5e705374 1372 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1373
f04a6424
VG
1374 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1375 /*
1376 * Queue will be deleted from service tree when we actually
1377 * expire it later. Right now just remove it from prio tree
1378 * as it is empty.
1379 */
1380 if (cfqq->p_root) {
1381 rb_erase(&cfqq->p_node, cfqq->p_root);
1382 cfqq->p_root = NULL;
1383 }
1384 }
1da177e4
LT
1385}
1386
5e705374 1387static void cfq_add_rq_rb(struct request *rq)
1da177e4 1388{
5e705374 1389 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1390 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1391 struct request *__alias, *prev;
1da177e4 1392
5380a101 1393 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1394
1395 /*
1396 * looks a little odd, but the first insert might return an alias.
1397 * if that happens, put the alias on the dispatch list
1398 */
21183b07 1399 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1400 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1401
1402 if (!cfq_cfqq_on_rr(cfqq))
1403 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1404
1405 /*
1406 * check if this request is a better next-serve candidate
1407 */
a36e71f9 1408 prev = cfqq->next_rq;
cf7c25cf 1409 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1410
1411 /*
1412 * adjust priority tree position, if ->next_rq changes
1413 */
1414 if (prev != cfqq->next_rq)
1415 cfq_prio_tree_add(cfqd, cfqq);
1416
5044eed4 1417 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1418}
1419
febffd61 1420static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1421{
5380a101
JA
1422 elv_rb_del(&cfqq->sort_list, rq);
1423 cfqq->queued[rq_is_sync(rq)]--;
e98ef89b
VG
1424 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1425 rq_data_dir(rq), rq_is_sync(rq));
5e705374 1426 cfq_add_rq_rb(rq);
e98ef89b 1427 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
7f1dc8a2
VG
1428 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1429 rq_is_sync(rq));
1da177e4
LT
1430}
1431
206dc69b
JA
1432static struct request *
1433cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1434{
206dc69b 1435 struct task_struct *tsk = current;
91fac317 1436 struct cfq_io_context *cic;
206dc69b 1437 struct cfq_queue *cfqq;
1da177e4 1438
4ac845a2 1439 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1440 if (!cic)
1441 return NULL;
1442
1443 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1444 if (cfqq) {
1445 sector_t sector = bio->bi_sector + bio_sectors(bio);
1446
21183b07 1447 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1448 }
1da177e4 1449
1da177e4
LT
1450 return NULL;
1451}
1452
165125e1 1453static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1454{
22e2c507 1455 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1456
53c583d2 1457 cfqd->rq_in_driver++;
7b679138 1458 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1459 cfqd->rq_in_driver);
25776e35 1460
5b93629b 1461 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1462}
1463
165125e1 1464static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1465{
b4878f24
JA
1466 struct cfq_data *cfqd = q->elevator->elevator_data;
1467
53c583d2
CZ
1468 WARN_ON(!cfqd->rq_in_driver);
1469 cfqd->rq_in_driver--;
7b679138 1470 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1471 cfqd->rq_in_driver);
1da177e4
LT
1472}
1473
b4878f24 1474static void cfq_remove_request(struct request *rq)
1da177e4 1475{
5e705374 1476 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1477
5e705374
JA
1478 if (cfqq->next_rq == rq)
1479 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1480
b4878f24 1481 list_del_init(&rq->queuelist);
5e705374 1482 cfq_del_rq_rb(rq);
374f84ac 1483
45333d5a 1484 cfqq->cfqd->rq_queued--;
e98ef89b
VG
1485 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1486 rq_data_dir(rq), rq_is_sync(rq));
7b6d91da 1487 if (rq->cmd_flags & REQ_META) {
374f84ac
JA
1488 WARN_ON(!cfqq->meta_pending);
1489 cfqq->meta_pending--;
1490 }
1da177e4
LT
1491}
1492
165125e1
JA
1493static int cfq_merge(struct request_queue *q, struct request **req,
1494 struct bio *bio)
1da177e4
LT
1495{
1496 struct cfq_data *cfqd = q->elevator->elevator_data;
1497 struct request *__rq;
1da177e4 1498
206dc69b 1499 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1500 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1501 *req = __rq;
1502 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1503 }
1504
1505 return ELEVATOR_NO_MERGE;
1da177e4
LT
1506}
1507
165125e1 1508static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1509 int type)
1da177e4 1510{
21183b07 1511 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1512 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1513
5e705374 1514 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1515 }
1da177e4
LT
1516}
1517
812d4026
DS
1518static void cfq_bio_merged(struct request_queue *q, struct request *req,
1519 struct bio *bio)
1520{
e98ef89b
VG
1521 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1522 bio_data_dir(bio), cfq_bio_sync(bio));
812d4026
DS
1523}
1524
1da177e4 1525static void
165125e1 1526cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1527 struct request *next)
1528{
cf7c25cf 1529 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1530 /*
1531 * reposition in fifo if next is older than rq
1532 */
1533 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1534 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1535 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1536 rq_set_fifo_time(rq, rq_fifo_time(next));
1537 }
22e2c507 1538
cf7c25cf
CZ
1539 if (cfqq->next_rq == next)
1540 cfqq->next_rq = rq;
b4878f24 1541 cfq_remove_request(next);
e98ef89b
VG
1542 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1543 rq_data_dir(next), rq_is_sync(next));
22e2c507
JA
1544}
1545
165125e1 1546static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1547 struct bio *bio)
1548{
1549 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1550 struct cfq_io_context *cic;
da775265 1551 struct cfq_queue *cfqq;
da775265
JA
1552
1553 /*
ec8acb69 1554 * Disallow merge of a sync bio into an async request.
da775265 1555 */
91fac317 1556 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1557 return false;
da775265
JA
1558
1559 /*
719d3402
JA
1560 * Lookup the cfqq that this bio will be queued with. Allow
1561 * merge only if rq is queued there.
da775265 1562 */
4ac845a2 1563 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1564 if (!cic)
a6151c3a 1565 return false;
719d3402 1566
91fac317 1567 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1568 return cfqq == RQ_CFQQ(rq);
da775265
JA
1569}
1570
812df48d
DS
1571static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1572{
1573 del_timer(&cfqd->idle_slice_timer);
e98ef89b 1574 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
812df48d
DS
1575}
1576
febffd61
JA
1577static void __cfq_set_active_queue(struct cfq_data *cfqd,
1578 struct cfq_queue *cfqq)
22e2c507
JA
1579{
1580 if (cfqq) {
b1ffe737
DS
1581 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1582 cfqd->serving_prio, cfqd->serving_type);
e98ef89b 1583 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
dae739eb
VG
1584 cfqq->slice_start = 0;
1585 cfqq->dispatch_start = jiffies;
f75edf2d 1586 cfqq->allocated_slice = 0;
22e2c507 1587 cfqq->slice_end = 0;
2f5cb738
JA
1588 cfqq->slice_dispatch = 0;
1589
2f5cb738 1590 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1591 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1592 cfq_clear_cfqq_must_alloc_slice(cfqq);
1593 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1594 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738 1595
812df48d 1596 cfq_del_timer(cfqd, cfqq);
22e2c507
JA
1597 }
1598
1599 cfqd->active_queue = cfqq;
1600}
1601
7b14e3b5
JA
1602/*
1603 * current cfqq expired its slice (or was too idle), select new one
1604 */
1605static void
1606__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e5ff082e 1607 bool timed_out)
7b14e3b5 1608{
7b679138
JA
1609 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1610
7b14e3b5 1611 if (cfq_cfqq_wait_request(cfqq))
812df48d 1612 cfq_del_timer(cfqd, cfqq);
7b14e3b5 1613
7b14e3b5 1614 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1615 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1616
ae54abed
SL
1617 /*
1618 * If this cfqq is shared between multiple processes, check to
1619 * make sure that those processes are still issuing I/Os within
1620 * the mean seek distance. If not, it may be time to break the
1621 * queues apart again.
1622 */
1623 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1624 cfq_mark_cfqq_split_coop(cfqq);
1625
7b14e3b5 1626 /*
6084cdda 1627 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1628 */
7b679138 1629 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1630 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1631 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1632 }
7b14e3b5 1633
e5ff082e 1634 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
dae739eb 1635
f04a6424
VG
1636 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1637 cfq_del_cfqq_rr(cfqd, cfqq);
1638
edd75ffd 1639 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1640
1641 if (cfqq == cfqd->active_queue)
1642 cfqd->active_queue = NULL;
1643
dae739eb
VG
1644 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1645 cfqd->grp_service_tree.active = NULL;
1646
7b14e3b5
JA
1647 if (cfqd->active_cic) {
1648 put_io_context(cfqd->active_cic->ioc);
1649 cfqd->active_cic = NULL;
1650 }
7b14e3b5
JA
1651}
1652
e5ff082e 1653static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1654{
1655 struct cfq_queue *cfqq = cfqd->active_queue;
1656
1657 if (cfqq)
e5ff082e 1658 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1659}
1660
498d3aa2
JA
1661/*
1662 * Get next queue for service. Unless we have a queue preemption,
1663 * we'll simply select the first cfqq in the service tree.
1664 */
6d048f53 1665static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1666{
c0324a02 1667 struct cfq_rb_root *service_tree =
cdb16e8f 1668 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1669 cfqd->serving_type);
d9e7620e 1670
f04a6424
VG
1671 if (!cfqd->rq_queued)
1672 return NULL;
1673
1fa8f6d6
VG
1674 /* There is nothing to dispatch */
1675 if (!service_tree)
1676 return NULL;
c0324a02
CZ
1677 if (RB_EMPTY_ROOT(&service_tree->rb))
1678 return NULL;
1679 return cfq_rb_first(service_tree);
6d048f53
JA
1680}
1681
f04a6424
VG
1682static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1683{
25fb5169 1684 struct cfq_group *cfqg;
f04a6424
VG
1685 struct cfq_queue *cfqq;
1686 int i, j;
1687 struct cfq_rb_root *st;
1688
1689 if (!cfqd->rq_queued)
1690 return NULL;
1691
25fb5169
VG
1692 cfqg = cfq_get_next_cfqg(cfqd);
1693 if (!cfqg)
1694 return NULL;
1695
f04a6424
VG
1696 for_each_cfqg_st(cfqg, i, j, st)
1697 if ((cfqq = cfq_rb_first(st)) != NULL)
1698 return cfqq;
1699 return NULL;
1700}
1701
498d3aa2
JA
1702/*
1703 * Get and set a new active queue for service.
1704 */
a36e71f9
JA
1705static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1706 struct cfq_queue *cfqq)
6d048f53 1707{
e00ef799 1708 if (!cfqq)
a36e71f9 1709 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1710
22e2c507 1711 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1712 return cfqq;
22e2c507
JA
1713}
1714
d9e7620e
JA
1715static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1716 struct request *rq)
1717{
83096ebf
TH
1718 if (blk_rq_pos(rq) >= cfqd->last_position)
1719 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1720 else
83096ebf 1721 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1722}
1723
b2c18e1e 1724static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e9ce335d 1725 struct request *rq)
6d048f53 1726{
e9ce335d 1727 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
6d048f53
JA
1728}
1729
a36e71f9
JA
1730static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1731 struct cfq_queue *cur_cfqq)
1732{
f2d1f0ae 1733 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1734 struct rb_node *parent, *node;
1735 struct cfq_queue *__cfqq;
1736 sector_t sector = cfqd->last_position;
1737
1738 if (RB_EMPTY_ROOT(root))
1739 return NULL;
1740
1741 /*
1742 * First, if we find a request starting at the end of the last
1743 * request, choose it.
1744 */
f2d1f0ae 1745 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1746 if (__cfqq)
1747 return __cfqq;
1748
1749 /*
1750 * If the exact sector wasn't found, the parent of the NULL leaf
1751 * will contain the closest sector.
1752 */
1753 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
e9ce335d 1754 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1755 return __cfqq;
1756
2e46e8b2 1757 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1758 node = rb_next(&__cfqq->p_node);
1759 else
1760 node = rb_prev(&__cfqq->p_node);
1761 if (!node)
1762 return NULL;
1763
1764 __cfqq = rb_entry(node, struct cfq_queue, p_node);
e9ce335d 1765 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1766 return __cfqq;
1767
1768 return NULL;
1769}
1770
1771/*
1772 * cfqd - obvious
1773 * cur_cfqq - passed in so that we don't decide that the current queue is
1774 * closely cooperating with itself.
1775 *
1776 * So, basically we're assuming that that cur_cfqq has dispatched at least
1777 * one request, and that cfqd->last_position reflects a position on the disk
1778 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1779 * assumption.
1780 */
1781static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1782 struct cfq_queue *cur_cfqq)
6d048f53 1783{
a36e71f9
JA
1784 struct cfq_queue *cfqq;
1785
39c01b21
DS
1786 if (cfq_class_idle(cur_cfqq))
1787 return NULL;
e6c5bc73
JM
1788 if (!cfq_cfqq_sync(cur_cfqq))
1789 return NULL;
1790 if (CFQQ_SEEKY(cur_cfqq))
1791 return NULL;
1792
b9d8f4c7
GJ
1793 /*
1794 * Don't search priority tree if it's the only queue in the group.
1795 */
1796 if (cur_cfqq->cfqg->nr_cfqq == 1)
1797 return NULL;
1798
6d048f53 1799 /*
d9e7620e
JA
1800 * We should notice if some of the queues are cooperating, eg
1801 * working closely on the same area of the disk. In that case,
1802 * we can group them together and don't waste time idling.
6d048f53 1803 */
a36e71f9
JA
1804 cfqq = cfqq_close(cfqd, cur_cfqq);
1805 if (!cfqq)
1806 return NULL;
1807
8682e1f1
VG
1808 /* If new queue belongs to different cfq_group, don't choose it */
1809 if (cur_cfqq->cfqg != cfqq->cfqg)
1810 return NULL;
1811
df5fe3e8
JM
1812 /*
1813 * It only makes sense to merge sync queues.
1814 */
1815 if (!cfq_cfqq_sync(cfqq))
1816 return NULL;
e6c5bc73
JM
1817 if (CFQQ_SEEKY(cfqq))
1818 return NULL;
df5fe3e8 1819
c0324a02
CZ
1820 /*
1821 * Do not merge queues of different priority classes
1822 */
1823 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1824 return NULL;
1825
a36e71f9 1826 return cfqq;
6d048f53
JA
1827}
1828
a6d44e98
CZ
1829/*
1830 * Determine whether we should enforce idle window for this queue.
1831 */
1832
1833static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1834{
1835 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1836 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1837
f04a6424
VG
1838 BUG_ON(!service_tree);
1839 BUG_ON(!service_tree->count);
1840
a6d44e98
CZ
1841 /* We never do for idle class queues. */
1842 if (prio == IDLE_WORKLOAD)
1843 return false;
1844
1845 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1846 if (cfq_cfqq_idle_window(cfqq) &&
1847 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1848 return true;
1849
1850 /*
1851 * Otherwise, we do only if they are the last ones
1852 * in their service tree.
1853 */
b1ffe737
DS
1854 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1855 return 1;
1856 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1857 service_tree->count);
1858 return 0;
a6d44e98
CZ
1859}
1860
6d048f53 1861static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1862{
1792669c 1863 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1864 struct cfq_io_context *cic;
7b14e3b5
JA
1865 unsigned long sl;
1866
a68bbddb 1867 /*
f7d7b7a7
JA
1868 * SSD device without seek penalty, disable idling. But only do so
1869 * for devices that support queuing, otherwise we still have a problem
1870 * with sync vs async workloads.
a68bbddb 1871 */
f7d7b7a7 1872 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1873 return;
1874
dd67d051 1875 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1876 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1877
1878 /*
1879 * idle is disabled, either manually or by past process history
1880 */
a6d44e98 1881 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1882 return;
1883
7b679138 1884 /*
8e550632 1885 * still active requests from this queue, don't idle
7b679138 1886 */
8e550632 1887 if (cfqq->dispatched)
7b679138
JA
1888 return;
1889
22e2c507
JA
1890 /*
1891 * task has exited, don't wait
1892 */
206dc69b 1893 cic = cfqd->active_cic;
66dac98e 1894 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1895 return;
1896
355b659c
CZ
1897 /*
1898 * If our average think time is larger than the remaining time
1899 * slice, then don't idle. This avoids overrunning the allotted
1900 * time slice.
1901 */
1902 if (sample_valid(cic->ttime_samples) &&
b1ffe737
DS
1903 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1904 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1905 cic->ttime_mean);
355b659c 1906 return;
b1ffe737 1907 }
355b659c 1908
3b18152c 1909 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1910
6d048f53 1911 sl = cfqd->cfq_slice_idle;
206dc69b 1912
7b14e3b5 1913 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
e98ef89b 1914 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
9481ffdc 1915 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1916}
1917
498d3aa2
JA
1918/*
1919 * Move request from internal lists to the request queue dispatch list.
1920 */
165125e1 1921static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1922{
3ed9a296 1923 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1924 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1925
7b679138
JA
1926 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1927
06d21886 1928 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1929 cfq_remove_request(rq);
6d048f53 1930 cfqq->dispatched++;
5380a101 1931 elv_dispatch_sort(q, rq);
3ed9a296 1932
53c583d2 1933 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
e98ef89b 1934 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
84c124da 1935 rq_data_dir(rq), rq_is_sync(rq));
1da177e4
LT
1936}
1937
1938/*
1939 * return expired entry, or NULL to just start from scratch in rbtree
1940 */
febffd61 1941static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1942{
30996f40 1943 struct request *rq = NULL;
1da177e4 1944
3b18152c 1945 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1946 return NULL;
cb887411
JA
1947
1948 cfq_mark_cfqq_fifo_expire(cfqq);
1949
89850f7e
JA
1950 if (list_empty(&cfqq->fifo))
1951 return NULL;
1da177e4 1952
89850f7e 1953 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1954 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1955 rq = NULL;
1da177e4 1956
30996f40 1957 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1958 return rq;
1da177e4
LT
1959}
1960
22e2c507
JA
1961static inline int
1962cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1963{
1964 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1965
22e2c507 1966 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1967
22e2c507 1968 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1969}
1970
df5fe3e8
JM
1971/*
1972 * Must be called with the queue_lock held.
1973 */
1974static int cfqq_process_refs(struct cfq_queue *cfqq)
1975{
1976 int process_refs, io_refs;
1977
1978 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1979 process_refs = atomic_read(&cfqq->ref) - io_refs;
1980 BUG_ON(process_refs < 0);
1981 return process_refs;
1982}
1983
1984static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1985{
e6c5bc73 1986 int process_refs, new_process_refs;
df5fe3e8
JM
1987 struct cfq_queue *__cfqq;
1988
c10b61f0
JM
1989 /*
1990 * If there are no process references on the new_cfqq, then it is
1991 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
1992 * chain may have dropped their last reference (not just their
1993 * last process reference).
1994 */
1995 if (!cfqq_process_refs(new_cfqq))
1996 return;
1997
df5fe3e8
JM
1998 /* Avoid a circular list and skip interim queue merges */
1999 while ((__cfqq = new_cfqq->new_cfqq)) {
2000 if (__cfqq == cfqq)
2001 return;
2002 new_cfqq = __cfqq;
2003 }
2004
2005 process_refs = cfqq_process_refs(cfqq);
c10b61f0 2006 new_process_refs = cfqq_process_refs(new_cfqq);
df5fe3e8
JM
2007 /*
2008 * If the process for the cfqq has gone away, there is no
2009 * sense in merging the queues.
2010 */
c10b61f0 2011 if (process_refs == 0 || new_process_refs == 0)
df5fe3e8
JM
2012 return;
2013
e6c5bc73
JM
2014 /*
2015 * Merge in the direction of the lesser amount of work.
2016 */
e6c5bc73
JM
2017 if (new_process_refs >= process_refs) {
2018 cfqq->new_cfqq = new_cfqq;
2019 atomic_add(process_refs, &new_cfqq->ref);
2020 } else {
2021 new_cfqq->new_cfqq = cfqq;
2022 atomic_add(new_process_refs, &cfqq->ref);
2023 }
df5fe3e8
JM
2024}
2025
cdb16e8f 2026static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 2027 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
2028{
2029 struct cfq_queue *queue;
2030 int i;
2031 bool key_valid = false;
2032 unsigned long lowest_key = 0;
2033 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2034
65b32a57
VG
2035 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2036 /* select the one with lowest rb_key */
2037 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
2038 if (queue &&
2039 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2040 lowest_key = queue->rb_key;
2041 cur_best = i;
2042 key_valid = true;
2043 }
2044 }
2045
2046 return cur_best;
2047}
2048
cdb16e8f 2049static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 2050{
718eee05
CZ
2051 unsigned slice;
2052 unsigned count;
cdb16e8f 2053 struct cfq_rb_root *st;
58ff82f3 2054 unsigned group_slice;
718eee05 2055
1fa8f6d6
VG
2056 if (!cfqg) {
2057 cfqd->serving_prio = IDLE_WORKLOAD;
2058 cfqd->workload_expires = jiffies + 1;
2059 return;
2060 }
2061
718eee05 2062 /* Choose next priority. RT > BE > IDLE */
58ff82f3 2063 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 2064 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2065 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2066 cfqd->serving_prio = BE_WORKLOAD;
2067 else {
2068 cfqd->serving_prio = IDLE_WORKLOAD;
2069 cfqd->workload_expires = jiffies + 1;
2070 return;
2071 }
2072
2073 /*
2074 * For RT and BE, we have to choose also the type
2075 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2076 * expiration time
2077 */
65b32a57 2078 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2079 count = st->count;
718eee05
CZ
2080
2081 /*
65b32a57 2082 * check workload expiration, and that we still have other queues ready
718eee05 2083 */
65b32a57 2084 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2085 return;
2086
2087 /* otherwise select new workload type */
2088 cfqd->serving_type =
65b32a57
VG
2089 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2090 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2091 count = st->count;
718eee05
CZ
2092
2093 /*
2094 * the workload slice is computed as a fraction of target latency
2095 * proportional to the number of queues in that workload, over
2096 * all the queues in the same priority class
2097 */
58ff82f3
VG
2098 group_slice = cfq_group_slice(cfqd, cfqg);
2099
2100 slice = group_slice * count /
2101 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2102 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2103
f26bd1f0
VG
2104 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2105 unsigned int tmp;
2106
2107 /*
2108 * Async queues are currently system wide. Just taking
2109 * proportion of queues with-in same group will lead to higher
2110 * async ratio system wide as generally root group is going
2111 * to have higher weight. A more accurate thing would be to
2112 * calculate system wide asnc/sync ratio.
2113 */
2114 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2115 tmp = tmp/cfqd->busy_queues;
2116 slice = min_t(unsigned, slice, tmp);
2117
718eee05
CZ
2118 /* async workload slice is scaled down according to
2119 * the sync/async slice ratio. */
2120 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2121 } else
718eee05
CZ
2122 /* sync workload slice is at least 2 * cfq_slice_idle */
2123 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2124
2125 slice = max_t(unsigned, slice, CFQ_MIN_TT);
b1ffe737 2126 cfq_log(cfqd, "workload slice:%d", slice);
718eee05
CZ
2127 cfqd->workload_expires = jiffies + slice;
2128}
2129
1fa8f6d6
VG
2130static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2131{
2132 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2133 struct cfq_group *cfqg;
1fa8f6d6
VG
2134
2135 if (RB_EMPTY_ROOT(&st->rb))
2136 return NULL;
25bc6b07
VG
2137 cfqg = cfq_rb_first_group(st);
2138 st->active = &cfqg->rb_node;
2139 update_min_vdisktime(st);
2140 return cfqg;
1fa8f6d6
VG
2141}
2142
cdb16e8f
VG
2143static void cfq_choose_cfqg(struct cfq_data *cfqd)
2144{
1fa8f6d6
VG
2145 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2146
2147 cfqd->serving_group = cfqg;
dae739eb
VG
2148
2149 /* Restore the workload type data */
2150 if (cfqg->saved_workload_slice) {
2151 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2152 cfqd->serving_type = cfqg->saved_workload;
2153 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2154 } else
2155 cfqd->workload_expires = jiffies - 1;
2156
1fa8f6d6 2157 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2158}
2159
22e2c507 2160/*
498d3aa2
JA
2161 * Select a queue for service. If we have a current active queue,
2162 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2163 */
1b5ed5e1 2164static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2165{
a36e71f9 2166 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2167
22e2c507
JA
2168 cfqq = cfqd->active_queue;
2169 if (!cfqq)
2170 goto new_queue;
1da177e4 2171
f04a6424
VG
2172 if (!cfqd->rq_queued)
2173 return NULL;
c244bb50
VG
2174
2175 /*
2176 * We were waiting for group to get backlogged. Expire the queue
2177 */
2178 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2179 goto expire;
2180
22e2c507 2181 /*
6d048f53 2182 * The active queue has run out of time, expire it and select new.
22e2c507 2183 */
7667aa06
VG
2184 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2185 /*
2186 * If slice had not expired at the completion of last request
2187 * we might not have turned on wait_busy flag. Don't expire
2188 * the queue yet. Allow the group to get backlogged.
2189 *
2190 * The very fact that we have used the slice, that means we
2191 * have been idling all along on this queue and it should be
2192 * ok to wait for this request to complete.
2193 */
82bbbf28
VG
2194 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2195 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2196 cfqq = NULL;
7667aa06 2197 goto keep_queue;
82bbbf28 2198 } else
7667aa06
VG
2199 goto expire;
2200 }
1da177e4 2201
22e2c507 2202 /*
6d048f53
JA
2203 * The active queue has requests and isn't expired, allow it to
2204 * dispatch.
22e2c507 2205 */
dd67d051 2206 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2207 goto keep_queue;
6d048f53 2208
a36e71f9
JA
2209 /*
2210 * If another queue has a request waiting within our mean seek
2211 * distance, let it run. The expire code will check for close
2212 * cooperators and put the close queue at the front of the service
df5fe3e8 2213 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2214 */
b3b6d040 2215 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2216 if (new_cfqq) {
2217 if (!cfqq->new_cfqq)
2218 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2219 goto expire;
df5fe3e8 2220 }
a36e71f9 2221
6d048f53
JA
2222 /*
2223 * No requests pending. If the active queue still has requests in
2224 * flight or is idling for a new request, allow either of these
2225 * conditions to happen (or time out) before selecting a new queue.
2226 */
cc197479 2227 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 2228 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
2229 cfqq = NULL;
2230 goto keep_queue;
22e2c507
JA
2231 }
2232
3b18152c 2233expire:
e5ff082e 2234 cfq_slice_expired(cfqd, 0);
3b18152c 2235new_queue:
718eee05
CZ
2236 /*
2237 * Current queue expired. Check if we have to switch to a new
2238 * service tree
2239 */
2240 if (!new_cfqq)
cdb16e8f 2241 cfq_choose_cfqg(cfqd);
718eee05 2242
a36e71f9 2243 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2244keep_queue:
3b18152c 2245 return cfqq;
22e2c507
JA
2246}
2247
febffd61 2248static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2249{
2250 int dispatched = 0;
2251
2252 while (cfqq->next_rq) {
2253 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2254 dispatched++;
2255 }
2256
2257 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2258
2259 /* By default cfqq is not expired if it is empty. Do it explicitly */
e5ff082e 2260 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2261 return dispatched;
2262}
2263
498d3aa2
JA
2264/*
2265 * Drain our current requests. Used for barriers and when switching
2266 * io schedulers on-the-fly.
2267 */
d9e7620e 2268static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2269{
0871714e 2270 struct cfq_queue *cfqq;
d9e7620e 2271 int dispatched = 0;
cdb16e8f 2272
3440c49f 2273 /* Expire the timeslice of the current active queue first */
e5ff082e 2274 cfq_slice_expired(cfqd, 0);
3440c49f
DS
2275 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2276 __cfq_set_active_queue(cfqd, cfqq);
f04a6424 2277 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3440c49f 2278 }
1b5ed5e1 2279
1b5ed5e1
TH
2280 BUG_ON(cfqd->busy_queues);
2281
6923715a 2282 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2283 return dispatched;
2284}
2285
abc3c744
SL
2286static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2287 struct cfq_queue *cfqq)
2288{
2289 /* the queue hasn't finished any request, can't estimate */
2290 if (cfq_cfqq_slice_new(cfqq))
2291 return 1;
2292 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2293 cfqq->slice_end))
2294 return 1;
2295
2296 return 0;
2297}
2298
0b182d61 2299static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2300{
2f5cb738 2301 unsigned int max_dispatch;
22e2c507 2302
5ad531db
JA
2303 /*
2304 * Drain async requests before we start sync IO
2305 */
53c583d2 2306 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2307 return false;
5ad531db 2308
2f5cb738
JA
2309 /*
2310 * If this is an async queue and we have sync IO in flight, let it wait
2311 */
53c583d2 2312 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2313 return false;
2f5cb738 2314
abc3c744 2315 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2f5cb738
JA
2316 if (cfq_class_idle(cfqq))
2317 max_dispatch = 1;
b4878f24 2318
2f5cb738
JA
2319 /*
2320 * Does this cfqq already have too much IO in flight?
2321 */
2322 if (cfqq->dispatched >= max_dispatch) {
2323 /*
2324 * idle queue must always only have a single IO in flight
2325 */
3ed9a296 2326 if (cfq_class_idle(cfqq))
0b182d61 2327 return false;
3ed9a296 2328
2f5cb738
JA
2329 /*
2330 * We have other queues, don't allow more IO from this one
2331 */
abc3c744 2332 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
0b182d61 2333 return false;
9ede209e 2334
365722bb 2335 /*
474b18cc 2336 * Sole queue user, no limit
365722bb 2337 */
abc3c744
SL
2338 if (cfqd->busy_queues == 1)
2339 max_dispatch = -1;
2340 else
2341 /*
2342 * Normally we start throttling cfqq when cfq_quantum/2
2343 * requests have been dispatched. But we can drive
2344 * deeper queue depths at the beginning of slice
2345 * subjected to upper limit of cfq_quantum.
2346 * */
2347 max_dispatch = cfqd->cfq_quantum;
8e296755
JA
2348 }
2349
2350 /*
2351 * Async queues must wait a bit before being allowed dispatch.
2352 * We also ramp up the dispatch depth gradually for async IO,
2353 * based on the last sync IO we serviced
2354 */
963b72fc 2355 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2356 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2357 unsigned int depth;
365722bb 2358
61f0c1dc 2359 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2360 if (!depth && !cfqq->dispatched)
2361 depth = 1;
8e296755
JA
2362 if (depth < max_dispatch)
2363 max_dispatch = depth;
2f5cb738 2364 }
3ed9a296 2365
0b182d61
JA
2366 /*
2367 * If we're below the current max, allow a dispatch
2368 */
2369 return cfqq->dispatched < max_dispatch;
2370}
2371
2372/*
2373 * Dispatch a request from cfqq, moving them to the request queue
2374 * dispatch list.
2375 */
2376static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2377{
2378 struct request *rq;
2379
2380 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2381
2382 if (!cfq_may_dispatch(cfqd, cfqq))
2383 return false;
2384
2385 /*
2386 * follow expired path, else get first next available
2387 */
2388 rq = cfq_check_fifo(cfqq);
2389 if (!rq)
2390 rq = cfqq->next_rq;
2391
2392 /*
2393 * insert request into driver dispatch list
2394 */
2395 cfq_dispatch_insert(cfqd->queue, rq);
2396
2397 if (!cfqd->active_cic) {
2398 struct cfq_io_context *cic = RQ_CIC(rq);
2399
2400 atomic_long_inc(&cic->ioc->refcount);
2401 cfqd->active_cic = cic;
2402 }
2403
2404 return true;
2405}
2406
2407/*
2408 * Find the cfqq that we need to service and move a request from that to the
2409 * dispatch list
2410 */
2411static int cfq_dispatch_requests(struct request_queue *q, int force)
2412{
2413 struct cfq_data *cfqd = q->elevator->elevator_data;
2414 struct cfq_queue *cfqq;
2415
2416 if (!cfqd->busy_queues)
2417 return 0;
2418
2419 if (unlikely(force))
2420 return cfq_forced_dispatch(cfqd);
2421
2422 cfqq = cfq_select_queue(cfqd);
2423 if (!cfqq)
8e296755
JA
2424 return 0;
2425
2f5cb738 2426 /*
0b182d61 2427 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2428 */
0b182d61
JA
2429 if (!cfq_dispatch_request(cfqd, cfqq))
2430 return 0;
2431
2f5cb738 2432 cfqq->slice_dispatch++;
b029195d 2433 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2434
2f5cb738
JA
2435 /*
2436 * expire an async queue immediately if it has used up its slice. idle
2437 * queue always expire after 1 dispatch round.
2438 */
2439 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2440 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2441 cfq_class_idle(cfqq))) {
2442 cfqq->slice_end = jiffies + 1;
e5ff082e 2443 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2444 }
2445
b217a903 2446 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2447 return 1;
1da177e4
LT
2448}
2449
1da177e4 2450/*
5e705374
JA
2451 * task holds one reference to the queue, dropped when task exits. each rq
2452 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2453 *
b1c35769 2454 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2455 * queue lock must be held here.
2456 */
2457static void cfq_put_queue(struct cfq_queue *cfqq)
2458{
22e2c507 2459 struct cfq_data *cfqd = cfqq->cfqd;
878eaddd 2460 struct cfq_group *cfqg, *orig_cfqg;
22e2c507
JA
2461
2462 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
2463
2464 if (!atomic_dec_and_test(&cfqq->ref))
2465 return;
2466
7b679138 2467 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2468 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2469 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2470 cfqg = cfqq->cfqg;
878eaddd 2471 orig_cfqg = cfqq->orig_cfqg;
1da177e4 2472
28f95cbc 2473 if (unlikely(cfqd->active_queue == cfqq)) {
e5ff082e 2474 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2475 cfq_schedule_dispatch(cfqd);
28f95cbc 2476 }
22e2c507 2477
f04a6424 2478 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2479 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2480 cfq_put_cfqg(cfqg);
878eaddd
VG
2481 if (orig_cfqg)
2482 cfq_put_cfqg(orig_cfqg);
1da177e4
LT
2483}
2484
d6de8be7
JA
2485/*
2486 * Must always be called with the rcu_read_lock() held
2487 */
07416d29
JA
2488static void
2489__call_for_each_cic(struct io_context *ioc,
2490 void (*func)(struct io_context *, struct cfq_io_context *))
2491{
2492 struct cfq_io_context *cic;
2493 struct hlist_node *n;
2494
2495 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2496 func(ioc, cic);
2497}
2498
4ac845a2 2499/*
34e6bbf2 2500 * Call func for each cic attached to this ioc.
4ac845a2 2501 */
34e6bbf2 2502static void
4ac845a2
JA
2503call_for_each_cic(struct io_context *ioc,
2504 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2505{
4ac845a2 2506 rcu_read_lock();
07416d29 2507 __call_for_each_cic(ioc, func);
4ac845a2 2508 rcu_read_unlock();
34e6bbf2
FC
2509}
2510
2511static void cfq_cic_free_rcu(struct rcu_head *head)
2512{
2513 struct cfq_io_context *cic;
2514
2515 cic = container_of(head, struct cfq_io_context, rcu_head);
2516
2517 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2518 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2519
9a11b4ed
JA
2520 if (ioc_gone) {
2521 /*
2522 * CFQ scheduler is exiting, grab exit lock and check
2523 * the pending io context count. If it hits zero,
2524 * complete ioc_gone and set it back to NULL
2525 */
2526 spin_lock(&ioc_gone_lock);
245b2e70 2527 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2528 complete(ioc_gone);
2529 ioc_gone = NULL;
2530 }
2531 spin_unlock(&ioc_gone_lock);
2532 }
34e6bbf2 2533}
4ac845a2 2534
34e6bbf2
FC
2535static void cfq_cic_free(struct cfq_io_context *cic)
2536{
2537 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2538}
2539
2540static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2541{
2542 unsigned long flags;
bca4b914 2543 unsigned long dead_key = (unsigned long) cic->key;
4ac845a2 2544
bca4b914 2545 BUG_ON(!(dead_key & CIC_DEAD_KEY));
4ac845a2
JA
2546
2547 spin_lock_irqsave(&ioc->lock, flags);
80b15c73 2548 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
ffc4e759 2549 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2550 spin_unlock_irqrestore(&ioc->lock, flags);
2551
34e6bbf2 2552 cfq_cic_free(cic);
4ac845a2
JA
2553}
2554
d6de8be7
JA
2555/*
2556 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2557 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2558 * and ->trim() which is called with the task lock held
2559 */
4ac845a2
JA
2560static void cfq_free_io_context(struct io_context *ioc)
2561{
4ac845a2 2562 /*
34e6bbf2
FC
2563 * ioc->refcount is zero here, or we are called from elv_unregister(),
2564 * so no more cic's are allowed to be linked into this ioc. So it
2565 * should be ok to iterate over the known list, we will see all cic's
2566 * since no new ones are added.
4ac845a2 2567 */
07416d29 2568 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2569}
2570
d02a2c07 2571static void cfq_put_cooperator(struct cfq_queue *cfqq)
1da177e4 2572{
df5fe3e8
JM
2573 struct cfq_queue *__cfqq, *next;
2574
df5fe3e8
JM
2575 /*
2576 * If this queue was scheduled to merge with another queue, be
2577 * sure to drop the reference taken on that queue (and others in
2578 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2579 */
2580 __cfqq = cfqq->new_cfqq;
2581 while (__cfqq) {
2582 if (__cfqq == cfqq) {
2583 WARN(1, "cfqq->new_cfqq loop detected\n");
2584 break;
2585 }
2586 next = __cfqq->new_cfqq;
2587 cfq_put_queue(__cfqq);
2588 __cfqq = next;
2589 }
d02a2c07
SL
2590}
2591
2592static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2593{
2594 if (unlikely(cfqq == cfqd->active_queue)) {
2595 __cfq_slice_expired(cfqd, cfqq, 0);
2596 cfq_schedule_dispatch(cfqd);
2597 }
2598
2599 cfq_put_cooperator(cfqq);
df5fe3e8 2600
89850f7e
JA
2601 cfq_put_queue(cfqq);
2602}
22e2c507 2603
89850f7e
JA
2604static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2605 struct cfq_io_context *cic)
2606{
4faa3c81
FC
2607 struct io_context *ioc = cic->ioc;
2608
fc46379d 2609 list_del_init(&cic->queue_list);
4ac845a2
JA
2610
2611 /*
bca4b914 2612 * Make sure dead mark is seen for dead queues
4ac845a2 2613 */
fc46379d 2614 smp_wmb();
bca4b914 2615 cic->key = cfqd_dead_key(cfqd);
fc46379d 2616
4faa3c81
FC
2617 if (ioc->ioc_data == cic)
2618 rcu_assign_pointer(ioc->ioc_data, NULL);
2619
ff6657c6
JA
2620 if (cic->cfqq[BLK_RW_ASYNC]) {
2621 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2622 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2623 }
2624
ff6657c6
JA
2625 if (cic->cfqq[BLK_RW_SYNC]) {
2626 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2627 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2628 }
89850f7e
JA
2629}
2630
4ac845a2
JA
2631static void cfq_exit_single_io_context(struct io_context *ioc,
2632 struct cfq_io_context *cic)
89850f7e 2633{
bca4b914 2634 struct cfq_data *cfqd = cic_to_cfqd(cic);
89850f7e 2635
89850f7e 2636 if (cfqd) {
165125e1 2637 struct request_queue *q = cfqd->queue;
4ac845a2 2638 unsigned long flags;
89850f7e 2639
4ac845a2 2640 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2641
2642 /*
2643 * Ensure we get a fresh copy of the ->key to prevent
2644 * race between exiting task and queue
2645 */
2646 smp_read_barrier_depends();
bca4b914 2647 if (cic->key == cfqd)
62c1fe9d
JA
2648 __cfq_exit_single_io_context(cfqd, cic);
2649
4ac845a2 2650 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2651 }
1da177e4
LT
2652}
2653
498d3aa2
JA
2654/*
2655 * The process that ioc belongs to has exited, we need to clean up
2656 * and put the internal structures we have that belongs to that process.
2657 */
e2d74ac0 2658static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2659{
4ac845a2 2660 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2661}
2662
22e2c507 2663static struct cfq_io_context *
8267e268 2664cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2665{
b5deef90 2666 struct cfq_io_context *cic;
1da177e4 2667
94f6030c
CL
2668 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2669 cfqd->queue->node);
1da177e4 2670 if (cic) {
22e2c507 2671 cic->last_end_request = jiffies;
553698f9 2672 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2673 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2674 cic->dtor = cfq_free_io_context;
2675 cic->exit = cfq_exit_io_context;
245b2e70 2676 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2677 }
2678
2679 return cic;
2680}
2681
fd0928df 2682static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2683{
2684 struct task_struct *tsk = current;
2685 int ioprio_class;
2686
3b18152c 2687 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2688 return;
2689
fd0928df 2690 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2691 switch (ioprio_class) {
fe094d98
JA
2692 default:
2693 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2694 case IOPRIO_CLASS_NONE:
2695 /*
6d63c275 2696 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2697 */
2698 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2699 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2700 break;
2701 case IOPRIO_CLASS_RT:
2702 cfqq->ioprio = task_ioprio(ioc);
2703 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2704 break;
2705 case IOPRIO_CLASS_BE:
2706 cfqq->ioprio = task_ioprio(ioc);
2707 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2708 break;
2709 case IOPRIO_CLASS_IDLE:
2710 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2711 cfqq->ioprio = 7;
2712 cfq_clear_cfqq_idle_window(cfqq);
2713 break;
22e2c507
JA
2714 }
2715
2716 /*
2717 * keep track of original prio settings in case we have to temporarily
2718 * elevate the priority of this queue
2719 */
2720 cfqq->org_ioprio = cfqq->ioprio;
2721 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2722 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2723}
2724
febffd61 2725static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2726{
bca4b914 2727 struct cfq_data *cfqd = cic_to_cfqd(cic);
478a82b0 2728 struct cfq_queue *cfqq;
c1b707d2 2729 unsigned long flags;
35e6077c 2730
caaa5f9f
JA
2731 if (unlikely(!cfqd))
2732 return;
2733
c1b707d2 2734 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2735
ff6657c6 2736 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2737 if (cfqq) {
2738 struct cfq_queue *new_cfqq;
ff6657c6
JA
2739 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2740 GFP_ATOMIC);
caaa5f9f 2741 if (new_cfqq) {
ff6657c6 2742 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2743 cfq_put_queue(cfqq);
2744 }
22e2c507 2745 }
caaa5f9f 2746
ff6657c6 2747 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2748 if (cfqq)
2749 cfq_mark_cfqq_prio_changed(cfqq);
2750
c1b707d2 2751 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2752}
2753
fc46379d 2754static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2755{
4ac845a2 2756 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2757 ioc->ioprio_changed = 0;
22e2c507
JA
2758}
2759
d5036d77 2760static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2761 pid_t pid, bool is_sync)
d5036d77
JA
2762{
2763 RB_CLEAR_NODE(&cfqq->rb_node);
2764 RB_CLEAR_NODE(&cfqq->p_node);
2765 INIT_LIST_HEAD(&cfqq->fifo);
2766
2767 atomic_set(&cfqq->ref, 0);
2768 cfqq->cfqd = cfqd;
2769
2770 cfq_mark_cfqq_prio_changed(cfqq);
2771
2772 if (is_sync) {
2773 if (!cfq_class_idle(cfqq))
2774 cfq_mark_cfqq_idle_window(cfqq);
2775 cfq_mark_cfqq_sync(cfqq);
2776 }
2777 cfqq->pid = pid;
2778}
2779
24610333
VG
2780#ifdef CONFIG_CFQ_GROUP_IOSCHED
2781static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2782{
2783 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
bca4b914 2784 struct cfq_data *cfqd = cic_to_cfqd(cic);
24610333
VG
2785 unsigned long flags;
2786 struct request_queue *q;
2787
2788 if (unlikely(!cfqd))
2789 return;
2790
2791 q = cfqd->queue;
2792
2793 spin_lock_irqsave(q->queue_lock, flags);
2794
2795 if (sync_cfqq) {
2796 /*
2797 * Drop reference to sync queue. A new sync queue will be
2798 * assigned in new group upon arrival of a fresh request.
2799 */
2800 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2801 cic_set_cfqq(cic, NULL, 1);
2802 cfq_put_queue(sync_cfqq);
2803 }
2804
2805 spin_unlock_irqrestore(q->queue_lock, flags);
2806}
2807
2808static void cfq_ioc_set_cgroup(struct io_context *ioc)
2809{
2810 call_for_each_cic(ioc, changed_cgroup);
2811 ioc->cgroup_changed = 0;
2812}
2813#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2814
22e2c507 2815static struct cfq_queue *
a6151c3a 2816cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2817 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2818{
22e2c507 2819 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2820 struct cfq_io_context *cic;
cdb16e8f 2821 struct cfq_group *cfqg;
22e2c507
JA
2822
2823retry:
cdb16e8f 2824 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2825 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2826 /* cic always exists here */
2827 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2828
6118b70b
JA
2829 /*
2830 * Always try a new alloc if we fell back to the OOM cfqq
2831 * originally, since it should just be a temporary situation.
2832 */
2833 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2834 cfqq = NULL;
22e2c507
JA
2835 if (new_cfqq) {
2836 cfqq = new_cfqq;
2837 new_cfqq = NULL;
2838 } else if (gfp_mask & __GFP_WAIT) {
2839 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2840 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2841 gfp_mask | __GFP_ZERO,
94f6030c 2842 cfqd->queue->node);
22e2c507 2843 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2844 if (new_cfqq)
2845 goto retry;
22e2c507 2846 } else {
94f6030c
CL
2847 cfqq = kmem_cache_alloc_node(cfq_pool,
2848 gfp_mask | __GFP_ZERO,
2849 cfqd->queue->node);
22e2c507
JA
2850 }
2851
6118b70b
JA
2852 if (cfqq) {
2853 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2854 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2855 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2856 cfq_log_cfqq(cfqd, cfqq, "alloced");
2857 } else
2858 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2859 }
2860
2861 if (new_cfqq)
2862 kmem_cache_free(cfq_pool, new_cfqq);
2863
22e2c507
JA
2864 return cfqq;
2865}
2866
c2dea2d1
VT
2867static struct cfq_queue **
2868cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2869{
fe094d98 2870 switch (ioprio_class) {
c2dea2d1
VT
2871 case IOPRIO_CLASS_RT:
2872 return &cfqd->async_cfqq[0][ioprio];
2873 case IOPRIO_CLASS_BE:
2874 return &cfqd->async_cfqq[1][ioprio];
2875 case IOPRIO_CLASS_IDLE:
2876 return &cfqd->async_idle_cfqq;
2877 default:
2878 BUG();
2879 }
2880}
2881
15c31be4 2882static struct cfq_queue *
a6151c3a 2883cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2884 gfp_t gfp_mask)
2885{
fd0928df
JA
2886 const int ioprio = task_ioprio(ioc);
2887 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2888 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2889 struct cfq_queue *cfqq = NULL;
2890
c2dea2d1
VT
2891 if (!is_sync) {
2892 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2893 cfqq = *async_cfqq;
2894 }
2895
6118b70b 2896 if (!cfqq)
fd0928df 2897 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2898
2899 /*
2900 * pin the queue now that it's allocated, scheduler exit will prune it
2901 */
c2dea2d1 2902 if (!is_sync && !(*async_cfqq)) {
15c31be4 2903 atomic_inc(&cfqq->ref);
c2dea2d1 2904 *async_cfqq = cfqq;
15c31be4
JA
2905 }
2906
2907 atomic_inc(&cfqq->ref);
2908 return cfqq;
2909}
2910
498d3aa2
JA
2911/*
2912 * We drop cfq io contexts lazily, so we may find a dead one.
2913 */
dbecf3ab 2914static void
4ac845a2
JA
2915cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2916 struct cfq_io_context *cic)
dbecf3ab 2917{
4ac845a2
JA
2918 unsigned long flags;
2919
fc46379d 2920 WARN_ON(!list_empty(&cic->queue_list));
bca4b914 2921 BUG_ON(cic->key != cfqd_dead_key(cfqd));
597bc485 2922
4ac845a2
JA
2923 spin_lock_irqsave(&ioc->lock, flags);
2924
4faa3c81 2925 BUG_ON(ioc->ioc_data == cic);
597bc485 2926
80b15c73 2927 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
ffc4e759 2928 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2929 spin_unlock_irqrestore(&ioc->lock, flags);
2930
2931 cfq_cic_free(cic);
dbecf3ab
OH
2932}
2933
e2d74ac0 2934static struct cfq_io_context *
4ac845a2 2935cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2936{
e2d74ac0 2937 struct cfq_io_context *cic;
d6de8be7 2938 unsigned long flags;
e2d74ac0 2939
91fac317
VT
2940 if (unlikely(!ioc))
2941 return NULL;
2942
d6de8be7
JA
2943 rcu_read_lock();
2944
597bc485
JA
2945 /*
2946 * we maintain a last-hit cache, to avoid browsing over the tree
2947 */
4ac845a2 2948 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2949 if (cic && cic->key == cfqd) {
2950 rcu_read_unlock();
597bc485 2951 return cic;
d6de8be7 2952 }
597bc485 2953
4ac845a2 2954 do {
80b15c73 2955 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
4ac845a2
JA
2956 rcu_read_unlock();
2957 if (!cic)
2958 break;
bca4b914 2959 if (unlikely(cic->key != cfqd)) {
4ac845a2 2960 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2961 rcu_read_lock();
4ac845a2 2962 continue;
dbecf3ab 2963 }
e2d74ac0 2964
d6de8be7 2965 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2966 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2967 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2968 break;
2969 } while (1);
e2d74ac0 2970
4ac845a2 2971 return cic;
e2d74ac0
JA
2972}
2973
4ac845a2
JA
2974/*
2975 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2976 * the process specific cfq io context when entered from the block layer.
2977 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2978 */
febffd61
JA
2979static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2980 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2981{
0261d688 2982 unsigned long flags;
4ac845a2 2983 int ret;
e2d74ac0 2984
4ac845a2
JA
2985 ret = radix_tree_preload(gfp_mask);
2986 if (!ret) {
2987 cic->ioc = ioc;
2988 cic->key = cfqd;
e2d74ac0 2989
4ac845a2
JA
2990 spin_lock_irqsave(&ioc->lock, flags);
2991 ret = radix_tree_insert(&ioc->radix_root,
80b15c73 2992 cfqd->cic_index, cic);
ffc4e759
JA
2993 if (!ret)
2994 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2995 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2996
4ac845a2
JA
2997 radix_tree_preload_end();
2998
2999 if (!ret) {
3000 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3001 list_add(&cic->queue_list, &cfqd->cic_list);
3002 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3003 }
e2d74ac0
JA
3004 }
3005
4ac845a2
JA
3006 if (ret)
3007 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 3008
4ac845a2 3009 return ret;
e2d74ac0
JA
3010}
3011
1da177e4
LT
3012/*
3013 * Setup general io context and cfq io context. There can be several cfq
3014 * io contexts per general io context, if this process is doing io to more
e2d74ac0 3015 * than one device managed by cfq.
1da177e4
LT
3016 */
3017static struct cfq_io_context *
e2d74ac0 3018cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 3019{
22e2c507 3020 struct io_context *ioc = NULL;
1da177e4 3021 struct cfq_io_context *cic;
1da177e4 3022
22e2c507 3023 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 3024
b5deef90 3025 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
3026 if (!ioc)
3027 return NULL;
3028
4ac845a2 3029 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
3030 if (cic)
3031 goto out;
1da177e4 3032
e2d74ac0
JA
3033 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3034 if (cic == NULL)
3035 goto err;
1da177e4 3036
4ac845a2
JA
3037 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3038 goto err_free;
3039
1da177e4 3040out:
fc46379d
JA
3041 smp_read_barrier_depends();
3042 if (unlikely(ioc->ioprio_changed))
3043 cfq_ioc_set_ioprio(ioc);
3044
24610333
VG
3045#ifdef CONFIG_CFQ_GROUP_IOSCHED
3046 if (unlikely(ioc->cgroup_changed))
3047 cfq_ioc_set_cgroup(ioc);
3048#endif
1da177e4 3049 return cic;
4ac845a2
JA
3050err_free:
3051 cfq_cic_free(cic);
1da177e4
LT
3052err:
3053 put_io_context(ioc);
3054 return NULL;
3055}
3056
22e2c507
JA
3057static void
3058cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 3059{
aaf1228d
JA
3060 unsigned long elapsed = jiffies - cic->last_end_request;
3061 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 3062
22e2c507
JA
3063 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3064 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3065 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3066}
1da177e4 3067
206dc69b 3068static void
b2c18e1e 3069cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 3070 struct request *rq)
206dc69b 3071{
3dde36dd 3072 sector_t sdist = 0;
41647e7a 3073 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
3074 if (cfqq->last_request_pos) {
3075 if (cfqq->last_request_pos < blk_rq_pos(rq))
3076 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3077 else
3078 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3079 }
206dc69b 3080
3dde36dd 3081 cfqq->seek_history <<= 1;
41647e7a
CZ
3082 if (blk_queue_nonrot(cfqd->queue))
3083 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3084 else
3085 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 3086}
1da177e4 3087
22e2c507
JA
3088/*
3089 * Disable idle window if the process thinks too long or seeks so much that
3090 * it doesn't matter
3091 */
3092static void
3093cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3094 struct cfq_io_context *cic)
3095{
7b679138 3096 int old_idle, enable_idle;
1be92f2f 3097
0871714e
JA
3098 /*
3099 * Don't idle for async or idle io prio class
3100 */
3101 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3102 return;
3103
c265a7f4 3104 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3105
76280aff
CZ
3106 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3107 cfq_mark_cfqq_deep(cfqq);
3108
749ef9f8
CZ
3109 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3110 enable_idle = 0;
3111 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3dde36dd 3112 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507
JA
3113 enable_idle = 0;
3114 else if (sample_valid(cic->ttime_samples)) {
718eee05 3115 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3116 enable_idle = 0;
3117 else
3118 enable_idle = 1;
1da177e4
LT
3119 }
3120
7b679138
JA
3121 if (old_idle != enable_idle) {
3122 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3123 if (enable_idle)
3124 cfq_mark_cfqq_idle_window(cfqq);
3125 else
3126 cfq_clear_cfqq_idle_window(cfqq);
3127 }
22e2c507 3128}
1da177e4 3129
22e2c507
JA
3130/*
3131 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3132 * no or if we aren't sure, a 1 will cause a preempt.
3133 */
a6151c3a 3134static bool
22e2c507 3135cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3136 struct request *rq)
22e2c507 3137{
6d048f53 3138 struct cfq_queue *cfqq;
22e2c507 3139
6d048f53
JA
3140 cfqq = cfqd->active_queue;
3141 if (!cfqq)
a6151c3a 3142 return false;
22e2c507 3143
6d048f53 3144 if (cfq_class_idle(new_cfqq))
a6151c3a 3145 return false;
22e2c507
JA
3146
3147 if (cfq_class_idle(cfqq))
a6151c3a 3148 return true;
1e3335de 3149
875feb63
DS
3150 /*
3151 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3152 */
3153 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3154 return false;
3155
374f84ac
JA
3156 /*
3157 * if the new request is sync, but the currently running queue is
3158 * not, let the sync request have priority.
3159 */
5e705374 3160 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3161 return true;
1e3335de 3162
8682e1f1
VG
3163 if (new_cfqq->cfqg != cfqq->cfqg)
3164 return false;
3165
3166 if (cfq_slice_used(cfqq))
3167 return true;
3168
3169 /* Allow preemption only if we are idling on sync-noidle tree */
3170 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3171 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3172 new_cfqq->service_tree->count == 2 &&
3173 RB_EMPTY_ROOT(&cfqq->sort_list))
3174 return true;
3175
374f84ac
JA
3176 /*
3177 * So both queues are sync. Let the new request get disk time if
3178 * it's a metadata request and the current queue is doing regular IO.
3179 */
7b6d91da 3180 if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
e6ec4fe2 3181 return true;
22e2c507 3182
3a9a3f6c
DS
3183 /*
3184 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3185 */
3186 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3187 return true;
3a9a3f6c 3188
1e3335de 3189 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3190 return false;
1e3335de
JA
3191
3192 /*
3193 * if this request is as-good as one we would expect from the
3194 * current cfqq, let it preempt
3195 */
e9ce335d 3196 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3197 return true;
1e3335de 3198
a6151c3a 3199 return false;
22e2c507
JA
3200}
3201
3202/*
3203 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3204 * let it have half of its nominal slice.
3205 */
3206static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3207{
7b679138 3208 cfq_log_cfqq(cfqd, cfqq, "preempt");
e5ff082e 3209 cfq_slice_expired(cfqd, 1);
22e2c507 3210
bf572256
JA
3211 /*
3212 * Put the new queue at the front of the of the current list,
3213 * so we know that it will be selected next.
3214 */
3215 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3216
3217 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 3218
44f7c160
JA
3219 cfqq->slice_end = 0;
3220 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3221}
3222
22e2c507 3223/*
5e705374 3224 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3225 * something we should do about it
3226 */
3227static void
5e705374
JA
3228cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3229 struct request *rq)
22e2c507 3230{
5e705374 3231 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3232
45333d5a 3233 cfqd->rq_queued++;
7b6d91da 3234 if (rq->cmd_flags & REQ_META)
374f84ac
JA
3235 cfqq->meta_pending++;
3236
9c2c38a1 3237 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3238 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3239 cfq_update_idle_window(cfqd, cfqq, cic);
3240
b2c18e1e 3241 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3242
3243 if (cfqq == cfqd->active_queue) {
3244 /*
b029195d
JA
3245 * Remember that we saw a request from this process, but
3246 * don't start queuing just yet. Otherwise we risk seeing lots
3247 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3248 * and merging. If the request is already larger than a single
3249 * page, let it rip immediately. For that case we assume that
2d870722
JA
3250 * merging is already done. Ditto for a busy system that
3251 * has other work pending, don't risk delaying until the
3252 * idle timer unplug to continue working.
22e2c507 3253 */
d6ceb25e 3254 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3255 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3256 cfqd->busy_queues > 1) {
812df48d 3257 cfq_del_timer(cfqd, cfqq);
554554f6 3258 cfq_clear_cfqq_wait_request(cfqq);
bf791937 3259 __blk_run_queue(cfqd->queue);
a11cdaa7 3260 } else {
e98ef89b 3261 cfq_blkiocg_update_idle_time_stats(
a11cdaa7 3262 &cfqq->cfqg->blkg);
bf791937 3263 cfq_mark_cfqq_must_dispatch(cfqq);
a11cdaa7 3264 }
d6ceb25e 3265 }
5e705374 3266 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3267 /*
3268 * not the active queue - expire current slice if it is
3269 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3270 * has some old slice time left and is of higher priority or
3271 * this new queue is RT and the current one is BE
22e2c507
JA
3272 */
3273 cfq_preempt_queue(cfqd, cfqq);
a7f55792 3274 __blk_run_queue(cfqd->queue);
22e2c507 3275 }
1da177e4
LT
3276}
3277
165125e1 3278static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3279{
b4878f24 3280 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3281 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3282
7b679138 3283 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3284 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3285
30996f40 3286 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3287 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3288 cfq_add_rq_rb(rq);
e98ef89b 3289 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
cdc1184c
DS
3290 &cfqd->serving_group->blkg, rq_data_dir(rq),
3291 rq_is_sync(rq));
5e705374 3292 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3293}
3294
45333d5a
AC
3295/*
3296 * Update hw_tag based on peak queue depth over 50 samples under
3297 * sufficient load.
3298 */
3299static void cfq_update_hw_tag(struct cfq_data *cfqd)
3300{
1a1238a7
SL
3301 struct cfq_queue *cfqq = cfqd->active_queue;
3302
53c583d2
CZ
3303 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3304 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3305
3306 if (cfqd->hw_tag == 1)
3307 return;
45333d5a
AC
3308
3309 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3310 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3311 return;
3312
1a1238a7
SL
3313 /*
3314 * If active queue hasn't enough requests and can idle, cfq might not
3315 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3316 * case
3317 */
3318 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3319 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3320 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3321 return;
3322
45333d5a
AC
3323 if (cfqd->hw_tag_samples++ < 50)
3324 return;
3325
e459dd08 3326 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3327 cfqd->hw_tag = 1;
3328 else
3329 cfqd->hw_tag = 0;
45333d5a
AC
3330}
3331
7667aa06
VG
3332static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3333{
3334 struct cfq_io_context *cic = cfqd->active_cic;
3335
3336 /* If there are other queues in the group, don't wait */
3337 if (cfqq->cfqg->nr_cfqq > 1)
3338 return false;
3339
3340 if (cfq_slice_used(cfqq))
3341 return true;
3342
3343 /* if slice left is less than think time, wait busy */
3344 if (cic && sample_valid(cic->ttime_samples)
3345 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3346 return true;
3347
3348 /*
3349 * If think times is less than a jiffy than ttime_mean=0 and above
3350 * will not be true. It might happen that slice has not expired yet
3351 * but will expire soon (4-5 ns) during select_queue(). To cover the
3352 * case where think time is less than a jiffy, mark the queue wait
3353 * busy if only 1 jiffy is left in the slice.
3354 */
3355 if (cfqq->slice_end - jiffies == 1)
3356 return true;
3357
3358 return false;
3359}
3360
165125e1 3361static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3362{
5e705374 3363 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3364 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3365 const int sync = rq_is_sync(rq);
b4878f24 3366 unsigned long now;
1da177e4 3367
b4878f24 3368 now = jiffies;
33659ebb
CH
3369 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3370 !!(rq->cmd_flags & REQ_NOIDLE));
1da177e4 3371
45333d5a
AC
3372 cfq_update_hw_tag(cfqd);
3373
53c583d2 3374 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3375 WARN_ON(!cfqq->dispatched);
53c583d2 3376 cfqd->rq_in_driver--;
6d048f53 3377 cfqq->dispatched--;
e98ef89b
VG
3378 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3379 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3380 rq_data_dir(rq), rq_is_sync(rq));
1da177e4 3381
53c583d2 3382 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3383
365722bb 3384 if (sync) {
5e705374 3385 RQ_CIC(rq)->last_end_request = now;
573412b2
CZ
3386 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3387 cfqd->last_delayed_sync = now;
365722bb 3388 }
caaa5f9f
JA
3389
3390 /*
3391 * If this is the active queue, check if it needs to be expired,
3392 * or if we want to idle in case it has no pending requests.
3393 */
3394 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3395 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3396
44f7c160
JA
3397 if (cfq_cfqq_slice_new(cfqq)) {
3398 cfq_set_prio_slice(cfqd, cfqq);
3399 cfq_clear_cfqq_slice_new(cfqq);
3400 }
f75edf2d
VG
3401
3402 /*
7667aa06
VG
3403 * Should we wait for next request to come in before we expire
3404 * the queue.
f75edf2d 3405 */
7667aa06 3406 if (cfq_should_wait_busy(cfqd, cfqq)) {
f75edf2d
VG
3407 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3408 cfq_mark_cfqq_wait_busy(cfqq);
b1ffe737 3409 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
f75edf2d
VG
3410 }
3411
a36e71f9 3412 /*
8e550632
CZ
3413 * Idling is not enabled on:
3414 * - expired queues
3415 * - idle-priority queues
3416 * - async queues
3417 * - queues with still some requests queued
3418 * - when there is a close cooperator
a36e71f9 3419 */
0871714e 3420 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
e5ff082e 3421 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3422 else if (sync && cfqq_empty &&
3423 !cfq_close_cooperator(cfqd, cfqq)) {
749ef9f8 3424 cfq_arm_slice_timer(cfqd);
8e550632 3425 }
caaa5f9f 3426 }
6d048f53 3427
53c583d2 3428 if (!cfqd->rq_in_driver)
23e018a1 3429 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3430}
3431
22e2c507
JA
3432/*
3433 * we temporarily boost lower priority queues if they are holding fs exclusive
3434 * resources. they are boosted to normal prio (CLASS_BE/4)
3435 */
3436static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3437{
22e2c507
JA
3438 if (has_fs_excl()) {
3439 /*
3440 * boost idle prio on transactions that would lock out other
3441 * users of the filesystem
3442 */
3443 if (cfq_class_idle(cfqq))
3444 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3445 if (cfqq->ioprio > IOPRIO_NORM)
3446 cfqq->ioprio = IOPRIO_NORM;
3447 } else {
3448 /*
dddb7451 3449 * unboost the queue (if needed)
22e2c507 3450 */
dddb7451
CZ
3451 cfqq->ioprio_class = cfqq->org_ioprio_class;
3452 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3453 }
22e2c507 3454}
1da177e4 3455
89850f7e 3456static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3457{
1b379d8d 3458 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3459 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3460 return ELV_MQUEUE_MUST;
3b18152c 3461 }
1da177e4 3462
22e2c507 3463 return ELV_MQUEUE_MAY;
22e2c507
JA
3464}
3465
165125e1 3466static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3467{
3468 struct cfq_data *cfqd = q->elevator->elevator_data;
3469 struct task_struct *tsk = current;
91fac317 3470 struct cfq_io_context *cic;
22e2c507
JA
3471 struct cfq_queue *cfqq;
3472
3473 /*
3474 * don't force setup of a queue from here, as a call to may_queue
3475 * does not necessarily imply that a request actually will be queued.
3476 * so just lookup a possibly existing queue, or return 'may queue'
3477 * if that fails
3478 */
4ac845a2 3479 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3480 if (!cic)
3481 return ELV_MQUEUE_MAY;
3482
b0b78f81 3483 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3484 if (cfqq) {
fd0928df 3485 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3486 cfq_prio_boost(cfqq);
3487
89850f7e 3488 return __cfq_may_queue(cfqq);
22e2c507
JA
3489 }
3490
3491 return ELV_MQUEUE_MAY;
1da177e4
LT
3492}
3493
1da177e4
LT
3494/*
3495 * queue lock held here
3496 */
bb37b94c 3497static void cfq_put_request(struct request *rq)
1da177e4 3498{
5e705374 3499 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3500
5e705374 3501 if (cfqq) {
22e2c507 3502 const int rw = rq_data_dir(rq);
1da177e4 3503
22e2c507
JA
3504 BUG_ON(!cfqq->allocated[rw]);
3505 cfqq->allocated[rw]--;
1da177e4 3506
5e705374 3507 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3508
1da177e4 3509 rq->elevator_private = NULL;
5e705374 3510 rq->elevator_private2 = NULL;
1da177e4 3511
7f1dc8a2
VG
3512 /* Put down rq reference on cfqg */
3513 cfq_put_cfqg(RQ_CFQG(rq));
3514 rq->elevator_private3 = NULL;
3515
1da177e4
LT
3516 cfq_put_queue(cfqq);
3517 }
3518}
3519
df5fe3e8
JM
3520static struct cfq_queue *
3521cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3522 struct cfq_queue *cfqq)
3523{
3524 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3525 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3526 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3527 cfq_put_queue(cfqq);
3528 return cic_to_cfqq(cic, 1);
3529}
3530
e6c5bc73
JM
3531/*
3532 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3533 * was the last process referring to said cfqq.
3534 */
3535static struct cfq_queue *
3536split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3537{
3538 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3539 cfqq->pid = current->pid;
3540 cfq_clear_cfqq_coop(cfqq);
ae54abed 3541 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3542 return cfqq;
3543 }
3544
3545 cic_set_cfqq(cic, NULL, 1);
d02a2c07
SL
3546
3547 cfq_put_cooperator(cfqq);
3548
e6c5bc73
JM
3549 cfq_put_queue(cfqq);
3550 return NULL;
3551}
1da177e4 3552/*
22e2c507 3553 * Allocate cfq data structures associated with this request.
1da177e4 3554 */
22e2c507 3555static int
165125e1 3556cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3557{
3558 struct cfq_data *cfqd = q->elevator->elevator_data;
3559 struct cfq_io_context *cic;
3560 const int rw = rq_data_dir(rq);
a6151c3a 3561 const bool is_sync = rq_is_sync(rq);
22e2c507 3562 struct cfq_queue *cfqq;
1da177e4
LT
3563 unsigned long flags;
3564
3565 might_sleep_if(gfp_mask & __GFP_WAIT);
3566
e2d74ac0 3567 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3568
1da177e4
LT
3569 spin_lock_irqsave(q->queue_lock, flags);
3570
22e2c507
JA
3571 if (!cic)
3572 goto queue_fail;
3573
e6c5bc73 3574new_queue:
91fac317 3575 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3576 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3577 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3578 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3579 } else {
e6c5bc73
JM
3580 /*
3581 * If the queue was seeky for too long, break it apart.
3582 */
ae54abed 3583 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3584 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3585 cfqq = split_cfqq(cic, cfqq);
3586 if (!cfqq)
3587 goto new_queue;
3588 }
3589
df5fe3e8
JM
3590 /*
3591 * Check to see if this queue is scheduled to merge with
3592 * another, closely cooperating queue. The merging of
3593 * queues happens here as it must be done in process context.
3594 * The reference on new_cfqq was taken in merge_cfqqs.
3595 */
3596 if (cfqq->new_cfqq)
3597 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3598 }
1da177e4
LT
3599
3600 cfqq->allocated[rw]++;
22e2c507 3601 atomic_inc(&cfqq->ref);
1da177e4 3602
5e705374 3603 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 3604
5e705374
JA
3605 rq->elevator_private = cic;
3606 rq->elevator_private2 = cfqq;
7f1dc8a2 3607 rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
5e705374 3608 return 0;
1da177e4 3609
22e2c507
JA
3610queue_fail:
3611 if (cic)
3612 put_io_context(cic->ioc);
89850f7e 3613
23e018a1 3614 cfq_schedule_dispatch(cfqd);
1da177e4 3615 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3616 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3617 return 1;
3618}
3619
65f27f38 3620static void cfq_kick_queue(struct work_struct *work)
22e2c507 3621{
65f27f38 3622 struct cfq_data *cfqd =
23e018a1 3623 container_of(work, struct cfq_data, unplug_work);
165125e1 3624 struct request_queue *q = cfqd->queue;
22e2c507 3625
40bb54d1 3626 spin_lock_irq(q->queue_lock);
a7f55792 3627 __blk_run_queue(cfqd->queue);
40bb54d1 3628 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3629}
3630
3631/*
3632 * Timer running if the active_queue is currently idling inside its time slice
3633 */
3634static void cfq_idle_slice_timer(unsigned long data)
3635{
3636 struct cfq_data *cfqd = (struct cfq_data *) data;
3637 struct cfq_queue *cfqq;
3638 unsigned long flags;
3c6bd2f8 3639 int timed_out = 1;
22e2c507 3640
7b679138
JA
3641 cfq_log(cfqd, "idle timer fired");
3642
22e2c507
JA
3643 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3644
fe094d98
JA
3645 cfqq = cfqd->active_queue;
3646 if (cfqq) {
3c6bd2f8
JA
3647 timed_out = 0;
3648
b029195d
JA
3649 /*
3650 * We saw a request before the queue expired, let it through
3651 */
3652 if (cfq_cfqq_must_dispatch(cfqq))
3653 goto out_kick;
3654
22e2c507
JA
3655 /*
3656 * expired
3657 */
44f7c160 3658 if (cfq_slice_used(cfqq))
22e2c507
JA
3659 goto expire;
3660
3661 /*
3662 * only expire and reinvoke request handler, if there are
3663 * other queues with pending requests
3664 */
caaa5f9f 3665 if (!cfqd->busy_queues)
22e2c507 3666 goto out_cont;
22e2c507
JA
3667
3668 /*
3669 * not expired and it has a request pending, let it dispatch
3670 */
75e50984 3671 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3672 goto out_kick;
76280aff
CZ
3673
3674 /*
3675 * Queue depth flag is reset only when the idle didn't succeed
3676 */
3677 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3678 }
3679expire:
e5ff082e 3680 cfq_slice_expired(cfqd, timed_out);
22e2c507 3681out_kick:
23e018a1 3682 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3683out_cont:
3684 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3685}
3686
3b18152c
JA
3687static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3688{
3689 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3690 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3691}
22e2c507 3692
c2dea2d1
VT
3693static void cfq_put_async_queues(struct cfq_data *cfqd)
3694{
3695 int i;
3696
3697 for (i = 0; i < IOPRIO_BE_NR; i++) {
3698 if (cfqd->async_cfqq[0][i])
3699 cfq_put_queue(cfqd->async_cfqq[0][i]);
3700 if (cfqd->async_cfqq[1][i])
3701 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3702 }
2389d1ef
ON
3703
3704 if (cfqd->async_idle_cfqq)
3705 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3706}
3707
bb729bc9
JA
3708static void cfq_cfqd_free(struct rcu_head *head)
3709{
3710 kfree(container_of(head, struct cfq_data, rcu));
3711}
3712
b374d18a 3713static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3714{
22e2c507 3715 struct cfq_data *cfqd = e->elevator_data;
165125e1 3716 struct request_queue *q = cfqd->queue;
22e2c507 3717
3b18152c 3718 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3719
d9ff4187 3720 spin_lock_irq(q->queue_lock);
e2d74ac0 3721
d9ff4187 3722 if (cfqd->active_queue)
e5ff082e 3723 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3724
3725 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3726 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3727 struct cfq_io_context,
3728 queue_list);
89850f7e
JA
3729
3730 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3731 }
e2d74ac0 3732
c2dea2d1 3733 cfq_put_async_queues(cfqd);
b1c35769 3734 cfq_release_cfq_groups(cfqd);
e98ef89b 3735 cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
15c31be4 3736
d9ff4187 3737 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3738
3739 cfq_shutdown_timer_wq(cfqd);
3740
80b15c73
KK
3741 spin_lock(&cic_index_lock);
3742 ida_remove(&cic_index_ida, cfqd->cic_index);
3743 spin_unlock(&cic_index_lock);
3744
b1c35769 3745 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
bb729bc9 3746 call_rcu(&cfqd->rcu, cfq_cfqd_free);
1da177e4
LT
3747}
3748
80b15c73
KK
3749static int cfq_alloc_cic_index(void)
3750{
3751 int index, error;
3752
3753 do {
3754 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3755 return -ENOMEM;
3756
3757 spin_lock(&cic_index_lock);
3758 error = ida_get_new(&cic_index_ida, &index);
3759 spin_unlock(&cic_index_lock);
3760 if (error && error != -EAGAIN)
3761 return error;
3762 } while (error);
3763
3764 return index;
3765}
3766
165125e1 3767static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3768{
3769 struct cfq_data *cfqd;
718eee05 3770 int i, j;
cdb16e8f 3771 struct cfq_group *cfqg;
615f0259 3772 struct cfq_rb_root *st;
1da177e4 3773
80b15c73
KK
3774 i = cfq_alloc_cic_index();
3775 if (i < 0)
3776 return NULL;
3777
94f6030c 3778 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3779 if (!cfqd)
bc1c1169 3780 return NULL;
1da177e4 3781
80b15c73
KK
3782 cfqd->cic_index = i;
3783
1fa8f6d6
VG
3784 /* Init root service tree */
3785 cfqd->grp_service_tree = CFQ_RB_ROOT;
3786
cdb16e8f
VG
3787 /* Init root group */
3788 cfqg = &cfqd->root_group;
615f0259
VG
3789 for_each_cfqg_st(cfqg, i, j, st)
3790 *st = CFQ_RB_ROOT;
1fa8f6d6 3791 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3792
25bc6b07
VG
3793 /* Give preference to root group over other groups */
3794 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3795
25fb5169 3796#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769
VG
3797 /*
3798 * Take a reference to root group which we never drop. This is just
3799 * to make sure that cfq_put_cfqg() does not try to kfree root group
3800 */
3801 atomic_set(&cfqg->ref, 1);
dcf097b2 3802 rcu_read_lock();
e98ef89b
VG
3803 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3804 (void *)cfqd, 0);
dcf097b2 3805 rcu_read_unlock();
25fb5169 3806#endif
26a2ac00
JA
3807 /*
3808 * Not strictly needed (since RB_ROOT just clears the node and we
3809 * zeroed cfqd on alloc), but better be safe in case someone decides
3810 * to add magic to the rb code
3811 */
3812 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3813 cfqd->prio_trees[i] = RB_ROOT;
3814
6118b70b
JA
3815 /*
3816 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3817 * Grab a permanent reference to it, so that the normal code flow
3818 * will not attempt to free it.
3819 */
3820 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3821 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3822 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3823
d9ff4187 3824 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3825
1da177e4 3826 cfqd->queue = q;
1da177e4 3827
22e2c507
JA
3828 init_timer(&cfqd->idle_slice_timer);
3829 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3830 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3831
23e018a1 3832 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3833
1da177e4 3834 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3835 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3836 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3837 cfqd->cfq_back_max = cfq_back_max;
3838 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3839 cfqd->cfq_slice[0] = cfq_slice_async;
3840 cfqd->cfq_slice[1] = cfq_slice_sync;
3841 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3842 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 3843 cfqd->cfq_latency = 1;
ae30c286 3844 cfqd->cfq_group_isolation = 0;
e459dd08 3845 cfqd->hw_tag = -1;
edc71131
CZ
3846 /*
3847 * we optimistically start assuming sync ops weren't delayed in last
3848 * second, in order to have larger depth for async operations.
3849 */
573412b2 3850 cfqd->last_delayed_sync = jiffies - HZ;
bc1c1169 3851 return cfqd;
1da177e4
LT
3852}
3853
3854static void cfq_slab_kill(void)
3855{
d6de8be7
JA
3856 /*
3857 * Caller already ensured that pending RCU callbacks are completed,
3858 * so we should have no busy allocations at this point.
3859 */
1da177e4
LT
3860 if (cfq_pool)
3861 kmem_cache_destroy(cfq_pool);
3862 if (cfq_ioc_pool)
3863 kmem_cache_destroy(cfq_ioc_pool);
3864}
3865
3866static int __init cfq_slab_setup(void)
3867{
0a31bd5f 3868 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3869 if (!cfq_pool)
3870 goto fail;
3871
34e6bbf2 3872 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3873 if (!cfq_ioc_pool)
3874 goto fail;
3875
3876 return 0;
3877fail:
3878 cfq_slab_kill();
3879 return -ENOMEM;
3880}
3881
1da177e4
LT
3882/*
3883 * sysfs parts below -->
3884 */
1da177e4
LT
3885static ssize_t
3886cfq_var_show(unsigned int var, char *page)
3887{
3888 return sprintf(page, "%d\n", var);
3889}
3890
3891static ssize_t
3892cfq_var_store(unsigned int *var, const char *page, size_t count)
3893{
3894 char *p = (char *) page;
3895
3896 *var = simple_strtoul(p, &p, 10);
3897 return count;
3898}
3899
1da177e4 3900#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3901static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3902{ \
3d1ab40f 3903 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3904 unsigned int __data = __VAR; \
3905 if (__CONV) \
3906 __data = jiffies_to_msecs(__data); \
3907 return cfq_var_show(__data, (page)); \
3908}
3909SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3910SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3911SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3912SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3913SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3914SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3915SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3916SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3917SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3918SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
ae30c286 3919SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
1da177e4
LT
3920#undef SHOW_FUNCTION
3921
3922#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3923static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3924{ \
3d1ab40f 3925 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3926 unsigned int __data; \
3927 int ret = cfq_var_store(&__data, (page), count); \
3928 if (__data < (MIN)) \
3929 __data = (MIN); \
3930 else if (__data > (MAX)) \
3931 __data = (MAX); \
3932 if (__CONV) \
3933 *(__PTR) = msecs_to_jiffies(__data); \
3934 else \
3935 *(__PTR) = __data; \
3936 return ret; \
3937}
3938STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3939STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3940 UINT_MAX, 1);
3941STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3942 UINT_MAX, 1);
e572ec7e 3943STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3944STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3945 UINT_MAX, 0);
22e2c507
JA
3946STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3947STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3948STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3949STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3950 UINT_MAX, 0);
963b72fc 3951STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
ae30c286 3952STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
1da177e4
LT
3953#undef STORE_FUNCTION
3954
e572ec7e
AV
3955#define CFQ_ATTR(name) \
3956 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3957
3958static struct elv_fs_entry cfq_attrs[] = {
3959 CFQ_ATTR(quantum),
e572ec7e
AV
3960 CFQ_ATTR(fifo_expire_sync),
3961 CFQ_ATTR(fifo_expire_async),
3962 CFQ_ATTR(back_seek_max),
3963 CFQ_ATTR(back_seek_penalty),
3964 CFQ_ATTR(slice_sync),
3965 CFQ_ATTR(slice_async),
3966 CFQ_ATTR(slice_async_rq),
3967 CFQ_ATTR(slice_idle),
963b72fc 3968 CFQ_ATTR(low_latency),
ae30c286 3969 CFQ_ATTR(group_isolation),
e572ec7e 3970 __ATTR_NULL
1da177e4
LT
3971};
3972
1da177e4
LT
3973static struct elevator_type iosched_cfq = {
3974 .ops = {
3975 .elevator_merge_fn = cfq_merge,
3976 .elevator_merged_fn = cfq_merged_request,
3977 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3978 .elevator_allow_merge_fn = cfq_allow_merge,
812d4026 3979 .elevator_bio_merged_fn = cfq_bio_merged,
b4878f24 3980 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3981 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3982 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3983 .elevator_deactivate_req_fn = cfq_deactivate_request,
3984 .elevator_queue_empty_fn = cfq_queue_empty,
3985 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3986 .elevator_former_req_fn = elv_rb_former_request,
3987 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3988 .elevator_set_req_fn = cfq_set_request,
3989 .elevator_put_req_fn = cfq_put_request,
3990 .elevator_may_queue_fn = cfq_may_queue,
3991 .elevator_init_fn = cfq_init_queue,
3992 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3993 .trim = cfq_free_io_context,
1da177e4 3994 },
3d1ab40f 3995 .elevator_attrs = cfq_attrs,
1da177e4
LT
3996 .elevator_name = "cfq",
3997 .elevator_owner = THIS_MODULE,
3998};
3999
3e252066
VG
4000#ifdef CONFIG_CFQ_GROUP_IOSCHED
4001static struct blkio_policy_type blkio_policy_cfq = {
4002 .ops = {
4003 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4004 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4005 },
062a644d 4006 .plid = BLKIO_POLICY_PROP,
3e252066
VG
4007};
4008#else
4009static struct blkio_policy_type blkio_policy_cfq;
4010#endif
4011
1da177e4
LT
4012static int __init cfq_init(void)
4013{
22e2c507
JA
4014 /*
4015 * could be 0 on HZ < 1000 setups
4016 */
4017 if (!cfq_slice_async)
4018 cfq_slice_async = 1;
4019 if (!cfq_slice_idle)
4020 cfq_slice_idle = 1;
4021
1da177e4
LT
4022 if (cfq_slab_setup())
4023 return -ENOMEM;
4024
2fdd82bd 4025 elv_register(&iosched_cfq);
3e252066 4026 blkio_policy_register(&blkio_policy_cfq);
1da177e4 4027
2fdd82bd 4028 return 0;
1da177e4
LT
4029}
4030
4031static void __exit cfq_exit(void)
4032{
6e9a4738 4033 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 4034 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 4035 elv_unregister(&iosched_cfq);
334e94de 4036 ioc_gone = &all_gone;
fba82272
OH
4037 /* ioc_gone's update must be visible before reading ioc_count */
4038 smp_wmb();
d6de8be7
JA
4039
4040 /*
4041 * this also protects us from entering cfq_slab_kill() with
4042 * pending RCU callbacks
4043 */
245b2e70 4044 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 4045 wait_for_completion(&all_gone);
80b15c73 4046 ida_destroy(&cic_index_ida);
83521d3e 4047 cfq_slab_kill();
1da177e4
LT
4048}
4049
4050module_init(cfq_init);
4051module_exit(cfq_exit);
4052
4053MODULE_AUTHOR("Jens Axboe");
4054MODULE_LICENSE("GPL");
4055MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");