mm/hmm: cleanup special vma handling (VM_SPECIAL)
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
08677214 18#include <linux/range.h>
c6f6b596 19#include <linux/pfn.h>
3565fce3 20#include <linux/percpu-refcount.h>
e9da73d6 21#include <linux/bit_spinlock.h>
b0d40c92 22#include <linux/shrinker.h>
9c599024 23#include <linux/resource.h>
e30825f1 24#include <linux/page_ext.h>
8025e5dd 25#include <linux/err.h>
fe896d18 26#include <linux/page_ref.h>
7b2d55d2 27#include <linux/memremap.h>
1da177e4
LT
28
29struct mempolicy;
30struct anon_vma;
bf181b9f 31struct anon_vma_chain;
4e950f6f 32struct file_ra_state;
e8edc6e0 33struct user_struct;
4e950f6f 34struct writeback_control;
682aa8e1 35struct bdi_writeback;
1da177e4 36
597b7305
MH
37void init_mm_internals(void);
38
fccc9987 39#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 40extern unsigned long max_mapnr;
fccc9987
JL
41
42static inline void set_max_mapnr(unsigned long limit)
43{
44 max_mapnr = limit;
45}
46#else
47static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
48#endif
49
4481374c 50extern unsigned long totalram_pages;
1da177e4 51extern void * high_memory;
1da177e4
LT
52extern int page_cluster;
53
54#ifdef CONFIG_SYSCTL
55extern int sysctl_legacy_va_layout;
56#else
57#define sysctl_legacy_va_layout 0
58#endif
59
d07e2259
DC
60#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61extern const int mmap_rnd_bits_min;
62extern const int mmap_rnd_bits_max;
63extern int mmap_rnd_bits __read_mostly;
64#endif
65#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66extern const int mmap_rnd_compat_bits_min;
67extern const int mmap_rnd_compat_bits_max;
68extern int mmap_rnd_compat_bits __read_mostly;
69#endif
70
1da177e4
LT
71#include <asm/page.h>
72#include <asm/pgtable.h>
73#include <asm/processor.h>
1da177e4 74
79442ed1
TC
75#ifndef __pa_symbol
76#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
77#endif
78
1dff8083
AB
79#ifndef page_to_virt
80#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
81#endif
82
568c5fe5
LA
83#ifndef lm_alias
84#define lm_alias(x) __va(__pa_symbol(x))
85#endif
86
593befa6
DD
87/*
88 * To prevent common memory management code establishing
89 * a zero page mapping on a read fault.
90 * This macro should be defined within <asm/pgtable.h>.
91 * s390 does this to prevent multiplexing of hardware bits
92 * related to the physical page in case of virtualization.
93 */
94#ifndef mm_forbids_zeropage
95#define mm_forbids_zeropage(X) (0)
96#endif
97
a4a3ede2
PT
98/*
99 * On some architectures it is expensive to call memset() for small sizes.
100 * Those architectures should provide their own implementation of "struct page"
101 * zeroing by defining this macro in <asm/pgtable.h>.
102 */
103#ifndef mm_zero_struct_page
104#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
105#endif
106
ea606cf5
AR
107/*
108 * Default maximum number of active map areas, this limits the number of vmas
109 * per mm struct. Users can overwrite this number by sysctl but there is a
110 * problem.
111 *
112 * When a program's coredump is generated as ELF format, a section is created
113 * per a vma. In ELF, the number of sections is represented in unsigned short.
114 * This means the number of sections should be smaller than 65535 at coredump.
115 * Because the kernel adds some informative sections to a image of program at
116 * generating coredump, we need some margin. The number of extra sections is
117 * 1-3 now and depends on arch. We use "5" as safe margin, here.
118 *
119 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
120 * not a hard limit any more. Although some userspace tools can be surprised by
121 * that.
122 */
123#define MAPCOUNT_ELF_CORE_MARGIN (5)
124#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
125
126extern int sysctl_max_map_count;
127
c9b1d098 128extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 129extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 130
49f0ce5f
JM
131extern int sysctl_overcommit_memory;
132extern int sysctl_overcommit_ratio;
133extern unsigned long sysctl_overcommit_kbytes;
134
135extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
136 size_t *, loff_t *);
137extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
138 size_t *, loff_t *);
139
1da177e4
LT
140#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
141
27ac792c
AR
142/* to align the pointer to the (next) page boundary */
143#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
144
0fa73b86 145/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 146#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 147
1da177e4
LT
148/*
149 * Linux kernel virtual memory manager primitives.
150 * The idea being to have a "virtual" mm in the same way
151 * we have a virtual fs - giving a cleaner interface to the
152 * mm details, and allowing different kinds of memory mappings
153 * (from shared memory to executable loading to arbitrary
154 * mmap() functions).
155 */
156
c43692e8
CL
157extern struct kmem_cache *vm_area_cachep;
158
1da177e4 159#ifndef CONFIG_MMU
8feae131
DH
160extern struct rb_root nommu_region_tree;
161extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
162
163extern unsigned int kobjsize(const void *objp);
164#endif
165
166/*
605d9288 167 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 168 * When changing, update also include/trace/events/mmflags.h
1da177e4 169 */
cc2383ec
KK
170#define VM_NONE 0x00000000
171
1da177e4
LT
172#define VM_READ 0x00000001 /* currently active flags */
173#define VM_WRITE 0x00000002
174#define VM_EXEC 0x00000004
175#define VM_SHARED 0x00000008
176
7e2cff42 177/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
178#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
179#define VM_MAYWRITE 0x00000020
180#define VM_MAYEXEC 0x00000040
181#define VM_MAYSHARE 0x00000080
182
183#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 184#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 185#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 186#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 187#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 188
1da177e4
LT
189#define VM_LOCKED 0x00002000
190#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
191
192 /* Used by sys_madvise() */
193#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
194#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
195
196#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
197#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 198#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 199#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 200#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 201#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 202#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 203#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 204#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 205#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 206
d9104d1c
CG
207#ifdef CONFIG_MEM_SOFT_DIRTY
208# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
209#else
210# define VM_SOFTDIRTY 0
211#endif
212
b379d790 213#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
214#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
215#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 216#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 217
63c17fb8
DH
218#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
219#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
220#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
221#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
222#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 223#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
224#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
225#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
226#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
227#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 228#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
229#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
230
cc2383ec
KK
231#if defined(CONFIG_X86)
232# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
8f62c883
DH
233#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
234# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
235# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
236# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
237# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
238# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
239#endif
cc2383ec
KK
240#elif defined(CONFIG_PPC)
241# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
242#elif defined(CONFIG_PARISC)
243# define VM_GROWSUP VM_ARCH_1
244#elif defined(CONFIG_IA64)
245# define VM_GROWSUP VM_ARCH_1
74a04967
KA
246#elif defined(CONFIG_SPARC64)
247# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
248# define VM_ARCH_CLEAR VM_SPARC_ADI
cc2383ec
KK
249#elif !defined(CONFIG_MMU)
250# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
251#endif
252
df3735c5 253#if defined(CONFIG_X86_INTEL_MPX)
4aae7e43 254/* MPX specific bounds table or bounds directory */
fa87b91c 255# define VM_MPX VM_HIGH_ARCH_4
df3735c5
RR
256#else
257# define VM_MPX VM_NONE
4aae7e43
QR
258#endif
259
cc2383ec
KK
260#ifndef VM_GROWSUP
261# define VM_GROWSUP VM_NONE
262#endif
263
a8bef8ff
MG
264/* Bits set in the VMA until the stack is in its final location */
265#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
266
1da177e4
LT
267#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
268#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
269#endif
270
271#ifdef CONFIG_STACK_GROWSUP
30bdbb78 272#define VM_STACK VM_GROWSUP
1da177e4 273#else
30bdbb78 274#define VM_STACK VM_GROWSDOWN
1da177e4
LT
275#endif
276
30bdbb78
KK
277#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
278
b291f000 279/*
78f11a25
AA
280 * Special vmas that are non-mergable, non-mlock()able.
281 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 282 */
9050d7eb 283#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 284
a0715cc2
AT
285/* This mask defines which mm->def_flags a process can inherit its parent */
286#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
287
de60f5f1
EM
288/* This mask is used to clear all the VMA flags used by mlock */
289#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
290
2c2d57b5
KA
291/* Arch-specific flags to clear when updating VM flags on protection change */
292#ifndef VM_ARCH_CLEAR
293# define VM_ARCH_CLEAR VM_NONE
294#endif
295#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
296
1da177e4
LT
297/*
298 * mapping from the currently active vm_flags protection bits (the
299 * low four bits) to a page protection mask..
300 */
301extern pgprot_t protection_map[16];
302
d0217ac0 303#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
304#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
305#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
306#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
307#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
308#define FAULT_FLAG_TRIED 0x20 /* Second try */
309#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 310#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 311#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 312
282a8e03
RZ
313#define FAULT_FLAG_TRACE \
314 { FAULT_FLAG_WRITE, "WRITE" }, \
315 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
316 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
317 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
318 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
319 { FAULT_FLAG_TRIED, "TRIED" }, \
320 { FAULT_FLAG_USER, "USER" }, \
321 { FAULT_FLAG_REMOTE, "REMOTE" }, \
322 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
323
54cb8821 324/*
d0217ac0 325 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
326 * ->fault function. The vma's ->fault is responsible for returning a bitmask
327 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 328 *
c20cd45e
MH
329 * MM layer fills up gfp_mask for page allocations but fault handler might
330 * alter it if its implementation requires a different allocation context.
331 *
9b4bdd2f 332 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 333 */
d0217ac0 334struct vm_fault {
82b0f8c3 335 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 336 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 337 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 338 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 339 unsigned long address; /* Faulting virtual address */
82b0f8c3 340 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 341 * the 'address' */
a2d58167
DJ
342 pud_t *pud; /* Pointer to pud entry matching
343 * the 'address'
344 */
2994302b 345 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 346
3917048d
JK
347 struct page *cow_page; /* Page handler may use for COW fault */
348 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 349 struct page *page; /* ->fault handlers should return a
83c54070 350 * page here, unless VM_FAULT_NOPAGE
d0217ac0 351 * is set (which is also implied by
83c54070 352 * VM_FAULT_ERROR).
d0217ac0 353 */
82b0f8c3 354 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
355 pte_t *pte; /* Pointer to pte entry matching
356 * the 'address'. NULL if the page
357 * table hasn't been allocated.
358 */
359 spinlock_t *ptl; /* Page table lock.
360 * Protects pte page table if 'pte'
361 * is not NULL, otherwise pmd.
362 */
7267ec00
KS
363 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
364 * vm_ops->map_pages() calls
365 * alloc_set_pte() from atomic context.
366 * do_fault_around() pre-allocates
367 * page table to avoid allocation from
368 * atomic context.
369 */
54cb8821 370};
1da177e4 371
c791ace1
DJ
372/* page entry size for vm->huge_fault() */
373enum page_entry_size {
374 PE_SIZE_PTE = 0,
375 PE_SIZE_PMD,
376 PE_SIZE_PUD,
377};
378
1da177e4
LT
379/*
380 * These are the virtual MM functions - opening of an area, closing and
381 * unmapping it (needed to keep files on disk up-to-date etc), pointer
382 * to the functions called when a no-page or a wp-page exception occurs.
383 */
384struct vm_operations_struct {
385 void (*open)(struct vm_area_struct * area);
386 void (*close)(struct vm_area_struct * area);
31383c68 387 int (*split)(struct vm_area_struct * area, unsigned long addr);
5477e70a 388 int (*mremap)(struct vm_area_struct * area);
1c8f4220
SJ
389 vm_fault_t (*fault)(struct vm_fault *vmf);
390 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
391 enum page_entry_size pe_size);
82b0f8c3 392 void (*map_pages)(struct vm_fault *vmf,
bae473a4 393 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 394 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
395
396 /* notification that a previously read-only page is about to become
397 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 398 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 399
dd906184 400 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 401 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 402
28b2ee20
RR
403 /* called by access_process_vm when get_user_pages() fails, typically
404 * for use by special VMAs that can switch between memory and hardware
405 */
406 int (*access)(struct vm_area_struct *vma, unsigned long addr,
407 void *buf, int len, int write);
78d683e8
AL
408
409 /* Called by the /proc/PID/maps code to ask the vma whether it
410 * has a special name. Returning non-NULL will also cause this
411 * vma to be dumped unconditionally. */
412 const char *(*name)(struct vm_area_struct *vma);
413
1da177e4 414#ifdef CONFIG_NUMA
a6020ed7
LS
415 /*
416 * set_policy() op must add a reference to any non-NULL @new mempolicy
417 * to hold the policy upon return. Caller should pass NULL @new to
418 * remove a policy and fall back to surrounding context--i.e. do not
419 * install a MPOL_DEFAULT policy, nor the task or system default
420 * mempolicy.
421 */
1da177e4 422 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
423
424 /*
425 * get_policy() op must add reference [mpol_get()] to any policy at
426 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
427 * in mm/mempolicy.c will do this automatically.
428 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
429 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
430 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
431 * must return NULL--i.e., do not "fallback" to task or system default
432 * policy.
433 */
1da177e4
LT
434 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
435 unsigned long addr);
436#endif
667a0a06
DV
437 /*
438 * Called by vm_normal_page() for special PTEs to find the
439 * page for @addr. This is useful if the default behavior
440 * (using pte_page()) would not find the correct page.
441 */
442 struct page *(*find_special_page)(struct vm_area_struct *vma,
443 unsigned long addr);
1da177e4
LT
444};
445
446struct mmu_gather;
447struct inode;
448
349aef0b
AM
449#define page_private(page) ((page)->private)
450#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 451
5c7fb56e
DW
452#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
453static inline int pmd_devmap(pmd_t pmd)
454{
455 return 0;
456}
a00cc7d9
MW
457static inline int pud_devmap(pud_t pud)
458{
459 return 0;
460}
b59f65fa
KS
461static inline int pgd_devmap(pgd_t pgd)
462{
463 return 0;
464}
5c7fb56e
DW
465#endif
466
1da177e4
LT
467/*
468 * FIXME: take this include out, include page-flags.h in
469 * files which need it (119 of them)
470 */
471#include <linux/page-flags.h>
71e3aac0 472#include <linux/huge_mm.h>
1da177e4
LT
473
474/*
475 * Methods to modify the page usage count.
476 *
477 * What counts for a page usage:
478 * - cache mapping (page->mapping)
479 * - private data (page->private)
480 * - page mapped in a task's page tables, each mapping
481 * is counted separately
482 *
483 * Also, many kernel routines increase the page count before a critical
484 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
485 */
486
487/*
da6052f7 488 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 489 */
7c8ee9a8
NP
490static inline int put_page_testzero(struct page *page)
491{
fe896d18
JK
492 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
493 return page_ref_dec_and_test(page);
7c8ee9a8 494}
1da177e4
LT
495
496/*
7c8ee9a8
NP
497 * Try to grab a ref unless the page has a refcount of zero, return false if
498 * that is the case.
8e0861fa
AK
499 * This can be called when MMU is off so it must not access
500 * any of the virtual mappings.
1da177e4 501 */
7c8ee9a8
NP
502static inline int get_page_unless_zero(struct page *page)
503{
fe896d18 504 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 505}
1da177e4 506
53df8fdc 507extern int page_is_ram(unsigned long pfn);
124fe20d
DW
508
509enum {
510 REGION_INTERSECTS,
511 REGION_DISJOINT,
512 REGION_MIXED,
513};
514
1c29f25b
TK
515int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
516 unsigned long desc);
53df8fdc 517
48667e7a 518/* Support for virtually mapped pages */
b3bdda02
CL
519struct page *vmalloc_to_page(const void *addr);
520unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 521
0738c4bb
PM
522/*
523 * Determine if an address is within the vmalloc range
524 *
525 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
526 * is no special casing required.
527 */
bb00a789 528static inline bool is_vmalloc_addr(const void *x)
9e2779fa 529{
0738c4bb 530#ifdef CONFIG_MMU
9e2779fa
CL
531 unsigned long addr = (unsigned long)x;
532
533 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 534#else
bb00a789 535 return false;
8ca3ed87 536#endif
0738c4bb 537}
81ac3ad9
KH
538#ifdef CONFIG_MMU
539extern int is_vmalloc_or_module_addr(const void *x);
540#else
934831d0 541static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
542{
543 return 0;
544}
545#endif
9e2779fa 546
a7c3e901
MH
547extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
548static inline void *kvmalloc(size_t size, gfp_t flags)
549{
550 return kvmalloc_node(size, flags, NUMA_NO_NODE);
551}
552static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
553{
554 return kvmalloc_node(size, flags | __GFP_ZERO, node);
555}
556static inline void *kvzalloc(size_t size, gfp_t flags)
557{
558 return kvmalloc(size, flags | __GFP_ZERO);
559}
560
752ade68
MH
561static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
562{
563 if (size != 0 && n > SIZE_MAX / size)
564 return NULL;
565
566 return kvmalloc(n * size, flags);
567}
568
39f1f78d
AV
569extern void kvfree(const void *addr);
570
53f9263b
KS
571static inline atomic_t *compound_mapcount_ptr(struct page *page)
572{
573 return &page[1].compound_mapcount;
574}
575
576static inline int compound_mapcount(struct page *page)
577{
5f527c2b 578 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
579 page = compound_head(page);
580 return atomic_read(compound_mapcount_ptr(page)) + 1;
581}
582
70b50f94
AA
583/*
584 * The atomic page->_mapcount, starts from -1: so that transitions
585 * both from it and to it can be tracked, using atomic_inc_and_test
586 * and atomic_add_negative(-1).
587 */
22b751c3 588static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
589{
590 atomic_set(&(page)->_mapcount, -1);
591}
592
b20ce5e0
KS
593int __page_mapcount(struct page *page);
594
70b50f94
AA
595static inline int page_mapcount(struct page *page)
596{
1d148e21 597 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 598
b20ce5e0
KS
599 if (unlikely(PageCompound(page)))
600 return __page_mapcount(page);
601 return atomic_read(&page->_mapcount) + 1;
602}
603
604#ifdef CONFIG_TRANSPARENT_HUGEPAGE
605int total_mapcount(struct page *page);
6d0a07ed 606int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
607#else
608static inline int total_mapcount(struct page *page)
609{
610 return page_mapcount(page);
70b50f94 611}
6d0a07ed
AA
612static inline int page_trans_huge_mapcount(struct page *page,
613 int *total_mapcount)
614{
615 int mapcount = page_mapcount(page);
616 if (total_mapcount)
617 *total_mapcount = mapcount;
618 return mapcount;
619}
b20ce5e0 620#endif
70b50f94 621
b49af68f
CL
622static inline struct page *virt_to_head_page(const void *x)
623{
624 struct page *page = virt_to_page(x);
ccaafd7f 625
1d798ca3 626 return compound_head(page);
b49af68f
CL
627}
628
ddc58f27
KS
629void __put_page(struct page *page);
630
1d7ea732 631void put_pages_list(struct list_head *pages);
1da177e4 632
8dfcc9ba 633void split_page(struct page *page, unsigned int order);
8dfcc9ba 634
33f2ef89
AW
635/*
636 * Compound pages have a destructor function. Provide a
637 * prototype for that function and accessor functions.
f1e61557 638 * These are _only_ valid on the head of a compound page.
33f2ef89 639 */
f1e61557
KS
640typedef void compound_page_dtor(struct page *);
641
642/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
643enum compound_dtor_id {
644 NULL_COMPOUND_DTOR,
645 COMPOUND_PAGE_DTOR,
646#ifdef CONFIG_HUGETLB_PAGE
647 HUGETLB_PAGE_DTOR,
9a982250
KS
648#endif
649#ifdef CONFIG_TRANSPARENT_HUGEPAGE
650 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
651#endif
652 NR_COMPOUND_DTORS,
653};
654extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
655
656static inline void set_compound_page_dtor(struct page *page,
f1e61557 657 enum compound_dtor_id compound_dtor)
33f2ef89 658{
f1e61557
KS
659 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
660 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
661}
662
663static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
664{
f1e61557
KS
665 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
666 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
667}
668
d00181b9 669static inline unsigned int compound_order(struct page *page)
d85f3385 670{
6d777953 671 if (!PageHead(page))
d85f3385 672 return 0;
e4b294c2 673 return page[1].compound_order;
d85f3385
CL
674}
675
f1e61557 676static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 677{
e4b294c2 678 page[1].compound_order = order;
d85f3385
CL
679}
680
9a982250
KS
681void free_compound_page(struct page *page);
682
3dece370 683#ifdef CONFIG_MMU
14fd403f
AA
684/*
685 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
686 * servicing faults for write access. In the normal case, do always want
687 * pte_mkwrite. But get_user_pages can cause write faults for mappings
688 * that do not have writing enabled, when used by access_process_vm.
689 */
690static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
691{
692 if (likely(vma->vm_flags & VM_WRITE))
693 pte = pte_mkwrite(pte);
694 return pte;
695}
8c6e50b0 696
82b0f8c3 697int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 698 struct page *page);
9118c0cb 699int finish_fault(struct vm_fault *vmf);
66a6197c 700int finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 701#endif
14fd403f 702
1da177e4
LT
703/*
704 * Multiple processes may "see" the same page. E.g. for untouched
705 * mappings of /dev/null, all processes see the same page full of
706 * zeroes, and text pages of executables and shared libraries have
707 * only one copy in memory, at most, normally.
708 *
709 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
710 * page_count() == 0 means the page is free. page->lru is then used for
711 * freelist management in the buddy allocator.
da6052f7 712 * page_count() > 0 means the page has been allocated.
1da177e4 713 *
da6052f7
NP
714 * Pages are allocated by the slab allocator in order to provide memory
715 * to kmalloc and kmem_cache_alloc. In this case, the management of the
716 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
717 * unless a particular usage is carefully commented. (the responsibility of
718 * freeing the kmalloc memory is the caller's, of course).
1da177e4 719 *
da6052f7
NP
720 * A page may be used by anyone else who does a __get_free_page().
721 * In this case, page_count still tracks the references, and should only
722 * be used through the normal accessor functions. The top bits of page->flags
723 * and page->virtual store page management information, but all other fields
724 * are unused and could be used privately, carefully. The management of this
725 * page is the responsibility of the one who allocated it, and those who have
726 * subsequently been given references to it.
727 *
728 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
729 * managed by the Linux memory manager: I/O, buffers, swapping etc.
730 * The following discussion applies only to them.
731 *
da6052f7
NP
732 * A pagecache page contains an opaque `private' member, which belongs to the
733 * page's address_space. Usually, this is the address of a circular list of
734 * the page's disk buffers. PG_private must be set to tell the VM to call
735 * into the filesystem to release these pages.
1da177e4 736 *
da6052f7
NP
737 * A page may belong to an inode's memory mapping. In this case, page->mapping
738 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 739 * in units of PAGE_SIZE.
1da177e4 740 *
da6052f7
NP
741 * If pagecache pages are not associated with an inode, they are said to be
742 * anonymous pages. These may become associated with the swapcache, and in that
743 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 744 *
da6052f7
NP
745 * In either case (swapcache or inode backed), the pagecache itself holds one
746 * reference to the page. Setting PG_private should also increment the
747 * refcount. The each user mapping also has a reference to the page.
1da177e4 748 *
da6052f7
NP
749 * The pagecache pages are stored in a per-mapping radix tree, which is
750 * rooted at mapping->page_tree, and indexed by offset.
751 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
752 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 753 *
da6052f7 754 * All pagecache pages may be subject to I/O:
1da177e4
LT
755 * - inode pages may need to be read from disk,
756 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
757 * to be written back to the inode on disk,
758 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
759 * modified may need to be swapped out to swap space and (later) to be read
760 * back into memory.
1da177e4
LT
761 */
762
763/*
764 * The zone field is never updated after free_area_init_core()
765 * sets it, so none of the operations on it need to be atomic.
1da177e4 766 */
348f8b6c 767
90572890 768/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 769#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
770#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
771#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 772#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 773
348f8b6c 774/*
25985edc 775 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
776 * sections we define the shift as 0; that plus a 0 mask ensures
777 * the compiler will optimise away reference to them.
778 */
d41dee36
AW
779#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
780#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
781#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 782#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 783
bce54bbf
WD
784/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
785#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 786#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
787#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
788 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 789#else
89689ae7 790#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
791#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
792 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
793#endif
794
bd8029b6 795#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 796
9223b419
CL
797#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
798#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
799#endif
800
d41dee36
AW
801#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
802#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
803#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 804#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 805#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 806
33dd4e0e 807static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 808{
348f8b6c 809 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 810}
1da177e4 811
260ae3f7
DW
812#ifdef CONFIG_ZONE_DEVICE
813static inline bool is_zone_device_page(const struct page *page)
814{
815 return page_zonenum(page) == ZONE_DEVICE;
816}
817#else
818static inline bool is_zone_device_page(const struct page *page)
819{
820 return false;
821}
7b2d55d2 822#endif
5042db43 823
6b368cd4 824#if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
df6ad698 825void put_zone_device_private_or_public_page(struct page *page);
6b368cd4
JG
826DECLARE_STATIC_KEY_FALSE(device_private_key);
827#define IS_HMM_ENABLED static_branch_unlikely(&device_private_key)
828static inline bool is_device_private_page(const struct page *page);
829static inline bool is_device_public_page(const struct page *page);
830#else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
df6ad698 831static inline void put_zone_device_private_or_public_page(struct page *page)
5042db43 832{
5042db43 833}
6b368cd4
JG
834#define IS_HMM_ENABLED 0
835static inline bool is_device_private_page(const struct page *page)
836{
837 return false;
838}
839static inline bool is_device_public_page(const struct page *page)
840{
841 return false;
842}
df6ad698 843#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
260ae3f7 844
7b2d55d2 845
3565fce3
DW
846static inline void get_page(struct page *page)
847{
848 page = compound_head(page);
849 /*
850 * Getting a normal page or the head of a compound page
0139aa7b 851 * requires to already have an elevated page->_refcount.
3565fce3 852 */
fe896d18
JK
853 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
854 page_ref_inc(page);
3565fce3
DW
855}
856
857static inline void put_page(struct page *page)
858{
859 page = compound_head(page);
860
7b2d55d2
JG
861 /*
862 * For private device pages we need to catch refcount transition from
863 * 2 to 1, when refcount reach one it means the private device page is
864 * free and we need to inform the device driver through callback. See
865 * include/linux/memremap.h and HMM for details.
866 */
6b368cd4
JG
867 if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) ||
868 unlikely(is_device_public_page(page)))) {
df6ad698 869 put_zone_device_private_or_public_page(page);
7b2d55d2
JG
870 return;
871 }
872
3565fce3
DW
873 if (put_page_testzero(page))
874 __put_page(page);
3565fce3
DW
875}
876
9127ab4f
CS
877#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
878#define SECTION_IN_PAGE_FLAGS
879#endif
880
89689ae7 881/*
7a8010cd
VB
882 * The identification function is mainly used by the buddy allocator for
883 * determining if two pages could be buddies. We are not really identifying
884 * the zone since we could be using the section number id if we do not have
885 * node id available in page flags.
886 * We only guarantee that it will return the same value for two combinable
887 * pages in a zone.
89689ae7 888 */
cb2b95e1
AW
889static inline int page_zone_id(struct page *page)
890{
89689ae7 891 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
892}
893
25ba77c1 894static inline int zone_to_nid(struct zone *zone)
89fa3024 895{
d5f541ed
CL
896#ifdef CONFIG_NUMA
897 return zone->node;
898#else
899 return 0;
900#endif
89fa3024
CL
901}
902
89689ae7 903#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 904extern int page_to_nid(const struct page *page);
89689ae7 905#else
33dd4e0e 906static inline int page_to_nid(const struct page *page)
d41dee36 907{
f165b378
PT
908 struct page *p = (struct page *)page;
909
910 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 911}
89689ae7
CL
912#endif
913
57e0a030 914#ifdef CONFIG_NUMA_BALANCING
90572890 915static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 916{
90572890 917 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
918}
919
90572890 920static inline int cpupid_to_pid(int cpupid)
57e0a030 921{
90572890 922 return cpupid & LAST__PID_MASK;
57e0a030 923}
b795854b 924
90572890 925static inline int cpupid_to_cpu(int cpupid)
b795854b 926{
90572890 927 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
928}
929
90572890 930static inline int cpupid_to_nid(int cpupid)
b795854b 931{
90572890 932 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
933}
934
90572890 935static inline bool cpupid_pid_unset(int cpupid)
57e0a030 936{
90572890 937 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
938}
939
90572890 940static inline bool cpupid_cpu_unset(int cpupid)
b795854b 941{
90572890 942 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
943}
944
8c8a743c
PZ
945static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
946{
947 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
948}
949
950#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
951#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
952static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 953{
1ae71d03 954 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 955}
90572890
PZ
956
957static inline int page_cpupid_last(struct page *page)
958{
959 return page->_last_cpupid;
960}
961static inline void page_cpupid_reset_last(struct page *page)
b795854b 962{
1ae71d03 963 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
964}
965#else
90572890 966static inline int page_cpupid_last(struct page *page)
75980e97 967{
90572890 968 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
969}
970
90572890 971extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 972
90572890 973static inline void page_cpupid_reset_last(struct page *page)
75980e97 974{
09940a4f 975 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 976}
90572890
PZ
977#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
978#else /* !CONFIG_NUMA_BALANCING */
979static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 980{
90572890 981 return page_to_nid(page); /* XXX */
57e0a030
MG
982}
983
90572890 984static inline int page_cpupid_last(struct page *page)
57e0a030 985{
90572890 986 return page_to_nid(page); /* XXX */
57e0a030
MG
987}
988
90572890 989static inline int cpupid_to_nid(int cpupid)
b795854b
MG
990{
991 return -1;
992}
993
90572890 994static inline int cpupid_to_pid(int cpupid)
b795854b
MG
995{
996 return -1;
997}
998
90572890 999static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1000{
1001 return -1;
1002}
1003
90572890
PZ
1004static inline int cpu_pid_to_cpupid(int nid, int pid)
1005{
1006 return -1;
1007}
1008
1009static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
1010{
1011 return 1;
1012}
1013
90572890 1014static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1015{
1016}
8c8a743c
PZ
1017
1018static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1019{
1020 return false;
1021}
90572890 1022#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1023
33dd4e0e 1024static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1025{
1026 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1027}
1028
75ef7184
MG
1029static inline pg_data_t *page_pgdat(const struct page *page)
1030{
1031 return NODE_DATA(page_to_nid(page));
1032}
1033
9127ab4f 1034#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1035static inline void set_page_section(struct page *page, unsigned long section)
1036{
1037 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1038 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1039}
1040
aa462abe 1041static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1042{
1043 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1044}
308c05e3 1045#endif
d41dee36 1046
2f1b6248 1047static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1048{
1049 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1050 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1051}
2f1b6248 1052
348f8b6c
DH
1053static inline void set_page_node(struct page *page, unsigned long node)
1054{
1055 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1056 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1057}
89689ae7 1058
2f1b6248 1059static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1060 unsigned long node, unsigned long pfn)
1da177e4 1061{
348f8b6c
DH
1062 set_page_zone(page, zone);
1063 set_page_node(page, node);
9127ab4f 1064#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1065 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1066#endif
1da177e4
LT
1067}
1068
0610c25d
GT
1069#ifdef CONFIG_MEMCG
1070static inline struct mem_cgroup *page_memcg(struct page *page)
1071{
1072 return page->mem_cgroup;
1073}
55779ec7
JW
1074static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1075{
1076 WARN_ON_ONCE(!rcu_read_lock_held());
1077 return READ_ONCE(page->mem_cgroup);
1078}
0610c25d
GT
1079#else
1080static inline struct mem_cgroup *page_memcg(struct page *page)
1081{
1082 return NULL;
1083}
55779ec7
JW
1084static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1085{
1086 WARN_ON_ONCE(!rcu_read_lock_held());
1087 return NULL;
1088}
0610c25d
GT
1089#endif
1090
f6ac2354
CL
1091/*
1092 * Some inline functions in vmstat.h depend on page_zone()
1093 */
1094#include <linux/vmstat.h>
1095
33dd4e0e 1096static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1097{
1dff8083 1098 return page_to_virt(page);
1da177e4
LT
1099}
1100
1101#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1102#define HASHED_PAGE_VIRTUAL
1103#endif
1104
1105#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1106static inline void *page_address(const struct page *page)
1107{
1108 return page->virtual;
1109}
1110static inline void set_page_address(struct page *page, void *address)
1111{
1112 page->virtual = address;
1113}
1da177e4
LT
1114#define page_address_init() do { } while(0)
1115#endif
1116
1117#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1118void *page_address(const struct page *page);
1da177e4
LT
1119void set_page_address(struct page *page, void *virtual);
1120void page_address_init(void);
1121#endif
1122
1123#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1124#define page_address(page) lowmem_page_address(page)
1125#define set_page_address(page, address) do { } while(0)
1126#define page_address_init() do { } while(0)
1127#endif
1128
e39155ea
KS
1129extern void *page_rmapping(struct page *page);
1130extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1131extern struct address_space *page_mapping(struct page *page);
1da177e4 1132
f981c595
MG
1133extern struct address_space *__page_file_mapping(struct page *);
1134
1135static inline
1136struct address_space *page_file_mapping(struct page *page)
1137{
1138 if (unlikely(PageSwapCache(page)))
1139 return __page_file_mapping(page);
1140
1141 return page->mapping;
1142}
1143
f6ab1f7f
HY
1144extern pgoff_t __page_file_index(struct page *page);
1145
1da177e4
LT
1146/*
1147 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1148 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1149 */
1150static inline pgoff_t page_index(struct page *page)
1151{
1152 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1153 return __page_file_index(page);
1da177e4
LT
1154 return page->index;
1155}
1156
1aa8aea5 1157bool page_mapped(struct page *page);
bda807d4 1158struct address_space *page_mapping(struct page *page);
cb9f753a 1159struct address_space *page_mapping_file(struct page *page);
1da177e4 1160
2f064f34
MH
1161/*
1162 * Return true only if the page has been allocated with
1163 * ALLOC_NO_WATERMARKS and the low watermark was not
1164 * met implying that the system is under some pressure.
1165 */
1166static inline bool page_is_pfmemalloc(struct page *page)
1167{
1168 /*
1169 * Page index cannot be this large so this must be
1170 * a pfmemalloc page.
1171 */
1172 return page->index == -1UL;
1173}
1174
1175/*
1176 * Only to be called by the page allocator on a freshly allocated
1177 * page.
1178 */
1179static inline void set_page_pfmemalloc(struct page *page)
1180{
1181 page->index = -1UL;
1182}
1183
1184static inline void clear_page_pfmemalloc(struct page *page)
1185{
1186 page->index = 0;
1187}
1188
1da177e4
LT
1189/*
1190 * Different kinds of faults, as returned by handle_mm_fault().
1191 * Used to decide whether a process gets delivered SIGBUS or
1192 * just gets major/minor fault counters bumped up.
1193 */
d0217ac0 1194
83c54070
NP
1195#define VM_FAULT_OOM 0x0001
1196#define VM_FAULT_SIGBUS 0x0002
1197#define VM_FAULT_MAJOR 0x0004
1198#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1199#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1200#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1201#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1202
83c54070
NP
1203#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1204#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1205#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1206#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
b1aa812b 1207#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
caa51d26
JK
1208#define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
1209 * and needs fsync() to complete (for
1210 * synchronous page faults in DAX) */
aa50d3a7 1211
33692f27
LT
1212#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1213 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1214 VM_FAULT_FALLBACK)
aa50d3a7 1215
282a8e03
RZ
1216#define VM_FAULT_RESULT_TRACE \
1217 { VM_FAULT_OOM, "OOM" }, \
1218 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1219 { VM_FAULT_MAJOR, "MAJOR" }, \
1220 { VM_FAULT_WRITE, "WRITE" }, \
1221 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1222 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1223 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1224 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1225 { VM_FAULT_LOCKED, "LOCKED" }, \
1226 { VM_FAULT_RETRY, "RETRY" }, \
1227 { VM_FAULT_FALLBACK, "FALLBACK" }, \
caa51d26
JK
1228 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1229 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
282a8e03 1230
aa50d3a7
AK
1231/* Encode hstate index for a hwpoisoned large page */
1232#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1233#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1234
1c0fe6e3
NP
1235/*
1236 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1237 */
1238extern void pagefault_out_of_memory(void);
1239
1da177e4
LT
1240#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1241
ddd588b5 1242/*
7bf02ea2 1243 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1244 * various contexts.
1245 */
4b59e6c4 1246#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1247
9af744d7 1248extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1249
7f43add4 1250extern bool can_do_mlock(void);
1da177e4
LT
1251extern int user_shm_lock(size_t, struct user_struct *);
1252extern void user_shm_unlock(size_t, struct user_struct *);
1253
1254/*
1255 * Parameter block passed down to zap_pte_range in exceptional cases.
1256 */
1257struct zap_details {
1da177e4
LT
1258 struct address_space *check_mapping; /* Check page->mapping if set */
1259 pgoff_t first_index; /* Lowest page->index to unmap */
1260 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1261};
1262
df6ad698
JG
1263struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1264 pte_t pte, bool with_public_device);
1265#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1266
28093f9f
GS
1267struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1268 pmd_t pmd);
7e675137 1269
c627f9cc
JS
1270int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1271 unsigned long size);
14f5ff5d 1272void zap_page_range(struct vm_area_struct *vma, unsigned long address,
ecf1385d 1273 unsigned long size);
4f74d2c8
LT
1274void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1275 unsigned long start, unsigned long end);
e6473092
MM
1276
1277/**
1278 * mm_walk - callbacks for walk_page_range
a00cc7d9
MW
1279 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1280 * this handler should only handle pud_trans_huge() puds.
1281 * the pmd_entry or pte_entry callbacks will be used for
1282 * regular PUDs.
e6473092 1283 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1284 * this handler is required to be able to handle
1285 * pmd_trans_huge() pmds. They may simply choose to
1286 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1287 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1288 * @pte_hole: if set, called for each hole at all levels
5dc37642 1289 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426 1290 * @test_walk: caller specific callback function to determine whether
f7e2355f 1291 * we walk over the current vma or not. Returning 0
fafaa426
NH
1292 * value means "do page table walk over the current vma,"
1293 * and a negative one means "abort current page table walk
f7e2355f 1294 * right now." 1 means "skip the current vma."
fafaa426
NH
1295 * @mm: mm_struct representing the target process of page table walk
1296 * @vma: vma currently walked (NULL if walking outside vmas)
1297 * @private: private data for callbacks' usage
e6473092 1298 *
fafaa426 1299 * (see the comment on walk_page_range() for more details)
e6473092
MM
1300 */
1301struct mm_walk {
a00cc7d9
MW
1302 int (*pud_entry)(pud_t *pud, unsigned long addr,
1303 unsigned long next, struct mm_walk *walk);
0f157a5b
AM
1304 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1305 unsigned long next, struct mm_walk *walk);
1306 int (*pte_entry)(pte_t *pte, unsigned long addr,
1307 unsigned long next, struct mm_walk *walk);
1308 int (*pte_hole)(unsigned long addr, unsigned long next,
1309 struct mm_walk *walk);
1310 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1311 unsigned long addr, unsigned long next,
1312 struct mm_walk *walk);
fafaa426
NH
1313 int (*test_walk)(unsigned long addr, unsigned long next,
1314 struct mm_walk *walk);
2165009b 1315 struct mm_struct *mm;
fafaa426 1316 struct vm_area_struct *vma;
2165009b 1317 void *private;
e6473092
MM
1318};
1319
2165009b
DH
1320int walk_page_range(unsigned long addr, unsigned long end,
1321 struct mm_walk *walk);
900fc5f1 1322int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1323void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1324 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1325int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1326 struct vm_area_struct *vma);
09796395 1327int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885 1328 unsigned long *start, unsigned long *end,
09796395 1329 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1330int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1331 unsigned long *pfn);
d87fe660 1332int follow_phys(struct vm_area_struct *vma, unsigned long address,
1333 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1334int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1335 void *buf, int len, int write);
1da177e4 1336
7caef267 1337extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1338extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1339void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1340void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1341int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1342int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1343int invalidate_inode_page(struct page *page);
1344
7ee1dd3f 1345#ifdef CONFIG_MMU
dcddffd4
KS
1346extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1347 unsigned int flags);
5c723ba5 1348extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1349 unsigned long address, unsigned int fault_flags,
1350 bool *unlocked);
977fbdcd
MW
1351void unmap_mapping_pages(struct address_space *mapping,
1352 pgoff_t start, pgoff_t nr, bool even_cows);
1353void unmap_mapping_range(struct address_space *mapping,
1354 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1355#else
dcddffd4
KS
1356static inline int handle_mm_fault(struct vm_area_struct *vma,
1357 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1358{
1359 /* should never happen if there's no MMU */
1360 BUG();
1361 return VM_FAULT_SIGBUS;
1362}
5c723ba5
PZ
1363static inline int fixup_user_fault(struct task_struct *tsk,
1364 struct mm_struct *mm, unsigned long address,
4a9e1cda 1365 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1366{
1367 /* should never happen if there's no MMU */
1368 BUG();
1369 return -EFAULT;
1370}
977fbdcd
MW
1371static inline void unmap_mapping_pages(struct address_space *mapping,
1372 pgoff_t start, pgoff_t nr, bool even_cows) { }
1373static inline void unmap_mapping_range(struct address_space *mapping,
1374 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1375#endif
f33ea7f4 1376
977fbdcd
MW
1377static inline void unmap_shared_mapping_range(struct address_space *mapping,
1378 loff_t const holebegin, loff_t const holelen)
1379{
1380 unmap_mapping_range(mapping, holebegin, holelen, 0);
1381}
1382
1383extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1384 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1385extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1386 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1387extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1388 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1389
1e987790
DH
1390long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1391 unsigned long start, unsigned long nr_pages,
9beae1ea 1392 unsigned int gup_flags, struct page **pages,
5b56d49f 1393 struct vm_area_struct **vmas, int *locked);
c12d2da5 1394long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1395 unsigned int gup_flags, struct page **pages,
cde70140 1396 struct vm_area_struct **vmas);
c12d2da5 1397long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1398 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1399long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1400 struct page **pages, unsigned int gup_flags);
2bb6d283
DW
1401#ifdef CONFIG_FS_DAX
1402long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1403 unsigned int gup_flags, struct page **pages,
1404 struct vm_area_struct **vmas);
1405#else
1406static inline long get_user_pages_longterm(unsigned long start,
1407 unsigned long nr_pages, unsigned int gup_flags,
1408 struct page **pages, struct vm_area_struct **vmas)
1409{
1410 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1411}
1412#endif /* CONFIG_FS_DAX */
1413
d2bf6be8
NP
1414int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1415 struct page **pages);
8025e5dd
JK
1416
1417/* Container for pinned pfns / pages */
1418struct frame_vector {
1419 unsigned int nr_allocated; /* Number of frames we have space for */
1420 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1421 bool got_ref; /* Did we pin pages by getting page ref? */
1422 bool is_pfns; /* Does array contain pages or pfns? */
1423 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1424 * pfns_vector_pages() or pfns_vector_pfns()
1425 * for access */
1426};
1427
1428struct frame_vector *frame_vector_create(unsigned int nr_frames);
1429void frame_vector_destroy(struct frame_vector *vec);
1430int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1431 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1432void put_vaddr_frames(struct frame_vector *vec);
1433int frame_vector_to_pages(struct frame_vector *vec);
1434void frame_vector_to_pfns(struct frame_vector *vec);
1435
1436static inline unsigned int frame_vector_count(struct frame_vector *vec)
1437{
1438 return vec->nr_frames;
1439}
1440
1441static inline struct page **frame_vector_pages(struct frame_vector *vec)
1442{
1443 if (vec->is_pfns) {
1444 int err = frame_vector_to_pages(vec);
1445
1446 if (err)
1447 return ERR_PTR(err);
1448 }
1449 return (struct page **)(vec->ptrs);
1450}
1451
1452static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1453{
1454 if (!vec->is_pfns)
1455 frame_vector_to_pfns(vec);
1456 return (unsigned long *)(vec->ptrs);
1457}
1458
18022c5d
MG
1459struct kvec;
1460int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1461 struct page **pages);
1462int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1463struct page *get_dump_page(unsigned long addr);
1da177e4 1464
cf9a2ae8 1465extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1466extern void do_invalidatepage(struct page *page, unsigned int offset,
1467 unsigned int length);
cf9a2ae8 1468
1da177e4 1469int __set_page_dirty_nobuffers(struct page *page);
76719325 1470int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1471int redirty_page_for_writepage(struct writeback_control *wbc,
1472 struct page *page);
62cccb8c 1473void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1474void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1475 struct bdi_writeback *wb);
b3c97528 1476int set_page_dirty(struct page *page);
1da177e4 1477int set_page_dirty_lock(struct page *page);
736304f3
JK
1478void __cancel_dirty_page(struct page *page);
1479static inline void cancel_dirty_page(struct page *page)
1480{
1481 /* Avoid atomic ops, locking, etc. when not actually needed. */
1482 if (PageDirty(page))
1483 __cancel_dirty_page(page);
1484}
1da177e4 1485int clear_page_dirty_for_io(struct page *page);
b9ea2515 1486
a9090253 1487int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1488
b5330628
ON
1489static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1490{
1491 return !vma->vm_ops;
1492}
1493
b0506e48
MR
1494#ifdef CONFIG_SHMEM
1495/*
1496 * The vma_is_shmem is not inline because it is used only by slow
1497 * paths in userfault.
1498 */
1499bool vma_is_shmem(struct vm_area_struct *vma);
1500#else
1501static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1502#endif
1503
d17af505 1504int vma_is_stack_for_current(struct vm_area_struct *vma);
b7643757 1505
b6a2fea3
OW
1506extern unsigned long move_page_tables(struct vm_area_struct *vma,
1507 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1508 unsigned long new_addr, unsigned long len,
1509 bool need_rmap_locks);
7da4d641
PZ
1510extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1511 unsigned long end, pgprot_t newprot,
4b10e7d5 1512 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1513extern int mprotect_fixup(struct vm_area_struct *vma,
1514 struct vm_area_struct **pprev, unsigned long start,
1515 unsigned long end, unsigned long newflags);
1da177e4 1516
465a454f
PZ
1517/*
1518 * doesn't attempt to fault and will return short.
1519 */
1520int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1521 struct page **pages);
d559db08
KH
1522/*
1523 * per-process(per-mm_struct) statistics.
1524 */
d559db08
KH
1525static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1526{
69c97823
KK
1527 long val = atomic_long_read(&mm->rss_stat.count[member]);
1528
1529#ifdef SPLIT_RSS_COUNTING
1530 /*
1531 * counter is updated in asynchronous manner and may go to minus.
1532 * But it's never be expected number for users.
1533 */
1534 if (val < 0)
1535 val = 0;
172703b0 1536#endif
69c97823
KK
1537 return (unsigned long)val;
1538}
d559db08
KH
1539
1540static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1541{
172703b0 1542 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1543}
1544
1545static inline void inc_mm_counter(struct mm_struct *mm, int member)
1546{
172703b0 1547 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1548}
1549
1550static inline void dec_mm_counter(struct mm_struct *mm, int member)
1551{
172703b0 1552 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1553}
1554
eca56ff9
JM
1555/* Optimized variant when page is already known not to be PageAnon */
1556static inline int mm_counter_file(struct page *page)
1557{
1558 if (PageSwapBacked(page))
1559 return MM_SHMEMPAGES;
1560 return MM_FILEPAGES;
1561}
1562
1563static inline int mm_counter(struct page *page)
1564{
1565 if (PageAnon(page))
1566 return MM_ANONPAGES;
1567 return mm_counter_file(page);
1568}
1569
d559db08
KH
1570static inline unsigned long get_mm_rss(struct mm_struct *mm)
1571{
1572 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1573 get_mm_counter(mm, MM_ANONPAGES) +
1574 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1575}
1576
1577static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1578{
1579 return max(mm->hiwater_rss, get_mm_rss(mm));
1580}
1581
1582static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1583{
1584 return max(mm->hiwater_vm, mm->total_vm);
1585}
1586
1587static inline void update_hiwater_rss(struct mm_struct *mm)
1588{
1589 unsigned long _rss = get_mm_rss(mm);
1590
1591 if ((mm)->hiwater_rss < _rss)
1592 (mm)->hiwater_rss = _rss;
1593}
1594
1595static inline void update_hiwater_vm(struct mm_struct *mm)
1596{
1597 if (mm->hiwater_vm < mm->total_vm)
1598 mm->hiwater_vm = mm->total_vm;
1599}
1600
695f0559
PC
1601static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1602{
1603 mm->hiwater_rss = get_mm_rss(mm);
1604}
1605
d559db08
KH
1606static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1607 struct mm_struct *mm)
1608{
1609 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1610
1611 if (*maxrss < hiwater_rss)
1612 *maxrss = hiwater_rss;
1613}
1614
53bddb4e 1615#if defined(SPLIT_RSS_COUNTING)
05af2e10 1616void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1617#else
05af2e10 1618static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1619{
1620}
1621#endif
465a454f 1622
3565fce3
DW
1623#ifndef __HAVE_ARCH_PTE_DEVMAP
1624static inline int pte_devmap(pte_t pte)
1625{
1626 return 0;
1627}
1628#endif
1629
6d2329f8 1630int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1631
25ca1d6c
NK
1632extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1633 spinlock_t **ptl);
1634static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1635 spinlock_t **ptl)
1636{
1637 pte_t *ptep;
1638 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1639 return ptep;
1640}
c9cfcddf 1641
c2febafc
KS
1642#ifdef __PAGETABLE_P4D_FOLDED
1643static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1644 unsigned long address)
1645{
1646 return 0;
1647}
1648#else
1649int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1650#endif
1651
b4e98d9a 1652#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 1653static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1654 unsigned long address)
1655{
1656 return 0;
1657}
b4e98d9a
KS
1658static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1659static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1660
5f22df00 1661#else
c2febafc 1662int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 1663
b4e98d9a
KS
1664static inline void mm_inc_nr_puds(struct mm_struct *mm)
1665{
af5b0f6a 1666 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
1667}
1668
1669static inline void mm_dec_nr_puds(struct mm_struct *mm)
1670{
af5b0f6a 1671 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 1672}
5f22df00
NP
1673#endif
1674
2d2f5119 1675#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1676static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1677 unsigned long address)
1678{
1679 return 0;
1680}
dc6c9a35 1681
dc6c9a35
KS
1682static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1683static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1684
5f22df00 1685#else
1bb3630e 1686int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1687
dc6c9a35
KS
1688static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1689{
af5b0f6a 1690 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
1691}
1692
1693static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1694{
af5b0f6a 1695 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 1696}
5f22df00
NP
1697#endif
1698
c4812909 1699#ifdef CONFIG_MMU
af5b0f6a 1700static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 1701{
af5b0f6a 1702 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
1703}
1704
af5b0f6a 1705static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 1706{
af5b0f6a 1707 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
1708}
1709
1710static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1711{
af5b0f6a 1712 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1713}
1714
1715static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1716{
af5b0f6a 1717 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1718}
1719#else
c4812909 1720
af5b0f6a
KS
1721static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1722static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
1723{
1724 return 0;
1725}
1726
1727static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1728static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1729#endif
1730
3ed3a4f0 1731int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1bb3630e
HD
1732int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1733
1da177e4
LT
1734/*
1735 * The following ifdef needed to get the 4level-fixup.h header to work.
1736 * Remove it when 4level-fixup.h has been removed.
1737 */
1bb3630e 1738#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
505a60e2
KS
1739
1740#ifndef __ARCH_HAS_5LEVEL_HACK
c2febafc
KS
1741static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1742 unsigned long address)
1743{
1744 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1745 NULL : p4d_offset(pgd, address);
1746}
1747
1748static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1749 unsigned long address)
1da177e4 1750{
c2febafc
KS
1751 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1752 NULL : pud_offset(p4d, address);
1da177e4 1753}
505a60e2 1754#endif /* !__ARCH_HAS_5LEVEL_HACK */
1da177e4
LT
1755
1756static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1757{
1bb3630e
HD
1758 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1759 NULL: pmd_offset(pud, address);
1da177e4 1760}
1bb3630e
HD
1761#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1762
57c1ffce 1763#if USE_SPLIT_PTE_PTLOCKS
597d795a 1764#if ALLOC_SPLIT_PTLOCKS
b35f1819 1765void __init ptlock_cache_init(void);
539edb58
PZ
1766extern bool ptlock_alloc(struct page *page);
1767extern void ptlock_free(struct page *page);
1768
1769static inline spinlock_t *ptlock_ptr(struct page *page)
1770{
1771 return page->ptl;
1772}
597d795a 1773#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1774static inline void ptlock_cache_init(void)
1775{
1776}
1777
49076ec2
KS
1778static inline bool ptlock_alloc(struct page *page)
1779{
49076ec2
KS
1780 return true;
1781}
539edb58 1782
49076ec2
KS
1783static inline void ptlock_free(struct page *page)
1784{
49076ec2
KS
1785}
1786
1787static inline spinlock_t *ptlock_ptr(struct page *page)
1788{
539edb58 1789 return &page->ptl;
49076ec2 1790}
597d795a 1791#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1792
1793static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1794{
1795 return ptlock_ptr(pmd_page(*pmd));
1796}
1797
1798static inline bool ptlock_init(struct page *page)
1799{
1800 /*
1801 * prep_new_page() initialize page->private (and therefore page->ptl)
1802 * with 0. Make sure nobody took it in use in between.
1803 *
1804 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1805 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1806 */
309381fe 1807 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1808 if (!ptlock_alloc(page))
1809 return false;
1810 spin_lock_init(ptlock_ptr(page));
1811 return true;
1812}
1813
1814/* Reset page->mapping so free_pages_check won't complain. */
1815static inline void pte_lock_deinit(struct page *page)
1816{
1817 page->mapping = NULL;
1818 ptlock_free(page);
1819}
1820
57c1ffce 1821#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1822/*
1823 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1824 */
49076ec2
KS
1825static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1826{
1827 return &mm->page_table_lock;
1828}
b35f1819 1829static inline void ptlock_cache_init(void) {}
49076ec2
KS
1830static inline bool ptlock_init(struct page *page) { return true; }
1831static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1832#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1833
b35f1819
KS
1834static inline void pgtable_init(void)
1835{
1836 ptlock_cache_init();
1837 pgtable_cache_init();
1838}
1839
390f44e2 1840static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1841{
706874e9
VD
1842 if (!ptlock_init(page))
1843 return false;
2f569afd 1844 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1845 return true;
2f569afd
MS
1846}
1847
1848static inline void pgtable_page_dtor(struct page *page)
1849{
1850 pte_lock_deinit(page);
1851 dec_zone_page_state(page, NR_PAGETABLE);
1852}
1853
c74df32c
HD
1854#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1855({ \
4c21e2f2 1856 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1857 pte_t *__pte = pte_offset_map(pmd, address); \
1858 *(ptlp) = __ptl; \
1859 spin_lock(__ptl); \
1860 __pte; \
1861})
1862
1863#define pte_unmap_unlock(pte, ptl) do { \
1864 spin_unlock(ptl); \
1865 pte_unmap(pte); \
1866} while (0)
1867
3ed3a4f0
KS
1868#define pte_alloc(mm, pmd, address) \
1869 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1870
1871#define pte_alloc_map(mm, pmd, address) \
1872 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1bb3630e 1873
c74df32c 1874#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3ed3a4f0
KS
1875 (pte_alloc(mm, pmd, address) ? \
1876 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 1877
1bb3630e 1878#define pte_alloc_kernel(pmd, address) \
8ac1f832 1879 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1880 NULL: pte_offset_kernel(pmd, address))
1da177e4 1881
e009bb30
KS
1882#if USE_SPLIT_PMD_PTLOCKS
1883
634391ac
MS
1884static struct page *pmd_to_page(pmd_t *pmd)
1885{
1886 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1887 return virt_to_page((void *)((unsigned long) pmd & mask));
1888}
1889
e009bb30
KS
1890static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1891{
634391ac 1892 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1893}
1894
1895static inline bool pgtable_pmd_page_ctor(struct page *page)
1896{
e009bb30
KS
1897#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1898 page->pmd_huge_pte = NULL;
1899#endif
49076ec2 1900 return ptlock_init(page);
e009bb30
KS
1901}
1902
1903static inline void pgtable_pmd_page_dtor(struct page *page)
1904{
1905#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1906 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1907#endif
49076ec2 1908 ptlock_free(page);
e009bb30
KS
1909}
1910
634391ac 1911#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1912
1913#else
1914
9a86cb7b
KS
1915static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1916{
1917 return &mm->page_table_lock;
1918}
1919
e009bb30
KS
1920static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1921static inline void pgtable_pmd_page_dtor(struct page *page) {}
1922
c389a250 1923#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1924
e009bb30
KS
1925#endif
1926
9a86cb7b
KS
1927static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1928{
1929 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1930 spin_lock(ptl);
1931 return ptl;
1932}
1933
a00cc7d9
MW
1934/*
1935 * No scalability reason to split PUD locks yet, but follow the same pattern
1936 * as the PMD locks to make it easier if we decide to. The VM should not be
1937 * considered ready to switch to split PUD locks yet; there may be places
1938 * which need to be converted from page_table_lock.
1939 */
1940static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1941{
1942 return &mm->page_table_lock;
1943}
1944
1945static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1946{
1947 spinlock_t *ptl = pud_lockptr(mm, pud);
1948
1949 spin_lock(ptl);
1950 return ptl;
1951}
62906027 1952
a00cc7d9 1953extern void __init pagecache_init(void);
1da177e4 1954extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1955extern void free_area_init_node(int nid, unsigned long * zones_size,
1956 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1957extern void free_initmem(void);
1958
69afade7
JL
1959/*
1960 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1961 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1962 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1963 * Return pages freed into the buddy system.
1964 */
11199692 1965extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1966 int poison, char *s);
c3d5f5f0 1967
cfa11e08
JL
1968#ifdef CONFIG_HIGHMEM
1969/*
1970 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1971 * and totalram_pages.
1972 */
1973extern void free_highmem_page(struct page *page);
1974#endif
69afade7 1975
c3d5f5f0 1976extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1977extern void mem_init_print_info(const char *str);
69afade7 1978
4b50bcc7 1979extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 1980
69afade7
JL
1981/* Free the reserved page into the buddy system, so it gets managed. */
1982static inline void __free_reserved_page(struct page *page)
1983{
1984 ClearPageReserved(page);
1985 init_page_count(page);
1986 __free_page(page);
1987}
1988
1989static inline void free_reserved_page(struct page *page)
1990{
1991 __free_reserved_page(page);
1992 adjust_managed_page_count(page, 1);
1993}
1994
1995static inline void mark_page_reserved(struct page *page)
1996{
1997 SetPageReserved(page);
1998 adjust_managed_page_count(page, -1);
1999}
2000
2001/*
2002 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2003 * The freed pages will be poisoned with pattern "poison" if it's within
2004 * range [0, UCHAR_MAX].
2005 * Return pages freed into the buddy system.
69afade7
JL
2006 */
2007static inline unsigned long free_initmem_default(int poison)
2008{
2009 extern char __init_begin[], __init_end[];
2010
11199692 2011 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2012 poison, "unused kernel");
2013}
2014
7ee3d4e8
JL
2015static inline unsigned long get_num_physpages(void)
2016{
2017 int nid;
2018 unsigned long phys_pages = 0;
2019
2020 for_each_online_node(nid)
2021 phys_pages += node_present_pages(nid);
2022
2023 return phys_pages;
2024}
2025
0ee332c1 2026#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 2027/*
0ee332c1 2028 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
2029 * zones, allocate the backing mem_map and account for memory holes in a more
2030 * architecture independent manner. This is a substitute for creating the
2031 * zone_sizes[] and zholes_size[] arrays and passing them to
2032 * free_area_init_node()
2033 *
2034 * An architecture is expected to register range of page frames backed by
0ee332c1 2035 * physical memory with memblock_add[_node]() before calling
c713216d
MG
2036 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2037 * usage, an architecture is expected to do something like
2038 *
2039 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2040 * max_highmem_pfn};
2041 * for_each_valid_physical_page_range()
0ee332c1 2042 * memblock_add_node(base, size, nid)
c713216d
MG
2043 * free_area_init_nodes(max_zone_pfns);
2044 *
0ee332c1
TH
2045 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2046 * registered physical page range. Similarly
2047 * sparse_memory_present_with_active_regions() calls memory_present() for
2048 * each range when SPARSEMEM is enabled.
c713216d
MG
2049 *
2050 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 2051 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
2052 */
2053extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 2054unsigned long node_map_pfn_alignment(void);
32996250
YL
2055unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2056 unsigned long end_pfn);
c713216d
MG
2057extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2058 unsigned long end_pfn);
2059extern void get_pfn_range_for_nid(unsigned int nid,
2060 unsigned long *start_pfn, unsigned long *end_pfn);
2061extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
2062extern void free_bootmem_with_active_regions(int nid,
2063 unsigned long max_low_pfn);
2064extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 2065
0ee332c1 2066#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 2067
0ee332c1 2068#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 2069 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
2070static inline int __early_pfn_to_nid(unsigned long pfn,
2071 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
2072{
2073 return 0;
2074}
2075#else
2076/* please see mm/page_alloc.c */
2077extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 2078/* there is a per-arch backend function. */
8a942fde
MG
2079extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2080 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
2081#endif
2082
a4a3ede2
PT
2083#ifdef CONFIG_HAVE_MEMBLOCK
2084void zero_resv_unavail(void);
2085#else
2086static inline void zero_resv_unavail(void) {}
2087#endif
2088
0e0b864e 2089extern void set_dma_reserve(unsigned long new_dma_reserve);
a99583e7
CH
2090extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2091 enum memmap_context, struct vmem_altmap *);
bc75d33f 2092extern void setup_per_zone_wmarks(void);
1b79acc9 2093extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2094extern void mem_init(void);
8feae131 2095extern void __init mmap_init(void);
9af744d7 2096extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2097extern long si_mem_available(void);
1da177e4
LT
2098extern void si_meminfo(struct sysinfo * val);
2099extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2100#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2101extern unsigned long arch_reserved_kernel_pages(void);
2102#endif
1da177e4 2103
a8e99259
MH
2104extern __printf(3, 4)
2105void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2106
e7c8d5c9 2107extern void setup_per_cpu_pageset(void);
e7c8d5c9 2108
112067f0 2109extern void zone_pcp_update(struct zone *zone);
340175b7 2110extern void zone_pcp_reset(struct zone *zone);
112067f0 2111
75f7ad8e
PS
2112/* page_alloc.c */
2113extern int min_free_kbytes;
795ae7a0 2114extern int watermark_scale_factor;
75f7ad8e 2115
8feae131 2116/* nommu.c */
33e5d769 2117extern atomic_long_t mmap_pages_allocated;
7e660872 2118extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2119
6b2dbba8 2120/* interval_tree.c */
6b2dbba8 2121void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2122 struct rb_root_cached *root);
9826a516
ML
2123void vma_interval_tree_insert_after(struct vm_area_struct *node,
2124 struct vm_area_struct *prev,
f808c13f 2125 struct rb_root_cached *root);
6b2dbba8 2126void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2127 struct rb_root_cached *root);
2128struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2129 unsigned long start, unsigned long last);
2130struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2131 unsigned long start, unsigned long last);
2132
2133#define vma_interval_tree_foreach(vma, root, start, last) \
2134 for (vma = vma_interval_tree_iter_first(root, start, last); \
2135 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2136
bf181b9f 2137void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2138 struct rb_root_cached *root);
bf181b9f 2139void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2140 struct rb_root_cached *root);
2141struct anon_vma_chain *
2142anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2143 unsigned long start, unsigned long last);
bf181b9f
ML
2144struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2145 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2146#ifdef CONFIG_DEBUG_VM_RB
2147void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2148#endif
bf181b9f
ML
2149
2150#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2151 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2152 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2153
1da177e4 2154/* mmap.c */
34b4e4aa 2155extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2156extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2157 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2158 struct vm_area_struct *expand);
2159static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2160 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2161{
2162 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2163}
1da177e4
LT
2164extern struct vm_area_struct *vma_merge(struct mm_struct *,
2165 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2166 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2167 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2168extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2169extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2170 unsigned long addr, int new_below);
2171extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2172 unsigned long addr, int new_below);
1da177e4
LT
2173extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2174extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2175 struct rb_node **, struct rb_node *);
a8fb5618 2176extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2177extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2178 unsigned long addr, unsigned long len, pgoff_t pgoff,
2179 bool *need_rmap_locks);
1da177e4 2180extern void exit_mmap(struct mm_struct *);
925d1c40 2181
9c599024
CG
2182static inline int check_data_rlimit(unsigned long rlim,
2183 unsigned long new,
2184 unsigned long start,
2185 unsigned long end_data,
2186 unsigned long start_data)
2187{
2188 if (rlim < RLIM_INFINITY) {
2189 if (((new - start) + (end_data - start_data)) > rlim)
2190 return -ENOSPC;
2191 }
2192
2193 return 0;
2194}
2195
7906d00c
AA
2196extern int mm_take_all_locks(struct mm_struct *mm);
2197extern void mm_drop_all_locks(struct mm_struct *mm);
2198
38646013
JS
2199extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2200extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2201extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2202
84638335
KK
2203extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2204extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2205
2eefd878
DS
2206extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2207 const struct vm_special_mapping *sm);
3935ed6a
SS
2208extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2209 unsigned long addr, unsigned long len,
a62c34bd
AL
2210 unsigned long flags,
2211 const struct vm_special_mapping *spec);
2212/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2213extern int install_special_mapping(struct mm_struct *mm,
2214 unsigned long addr, unsigned long len,
2215 unsigned long flags, struct page **pages);
1da177e4
LT
2216
2217extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2218
0165ab44 2219extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2220 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2221 struct list_head *uf);
1fcfd8db 2222extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2223 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2224 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2225 struct list_head *uf);
2226extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2227 struct list_head *uf);
1da177e4 2228
1fcfd8db
ON
2229static inline unsigned long
2230do_mmap_pgoff(struct file *file, unsigned long addr,
2231 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2232 unsigned long pgoff, unsigned long *populate,
2233 struct list_head *uf)
1fcfd8db 2234{
897ab3e0 2235 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2236}
2237
bebeb3d6
ML
2238#ifdef CONFIG_MMU
2239extern int __mm_populate(unsigned long addr, unsigned long len,
2240 int ignore_errors);
2241static inline void mm_populate(unsigned long addr, unsigned long len)
2242{
2243 /* Ignore errors */
2244 (void) __mm_populate(addr, len, 1);
2245}
2246#else
2247static inline void mm_populate(unsigned long addr, unsigned long len) {}
2248#endif
2249
e4eb1ff6 2250/* These take the mm semaphore themselves */
5d22fc25 2251extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2252extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2253extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2254extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2255 unsigned long, unsigned long,
2256 unsigned long, unsigned long);
1da177e4 2257
db4fbfb9
ML
2258struct vm_unmapped_area_info {
2259#define VM_UNMAPPED_AREA_TOPDOWN 1
2260 unsigned long flags;
2261 unsigned long length;
2262 unsigned long low_limit;
2263 unsigned long high_limit;
2264 unsigned long align_mask;
2265 unsigned long align_offset;
2266};
2267
2268extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2269extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2270
2271/*
2272 * Search for an unmapped address range.
2273 *
2274 * We are looking for a range that:
2275 * - does not intersect with any VMA;
2276 * - is contained within the [low_limit, high_limit) interval;
2277 * - is at least the desired size.
2278 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2279 */
2280static inline unsigned long
2281vm_unmapped_area(struct vm_unmapped_area_info *info)
2282{
cdd7875e 2283 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2284 return unmapped_area_topdown(info);
cdd7875e
BP
2285 else
2286 return unmapped_area(info);
db4fbfb9
ML
2287}
2288
85821aab 2289/* truncate.c */
1da177e4 2290extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2291extern void truncate_inode_pages_range(struct address_space *,
2292 loff_t lstart, loff_t lend);
91b0abe3 2293extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2294
2295/* generic vm_area_ops exported for stackable file systems */
11bac800 2296extern int filemap_fault(struct vm_fault *vmf);
82b0f8c3 2297extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2298 pgoff_t start_pgoff, pgoff_t end_pgoff);
11bac800 2299extern int filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2300
2301/* mm/page-writeback.c */
2b69c828 2302int __must_check write_one_page(struct page *page);
1cf6e7d8 2303void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2304
2305/* readahead.c */
2306#define VM_MAX_READAHEAD 128 /* kbytes */
2307#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2308
1da177e4 2309int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2310 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2311
2312void page_cache_sync_readahead(struct address_space *mapping,
2313 struct file_ra_state *ra,
2314 struct file *filp,
2315 pgoff_t offset,
2316 unsigned long size);
2317
2318void page_cache_async_readahead(struct address_space *mapping,
2319 struct file_ra_state *ra,
2320 struct file *filp,
2321 struct page *pg,
2322 pgoff_t offset,
2323 unsigned long size);
2324
1be7107f 2325extern unsigned long stack_guard_gap;
d05f3169 2326/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2327extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2328
2329/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2330extern int expand_downwards(struct vm_area_struct *vma,
2331 unsigned long address);
8ca3eb08 2332#if VM_GROWSUP
46dea3d0 2333extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2334#else
fee7e49d 2335 #define expand_upwards(vma, address) (0)
9ab88515 2336#endif
1da177e4
LT
2337
2338/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2339extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2340extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2341 struct vm_area_struct **pprev);
2342
2343/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2344 NULL if none. Assume start_addr < end_addr. */
2345static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2346{
2347 struct vm_area_struct * vma = find_vma(mm,start_addr);
2348
2349 if (vma && end_addr <= vma->vm_start)
2350 vma = NULL;
2351 return vma;
2352}
2353
1be7107f
HD
2354static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2355{
2356 unsigned long vm_start = vma->vm_start;
2357
2358 if (vma->vm_flags & VM_GROWSDOWN) {
2359 vm_start -= stack_guard_gap;
2360 if (vm_start > vma->vm_start)
2361 vm_start = 0;
2362 }
2363 return vm_start;
2364}
2365
2366static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2367{
2368 unsigned long vm_end = vma->vm_end;
2369
2370 if (vma->vm_flags & VM_GROWSUP) {
2371 vm_end += stack_guard_gap;
2372 if (vm_end < vma->vm_end)
2373 vm_end = -PAGE_SIZE;
2374 }
2375 return vm_end;
2376}
2377
1da177e4
LT
2378static inline unsigned long vma_pages(struct vm_area_struct *vma)
2379{
2380 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2381}
2382
640708a2
PE
2383/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2384static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2385 unsigned long vm_start, unsigned long vm_end)
2386{
2387 struct vm_area_struct *vma = find_vma(mm, vm_start);
2388
2389 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2390 vma = NULL;
2391
2392 return vma;
2393}
2394
bad849b3 2395#ifdef CONFIG_MMU
804af2cf 2396pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2397void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2398#else
2399static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2400{
2401 return __pgprot(0);
2402}
64e45507
PF
2403static inline void vma_set_page_prot(struct vm_area_struct *vma)
2404{
2405 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2406}
bad849b3
DH
2407#endif
2408
5877231f 2409#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2410unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2411 unsigned long start, unsigned long end);
2412#endif
2413
deceb6cd 2414struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2415int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2416 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2417int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2418int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2419 unsigned long pfn);
1745cbc5
AL
2420int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2421 unsigned long pfn, pgprot_t pgprot);
423bad60 2422int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2423 pfn_t pfn);
b2770da6
RZ
2424int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
2425 pfn_t pfn);
b4cbb197
LT
2426int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2427
1c8f4220
SJ
2428static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2429 unsigned long addr, struct page *page)
2430{
2431 int err = vm_insert_page(vma, addr, page);
2432
2433 if (err == -ENOMEM)
2434 return VM_FAULT_OOM;
2435 if (err < 0 && err != -EBUSY)
2436 return VM_FAULT_SIGBUS;
2437
2438 return VM_FAULT_NOPAGE;
2439}
2440
2441static inline vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma,
2442 unsigned long addr, pfn_t pfn)
2443{
2444 int err = vm_insert_mixed(vma, addr, pfn);
2445
2446 if (err == -ENOMEM)
2447 return VM_FAULT_OOM;
2448 if (err < 0 && err != -EBUSY)
2449 return VM_FAULT_SIGBUS;
2450
2451 return VM_FAULT_NOPAGE;
2452}
2453
2454static inline vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma,
2455 unsigned long addr, unsigned long pfn)
2456{
2457 int err = vm_insert_pfn(vma, addr, pfn);
2458
2459 if (err == -ENOMEM)
2460 return VM_FAULT_OOM;
2461 if (err < 0 && err != -EBUSY)
2462 return VM_FAULT_SIGBUS;
2463
2464 return VM_FAULT_NOPAGE;
2465}
deceb6cd 2466
240aadee
ML
2467struct page *follow_page_mask(struct vm_area_struct *vma,
2468 unsigned long address, unsigned int foll_flags,
2469 unsigned int *page_mask);
2470
2471static inline struct page *follow_page(struct vm_area_struct *vma,
2472 unsigned long address, unsigned int foll_flags)
2473{
2474 unsigned int unused_page_mask;
2475 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2476}
2477
deceb6cd
HD
2478#define FOLL_WRITE 0x01 /* check pte is writable */
2479#define FOLL_TOUCH 0x02 /* mark page accessed */
2480#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2481#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2482#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2483#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2484 * and return without waiting upon it */
84d33df2 2485#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2486#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2487#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2488#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2489#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2490#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2491#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2492#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2493#define FOLL_COW 0x4000 /* internal GUP flag */
1da177e4 2494
9a291a7c
JM
2495static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2496{
2497 if (vm_fault & VM_FAULT_OOM)
2498 return -ENOMEM;
2499 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2500 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2501 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2502 return -EFAULT;
2503 return 0;
2504}
2505
2f569afd 2506typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2507 void *data);
2508extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2509 unsigned long size, pte_fn_t fn, void *data);
2510
1da177e4 2511
8823b1db
LA
2512#ifdef CONFIG_PAGE_POISONING
2513extern bool page_poisoning_enabled(void);
2514extern void kernel_poison_pages(struct page *page, int numpages, int enable);
1414c7f4 2515extern bool page_is_poisoned(struct page *page);
8823b1db
LA
2516#else
2517static inline bool page_poisoning_enabled(void) { return false; }
2518static inline void kernel_poison_pages(struct page *page, int numpages,
2519 int enable) { }
1414c7f4 2520static inline bool page_is_poisoned(struct page *page) { return false; }
8823b1db
LA
2521#endif
2522
12d6f21e 2523#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2524extern bool _debug_pagealloc_enabled;
2525extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2526
2527static inline bool debug_pagealloc_enabled(void)
2528{
2529 return _debug_pagealloc_enabled;
2530}
2531
2532static inline void
2533kernel_map_pages(struct page *page, int numpages, int enable)
2534{
2535 if (!debug_pagealloc_enabled())
2536 return;
2537
2538 __kernel_map_pages(page, numpages, enable);
2539}
8a235efa
RW
2540#ifdef CONFIG_HIBERNATION
2541extern bool kernel_page_present(struct page *page);
40b44137
JK
2542#endif /* CONFIG_HIBERNATION */
2543#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2544static inline void
9858db50 2545kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2546#ifdef CONFIG_HIBERNATION
2547static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2548#endif /* CONFIG_HIBERNATION */
2549static inline bool debug_pagealloc_enabled(void)
2550{
2551 return false;
2552}
2553#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2554
a6c19dfe 2555#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2556extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2557extern int in_gate_area_no_mm(unsigned long addr);
2558extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2559#else
a6c19dfe
AL
2560static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2561{
2562 return NULL;
2563}
2564static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2565static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2566{
2567 return 0;
2568}
1da177e4
LT
2569#endif /* __HAVE_ARCH_GATE_AREA */
2570
44a70ade
MH
2571extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2572
146732ce
JT
2573#ifdef CONFIG_SYSCTL
2574extern int sysctl_drop_caches;
8d65af78 2575int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2576 void __user *, size_t *, loff_t *);
146732ce
JT
2577#endif
2578
cb731d6c
VD
2579void drop_slab(void);
2580void drop_slab_node(int nid);
9d0243bc 2581
7a9166e3
LY
2582#ifndef CONFIG_MMU
2583#define randomize_va_space 0
2584#else
a62eaf15 2585extern int randomize_va_space;
7a9166e3 2586#endif
a62eaf15 2587
045e72ac 2588const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2589void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2590
9bdac914
YL
2591void sparse_mem_maps_populate_node(struct page **map_map,
2592 unsigned long pnum_begin,
2593 unsigned long pnum_end,
2594 unsigned long map_count,
2595 int nodeid);
2596
7b73d978
CH
2597struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2598 struct vmem_altmap *altmap);
29c71111 2599pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2600p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2601pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
2602pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2603pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2604void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 2605struct vmem_altmap;
a8fc357b
CH
2606void *vmemmap_alloc_block_buf(unsigned long size, int node);
2607void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
8f6aac41 2608void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2609int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2610 int node);
7b73d978
CH
2611int vmemmap_populate(unsigned long start, unsigned long end, int node,
2612 struct vmem_altmap *altmap);
c2b91e2e 2613void vmemmap_populate_print_last(void);
0197518c 2614#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
2615void vmemmap_free(unsigned long start, unsigned long end,
2616 struct vmem_altmap *altmap);
0197518c 2617#endif
46723bfa 2618void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 2619 unsigned long nr_pages);
6a46079c 2620
82ba011b
AK
2621enum mf_flags {
2622 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2623 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2624 MF_MUST_KILL = 1 << 2,
cf870c70 2625 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2626};
83b57531
EB
2627extern int memory_failure(unsigned long pfn, int flags);
2628extern void memory_failure_queue(unsigned long pfn, int flags);
847ce401 2629extern int unpoison_memory(unsigned long pfn);
ead07f6a 2630extern int get_hwpoison_page(struct page *page);
4e41a30c 2631#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2632extern int sysctl_memory_failure_early_kill;
2633extern int sysctl_memory_failure_recovery;
facb6011 2634extern void shake_page(struct page *p, int access);
5844a486 2635extern atomic_long_t num_poisoned_pages __read_mostly;
facb6011 2636extern int soft_offline_page(struct page *page, int flags);
6a46079c 2637
cc637b17
XX
2638
2639/*
2640 * Error handlers for various types of pages.
2641 */
cc3e2af4 2642enum mf_result {
cc637b17
XX
2643 MF_IGNORED, /* Error: cannot be handled */
2644 MF_FAILED, /* Error: handling failed */
2645 MF_DELAYED, /* Will be handled later */
2646 MF_RECOVERED, /* Successfully recovered */
2647};
2648
2649enum mf_action_page_type {
2650 MF_MSG_KERNEL,
2651 MF_MSG_KERNEL_HIGH_ORDER,
2652 MF_MSG_SLAB,
2653 MF_MSG_DIFFERENT_COMPOUND,
2654 MF_MSG_POISONED_HUGE,
2655 MF_MSG_HUGE,
2656 MF_MSG_FREE_HUGE,
31286a84 2657 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
2658 MF_MSG_UNMAP_FAILED,
2659 MF_MSG_DIRTY_SWAPCACHE,
2660 MF_MSG_CLEAN_SWAPCACHE,
2661 MF_MSG_DIRTY_MLOCKED_LRU,
2662 MF_MSG_CLEAN_MLOCKED_LRU,
2663 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2664 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2665 MF_MSG_DIRTY_LRU,
2666 MF_MSG_CLEAN_LRU,
2667 MF_MSG_TRUNCATED_LRU,
2668 MF_MSG_BUDDY,
2669 MF_MSG_BUDDY_2ND,
2670 MF_MSG_UNKNOWN,
2671};
2672
47ad8475
AA
2673#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2674extern void clear_huge_page(struct page *page,
c79b57e4 2675 unsigned long addr_hint,
47ad8475
AA
2676 unsigned int pages_per_huge_page);
2677extern void copy_user_huge_page(struct page *dst, struct page *src,
2678 unsigned long addr, struct vm_area_struct *vma,
2679 unsigned int pages_per_huge_page);
fa4d75c1
MK
2680extern long copy_huge_page_from_user(struct page *dst_page,
2681 const void __user *usr_src,
810a56b9
MK
2682 unsigned int pages_per_huge_page,
2683 bool allow_pagefault);
47ad8475
AA
2684#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2685
e30825f1 2686extern struct page_ext_operations debug_guardpage_ops;
e30825f1 2687
c0a32fc5
SG
2688#ifdef CONFIG_DEBUG_PAGEALLOC
2689extern unsigned int _debug_guardpage_minorder;
e30825f1 2690extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2691
2692static inline unsigned int debug_guardpage_minorder(void)
2693{
2694 return _debug_guardpage_minorder;
2695}
2696
e30825f1
JK
2697static inline bool debug_guardpage_enabled(void)
2698{
2699 return _debug_guardpage_enabled;
2700}
2701
c0a32fc5
SG
2702static inline bool page_is_guard(struct page *page)
2703{
e30825f1
JK
2704 struct page_ext *page_ext;
2705
2706 if (!debug_guardpage_enabled())
2707 return false;
2708
2709 page_ext = lookup_page_ext(page);
0bb2fd13
YS
2710 if (unlikely(!page_ext))
2711 return false;
2712
e30825f1 2713 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2714}
2715#else
2716static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2717static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2718static inline bool page_is_guard(struct page *page) { return false; }
2719#endif /* CONFIG_DEBUG_PAGEALLOC */
2720
f9872caf
CS
2721#if MAX_NUMNODES > 1
2722void __init setup_nr_node_ids(void);
2723#else
2724static inline void setup_nr_node_ids(void) {}
2725#endif
2726
1da177e4
LT
2727#endif /* __KERNEL__ */
2728#endif /* _LINUX_MM_H */