mm/mmap: separate writenotify and dirty tracking logic
[linux-block.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
1507f512 13#include <linux/secretmem.h>
4bbd4c77 14
174cd4b1 15#include <linux/sched/signal.h>
2667f50e 16#include <linux/rwsem.h>
f30c59e9 17#include <linux/hugetlb.h>
9a4e9f3b
AK
18#include <linux/migrate.h>
19#include <linux/mm_inline.h>
20#include <linux/sched/mm.h>
1027e443 21
33a709b2 22#include <asm/mmu_context.h>
1027e443 23#include <asm/tlbflush.h>
2667f50e 24
4bbd4c77
KS
25#include "internal.h"
26
df06b37f
KB
27struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30};
31
b6a2619c
DH
32static inline void sanity_check_pinned_pages(struct page **pages,
33 unsigned long npages)
34{
35 if (!IS_ENABLED(CONFIG_DEBUG_VM))
36 return;
37
38 /*
39 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 * can no longer turn them possibly shared and PageAnonExclusive() will
41 * stick around until the page is freed.
42 *
43 * We'd like to verify that our pinned anonymous pages are still mapped
44 * exclusively. The issue with anon THP is that we don't know how
45 * they are/were mapped when pinning them. However, for anon
46 * THP we can assume that either the given page (PTE-mapped THP) or
47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 * neither is the case, there is certainly something wrong.
49 */
50 for (; npages; npages--, pages++) {
51 struct page *page = *pages;
52 struct folio *folio = page_folio(page);
53
54 if (!folio_test_anon(folio))
55 continue;
56 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
58 else
59 /* Either a PTE-mapped or a PMD-mapped THP. */
60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 !PageAnonExclusive(page), page);
62 }
63}
64
cd1adf1b 65/*
ece1ed7b 66 * Return the folio with ref appropriately incremented,
cd1adf1b 67 * or NULL if that failed.
a707cdd5 68 */
ece1ed7b 69static inline struct folio *try_get_folio(struct page *page, int refs)
a707cdd5 70{
ece1ed7b 71 struct folio *folio;
a707cdd5 72
59409373 73retry:
ece1ed7b
MWO
74 folio = page_folio(page);
75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
a707cdd5 76 return NULL;
ece1ed7b 77 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
a707cdd5 78 return NULL;
c24d3732
JH
79
80 /*
ece1ed7b
MWO
81 * At this point we have a stable reference to the folio; but it
82 * could be that between calling page_folio() and the refcount
83 * increment, the folio was split, in which case we'd end up
84 * holding a reference on a folio that has nothing to do with the page
c24d3732 85 * we were given anymore.
ece1ed7b
MWO
86 * So now that the folio is stable, recheck that the page still
87 * belongs to this folio.
c24d3732 88 */
ece1ed7b 89 if (unlikely(page_folio(page) != folio)) {
f4f451a1
MS
90 if (!put_devmap_managed_page_refs(&folio->page, refs))
91 folio_put_refs(folio, refs);
59409373 92 goto retry;
c24d3732
JH
93 }
94
ece1ed7b 95 return folio;
a707cdd5
JH
96}
97
3967db22 98/**
ece1ed7b 99 * try_grab_folio() - Attempt to get or pin a folio.
3967db22 100 * @page: pointer to page to be grabbed
ece1ed7b 101 * @refs: the value to (effectively) add to the folio's refcount
3967db22
JH
102 * @flags: gup flags: these are the FOLL_* flag values.
103 *
3faa52c0 104 * "grab" names in this file mean, "look at flags to decide whether to use
ece1ed7b 105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
3faa52c0
JH
106 *
107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108 * same time. (That's true throughout the get_user_pages*() and
109 * pin_user_pages*() APIs.) Cases:
110 *
ece1ed7b 111 * FOLL_GET: folio's refcount will be incremented by @refs.
3967db22 112 *
ece1ed7b 113 * FOLL_PIN on large folios: folio's refcount will be incremented by
94688e8e 114 * @refs, and its pincount will be incremented by @refs.
3967db22 115 *
ece1ed7b 116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
5232c63f 117 * @refs * GUP_PIN_COUNTING_BIAS.
3faa52c0 118 *
ece1ed7b
MWO
119 * Return: The folio containing @page (with refcount appropriately
120 * incremented) for success, or NULL upon failure. If neither FOLL_GET
121 * nor FOLL_PIN was set, that's considered failure, and furthermore,
122 * a likely bug in the caller, so a warning is also emitted.
3faa52c0 123 */
ece1ed7b 124struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
3faa52c0 125{
4003f107
LG
126 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
127 return NULL;
128
3faa52c0 129 if (flags & FOLL_GET)
ece1ed7b 130 return try_get_folio(page, refs);
3faa52c0 131 else if (flags & FOLL_PIN) {
ece1ed7b
MWO
132 struct folio *folio;
133
df3a0a21 134 /*
d1e153fe
PT
135 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
136 * right zone, so fail and let the caller fall back to the slow
137 * path.
df3a0a21 138 */
d1e153fe 139 if (unlikely((flags & FOLL_LONGTERM) &&
6077c943 140 !is_longterm_pinnable_page(page)))
df3a0a21
PL
141 return NULL;
142
c24d3732
JH
143 /*
144 * CAUTION: Don't use compound_head() on the page before this
145 * point, the result won't be stable.
146 */
ece1ed7b
MWO
147 folio = try_get_folio(page, refs);
148 if (!folio)
c24d3732
JH
149 return NULL;
150
47e29d32 151 /*
ece1ed7b 152 * When pinning a large folio, use an exact count to track it.
47e29d32 153 *
ece1ed7b
MWO
154 * However, be sure to *also* increment the normal folio
155 * refcount field at least once, so that the folio really
78d9d6ce 156 * is pinned. That's why the refcount from the earlier
ece1ed7b 157 * try_get_folio() is left intact.
47e29d32 158 */
ece1ed7b 159 if (folio_test_large(folio))
94688e8e 160 atomic_add(refs, &folio->_pincount);
c24d3732 161 else
ece1ed7b
MWO
162 folio_ref_add(folio,
163 refs * (GUP_PIN_COUNTING_BIAS - 1));
088b8aa5
DH
164 /*
165 * Adjust the pincount before re-checking the PTE for changes.
166 * This is essentially a smp_mb() and is paired with a memory
167 * barrier in page_try_share_anon_rmap().
168 */
169 smp_mb__after_atomic();
170
ece1ed7b 171 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
47e29d32 172
ece1ed7b 173 return folio;
3faa52c0
JH
174 }
175
176 WARN_ON_ONCE(1);
177 return NULL;
178}
179
d8ddc099 180static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
4509b42c
JG
181{
182 if (flags & FOLL_PIN) {
d8ddc099
MWO
183 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
184 if (folio_test_large(folio))
94688e8e 185 atomic_sub(refs, &folio->_pincount);
4509b42c
JG
186 else
187 refs *= GUP_PIN_COUNTING_BIAS;
188 }
189
f4f451a1
MS
190 if (!put_devmap_managed_page_refs(&folio->page, refs))
191 folio_put_refs(folio, refs);
4509b42c
JG
192}
193
3faa52c0
JH
194/**
195 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
5fec0719
MWO
196 * @page: pointer to page to be grabbed
197 * @flags: gup flags: these are the FOLL_* flag values.
3faa52c0
JH
198 *
199 * This might not do anything at all, depending on the flags argument.
200 *
201 * "grab" names in this file mean, "look at flags to decide whether to use
202 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
203 *
3faa52c0 204 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
ece1ed7b 205 * time. Cases: please see the try_grab_folio() documentation, with
3967db22 206 * "refs=1".
3faa52c0 207 *
0f089235
LG
208 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
209 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
210 *
211 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not
212 * be grabbed.
3faa52c0 213 */
0f089235 214int __must_check try_grab_page(struct page *page, unsigned int flags)
3faa52c0 215{
5fec0719
MWO
216 struct folio *folio = page_folio(page);
217
5fec0719 218 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
0f089235 219 return -ENOMEM;
3faa52c0 220
4003f107
LG
221 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
222 return -EREMOTEIO;
3faa52c0 223
c36c04c2 224 if (flags & FOLL_GET)
5fec0719 225 folio_ref_inc(folio);
c36c04c2 226 else if (flags & FOLL_PIN) {
c36c04c2 227 /*
5fec0719 228 * Similar to try_grab_folio(): be sure to *also*
78d9d6ce
MWO
229 * increment the normal page refcount field at least once,
230 * so that the page really is pinned.
c36c04c2 231 */
5fec0719
MWO
232 if (folio_test_large(folio)) {
233 folio_ref_add(folio, 1);
94688e8e 234 atomic_add(1, &folio->_pincount);
8ea2979c 235 } else {
5fec0719 236 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
8ea2979c 237 }
c36c04c2 238
5fec0719 239 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
c36c04c2
JH
240 }
241
0f089235 242 return 0;
3faa52c0
JH
243}
244
3faa52c0
JH
245/**
246 * unpin_user_page() - release a dma-pinned page
247 * @page: pointer to page to be released
248 *
249 * Pages that were pinned via pin_user_pages*() must be released via either
250 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
251 * that such pages can be separately tracked and uniquely handled. In
252 * particular, interactions with RDMA and filesystems need special handling.
253 */
254void unpin_user_page(struct page *page)
255{
b6a2619c 256 sanity_check_pinned_pages(&page, 1);
d8ddc099 257 gup_put_folio(page_folio(page), 1, FOLL_PIN);
3faa52c0
JH
258}
259EXPORT_SYMBOL(unpin_user_page);
260
659508f9 261static inline struct folio *gup_folio_range_next(struct page *start,
8f39f5fc 262 unsigned long npages, unsigned long i, unsigned int *ntails)
458a4f78 263{
659508f9
MWO
264 struct page *next = nth_page(start, i);
265 struct folio *folio = page_folio(next);
458a4f78
JM
266 unsigned int nr = 1;
267
659508f9 268 if (folio_test_large(folio))
4c654229 269 nr = min_t(unsigned int, npages - i,
659508f9 270 folio_nr_pages(folio) - folio_page_idx(folio, next));
458a4f78 271
458a4f78 272 *ntails = nr;
659508f9 273 return folio;
458a4f78
JM
274}
275
12521c76 276static inline struct folio *gup_folio_next(struct page **list,
28297dbc 277 unsigned long npages, unsigned long i, unsigned int *ntails)
8745d7f6 278{
12521c76 279 struct folio *folio = page_folio(list[i]);
8745d7f6
JM
280 unsigned int nr;
281
8745d7f6 282 for (nr = i + 1; nr < npages; nr++) {
12521c76 283 if (page_folio(list[nr]) != folio)
8745d7f6
JM
284 break;
285 }
286
8745d7f6 287 *ntails = nr - i;
12521c76 288 return folio;
8745d7f6
JM
289}
290
fc1d8e7c 291/**
f1f6a7dd 292 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 293 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 294 * @npages: number of pages in the @pages array.
2d15eb31 295 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
296 *
297 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
298 * variants called on that page.
299 *
300 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 301 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
302 * listed as clean. In any case, releases all pages using unpin_user_page(),
303 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 304 *
f1f6a7dd 305 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 306 *
2d15eb31 307 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
308 * required, then the caller should a) verify that this is really correct,
309 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 310 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
311 *
312 */
f1f6a7dd
JH
313void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
314 bool make_dirty)
fc1d8e7c 315{
12521c76
MWO
316 unsigned long i;
317 struct folio *folio;
318 unsigned int nr;
2d15eb31 319
320 if (!make_dirty) {
f1f6a7dd 321 unpin_user_pages(pages, npages);
2d15eb31 322 return;
323 }
324
b6a2619c 325 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
326 for (i = 0; i < npages; i += nr) {
327 folio = gup_folio_next(pages, npages, i, &nr);
2d15eb31 328 /*
329 * Checking PageDirty at this point may race with
330 * clear_page_dirty_for_io(), but that's OK. Two key
331 * cases:
332 *
333 * 1) This code sees the page as already dirty, so it
334 * skips the call to set_page_dirty(). That could happen
335 * because clear_page_dirty_for_io() called
336 * page_mkclean(), followed by set_page_dirty().
337 * However, now the page is going to get written back,
338 * which meets the original intention of setting it
339 * dirty, so all is well: clear_page_dirty_for_io() goes
340 * on to call TestClearPageDirty(), and write the page
341 * back.
342 *
343 * 2) This code sees the page as clean, so it calls
344 * set_page_dirty(). The page stays dirty, despite being
345 * written back, so it gets written back again in the
346 * next writeback cycle. This is harmless.
347 */
12521c76
MWO
348 if (!folio_test_dirty(folio)) {
349 folio_lock(folio);
350 folio_mark_dirty(folio);
351 folio_unlock(folio);
352 }
353 gup_put_folio(folio, nr, FOLL_PIN);
2d15eb31 354 }
fc1d8e7c 355}
f1f6a7dd 356EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c 357
458a4f78
JM
358/**
359 * unpin_user_page_range_dirty_lock() - release and optionally dirty
360 * gup-pinned page range
361 *
362 * @page: the starting page of a range maybe marked dirty, and definitely released.
363 * @npages: number of consecutive pages to release.
364 * @make_dirty: whether to mark the pages dirty
365 *
366 * "gup-pinned page range" refers to a range of pages that has had one of the
367 * pin_user_pages() variants called on that page.
368 *
369 * For the page ranges defined by [page .. page+npages], make that range (or
370 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
371 * page range was previously listed as clean.
372 *
373 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
374 * required, then the caller should a) verify that this is really correct,
375 * because _lock() is usually required, and b) hand code it:
376 * set_page_dirty_lock(), unpin_user_page().
377 *
378 */
379void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
380 bool make_dirty)
381{
659508f9
MWO
382 unsigned long i;
383 struct folio *folio;
384 unsigned int nr;
385
386 for (i = 0; i < npages; i += nr) {
387 folio = gup_folio_range_next(page, npages, i, &nr);
388 if (make_dirty && !folio_test_dirty(folio)) {
389 folio_lock(folio);
390 folio_mark_dirty(folio);
391 folio_unlock(folio);
392 }
393 gup_put_folio(folio, nr, FOLL_PIN);
458a4f78
JM
394 }
395}
396EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
397
b6a2619c
DH
398static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
399{
400 unsigned long i;
401 struct folio *folio;
402 unsigned int nr;
403
404 /*
405 * Don't perform any sanity checks because we might have raced with
406 * fork() and some anonymous pages might now actually be shared --
407 * which is why we're unpinning after all.
408 */
409 for (i = 0; i < npages; i += nr) {
410 folio = gup_folio_next(pages, npages, i, &nr);
411 gup_put_folio(folio, nr, FOLL_PIN);
412 }
413}
414
fc1d8e7c 415/**
f1f6a7dd 416 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
417 * @pages: array of pages to be marked dirty and released.
418 * @npages: number of pages in the @pages array.
419 *
f1f6a7dd 420 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 421 *
f1f6a7dd 422 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 423 */
f1f6a7dd 424void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c 425{
12521c76
MWO
426 unsigned long i;
427 struct folio *folio;
428 unsigned int nr;
fc1d8e7c 429
146608bb
JH
430 /*
431 * If this WARN_ON() fires, then the system *might* be leaking pages (by
432 * leaving them pinned), but probably not. More likely, gup/pup returned
433 * a hard -ERRNO error to the caller, who erroneously passed it here.
434 */
435 if (WARN_ON(IS_ERR_VALUE(npages)))
436 return;
31b912de 437
b6a2619c 438 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
439 for (i = 0; i < npages; i += nr) {
440 folio = gup_folio_next(pages, npages, i, &nr);
441 gup_put_folio(folio, nr, FOLL_PIN);
e7602748 442 }
fc1d8e7c 443}
f1f6a7dd 444EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 445
a458b76a
AA
446/*
447 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
448 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
449 * cache bouncing on large SMP machines for concurrent pinned gups.
450 */
451static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
452{
453 if (!test_bit(MMF_HAS_PINNED, mm_flags))
454 set_bit(MMF_HAS_PINNED, mm_flags);
455}
456
050a9adc 457#ifdef CONFIG_MMU
69e68b4f
KS
458static struct page *no_page_table(struct vm_area_struct *vma,
459 unsigned int flags)
4bbd4c77 460{
69e68b4f
KS
461 /*
462 * When core dumping an enormous anonymous area that nobody
463 * has touched so far, we don't want to allocate unnecessary pages or
464 * page tables. Return error instead of NULL to skip handle_mm_fault,
465 * then get_dump_page() will return NULL to leave a hole in the dump.
466 * But we can only make this optimization where a hole would surely
467 * be zero-filled if handle_mm_fault() actually did handle it.
468 */
a0137f16
AK
469 if ((flags & FOLL_DUMP) &&
470 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
69e68b4f
KS
471 return ERR_PTR(-EFAULT);
472 return NULL;
473}
4bbd4c77 474
1027e443
KS
475static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
476 pte_t *pte, unsigned int flags)
477{
1027e443
KS
478 if (flags & FOLL_TOUCH) {
479 pte_t entry = *pte;
480
481 if (flags & FOLL_WRITE)
482 entry = pte_mkdirty(entry);
483 entry = pte_mkyoung(entry);
484
485 if (!pte_same(*pte, entry)) {
486 set_pte_at(vma->vm_mm, address, pte, entry);
487 update_mmu_cache(vma, address, pte);
488 }
489 }
490
491 /* Proper page table entry exists, but no corresponding struct page */
492 return -EEXIST;
493}
494
5535be30
DH
495/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
496static inline bool can_follow_write_pte(pte_t pte, struct page *page,
497 struct vm_area_struct *vma,
498 unsigned int flags)
19be0eaf 499{
5535be30
DH
500 /* If the pte is writable, we can write to the page. */
501 if (pte_write(pte))
502 return true;
503
504 /* Maybe FOLL_FORCE is set to override it? */
505 if (!(flags & FOLL_FORCE))
506 return false;
507
508 /* But FOLL_FORCE has no effect on shared mappings */
509 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
510 return false;
511
512 /* ... or read-only private ones */
513 if (!(vma->vm_flags & VM_MAYWRITE))
514 return false;
515
516 /* ... or already writable ones that just need to take a write fault */
517 if (vma->vm_flags & VM_WRITE)
518 return false;
519
520 /*
521 * See can_change_pte_writable(): we broke COW and could map the page
522 * writable if we have an exclusive anonymous page ...
523 */
524 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
525 return false;
526
527 /* ... and a write-fault isn't required for other reasons. */
528 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
529 return false;
530 return !userfaultfd_pte_wp(vma, pte);
19be0eaf
LT
531}
532
69e68b4f 533static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
534 unsigned long address, pmd_t *pmd, unsigned int flags,
535 struct dev_pagemap **pgmap)
69e68b4f
KS
536{
537 struct mm_struct *mm = vma->vm_mm;
538 struct page *page;
539 spinlock_t *ptl;
540 pte_t *ptep, pte;
f28d4363 541 int ret;
4bbd4c77 542
eddb1c22
JH
543 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
544 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
545 (FOLL_PIN | FOLL_GET)))
546 return ERR_PTR(-EINVAL);
4bbd4c77 547 if (unlikely(pmd_bad(*pmd)))
69e68b4f 548 return no_page_table(vma, flags);
4bbd4c77
KS
549
550 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77 551 pte = *ptep;
f7355e99
DH
552 if (!pte_present(pte))
553 goto no_page;
474098ed 554 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
4bbd4c77 555 goto no_page;
4bbd4c77
KS
556
557 page = vm_normal_page(vma, address, pte);
5535be30
DH
558
559 /*
560 * We only care about anon pages in can_follow_write_pte() and don't
561 * have to worry about pte_devmap() because they are never anon.
562 */
563 if ((flags & FOLL_WRITE) &&
564 !can_follow_write_pte(pte, page, vma, flags)) {
565 page = NULL;
566 goto out;
567 }
568
3faa52c0 569 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 570 /*
3faa52c0
JH
571 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
572 * case since they are only valid while holding the pgmap
573 * reference.
3565fce3 574 */
df06b37f
KB
575 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
576 if (*pgmap)
3565fce3
DW
577 page = pte_page(pte);
578 else
579 goto no_page;
580 } else if (unlikely(!page)) {
1027e443
KS
581 if (flags & FOLL_DUMP) {
582 /* Avoid special (like zero) pages in core dumps */
583 page = ERR_PTR(-EFAULT);
584 goto out;
585 }
586
587 if (is_zero_pfn(pte_pfn(pte))) {
588 page = pte_page(pte);
589 } else {
1027e443
KS
590 ret = follow_pfn_pte(vma, address, ptep, flags);
591 page = ERR_PTR(ret);
592 goto out;
593 }
4bbd4c77
KS
594 }
595
84209e87 596 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
a7f22660
DH
597 page = ERR_PTR(-EMLINK);
598 goto out;
599 }
b6a2619c
DH
600
601 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
602 !PageAnonExclusive(page), page);
603
3faa52c0 604 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
0f089235
LG
605 ret = try_grab_page(page, flags);
606 if (unlikely(ret)) {
607 page = ERR_PTR(ret);
3faa52c0 608 goto out;
8fde12ca 609 }
4003f107 610
f28d4363
CI
611 /*
612 * We need to make the page accessible if and only if we are going
613 * to access its content (the FOLL_PIN case). Please see
614 * Documentation/core-api/pin_user_pages.rst for details.
615 */
616 if (flags & FOLL_PIN) {
617 ret = arch_make_page_accessible(page);
618 if (ret) {
619 unpin_user_page(page);
620 page = ERR_PTR(ret);
621 goto out;
622 }
623 }
4bbd4c77
KS
624 if (flags & FOLL_TOUCH) {
625 if ((flags & FOLL_WRITE) &&
626 !pte_dirty(pte) && !PageDirty(page))
627 set_page_dirty(page);
628 /*
629 * pte_mkyoung() would be more correct here, but atomic care
630 * is needed to avoid losing the dirty bit: it is easier to use
631 * mark_page_accessed().
632 */
633 mark_page_accessed(page);
634 }
1027e443 635out:
4bbd4c77 636 pte_unmap_unlock(ptep, ptl);
4bbd4c77 637 return page;
4bbd4c77
KS
638no_page:
639 pte_unmap_unlock(ptep, ptl);
640 if (!pte_none(pte))
69e68b4f
KS
641 return NULL;
642 return no_page_table(vma, flags);
643}
644
080dbb61
AK
645static struct page *follow_pmd_mask(struct vm_area_struct *vma,
646 unsigned long address, pud_t *pudp,
df06b37f
KB
647 unsigned int flags,
648 struct follow_page_context *ctx)
69e68b4f 649{
68827280 650 pmd_t *pmd, pmdval;
69e68b4f
KS
651 spinlock_t *ptl;
652 struct page *page;
653 struct mm_struct *mm = vma->vm_mm;
654
080dbb61 655 pmd = pmd_offset(pudp, address);
68827280
HY
656 /*
657 * The READ_ONCE() will stabilize the pmdval in a register or
658 * on the stack so that it will stop changing under the code.
659 */
660 pmdval = READ_ONCE(*pmd);
661 if (pmd_none(pmdval))
69e68b4f 662 return no_page_table(vma, flags);
f7355e99 663 if (!pmd_present(pmdval))
e66f17ff 664 return no_page_table(vma, flags);
68827280 665 if (pmd_devmap(pmdval)) {
3565fce3 666 ptl = pmd_lock(mm, pmd);
df06b37f 667 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
668 spin_unlock(ptl);
669 if (page)
670 return page;
671 }
68827280 672 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 673 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 674
474098ed 675 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
db08f203
AK
676 return no_page_table(vma, flags);
677
6742d293 678 ptl = pmd_lock(mm, pmd);
84c3fc4e
ZY
679 if (unlikely(!pmd_present(*pmd))) {
680 spin_unlock(ptl);
f7355e99 681 return no_page_table(vma, flags);
84c3fc4e 682 }
6742d293
KS
683 if (unlikely(!pmd_trans_huge(*pmd))) {
684 spin_unlock(ptl);
df06b37f 685 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 686 }
4066c119 687 if (flags & FOLL_SPLIT_PMD) {
6742d293
KS
688 int ret;
689 page = pmd_page(*pmd);
690 if (is_huge_zero_page(page)) {
691 spin_unlock(ptl);
692 ret = 0;
78ddc534 693 split_huge_pmd(vma, pmd, address);
337d9abf
NH
694 if (pmd_trans_unstable(pmd))
695 ret = -EBUSY;
4066c119 696 } else {
bfe7b00d
SL
697 spin_unlock(ptl);
698 split_huge_pmd(vma, pmd, address);
699 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
6742d293
KS
700 }
701
702 return ret ? ERR_PTR(ret) :
df06b37f 703 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 704 }
6742d293
KS
705 page = follow_trans_huge_pmd(vma, address, pmd, flags);
706 spin_unlock(ptl);
df06b37f 707 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 708 return page;
4bbd4c77
KS
709}
710
080dbb61
AK
711static struct page *follow_pud_mask(struct vm_area_struct *vma,
712 unsigned long address, p4d_t *p4dp,
df06b37f
KB
713 unsigned int flags,
714 struct follow_page_context *ctx)
080dbb61
AK
715{
716 pud_t *pud;
717 spinlock_t *ptl;
718 struct page *page;
719 struct mm_struct *mm = vma->vm_mm;
720
721 pud = pud_offset(p4dp, address);
722 if (pud_none(*pud))
723 return no_page_table(vma, flags);
080dbb61
AK
724 if (pud_devmap(*pud)) {
725 ptl = pud_lock(mm, pud);
df06b37f 726 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
727 spin_unlock(ptl);
728 if (page)
729 return page;
730 }
731 if (unlikely(pud_bad(*pud)))
732 return no_page_table(vma, flags);
733
df06b37f 734 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
735}
736
080dbb61
AK
737static struct page *follow_p4d_mask(struct vm_area_struct *vma,
738 unsigned long address, pgd_t *pgdp,
df06b37f
KB
739 unsigned int flags,
740 struct follow_page_context *ctx)
080dbb61
AK
741{
742 p4d_t *p4d;
743
744 p4d = p4d_offset(pgdp, address);
745 if (p4d_none(*p4d))
746 return no_page_table(vma, flags);
747 BUILD_BUG_ON(p4d_huge(*p4d));
748 if (unlikely(p4d_bad(*p4d)))
749 return no_page_table(vma, flags);
750
df06b37f 751 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
752}
753
754/**
755 * follow_page_mask - look up a page descriptor from a user-virtual address
756 * @vma: vm_area_struct mapping @address
757 * @address: virtual address to look up
758 * @flags: flags modifying lookup behaviour
78179556
MR
759 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
760 * pointer to output page_mask
080dbb61
AK
761 *
762 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
763 *
78179556
MR
764 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
765 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
766 *
a7f22660
DH
767 * When getting an anonymous page and the caller has to trigger unsharing
768 * of a shared anonymous page first, -EMLINK is returned. The caller should
769 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
770 * relevant with FOLL_PIN and !FOLL_WRITE.
771 *
78179556
MR
772 * On output, the @ctx->page_mask is set according to the size of the page.
773 *
774 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
775 * an error pointer if there is a mapping to something not represented
776 * by a page descriptor (see also vm_normal_page()).
777 */
a7030aea 778static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 779 unsigned long address, unsigned int flags,
df06b37f 780 struct follow_page_context *ctx)
080dbb61
AK
781{
782 pgd_t *pgd;
783 struct page *page;
784 struct mm_struct *mm = vma->vm_mm;
785
df06b37f 786 ctx->page_mask = 0;
080dbb61 787
57a196a5
MK
788 /*
789 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
790 * special hugetlb page table walking code. This eliminates the
791 * need to check for hugetlb entries in the general walking code.
792 *
793 * hugetlb_follow_page_mask is only for follow_page() handling here.
794 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
795 */
796 if (is_vm_hugetlb_page(vma)) {
797 page = hugetlb_follow_page_mask(vma, address, flags);
798 if (!page)
799 page = no_page_table(vma, flags);
080dbb61
AK
800 return page;
801 }
802
803 pgd = pgd_offset(mm, address);
804
805 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
806 return no_page_table(vma, flags);
807
df06b37f
KB
808 return follow_p4d_mask(vma, address, pgd, flags, ctx);
809}
810
811struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
812 unsigned int foll_flags)
813{
814 struct follow_page_context ctx = { NULL };
815 struct page *page;
816
1507f512
MR
817 if (vma_is_secretmem(vma))
818 return NULL;
819
d64e2dbc 820 if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
8909691b
DH
821 return NULL;
822
df06b37f
KB
823 page = follow_page_mask(vma, address, foll_flags, &ctx);
824 if (ctx.pgmap)
825 put_dev_pagemap(ctx.pgmap);
826 return page;
080dbb61
AK
827}
828
f2b495ca
KS
829static int get_gate_page(struct mm_struct *mm, unsigned long address,
830 unsigned int gup_flags, struct vm_area_struct **vma,
831 struct page **page)
832{
833 pgd_t *pgd;
c2febafc 834 p4d_t *p4d;
f2b495ca
KS
835 pud_t *pud;
836 pmd_t *pmd;
837 pte_t *pte;
838 int ret = -EFAULT;
839
840 /* user gate pages are read-only */
841 if (gup_flags & FOLL_WRITE)
842 return -EFAULT;
843 if (address > TASK_SIZE)
844 pgd = pgd_offset_k(address);
845 else
846 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
847 if (pgd_none(*pgd))
848 return -EFAULT;
c2febafc 849 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
850 if (p4d_none(*p4d))
851 return -EFAULT;
c2febafc 852 pud = pud_offset(p4d, address);
b5d1c39f
AL
853 if (pud_none(*pud))
854 return -EFAULT;
f2b495ca 855 pmd = pmd_offset(pud, address);
84c3fc4e 856 if (!pmd_present(*pmd))
f2b495ca
KS
857 return -EFAULT;
858 VM_BUG_ON(pmd_trans_huge(*pmd));
859 pte = pte_offset_map(pmd, address);
860 if (pte_none(*pte))
861 goto unmap;
862 *vma = get_gate_vma(mm);
863 if (!page)
864 goto out;
865 *page = vm_normal_page(*vma, address, *pte);
866 if (!*page) {
867 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
868 goto unmap;
869 *page = pte_page(*pte);
870 }
0f089235
LG
871 ret = try_grab_page(*page, gup_flags);
872 if (unlikely(ret))
8fde12ca 873 goto unmap;
f2b495ca
KS
874out:
875 ret = 0;
876unmap:
877 pte_unmap(pte);
878 return ret;
879}
880
9a95f3cf 881/*
9a863a6a
JG
882 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
883 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
884 * to 0 and -EBUSY returned.
9a95f3cf 885 */
64019a2e 886static int faultin_page(struct vm_area_struct *vma,
a7f22660
DH
887 unsigned long address, unsigned int *flags, bool unshare,
888 int *locked)
16744483 889{
16744483 890 unsigned int fault_flags = 0;
2b740303 891 vm_fault_t ret;
16744483 892
55b8fe70
AG
893 if (*flags & FOLL_NOFAULT)
894 return -EFAULT;
16744483
KS
895 if (*flags & FOLL_WRITE)
896 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
897 if (*flags & FOLL_REMOTE)
898 fault_flags |= FAULT_FLAG_REMOTE;
f04740f5 899 if (*flags & FOLL_UNLOCKABLE) {
71335f37 900 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
93c5c61d
PX
901 /*
902 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
903 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
904 * That's because some callers may not be prepared to
905 * handle early exits caused by non-fatal signals.
906 */
907 if (*flags & FOLL_INTERRUPTIBLE)
908 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
909 }
16744483
KS
910 if (*flags & FOLL_NOWAIT)
911 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 912 if (*flags & FOLL_TRIED) {
4426e945
PX
913 /*
914 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
915 * can co-exist
916 */
234b239b
ALC
917 fault_flags |= FAULT_FLAG_TRIED;
918 }
a7f22660
DH
919 if (unshare) {
920 fault_flags |= FAULT_FLAG_UNSHARE;
921 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
922 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
923 }
16744483 924
bce617ed 925 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
926
927 if (ret & VM_FAULT_COMPLETED) {
928 /*
929 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
930 * mmap lock in the page fault handler. Sanity check this.
931 */
932 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
9a863a6a
JG
933 *locked = 0;
934
d9272525
PX
935 /*
936 * We should do the same as VM_FAULT_RETRY, but let's not
937 * return -EBUSY since that's not reflecting the reality of
938 * what has happened - we've just fully completed a page
939 * fault, with the mmap lock released. Use -EAGAIN to show
940 * that we want to take the mmap lock _again_.
941 */
942 return -EAGAIN;
943 }
944
16744483 945 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
946 int err = vm_fault_to_errno(ret, *flags);
947
948 if (err)
949 return err;
16744483
KS
950 BUG();
951 }
952
16744483 953 if (ret & VM_FAULT_RETRY) {
9a863a6a 954 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 955 *locked = 0;
16744483
KS
956 return -EBUSY;
957 }
958
16744483
KS
959 return 0;
960}
961
fa5bb209
KS
962static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
963{
964 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
965 int write = (gup_flags & FOLL_WRITE);
966 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
967
968 if (vm_flags & (VM_IO | VM_PFNMAP))
969 return -EFAULT;
970
7f7ccc2c
WT
971 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
972 return -EFAULT;
973
52650c8b
JG
974 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
975 return -EOPNOTSUPP;
976
1507f512
MR
977 if (vma_is_secretmem(vma))
978 return -EFAULT;
979
1b2ee126 980 if (write) {
fa5bb209
KS
981 if (!(vm_flags & VM_WRITE)) {
982 if (!(gup_flags & FOLL_FORCE))
983 return -EFAULT;
f347454d
DH
984 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
985 if (is_vm_hugetlb_page(vma))
986 return -EFAULT;
fa5bb209
KS
987 /*
988 * We used to let the write,force case do COW in a
989 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
990 * set a breakpoint in a read-only mapping of an
991 * executable, without corrupting the file (yet only
992 * when that file had been opened for writing!).
993 * Anon pages in shared mappings are surprising: now
994 * just reject it.
995 */
46435364 996 if (!is_cow_mapping(vm_flags))
fa5bb209 997 return -EFAULT;
fa5bb209
KS
998 }
999 } else if (!(vm_flags & VM_READ)) {
1000 if (!(gup_flags & FOLL_FORCE))
1001 return -EFAULT;
1002 /*
1003 * Is there actually any vma we can reach here which does not
1004 * have VM_MAYREAD set?
1005 */
1006 if (!(vm_flags & VM_MAYREAD))
1007 return -EFAULT;
1008 }
d61172b4
DH
1009 /*
1010 * gups are always data accesses, not instruction
1011 * fetches, so execute=false here
1012 */
1013 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 1014 return -EFAULT;
fa5bb209
KS
1015 return 0;
1016}
1017
4bbd4c77
KS
1018/**
1019 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
1020 * @mm: mm_struct of target mm
1021 * @start: starting user address
1022 * @nr_pages: number of pages from start to pin
1023 * @gup_flags: flags modifying pin behaviour
1024 * @pages: array that receives pointers to the pages pinned.
1025 * Should be at least nr_pages long. Or NULL, if caller
1026 * only intends to ensure the pages are faulted in.
c1e8d7c6 1027 * @locked: whether we're still with the mmap_lock held
4bbd4c77 1028 *
d2dfbe47
LX
1029 * Returns either number of pages pinned (which may be less than the
1030 * number requested), or an error. Details about the return value:
1031 *
1032 * -- If nr_pages is 0, returns 0.
1033 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1034 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1035 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 1036 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
1037 *
1038 * The caller is responsible for releasing returned @pages, via put_page().
1039 *
c1e8d7c6 1040 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
1041 *
1042 * __get_user_pages walks a process's page tables and takes a reference to
1043 * each struct page that each user address corresponds to at a given
1044 * instant. That is, it takes the page that would be accessed if a user
1045 * thread accesses the given user virtual address at that instant.
1046 *
1047 * This does not guarantee that the page exists in the user mappings when
1048 * __get_user_pages returns, and there may even be a completely different
1049 * page there in some cases (eg. if mmapped pagecache has been invalidated
c5acf1f6 1050 * and subsequently re-faulted). However it does guarantee that the page
4bbd4c77
KS
1051 * won't be freed completely. And mostly callers simply care that the page
1052 * contains data that was valid *at some point in time*. Typically, an IO
1053 * or similar operation cannot guarantee anything stronger anyway because
1054 * locks can't be held over the syscall boundary.
1055 *
1056 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1057 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1058 * appropriate) must be called after the page is finished with, and
1059 * before put_page is called.
1060 *
9a863a6a
JG
1061 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1062 * be released. If this happens *@locked will be set to 0 on return.
9a95f3cf 1063 *
9a863a6a
JG
1064 * A caller using such a combination of @gup_flags must therefore hold the
1065 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1066 * it must be held for either reading or writing and will not be released.
4bbd4c77
KS
1067 *
1068 * In most cases, get_user_pages or get_user_pages_fast should be used
1069 * instead of __get_user_pages. __get_user_pages should be used only if
1070 * you need some special @gup_flags.
1071 */
64019a2e 1072static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
1073 unsigned long start, unsigned long nr_pages,
1074 unsigned int gup_flags, struct page **pages,
b2cac248 1075 int *locked)
4bbd4c77 1076{
df06b37f 1077 long ret = 0, i = 0;
fa5bb209 1078 struct vm_area_struct *vma = NULL;
df06b37f 1079 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1080
1081 if (!nr_pages)
1082 return 0;
1083
428e106a 1084 start = untagged_addr_remote(mm, start);
f9652594 1085
eddb1c22 1086 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77 1087
4bbd4c77 1088 do {
fa5bb209
KS
1089 struct page *page;
1090 unsigned int foll_flags = gup_flags;
1091 unsigned int page_increm;
1092
1093 /* first iteration or cross vma bound */
1094 if (!vma || start >= vma->vm_end) {
1095 vma = find_extend_vma(mm, start);
1096 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1097 ret = get_gate_page(mm, start & PAGE_MASK,
1098 gup_flags, &vma,
1099 pages ? &pages[i] : NULL);
1100 if (ret)
08be37b7 1101 goto out;
df06b37f 1102 ctx.page_mask = 0;
fa5bb209
KS
1103 goto next_page;
1104 }
4bbd4c77 1105
52650c8b 1106 if (!vma) {
df06b37f
KB
1107 ret = -EFAULT;
1108 goto out;
1109 }
52650c8b
JG
1110 ret = check_vma_flags(vma, gup_flags);
1111 if (ret)
1112 goto out;
1113
fa5bb209 1114 if (is_vm_hugetlb_page(vma)) {
b2cac248
LS
1115 i = follow_hugetlb_page(mm, vma, pages,
1116 &start, &nr_pages, i,
1117 gup_flags, locked);
9a863a6a 1118 if (!*locked) {
ad415db8
PX
1119 /*
1120 * We've got a VM_FAULT_RETRY
c1e8d7c6 1121 * and we've lost mmap_lock.
ad415db8
PX
1122 * We must stop here.
1123 */
1124 BUG_ON(gup_flags & FOLL_NOWAIT);
ad415db8
PX
1125 goto out;
1126 }
fa5bb209 1127 continue;
4bbd4c77 1128 }
fa5bb209
KS
1129 }
1130retry:
1131 /*
1132 * If we have a pending SIGKILL, don't keep faulting pages and
1133 * potentially allocating memory.
1134 */
fa45f116 1135 if (fatal_signal_pending(current)) {
d180870d 1136 ret = -EINTR;
df06b37f
KB
1137 goto out;
1138 }
fa5bb209 1139 cond_resched();
df06b37f
KB
1140
1141 page = follow_page_mask(vma, start, foll_flags, &ctx);
a7f22660
DH
1142 if (!page || PTR_ERR(page) == -EMLINK) {
1143 ret = faultin_page(vma, start, &foll_flags,
1144 PTR_ERR(page) == -EMLINK, locked);
fa5bb209
KS
1145 switch (ret) {
1146 case 0:
1147 goto retry;
df06b37f 1148 case -EBUSY:
d9272525 1149 case -EAGAIN:
df06b37f 1150 ret = 0;
e4a9bc58 1151 fallthrough;
fa5bb209
KS
1152 case -EFAULT:
1153 case -ENOMEM:
1154 case -EHWPOISON:
df06b37f 1155 goto out;
4bbd4c77 1156 }
fa5bb209 1157 BUG();
1027e443
KS
1158 } else if (PTR_ERR(page) == -EEXIST) {
1159 /*
1160 * Proper page table entry exists, but no corresponding
65462462
JH
1161 * struct page. If the caller expects **pages to be
1162 * filled in, bail out now, because that can't be done
1163 * for this page.
1027e443 1164 */
65462462
JH
1165 if (pages) {
1166 ret = PTR_ERR(page);
1167 goto out;
1168 }
1169
1027e443
KS
1170 goto next_page;
1171 } else if (IS_ERR(page)) {
df06b37f
KB
1172 ret = PTR_ERR(page);
1173 goto out;
1027e443 1174 }
fa5bb209
KS
1175 if (pages) {
1176 pages[i] = page;
1177 flush_anon_page(vma, page, start);
1178 flush_dcache_page(page);
df06b37f 1179 ctx.page_mask = 0;
4bbd4c77 1180 }
4bbd4c77 1181next_page:
df06b37f 1182 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1183 if (page_increm > nr_pages)
1184 page_increm = nr_pages;
1185 i += page_increm;
1186 start += page_increm * PAGE_SIZE;
1187 nr_pages -= page_increm;
4bbd4c77 1188 } while (nr_pages);
df06b37f
KB
1189out:
1190 if (ctx.pgmap)
1191 put_dev_pagemap(ctx.pgmap);
1192 return i ? i : ret;
4bbd4c77 1193}
4bbd4c77 1194
771ab430
TK
1195static bool vma_permits_fault(struct vm_area_struct *vma,
1196 unsigned int fault_flags)
d4925e00 1197{
1b2ee126
DH
1198 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1199 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1200 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1201
1202 if (!(vm_flags & vma->vm_flags))
1203 return false;
1204
33a709b2
DH
1205 /*
1206 * The architecture might have a hardware protection
1b2ee126 1207 * mechanism other than read/write that can deny access.
d61172b4
DH
1208 *
1209 * gup always represents data access, not instruction
1210 * fetches, so execute=false here:
33a709b2 1211 */
d61172b4 1212 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1213 return false;
1214
d4925e00
DH
1215 return true;
1216}
1217
adc8cb40 1218/**
4bbd4c77 1219 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1220 * @mm: mm_struct of target mm
1221 * @address: user address
1222 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1223 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1224 * does not allow retry. If NULL, the caller must guarantee
1225 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1226 *
1227 * This is meant to be called in the specific scenario where for locking reasons
1228 * we try to access user memory in atomic context (within a pagefault_disable()
1229 * section), this returns -EFAULT, and we want to resolve the user fault before
1230 * trying again.
1231 *
1232 * Typically this is meant to be used by the futex code.
1233 *
1234 * The main difference with get_user_pages() is that this function will
1235 * unconditionally call handle_mm_fault() which will in turn perform all the
1236 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1237 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1238 *
1239 * This is important for some architectures where those bits also gate the
1240 * access permission to the page because they are maintained in software. On
1241 * such architectures, gup() will not be enough to make a subsequent access
1242 * succeed.
1243 *
c1e8d7c6
ML
1244 * This function will not return with an unlocked mmap_lock. So it has not the
1245 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1246 */
64019a2e 1247int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1248 unsigned long address, unsigned int fault_flags,
1249 bool *unlocked)
4bbd4c77
KS
1250{
1251 struct vm_area_struct *vma;
8fed2f3c 1252 vm_fault_t ret;
4a9e1cda 1253
428e106a 1254 address = untagged_addr_remote(mm, address);
f9652594 1255
4a9e1cda 1256 if (unlocked)
71335f37 1257 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1258
4a9e1cda 1259retry:
4bbd4c77
KS
1260 vma = find_extend_vma(mm, address);
1261 if (!vma || address < vma->vm_start)
1262 return -EFAULT;
1263
d4925e00 1264 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1265 return -EFAULT;
1266
475f4dfc
PX
1267 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1268 fatal_signal_pending(current))
1269 return -EINTR;
1270
bce617ed 1271 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
1272
1273 if (ret & VM_FAULT_COMPLETED) {
1274 /*
1275 * NOTE: it's a pity that we need to retake the lock here
1276 * to pair with the unlock() in the callers. Ideally we
1277 * could tell the callers so they do not need to unlock.
1278 */
1279 mmap_read_lock(mm);
1280 *unlocked = true;
1281 return 0;
1282 }
1283
4bbd4c77 1284 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1285 int err = vm_fault_to_errno(ret, 0);
1286
1287 if (err)
1288 return err;
4bbd4c77
KS
1289 BUG();
1290 }
4a9e1cda
DD
1291
1292 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1293 mmap_read_lock(mm);
475f4dfc
PX
1294 *unlocked = true;
1295 fault_flags |= FAULT_FLAG_TRIED;
1296 goto retry;
4a9e1cda
DD
1297 }
1298
4bbd4c77
KS
1299 return 0;
1300}
add6a0cd 1301EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1302
93c5c61d
PX
1303/*
1304 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1305 * specified, it'll also respond to generic signals. The caller of GUP
1306 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1307 */
1308static bool gup_signal_pending(unsigned int flags)
1309{
1310 if (fatal_signal_pending(current))
1311 return true;
1312
1313 if (!(flags & FOLL_INTERRUPTIBLE))
1314 return false;
1315
1316 return signal_pending(current);
1317}
1318
2d3a36a4 1319/*
b2a72dff
JG
1320 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1321 * the caller. This function may drop the mmap_lock. If it does so, then it will
1322 * set (*locked = 0).
1323 *
1324 * (*locked == 0) means that the caller expects this function to acquire and
1325 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1326 * the function returns, even though it may have changed temporarily during
1327 * function execution.
1328 *
1329 * Please note that this function, unlike __get_user_pages(), will not return 0
1330 * for nr_pages > 0, unless FOLL_NOWAIT is used.
2d3a36a4 1331 */
64019a2e 1332static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1333 unsigned long start,
1334 unsigned long nr_pages,
f0818f47 1335 struct page **pages,
e716712f 1336 int *locked,
0fd71a56 1337 unsigned int flags)
f0818f47 1338{
f0818f47 1339 long ret, pages_done;
b2a72dff 1340 bool must_unlock = false;
f0818f47 1341
b2a72dff
JG
1342 /*
1343 * The internal caller expects GUP to manage the lock internally and the
1344 * lock must be released when this returns.
1345 */
9a863a6a 1346 if (!*locked) {
b2a72dff
JG
1347 if (mmap_read_lock_killable(mm))
1348 return -EAGAIN;
1349 must_unlock = true;
1350 *locked = 1;
f0818f47 1351 }
961ba472
JG
1352 else
1353 mmap_assert_locked(mm);
f0818f47 1354
a458b76a
AA
1355 if (flags & FOLL_PIN)
1356 mm_set_has_pinned_flag(&mm->flags);
008cfe44 1357
eddb1c22
JH
1358 /*
1359 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1360 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1361 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1362 * for FOLL_GET, not for the newer FOLL_PIN.
1363 *
1364 * FOLL_PIN always expects pages to be non-null, but no need to assert
1365 * that here, as any failures will be obvious enough.
1366 */
1367 if (pages && !(flags & FOLL_PIN))
f0818f47 1368 flags |= FOLL_GET;
f0818f47
AA
1369
1370 pages_done = 0;
f0818f47 1371 for (;;) {
64019a2e 1372 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
b2cac248 1373 locked);
f04740f5 1374 if (!(flags & FOLL_UNLOCKABLE)) {
f0818f47 1375 /* VM_FAULT_RETRY couldn't trigger, bypass */
f04740f5
JG
1376 pages_done = ret;
1377 break;
1378 }
f0818f47 1379
d9272525 1380 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
f0818f47
AA
1381 if (!*locked) {
1382 BUG_ON(ret < 0);
1383 BUG_ON(ret >= nr_pages);
1384 }
1385
f0818f47
AA
1386 if (ret > 0) {
1387 nr_pages -= ret;
1388 pages_done += ret;
1389 if (!nr_pages)
1390 break;
1391 }
1392 if (*locked) {
96312e61
AA
1393 /*
1394 * VM_FAULT_RETRY didn't trigger or it was a
1395 * FOLL_NOWAIT.
1396 */
f0818f47
AA
1397 if (!pages_done)
1398 pages_done = ret;
1399 break;
1400 }
df17277b
MR
1401 /*
1402 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1403 * For the prefault case (!pages) we only update counts.
1404 */
1405 if (likely(pages))
1406 pages += ret;
f0818f47 1407 start += ret << PAGE_SHIFT;
b2a72dff
JG
1408
1409 /* The lock was temporarily dropped, so we must unlock later */
1410 must_unlock = true;
f0818f47 1411
4426e945 1412retry:
f0818f47
AA
1413 /*
1414 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1415 * with both FAULT_FLAG_ALLOW_RETRY and
1416 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
93c5c61d
PX
1417 * by fatal signals of even common signals, depending on
1418 * the caller's request. So we need to check it before we
4426e945 1419 * start trying again otherwise it can loop forever.
f0818f47 1420 */
93c5c61d 1421 if (gup_signal_pending(flags)) {
ae46d2aa
HD
1422 if (!pages_done)
1423 pages_done = -EINTR;
4426e945 1424 break;
ae46d2aa 1425 }
4426e945 1426
d8ed45c5 1427 ret = mmap_read_lock_killable(mm);
71335f37
PX
1428 if (ret) {
1429 BUG_ON(ret > 0);
1430 if (!pages_done)
1431 pages_done = ret;
1432 break;
1433 }
4426e945 1434
c7b6a566 1435 *locked = 1;
64019a2e 1436 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
b2cac248 1437 pages, locked);
4426e945
PX
1438 if (!*locked) {
1439 /* Continue to retry until we succeeded */
1440 BUG_ON(ret != 0);
1441 goto retry;
1442 }
f0818f47
AA
1443 if (ret != 1) {
1444 BUG_ON(ret > 1);
1445 if (!pages_done)
1446 pages_done = ret;
1447 break;
1448 }
1449 nr_pages--;
1450 pages_done++;
1451 if (!nr_pages)
1452 break;
df17277b
MR
1453 if (likely(pages))
1454 pages++;
f0818f47
AA
1455 start += PAGE_SIZE;
1456 }
b2a72dff 1457 if (must_unlock && *locked) {
f0818f47 1458 /*
b2a72dff
JG
1459 * We either temporarily dropped the lock, or the caller
1460 * requested that we both acquire and drop the lock. Either way,
1461 * we must now unlock, and notify the caller of that state.
f0818f47 1462 */
d8ed45c5 1463 mmap_read_unlock(mm);
f0818f47
AA
1464 *locked = 0;
1465 }
1466 return pages_done;
1467}
1468
d3649f68
CH
1469/**
1470 * populate_vma_page_range() - populate a range of pages in the vma.
1471 * @vma: target vma
1472 * @start: start address
1473 * @end: end address
c1e8d7c6 1474 * @locked: whether the mmap_lock is still held
d3649f68
CH
1475 *
1476 * This takes care of mlocking the pages too if VM_LOCKED is set.
1477 *
0a36f7f8
TY
1478 * Return either number of pages pinned in the vma, or a negative error
1479 * code on error.
d3649f68 1480 *
c1e8d7c6 1481 * vma->vm_mm->mmap_lock must be held.
d3649f68 1482 *
4f6da934 1483 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1484 * be unperturbed.
1485 *
4f6da934
PX
1486 * If @locked is non-NULL, it must held for read only and may be
1487 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1488 */
1489long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1490 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1491{
1492 struct mm_struct *mm = vma->vm_mm;
1493 unsigned long nr_pages = (end - start) / PAGE_SIZE;
9a863a6a 1494 int local_locked = 1;
d3649f68 1495 int gup_flags;
ece369c7 1496 long ret;
d3649f68 1497
be51eb18
ML
1498 VM_BUG_ON(!PAGE_ALIGNED(start));
1499 VM_BUG_ON(!PAGE_ALIGNED(end));
d3649f68
CH
1500 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1501 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1502 mmap_assert_locked(mm);
d3649f68 1503
b67bf49c
HD
1504 /*
1505 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1506 * faultin_page() to break COW, so it has no work to do here.
1507 */
d3649f68 1508 if (vma->vm_flags & VM_LOCKONFAULT)
b67bf49c
HD
1509 return nr_pages;
1510
1511 gup_flags = FOLL_TOUCH;
d3649f68
CH
1512 /*
1513 * We want to touch writable mappings with a write fault in order
1514 * to break COW, except for shared mappings because these don't COW
1515 * and we would not want to dirty them for nothing.
1516 */
1517 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1518 gup_flags |= FOLL_WRITE;
1519
1520 /*
1521 * We want mlock to succeed for regions that have any permissions
1522 * other than PROT_NONE.
1523 */
3122e80e 1524 if (vma_is_accessible(vma))
d3649f68
CH
1525 gup_flags |= FOLL_FORCE;
1526
f04740f5
JG
1527 if (locked)
1528 gup_flags |= FOLL_UNLOCKABLE;
1529
d3649f68
CH
1530 /*
1531 * We made sure addr is within a VMA, so the following will
1532 * not result in a stack expansion that recurses back here.
1533 */
ece369c7 1534 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
b2cac248 1535 NULL, locked ? locked : &local_locked);
ece369c7
HD
1536 lru_add_drain();
1537 return ret;
d3649f68
CH
1538}
1539
4ca9b385
DH
1540/*
1541 * faultin_vma_page_range() - populate (prefault) page tables inside the
1542 * given VMA range readable/writable
1543 *
1544 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1545 *
1546 * @vma: target vma
1547 * @start: start address
1548 * @end: end address
1549 * @write: whether to prefault readable or writable
1550 * @locked: whether the mmap_lock is still held
1551 *
1552 * Returns either number of processed pages in the vma, or a negative error
1553 * code on error (see __get_user_pages()).
1554 *
1555 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
6e4382c7 1556 * covered by the VMA. If it's released, *@locked will be set to 0.
4ca9b385
DH
1557 */
1558long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1559 unsigned long end, bool write, int *locked)
1560{
1561 struct mm_struct *mm = vma->vm_mm;
1562 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1563 int gup_flags;
ece369c7 1564 long ret;
4ca9b385
DH
1565
1566 VM_BUG_ON(!PAGE_ALIGNED(start));
1567 VM_BUG_ON(!PAGE_ALIGNED(end));
1568 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1569 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1570 mmap_assert_locked(mm);
1571
1572 /*
1573 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1574 * the page dirty with FOLL_WRITE -- which doesn't make a
1575 * difference with !FOLL_FORCE, because the page is writable
1576 * in the page table.
1577 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1578 * a poisoned page.
4ca9b385
DH
1579 * !FOLL_FORCE: Require proper access permissions.
1580 */
f04740f5 1581 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE;
4ca9b385
DH
1582 if (write)
1583 gup_flags |= FOLL_WRITE;
1584
1585 /*
eb2faa51
DH
1586 * We want to report -EINVAL instead of -EFAULT for any permission
1587 * problems or incompatible mappings.
4ca9b385 1588 */
eb2faa51
DH
1589 if (check_vma_flags(vma, gup_flags))
1590 return -EINVAL;
1591
ece369c7 1592 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
b2cac248 1593 NULL, locked);
ece369c7
HD
1594 lru_add_drain();
1595 return ret;
4ca9b385
DH
1596}
1597
d3649f68
CH
1598/*
1599 * __mm_populate - populate and/or mlock pages within a range of address space.
1600 *
1601 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1602 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 1603 * mmap_lock must not be held.
d3649f68
CH
1604 */
1605int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1606{
1607 struct mm_struct *mm = current->mm;
1608 unsigned long end, nstart, nend;
1609 struct vm_area_struct *vma = NULL;
1610 int locked = 0;
1611 long ret = 0;
1612
1613 end = start + len;
1614
1615 for (nstart = start; nstart < end; nstart = nend) {
1616 /*
1617 * We want to fault in pages for [nstart; end) address range.
1618 * Find first corresponding VMA.
1619 */
1620 if (!locked) {
1621 locked = 1;
d8ed45c5 1622 mmap_read_lock(mm);
c4d1a92d 1623 vma = find_vma_intersection(mm, nstart, end);
d3649f68 1624 } else if (nstart >= vma->vm_end)
c4d1a92d
LH
1625 vma = find_vma_intersection(mm, vma->vm_end, end);
1626
1627 if (!vma)
d3649f68
CH
1628 break;
1629 /*
1630 * Set [nstart; nend) to intersection of desired address
1631 * range with the first VMA. Also, skip undesirable VMA types.
1632 */
1633 nend = min(end, vma->vm_end);
1634 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1635 continue;
1636 if (nstart < vma->vm_start)
1637 nstart = vma->vm_start;
1638 /*
1639 * Now fault in a range of pages. populate_vma_page_range()
1640 * double checks the vma flags, so that it won't mlock pages
1641 * if the vma was already munlocked.
1642 */
1643 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1644 if (ret < 0) {
1645 if (ignore_errors) {
1646 ret = 0;
1647 continue; /* continue at next VMA */
1648 }
1649 break;
1650 }
1651 nend = nstart + ret * PAGE_SIZE;
1652 ret = 0;
1653 }
1654 if (locked)
d8ed45c5 1655 mmap_read_unlock(mm);
d3649f68
CH
1656 return ret; /* 0 or negative error code */
1657}
050a9adc 1658#else /* CONFIG_MMU */
64019a2e 1659static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc 1660 unsigned long nr_pages, struct page **pages,
b2cac248 1661 int *locked, unsigned int foll_flags)
050a9adc
CH
1662{
1663 struct vm_area_struct *vma;
b2a72dff 1664 bool must_unlock = false;
050a9adc 1665 unsigned long vm_flags;
24dc20c7 1666 long i;
050a9adc 1667
b2a72dff
JG
1668 if (!nr_pages)
1669 return 0;
1670
1671 /*
1672 * The internal caller expects GUP to manage the lock internally and the
1673 * lock must be released when this returns.
1674 */
9a863a6a 1675 if (!*locked) {
b2a72dff
JG
1676 if (mmap_read_lock_killable(mm))
1677 return -EAGAIN;
1678 must_unlock = true;
1679 *locked = 1;
1680 }
1681
050a9adc
CH
1682 /* calculate required read or write permissions.
1683 * If FOLL_FORCE is set, we only require the "MAY" flags.
1684 */
1685 vm_flags = (foll_flags & FOLL_WRITE) ?
1686 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1687 vm_flags &= (foll_flags & FOLL_FORCE) ?
1688 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1689
1690 for (i = 0; i < nr_pages; i++) {
1691 vma = find_vma(mm, start);
1692 if (!vma)
b2a72dff 1693 break;
050a9adc
CH
1694
1695 /* protect what we can, including chardevs */
1696 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1697 !(vm_flags & vma->vm_flags))
b2a72dff 1698 break;
050a9adc
CH
1699
1700 if (pages) {
396a400b 1701 pages[i] = virt_to_page((void *)start);
050a9adc
CH
1702 if (pages[i])
1703 get_page(pages[i]);
1704 }
b2cac248 1705
050a9adc
CH
1706 start = (start + PAGE_SIZE) & PAGE_MASK;
1707 }
1708
b2a72dff
JG
1709 if (must_unlock && *locked) {
1710 mmap_read_unlock(mm);
1711 *locked = 0;
1712 }
050a9adc 1713
050a9adc
CH
1714 return i ? : -EFAULT;
1715}
1716#endif /* !CONFIG_MMU */
d3649f68 1717
bb523b40
AG
1718/**
1719 * fault_in_writeable - fault in userspace address range for writing
1720 * @uaddr: start of address range
1721 * @size: size of address range
1722 *
1723 * Returns the number of bytes not faulted in (like copy_to_user() and
1724 * copy_from_user()).
1725 */
1726size_t fault_in_writeable(char __user *uaddr, size_t size)
1727{
1728 char __user *start = uaddr, *end;
1729
1730 if (unlikely(size == 0))
1731 return 0;
677b2a8c
CL
1732 if (!user_write_access_begin(uaddr, size))
1733 return size;
bb523b40 1734 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1735 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1736 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1737 }
1738 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1739 if (unlikely(end < start))
1740 end = NULL;
1741 while (uaddr != end) {
677b2a8c 1742 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1743 uaddr += PAGE_SIZE;
1744 }
1745
1746out:
677b2a8c 1747 user_write_access_end();
bb523b40
AG
1748 if (size > uaddr - start)
1749 return size - (uaddr - start);
1750 return 0;
1751}
1752EXPORT_SYMBOL(fault_in_writeable);
1753
da32b581
CM
1754/**
1755 * fault_in_subpage_writeable - fault in an address range for writing
1756 * @uaddr: start of address range
1757 * @size: size of address range
1758 *
1759 * Fault in a user address range for writing while checking for permissions at
1760 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1761 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1762 *
1763 * Returns the number of bytes not faulted in (like copy_to_user() and
1764 * copy_from_user()).
1765 */
1766size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1767{
1768 size_t faulted_in;
1769
1770 /*
1771 * Attempt faulting in at page granularity first for page table
1772 * permission checking. The arch-specific probe_subpage_writeable()
1773 * functions may not check for this.
1774 */
1775 faulted_in = size - fault_in_writeable(uaddr, size);
1776 if (faulted_in)
1777 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1778
1779 return size - faulted_in;
1780}
1781EXPORT_SYMBOL(fault_in_subpage_writeable);
1782
cdd591fc
AG
1783/*
1784 * fault_in_safe_writeable - fault in an address range for writing
1785 * @uaddr: start of address range
1786 * @size: length of address range
1787 *
fe673d3f
LT
1788 * Faults in an address range for writing. This is primarily useful when we
1789 * already know that some or all of the pages in the address range aren't in
1790 * memory.
cdd591fc 1791 *
fe673d3f 1792 * Unlike fault_in_writeable(), this function is non-destructive.
cdd591fc
AG
1793 *
1794 * Note that we don't pin or otherwise hold the pages referenced that we fault
1795 * in. There's no guarantee that they'll stay in memory for any duration of
1796 * time.
1797 *
1798 * Returns the number of bytes not faulted in, like copy_to_user() and
1799 * copy_from_user().
1800 */
1801size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1802{
fe673d3f 1803 unsigned long start = (unsigned long)uaddr, end;
cdd591fc 1804 struct mm_struct *mm = current->mm;
fe673d3f 1805 bool unlocked = false;
cdd591fc 1806
fe673d3f
LT
1807 if (unlikely(size == 0))
1808 return 0;
cdd591fc 1809 end = PAGE_ALIGN(start + size);
fe673d3f 1810 if (end < start)
cdd591fc 1811 end = 0;
cdd591fc 1812
fe673d3f
LT
1813 mmap_read_lock(mm);
1814 do {
1815 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
cdd591fc 1816 break;
fe673d3f
LT
1817 start = (start + PAGE_SIZE) & PAGE_MASK;
1818 } while (start != end);
1819 mmap_read_unlock(mm);
1820
1821 if (size > (unsigned long)uaddr - start)
1822 return size - ((unsigned long)uaddr - start);
1823 return 0;
cdd591fc
AG
1824}
1825EXPORT_SYMBOL(fault_in_safe_writeable);
1826
bb523b40
AG
1827/**
1828 * fault_in_readable - fault in userspace address range for reading
1829 * @uaddr: start of user address range
1830 * @size: size of user address range
1831 *
1832 * Returns the number of bytes not faulted in (like copy_to_user() and
1833 * copy_from_user()).
1834 */
1835size_t fault_in_readable(const char __user *uaddr, size_t size)
1836{
1837 const char __user *start = uaddr, *end;
1838 volatile char c;
1839
1840 if (unlikely(size == 0))
1841 return 0;
677b2a8c
CL
1842 if (!user_read_access_begin(uaddr, size))
1843 return size;
bb523b40 1844 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1845 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1846 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1847 }
1848 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1849 if (unlikely(end < start))
1850 end = NULL;
1851 while (uaddr != end) {
677b2a8c 1852 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1853 uaddr += PAGE_SIZE;
1854 }
1855
1856out:
677b2a8c 1857 user_read_access_end();
bb523b40
AG
1858 (void)c;
1859 if (size > uaddr - start)
1860 return size - (uaddr - start);
1861 return 0;
1862}
1863EXPORT_SYMBOL(fault_in_readable);
1864
8f942eea
JH
1865/**
1866 * get_dump_page() - pin user page in memory while writing it to core dump
1867 * @addr: user address
1868 *
1869 * Returns struct page pointer of user page pinned for dump,
1870 * to be freed afterwards by put_page().
1871 *
1872 * Returns NULL on any kind of failure - a hole must then be inserted into
1873 * the corefile, to preserve alignment with its headers; and also returns
1874 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
f0953a1b 1875 * allowing a hole to be left in the corefile to save disk space.
8f942eea 1876 *
7f3bfab5 1877 * Called without mmap_lock (takes and releases the mmap_lock by itself).
8f942eea
JH
1878 */
1879#ifdef CONFIG_ELF_CORE
1880struct page *get_dump_page(unsigned long addr)
1881{
8f942eea 1882 struct page *page;
b2a72dff 1883 int locked = 0;
7f3bfab5 1884 int ret;
8f942eea 1885
b2cac248 1886 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
7f3bfab5 1887 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
7f3bfab5 1888 return (ret == 1) ? page : NULL;
8f942eea
JH
1889}
1890#endif /* CONFIG_ELF_CORE */
1891
d1e153fe 1892#ifdef CONFIG_MIGRATION
f68749ec 1893/*
67e139b0 1894 * Returns the number of collected pages. Return value is always >= 0.
f68749ec 1895 */
67e139b0
AP
1896static unsigned long collect_longterm_unpinnable_pages(
1897 struct list_head *movable_page_list,
1898 unsigned long nr_pages,
1899 struct page **pages)
9a4e9f3b 1900{
67e139b0 1901 unsigned long i, collected = 0;
1b7f7e58 1902 struct folio *prev_folio = NULL;
67e139b0 1903 bool drain_allow = true;
9a4e9f3b 1904
83c02c23 1905 for (i = 0; i < nr_pages; i++) {
1b7f7e58 1906 struct folio *folio = page_folio(pages[i]);
f9f38f78 1907
1b7f7e58 1908 if (folio == prev_folio)
83c02c23 1909 continue;
1b7f7e58 1910 prev_folio = folio;
f9f38f78 1911
67e139b0
AP
1912 if (folio_is_longterm_pinnable(folio))
1913 continue;
b05a79d4 1914
67e139b0 1915 collected++;
b05a79d4 1916
67e139b0 1917 if (folio_is_device_coherent(folio))
f9f38f78
CH
1918 continue;
1919
1b7f7e58 1920 if (folio_test_hugetlb(folio)) {
6aa3a920 1921 isolate_hugetlb(folio, movable_page_list);
f9f38f78
CH
1922 continue;
1923 }
9a4e9f3b 1924
1b7f7e58 1925 if (!folio_test_lru(folio) && drain_allow) {
f9f38f78
CH
1926 lru_add_drain_all();
1927 drain_allow = false;
1928 }
1929
be2d5756 1930 if (!folio_isolate_lru(folio))
f9f38f78 1931 continue;
67e139b0
AP
1932
1933 list_add_tail(&folio->lru, movable_page_list);
1b7f7e58
MWO
1934 node_stat_mod_folio(folio,
1935 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1936 folio_nr_pages(folio));
9a4e9f3b
AK
1937 }
1938
67e139b0
AP
1939 return collected;
1940}
1941
1942/*
1943 * Unpins all pages and migrates device coherent pages and movable_page_list.
1944 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
1945 * (or partial success).
1946 */
1947static int migrate_longterm_unpinnable_pages(
1948 struct list_head *movable_page_list,
1949 unsigned long nr_pages,
1950 struct page **pages)
1951{
1952 int ret;
1953 unsigned long i;
6e7f34eb 1954
b05a79d4 1955 for (i = 0; i < nr_pages; i++) {
67e139b0
AP
1956 struct folio *folio = page_folio(pages[i]);
1957
1958 if (folio_is_device_coherent(folio)) {
1959 /*
1960 * Migration will fail if the page is pinned, so convert
1961 * the pin on the source page to a normal reference.
1962 */
1963 pages[i] = NULL;
1964 folio_get(folio);
1965 gup_put_folio(folio, 1, FOLL_PIN);
1966
1967 if (migrate_device_coherent_page(&folio->page)) {
1968 ret = -EBUSY;
1969 goto err;
1970 }
1971
b05a79d4 1972 continue;
67e139b0 1973 }
b05a79d4 1974
67e139b0
AP
1975 /*
1976 * We can't migrate pages with unexpected references, so drop
1977 * the reference obtained by __get_user_pages_locked().
1978 * Migrating pages have been added to movable_page_list after
1979 * calling folio_isolate_lru() which takes a reference so the
1980 * page won't be freed if it's migrating.
1981 */
f6d299ec 1982 unpin_user_page(pages[i]);
67e139b0 1983 pages[i] = NULL;
f68749ec 1984 }
f9f38f78 1985
67e139b0 1986 if (!list_empty(movable_page_list)) {
f9f38f78
CH
1987 struct migration_target_control mtc = {
1988 .nid = NUMA_NO_NODE,
1989 .gfp_mask = GFP_USER | __GFP_NOWARN,
1990 };
1991
67e139b0
AP
1992 if (migrate_pages(movable_page_list, alloc_migration_target,
1993 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1994 MR_LONGTERM_PIN, NULL)) {
f9f38f78 1995 ret = -ENOMEM;
67e139b0
AP
1996 goto err;
1997 }
9a4e9f3b
AK
1998 }
1999
67e139b0
AP
2000 putback_movable_pages(movable_page_list);
2001
2002 return -EAGAIN;
2003
2004err:
2005 for (i = 0; i < nr_pages; i++)
2006 if (pages[i])
2007 unpin_user_page(pages[i]);
2008 putback_movable_pages(movable_page_list);
24a95998 2009
67e139b0
AP
2010 return ret;
2011}
2012
2013/*
2014 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2015 * pages in the range are required to be pinned via FOLL_PIN, before calling
2016 * this routine.
2017 *
2018 * If any pages in the range are not allowed to be pinned, then this routine
2019 * will migrate those pages away, unpin all the pages in the range and return
2020 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2021 * call this routine again.
2022 *
2023 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2024 * The caller should give up, and propagate the error back up the call stack.
2025 *
2026 * If everything is OK and all pages in the range are allowed to be pinned, then
2027 * this routine leaves all pages pinned and returns zero for success.
2028 */
2029static long check_and_migrate_movable_pages(unsigned long nr_pages,
2030 struct page **pages)
2031{
2032 unsigned long collected;
2033 LIST_HEAD(movable_page_list);
2034
2035 collected = collect_longterm_unpinnable_pages(&movable_page_list,
2036 nr_pages, pages);
2037 if (!collected)
2038 return 0;
2039
2040 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2041 pages);
9a4e9f3b
AK
2042}
2043#else
f68749ec 2044static long check_and_migrate_movable_pages(unsigned long nr_pages,
f6d299ec 2045 struct page **pages)
9a4e9f3b 2046{
24a95998 2047 return 0;
9a4e9f3b 2048}
d1e153fe 2049#endif /* CONFIG_MIGRATION */
9a4e9f3b 2050
2bb6d283 2051/*
932f4a63
IW
2052 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2053 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 2054 */
64019a2e 2055static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
2056 unsigned long start,
2057 unsigned long nr_pages,
2058 struct page **pages,
53b2d09b 2059 int *locked,
932f4a63 2060 unsigned int gup_flags)
2bb6d283 2061{
f68749ec 2062 unsigned int flags;
24a95998 2063 long rc, nr_pinned_pages;
2bb6d283 2064
f68749ec 2065 if (!(gup_flags & FOLL_LONGTERM))
b2cac248 2066 return __get_user_pages_locked(mm, start, nr_pages, pages,
53b2d09b 2067 locked, gup_flags);
67e139b0 2068
f68749ec
PT
2069 flags = memalloc_pin_save();
2070 do {
24a95998 2071 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
b2cac248 2072 pages, locked,
24a95998
AP
2073 gup_flags);
2074 if (nr_pinned_pages <= 0) {
2075 rc = nr_pinned_pages;
f68749ec 2076 break;
24a95998 2077 }
d64e2dbc
JG
2078
2079 /* FOLL_LONGTERM implies FOLL_PIN */
f6d299ec 2080 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
24a95998 2081 } while (rc == -EAGAIN);
f68749ec 2082 memalloc_pin_restore(flags);
24a95998 2083 return rc ? rc : nr_pinned_pages;
2bb6d283 2084}
932f4a63 2085
d64e2dbc
JG
2086/*
2087 * Check that the given flags are valid for the exported gup/pup interface, and
2088 * update them with the required flags that the caller must have set.
2089 */
b2cac248
LS
2090static bool is_valid_gup_args(struct page **pages, int *locked,
2091 unsigned int *gup_flags_p, unsigned int to_set)
447f3e45 2092{
d64e2dbc
JG
2093 unsigned int gup_flags = *gup_flags_p;
2094
447f3e45 2095 /*
d64e2dbc
JG
2096 * These flags not allowed to be specified externally to the gup
2097 * interfaces:
2098 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2099 * - FOLL_REMOTE is internal only and used on follow_page()
f04740f5 2100 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
447f3e45 2101 */
f04740f5 2102 if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE |
d64e2dbc
JG
2103 FOLL_REMOTE | FOLL_FAST_ONLY)))
2104 return false;
2105
2106 gup_flags |= to_set;
f04740f5
JG
2107 if (locked) {
2108 /* At the external interface locked must be set */
2109 if (WARN_ON_ONCE(*locked != 1))
2110 return false;
2111
2112 gup_flags |= FOLL_UNLOCKABLE;
2113 }
d64e2dbc
JG
2114
2115 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2116 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2117 (FOLL_PIN | FOLL_GET)))
2118 return false;
2119
2120 /* LONGTERM can only be specified when pinning */
2121 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2122 return false;
2123
2124 /* Pages input must be given if using GET/PIN */
2125 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
447f3e45 2126 return false;
d64e2dbc 2127
d64e2dbc
JG
2128 /* We want to allow the pgmap to be hot-unplugged at all times */
2129 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2130 (gup_flags & FOLL_PCI_P2PDMA)))
2131 return false;
2132
d64e2dbc 2133 *gup_flags_p = gup_flags;
447f3e45
BS
2134 return true;
2135}
2136
22bf29b6 2137#ifdef CONFIG_MMU
adc8cb40 2138/**
c4237f8b 2139 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
2140 * @mm: mm_struct of target mm
2141 * @start: starting user address
2142 * @nr_pages: number of pages from start to pin
2143 * @gup_flags: flags modifying lookup behaviour
2144 * @pages: array that receives pointers to the pages pinned.
2145 * Should be at least nr_pages long. Or NULL, if caller
2146 * only intends to ensure the pages are faulted in.
c4237f8b
JH
2147 * @locked: pointer to lock flag indicating whether lock is held and
2148 * subsequently whether VM_FAULT_RETRY functionality can be
2149 * utilised. Lock must initially be held.
2150 *
2151 * Returns either number of pages pinned (which may be less than the
2152 * number requested), or an error. Details about the return value:
2153 *
2154 * -- If nr_pages is 0, returns 0.
2155 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2156 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2157 * pages pinned. Again, this may be less than nr_pages.
2158 *
2159 * The caller is responsible for releasing returned @pages, via put_page().
2160 *
c1e8d7c6 2161 * Must be called with mmap_lock held for read or write.
c4237f8b 2162 *
adc8cb40
SJ
2163 * get_user_pages_remote walks a process's page tables and takes a reference
2164 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
2165 * instant. That is, it takes the page that would be accessed if a user
2166 * thread accesses the given user virtual address at that instant.
2167 *
2168 * This does not guarantee that the page exists in the user mappings when
adc8cb40 2169 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b 2170 * page there in some cases (eg. if mmapped pagecache has been invalidated
5da1a868 2171 * and subsequently re-faulted). However it does guarantee that the page
c4237f8b
JH
2172 * won't be freed completely. And mostly callers simply care that the page
2173 * contains data that was valid *at some point in time*. Typically, an IO
2174 * or similar operation cannot guarantee anything stronger anyway because
2175 * locks can't be held over the syscall boundary.
2176 *
2177 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2178 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2179 * be called after the page is finished with, and before put_page is called.
2180 *
adc8cb40
SJ
2181 * get_user_pages_remote is typically used for fewer-copy IO operations,
2182 * to get a handle on the memory by some means other than accesses
2183 * via the user virtual addresses. The pages may be submitted for
2184 * DMA to devices or accessed via their kernel linear mapping (via the
2185 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
2186 *
2187 * See also get_user_pages_fast, for performance critical applications.
2188 *
adc8cb40 2189 * get_user_pages_remote should be phased out in favor of
c4237f8b 2190 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 2191 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
2192 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2193 */
64019a2e 2194long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
2195 unsigned long start, unsigned long nr_pages,
2196 unsigned int gup_flags, struct page **pages,
ca5e8632 2197 int *locked)
c4237f8b 2198{
9a863a6a
JG
2199 int local_locked = 1;
2200
b2cac248 2201 if (!is_valid_gup_args(pages, locked, &gup_flags,
d64e2dbc 2202 FOLL_TOUCH | FOLL_REMOTE))
eddb1c22
JH
2203 return -EINVAL;
2204
b2cac248 2205 return __get_user_pages_locked(mm, start, nr_pages, pages,
9a863a6a 2206 locked ? locked : &local_locked,
d64e2dbc 2207 gup_flags);
c4237f8b
JH
2208}
2209EXPORT_SYMBOL(get_user_pages_remote);
2210
eddb1c22 2211#else /* CONFIG_MMU */
64019a2e 2212long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2213 unsigned long start, unsigned long nr_pages,
2214 unsigned int gup_flags, struct page **pages,
ca5e8632 2215 int *locked)
eddb1c22
JH
2216{
2217 return 0;
2218}
2219#endif /* !CONFIG_MMU */
2220
adc8cb40
SJ
2221/**
2222 * get_user_pages() - pin user pages in memory
2223 * @start: starting user address
2224 * @nr_pages: number of pages from start to pin
2225 * @gup_flags: flags modifying lookup behaviour
2226 * @pages: array that receives pointers to the pages pinned.
2227 * Should be at least nr_pages long. Or NULL, if caller
2228 * only intends to ensure the pages are faulted in.
adc8cb40 2229 *
64019a2e
PX
2230 * This is the same as get_user_pages_remote(), just with a less-flexible
2231 * calling convention where we assume that the mm being operated on belongs to
2232 * the current task, and doesn't allow passing of a locked parameter. We also
2233 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
2234 */
2235long get_user_pages(unsigned long start, unsigned long nr_pages,
54d02069 2236 unsigned int gup_flags, struct page **pages)
932f4a63 2237{
9a863a6a
JG
2238 int locked = 1;
2239
b2cac248 2240 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
eddb1c22
JH
2241 return -EINVAL;
2242
afa3c33e 2243 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
b2cac248 2244 &locked, gup_flags);
932f4a63
IW
2245}
2246EXPORT_SYMBOL(get_user_pages);
2bb6d283 2247
acc3c8d1 2248/*
d3649f68 2249 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 2250 *
3e4e28c5 2251 * mmap_read_lock(mm);
64019a2e 2252 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 2253 * mmap_read_unlock(mm);
d3649f68
CH
2254 *
2255 * with:
2256 *
64019a2e 2257 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
2258 *
2259 * It is functionally equivalent to get_user_pages_fast so
2260 * get_user_pages_fast should be used instead if specific gup_flags
2261 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 2262 */
d3649f68
CH
2263long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2264 struct page **pages, unsigned int gup_flags)
acc3c8d1 2265{
b2a72dff 2266 int locked = 0;
acc3c8d1 2267
b2cac248 2268 if (!is_valid_gup_args(pages, NULL, &gup_flags,
f04740f5 2269 FOLL_TOUCH | FOLL_UNLOCKABLE))
d64e2dbc
JG
2270 return -EINVAL;
2271
afa3c33e 2272 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
b2cac248 2273 &locked, gup_flags);
4bbd4c77 2274}
d3649f68 2275EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
2276
2277/*
67a929e0 2278 * Fast GUP
2667f50e
SC
2279 *
2280 * get_user_pages_fast attempts to pin user pages by walking the page
2281 * tables directly and avoids taking locks. Thus the walker needs to be
2282 * protected from page table pages being freed from under it, and should
2283 * block any THP splits.
2284 *
2285 * One way to achieve this is to have the walker disable interrupts, and
2286 * rely on IPIs from the TLB flushing code blocking before the page table
2287 * pages are freed. This is unsuitable for architectures that do not need
2288 * to broadcast an IPI when invalidating TLBs.
2289 *
2290 * Another way to achieve this is to batch up page table containing pages
2291 * belonging to more than one mm_user, then rcu_sched a callback to free those
2292 * pages. Disabling interrupts will allow the fast_gup walker to both block
2293 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2294 * (which is a relatively rare event). The code below adopts this strategy.
2295 *
2296 * Before activating this code, please be aware that the following assumptions
2297 * are currently made:
2298 *
ff2e6d72 2299 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2300 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2301 *
2667f50e
SC
2302 * *) ptes can be read atomically by the architecture.
2303 *
2304 * *) access_ok is sufficient to validate userspace address ranges.
2305 *
2306 * The last two assumptions can be relaxed by the addition of helper functions.
2307 *
2308 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2309 */
67a929e0 2310#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0 2311
790c7369 2312static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 2313 unsigned int flags,
790c7369 2314 struct page **pages)
b59f65fa
KS
2315{
2316 while ((*nr) - nr_start) {
2317 struct page *page = pages[--(*nr)];
2318
2319 ClearPageReferenced(page);
3faa52c0
JH
2320 if (flags & FOLL_PIN)
2321 unpin_user_page(page);
2322 else
2323 put_page(page);
b59f65fa
KS
2324 }
2325}
2326
3010a5ea 2327#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
70cbc3cc
YS
2328/*
2329 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2330 * operations.
2331 *
2332 * To pin the page, fast-gup needs to do below in order:
2333 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2334 *
2335 * For the rest of pgtable operations where pgtable updates can be racy
2336 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2337 * is pinned.
2338 *
2339 * Above will work for all pte-level operations, including THP split.
2340 *
2341 * For THP collapse, it's a bit more complicated because fast-gup may be
2342 * walking a pgtable page that is being freed (pte is still valid but pmd
2343 * can be cleared already). To avoid race in such condition, we need to
2344 * also check pmd here to make sure pmd doesn't change (corresponds to
2345 * pmdp_collapse_flush() in the THP collapse code path).
2346 */
2347static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2348 unsigned long end, unsigned int flags,
2349 struct page **pages, int *nr)
2667f50e 2350{
b59f65fa
KS
2351 struct dev_pagemap *pgmap = NULL;
2352 int nr_start = *nr, ret = 0;
2667f50e 2353 pte_t *ptep, *ptem;
2667f50e
SC
2354
2355 ptem = ptep = pte_offset_map(&pmd, addr);
2356 do {
2a4a06da 2357 pte_t pte = ptep_get_lockless(ptep);
b0496fe4
MWO
2358 struct page *page;
2359 struct folio *folio;
2667f50e 2360
0cf45986 2361 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
e7884f8e
KS
2362 goto pte_unmap;
2363
b798bec4 2364 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2365 goto pte_unmap;
2366
b59f65fa 2367 if (pte_devmap(pte)) {
7af75561
IW
2368 if (unlikely(flags & FOLL_LONGTERM))
2369 goto pte_unmap;
2370
b59f65fa
KS
2371 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2372 if (unlikely(!pgmap)) {
3b78d834 2373 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2374 goto pte_unmap;
2375 }
2376 } else if (pte_special(pte))
2667f50e
SC
2377 goto pte_unmap;
2378
2379 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2380 page = pte_page(pte);
2381
b0496fe4
MWO
2382 folio = try_grab_folio(page, 1, flags);
2383 if (!folio)
2667f50e
SC
2384 goto pte_unmap;
2385
1507f512 2386 if (unlikely(page_is_secretmem(page))) {
b0496fe4 2387 gup_put_folio(folio, 1, flags);
1507f512
MR
2388 goto pte_unmap;
2389 }
2390
70cbc3cc
YS
2391 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2392 unlikely(pte_val(pte) != pte_val(*ptep))) {
b0496fe4 2393 gup_put_folio(folio, 1, flags);
2667f50e
SC
2394 goto pte_unmap;
2395 }
2396
84209e87 2397 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
a7f22660
DH
2398 gup_put_folio(folio, 1, flags);
2399 goto pte_unmap;
2400 }
2401
f28d4363
CI
2402 /*
2403 * We need to make the page accessible if and only if we are
2404 * going to access its content (the FOLL_PIN case). Please
2405 * see Documentation/core-api/pin_user_pages.rst for
2406 * details.
2407 */
2408 if (flags & FOLL_PIN) {
2409 ret = arch_make_page_accessible(page);
2410 if (ret) {
b0496fe4 2411 gup_put_folio(folio, 1, flags);
f28d4363
CI
2412 goto pte_unmap;
2413 }
2414 }
b0496fe4 2415 folio_set_referenced(folio);
2667f50e
SC
2416 pages[*nr] = page;
2417 (*nr)++;
2667f50e
SC
2418 } while (ptep++, addr += PAGE_SIZE, addr != end);
2419
2420 ret = 1;
2421
2422pte_unmap:
832d7aa0
CH
2423 if (pgmap)
2424 put_dev_pagemap(pgmap);
2667f50e
SC
2425 pte_unmap(ptem);
2426 return ret;
2427}
2428#else
2429
2430/*
2431 * If we can't determine whether or not a pte is special, then fail immediately
2432 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2433 * to be special.
2434 *
2435 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 2436 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2667f50e
SC
2437 * useful to have gup_huge_pmd even if we can't operate on ptes.
2438 */
70cbc3cc
YS
2439static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2440 unsigned long end, unsigned int flags,
2441 struct page **pages, int *nr)
2667f50e
SC
2442{
2443 return 0;
2444}
3010a5ea 2445#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2446
17596731 2447#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 2448static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
2449 unsigned long end, unsigned int flags,
2450 struct page **pages, int *nr)
b59f65fa
KS
2451{
2452 int nr_start = *nr;
2453 struct dev_pagemap *pgmap = NULL;
2454
2455 do {
2456 struct page *page = pfn_to_page(pfn);
2457
2458 pgmap = get_dev_pagemap(pfn, pgmap);
2459 if (unlikely(!pgmap)) {
3b78d834 2460 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2461 break;
b59f65fa 2462 }
4003f107
LG
2463
2464 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2465 undo_dev_pagemap(nr, nr_start, flags, pages);
2466 break;
2467 }
2468
b59f65fa
KS
2469 SetPageReferenced(page);
2470 pages[*nr] = page;
0f089235 2471 if (unlikely(try_grab_page(page, flags))) {
3faa52c0 2472 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2473 break;
3faa52c0 2474 }
b59f65fa
KS
2475 (*nr)++;
2476 pfn++;
2477 } while (addr += PAGE_SIZE, addr != end);
832d7aa0 2478
6401c4eb 2479 put_dev_pagemap(pgmap);
20b7fee7 2480 return addr == end;
b59f65fa
KS
2481}
2482
a9b6de77 2483static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2484 unsigned long end, unsigned int flags,
2485 struct page **pages, int *nr)
b59f65fa
KS
2486{
2487 unsigned long fault_pfn;
a9b6de77
DW
2488 int nr_start = *nr;
2489
2490 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 2491 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2492 return 0;
b59f65fa 2493
a9b6de77 2494 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2495 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2496 return 0;
2497 }
2498 return 1;
b59f65fa
KS
2499}
2500
a9b6de77 2501static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2502 unsigned long end, unsigned int flags,
2503 struct page **pages, int *nr)
b59f65fa
KS
2504{
2505 unsigned long fault_pfn;
a9b6de77
DW
2506 int nr_start = *nr;
2507
2508 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 2509 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2510 return 0;
b59f65fa 2511
a9b6de77 2512 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2513 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2514 return 0;
2515 }
2516 return 1;
b59f65fa
KS
2517}
2518#else
a9b6de77 2519static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2520 unsigned long end, unsigned int flags,
2521 struct page **pages, int *nr)
b59f65fa
KS
2522{
2523 BUILD_BUG();
2524 return 0;
2525}
2526
a9b6de77 2527static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2528 unsigned long end, unsigned int flags,
2529 struct page **pages, int *nr)
b59f65fa
KS
2530{
2531 BUILD_BUG();
2532 return 0;
2533}
2534#endif
2535
a43e9820
JH
2536static int record_subpages(struct page *page, unsigned long addr,
2537 unsigned long end, struct page **pages)
2538{
2539 int nr;
2540
c228afb1
MWO
2541 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2542 pages[nr] = nth_page(page, nr);
a43e9820
JH
2543
2544 return nr;
2545}
2546
cbd34da7
CH
2547#ifdef CONFIG_ARCH_HAS_HUGEPD
2548static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2549 unsigned long sz)
2550{
2551 unsigned long __boundary = (addr + sz) & ~(sz-1);
2552 return (__boundary - 1 < end - 1) ? __boundary : end;
2553}
2554
2555static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2556 unsigned long end, unsigned int flags,
2557 struct page **pages, int *nr)
cbd34da7
CH
2558{
2559 unsigned long pte_end;
09a1626e
MWO
2560 struct page *page;
2561 struct folio *folio;
cbd34da7
CH
2562 pte_t pte;
2563 int refs;
2564
2565 pte_end = (addr + sz) & ~(sz-1);
2566 if (pte_end < end)
2567 end = pte_end;
2568
55ca2263 2569 pte = huge_ptep_get(ptep);
cbd34da7 2570
0cd22afd 2571 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2572 return 0;
2573
2574 /* hugepages are never "special" */
2575 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2576
09a1626e 2577 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
a43e9820 2578 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2579
09a1626e
MWO
2580 folio = try_grab_folio(page, refs, flags);
2581 if (!folio)
cbd34da7 2582 return 0;
cbd34da7
CH
2583
2584 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
09a1626e 2585 gup_put_folio(folio, refs, flags);
cbd34da7
CH
2586 return 0;
2587 }
2588
84209e87 2589 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
2590 gup_put_folio(folio, refs, flags);
2591 return 0;
2592 }
2593
a43e9820 2594 *nr += refs;
09a1626e 2595 folio_set_referenced(folio);
cbd34da7
CH
2596 return 1;
2597}
2598
2599static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2600 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2601 struct page **pages, int *nr)
2602{
2603 pte_t *ptep;
2604 unsigned long sz = 1UL << hugepd_shift(hugepd);
2605 unsigned long next;
2606
2607 ptep = hugepte_offset(hugepd, addr, pdshift);
2608 do {
2609 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2610 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2611 return 0;
2612 } while (ptep++, addr = next, addr != end);
2613
2614 return 1;
2615}
2616#else
2617static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2618 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2619 struct page **pages, int *nr)
2620{
2621 return 0;
2622}
2623#endif /* CONFIG_ARCH_HAS_HUGEPD */
2624
2667f50e 2625static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2626 unsigned long end, unsigned int flags,
2627 struct page **pages, int *nr)
2667f50e 2628{
667ed1f7
MWO
2629 struct page *page;
2630 struct folio *folio;
2667f50e
SC
2631 int refs;
2632
b798bec4 2633 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2634 return 0;
2635
7af75561
IW
2636 if (pmd_devmap(orig)) {
2637 if (unlikely(flags & FOLL_LONGTERM))
2638 return 0;
86dfbed4
JH
2639 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2640 pages, nr);
7af75561 2641 }
b59f65fa 2642
c228afb1 2643 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2644 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2645
667ed1f7
MWO
2646 folio = try_grab_folio(page, refs, flags);
2647 if (!folio)
2667f50e 2648 return 0;
2667f50e
SC
2649
2650 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
667ed1f7 2651 gup_put_folio(folio, refs, flags);
2667f50e
SC
2652 return 0;
2653 }
2654
84209e87 2655 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
2656 gup_put_folio(folio, refs, flags);
2657 return 0;
2658 }
2659
a43e9820 2660 *nr += refs;
667ed1f7 2661 folio_set_referenced(folio);
2667f50e
SC
2662 return 1;
2663}
2664
2665static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2666 unsigned long end, unsigned int flags,
2667 struct page **pages, int *nr)
2667f50e 2668{
83afb52e
MWO
2669 struct page *page;
2670 struct folio *folio;
2667f50e
SC
2671 int refs;
2672
b798bec4 2673 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2674 return 0;
2675
7af75561
IW
2676 if (pud_devmap(orig)) {
2677 if (unlikely(flags & FOLL_LONGTERM))
2678 return 0;
86dfbed4
JH
2679 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2680 pages, nr);
7af75561 2681 }
b59f65fa 2682
c228afb1 2683 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2684 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2685
83afb52e
MWO
2686 folio = try_grab_folio(page, refs, flags);
2687 if (!folio)
2667f50e 2688 return 0;
2667f50e
SC
2689
2690 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
83afb52e 2691 gup_put_folio(folio, refs, flags);
2667f50e
SC
2692 return 0;
2693 }
2694
84209e87 2695 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
2696 gup_put_folio(folio, refs, flags);
2697 return 0;
2698 }
2699
a43e9820 2700 *nr += refs;
83afb52e 2701 folio_set_referenced(folio);
2667f50e
SC
2702 return 1;
2703}
2704
f30c59e9 2705static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2706 unsigned long end, unsigned int flags,
f30c59e9
AK
2707 struct page **pages, int *nr)
2708{
2709 int refs;
2d7919a2
MWO
2710 struct page *page;
2711 struct folio *folio;
f30c59e9 2712
b798bec4 2713 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2714 return 0;
2715
b59f65fa 2716 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2717
c228afb1 2718 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2719 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2720
2d7919a2
MWO
2721 folio = try_grab_folio(page, refs, flags);
2722 if (!folio)
f30c59e9 2723 return 0;
f30c59e9
AK
2724
2725 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2d7919a2 2726 gup_put_folio(folio, refs, flags);
f30c59e9
AK
2727 return 0;
2728 }
2729
31115034
LS
2730 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2731 gup_put_folio(folio, refs, flags);
2732 return 0;
2733 }
2734
a43e9820 2735 *nr += refs;
2d7919a2 2736 folio_set_referenced(folio);
f30c59e9
AK
2737 return 1;
2738}
2739
d3f7b1bb 2740static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2741 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2742{
2743 unsigned long next;
2744 pmd_t *pmdp;
2745
d3f7b1bb 2746 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 2747 do {
1180e732 2748 pmd_t pmd = pmdp_get_lockless(pmdp);
2667f50e
SC
2749
2750 next = pmd_addr_end(addr, end);
84c3fc4e 2751 if (!pmd_present(pmd))
2667f50e
SC
2752 return 0;
2753
414fd080
YZ
2754 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2755 pmd_devmap(pmd))) {
0cf45986
DH
2756 if (pmd_protnone(pmd) &&
2757 !gup_can_follow_protnone(flags))
2667f50e
SC
2758 return 0;
2759
b798bec4 2760 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2761 pages, nr))
2762 return 0;
2763
f30c59e9
AK
2764 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2765 /*
2766 * architecture have different format for hugetlbfs
2767 * pmd format and THP pmd format
2768 */
2769 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2770 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2771 return 0;
70cbc3cc 2772 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2923117b 2773 return 0;
2667f50e
SC
2774 } while (pmdp++, addr = next, addr != end);
2775
2776 return 1;
2777}
2778
d3f7b1bb 2779static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2780 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2781{
2782 unsigned long next;
2783 pud_t *pudp;
2784
d3f7b1bb 2785 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 2786 do {
e37c6982 2787 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
2788
2789 next = pud_addr_end(addr, end);
15494520 2790 if (unlikely(!pud_present(pud)))
2667f50e 2791 return 0;
fcd0ccd8 2792 if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
b798bec4 2793 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
2794 pages, nr))
2795 return 0;
2796 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2797 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 2798 PUD_SHIFT, next, flags, pages, nr))
2667f50e 2799 return 0;
d3f7b1bb 2800 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2667f50e
SC
2801 return 0;
2802 } while (pudp++, addr = next, addr != end);
2803
2804 return 1;
2805}
2806
d3f7b1bb 2807static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 2808 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
2809{
2810 unsigned long next;
2811 p4d_t *p4dp;
2812
d3f7b1bb 2813 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
2814 do {
2815 p4d_t p4d = READ_ONCE(*p4dp);
2816
2817 next = p4d_addr_end(addr, end);
2818 if (p4d_none(p4d))
2819 return 0;
2820 BUILD_BUG_ON(p4d_huge(p4d));
2821 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2822 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 2823 P4D_SHIFT, next, flags, pages, nr))
c2febafc 2824 return 0;
d3f7b1bb 2825 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
c2febafc
KS
2826 return 0;
2827 } while (p4dp++, addr = next, addr != end);
2828
2829 return 1;
2830}
2831
5b65c467 2832static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 2833 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
2834{
2835 unsigned long next;
2836 pgd_t *pgdp;
2837
2838 pgdp = pgd_offset(current->mm, addr);
2839 do {
2840 pgd_t pgd = READ_ONCE(*pgdp);
2841
2842 next = pgd_addr_end(addr, end);
2843 if (pgd_none(pgd))
2844 return;
2845 if (unlikely(pgd_huge(pgd))) {
b798bec4 2846 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
2847 pages, nr))
2848 return;
2849 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2850 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 2851 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 2852 return;
d3f7b1bb 2853 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
5b65c467
KS
2854 return;
2855 } while (pgdp++, addr = next, addr != end);
2856}
050a9adc
CH
2857#else
2858static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2859 unsigned int flags, struct page **pages, int *nr)
2860{
2861}
2862#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
2863
2864#ifndef gup_fast_permitted
2865/*
dadbb612 2866 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
2867 * we need to fall back to the slow version:
2868 */
26f4c328 2869static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 2870{
26f4c328 2871 return true;
5b65c467
KS
2872}
2873#endif
2874
c28b1fc7
JG
2875static unsigned long lockless_pages_from_mm(unsigned long start,
2876 unsigned long end,
2877 unsigned int gup_flags,
2878 struct page **pages)
2879{
2880 unsigned long flags;
2881 int nr_pinned = 0;
57efa1fe 2882 unsigned seq;
c28b1fc7
JG
2883
2884 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2885 !gup_fast_permitted(start, end))
2886 return 0;
2887
57efa1fe
JG
2888 if (gup_flags & FOLL_PIN) {
2889 seq = raw_read_seqcount(&current->mm->write_protect_seq);
2890 if (seq & 1)
2891 return 0;
2892 }
2893
c28b1fc7
JG
2894 /*
2895 * Disable interrupts. The nested form is used, in order to allow full,
2896 * general purpose use of this routine.
2897 *
2898 * With interrupts disabled, we block page table pages from being freed
2899 * from under us. See struct mmu_table_batch comments in
2900 * include/asm-generic/tlb.h for more details.
2901 *
2902 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2903 * that come from THPs splitting.
2904 */
2905 local_irq_save(flags);
2906 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2907 local_irq_restore(flags);
57efa1fe
JG
2908
2909 /*
2910 * When pinning pages for DMA there could be a concurrent write protect
2911 * from fork() via copy_page_range(), in this case always fail fast GUP.
2912 */
2913 if (gup_flags & FOLL_PIN) {
2914 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
b6a2619c 2915 unpin_user_pages_lockless(pages, nr_pinned);
57efa1fe 2916 return 0;
b6a2619c
DH
2917 } else {
2918 sanity_check_pinned_pages(pages, nr_pinned);
57efa1fe
JG
2919 }
2920 }
c28b1fc7
JG
2921 return nr_pinned;
2922}
2923
2924static int internal_get_user_pages_fast(unsigned long start,
2925 unsigned long nr_pages,
eddb1c22
JH
2926 unsigned int gup_flags,
2927 struct page **pages)
2667f50e 2928{
c28b1fc7
JG
2929 unsigned long len, end;
2930 unsigned long nr_pinned;
b2a72dff 2931 int locked = 0;
c28b1fc7 2932 int ret;
2667f50e 2933
f4000fdf 2934 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef 2935 FOLL_FORCE | FOLL_PIN | FOLL_GET |
4003f107
LG
2936 FOLL_FAST_ONLY | FOLL_NOFAULT |
2937 FOLL_PCI_P2PDMA)))
817be129
CH
2938 return -EINVAL;
2939
a458b76a
AA
2940 if (gup_flags & FOLL_PIN)
2941 mm_set_has_pinned_flag(&current->mm->flags);
008cfe44 2942
f81cd178 2943 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 2944 might_lock_read(&current->mm->mmap_lock);
f81cd178 2945
f455c854 2946 start = untagged_addr(start) & PAGE_MASK;
c28b1fc7
JG
2947 len = nr_pages << PAGE_SHIFT;
2948 if (check_add_overflow(start, len, &end))
c61611f7 2949 return 0;
6014bc27
LT
2950 if (end > TASK_SIZE_MAX)
2951 return -EFAULT;
96d4f267 2952 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 2953 return -EFAULT;
73e10a61 2954
c28b1fc7
JG
2955 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2956 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2957 return nr_pinned;
2667f50e 2958
c28b1fc7
JG
2959 /* Slow path: try to get the remaining pages with get_user_pages */
2960 start += nr_pinned << PAGE_SHIFT;
2961 pages += nr_pinned;
b2a72dff 2962 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
b2cac248 2963 pages, &locked,
f04740f5 2964 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
c28b1fc7
JG
2965 if (ret < 0) {
2966 /*
2967 * The caller has to unpin the pages we already pinned so
2968 * returning -errno is not an option
2969 */
2970 if (nr_pinned)
2971 return nr_pinned;
2972 return ret;
2667f50e 2973 }
c28b1fc7 2974 return ret + nr_pinned;
2667f50e 2975}
c28b1fc7 2976
dadbb612
SJ
2977/**
2978 * get_user_pages_fast_only() - pin user pages in memory
2979 * @start: starting user address
2980 * @nr_pages: number of pages from start to pin
2981 * @gup_flags: flags modifying pin behaviour
2982 * @pages: array that receives pointers to the pages pinned.
2983 * Should be at least nr_pages long.
2984 *
9e1f0580
JH
2985 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2986 * the regular GUP.
9e1f0580
JH
2987 *
2988 * If the architecture does not support this function, simply return with no
2989 * pages pinned.
2990 *
2991 * Careful, careful! COW breaking can go either way, so a non-write
2992 * access can get ambiguous page results. If you call this function without
2993 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2994 */
dadbb612
SJ
2995int get_user_pages_fast_only(unsigned long start, int nr_pages,
2996 unsigned int gup_flags, struct page **pages)
9e1f0580 2997{
9e1f0580
JH
2998 /*
2999 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3000 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
3001 *
3002 * FOLL_FAST_ONLY is required in order to match the API description of
3003 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 3004 */
b2cac248 3005 if (!is_valid_gup_args(pages, NULL, &gup_flags,
d64e2dbc
JG
3006 FOLL_GET | FOLL_FAST_ONLY))
3007 return -EINVAL;
9e1f0580 3008
9198a919 3009 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
9e1f0580 3010}
dadbb612 3011EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 3012
eddb1c22
JH
3013/**
3014 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
3015 * @start: starting user address
3016 * @nr_pages: number of pages from start to pin
3017 * @gup_flags: flags modifying pin behaviour
3018 * @pages: array that receives pointers to the pages pinned.
3019 * Should be at least nr_pages long.
eddb1c22 3020 *
c1e8d7c6 3021 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
3022 * If not successful, it will fall back to taking the lock and
3023 * calling get_user_pages().
3024 *
3025 * Returns number of pages pinned. This may be fewer than the number requested.
3026 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3027 * -errno.
3028 */
3029int get_user_pages_fast(unsigned long start, int nr_pages,
3030 unsigned int gup_flags, struct page **pages)
3031{
94202f12
JH
3032 /*
3033 * The caller may or may not have explicitly set FOLL_GET; either way is
3034 * OK. However, internally (within mm/gup.c), gup fast variants must set
3035 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3036 * request.
3037 */
b2cac248 3038 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
d64e2dbc 3039 return -EINVAL;
eddb1c22
JH
3040 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3041}
050a9adc 3042EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
3043
3044/**
3045 * pin_user_pages_fast() - pin user pages in memory without taking locks
3046 *
3faa52c0
JH
3047 * @start: starting user address
3048 * @nr_pages: number of pages from start to pin
3049 * @gup_flags: flags modifying pin behaviour
3050 * @pages: array that receives pointers to the pages pinned.
3051 * Should be at least nr_pages long.
3052 *
3053 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3054 * get_user_pages_fast() for documentation on the function arguments, because
3055 * the arguments here are identical.
3056 *
3057 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3058 * see Documentation/core-api/pin_user_pages.rst for further details.
eddb1c22
JH
3059 */
3060int pin_user_pages_fast(unsigned long start, int nr_pages,
3061 unsigned int gup_flags, struct page **pages)
3062{
b2cac248 3063 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3faa52c0 3064 return -EINVAL;
3faa52c0 3065 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
3066}
3067EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3068
3069/**
64019a2e 3070 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 3071 *
3faa52c0
JH
3072 * @mm: mm_struct of target mm
3073 * @start: starting user address
3074 * @nr_pages: number of pages from start to pin
3075 * @gup_flags: flags modifying lookup behaviour
3076 * @pages: array that receives pointers to the pages pinned.
0768c8de 3077 * Should be at least nr_pages long.
3faa52c0
JH
3078 * @locked: pointer to lock flag indicating whether lock is held and
3079 * subsequently whether VM_FAULT_RETRY functionality can be
3080 * utilised. Lock must initially be held.
3081 *
3082 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3083 * get_user_pages_remote() for documentation on the function arguments, because
3084 * the arguments here are identical.
3085 *
3086 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3087 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22 3088 */
64019a2e 3089long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
3090 unsigned long start, unsigned long nr_pages,
3091 unsigned int gup_flags, struct page **pages,
0b295316 3092 int *locked)
eddb1c22 3093{
9a863a6a
JG
3094 int local_locked = 1;
3095
b2cac248 3096 if (!is_valid_gup_args(pages, locked, &gup_flags,
d64e2dbc
JG
3097 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3098 return 0;
b2cac248 3099 return __gup_longterm_locked(mm, start, nr_pages, pages,
9a863a6a 3100 locked ? locked : &local_locked,
d64e2dbc 3101 gup_flags);
eddb1c22
JH
3102}
3103EXPORT_SYMBOL(pin_user_pages_remote);
3104
3105/**
3106 * pin_user_pages() - pin user pages in memory for use by other devices
3107 *
3faa52c0
JH
3108 * @start: starting user address
3109 * @nr_pages: number of pages from start to pin
3110 * @gup_flags: flags modifying lookup behaviour
3111 * @pages: array that receives pointers to the pages pinned.
0768c8de 3112 * Should be at least nr_pages long.
3faa52c0
JH
3113 *
3114 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3115 * FOLL_PIN is set.
3116 *
3117 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3118 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22
JH
3119 */
3120long pin_user_pages(unsigned long start, unsigned long nr_pages,
4c630f30 3121 unsigned int gup_flags, struct page **pages)
eddb1c22 3122{
9a863a6a
JG
3123 int locked = 1;
3124
b2cac248 3125 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
d64e2dbc 3126 return 0;
64019a2e 3127 return __gup_longterm_locked(current->mm, start, nr_pages,
b2cac248 3128 pages, &locked, gup_flags);
eddb1c22
JH
3129}
3130EXPORT_SYMBOL(pin_user_pages);
91429023
JH
3131
3132/*
3133 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3134 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3135 * FOLL_PIN and rejects FOLL_GET.
3136 */
3137long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3138 struct page **pages, unsigned int gup_flags)
3139{
b2a72dff 3140 int locked = 0;
91429023 3141
b2cac248 3142 if (!is_valid_gup_args(pages, NULL, &gup_flags,
f04740f5 3143 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
d64e2dbc 3144 return 0;
0768c8de 3145
b2cac248 3146 return __gup_longterm_locked(current->mm, start, nr_pages, pages,
b2a72dff 3147 &locked, gup_flags);
91429023
JH
3148}
3149EXPORT_SYMBOL(pin_user_pages_unlocked);