ALSA: hda - Add new GPU codec ID 0x10de0083 to snd-hda
[linux-2.6-block.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
55782138
LZ
36
37#define CREATE_TRACE_POINTS
38#include <trace/events/block.h>
1da177e4 39
8324aa91 40#include "blk.h"
43a5e4e2 41#include "blk-mq.h"
8324aa91 42
d07335e5 43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 46EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 47EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 48
a73f730d
TH
49DEFINE_IDA(blk_queue_ida);
50
1da177e4
LT
51/*
52 * For the allocated request tables
53 */
d674d414 54struct kmem_cache *request_cachep;
1da177e4
LT
55
56/*
57 * For queue allocation
58 */
6728cb0e 59struct kmem_cache *blk_requestq_cachep;
1da177e4 60
1da177e4
LT
61/*
62 * Controlling structure to kblockd
63 */
ff856bad 64static struct workqueue_struct *kblockd_workqueue;
1da177e4 65
d40f75a0
TH
66static void blk_clear_congested(struct request_list *rl, int sync)
67{
d40f75a0
TH
68#ifdef CONFIG_CGROUP_WRITEBACK
69 clear_wb_congested(rl->blkg->wb_congested, sync);
70#else
482cf79c
TH
71 /*
72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 * flip its congestion state for events on other blkcgs.
74 */
75 if (rl == &rl->q->root_rl)
76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
77#endif
78}
79
80static void blk_set_congested(struct request_list *rl, int sync)
81{
d40f75a0
TH
82#ifdef CONFIG_CGROUP_WRITEBACK
83 set_wb_congested(rl->blkg->wb_congested, sync);
84#else
482cf79c
TH
85 /* see blk_clear_congested() */
86 if (rl == &rl->q->root_rl)
87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
88#endif
89}
90
8324aa91 91void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
92{
93 int nr;
94
95 nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 if (nr > q->nr_requests)
97 nr = q->nr_requests;
98 q->nr_congestion_on = nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 if (nr < 1)
102 nr = 1;
103 q->nr_congestion_off = nr;
104}
105
1da177e4
LT
106/**
107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108 * @bdev: device
109 *
110 * Locates the passed device's request queue and returns the address of its
ff9ea323
TH
111 * backing_dev_info. This function can only be called if @bdev is opened
112 * and the return value is never NULL.
1da177e4
LT
113 */
114struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115{
165125e1 116 struct request_queue *q = bdev_get_queue(bdev);
1da177e4 117
ff9ea323 118 return &q->backing_dev_info;
1da177e4 119}
1da177e4
LT
120EXPORT_SYMBOL(blk_get_backing_dev_info);
121
2a4aa30c 122void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 123{
1afb20f3
FT
124 memset(rq, 0, sizeof(*rq));
125
1da177e4 126 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 127 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 128 rq->cpu = -1;
63a71386 129 rq->q = q;
a2dec7b3 130 rq->__sector = (sector_t) -1;
2e662b65
JA
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 133 rq->cmd = rq->__cmd;
e2494e1b 134 rq->cmd_len = BLK_MAX_CDB;
63a71386 135 rq->tag = -1;
b243ddcb 136 rq->start_time = jiffies;
9195291e 137 set_start_time_ns(rq);
09e099d4 138 rq->part = NULL;
1da177e4 139}
2a4aa30c 140EXPORT_SYMBOL(blk_rq_init);
1da177e4 141
5bb23a68
N
142static void req_bio_endio(struct request *rq, struct bio *bio,
143 unsigned int nbytes, int error)
1da177e4 144{
78d8e58a 145 if (error)
4246a0b6 146 bio->bi_error = error;
797e7dbb 147
143a87f4 148 if (unlikely(rq->cmd_flags & REQ_QUIET))
b7c44ed9 149 bio_set_flag(bio, BIO_QUIET);
08bafc03 150
f79ea416 151 bio_advance(bio, nbytes);
7ba1ba12 152
143a87f4 153 /* don't actually finish bio if it's part of flush sequence */
78d8e58a 154 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
4246a0b6 155 bio_endio(bio);
1da177e4 156}
1da177e4 157
1da177e4
LT
158void blk_dump_rq_flags(struct request *rq, char *msg)
159{
160 int bit;
161
5953316d 162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
4aff5e23 163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
5953316d 164 (unsigned long long) rq->cmd_flags);
1da177e4 165
83096ebf
TH
166 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
167 (unsigned long long)blk_rq_pos(rq),
168 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
169 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
170 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 171
33659ebb 172 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 173 printk(KERN_INFO " cdb: ");
d34c87e4 174 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
175 printk("%02x ", rq->cmd[bit]);
176 printk("\n");
177 }
178}
1da177e4
LT
179EXPORT_SYMBOL(blk_dump_rq_flags);
180
3cca6dc1 181static void blk_delay_work(struct work_struct *work)
1da177e4 182{
3cca6dc1 183 struct request_queue *q;
1da177e4 184
3cca6dc1
JA
185 q = container_of(work, struct request_queue, delay_work.work);
186 spin_lock_irq(q->queue_lock);
24ecfbe2 187 __blk_run_queue(q);
3cca6dc1 188 spin_unlock_irq(q->queue_lock);
1da177e4 189}
1da177e4
LT
190
191/**
3cca6dc1
JA
192 * blk_delay_queue - restart queueing after defined interval
193 * @q: The &struct request_queue in question
194 * @msecs: Delay in msecs
1da177e4
LT
195 *
196 * Description:
3cca6dc1
JA
197 * Sometimes queueing needs to be postponed for a little while, to allow
198 * resources to come back. This function will make sure that queueing is
70460571 199 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
200 */
201void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 202{
70460571
BVA
203 if (likely(!blk_queue_dead(q)))
204 queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 msecs_to_jiffies(msecs));
2ad8b1ef 206}
3cca6dc1 207EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 208
21491412
JA
209/**
210 * blk_start_queue_async - asynchronously restart a previously stopped queue
211 * @q: The &struct request_queue in question
212 *
213 * Description:
214 * blk_start_queue_async() will clear the stop flag on the queue, and
215 * ensure that the request_fn for the queue is run from an async
216 * context.
217 **/
218void blk_start_queue_async(struct request_queue *q)
219{
220 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
221 blk_run_queue_async(q);
222}
223EXPORT_SYMBOL(blk_start_queue_async);
224
1da177e4
LT
225/**
226 * blk_start_queue - restart a previously stopped queue
165125e1 227 * @q: The &struct request_queue in question
1da177e4
LT
228 *
229 * Description:
230 * blk_start_queue() will clear the stop flag on the queue, and call
231 * the request_fn for the queue if it was in a stopped state when
232 * entered. Also see blk_stop_queue(). Queue lock must be held.
233 **/
165125e1 234void blk_start_queue(struct request_queue *q)
1da177e4 235{
a038e253
PBG
236 WARN_ON(!irqs_disabled());
237
75ad23bc 238 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 239 __blk_run_queue(q);
1da177e4 240}
1da177e4
LT
241EXPORT_SYMBOL(blk_start_queue);
242
243/**
244 * blk_stop_queue - stop a queue
165125e1 245 * @q: The &struct request_queue in question
1da177e4
LT
246 *
247 * Description:
248 * The Linux block layer assumes that a block driver will consume all
249 * entries on the request queue when the request_fn strategy is called.
250 * Often this will not happen, because of hardware limitations (queue
251 * depth settings). If a device driver gets a 'queue full' response,
252 * or if it simply chooses not to queue more I/O at one point, it can
253 * call this function to prevent the request_fn from being called until
254 * the driver has signalled it's ready to go again. This happens by calling
255 * blk_start_queue() to restart queue operations. Queue lock must be held.
256 **/
165125e1 257void blk_stop_queue(struct request_queue *q)
1da177e4 258{
136b5721 259 cancel_delayed_work(&q->delay_work);
75ad23bc 260 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
261}
262EXPORT_SYMBOL(blk_stop_queue);
263
264/**
265 * blk_sync_queue - cancel any pending callbacks on a queue
266 * @q: the queue
267 *
268 * Description:
269 * The block layer may perform asynchronous callback activity
270 * on a queue, such as calling the unplug function after a timeout.
271 * A block device may call blk_sync_queue to ensure that any
272 * such activity is cancelled, thus allowing it to release resources
59c51591 273 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
274 * that its ->make_request_fn will not re-add plugging prior to calling
275 * this function.
276 *
da527770 277 * This function does not cancel any asynchronous activity arising
da3dae54 278 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 279 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 280 *
1da177e4
LT
281 */
282void blk_sync_queue(struct request_queue *q)
283{
70ed28b9 284 del_timer_sync(&q->timeout);
f04c1fe7
ML
285
286 if (q->mq_ops) {
287 struct blk_mq_hw_ctx *hctx;
288 int i;
289
70f4db63
CH
290 queue_for_each_hw_ctx(q, hctx, i) {
291 cancel_delayed_work_sync(&hctx->run_work);
292 cancel_delayed_work_sync(&hctx->delay_work);
293 }
f04c1fe7
ML
294 } else {
295 cancel_delayed_work_sync(&q->delay_work);
296 }
1da177e4
LT
297}
298EXPORT_SYMBOL(blk_sync_queue);
299
c246e80d
BVA
300/**
301 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
302 * @q: The queue to run
303 *
304 * Description:
305 * Invoke request handling on a queue if there are any pending requests.
306 * May be used to restart request handling after a request has completed.
307 * This variant runs the queue whether or not the queue has been
308 * stopped. Must be called with the queue lock held and interrupts
309 * disabled. See also @blk_run_queue.
310 */
311inline void __blk_run_queue_uncond(struct request_queue *q)
312{
313 if (unlikely(blk_queue_dead(q)))
314 return;
315
24faf6f6
BVA
316 /*
317 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
318 * the queue lock internally. As a result multiple threads may be
319 * running such a request function concurrently. Keep track of the
320 * number of active request_fn invocations such that blk_drain_queue()
321 * can wait until all these request_fn calls have finished.
322 */
323 q->request_fn_active++;
c246e80d 324 q->request_fn(q);
24faf6f6 325 q->request_fn_active--;
c246e80d 326}
a7928c15 327EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 328
1da177e4 329/**
80a4b58e 330 * __blk_run_queue - run a single device queue
1da177e4 331 * @q: The queue to run
80a4b58e
JA
332 *
333 * Description:
334 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 335 * held and interrupts disabled.
1da177e4 336 */
24ecfbe2 337void __blk_run_queue(struct request_queue *q)
1da177e4 338{
a538cd03
TH
339 if (unlikely(blk_queue_stopped(q)))
340 return;
341
c246e80d 342 __blk_run_queue_uncond(q);
75ad23bc
NP
343}
344EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 345
24ecfbe2
CH
346/**
347 * blk_run_queue_async - run a single device queue in workqueue context
348 * @q: The queue to run
349 *
350 * Description:
351 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 352 * of us. The caller must hold the queue lock.
24ecfbe2
CH
353 */
354void blk_run_queue_async(struct request_queue *q)
355{
70460571 356 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 357 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 358}
c21e6beb 359EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 360
75ad23bc
NP
361/**
362 * blk_run_queue - run a single device queue
363 * @q: The queue to run
80a4b58e
JA
364 *
365 * Description:
366 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 367 * May be used to restart queueing when a request has completed.
75ad23bc
NP
368 */
369void blk_run_queue(struct request_queue *q)
370{
371 unsigned long flags;
372
373 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 374 __blk_run_queue(q);
1da177e4
LT
375 spin_unlock_irqrestore(q->queue_lock, flags);
376}
377EXPORT_SYMBOL(blk_run_queue);
378
165125e1 379void blk_put_queue(struct request_queue *q)
483f4afc
AV
380{
381 kobject_put(&q->kobj);
382}
d86e0e83 383EXPORT_SYMBOL(blk_put_queue);
483f4afc 384
e3c78ca5 385/**
807592a4 386 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 387 * @q: queue to drain
c9a929dd 388 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 389 *
c9a929dd
TH
390 * Drain requests from @q. If @drain_all is set, all requests are drained.
391 * If not, only ELVPRIV requests are drained. The caller is responsible
392 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 393 */
807592a4
BVA
394static void __blk_drain_queue(struct request_queue *q, bool drain_all)
395 __releases(q->queue_lock)
396 __acquires(q->queue_lock)
e3c78ca5 397{
458f27a9
AH
398 int i;
399
807592a4
BVA
400 lockdep_assert_held(q->queue_lock);
401
e3c78ca5 402 while (true) {
481a7d64 403 bool drain = false;
e3c78ca5 404
b855b04a
TH
405 /*
406 * The caller might be trying to drain @q before its
407 * elevator is initialized.
408 */
409 if (q->elevator)
410 elv_drain_elevator(q);
411
5efd6113 412 blkcg_drain_queue(q);
e3c78ca5 413
4eabc941
TH
414 /*
415 * This function might be called on a queue which failed
b855b04a
TH
416 * driver init after queue creation or is not yet fully
417 * active yet. Some drivers (e.g. fd and loop) get unhappy
418 * in such cases. Kick queue iff dispatch queue has
419 * something on it and @q has request_fn set.
4eabc941 420 */
b855b04a 421 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 422 __blk_run_queue(q);
c9a929dd 423
8a5ecdd4 424 drain |= q->nr_rqs_elvpriv;
24faf6f6 425 drain |= q->request_fn_active;
481a7d64
TH
426
427 /*
428 * Unfortunately, requests are queued at and tracked from
429 * multiple places and there's no single counter which can
430 * be drained. Check all the queues and counters.
431 */
432 if (drain_all) {
e97c293c 433 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
434 drain |= !list_empty(&q->queue_head);
435 for (i = 0; i < 2; i++) {
8a5ecdd4 436 drain |= q->nr_rqs[i];
481a7d64 437 drain |= q->in_flight[i];
7c94e1c1
ML
438 if (fq)
439 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
440 }
441 }
e3c78ca5 442
481a7d64 443 if (!drain)
e3c78ca5 444 break;
807592a4
BVA
445
446 spin_unlock_irq(q->queue_lock);
447
e3c78ca5 448 msleep(10);
807592a4
BVA
449
450 spin_lock_irq(q->queue_lock);
e3c78ca5 451 }
458f27a9
AH
452
453 /*
454 * With queue marked dead, any woken up waiter will fail the
455 * allocation path, so the wakeup chaining is lost and we're
456 * left with hung waiters. We need to wake up those waiters.
457 */
458 if (q->request_fn) {
a051661c
TH
459 struct request_list *rl;
460
a051661c
TH
461 blk_queue_for_each_rl(rl, q)
462 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
463 wake_up_all(&rl->wait[i]);
458f27a9 464 }
e3c78ca5
TH
465}
466
d732580b
TH
467/**
468 * blk_queue_bypass_start - enter queue bypass mode
469 * @q: queue of interest
470 *
471 * In bypass mode, only the dispatch FIFO queue of @q is used. This
472 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 473 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
474 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
475 * inside queue or RCU read lock.
d732580b
TH
476 */
477void blk_queue_bypass_start(struct request_queue *q)
478{
479 spin_lock_irq(q->queue_lock);
776687bc 480 q->bypass_depth++;
d732580b
TH
481 queue_flag_set(QUEUE_FLAG_BYPASS, q);
482 spin_unlock_irq(q->queue_lock);
483
776687bc
TH
484 /*
485 * Queues start drained. Skip actual draining till init is
486 * complete. This avoids lenghty delays during queue init which
487 * can happen many times during boot.
488 */
489 if (blk_queue_init_done(q)) {
807592a4
BVA
490 spin_lock_irq(q->queue_lock);
491 __blk_drain_queue(q, false);
492 spin_unlock_irq(q->queue_lock);
493
b82d4b19
TH
494 /* ensure blk_queue_bypass() is %true inside RCU read lock */
495 synchronize_rcu();
496 }
d732580b
TH
497}
498EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
499
500/**
501 * blk_queue_bypass_end - leave queue bypass mode
502 * @q: queue of interest
503 *
504 * Leave bypass mode and restore the normal queueing behavior.
505 */
506void blk_queue_bypass_end(struct request_queue *q)
507{
508 spin_lock_irq(q->queue_lock);
509 if (!--q->bypass_depth)
510 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
511 WARN_ON_ONCE(q->bypass_depth < 0);
512 spin_unlock_irq(q->queue_lock);
513}
514EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
515
aed3ea94
JA
516void blk_set_queue_dying(struct request_queue *q)
517{
518 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
519
520 if (q->mq_ops)
521 blk_mq_wake_waiters(q);
522 else {
523 struct request_list *rl;
524
525 blk_queue_for_each_rl(rl, q) {
526 if (rl->rq_pool) {
527 wake_up(&rl->wait[BLK_RW_SYNC]);
528 wake_up(&rl->wait[BLK_RW_ASYNC]);
529 }
530 }
531 }
532}
533EXPORT_SYMBOL_GPL(blk_set_queue_dying);
534
c9a929dd
TH
535/**
536 * blk_cleanup_queue - shutdown a request queue
537 * @q: request queue to shutdown
538 *
c246e80d
BVA
539 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
540 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 541 */
6728cb0e 542void blk_cleanup_queue(struct request_queue *q)
483f4afc 543{
c9a929dd 544 spinlock_t *lock = q->queue_lock;
e3335de9 545
3f3299d5 546 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 547 mutex_lock(&q->sysfs_lock);
aed3ea94 548 blk_set_queue_dying(q);
c9a929dd 549 spin_lock_irq(lock);
6ecf23af 550
80fd9979 551 /*
3f3299d5 552 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
553 * that, unlike blk_queue_bypass_start(), we aren't performing
554 * synchronize_rcu() after entering bypass mode to avoid the delay
555 * as some drivers create and destroy a lot of queues while
556 * probing. This is still safe because blk_release_queue() will be
557 * called only after the queue refcnt drops to zero and nothing,
558 * RCU or not, would be traversing the queue by then.
559 */
6ecf23af
TH
560 q->bypass_depth++;
561 queue_flag_set(QUEUE_FLAG_BYPASS, q);
562
c9a929dd
TH
563 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
564 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 565 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
566 spin_unlock_irq(lock);
567 mutex_unlock(&q->sysfs_lock);
568
c246e80d
BVA
569 /*
570 * Drain all requests queued before DYING marking. Set DEAD flag to
571 * prevent that q->request_fn() gets invoked after draining finished.
572 */
3ef28e83
DW
573 blk_freeze_queue(q);
574 spin_lock_irq(lock);
575 if (!q->mq_ops)
43a5e4e2 576 __blk_drain_queue(q, true);
c246e80d 577 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 578 spin_unlock_irq(lock);
c9a929dd 579
5a48fc14
DW
580 /* for synchronous bio-based driver finish in-flight integrity i/o */
581 blk_flush_integrity();
582
c9a929dd
TH
583 /* @q won't process any more request, flush async actions */
584 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
585 blk_sync_queue(q);
586
45a9c9d9
BVA
587 if (q->mq_ops)
588 blk_mq_free_queue(q);
3ef28e83 589 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 590
5e5cfac0
AH
591 spin_lock_irq(lock);
592 if (q->queue_lock != &q->__queue_lock)
593 q->queue_lock = &q->__queue_lock;
594 spin_unlock_irq(lock);
595
b02176f3 596 bdi_unregister(&q->backing_dev_info);
6cd18e71 597
c9a929dd 598 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
599 blk_put_queue(q);
600}
1da177e4
LT
601EXPORT_SYMBOL(blk_cleanup_queue);
602
271508db
DR
603/* Allocate memory local to the request queue */
604static void *alloc_request_struct(gfp_t gfp_mask, void *data)
605{
606 int nid = (int)(long)data;
607 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
608}
609
610static void free_request_struct(void *element, void *unused)
611{
612 kmem_cache_free(request_cachep, element);
613}
614
5b788ce3
TH
615int blk_init_rl(struct request_list *rl, struct request_queue *q,
616 gfp_t gfp_mask)
1da177e4 617{
1abec4fd
MS
618 if (unlikely(rl->rq_pool))
619 return 0;
620
5b788ce3 621 rl->q = q;
1faa16d2
JA
622 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
623 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
624 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
625 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 626
271508db
DR
627 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
628 free_request_struct,
629 (void *)(long)q->node, gfp_mask,
630 q->node);
1da177e4
LT
631 if (!rl->rq_pool)
632 return -ENOMEM;
633
634 return 0;
635}
636
5b788ce3
TH
637void blk_exit_rl(struct request_list *rl)
638{
639 if (rl->rq_pool)
640 mempool_destroy(rl->rq_pool);
641}
642
165125e1 643struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 644{
c304a51b 645 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
646}
647EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 648
6f3b0e8b 649int blk_queue_enter(struct request_queue *q, bool nowait)
3ef28e83
DW
650{
651 while (true) {
652 int ret;
653
654 if (percpu_ref_tryget_live(&q->q_usage_counter))
655 return 0;
656
6f3b0e8b 657 if (nowait)
3ef28e83
DW
658 return -EBUSY;
659
660 ret = wait_event_interruptible(q->mq_freeze_wq,
661 !atomic_read(&q->mq_freeze_depth) ||
662 blk_queue_dying(q));
663 if (blk_queue_dying(q))
664 return -ENODEV;
665 if (ret)
666 return ret;
667 }
668}
669
670void blk_queue_exit(struct request_queue *q)
671{
672 percpu_ref_put(&q->q_usage_counter);
673}
674
675static void blk_queue_usage_counter_release(struct percpu_ref *ref)
676{
677 struct request_queue *q =
678 container_of(ref, struct request_queue, q_usage_counter);
679
680 wake_up_all(&q->mq_freeze_wq);
681}
682
287922eb
CH
683static void blk_rq_timed_out_timer(unsigned long data)
684{
685 struct request_queue *q = (struct request_queue *)data;
686
687 kblockd_schedule_work(&q->timeout_work);
688}
689
165125e1 690struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 691{
165125e1 692 struct request_queue *q;
e0bf68dd 693 int err;
1946089a 694
8324aa91 695 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 696 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
697 if (!q)
698 return NULL;
699
00380a40 700 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 701 if (q->id < 0)
3d2936f4 702 goto fail_q;
a73f730d 703
54efd50b
KO
704 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
705 if (!q->bio_split)
706 goto fail_id;
707
0989a025
JA
708 q->backing_dev_info.ra_pages =
709 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
89e9b9e0 710 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
d993831f 711 q->backing_dev_info.name = "block";
5151412d 712 q->node = node_id;
0989a025 713
e0bf68dd 714 err = bdi_init(&q->backing_dev_info);
a73f730d 715 if (err)
54efd50b 716 goto fail_split;
e0bf68dd 717
31373d09
MG
718 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
719 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 720 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 721 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 722 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 723 INIT_LIST_HEAD(&q->icq_list);
4eef3049 724#ifdef CONFIG_BLK_CGROUP
e8989fae 725 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 726#endif
3cca6dc1 727 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 728
8324aa91 729 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 730
483f4afc 731 mutex_init(&q->sysfs_lock);
e7e72bf6 732 spin_lock_init(&q->__queue_lock);
483f4afc 733
c94a96ac
VG
734 /*
735 * By default initialize queue_lock to internal lock and driver can
736 * override it later if need be.
737 */
738 q->queue_lock = &q->__queue_lock;
739
b82d4b19
TH
740 /*
741 * A queue starts its life with bypass turned on to avoid
742 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
743 * init. The initial bypass will be finished when the queue is
744 * registered by blk_register_queue().
b82d4b19
TH
745 */
746 q->bypass_depth = 1;
747 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
748
320ae51f
JA
749 init_waitqueue_head(&q->mq_freeze_wq);
750
3ef28e83
DW
751 /*
752 * Init percpu_ref in atomic mode so that it's faster to shutdown.
753 * See blk_register_queue() for details.
754 */
755 if (percpu_ref_init(&q->q_usage_counter,
756 blk_queue_usage_counter_release,
757 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 758 goto fail_bdi;
f51b802c 759
3ef28e83
DW
760 if (blkcg_init_queue(q))
761 goto fail_ref;
762
1da177e4 763 return q;
a73f730d 764
3ef28e83
DW
765fail_ref:
766 percpu_ref_exit(&q->q_usage_counter);
fff4996b
MP
767fail_bdi:
768 bdi_destroy(&q->backing_dev_info);
54efd50b
KO
769fail_split:
770 bioset_free(q->bio_split);
a73f730d
TH
771fail_id:
772 ida_simple_remove(&blk_queue_ida, q->id);
773fail_q:
774 kmem_cache_free(blk_requestq_cachep, q);
775 return NULL;
1da177e4 776}
1946089a 777EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
778
779/**
780 * blk_init_queue - prepare a request queue for use with a block device
781 * @rfn: The function to be called to process requests that have been
782 * placed on the queue.
783 * @lock: Request queue spin lock
784 *
785 * Description:
786 * If a block device wishes to use the standard request handling procedures,
787 * which sorts requests and coalesces adjacent requests, then it must
788 * call blk_init_queue(). The function @rfn will be called when there
789 * are requests on the queue that need to be processed. If the device
790 * supports plugging, then @rfn may not be called immediately when requests
791 * are available on the queue, but may be called at some time later instead.
792 * Plugged queues are generally unplugged when a buffer belonging to one
793 * of the requests on the queue is needed, or due to memory pressure.
794 *
795 * @rfn is not required, or even expected, to remove all requests off the
796 * queue, but only as many as it can handle at a time. If it does leave
797 * requests on the queue, it is responsible for arranging that the requests
798 * get dealt with eventually.
799 *
800 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
801 * request queue; this lock will be taken also from interrupt context, so irq
802 * disabling is needed for it.
1da177e4 803 *
710027a4 804 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
805 * it didn't succeed.
806 *
807 * Note:
808 * blk_init_queue() must be paired with a blk_cleanup_queue() call
809 * when the block device is deactivated (such as at module unload).
810 **/
1946089a 811
165125e1 812struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 813{
c304a51b 814 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
815}
816EXPORT_SYMBOL(blk_init_queue);
817
165125e1 818struct request_queue *
1946089a
CL
819blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
820{
c86d1b8a 821 struct request_queue *uninit_q, *q;
1da177e4 822
c86d1b8a
MS
823 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
824 if (!uninit_q)
825 return NULL;
826
5151412d 827 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a 828 if (!q)
7982e90c 829 blk_cleanup_queue(uninit_q);
18741986 830
7982e90c 831 return q;
01effb0d
MS
832}
833EXPORT_SYMBOL(blk_init_queue_node);
834
dece1635 835static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 836
01effb0d
MS
837struct request_queue *
838blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
839 spinlock_t *lock)
01effb0d 840{
1da177e4
LT
841 if (!q)
842 return NULL;
843
f70ced09 844 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
ba483388 845 if (!q->fq)
7982e90c
MS
846 return NULL;
847
a051661c 848 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
708f04d2 849 goto fail;
1da177e4 850
287922eb 851 INIT_WORK(&q->timeout_work, blk_timeout_work);
1da177e4 852 q->request_fn = rfn;
1da177e4 853 q->prep_rq_fn = NULL;
28018c24 854 q->unprep_rq_fn = NULL;
60ea8226 855 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
856
857 /* Override internal queue lock with supplied lock pointer */
858 if (lock)
859 q->queue_lock = lock;
1da177e4 860
f3b144aa
JA
861 /*
862 * This also sets hw/phys segments, boundary and size
863 */
c20e8de2 864 blk_queue_make_request(q, blk_queue_bio);
1da177e4 865
44ec9542
AS
866 q->sg_reserved_size = INT_MAX;
867
eb1c160b
TS
868 /* Protect q->elevator from elevator_change */
869 mutex_lock(&q->sysfs_lock);
870
b82d4b19 871 /* init elevator */
eb1c160b
TS
872 if (elevator_init(q, NULL)) {
873 mutex_unlock(&q->sysfs_lock);
708f04d2 874 goto fail;
eb1c160b
TS
875 }
876
877 mutex_unlock(&q->sysfs_lock);
878
b82d4b19 879 return q;
708f04d2
DJ
880
881fail:
ba483388 882 blk_free_flush_queue(q->fq);
708f04d2 883 return NULL;
1da177e4 884}
5151412d 885EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 886
09ac46c4 887bool blk_get_queue(struct request_queue *q)
1da177e4 888{
3f3299d5 889 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
890 __blk_get_queue(q);
891 return true;
1da177e4
LT
892 }
893
09ac46c4 894 return false;
1da177e4 895}
d86e0e83 896EXPORT_SYMBOL(blk_get_queue);
1da177e4 897
5b788ce3 898static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 899{
f1f8cc94 900 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 901 elv_put_request(rl->q, rq);
f1f8cc94 902 if (rq->elv.icq)
11a3122f 903 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
904 }
905
5b788ce3 906 mempool_free(rq, rl->rq_pool);
1da177e4
LT
907}
908
1da177e4
LT
909/*
910 * ioc_batching returns true if the ioc is a valid batching request and
911 * should be given priority access to a request.
912 */
165125e1 913static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
914{
915 if (!ioc)
916 return 0;
917
918 /*
919 * Make sure the process is able to allocate at least 1 request
920 * even if the batch times out, otherwise we could theoretically
921 * lose wakeups.
922 */
923 return ioc->nr_batch_requests == q->nr_batching ||
924 (ioc->nr_batch_requests > 0
925 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
926}
927
928/*
929 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
930 * will cause the process to be a "batcher" on all queues in the system. This
931 * is the behaviour we want though - once it gets a wakeup it should be given
932 * a nice run.
933 */
165125e1 934static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
935{
936 if (!ioc || ioc_batching(q, ioc))
937 return;
938
939 ioc->nr_batch_requests = q->nr_batching;
940 ioc->last_waited = jiffies;
941}
942
5b788ce3 943static void __freed_request(struct request_list *rl, int sync)
1da177e4 944{
5b788ce3 945 struct request_queue *q = rl->q;
1da177e4 946
d40f75a0
TH
947 if (rl->count[sync] < queue_congestion_off_threshold(q))
948 blk_clear_congested(rl, sync);
1da177e4 949
1faa16d2
JA
950 if (rl->count[sync] + 1 <= q->nr_requests) {
951 if (waitqueue_active(&rl->wait[sync]))
952 wake_up(&rl->wait[sync]);
1da177e4 953
5b788ce3 954 blk_clear_rl_full(rl, sync);
1da177e4
LT
955 }
956}
957
958/*
959 * A request has just been released. Account for it, update the full and
960 * congestion status, wake up any waiters. Called under q->queue_lock.
961 */
5b788ce3 962static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 963{
5b788ce3 964 struct request_queue *q = rl->q;
75eb6c37 965 int sync = rw_is_sync(flags);
1da177e4 966
8a5ecdd4 967 q->nr_rqs[sync]--;
1faa16d2 968 rl->count[sync]--;
75eb6c37 969 if (flags & REQ_ELVPRIV)
8a5ecdd4 970 q->nr_rqs_elvpriv--;
1da177e4 971
5b788ce3 972 __freed_request(rl, sync);
1da177e4 973
1faa16d2 974 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 975 __freed_request(rl, sync ^ 1);
1da177e4
LT
976}
977
e3a2b3f9
JA
978int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
979{
980 struct request_list *rl;
d40f75a0 981 int on_thresh, off_thresh;
e3a2b3f9
JA
982
983 spin_lock_irq(q->queue_lock);
984 q->nr_requests = nr;
985 blk_queue_congestion_threshold(q);
d40f75a0
TH
986 on_thresh = queue_congestion_on_threshold(q);
987 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 988
d40f75a0
TH
989 blk_queue_for_each_rl(rl, q) {
990 if (rl->count[BLK_RW_SYNC] >= on_thresh)
991 blk_set_congested(rl, BLK_RW_SYNC);
992 else if (rl->count[BLK_RW_SYNC] < off_thresh)
993 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 994
d40f75a0
TH
995 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
996 blk_set_congested(rl, BLK_RW_ASYNC);
997 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
998 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 999
e3a2b3f9
JA
1000 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1001 blk_set_rl_full(rl, BLK_RW_SYNC);
1002 } else {
1003 blk_clear_rl_full(rl, BLK_RW_SYNC);
1004 wake_up(&rl->wait[BLK_RW_SYNC]);
1005 }
1006
1007 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1008 blk_set_rl_full(rl, BLK_RW_ASYNC);
1009 } else {
1010 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1011 wake_up(&rl->wait[BLK_RW_ASYNC]);
1012 }
1013 }
1014
1015 spin_unlock_irq(q->queue_lock);
1016 return 0;
1017}
1018
9d5a4e94
MS
1019/*
1020 * Determine if elevator data should be initialized when allocating the
1021 * request associated with @bio.
1022 */
1023static bool blk_rq_should_init_elevator(struct bio *bio)
1024{
1025 if (!bio)
1026 return true;
1027
1028 /*
1029 * Flush requests do not use the elevator so skip initialization.
1030 * This allows a request to share the flush and elevator data.
1031 */
1032 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
1033 return false;
1034
1035 return true;
1036}
1037
852c788f
TH
1038/**
1039 * rq_ioc - determine io_context for request allocation
1040 * @bio: request being allocated is for this bio (can be %NULL)
1041 *
1042 * Determine io_context to use for request allocation for @bio. May return
1043 * %NULL if %current->io_context doesn't exist.
1044 */
1045static struct io_context *rq_ioc(struct bio *bio)
1046{
1047#ifdef CONFIG_BLK_CGROUP
1048 if (bio && bio->bi_ioc)
1049 return bio->bi_ioc;
1050#endif
1051 return current->io_context;
1052}
1053
da8303c6 1054/**
a06e05e6 1055 * __get_request - get a free request
5b788ce3 1056 * @rl: request list to allocate from
da8303c6
TH
1057 * @rw_flags: RW and SYNC flags
1058 * @bio: bio to allocate request for (can be %NULL)
1059 * @gfp_mask: allocation mask
1060 *
1061 * Get a free request from @q. This function may fail under memory
1062 * pressure or if @q is dead.
1063 *
da3dae54 1064 * Must be called with @q->queue_lock held and,
a492f075
JL
1065 * Returns ERR_PTR on failure, with @q->queue_lock held.
1066 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1067 */
5b788ce3 1068static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 1069 struct bio *bio, gfp_t gfp_mask)
1da177e4 1070{
5b788ce3 1071 struct request_queue *q = rl->q;
b679281a 1072 struct request *rq;
7f4b35d1
TH
1073 struct elevator_type *et = q->elevator->type;
1074 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1075 struct io_cq *icq = NULL;
1faa16d2 1076 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 1077 int may_queue;
88ee5ef1 1078
3f3299d5 1079 if (unlikely(blk_queue_dying(q)))
a492f075 1080 return ERR_PTR(-ENODEV);
da8303c6 1081
7749a8d4 1082 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
1083 if (may_queue == ELV_MQUEUE_NO)
1084 goto rq_starved;
1085
1faa16d2
JA
1086 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1087 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1088 /*
1089 * The queue will fill after this allocation, so set
1090 * it as full, and mark this process as "batching".
1091 * This process will be allowed to complete a batch of
1092 * requests, others will be blocked.
1093 */
5b788ce3 1094 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1095 ioc_set_batching(q, ioc);
5b788ce3 1096 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1097 } else {
1098 if (may_queue != ELV_MQUEUE_MUST
1099 && !ioc_batching(q, ioc)) {
1100 /*
1101 * The queue is full and the allocating
1102 * process is not a "batcher", and not
1103 * exempted by the IO scheduler
1104 */
a492f075 1105 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1106 }
1107 }
1da177e4 1108 }
d40f75a0 1109 blk_set_congested(rl, is_sync);
1da177e4
LT
1110 }
1111
082cf69e
JA
1112 /*
1113 * Only allow batching queuers to allocate up to 50% over the defined
1114 * limit of requests, otherwise we could have thousands of requests
1115 * allocated with any setting of ->nr_requests
1116 */
1faa16d2 1117 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1118 return ERR_PTR(-ENOMEM);
fd782a4a 1119
8a5ecdd4 1120 q->nr_rqs[is_sync]++;
1faa16d2
JA
1121 rl->count[is_sync]++;
1122 rl->starved[is_sync] = 0;
cb98fc8b 1123
f1f8cc94
TH
1124 /*
1125 * Decide whether the new request will be managed by elevator. If
1126 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1127 * prevent the current elevator from being destroyed until the new
1128 * request is freed. This guarantees icq's won't be destroyed and
1129 * makes creating new ones safe.
1130 *
1131 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1132 * it will be created after releasing queue_lock.
1133 */
d732580b 1134 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 1135 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 1136 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1137 if (et->icq_cache && ioc)
1138 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1139 }
cb98fc8b 1140
f253b86b
JA
1141 if (blk_queue_io_stat(q))
1142 rw_flags |= REQ_IO_STAT;
1da177e4
LT
1143 spin_unlock_irq(q->queue_lock);
1144
29e2b09a 1145 /* allocate and init request */
5b788ce3 1146 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1147 if (!rq)
b679281a 1148 goto fail_alloc;
1da177e4 1149
29e2b09a 1150 blk_rq_init(q, rq);
a051661c 1151 blk_rq_set_rl(rq, rl);
29e2b09a
TH
1152 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1153
aaf7c680 1154 /* init elvpriv */
29e2b09a 1155 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 1156 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1157 if (ioc)
1158 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1159 if (!icq)
1160 goto fail_elvpriv;
29e2b09a 1161 }
aaf7c680
TH
1162
1163 rq->elv.icq = icq;
1164 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1165 goto fail_elvpriv;
1166
1167 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1168 if (icq)
1169 get_io_context(icq->ioc);
1170 }
aaf7c680 1171out:
88ee5ef1
JA
1172 /*
1173 * ioc may be NULL here, and ioc_batching will be false. That's
1174 * OK, if the queue is under the request limit then requests need
1175 * not count toward the nr_batch_requests limit. There will always
1176 * be some limit enforced by BLK_BATCH_TIME.
1177 */
1da177e4
LT
1178 if (ioc_batching(q, ioc))
1179 ioc->nr_batch_requests--;
6728cb0e 1180
1faa16d2 1181 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 1182 return rq;
b679281a 1183
aaf7c680
TH
1184fail_elvpriv:
1185 /*
1186 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1187 * and may fail indefinitely under memory pressure and thus
1188 * shouldn't stall IO. Treat this request as !elvpriv. This will
1189 * disturb iosched and blkcg but weird is bettern than dead.
1190 */
7b2b10e0
RE
1191 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1192 __func__, dev_name(q->backing_dev_info.dev));
aaf7c680
TH
1193
1194 rq->cmd_flags &= ~REQ_ELVPRIV;
1195 rq->elv.icq = NULL;
1196
1197 spin_lock_irq(q->queue_lock);
8a5ecdd4 1198 q->nr_rqs_elvpriv--;
aaf7c680
TH
1199 spin_unlock_irq(q->queue_lock);
1200 goto out;
1201
b679281a
TH
1202fail_alloc:
1203 /*
1204 * Allocation failed presumably due to memory. Undo anything we
1205 * might have messed up.
1206 *
1207 * Allocating task should really be put onto the front of the wait
1208 * queue, but this is pretty rare.
1209 */
1210 spin_lock_irq(q->queue_lock);
5b788ce3 1211 freed_request(rl, rw_flags);
b679281a
TH
1212
1213 /*
1214 * in the very unlikely event that allocation failed and no
1215 * requests for this direction was pending, mark us starved so that
1216 * freeing of a request in the other direction will notice
1217 * us. another possible fix would be to split the rq mempool into
1218 * READ and WRITE
1219 */
1220rq_starved:
1221 if (unlikely(rl->count[is_sync] == 0))
1222 rl->starved[is_sync] = 1;
a492f075 1223 return ERR_PTR(-ENOMEM);
1da177e4
LT
1224}
1225
da8303c6 1226/**
a06e05e6 1227 * get_request - get a free request
da8303c6
TH
1228 * @q: request_queue to allocate request from
1229 * @rw_flags: RW and SYNC flags
1230 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1231 * @gfp_mask: allocation mask
da8303c6 1232 *
d0164adc
MG
1233 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1234 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1235 *
da3dae54 1236 * Must be called with @q->queue_lock held and,
a492f075
JL
1237 * Returns ERR_PTR on failure, with @q->queue_lock held.
1238 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1239 */
a06e05e6
TH
1240static struct request *get_request(struct request_queue *q, int rw_flags,
1241 struct bio *bio, gfp_t gfp_mask)
1da177e4 1242{
1faa16d2 1243 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1244 DEFINE_WAIT(wait);
a051661c 1245 struct request_list *rl;
1da177e4 1246 struct request *rq;
a051661c
TH
1247
1248 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1249retry:
a051661c 1250 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a492f075 1251 if (!IS_ERR(rq))
a06e05e6 1252 return rq;
1da177e4 1253
d0164adc 1254 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
a051661c 1255 blk_put_rl(rl);
a492f075 1256 return rq;
a051661c 1257 }
1da177e4 1258
a06e05e6
TH
1259 /* wait on @rl and retry */
1260 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1261 TASK_UNINTERRUPTIBLE);
1da177e4 1262
a06e05e6 1263 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1264
a06e05e6
TH
1265 spin_unlock_irq(q->queue_lock);
1266 io_schedule();
d6344532 1267
a06e05e6
TH
1268 /*
1269 * After sleeping, we become a "batching" process and will be able
1270 * to allocate at least one request, and up to a big batch of them
1271 * for a small period time. See ioc_batching, ioc_set_batching
1272 */
a06e05e6 1273 ioc_set_batching(q, current->io_context);
05caf8db 1274
a06e05e6
TH
1275 spin_lock_irq(q->queue_lock);
1276 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1277
a06e05e6 1278 goto retry;
1da177e4
LT
1279}
1280
320ae51f
JA
1281static struct request *blk_old_get_request(struct request_queue *q, int rw,
1282 gfp_t gfp_mask)
1da177e4
LT
1283{
1284 struct request *rq;
1285
1286 BUG_ON(rw != READ && rw != WRITE);
1287
7f4b35d1
TH
1288 /* create ioc upfront */
1289 create_io_context(gfp_mask, q->node);
1290
d6344532 1291 spin_lock_irq(q->queue_lock);
a06e05e6 1292 rq = get_request(q, rw, NULL, gfp_mask);
a492f075 1293 if (IS_ERR(rq))
da8303c6 1294 spin_unlock_irq(q->queue_lock);
d6344532 1295 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1296
1297 return rq;
1298}
320ae51f
JA
1299
1300struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1301{
1302 if (q->mq_ops)
6f3b0e8b
CH
1303 return blk_mq_alloc_request(q, rw,
1304 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1305 0 : BLK_MQ_REQ_NOWAIT);
320ae51f
JA
1306 else
1307 return blk_old_get_request(q, rw, gfp_mask);
1308}
1da177e4
LT
1309EXPORT_SYMBOL(blk_get_request);
1310
dc72ef4a 1311/**
79eb63e9 1312 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1313 * @q: target request queue
79eb63e9
BH
1314 * @bio: The bio describing the memory mappings that will be submitted for IO.
1315 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1316 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1317 *
79eb63e9
BH
1318 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1319 * type commands. Where the struct request needs to be farther initialized by
1320 * the caller. It is passed a &struct bio, which describes the memory info of
1321 * the I/O transfer.
dc72ef4a 1322 *
79eb63e9
BH
1323 * The caller of blk_make_request must make sure that bi_io_vec
1324 * are set to describe the memory buffers. That bio_data_dir() will return
1325 * the needed direction of the request. (And all bio's in the passed bio-chain
1326 * are properly set accordingly)
1327 *
1328 * If called under none-sleepable conditions, mapped bio buffers must not
1329 * need bouncing, by calling the appropriate masked or flagged allocator,
1330 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1331 * BUG.
53674ac5
JA
1332 *
1333 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
d0164adc
MG
1334 * given to how you allocate bios. In particular, you cannot use
1335 * __GFP_DIRECT_RECLAIM for anything but the first bio in the chain. Otherwise
1336 * you risk waiting for IO completion of a bio that hasn't been submitted yet,
1337 * thus resulting in a deadlock. Alternatively bios should be allocated using
1338 * bio_kmalloc() instead of bio_alloc(), as that avoids the mempool deadlock.
53674ac5
JA
1339 * If possible a big IO should be split into smaller parts when allocation
1340 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1341 */
79eb63e9
BH
1342struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1343 gfp_t gfp_mask)
dc72ef4a 1344{
79eb63e9
BH
1345 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1346
a492f075
JL
1347 if (IS_ERR(rq))
1348 return rq;
79eb63e9 1349
f27b087b
JA
1350 blk_rq_set_block_pc(rq);
1351
79eb63e9
BH
1352 for_each_bio(bio) {
1353 struct bio *bounce_bio = bio;
1354 int ret;
1355
1356 blk_queue_bounce(q, &bounce_bio);
1357 ret = blk_rq_append_bio(q, rq, bounce_bio);
1358 if (unlikely(ret)) {
1359 blk_put_request(rq);
1360 return ERR_PTR(ret);
1361 }
1362 }
1363
1364 return rq;
dc72ef4a 1365}
79eb63e9 1366EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1367
f27b087b 1368/**
da3dae54 1369 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
f27b087b
JA
1370 * @rq: request to be initialized
1371 *
1372 */
1373void blk_rq_set_block_pc(struct request *rq)
1374{
1375 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1376 rq->__data_len = 0;
1377 rq->__sector = (sector_t) -1;
1378 rq->bio = rq->biotail = NULL;
1379 memset(rq->__cmd, 0, sizeof(rq->__cmd));
f27b087b
JA
1380}
1381EXPORT_SYMBOL(blk_rq_set_block_pc);
1382
1da177e4
LT
1383/**
1384 * blk_requeue_request - put a request back on queue
1385 * @q: request queue where request should be inserted
1386 * @rq: request to be inserted
1387 *
1388 * Description:
1389 * Drivers often keep queueing requests until the hardware cannot accept
1390 * more, when that condition happens we need to put the request back
1391 * on the queue. Must be called with queue lock held.
1392 */
165125e1 1393void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1394{
242f9dcb
JA
1395 blk_delete_timer(rq);
1396 blk_clear_rq_complete(rq);
5f3ea37c 1397 trace_block_rq_requeue(q, rq);
2056a782 1398
125c99bc 1399 if (rq->cmd_flags & REQ_QUEUED)
1da177e4
LT
1400 blk_queue_end_tag(q, rq);
1401
ba396a6c
JB
1402 BUG_ON(blk_queued_rq(rq));
1403
1da177e4
LT
1404 elv_requeue_request(q, rq);
1405}
1da177e4
LT
1406EXPORT_SYMBOL(blk_requeue_request);
1407
73c10101
JA
1408static void add_acct_request(struct request_queue *q, struct request *rq,
1409 int where)
1410{
320ae51f 1411 blk_account_io_start(rq, true);
7eaceacc 1412 __elv_add_request(q, rq, where);
73c10101
JA
1413}
1414
074a7aca
TH
1415static void part_round_stats_single(int cpu, struct hd_struct *part,
1416 unsigned long now)
1417{
7276d02e
JA
1418 int inflight;
1419
074a7aca
TH
1420 if (now == part->stamp)
1421 return;
1422
7276d02e
JA
1423 inflight = part_in_flight(part);
1424 if (inflight) {
074a7aca 1425 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1426 inflight * (now - part->stamp));
074a7aca
TH
1427 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1428 }
1429 part->stamp = now;
1430}
1431
1432/**
496aa8a9
RD
1433 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1434 * @cpu: cpu number for stats access
1435 * @part: target partition
1da177e4
LT
1436 *
1437 * The average IO queue length and utilisation statistics are maintained
1438 * by observing the current state of the queue length and the amount of
1439 * time it has been in this state for.
1440 *
1441 * Normally, that accounting is done on IO completion, but that can result
1442 * in more than a second's worth of IO being accounted for within any one
1443 * second, leading to >100% utilisation. To deal with that, we call this
1444 * function to do a round-off before returning the results when reading
1445 * /proc/diskstats. This accounts immediately for all queue usage up to
1446 * the current jiffies and restarts the counters again.
1447 */
c9959059 1448void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1449{
1450 unsigned long now = jiffies;
1451
074a7aca
TH
1452 if (part->partno)
1453 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1454 part_round_stats_single(cpu, part, now);
6f2576af 1455}
074a7aca 1456EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1457
47fafbc7 1458#ifdef CONFIG_PM
c8158819
LM
1459static void blk_pm_put_request(struct request *rq)
1460{
1461 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1462 pm_runtime_mark_last_busy(rq->q->dev);
1463}
1464#else
1465static inline void blk_pm_put_request(struct request *rq) {}
1466#endif
1467
1da177e4
LT
1468/*
1469 * queue lock must be held
1470 */
165125e1 1471void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1472{
1da177e4
LT
1473 if (unlikely(!q))
1474 return;
1da177e4 1475
6f5ba581
CH
1476 if (q->mq_ops) {
1477 blk_mq_free_request(req);
1478 return;
1479 }
1480
c8158819
LM
1481 blk_pm_put_request(req);
1482
8922e16c
TH
1483 elv_completed_request(q, req);
1484
1cd96c24
BH
1485 /* this is a bio leak */
1486 WARN_ON(req->bio != NULL);
1487
1da177e4
LT
1488 /*
1489 * Request may not have originated from ll_rw_blk. if not,
1490 * it didn't come out of our reserved rq pools
1491 */
49171e5c 1492 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1493 unsigned int flags = req->cmd_flags;
a051661c 1494 struct request_list *rl = blk_rq_rl(req);
1da177e4 1495
1da177e4 1496 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1497 BUG_ON(ELV_ON_HASH(req));
1da177e4 1498
a051661c
TH
1499 blk_free_request(rl, req);
1500 freed_request(rl, flags);
1501 blk_put_rl(rl);
1da177e4
LT
1502 }
1503}
6e39b69e
MC
1504EXPORT_SYMBOL_GPL(__blk_put_request);
1505
1da177e4
LT
1506void blk_put_request(struct request *req)
1507{
165125e1 1508 struct request_queue *q = req->q;
8922e16c 1509
320ae51f
JA
1510 if (q->mq_ops)
1511 blk_mq_free_request(req);
1512 else {
1513 unsigned long flags;
1514
1515 spin_lock_irqsave(q->queue_lock, flags);
1516 __blk_put_request(q, req);
1517 spin_unlock_irqrestore(q->queue_lock, flags);
1518 }
1da177e4 1519}
1da177e4
LT
1520EXPORT_SYMBOL(blk_put_request);
1521
66ac0280
CH
1522/**
1523 * blk_add_request_payload - add a payload to a request
1524 * @rq: request to update
1525 * @page: page backing the payload
1526 * @len: length of the payload.
1527 *
1528 * This allows to later add a payload to an already submitted request by
1529 * a block driver. The driver needs to take care of freeing the payload
1530 * itself.
1531 *
1532 * Note that this is a quite horrible hack and nothing but handling of
1533 * discard requests should ever use it.
1534 */
1535void blk_add_request_payload(struct request *rq, struct page *page,
1536 unsigned int len)
1537{
1538 struct bio *bio = rq->bio;
1539
1540 bio->bi_io_vec->bv_page = page;
1541 bio->bi_io_vec->bv_offset = 0;
1542 bio->bi_io_vec->bv_len = len;
1543
4f024f37 1544 bio->bi_iter.bi_size = len;
66ac0280
CH
1545 bio->bi_vcnt = 1;
1546 bio->bi_phys_segments = 1;
1547
1548 rq->__data_len = rq->resid_len = len;
1549 rq->nr_phys_segments = 1;
66ac0280
CH
1550}
1551EXPORT_SYMBOL_GPL(blk_add_request_payload);
1552
320ae51f
JA
1553bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1554 struct bio *bio)
73c10101
JA
1555{
1556 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1557
73c10101
JA
1558 if (!ll_back_merge_fn(q, req, bio))
1559 return false;
1560
8c1cf6bb 1561 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1562
1563 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1564 blk_rq_set_mixed_merge(req);
1565
1566 req->biotail->bi_next = bio;
1567 req->biotail = bio;
4f024f37 1568 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1569 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1570
320ae51f 1571 blk_account_io_start(req, false);
73c10101
JA
1572 return true;
1573}
1574
320ae51f
JA
1575bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1576 struct bio *bio)
73c10101
JA
1577{
1578 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1579
73c10101
JA
1580 if (!ll_front_merge_fn(q, req, bio))
1581 return false;
1582
8c1cf6bb 1583 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1584
1585 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1586 blk_rq_set_mixed_merge(req);
1587
73c10101
JA
1588 bio->bi_next = req->bio;
1589 req->bio = bio;
1590
4f024f37
KO
1591 req->__sector = bio->bi_iter.bi_sector;
1592 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1593 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1594
320ae51f 1595 blk_account_io_start(req, false);
73c10101
JA
1596 return true;
1597}
1598
bd87b589 1599/**
320ae51f 1600 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1601 * @q: request_queue new bio is being queued at
1602 * @bio: new bio being queued
1603 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1604 * @same_queue_rq: pointer to &struct request that gets filled in when
1605 * another request associated with @q is found on the plug list
1606 * (optional, may be %NULL)
bd87b589
TH
1607 *
1608 * Determine whether @bio being queued on @q can be merged with a request
1609 * on %current's plugged list. Returns %true if merge was successful,
1610 * otherwise %false.
1611 *
07c2bd37
TH
1612 * Plugging coalesces IOs from the same issuer for the same purpose without
1613 * going through @q->queue_lock. As such it's more of an issuing mechanism
1614 * than scheduling, and the request, while may have elvpriv data, is not
1615 * added on the elevator at this point. In addition, we don't have
1616 * reliable access to the elevator outside queue lock. Only check basic
1617 * merging parameters without querying the elevator.
da41a589
RE
1618 *
1619 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1620 */
320ae51f 1621bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1622 unsigned int *request_count,
1623 struct request **same_queue_rq)
73c10101
JA
1624{
1625 struct blk_plug *plug;
1626 struct request *rq;
1627 bool ret = false;
92f399c7 1628 struct list_head *plug_list;
73c10101 1629
bd87b589 1630 plug = current->plug;
73c10101
JA
1631 if (!plug)
1632 goto out;
56ebdaf2 1633 *request_count = 0;
73c10101 1634
92f399c7
SL
1635 if (q->mq_ops)
1636 plug_list = &plug->mq_list;
1637 else
1638 plug_list = &plug->list;
1639
1640 list_for_each_entry_reverse(rq, plug_list, queuelist) {
73c10101
JA
1641 int el_ret;
1642
5b3f341f 1643 if (rq->q == q) {
1b2e19f1 1644 (*request_count)++;
5b3f341f
SL
1645 /*
1646 * Only blk-mq multiple hardware queues case checks the
1647 * rq in the same queue, there should be only one such
1648 * rq in a queue
1649 **/
1650 if (same_queue_rq)
1651 *same_queue_rq = rq;
1652 }
56ebdaf2 1653
07c2bd37 1654 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1655 continue;
1656
050c8ea8 1657 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1658 if (el_ret == ELEVATOR_BACK_MERGE) {
1659 ret = bio_attempt_back_merge(q, rq, bio);
1660 if (ret)
1661 break;
1662 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1663 ret = bio_attempt_front_merge(q, rq, bio);
1664 if (ret)
1665 break;
1666 }
1667 }
1668out:
1669 return ret;
1670}
1671
0809e3ac
JM
1672unsigned int blk_plug_queued_count(struct request_queue *q)
1673{
1674 struct blk_plug *plug;
1675 struct request *rq;
1676 struct list_head *plug_list;
1677 unsigned int ret = 0;
1678
1679 plug = current->plug;
1680 if (!plug)
1681 goto out;
1682
1683 if (q->mq_ops)
1684 plug_list = &plug->mq_list;
1685 else
1686 plug_list = &plug->list;
1687
1688 list_for_each_entry(rq, plug_list, queuelist) {
1689 if (rq->q == q)
1690 ret++;
1691 }
1692out:
1693 return ret;
1694}
1695
86db1e29 1696void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1697{
4aff5e23 1698 req->cmd_type = REQ_TYPE_FS;
52d9e675 1699
7b6d91da
CH
1700 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1701 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1702 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1703
52d9e675 1704 req->errors = 0;
4f024f37 1705 req->__sector = bio->bi_iter.bi_sector;
52d9e675 1706 req->ioprio = bio_prio(bio);
bc1c56fd 1707 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1708}
1709
dece1635 1710static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1711{
5e00d1b5 1712 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1713 struct blk_plug *plug;
1714 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1715 struct request *req;
56ebdaf2 1716 unsigned int request_count = 0;
1da177e4 1717
1da177e4
LT
1718 /*
1719 * low level driver can indicate that it wants pages above a
1720 * certain limit bounced to low memory (ie for highmem, or even
1721 * ISA dma in theory)
1722 */
1723 blk_queue_bounce(q, &bio);
1724
23688bf4
JN
1725 blk_queue_split(q, &bio, q->bio_split);
1726
ffecfd1a 1727 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6
CH
1728 bio->bi_error = -EIO;
1729 bio_endio(bio);
dece1635 1730 return BLK_QC_T_NONE;
ffecfd1a
DW
1731 }
1732
4fed947c 1733 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1734 spin_lock_irq(q->queue_lock);
ae1b1539 1735 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1736 goto get_rq;
1737 }
1738
73c10101
JA
1739 /*
1740 * Check if we can merge with the plugged list before grabbing
1741 * any locks.
1742 */
0809e3ac
JM
1743 if (!blk_queue_nomerges(q)) {
1744 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1745 return BLK_QC_T_NONE;
0809e3ac
JM
1746 } else
1747 request_count = blk_plug_queued_count(q);
1da177e4 1748
73c10101 1749 spin_lock_irq(q->queue_lock);
2056a782 1750
73c10101
JA
1751 el_ret = elv_merge(q, &req, bio);
1752 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1753 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1754 elv_bio_merged(q, req, bio);
73c10101
JA
1755 if (!attempt_back_merge(q, req))
1756 elv_merged_request(q, req, el_ret);
1757 goto out_unlock;
1758 }
1759 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1760 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1761 elv_bio_merged(q, req, bio);
73c10101
JA
1762 if (!attempt_front_merge(q, req))
1763 elv_merged_request(q, req, el_ret);
1764 goto out_unlock;
80a761fd 1765 }
1da177e4
LT
1766 }
1767
450991bc 1768get_rq:
7749a8d4
JA
1769 /*
1770 * This sync check and mask will be re-done in init_request_from_bio(),
1771 * but we need to set it earlier to expose the sync flag to the
1772 * rq allocator and io schedulers.
1773 */
1774 rw_flags = bio_data_dir(bio);
1775 if (sync)
7b6d91da 1776 rw_flags |= REQ_SYNC;
7749a8d4 1777
1da177e4 1778 /*
450991bc 1779 * Grab a free request. This is might sleep but can not fail.
d6344532 1780 * Returns with the queue unlocked.
450991bc 1781 */
a06e05e6 1782 req = get_request(q, rw_flags, bio, GFP_NOIO);
a492f075 1783 if (IS_ERR(req)) {
4246a0b6
CH
1784 bio->bi_error = PTR_ERR(req);
1785 bio_endio(bio);
da8303c6
TH
1786 goto out_unlock;
1787 }
d6344532 1788
450991bc
NP
1789 /*
1790 * After dropping the lock and possibly sleeping here, our request
1791 * may now be mergeable after it had proven unmergeable (above).
1792 * We don't worry about that case for efficiency. It won't happen
1793 * often, and the elevators are able to handle it.
1da177e4 1794 */
52d9e675 1795 init_request_from_bio(req, bio);
1da177e4 1796
9562ad9a 1797 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1798 req->cpu = raw_smp_processor_id();
73c10101
JA
1799
1800 plug = current->plug;
721a9602 1801 if (plug) {
dc6d36c9
JA
1802 /*
1803 * If this is the first request added after a plug, fire
7aef2e78 1804 * of a plug trace.
dc6d36c9 1805 */
7aef2e78 1806 if (!request_count)
dc6d36c9 1807 trace_block_plug(q);
3540d5e8 1808 else {
019ceb7d 1809 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1810 blk_flush_plug_list(plug, false);
019ceb7d
SL
1811 trace_block_plug(q);
1812 }
73c10101 1813 }
73c10101 1814 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1815 blk_account_io_start(req, true);
73c10101
JA
1816 } else {
1817 spin_lock_irq(q->queue_lock);
1818 add_acct_request(q, req, where);
24ecfbe2 1819 __blk_run_queue(q);
73c10101
JA
1820out_unlock:
1821 spin_unlock_irq(q->queue_lock);
1822 }
dece1635
JA
1823
1824 return BLK_QC_T_NONE;
1da177e4
LT
1825}
1826
1827/*
1828 * If bio->bi_dev is a partition, remap the location
1829 */
1830static inline void blk_partition_remap(struct bio *bio)
1831{
1832 struct block_device *bdev = bio->bi_bdev;
1833
bf2de6f5 1834 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1835 struct hd_struct *p = bdev->bd_part;
1836
4f024f37 1837 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1838 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1839
d07335e5
MS
1840 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1841 bdev->bd_dev,
4f024f37 1842 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1843 }
1844}
1845
1da177e4
LT
1846static void handle_bad_sector(struct bio *bio)
1847{
1848 char b[BDEVNAME_SIZE];
1849
1850 printk(KERN_INFO "attempt to access beyond end of device\n");
1851 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1852 bdevname(bio->bi_bdev, b),
1853 bio->bi_rw,
f73a1c7d 1854 (unsigned long long)bio_end_sector(bio),
77304d2a 1855 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1856}
1857
c17bb495
AM
1858#ifdef CONFIG_FAIL_MAKE_REQUEST
1859
1860static DECLARE_FAULT_ATTR(fail_make_request);
1861
1862static int __init setup_fail_make_request(char *str)
1863{
1864 return setup_fault_attr(&fail_make_request, str);
1865}
1866__setup("fail_make_request=", setup_fail_make_request);
1867
b2c9cd37 1868static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1869{
b2c9cd37 1870 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1871}
1872
1873static int __init fail_make_request_debugfs(void)
1874{
dd48c085
AM
1875 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1876 NULL, &fail_make_request);
1877
21f9fcd8 1878 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1879}
1880
1881late_initcall(fail_make_request_debugfs);
1882
1883#else /* CONFIG_FAIL_MAKE_REQUEST */
1884
b2c9cd37
AM
1885static inline bool should_fail_request(struct hd_struct *part,
1886 unsigned int bytes)
c17bb495 1887{
b2c9cd37 1888 return false;
c17bb495
AM
1889}
1890
1891#endif /* CONFIG_FAIL_MAKE_REQUEST */
1892
c07e2b41
JA
1893/*
1894 * Check whether this bio extends beyond the end of the device.
1895 */
1896static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1897{
1898 sector_t maxsector;
1899
1900 if (!nr_sectors)
1901 return 0;
1902
1903 /* Test device or partition size, when known. */
77304d2a 1904 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1905 if (maxsector) {
4f024f37 1906 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1907
1908 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1909 /*
1910 * This may well happen - the kernel calls bread()
1911 * without checking the size of the device, e.g., when
1912 * mounting a device.
1913 */
1914 handle_bad_sector(bio);
1915 return 1;
1916 }
1917 }
1918
1919 return 0;
1920}
1921
27a84d54
CH
1922static noinline_for_stack bool
1923generic_make_request_checks(struct bio *bio)
1da177e4 1924{
165125e1 1925 struct request_queue *q;
5a7bbad2 1926 int nr_sectors = bio_sectors(bio);
51fd77bd 1927 int err = -EIO;
5a7bbad2
CH
1928 char b[BDEVNAME_SIZE];
1929 struct hd_struct *part;
1da177e4
LT
1930
1931 might_sleep();
1da177e4 1932
c07e2b41
JA
1933 if (bio_check_eod(bio, nr_sectors))
1934 goto end_io;
1da177e4 1935
5a7bbad2
CH
1936 q = bdev_get_queue(bio->bi_bdev);
1937 if (unlikely(!q)) {
1938 printk(KERN_ERR
1939 "generic_make_request: Trying to access "
1940 "nonexistent block-device %s (%Lu)\n",
1941 bdevname(bio->bi_bdev, b),
4f024f37 1942 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1943 goto end_io;
1944 }
c17bb495 1945
5a7bbad2 1946 part = bio->bi_bdev->bd_part;
4f024f37 1947 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1948 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1949 bio->bi_iter.bi_size))
5a7bbad2 1950 goto end_io;
2056a782 1951
5a7bbad2
CH
1952 /*
1953 * If this device has partitions, remap block n
1954 * of partition p to block n+start(p) of the disk.
1955 */
1956 blk_partition_remap(bio);
2056a782 1957
5a7bbad2
CH
1958 if (bio_check_eod(bio, nr_sectors))
1959 goto end_io;
1e87901e 1960
5a7bbad2
CH
1961 /*
1962 * Filter flush bio's early so that make_request based
1963 * drivers without flush support don't have to worry
1964 * about them.
1965 */
1966 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1967 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1968 if (!nr_sectors) {
1969 err = 0;
51fd77bd
JA
1970 goto end_io;
1971 }
5a7bbad2 1972 }
5ddfe969 1973
5a7bbad2
CH
1974 if ((bio->bi_rw & REQ_DISCARD) &&
1975 (!blk_queue_discard(q) ||
e2a60da7 1976 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1977 err = -EOPNOTSUPP;
1978 goto end_io;
1979 }
01edede4 1980
4363ac7c 1981 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1982 err = -EOPNOTSUPP;
1983 goto end_io;
1984 }
01edede4 1985
7f4b35d1
TH
1986 /*
1987 * Various block parts want %current->io_context and lazy ioc
1988 * allocation ends up trading a lot of pain for a small amount of
1989 * memory. Just allocate it upfront. This may fail and block
1990 * layer knows how to live with it.
1991 */
1992 create_io_context(GFP_ATOMIC, q->node);
1993
ae118896
TH
1994 if (!blkcg_bio_issue_check(q, bio))
1995 return false;
27a84d54 1996
5a7bbad2 1997 trace_block_bio_queue(q, bio);
27a84d54 1998 return true;
a7384677
TH
1999
2000end_io:
4246a0b6
CH
2001 bio->bi_error = err;
2002 bio_endio(bio);
27a84d54 2003 return false;
1da177e4
LT
2004}
2005
27a84d54
CH
2006/**
2007 * generic_make_request - hand a buffer to its device driver for I/O
2008 * @bio: The bio describing the location in memory and on the device.
2009 *
2010 * generic_make_request() is used to make I/O requests of block
2011 * devices. It is passed a &struct bio, which describes the I/O that needs
2012 * to be done.
2013 *
2014 * generic_make_request() does not return any status. The
2015 * success/failure status of the request, along with notification of
2016 * completion, is delivered asynchronously through the bio->bi_end_io
2017 * function described (one day) else where.
2018 *
2019 * The caller of generic_make_request must make sure that bi_io_vec
2020 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2021 * set to describe the device address, and the
2022 * bi_end_io and optionally bi_private are set to describe how
2023 * completion notification should be signaled.
2024 *
2025 * generic_make_request and the drivers it calls may use bi_next if this
2026 * bio happens to be merged with someone else, and may resubmit the bio to
2027 * a lower device by calling into generic_make_request recursively, which
2028 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2029 */
dece1635 2030blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2031{
bddd87c7 2032 struct bio_list bio_list_on_stack;
dece1635 2033 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2034
27a84d54 2035 if (!generic_make_request_checks(bio))
dece1635 2036 goto out;
27a84d54
CH
2037
2038 /*
2039 * We only want one ->make_request_fn to be active at a time, else
2040 * stack usage with stacked devices could be a problem. So use
2041 * current->bio_list to keep a list of requests submited by a
2042 * make_request_fn function. current->bio_list is also used as a
2043 * flag to say if generic_make_request is currently active in this
2044 * task or not. If it is NULL, then no make_request is active. If
2045 * it is non-NULL, then a make_request is active, and new requests
2046 * should be added at the tail
2047 */
bddd87c7 2048 if (current->bio_list) {
bddd87c7 2049 bio_list_add(current->bio_list, bio);
dece1635 2050 goto out;
d89d8796 2051 }
27a84d54 2052
d89d8796
NB
2053 /* following loop may be a bit non-obvious, and so deserves some
2054 * explanation.
2055 * Before entering the loop, bio->bi_next is NULL (as all callers
2056 * ensure that) so we have a list with a single bio.
2057 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2058 * we assign bio_list to a pointer to the bio_list_on_stack,
2059 * thus initialising the bio_list of new bios to be
27a84d54 2060 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2061 * through a recursive call to generic_make_request. If it
2062 * did, we find a non-NULL value in bio_list and re-enter the loop
2063 * from the top. In this case we really did just take the bio
bddd87c7 2064 * of the top of the list (no pretending) and so remove it from
27a84d54 2065 * bio_list, and call into ->make_request() again.
d89d8796
NB
2066 */
2067 BUG_ON(bio->bi_next);
bddd87c7
AM
2068 bio_list_init(&bio_list_on_stack);
2069 current->bio_list = &bio_list_on_stack;
d89d8796 2070 do {
27a84d54
CH
2071 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2072
6f3b0e8b 2073 if (likely(blk_queue_enter(q, false) == 0)) {
dece1635 2074 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2075
2076 blk_queue_exit(q);
27a84d54 2077
3ef28e83
DW
2078 bio = bio_list_pop(current->bio_list);
2079 } else {
2080 struct bio *bio_next = bio_list_pop(current->bio_list);
2081
2082 bio_io_error(bio);
2083 bio = bio_next;
2084 }
d89d8796 2085 } while (bio);
bddd87c7 2086 current->bio_list = NULL; /* deactivate */
dece1635
JA
2087
2088out:
2089 return ret;
d89d8796 2090}
1da177e4
LT
2091EXPORT_SYMBOL(generic_make_request);
2092
2093/**
710027a4 2094 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2095 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2096 * @bio: The &struct bio which describes the I/O
2097 *
2098 * submit_bio() is very similar in purpose to generic_make_request(), and
2099 * uses that function to do most of the work. Both are fairly rough
710027a4 2100 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2101 *
2102 */
dece1635 2103blk_qc_t submit_bio(int rw, struct bio *bio)
1da177e4 2104{
22e2c507 2105 bio->bi_rw |= rw;
1da177e4 2106
bf2de6f5
JA
2107 /*
2108 * If it's a regular read/write or a barrier with data attached,
2109 * go through the normal accounting stuff before submission.
2110 */
e2a60da7 2111 if (bio_has_data(bio)) {
4363ac7c
MP
2112 unsigned int count;
2113
2114 if (unlikely(rw & REQ_WRITE_SAME))
2115 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2116 else
2117 count = bio_sectors(bio);
2118
bf2de6f5
JA
2119 if (rw & WRITE) {
2120 count_vm_events(PGPGOUT, count);
2121 } else {
4f024f37 2122 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2123 count_vm_events(PGPGIN, count);
2124 }
2125
2126 if (unlikely(block_dump)) {
2127 char b[BDEVNAME_SIZE];
8dcbdc74 2128 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2129 current->comm, task_pid_nr(current),
bf2de6f5 2130 (rw & WRITE) ? "WRITE" : "READ",
4f024f37 2131 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
2132 bdevname(bio->bi_bdev, b),
2133 count);
bf2de6f5 2134 }
1da177e4
LT
2135 }
2136
dece1635 2137 return generic_make_request(bio);
1da177e4 2138}
1da177e4
LT
2139EXPORT_SYMBOL(submit_bio);
2140
82124d60 2141/**
bf4e6b4e
HR
2142 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2143 * for new the queue limits
82124d60
KU
2144 * @q: the queue
2145 * @rq: the request being checked
2146 *
2147 * Description:
2148 * @rq may have been made based on weaker limitations of upper-level queues
2149 * in request stacking drivers, and it may violate the limitation of @q.
2150 * Since the block layer and the underlying device driver trust @rq
2151 * after it is inserted to @q, it should be checked against @q before
2152 * the insertion using this generic function.
2153 *
82124d60 2154 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2155 * limits when retrying requests on other queues. Those requests need
2156 * to be checked against the new queue limits again during dispatch.
82124d60 2157 */
bf4e6b4e
HR
2158static int blk_cloned_rq_check_limits(struct request_queue *q,
2159 struct request *rq)
82124d60 2160{
f31dc1cd 2161 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
2162 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2163 return -EIO;
2164 }
2165
2166 /*
2167 * queue's settings related to segment counting like q->bounce_pfn
2168 * may differ from that of other stacking queues.
2169 * Recalculate it to check the request correctly on this queue's
2170 * limitation.
2171 */
2172 blk_recalc_rq_segments(rq);
8a78362c 2173 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2174 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2175 return -EIO;
2176 }
2177
2178 return 0;
2179}
82124d60
KU
2180
2181/**
2182 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2183 * @q: the queue to submit the request
2184 * @rq: the request being queued
2185 */
2186int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2187{
2188 unsigned long flags;
4853abaa 2189 int where = ELEVATOR_INSERT_BACK;
82124d60 2190
bf4e6b4e 2191 if (blk_cloned_rq_check_limits(q, rq))
82124d60
KU
2192 return -EIO;
2193
b2c9cd37
AM
2194 if (rq->rq_disk &&
2195 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 2196 return -EIO;
82124d60 2197
7fb4898e
KB
2198 if (q->mq_ops) {
2199 if (blk_queue_io_stat(q))
2200 blk_account_io_start(rq, true);
2201 blk_mq_insert_request(rq, false, true, true);
2202 return 0;
2203 }
2204
82124d60 2205 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2206 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2207 spin_unlock_irqrestore(q->queue_lock, flags);
2208 return -ENODEV;
2209 }
82124d60
KU
2210
2211 /*
2212 * Submitting request must be dequeued before calling this function
2213 * because it will be linked to another request_queue
2214 */
2215 BUG_ON(blk_queued_rq(rq));
2216
4853abaa
JM
2217 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2218 where = ELEVATOR_INSERT_FLUSH;
2219
2220 add_acct_request(q, rq, where);
e67b77c7
JM
2221 if (where == ELEVATOR_INSERT_FLUSH)
2222 __blk_run_queue(q);
82124d60
KU
2223 spin_unlock_irqrestore(q->queue_lock, flags);
2224
2225 return 0;
2226}
2227EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2228
80a761fd
TH
2229/**
2230 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2231 * @rq: request to examine
2232 *
2233 * Description:
2234 * A request could be merge of IOs which require different failure
2235 * handling. This function determines the number of bytes which
2236 * can be failed from the beginning of the request without
2237 * crossing into area which need to be retried further.
2238 *
2239 * Return:
2240 * The number of bytes to fail.
2241 *
2242 * Context:
2243 * queue_lock must be held.
2244 */
2245unsigned int blk_rq_err_bytes(const struct request *rq)
2246{
2247 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2248 unsigned int bytes = 0;
2249 struct bio *bio;
2250
2251 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2252 return blk_rq_bytes(rq);
2253
2254 /*
2255 * Currently the only 'mixing' which can happen is between
2256 * different fastfail types. We can safely fail portions
2257 * which have all the failfast bits that the first one has -
2258 * the ones which are at least as eager to fail as the first
2259 * one.
2260 */
2261 for (bio = rq->bio; bio; bio = bio->bi_next) {
2262 if ((bio->bi_rw & ff) != ff)
2263 break;
4f024f37 2264 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2265 }
2266
2267 /* this could lead to infinite loop */
2268 BUG_ON(blk_rq_bytes(rq) && !bytes);
2269 return bytes;
2270}
2271EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2272
320ae51f 2273void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2274{
c2553b58 2275 if (blk_do_io_stat(req)) {
bc58ba94
JA
2276 const int rw = rq_data_dir(req);
2277 struct hd_struct *part;
2278 int cpu;
2279
2280 cpu = part_stat_lock();
09e099d4 2281 part = req->part;
bc58ba94
JA
2282 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2283 part_stat_unlock();
2284 }
2285}
2286
320ae51f 2287void blk_account_io_done(struct request *req)
bc58ba94 2288{
bc58ba94 2289 /*
dd4c133f
TH
2290 * Account IO completion. flush_rq isn't accounted as a
2291 * normal IO on queueing nor completion. Accounting the
2292 * containing request is enough.
bc58ba94 2293 */
414b4ff5 2294 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2295 unsigned long duration = jiffies - req->start_time;
2296 const int rw = rq_data_dir(req);
2297 struct hd_struct *part;
2298 int cpu;
2299
2300 cpu = part_stat_lock();
09e099d4 2301 part = req->part;
bc58ba94
JA
2302
2303 part_stat_inc(cpu, part, ios[rw]);
2304 part_stat_add(cpu, part, ticks[rw], duration);
2305 part_round_stats(cpu, part);
316d315b 2306 part_dec_in_flight(part, rw);
bc58ba94 2307
6c23a968 2308 hd_struct_put(part);
bc58ba94
JA
2309 part_stat_unlock();
2310 }
2311}
2312
47fafbc7 2313#ifdef CONFIG_PM
c8158819
LM
2314/*
2315 * Don't process normal requests when queue is suspended
2316 * or in the process of suspending/resuming
2317 */
2318static struct request *blk_pm_peek_request(struct request_queue *q,
2319 struct request *rq)
2320{
2321 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2322 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2323 return NULL;
2324 else
2325 return rq;
2326}
2327#else
2328static inline struct request *blk_pm_peek_request(struct request_queue *q,
2329 struct request *rq)
2330{
2331 return rq;
2332}
2333#endif
2334
320ae51f
JA
2335void blk_account_io_start(struct request *rq, bool new_io)
2336{
2337 struct hd_struct *part;
2338 int rw = rq_data_dir(rq);
2339 int cpu;
2340
2341 if (!blk_do_io_stat(rq))
2342 return;
2343
2344 cpu = part_stat_lock();
2345
2346 if (!new_io) {
2347 part = rq->part;
2348 part_stat_inc(cpu, part, merges[rw]);
2349 } else {
2350 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2351 if (!hd_struct_try_get(part)) {
2352 /*
2353 * The partition is already being removed,
2354 * the request will be accounted on the disk only
2355 *
2356 * We take a reference on disk->part0 although that
2357 * partition will never be deleted, so we can treat
2358 * it as any other partition.
2359 */
2360 part = &rq->rq_disk->part0;
2361 hd_struct_get(part);
2362 }
2363 part_round_stats(cpu, part);
2364 part_inc_in_flight(part, rw);
2365 rq->part = part;
2366 }
2367
2368 part_stat_unlock();
2369}
2370
3bcddeac 2371/**
9934c8c0
TH
2372 * blk_peek_request - peek at the top of a request queue
2373 * @q: request queue to peek at
2374 *
2375 * Description:
2376 * Return the request at the top of @q. The returned request
2377 * should be started using blk_start_request() before LLD starts
2378 * processing it.
2379 *
2380 * Return:
2381 * Pointer to the request at the top of @q if available. Null
2382 * otherwise.
2383 *
2384 * Context:
2385 * queue_lock must be held.
2386 */
2387struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2388{
2389 struct request *rq;
2390 int ret;
2391
2392 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2393
2394 rq = blk_pm_peek_request(q, rq);
2395 if (!rq)
2396 break;
2397
158dbda0
TH
2398 if (!(rq->cmd_flags & REQ_STARTED)) {
2399 /*
2400 * This is the first time the device driver
2401 * sees this request (possibly after
2402 * requeueing). Notify IO scheduler.
2403 */
33659ebb 2404 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2405 elv_activate_rq(q, rq);
2406
2407 /*
2408 * just mark as started even if we don't start
2409 * it, a request that has been delayed should
2410 * not be passed by new incoming requests
2411 */
2412 rq->cmd_flags |= REQ_STARTED;
2413 trace_block_rq_issue(q, rq);
2414 }
2415
2416 if (!q->boundary_rq || q->boundary_rq == rq) {
2417 q->end_sector = rq_end_sector(rq);
2418 q->boundary_rq = NULL;
2419 }
2420
2421 if (rq->cmd_flags & REQ_DONTPREP)
2422 break;
2423
2e46e8b2 2424 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2425 /*
2426 * make sure space for the drain appears we
2427 * know we can do this because max_hw_segments
2428 * has been adjusted to be one fewer than the
2429 * device can handle
2430 */
2431 rq->nr_phys_segments++;
2432 }
2433
2434 if (!q->prep_rq_fn)
2435 break;
2436
2437 ret = q->prep_rq_fn(q, rq);
2438 if (ret == BLKPREP_OK) {
2439 break;
2440 } else if (ret == BLKPREP_DEFER) {
2441 /*
2442 * the request may have been (partially) prepped.
2443 * we need to keep this request in the front to
2444 * avoid resource deadlock. REQ_STARTED will
2445 * prevent other fs requests from passing this one.
2446 */
2e46e8b2 2447 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2448 !(rq->cmd_flags & REQ_DONTPREP)) {
2449 /*
2450 * remove the space for the drain we added
2451 * so that we don't add it again
2452 */
2453 --rq->nr_phys_segments;
2454 }
2455
2456 rq = NULL;
2457 break;
2458 } else if (ret == BLKPREP_KILL) {
2459 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2460 /*
2461 * Mark this request as started so we don't trigger
2462 * any debug logic in the end I/O path.
2463 */
2464 blk_start_request(rq);
40cbbb78 2465 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2466 } else {
2467 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2468 break;
2469 }
2470 }
2471
2472 return rq;
2473}
9934c8c0 2474EXPORT_SYMBOL(blk_peek_request);
158dbda0 2475
9934c8c0 2476void blk_dequeue_request(struct request *rq)
158dbda0 2477{
9934c8c0
TH
2478 struct request_queue *q = rq->q;
2479
158dbda0
TH
2480 BUG_ON(list_empty(&rq->queuelist));
2481 BUG_ON(ELV_ON_HASH(rq));
2482
2483 list_del_init(&rq->queuelist);
2484
2485 /*
2486 * the time frame between a request being removed from the lists
2487 * and to it is freed is accounted as io that is in progress at
2488 * the driver side.
2489 */
9195291e 2490 if (blk_account_rq(rq)) {
0a7ae2ff 2491 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2492 set_io_start_time_ns(rq);
2493 }
158dbda0
TH
2494}
2495
9934c8c0
TH
2496/**
2497 * blk_start_request - start request processing on the driver
2498 * @req: request to dequeue
2499 *
2500 * Description:
2501 * Dequeue @req and start timeout timer on it. This hands off the
2502 * request to the driver.
2503 *
2504 * Block internal functions which don't want to start timer should
2505 * call blk_dequeue_request().
2506 *
2507 * Context:
2508 * queue_lock must be held.
2509 */
2510void blk_start_request(struct request *req)
2511{
2512 blk_dequeue_request(req);
2513
2514 /*
5f49f631
TH
2515 * We are now handing the request to the hardware, initialize
2516 * resid_len to full count and add the timeout handler.
9934c8c0 2517 */
5f49f631 2518 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2519 if (unlikely(blk_bidi_rq(req)))
2520 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2521
4912aa6c 2522 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2523 blk_add_timer(req);
2524}
2525EXPORT_SYMBOL(blk_start_request);
2526
2527/**
2528 * blk_fetch_request - fetch a request from a request queue
2529 * @q: request queue to fetch a request from
2530 *
2531 * Description:
2532 * Return the request at the top of @q. The request is started on
2533 * return and LLD can start processing it immediately.
2534 *
2535 * Return:
2536 * Pointer to the request at the top of @q if available. Null
2537 * otherwise.
2538 *
2539 * Context:
2540 * queue_lock must be held.
2541 */
2542struct request *blk_fetch_request(struct request_queue *q)
2543{
2544 struct request *rq;
2545
2546 rq = blk_peek_request(q);
2547 if (rq)
2548 blk_start_request(rq);
2549 return rq;
2550}
2551EXPORT_SYMBOL(blk_fetch_request);
2552
3bcddeac 2553/**
2e60e022 2554 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2555 * @req: the request being processed
710027a4 2556 * @error: %0 for success, < %0 for error
8ebf9756 2557 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2558 *
2559 * Description:
8ebf9756
RD
2560 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2561 * the request structure even if @req doesn't have leftover.
2562 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2563 *
2564 * This special helper function is only for request stacking drivers
2565 * (e.g. request-based dm) so that they can handle partial completion.
2566 * Actual device drivers should use blk_end_request instead.
2567 *
2568 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2569 * %false return from this function.
3bcddeac
KU
2570 *
2571 * Return:
2e60e022
TH
2572 * %false - this request doesn't have any more data
2573 * %true - this request has more data
3bcddeac 2574 **/
2e60e022 2575bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2576{
f79ea416 2577 int total_bytes;
1da177e4 2578
4a0efdc9
HR
2579 trace_block_rq_complete(req->q, req, nr_bytes);
2580
2e60e022
TH
2581 if (!req->bio)
2582 return false;
2583
1da177e4 2584 /*
6f41469c
TH
2585 * For fs requests, rq is just carrier of independent bio's
2586 * and each partial completion should be handled separately.
2587 * Reset per-request error on each partial completion.
2588 *
2589 * TODO: tj: This is too subtle. It would be better to let
2590 * low level drivers do what they see fit.
1da177e4 2591 */
33659ebb 2592 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2593 req->errors = 0;
2594
33659ebb
CH
2595 if (error && req->cmd_type == REQ_TYPE_FS &&
2596 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2597 char *error_type;
2598
2599 switch (error) {
2600 case -ENOLINK:
2601 error_type = "recoverable transport";
2602 break;
2603 case -EREMOTEIO:
2604 error_type = "critical target";
2605 break;
2606 case -EBADE:
2607 error_type = "critical nexus";
2608 break;
d1ffc1f8
HR
2609 case -ETIMEDOUT:
2610 error_type = "timeout";
2611 break;
a9d6ceb8
HR
2612 case -ENOSPC:
2613 error_type = "critical space allocation";
2614 break;
7e782af5
HR
2615 case -ENODATA:
2616 error_type = "critical medium";
2617 break;
79775567
HR
2618 case -EIO:
2619 default:
2620 error_type = "I/O";
2621 break;
2622 }
ef3ecb66
RE
2623 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2624 __func__, error_type, req->rq_disk ?
37d7b34f
YZ
2625 req->rq_disk->disk_name : "?",
2626 (unsigned long long)blk_rq_pos(req));
2627
1da177e4
LT
2628 }
2629
bc58ba94 2630 blk_account_io_completion(req, nr_bytes);
d72d904a 2631
f79ea416
KO
2632 total_bytes = 0;
2633 while (req->bio) {
2634 struct bio *bio = req->bio;
4f024f37 2635 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2636
4f024f37 2637 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2638 req->bio = bio->bi_next;
1da177e4 2639
f79ea416 2640 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2641
f79ea416
KO
2642 total_bytes += bio_bytes;
2643 nr_bytes -= bio_bytes;
1da177e4 2644
f79ea416
KO
2645 if (!nr_bytes)
2646 break;
1da177e4
LT
2647 }
2648
2649 /*
2650 * completely done
2651 */
2e60e022
TH
2652 if (!req->bio) {
2653 /*
2654 * Reset counters so that the request stacking driver
2655 * can find how many bytes remain in the request
2656 * later.
2657 */
a2dec7b3 2658 req->__data_len = 0;
2e60e022
TH
2659 return false;
2660 }
1da177e4 2661
a2dec7b3 2662 req->__data_len -= total_bytes;
2e46e8b2
TH
2663
2664 /* update sector only for requests with clear definition of sector */
e2a60da7 2665 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2666 req->__sector += total_bytes >> 9;
2e46e8b2 2667
80a761fd
TH
2668 /* mixed attributes always follow the first bio */
2669 if (req->cmd_flags & REQ_MIXED_MERGE) {
2670 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2671 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2672 }
2673
2e46e8b2
TH
2674 /*
2675 * If total number of sectors is less than the first segment
2676 * size, something has gone terribly wrong.
2677 */
2678 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2679 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2680 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2681 }
2682
2683 /* recalculate the number of segments */
1da177e4 2684 blk_recalc_rq_segments(req);
2e46e8b2 2685
2e60e022 2686 return true;
1da177e4 2687}
2e60e022 2688EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2689
2e60e022
TH
2690static bool blk_update_bidi_request(struct request *rq, int error,
2691 unsigned int nr_bytes,
2692 unsigned int bidi_bytes)
5efccd17 2693{
2e60e022
TH
2694 if (blk_update_request(rq, error, nr_bytes))
2695 return true;
5efccd17 2696
2e60e022
TH
2697 /* Bidi request must be completed as a whole */
2698 if (unlikely(blk_bidi_rq(rq)) &&
2699 blk_update_request(rq->next_rq, error, bidi_bytes))
2700 return true;
5efccd17 2701
e2e1a148
JA
2702 if (blk_queue_add_random(rq->q))
2703 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2704
2705 return false;
1da177e4
LT
2706}
2707
28018c24
JB
2708/**
2709 * blk_unprep_request - unprepare a request
2710 * @req: the request
2711 *
2712 * This function makes a request ready for complete resubmission (or
2713 * completion). It happens only after all error handling is complete,
2714 * so represents the appropriate moment to deallocate any resources
2715 * that were allocated to the request in the prep_rq_fn. The queue
2716 * lock is held when calling this.
2717 */
2718void blk_unprep_request(struct request *req)
2719{
2720 struct request_queue *q = req->q;
2721
2722 req->cmd_flags &= ~REQ_DONTPREP;
2723 if (q->unprep_rq_fn)
2724 q->unprep_rq_fn(q, req);
2725}
2726EXPORT_SYMBOL_GPL(blk_unprep_request);
2727
1da177e4
LT
2728/*
2729 * queue lock must be held
2730 */
12120077 2731void blk_finish_request(struct request *req, int error)
1da177e4 2732{
125c99bc 2733 if (req->cmd_flags & REQ_QUEUED)
b8286239
KU
2734 blk_queue_end_tag(req->q, req);
2735
ba396a6c 2736 BUG_ON(blk_queued_rq(req));
1da177e4 2737
33659ebb 2738 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2739 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2740
e78042e5
MA
2741 blk_delete_timer(req);
2742
28018c24
JB
2743 if (req->cmd_flags & REQ_DONTPREP)
2744 blk_unprep_request(req);
2745
bc58ba94 2746 blk_account_io_done(req);
b8286239 2747
1da177e4 2748 if (req->end_io)
8ffdc655 2749 req->end_io(req, error);
b8286239
KU
2750 else {
2751 if (blk_bidi_rq(req))
2752 __blk_put_request(req->next_rq->q, req->next_rq);
2753
1da177e4 2754 __blk_put_request(req->q, req);
b8286239 2755 }
1da177e4 2756}
12120077 2757EXPORT_SYMBOL(blk_finish_request);
1da177e4 2758
3b11313a 2759/**
2e60e022
TH
2760 * blk_end_bidi_request - Complete a bidi request
2761 * @rq: the request to complete
2762 * @error: %0 for success, < %0 for error
2763 * @nr_bytes: number of bytes to complete @rq
2764 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2765 *
2766 * Description:
e3a04fe3 2767 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2768 * Drivers that supports bidi can safely call this member for any
2769 * type of request, bidi or uni. In the later case @bidi_bytes is
2770 * just ignored.
336cdb40
KU
2771 *
2772 * Return:
2e60e022
TH
2773 * %false - we are done with this request
2774 * %true - still buffers pending for this request
a0cd1285 2775 **/
b1f74493 2776static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2777 unsigned int nr_bytes, unsigned int bidi_bytes)
2778{
336cdb40 2779 struct request_queue *q = rq->q;
2e60e022 2780 unsigned long flags;
32fab448 2781
2e60e022
TH
2782 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2783 return true;
32fab448 2784
336cdb40 2785 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2786 blk_finish_request(rq, error);
336cdb40
KU
2787 spin_unlock_irqrestore(q->queue_lock, flags);
2788
2e60e022 2789 return false;
32fab448
KU
2790}
2791
336cdb40 2792/**
2e60e022
TH
2793 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2794 * @rq: the request to complete
710027a4 2795 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2796 * @nr_bytes: number of bytes to complete @rq
2797 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2798 *
2799 * Description:
2e60e022
TH
2800 * Identical to blk_end_bidi_request() except that queue lock is
2801 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2802 *
2803 * Return:
2e60e022
TH
2804 * %false - we are done with this request
2805 * %true - still buffers pending for this request
336cdb40 2806 **/
4853abaa 2807bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2808 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2809{
2e60e022
TH
2810 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2811 return true;
336cdb40 2812
2e60e022 2813 blk_finish_request(rq, error);
336cdb40 2814
2e60e022 2815 return false;
336cdb40 2816}
e19a3ab0
KU
2817
2818/**
2819 * blk_end_request - Helper function for drivers to complete the request.
2820 * @rq: the request being processed
710027a4 2821 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2822 * @nr_bytes: number of bytes to complete
2823 *
2824 * Description:
2825 * Ends I/O on a number of bytes attached to @rq.
2826 * If @rq has leftover, sets it up for the next range of segments.
2827 *
2828 * Return:
b1f74493
FT
2829 * %false - we are done with this request
2830 * %true - still buffers pending for this request
e19a3ab0 2831 **/
b1f74493 2832bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2833{
b1f74493 2834 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2835}
56ad1740 2836EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2837
2838/**
b1f74493
FT
2839 * blk_end_request_all - Helper function for drives to finish the request.
2840 * @rq: the request to finish
8ebf9756 2841 * @error: %0 for success, < %0 for error
336cdb40
KU
2842 *
2843 * Description:
b1f74493
FT
2844 * Completely finish @rq.
2845 */
2846void blk_end_request_all(struct request *rq, int error)
336cdb40 2847{
b1f74493
FT
2848 bool pending;
2849 unsigned int bidi_bytes = 0;
336cdb40 2850
b1f74493
FT
2851 if (unlikely(blk_bidi_rq(rq)))
2852 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2853
b1f74493
FT
2854 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2855 BUG_ON(pending);
2856}
56ad1740 2857EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2858
b1f74493
FT
2859/**
2860 * blk_end_request_cur - Helper function to finish the current request chunk.
2861 * @rq: the request to finish the current chunk for
8ebf9756 2862 * @error: %0 for success, < %0 for error
b1f74493
FT
2863 *
2864 * Description:
2865 * Complete the current consecutively mapped chunk from @rq.
2866 *
2867 * Return:
2868 * %false - we are done with this request
2869 * %true - still buffers pending for this request
2870 */
2871bool blk_end_request_cur(struct request *rq, int error)
2872{
2873 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2874}
56ad1740 2875EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2876
80a761fd
TH
2877/**
2878 * blk_end_request_err - Finish a request till the next failure boundary.
2879 * @rq: the request to finish till the next failure boundary for
2880 * @error: must be negative errno
2881 *
2882 * Description:
2883 * Complete @rq till the next failure boundary.
2884 *
2885 * Return:
2886 * %false - we are done with this request
2887 * %true - still buffers pending for this request
2888 */
2889bool blk_end_request_err(struct request *rq, int error)
2890{
2891 WARN_ON(error >= 0);
2892 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2893}
2894EXPORT_SYMBOL_GPL(blk_end_request_err);
2895
e3a04fe3 2896/**
b1f74493
FT
2897 * __blk_end_request - Helper function for drivers to complete the request.
2898 * @rq: the request being processed
2899 * @error: %0 for success, < %0 for error
2900 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2901 *
2902 * Description:
b1f74493 2903 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2904 *
2905 * Return:
b1f74493
FT
2906 * %false - we are done with this request
2907 * %true - still buffers pending for this request
e3a04fe3 2908 **/
b1f74493 2909bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2910{
b1f74493 2911 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2912}
56ad1740 2913EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2914
32fab448 2915/**
b1f74493
FT
2916 * __blk_end_request_all - Helper function for drives to finish the request.
2917 * @rq: the request to finish
8ebf9756 2918 * @error: %0 for success, < %0 for error
32fab448
KU
2919 *
2920 * Description:
b1f74493 2921 * Completely finish @rq. Must be called with queue lock held.
32fab448 2922 */
b1f74493 2923void __blk_end_request_all(struct request *rq, int error)
32fab448 2924{
b1f74493
FT
2925 bool pending;
2926 unsigned int bidi_bytes = 0;
2927
2928 if (unlikely(blk_bidi_rq(rq)))
2929 bidi_bytes = blk_rq_bytes(rq->next_rq);
2930
2931 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2932 BUG_ON(pending);
32fab448 2933}
56ad1740 2934EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2935
e19a3ab0 2936/**
b1f74493
FT
2937 * __blk_end_request_cur - Helper function to finish the current request chunk.
2938 * @rq: the request to finish the current chunk for
8ebf9756 2939 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2940 *
2941 * Description:
b1f74493
FT
2942 * Complete the current consecutively mapped chunk from @rq. Must
2943 * be called with queue lock held.
e19a3ab0
KU
2944 *
2945 * Return:
b1f74493
FT
2946 * %false - we are done with this request
2947 * %true - still buffers pending for this request
2948 */
2949bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2950{
b1f74493 2951 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2952}
56ad1740 2953EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2954
80a761fd
TH
2955/**
2956 * __blk_end_request_err - Finish a request till the next failure boundary.
2957 * @rq: the request to finish till the next failure boundary for
2958 * @error: must be negative errno
2959 *
2960 * Description:
2961 * Complete @rq till the next failure boundary. Must be called
2962 * with queue lock held.
2963 *
2964 * Return:
2965 * %false - we are done with this request
2966 * %true - still buffers pending for this request
2967 */
2968bool __blk_end_request_err(struct request *rq, int error)
2969{
2970 WARN_ON(error >= 0);
2971 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2972}
2973EXPORT_SYMBOL_GPL(__blk_end_request_err);
2974
86db1e29
JA
2975void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2976 struct bio *bio)
1da177e4 2977{
a82afdfc 2978 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2979 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2980
b4f42e28 2981 if (bio_has_data(bio))
fb2dce86 2982 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2983
4f024f37 2984 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2985 rq->bio = rq->biotail = bio;
1da177e4 2986
66846572
N
2987 if (bio->bi_bdev)
2988 rq->rq_disk = bio->bi_bdev->bd_disk;
2989}
1da177e4 2990
2d4dc890
IL
2991#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2992/**
2993 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2994 * @rq: the request to be flushed
2995 *
2996 * Description:
2997 * Flush all pages in @rq.
2998 */
2999void rq_flush_dcache_pages(struct request *rq)
3000{
3001 struct req_iterator iter;
7988613b 3002 struct bio_vec bvec;
2d4dc890
IL
3003
3004 rq_for_each_segment(bvec, rq, iter)
7988613b 3005 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
3006}
3007EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3008#endif
3009
ef9e3fac
KU
3010/**
3011 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3012 * @q : the queue of the device being checked
3013 *
3014 * Description:
3015 * Check if underlying low-level drivers of a device are busy.
3016 * If the drivers want to export their busy state, they must set own
3017 * exporting function using blk_queue_lld_busy() first.
3018 *
3019 * Basically, this function is used only by request stacking drivers
3020 * to stop dispatching requests to underlying devices when underlying
3021 * devices are busy. This behavior helps more I/O merging on the queue
3022 * of the request stacking driver and prevents I/O throughput regression
3023 * on burst I/O load.
3024 *
3025 * Return:
3026 * 0 - Not busy (The request stacking driver should dispatch request)
3027 * 1 - Busy (The request stacking driver should stop dispatching request)
3028 */
3029int blk_lld_busy(struct request_queue *q)
3030{
3031 if (q->lld_busy_fn)
3032 return q->lld_busy_fn(q);
3033
3034 return 0;
3035}
3036EXPORT_SYMBOL_GPL(blk_lld_busy);
3037
78d8e58a
MS
3038/**
3039 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3040 * @rq: the clone request to be cleaned up
3041 *
3042 * Description:
3043 * Free all bios in @rq for a cloned request.
3044 */
3045void blk_rq_unprep_clone(struct request *rq)
3046{
3047 struct bio *bio;
3048
3049 while ((bio = rq->bio) != NULL) {
3050 rq->bio = bio->bi_next;
3051
3052 bio_put(bio);
3053 }
3054}
3055EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3056
3057/*
3058 * Copy attributes of the original request to the clone request.
3059 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3060 */
3061static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3062{
3063 dst->cpu = src->cpu;
78d8e58a 3064 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
3065 dst->cmd_type = src->cmd_type;
3066 dst->__sector = blk_rq_pos(src);
3067 dst->__data_len = blk_rq_bytes(src);
3068 dst->nr_phys_segments = src->nr_phys_segments;
3069 dst->ioprio = src->ioprio;
3070 dst->extra_len = src->extra_len;
78d8e58a
MS
3071}
3072
3073/**
3074 * blk_rq_prep_clone - Helper function to setup clone request
3075 * @rq: the request to be setup
3076 * @rq_src: original request to be cloned
3077 * @bs: bio_set that bios for clone are allocated from
3078 * @gfp_mask: memory allocation mask for bio
3079 * @bio_ctr: setup function to be called for each clone bio.
3080 * Returns %0 for success, non %0 for failure.
3081 * @data: private data to be passed to @bio_ctr
3082 *
3083 * Description:
3084 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3085 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3086 * are not copied, and copying such parts is the caller's responsibility.
3087 * Also, pages which the original bios are pointing to are not copied
3088 * and the cloned bios just point same pages.
3089 * So cloned bios must be completed before original bios, which means
3090 * the caller must complete @rq before @rq_src.
3091 */
3092int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3093 struct bio_set *bs, gfp_t gfp_mask,
3094 int (*bio_ctr)(struct bio *, struct bio *, void *),
3095 void *data)
3096{
3097 struct bio *bio, *bio_src;
3098
3099 if (!bs)
3100 bs = fs_bio_set;
3101
3102 __rq_for_each_bio(bio_src, rq_src) {
3103 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3104 if (!bio)
3105 goto free_and_out;
3106
3107 if (bio_ctr && bio_ctr(bio, bio_src, data))
3108 goto free_and_out;
3109
3110 if (rq->bio) {
3111 rq->biotail->bi_next = bio;
3112 rq->biotail = bio;
3113 } else
3114 rq->bio = rq->biotail = bio;
3115 }
3116
3117 __blk_rq_prep_clone(rq, rq_src);
3118
3119 return 0;
3120
3121free_and_out:
3122 if (bio)
3123 bio_put(bio);
3124 blk_rq_unprep_clone(rq);
3125
3126 return -ENOMEM;
b0fd271d
KU
3127}
3128EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3129
59c3d45e 3130int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3131{
3132 return queue_work(kblockd_workqueue, work);
3133}
1da177e4
LT
3134EXPORT_SYMBOL(kblockd_schedule_work);
3135
59c3d45e
JA
3136int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3137 unsigned long delay)
e43473b7
VG
3138{
3139 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3140}
3141EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3142
8ab14595
JA
3143int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3144 unsigned long delay)
3145{
3146 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3147}
3148EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3149
75df7136
SJ
3150/**
3151 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3152 * @plug: The &struct blk_plug that needs to be initialized
3153 *
3154 * Description:
3155 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3156 * pending I/O should the task end up blocking between blk_start_plug() and
3157 * blk_finish_plug(). This is important from a performance perspective, but
3158 * also ensures that we don't deadlock. For instance, if the task is blocking
3159 * for a memory allocation, memory reclaim could end up wanting to free a
3160 * page belonging to that request that is currently residing in our private
3161 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3162 * this kind of deadlock.
3163 */
73c10101
JA
3164void blk_start_plug(struct blk_plug *plug)
3165{
3166 struct task_struct *tsk = current;
3167
dd6cf3e1
SL
3168 /*
3169 * If this is a nested plug, don't actually assign it.
3170 */
3171 if (tsk->plug)
3172 return;
3173
73c10101 3174 INIT_LIST_HEAD(&plug->list);
320ae51f 3175 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3176 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3177 /*
dd6cf3e1
SL
3178 * Store ordering should not be needed here, since a potential
3179 * preempt will imply a full memory barrier
73c10101 3180 */
dd6cf3e1 3181 tsk->plug = plug;
73c10101
JA
3182}
3183EXPORT_SYMBOL(blk_start_plug);
3184
3185static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3186{
3187 struct request *rqa = container_of(a, struct request, queuelist);
3188 struct request *rqb = container_of(b, struct request, queuelist);
3189
975927b9
JM
3190 return !(rqa->q < rqb->q ||
3191 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3192}
3193
49cac01e
JA
3194/*
3195 * If 'from_schedule' is true, then postpone the dispatch of requests
3196 * until a safe kblockd context. We due this to avoid accidental big
3197 * additional stack usage in driver dispatch, in places where the originally
3198 * plugger did not intend it.
3199 */
f6603783 3200static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3201 bool from_schedule)
99e22598 3202 __releases(q->queue_lock)
94b5eb28 3203{
49cac01e 3204 trace_block_unplug(q, depth, !from_schedule);
99e22598 3205
70460571 3206 if (from_schedule)
24ecfbe2 3207 blk_run_queue_async(q);
70460571 3208 else
24ecfbe2 3209 __blk_run_queue(q);
70460571 3210 spin_unlock(q->queue_lock);
94b5eb28
JA
3211}
3212
74018dc3 3213static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3214{
3215 LIST_HEAD(callbacks);
3216
2a7d5559
SL
3217 while (!list_empty(&plug->cb_list)) {
3218 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3219
2a7d5559
SL
3220 while (!list_empty(&callbacks)) {
3221 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3222 struct blk_plug_cb,
3223 list);
2a7d5559 3224 list_del(&cb->list);
74018dc3 3225 cb->callback(cb, from_schedule);
2a7d5559 3226 }
048c9374
N
3227 }
3228}
3229
9cbb1750
N
3230struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3231 int size)
3232{
3233 struct blk_plug *plug = current->plug;
3234 struct blk_plug_cb *cb;
3235
3236 if (!plug)
3237 return NULL;
3238
3239 list_for_each_entry(cb, &plug->cb_list, list)
3240 if (cb->callback == unplug && cb->data == data)
3241 return cb;
3242
3243 /* Not currently on the callback list */
3244 BUG_ON(size < sizeof(*cb));
3245 cb = kzalloc(size, GFP_ATOMIC);
3246 if (cb) {
3247 cb->data = data;
3248 cb->callback = unplug;
3249 list_add(&cb->list, &plug->cb_list);
3250 }
3251 return cb;
3252}
3253EXPORT_SYMBOL(blk_check_plugged);
3254
49cac01e 3255void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3256{
3257 struct request_queue *q;
3258 unsigned long flags;
3259 struct request *rq;
109b8129 3260 LIST_HEAD(list);
94b5eb28 3261 unsigned int depth;
73c10101 3262
74018dc3 3263 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3264
3265 if (!list_empty(&plug->mq_list))
3266 blk_mq_flush_plug_list(plug, from_schedule);
3267
73c10101
JA
3268 if (list_empty(&plug->list))
3269 return;
3270
109b8129
N
3271 list_splice_init(&plug->list, &list);
3272
422765c2 3273 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3274
3275 q = NULL;
94b5eb28 3276 depth = 0;
18811272
JA
3277
3278 /*
3279 * Save and disable interrupts here, to avoid doing it for every
3280 * queue lock we have to take.
3281 */
73c10101 3282 local_irq_save(flags);
109b8129
N
3283 while (!list_empty(&list)) {
3284 rq = list_entry_rq(list.next);
73c10101 3285 list_del_init(&rq->queuelist);
73c10101
JA
3286 BUG_ON(!rq->q);
3287 if (rq->q != q) {
99e22598
JA
3288 /*
3289 * This drops the queue lock
3290 */
3291 if (q)
49cac01e 3292 queue_unplugged(q, depth, from_schedule);
73c10101 3293 q = rq->q;
94b5eb28 3294 depth = 0;
73c10101
JA
3295 spin_lock(q->queue_lock);
3296 }
8ba61435
TH
3297
3298 /*
3299 * Short-circuit if @q is dead
3300 */
3f3299d5 3301 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3302 __blk_end_request_all(rq, -ENODEV);
3303 continue;
3304 }
3305
73c10101
JA
3306 /*
3307 * rq is already accounted, so use raw insert
3308 */
401a18e9
JA
3309 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3310 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3311 else
3312 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3313
3314 depth++;
73c10101
JA
3315 }
3316
99e22598
JA
3317 /*
3318 * This drops the queue lock
3319 */
3320 if (q)
49cac01e 3321 queue_unplugged(q, depth, from_schedule);
73c10101 3322
73c10101
JA
3323 local_irq_restore(flags);
3324}
73c10101
JA
3325
3326void blk_finish_plug(struct blk_plug *plug)
3327{
dd6cf3e1
SL
3328 if (plug != current->plug)
3329 return;
f6603783 3330 blk_flush_plug_list(plug, false);
73c10101 3331
dd6cf3e1 3332 current->plug = NULL;
73c10101 3333}
88b996cd 3334EXPORT_SYMBOL(blk_finish_plug);
73c10101 3335
05229bee
JA
3336bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3337{
3338 struct blk_plug *plug;
3339 long state;
3340
3341 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3342 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3343 return false;
3344
3345 plug = current->plug;
3346 if (plug)
3347 blk_flush_plug_list(plug, false);
3348
3349 state = current->state;
3350 while (!need_resched()) {
3351 unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
3352 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
3353 int ret;
3354
3355 hctx->poll_invoked++;
3356
3357 ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3358 if (ret > 0) {
3359 hctx->poll_success++;
3360 set_current_state(TASK_RUNNING);
3361 return true;
3362 }
3363
3364 if (signal_pending_state(state, current))
3365 set_current_state(TASK_RUNNING);
3366
3367 if (current->state == TASK_RUNNING)
3368 return true;
3369 if (ret < 0)
3370 break;
3371 cpu_relax();
3372 }
3373
3374 return false;
3375}
3376
47fafbc7 3377#ifdef CONFIG_PM
6c954667
LM
3378/**
3379 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3380 * @q: the queue of the device
3381 * @dev: the device the queue belongs to
3382 *
3383 * Description:
3384 * Initialize runtime-PM-related fields for @q and start auto suspend for
3385 * @dev. Drivers that want to take advantage of request-based runtime PM
3386 * should call this function after @dev has been initialized, and its
3387 * request queue @q has been allocated, and runtime PM for it can not happen
3388 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3389 * cases, driver should call this function before any I/O has taken place.
3390 *
3391 * This function takes care of setting up using auto suspend for the device,
3392 * the autosuspend delay is set to -1 to make runtime suspend impossible
3393 * until an updated value is either set by user or by driver. Drivers do
3394 * not need to touch other autosuspend settings.
3395 *
3396 * The block layer runtime PM is request based, so only works for drivers
3397 * that use request as their IO unit instead of those directly use bio's.
3398 */
3399void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3400{
3401 q->dev = dev;
3402 q->rpm_status = RPM_ACTIVE;
3403 pm_runtime_set_autosuspend_delay(q->dev, -1);
3404 pm_runtime_use_autosuspend(q->dev);
3405}
3406EXPORT_SYMBOL(blk_pm_runtime_init);
3407
3408/**
3409 * blk_pre_runtime_suspend - Pre runtime suspend check
3410 * @q: the queue of the device
3411 *
3412 * Description:
3413 * This function will check if runtime suspend is allowed for the device
3414 * by examining if there are any requests pending in the queue. If there
3415 * are requests pending, the device can not be runtime suspended; otherwise,
3416 * the queue's status will be updated to SUSPENDING and the driver can
3417 * proceed to suspend the device.
3418 *
3419 * For the not allowed case, we mark last busy for the device so that
3420 * runtime PM core will try to autosuspend it some time later.
3421 *
3422 * This function should be called near the start of the device's
3423 * runtime_suspend callback.
3424 *
3425 * Return:
3426 * 0 - OK to runtime suspend the device
3427 * -EBUSY - Device should not be runtime suspended
3428 */
3429int blk_pre_runtime_suspend(struct request_queue *q)
3430{
3431 int ret = 0;
3432
4fd41a85
KX
3433 if (!q->dev)
3434 return ret;
3435
6c954667
LM
3436 spin_lock_irq(q->queue_lock);
3437 if (q->nr_pending) {
3438 ret = -EBUSY;
3439 pm_runtime_mark_last_busy(q->dev);
3440 } else {
3441 q->rpm_status = RPM_SUSPENDING;
3442 }
3443 spin_unlock_irq(q->queue_lock);
3444 return ret;
3445}
3446EXPORT_SYMBOL(blk_pre_runtime_suspend);
3447
3448/**
3449 * blk_post_runtime_suspend - Post runtime suspend processing
3450 * @q: the queue of the device
3451 * @err: return value of the device's runtime_suspend function
3452 *
3453 * Description:
3454 * Update the queue's runtime status according to the return value of the
3455 * device's runtime suspend function and mark last busy for the device so
3456 * that PM core will try to auto suspend the device at a later time.
3457 *
3458 * This function should be called near the end of the device's
3459 * runtime_suspend callback.
3460 */
3461void blk_post_runtime_suspend(struct request_queue *q, int err)
3462{
4fd41a85
KX
3463 if (!q->dev)
3464 return;
3465
6c954667
LM
3466 spin_lock_irq(q->queue_lock);
3467 if (!err) {
3468 q->rpm_status = RPM_SUSPENDED;
3469 } else {
3470 q->rpm_status = RPM_ACTIVE;
3471 pm_runtime_mark_last_busy(q->dev);
3472 }
3473 spin_unlock_irq(q->queue_lock);
3474}
3475EXPORT_SYMBOL(blk_post_runtime_suspend);
3476
3477/**
3478 * blk_pre_runtime_resume - Pre runtime resume processing
3479 * @q: the queue of the device
3480 *
3481 * Description:
3482 * Update the queue's runtime status to RESUMING in preparation for the
3483 * runtime resume of the device.
3484 *
3485 * This function should be called near the start of the device's
3486 * runtime_resume callback.
3487 */
3488void blk_pre_runtime_resume(struct request_queue *q)
3489{
4fd41a85
KX
3490 if (!q->dev)
3491 return;
3492
6c954667
LM
3493 spin_lock_irq(q->queue_lock);
3494 q->rpm_status = RPM_RESUMING;
3495 spin_unlock_irq(q->queue_lock);
3496}
3497EXPORT_SYMBOL(blk_pre_runtime_resume);
3498
3499/**
3500 * blk_post_runtime_resume - Post runtime resume processing
3501 * @q: the queue of the device
3502 * @err: return value of the device's runtime_resume function
3503 *
3504 * Description:
3505 * Update the queue's runtime status according to the return value of the
3506 * device's runtime_resume function. If it is successfully resumed, process
3507 * the requests that are queued into the device's queue when it is resuming
3508 * and then mark last busy and initiate autosuspend for it.
3509 *
3510 * This function should be called near the end of the device's
3511 * runtime_resume callback.
3512 */
3513void blk_post_runtime_resume(struct request_queue *q, int err)
3514{
4fd41a85
KX
3515 if (!q->dev)
3516 return;
3517
6c954667
LM
3518 spin_lock_irq(q->queue_lock);
3519 if (!err) {
3520 q->rpm_status = RPM_ACTIVE;
3521 __blk_run_queue(q);
3522 pm_runtime_mark_last_busy(q->dev);
c60855cd 3523 pm_request_autosuspend(q->dev);
6c954667
LM
3524 } else {
3525 q->rpm_status = RPM_SUSPENDED;
3526 }
3527 spin_unlock_irq(q->queue_lock);
3528}
3529EXPORT_SYMBOL(blk_post_runtime_resume);
3530#endif
3531
1da177e4
LT
3532int __init blk_dev_init(void)
3533{
9eb55b03 3534 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
0762b23d 3535 FIELD_SIZEOF(struct request, cmd_flags));
9eb55b03 3536
89b90be2
TH
3537 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3538 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3539 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3540 if (!kblockd_workqueue)
3541 panic("Failed to create kblockd\n");
3542
3543 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3544 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3545
c2789bd4 3546 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3547 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3548
d38ecf93 3549 return 0;
1da177e4 3550}