slab: replace free and inuse in struct slab with newly introduced active
[linux-2.6-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
072bb0aa
MG
160/*
161 * true if a page was allocated from pfmemalloc reserves for network-based
162 * swap
163 */
164static bool pfmemalloc_active __read_mostly;
165
5bfe53a7
LJ
166/*
167 * struct slab
168 *
169 * Manages the objs in a slab. Placed either at the beginning of mem allocated
170 * for a slab, or allocated from an general cache.
171 * Slabs are chained into three list: fully used, partial, fully free slabs.
172 */
173struct slab {
68126702
JK
174 struct {
175 struct list_head list;
176 void *s_mem; /* including colour offset */
106a74e1 177 unsigned int active; /* num of objs active in slab */
5bfe53a7
LJ
178 };
179};
180
1da177e4
LT
181/*
182 * struct array_cache
183 *
1da177e4
LT
184 * Purpose:
185 * - LIFO ordering, to hand out cache-warm objects from _alloc
186 * - reduce the number of linked list operations
187 * - reduce spinlock operations
188 *
189 * The limit is stored in the per-cpu structure to reduce the data cache
190 * footprint.
191 *
192 */
193struct array_cache {
194 unsigned int avail;
195 unsigned int limit;
196 unsigned int batchcount;
197 unsigned int touched;
e498be7d 198 spinlock_t lock;
bda5b655 199 void *entry[]; /*
a737b3e2
AM
200 * Must have this definition in here for the proper
201 * alignment of array_cache. Also simplifies accessing
202 * the entries.
072bb0aa
MG
203 *
204 * Entries should not be directly dereferenced as
205 * entries belonging to slabs marked pfmemalloc will
206 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 207 */
1da177e4
LT
208};
209
072bb0aa
MG
210#define SLAB_OBJ_PFMEMALLOC 1
211static inline bool is_obj_pfmemalloc(void *objp)
212{
213 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214}
215
216static inline void set_obj_pfmemalloc(void **objp)
217{
218 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 return;
220}
221
222static inline void clear_obj_pfmemalloc(void **objp)
223{
224 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225}
226
a737b3e2
AM
227/*
228 * bootstrap: The caches do not work without cpuarrays anymore, but the
229 * cpuarrays are allocated from the generic caches...
1da177e4
LT
230 */
231#define BOOT_CPUCACHE_ENTRIES 1
232struct arraycache_init {
233 struct array_cache cache;
b28a02de 234 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
235};
236
e498be7d
CL
237/*
238 * Need this for bootstrapping a per node allocator.
239 */
556a169d 240#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
ce8eb6c4 241static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 242#define CACHE_CACHE 0
556a169d 243#define SIZE_AC MAX_NUMNODES
ce8eb6c4 244#define SIZE_NODE (2 * MAX_NUMNODES)
e498be7d 245
ed11d9eb 246static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 247 struct kmem_cache_node *n, int tofree);
ed11d9eb
CL
248static void free_block(struct kmem_cache *cachep, void **objpp, int len,
249 int node);
83b519e8 250static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 251static void cache_reap(struct work_struct *unused);
ed11d9eb 252
e0a42726
IM
253static int slab_early_init = 1;
254
e3366016 255#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
ce8eb6c4 256#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 257
ce8eb6c4 258static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
259{
260 INIT_LIST_HEAD(&parent->slabs_full);
261 INIT_LIST_HEAD(&parent->slabs_partial);
262 INIT_LIST_HEAD(&parent->slabs_free);
263 parent->shared = NULL;
264 parent->alien = NULL;
2e1217cf 265 parent->colour_next = 0;
e498be7d
CL
266 spin_lock_init(&parent->list_lock);
267 parent->free_objects = 0;
268 parent->free_touched = 0;
269}
270
a737b3e2
AM
271#define MAKE_LIST(cachep, listp, slab, nodeid) \
272 do { \
273 INIT_LIST_HEAD(listp); \
6a67368c 274 list_splice(&(cachep->node[nodeid]->slab), listp); \
e498be7d
CL
275 } while (0)
276
a737b3e2
AM
277#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
278 do { \
e498be7d
CL
279 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
280 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
281 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
282 } while (0)
1da177e4 283
1da177e4
LT
284#define CFLGS_OFF_SLAB (0x80000000UL)
285#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
286
287#define BATCHREFILL_LIMIT 16
a737b3e2
AM
288/*
289 * Optimization question: fewer reaps means less probability for unnessary
290 * cpucache drain/refill cycles.
1da177e4 291 *
dc6f3f27 292 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
293 * which could lock up otherwise freeable slabs.
294 */
295#define REAPTIMEOUT_CPUC (2*HZ)
296#define REAPTIMEOUT_LIST3 (4*HZ)
297
298#if STATS
299#define STATS_INC_ACTIVE(x) ((x)->num_active++)
300#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
301#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
302#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 303#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
304#define STATS_SET_HIGH(x) \
305 do { \
306 if ((x)->num_active > (x)->high_mark) \
307 (x)->high_mark = (x)->num_active; \
308 } while (0)
1da177e4
LT
309#define STATS_INC_ERR(x) ((x)->errors++)
310#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 311#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 312#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
313#define STATS_SET_FREEABLE(x, i) \
314 do { \
315 if ((x)->max_freeable < i) \
316 (x)->max_freeable = i; \
317 } while (0)
1da177e4
LT
318#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
319#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
320#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
321#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
322#else
323#define STATS_INC_ACTIVE(x) do { } while (0)
324#define STATS_DEC_ACTIVE(x) do { } while (0)
325#define STATS_INC_ALLOCED(x) do { } while (0)
326#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 327#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
328#define STATS_SET_HIGH(x) do { } while (0)
329#define STATS_INC_ERR(x) do { } while (0)
330#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 331#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 332#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 333#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
334#define STATS_INC_ALLOCHIT(x) do { } while (0)
335#define STATS_INC_ALLOCMISS(x) do { } while (0)
336#define STATS_INC_FREEHIT(x) do { } while (0)
337#define STATS_INC_FREEMISS(x) do { } while (0)
338#endif
339
340#if DEBUG
1da177e4 341
a737b3e2
AM
342/*
343 * memory layout of objects:
1da177e4 344 * 0 : objp
3dafccf2 345 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
346 * the end of an object is aligned with the end of the real
347 * allocation. Catches writes behind the end of the allocation.
3dafccf2 348 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 349 * redzone word.
3dafccf2 350 * cachep->obj_offset: The real object.
3b0efdfa
CL
351 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
352 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 353 * [BYTES_PER_WORD long]
1da177e4 354 */
343e0d7a 355static int obj_offset(struct kmem_cache *cachep)
1da177e4 356{
3dafccf2 357 return cachep->obj_offset;
1da177e4
LT
358}
359
b46b8f19 360static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
361{
362 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
363 return (unsigned long long*) (objp + obj_offset(cachep) -
364 sizeof(unsigned long long));
1da177e4
LT
365}
366
b46b8f19 367static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
368{
369 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
370 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 371 return (unsigned long long *)(objp + cachep->size -
b46b8f19 372 sizeof(unsigned long long) -
87a927c7 373 REDZONE_ALIGN);
3b0efdfa 374 return (unsigned long long *) (objp + cachep->size -
b46b8f19 375 sizeof(unsigned long long));
1da177e4
LT
376}
377
343e0d7a 378static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
379{
380 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 381 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
382}
383
384#else
385
3dafccf2 386#define obj_offset(x) 0
b46b8f19
DW
387#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
388#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
389#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
390
391#endif
392
1da177e4 393/*
3df1cccd
DR
394 * Do not go above this order unless 0 objects fit into the slab or
395 * overridden on the command line.
1da177e4 396 */
543585cc
DR
397#define SLAB_MAX_ORDER_HI 1
398#define SLAB_MAX_ORDER_LO 0
399static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 400static bool slab_max_order_set __initdata;
1da177e4 401
6ed5eb22
PE
402static inline struct kmem_cache *virt_to_cache(const void *obj)
403{
b49af68f 404 struct page *page = virt_to_head_page(obj);
35026088 405 return page->slab_cache;
6ed5eb22
PE
406}
407
408static inline struct slab *virt_to_slab(const void *obj)
409{
b49af68f 410 struct page *page = virt_to_head_page(obj);
35026088
CL
411
412 VM_BUG_ON(!PageSlab(page));
413 return page->slab_page;
6ed5eb22
PE
414}
415
8fea4e96
PE
416static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
417 unsigned int idx)
418{
3b0efdfa 419 return slab->s_mem + cache->size * idx;
8fea4e96
PE
420}
421
6a2d7a95 422/*
3b0efdfa
CL
423 * We want to avoid an expensive divide : (offset / cache->size)
424 * Using the fact that size is a constant for a particular cache,
425 * we can replace (offset / cache->size) by
6a2d7a95
ED
426 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
427 */
428static inline unsigned int obj_to_index(const struct kmem_cache *cache,
429 const struct slab *slab, void *obj)
8fea4e96 430{
6a2d7a95
ED
431 u32 offset = (obj - slab->s_mem);
432 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
433}
434
1da177e4 435static struct arraycache_init initarray_generic =
b28a02de 436 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
437
438/* internal cache of cache description objs */
9b030cb8 439static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
440 .batchcount = 1,
441 .limit = BOOT_CPUCACHE_ENTRIES,
442 .shared = 1,
3b0efdfa 443 .size = sizeof(struct kmem_cache),
b28a02de 444 .name = "kmem_cache",
1da177e4
LT
445};
446
056c6241
RT
447#define BAD_ALIEN_MAGIC 0x01020304ul
448
f1aaee53
AV
449#ifdef CONFIG_LOCKDEP
450
451/*
452 * Slab sometimes uses the kmalloc slabs to store the slab headers
453 * for other slabs "off slab".
454 * The locking for this is tricky in that it nests within the locks
455 * of all other slabs in a few places; to deal with this special
456 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
457 *
458 * We set lock class for alien array caches which are up during init.
459 * The lock annotation will be lost if all cpus of a node goes down and
460 * then comes back up during hotplug
f1aaee53 461 */
056c6241
RT
462static struct lock_class_key on_slab_l3_key;
463static struct lock_class_key on_slab_alc_key;
464
83835b3d
PZ
465static struct lock_class_key debugobj_l3_key;
466static struct lock_class_key debugobj_alc_key;
467
468static void slab_set_lock_classes(struct kmem_cache *cachep,
469 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
470 int q)
471{
472 struct array_cache **alc;
ce8eb6c4 473 struct kmem_cache_node *n;
83835b3d
PZ
474 int r;
475
ce8eb6c4
CL
476 n = cachep->node[q];
477 if (!n)
83835b3d
PZ
478 return;
479
ce8eb6c4
CL
480 lockdep_set_class(&n->list_lock, l3_key);
481 alc = n->alien;
83835b3d
PZ
482 /*
483 * FIXME: This check for BAD_ALIEN_MAGIC
484 * should go away when common slab code is taught to
485 * work even without alien caches.
486 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
487 * for alloc_alien_cache,
488 */
489 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
490 return;
491 for_each_node(r) {
492 if (alc[r])
493 lockdep_set_class(&alc[r]->lock, alc_key);
494 }
495}
496
497static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
498{
499 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
500}
501
502static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
503{
504 int node;
505
506 for_each_online_node(node)
507 slab_set_debugobj_lock_classes_node(cachep, node);
508}
509
ce79ddc8 510static void init_node_lock_keys(int q)
f1aaee53 511{
e3366016 512 int i;
056c6241 513
97d06609 514 if (slab_state < UP)
ce79ddc8
PE
515 return;
516
0f8f8094 517 for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
ce8eb6c4 518 struct kmem_cache_node *n;
e3366016
CL
519 struct kmem_cache *cache = kmalloc_caches[i];
520
521 if (!cache)
522 continue;
ce79ddc8 523
ce8eb6c4
CL
524 n = cache->node[q];
525 if (!n || OFF_SLAB(cache))
00afa758 526 continue;
83835b3d 527
e3366016 528 slab_set_lock_classes(cache, &on_slab_l3_key,
83835b3d 529 &on_slab_alc_key, q);
f1aaee53
AV
530 }
531}
ce79ddc8 532
6ccfb5bc
GC
533static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
534{
6a67368c 535 if (!cachep->node[q])
6ccfb5bc
GC
536 return;
537
538 slab_set_lock_classes(cachep, &on_slab_l3_key,
539 &on_slab_alc_key, q);
540}
541
542static inline void on_slab_lock_classes(struct kmem_cache *cachep)
543{
544 int node;
545
546 VM_BUG_ON(OFF_SLAB(cachep));
547 for_each_node(node)
548 on_slab_lock_classes_node(cachep, node);
549}
550
ce79ddc8
PE
551static inline void init_lock_keys(void)
552{
553 int node;
554
555 for_each_node(node)
556 init_node_lock_keys(node);
557}
f1aaee53 558#else
ce79ddc8
PE
559static void init_node_lock_keys(int q)
560{
561}
562
056c6241 563static inline void init_lock_keys(void)
f1aaee53
AV
564{
565}
83835b3d 566
6ccfb5bc
GC
567static inline void on_slab_lock_classes(struct kmem_cache *cachep)
568{
569}
570
571static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
572{
573}
574
83835b3d
PZ
575static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
576{
577}
578
579static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
580{
581}
f1aaee53
AV
582#endif
583
1871e52c 584static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 585
343e0d7a 586static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
587{
588 return cachep->array[smp_processor_id()];
589}
590
fbaccacf 591static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 592{
16025177 593 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(unsigned int), align);
fbaccacf 594}
1da177e4 595
a737b3e2
AM
596/*
597 * Calculate the number of objects and left-over bytes for a given buffer size.
598 */
fbaccacf
SR
599static void cache_estimate(unsigned long gfporder, size_t buffer_size,
600 size_t align, int flags, size_t *left_over,
601 unsigned int *num)
602{
603 int nr_objs;
604 size_t mgmt_size;
605 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 606
fbaccacf
SR
607 /*
608 * The slab management structure can be either off the slab or
609 * on it. For the latter case, the memory allocated for a
610 * slab is used for:
611 *
612 * - The struct slab
16025177 613 * - One unsigned int for each object
fbaccacf
SR
614 * - Padding to respect alignment of @align
615 * - @buffer_size bytes for each object
616 *
617 * If the slab management structure is off the slab, then the
618 * alignment will already be calculated into the size. Because
619 * the slabs are all pages aligned, the objects will be at the
620 * correct alignment when allocated.
621 */
622 if (flags & CFLGS_OFF_SLAB) {
623 mgmt_size = 0;
624 nr_objs = slab_size / buffer_size;
625
fbaccacf
SR
626 } else {
627 /*
628 * Ignore padding for the initial guess. The padding
629 * is at most @align-1 bytes, and @buffer_size is at
630 * least @align. In the worst case, this result will
631 * be one greater than the number of objects that fit
632 * into the memory allocation when taking the padding
633 * into account.
634 */
635 nr_objs = (slab_size - sizeof(struct slab)) /
16025177 636 (buffer_size + sizeof(unsigned int));
fbaccacf
SR
637
638 /*
639 * This calculated number will be either the right
640 * amount, or one greater than what we want.
641 */
642 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
643 > slab_size)
644 nr_objs--;
645
fbaccacf
SR
646 mgmt_size = slab_mgmt_size(nr_objs, align);
647 }
648 *num = nr_objs;
649 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
650}
651
f28510d3 652#if DEBUG
d40cee24 653#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 654
a737b3e2
AM
655static void __slab_error(const char *function, struct kmem_cache *cachep,
656 char *msg)
1da177e4
LT
657{
658 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 659 function, cachep->name, msg);
1da177e4 660 dump_stack();
373d4d09 661 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 662}
f28510d3 663#endif
1da177e4 664
3395ee05
PM
665/*
666 * By default on NUMA we use alien caches to stage the freeing of
667 * objects allocated from other nodes. This causes massive memory
668 * inefficiencies when using fake NUMA setup to split memory into a
669 * large number of small nodes, so it can be disabled on the command
670 * line
671 */
672
673static int use_alien_caches __read_mostly = 1;
674static int __init noaliencache_setup(char *s)
675{
676 use_alien_caches = 0;
677 return 1;
678}
679__setup("noaliencache", noaliencache_setup);
680
3df1cccd
DR
681static int __init slab_max_order_setup(char *str)
682{
683 get_option(&str, &slab_max_order);
684 slab_max_order = slab_max_order < 0 ? 0 :
685 min(slab_max_order, MAX_ORDER - 1);
686 slab_max_order_set = true;
687
688 return 1;
689}
690__setup("slab_max_order=", slab_max_order_setup);
691
8fce4d8e
CL
692#ifdef CONFIG_NUMA
693/*
694 * Special reaping functions for NUMA systems called from cache_reap().
695 * These take care of doing round robin flushing of alien caches (containing
696 * objects freed on different nodes from which they were allocated) and the
697 * flushing of remote pcps by calling drain_node_pages.
698 */
1871e52c 699static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
700
701static void init_reap_node(int cpu)
702{
703 int node;
704
7d6e6d09 705 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 706 if (node == MAX_NUMNODES)
442295c9 707 node = first_node(node_online_map);
8fce4d8e 708
1871e52c 709 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
710}
711
712static void next_reap_node(void)
713{
909ea964 714 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 715
8fce4d8e
CL
716 node = next_node(node, node_online_map);
717 if (unlikely(node >= MAX_NUMNODES))
718 node = first_node(node_online_map);
909ea964 719 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
720}
721
722#else
723#define init_reap_node(cpu) do { } while (0)
724#define next_reap_node(void) do { } while (0)
725#endif
726
1da177e4
LT
727/*
728 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
729 * via the workqueue/eventd.
730 * Add the CPU number into the expiration time to minimize the possibility of
731 * the CPUs getting into lockstep and contending for the global cache chain
732 * lock.
733 */
0db0628d 734static void start_cpu_timer(int cpu)
1da177e4 735{
1871e52c 736 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
737
738 /*
739 * When this gets called from do_initcalls via cpucache_init(),
740 * init_workqueues() has already run, so keventd will be setup
741 * at that time.
742 */
52bad64d 743 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 744 init_reap_node(cpu);
203b42f7 745 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
746 schedule_delayed_work_on(cpu, reap_work,
747 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
748 }
749}
750
e498be7d 751static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 752 int batchcount, gfp_t gfp)
1da177e4 753{
b28a02de 754 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
755 struct array_cache *nc = NULL;
756
83b519e8 757 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
758 /*
759 * The array_cache structures contain pointers to free object.
25985edc 760 * However, when such objects are allocated or transferred to another
d5cff635
CM
761 * cache the pointers are not cleared and they could be counted as
762 * valid references during a kmemleak scan. Therefore, kmemleak must
763 * not scan such objects.
764 */
765 kmemleak_no_scan(nc);
1da177e4
LT
766 if (nc) {
767 nc->avail = 0;
768 nc->limit = entries;
769 nc->batchcount = batchcount;
770 nc->touched = 0;
e498be7d 771 spin_lock_init(&nc->lock);
1da177e4
LT
772 }
773 return nc;
774}
775
072bb0aa
MG
776static inline bool is_slab_pfmemalloc(struct slab *slabp)
777{
778 struct page *page = virt_to_page(slabp->s_mem);
779
780 return PageSlabPfmemalloc(page);
781}
782
783/* Clears pfmemalloc_active if no slabs have pfmalloc set */
784static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
785 struct array_cache *ac)
786{
ce8eb6c4 787 struct kmem_cache_node *n = cachep->node[numa_mem_id()];
072bb0aa
MG
788 struct slab *slabp;
789 unsigned long flags;
790
791 if (!pfmemalloc_active)
792 return;
793
ce8eb6c4
CL
794 spin_lock_irqsave(&n->list_lock, flags);
795 list_for_each_entry(slabp, &n->slabs_full, list)
072bb0aa
MG
796 if (is_slab_pfmemalloc(slabp))
797 goto out;
798
ce8eb6c4 799 list_for_each_entry(slabp, &n->slabs_partial, list)
072bb0aa
MG
800 if (is_slab_pfmemalloc(slabp))
801 goto out;
802
ce8eb6c4 803 list_for_each_entry(slabp, &n->slabs_free, list)
072bb0aa
MG
804 if (is_slab_pfmemalloc(slabp))
805 goto out;
806
807 pfmemalloc_active = false;
808out:
ce8eb6c4 809 spin_unlock_irqrestore(&n->list_lock, flags);
072bb0aa
MG
810}
811
381760ea 812static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
813 gfp_t flags, bool force_refill)
814{
815 int i;
816 void *objp = ac->entry[--ac->avail];
817
818 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
819 if (unlikely(is_obj_pfmemalloc(objp))) {
ce8eb6c4 820 struct kmem_cache_node *n;
072bb0aa
MG
821
822 if (gfp_pfmemalloc_allowed(flags)) {
823 clear_obj_pfmemalloc(&objp);
824 return objp;
825 }
826
827 /* The caller cannot use PFMEMALLOC objects, find another one */
d014dc2e 828 for (i = 0; i < ac->avail; i++) {
072bb0aa
MG
829 /* If a !PFMEMALLOC object is found, swap them */
830 if (!is_obj_pfmemalloc(ac->entry[i])) {
831 objp = ac->entry[i];
832 ac->entry[i] = ac->entry[ac->avail];
833 ac->entry[ac->avail] = objp;
834 return objp;
835 }
836 }
837
838 /*
839 * If there are empty slabs on the slabs_free list and we are
840 * being forced to refill the cache, mark this one !pfmemalloc.
841 */
ce8eb6c4
CL
842 n = cachep->node[numa_mem_id()];
843 if (!list_empty(&n->slabs_free) && force_refill) {
072bb0aa 844 struct slab *slabp = virt_to_slab(objp);
30c29bea 845 ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
072bb0aa
MG
846 clear_obj_pfmemalloc(&objp);
847 recheck_pfmemalloc_active(cachep, ac);
848 return objp;
849 }
850
851 /* No !PFMEMALLOC objects available */
852 ac->avail++;
853 objp = NULL;
854 }
855
856 return objp;
857}
858
381760ea
MG
859static inline void *ac_get_obj(struct kmem_cache *cachep,
860 struct array_cache *ac, gfp_t flags, bool force_refill)
861{
862 void *objp;
863
864 if (unlikely(sk_memalloc_socks()))
865 objp = __ac_get_obj(cachep, ac, flags, force_refill);
866 else
867 objp = ac->entry[--ac->avail];
868
869 return objp;
870}
871
872static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
873 void *objp)
874{
875 if (unlikely(pfmemalloc_active)) {
876 /* Some pfmemalloc slabs exist, check if this is one */
73293c2f
JK
877 struct slab *slabp = virt_to_slab(objp);
878 struct page *page = virt_to_head_page(slabp->s_mem);
072bb0aa
MG
879 if (PageSlabPfmemalloc(page))
880 set_obj_pfmemalloc(&objp);
881 }
882
381760ea
MG
883 return objp;
884}
885
886static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
887 void *objp)
888{
889 if (unlikely(sk_memalloc_socks()))
890 objp = __ac_put_obj(cachep, ac, objp);
891
072bb0aa
MG
892 ac->entry[ac->avail++] = objp;
893}
894
3ded175a
CL
895/*
896 * Transfer objects in one arraycache to another.
897 * Locking must be handled by the caller.
898 *
899 * Return the number of entries transferred.
900 */
901static int transfer_objects(struct array_cache *to,
902 struct array_cache *from, unsigned int max)
903{
904 /* Figure out how many entries to transfer */
732eacc0 905 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
906
907 if (!nr)
908 return 0;
909
910 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
911 sizeof(void *) *nr);
912
913 from->avail -= nr;
914 to->avail += nr;
3ded175a
CL
915 return nr;
916}
917
765c4507
CL
918#ifndef CONFIG_NUMA
919
920#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 921#define reap_alien(cachep, n) do { } while (0)
765c4507 922
83b519e8 923static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
924{
925 return (struct array_cache **)BAD_ALIEN_MAGIC;
926}
927
928static inline void free_alien_cache(struct array_cache **ac_ptr)
929{
930}
931
932static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
933{
934 return 0;
935}
936
937static inline void *alternate_node_alloc(struct kmem_cache *cachep,
938 gfp_t flags)
939{
940 return NULL;
941}
942
8b98c169 943static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
944 gfp_t flags, int nodeid)
945{
946 return NULL;
947}
948
949#else /* CONFIG_NUMA */
950
8b98c169 951static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 952static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 953
83b519e8 954static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
955{
956 struct array_cache **ac_ptr;
8ef82866 957 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
958 int i;
959
960 if (limit > 1)
961 limit = 12;
f3186a9c 962 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
963 if (ac_ptr) {
964 for_each_node(i) {
f3186a9c 965 if (i == node || !node_online(i))
e498be7d 966 continue;
83b519e8 967 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 968 if (!ac_ptr[i]) {
cc550def 969 for (i--; i >= 0; i--)
e498be7d
CL
970 kfree(ac_ptr[i]);
971 kfree(ac_ptr);
972 return NULL;
973 }
974 }
975 }
976 return ac_ptr;
977}
978
5295a74c 979static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
980{
981 int i;
982
983 if (!ac_ptr)
984 return;
e498be7d 985 for_each_node(i)
b28a02de 986 kfree(ac_ptr[i]);
e498be7d
CL
987 kfree(ac_ptr);
988}
989
343e0d7a 990static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 991 struct array_cache *ac, int node)
e498be7d 992{
ce8eb6c4 993 struct kmem_cache_node *n = cachep->node[node];
e498be7d
CL
994
995 if (ac->avail) {
ce8eb6c4 996 spin_lock(&n->list_lock);
e00946fe
CL
997 /*
998 * Stuff objects into the remote nodes shared array first.
999 * That way we could avoid the overhead of putting the objects
1000 * into the free lists and getting them back later.
1001 */
ce8eb6c4
CL
1002 if (n->shared)
1003 transfer_objects(n->shared, ac, ac->limit);
e00946fe 1004
ff69416e 1005 free_block(cachep, ac->entry, ac->avail, node);
e498be7d 1006 ac->avail = 0;
ce8eb6c4 1007 spin_unlock(&n->list_lock);
e498be7d
CL
1008 }
1009}
1010
8fce4d8e
CL
1011/*
1012 * Called from cache_reap() to regularly drain alien caches round robin.
1013 */
ce8eb6c4 1014static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 1015{
909ea964 1016 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 1017
ce8eb6c4
CL
1018 if (n->alien) {
1019 struct array_cache *ac = n->alien[node];
e00946fe
CL
1020
1021 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1022 __drain_alien_cache(cachep, ac, node);
1023 spin_unlock_irq(&ac->lock);
1024 }
1025 }
1026}
1027
a737b3e2
AM
1028static void drain_alien_cache(struct kmem_cache *cachep,
1029 struct array_cache **alien)
e498be7d 1030{
b28a02de 1031 int i = 0;
e498be7d
CL
1032 struct array_cache *ac;
1033 unsigned long flags;
1034
1035 for_each_online_node(i) {
4484ebf1 1036 ac = alien[i];
e498be7d
CL
1037 if (ac) {
1038 spin_lock_irqsave(&ac->lock, flags);
1039 __drain_alien_cache(cachep, ac, i);
1040 spin_unlock_irqrestore(&ac->lock, flags);
1041 }
1042 }
1043}
729bd0b7 1044
873623df 1045static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7 1046{
1ea991b0 1047 int nodeid = page_to_nid(virt_to_page(objp));
ce8eb6c4 1048 struct kmem_cache_node *n;
729bd0b7 1049 struct array_cache *alien = NULL;
1ca4cb24
PE
1050 int node;
1051
7d6e6d09 1052 node = numa_mem_id();
729bd0b7
PE
1053
1054 /*
1055 * Make sure we are not freeing a object from another node to the array
1056 * cache on this cpu.
1057 */
1ea991b0 1058 if (likely(nodeid == node))
729bd0b7
PE
1059 return 0;
1060
ce8eb6c4 1061 n = cachep->node[node];
729bd0b7 1062 STATS_INC_NODEFREES(cachep);
ce8eb6c4
CL
1063 if (n->alien && n->alien[nodeid]) {
1064 alien = n->alien[nodeid];
873623df 1065 spin_lock(&alien->lock);
729bd0b7
PE
1066 if (unlikely(alien->avail == alien->limit)) {
1067 STATS_INC_ACOVERFLOW(cachep);
1068 __drain_alien_cache(cachep, alien, nodeid);
1069 }
072bb0aa 1070 ac_put_obj(cachep, alien, objp);
729bd0b7
PE
1071 spin_unlock(&alien->lock);
1072 } else {
6a67368c 1073 spin_lock(&(cachep->node[nodeid])->list_lock);
729bd0b7 1074 free_block(cachep, &objp, 1, nodeid);
6a67368c 1075 spin_unlock(&(cachep->node[nodeid])->list_lock);
729bd0b7
PE
1076 }
1077 return 1;
1078}
e498be7d
CL
1079#endif
1080
8f9f8d9e 1081/*
6a67368c 1082 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 1083 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 1084 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 1085 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
1086 * already in use.
1087 *
18004c5d 1088 * Must hold slab_mutex.
8f9f8d9e 1089 */
6a67368c 1090static int init_cache_node_node(int node)
8f9f8d9e
DR
1091{
1092 struct kmem_cache *cachep;
ce8eb6c4 1093 struct kmem_cache_node *n;
6744f087 1094 const int memsize = sizeof(struct kmem_cache_node);
8f9f8d9e 1095
18004c5d 1096 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1097 /*
1098 * Set up the size64 kmemlist for cpu before we can
1099 * begin anything. Make sure some other cpu on this
1100 * node has not already allocated this
1101 */
6a67368c 1102 if (!cachep->node[node]) {
ce8eb6c4
CL
1103 n = kmalloc_node(memsize, GFP_KERNEL, node);
1104 if (!n)
8f9f8d9e 1105 return -ENOMEM;
ce8eb6c4
CL
1106 kmem_cache_node_init(n);
1107 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
8f9f8d9e
DR
1108 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1109
1110 /*
1111 * The l3s don't come and go as CPUs come and
18004c5d 1112 * go. slab_mutex is sufficient
8f9f8d9e
DR
1113 * protection here.
1114 */
ce8eb6c4 1115 cachep->node[node] = n;
8f9f8d9e
DR
1116 }
1117
6a67368c
CL
1118 spin_lock_irq(&cachep->node[node]->list_lock);
1119 cachep->node[node]->free_limit =
8f9f8d9e
DR
1120 (1 + nr_cpus_node(node)) *
1121 cachep->batchcount + cachep->num;
6a67368c 1122 spin_unlock_irq(&cachep->node[node]->list_lock);
8f9f8d9e
DR
1123 }
1124 return 0;
1125}
1126
0fa8103b
WL
1127static inline int slabs_tofree(struct kmem_cache *cachep,
1128 struct kmem_cache_node *n)
1129{
1130 return (n->free_objects + cachep->num - 1) / cachep->num;
1131}
1132
0db0628d 1133static void cpuup_canceled(long cpu)
fbf1e473
AM
1134{
1135 struct kmem_cache *cachep;
ce8eb6c4 1136 struct kmem_cache_node *n = NULL;
7d6e6d09 1137 int node = cpu_to_mem(cpu);
a70f7302 1138 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1139
18004c5d 1140 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1141 struct array_cache *nc;
1142 struct array_cache *shared;
1143 struct array_cache **alien;
fbf1e473 1144
fbf1e473
AM
1145 /* cpu is dead; no one can alloc from it. */
1146 nc = cachep->array[cpu];
1147 cachep->array[cpu] = NULL;
ce8eb6c4 1148 n = cachep->node[node];
fbf1e473 1149
ce8eb6c4 1150 if (!n)
fbf1e473
AM
1151 goto free_array_cache;
1152
ce8eb6c4 1153 spin_lock_irq(&n->list_lock);
fbf1e473 1154
ce8eb6c4
CL
1155 /* Free limit for this kmem_cache_node */
1156 n->free_limit -= cachep->batchcount;
fbf1e473
AM
1157 if (nc)
1158 free_block(cachep, nc->entry, nc->avail, node);
1159
58463c1f 1160 if (!cpumask_empty(mask)) {
ce8eb6c4 1161 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1162 goto free_array_cache;
1163 }
1164
ce8eb6c4 1165 shared = n->shared;
fbf1e473
AM
1166 if (shared) {
1167 free_block(cachep, shared->entry,
1168 shared->avail, node);
ce8eb6c4 1169 n->shared = NULL;
fbf1e473
AM
1170 }
1171
ce8eb6c4
CL
1172 alien = n->alien;
1173 n->alien = NULL;
fbf1e473 1174
ce8eb6c4 1175 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1176
1177 kfree(shared);
1178 if (alien) {
1179 drain_alien_cache(cachep, alien);
1180 free_alien_cache(alien);
1181 }
1182free_array_cache:
1183 kfree(nc);
1184 }
1185 /*
1186 * In the previous loop, all the objects were freed to
1187 * the respective cache's slabs, now we can go ahead and
1188 * shrink each nodelist to its limit.
1189 */
18004c5d 1190 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4
CL
1191 n = cachep->node[node];
1192 if (!n)
fbf1e473 1193 continue;
0fa8103b 1194 drain_freelist(cachep, n, slabs_tofree(cachep, n));
fbf1e473
AM
1195 }
1196}
1197
0db0628d 1198static int cpuup_prepare(long cpu)
1da177e4 1199{
343e0d7a 1200 struct kmem_cache *cachep;
ce8eb6c4 1201 struct kmem_cache_node *n = NULL;
7d6e6d09 1202 int node = cpu_to_mem(cpu);
8f9f8d9e 1203 int err;
1da177e4 1204
fbf1e473
AM
1205 /*
1206 * We need to do this right in the beginning since
1207 * alloc_arraycache's are going to use this list.
1208 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1209 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1210 */
6a67368c 1211 err = init_cache_node_node(node);
8f9f8d9e
DR
1212 if (err < 0)
1213 goto bad;
fbf1e473
AM
1214
1215 /*
1216 * Now we can go ahead with allocating the shared arrays and
1217 * array caches
1218 */
18004c5d 1219 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1220 struct array_cache *nc;
1221 struct array_cache *shared = NULL;
1222 struct array_cache **alien = NULL;
1223
1224 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1225 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1226 if (!nc)
1227 goto bad;
1228 if (cachep->shared) {
1229 shared = alloc_arraycache(node,
1230 cachep->shared * cachep->batchcount,
83b519e8 1231 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1232 if (!shared) {
1233 kfree(nc);
1da177e4 1234 goto bad;
12d00f6a 1235 }
fbf1e473
AM
1236 }
1237 if (use_alien_caches) {
83b519e8 1238 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1239 if (!alien) {
1240 kfree(shared);
1241 kfree(nc);
fbf1e473 1242 goto bad;
12d00f6a 1243 }
fbf1e473
AM
1244 }
1245 cachep->array[cpu] = nc;
ce8eb6c4
CL
1246 n = cachep->node[node];
1247 BUG_ON(!n);
fbf1e473 1248
ce8eb6c4
CL
1249 spin_lock_irq(&n->list_lock);
1250 if (!n->shared) {
fbf1e473
AM
1251 /*
1252 * We are serialised from CPU_DEAD or
1253 * CPU_UP_CANCELLED by the cpucontrol lock
1254 */
ce8eb6c4 1255 n->shared = shared;
fbf1e473
AM
1256 shared = NULL;
1257 }
4484ebf1 1258#ifdef CONFIG_NUMA
ce8eb6c4
CL
1259 if (!n->alien) {
1260 n->alien = alien;
fbf1e473 1261 alien = NULL;
1da177e4 1262 }
fbf1e473 1263#endif
ce8eb6c4 1264 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1265 kfree(shared);
1266 free_alien_cache(alien);
83835b3d
PZ
1267 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1268 slab_set_debugobj_lock_classes_node(cachep, node);
6ccfb5bc
GC
1269 else if (!OFF_SLAB(cachep) &&
1270 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1271 on_slab_lock_classes_node(cachep, node);
fbf1e473 1272 }
ce79ddc8
PE
1273 init_node_lock_keys(node);
1274
fbf1e473
AM
1275 return 0;
1276bad:
12d00f6a 1277 cpuup_canceled(cpu);
fbf1e473
AM
1278 return -ENOMEM;
1279}
1280
0db0628d 1281static int cpuup_callback(struct notifier_block *nfb,
fbf1e473
AM
1282 unsigned long action, void *hcpu)
1283{
1284 long cpu = (long)hcpu;
1285 int err = 0;
1286
1287 switch (action) {
fbf1e473
AM
1288 case CPU_UP_PREPARE:
1289 case CPU_UP_PREPARE_FROZEN:
18004c5d 1290 mutex_lock(&slab_mutex);
fbf1e473 1291 err = cpuup_prepare(cpu);
18004c5d 1292 mutex_unlock(&slab_mutex);
1da177e4
LT
1293 break;
1294 case CPU_ONLINE:
8bb78442 1295 case CPU_ONLINE_FROZEN:
1da177e4
LT
1296 start_cpu_timer(cpu);
1297 break;
1298#ifdef CONFIG_HOTPLUG_CPU
5830c590 1299 case CPU_DOWN_PREPARE:
8bb78442 1300 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1301 /*
18004c5d 1302 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1303 * held so that if cache_reap() is invoked it cannot do
1304 * anything expensive but will only modify reap_work
1305 * and reschedule the timer.
1306 */
afe2c511 1307 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1308 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1309 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1310 break;
1311 case CPU_DOWN_FAILED:
8bb78442 1312 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1313 start_cpu_timer(cpu);
1314 break;
1da177e4 1315 case CPU_DEAD:
8bb78442 1316 case CPU_DEAD_FROZEN:
4484ebf1
RT
1317 /*
1318 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1319 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1320 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1321 * memory from the node of the cpu going down. The node
4484ebf1
RT
1322 * structure is usually allocated from kmem_cache_create() and
1323 * gets destroyed at kmem_cache_destroy().
1324 */
183ff22b 1325 /* fall through */
8f5be20b 1326#endif
1da177e4 1327 case CPU_UP_CANCELED:
8bb78442 1328 case CPU_UP_CANCELED_FROZEN:
18004c5d 1329 mutex_lock(&slab_mutex);
fbf1e473 1330 cpuup_canceled(cpu);
18004c5d 1331 mutex_unlock(&slab_mutex);
1da177e4 1332 break;
1da177e4 1333 }
eac40680 1334 return notifier_from_errno(err);
1da177e4
LT
1335}
1336
0db0628d 1337static struct notifier_block cpucache_notifier = {
74b85f37
CS
1338 &cpuup_callback, NULL, 0
1339};
1da177e4 1340
8f9f8d9e
DR
1341#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1342/*
1343 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1344 * Returns -EBUSY if all objects cannot be drained so that the node is not
1345 * removed.
1346 *
18004c5d 1347 * Must hold slab_mutex.
8f9f8d9e 1348 */
6a67368c 1349static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1350{
1351 struct kmem_cache *cachep;
1352 int ret = 0;
1353
18004c5d 1354 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1355 struct kmem_cache_node *n;
8f9f8d9e 1356
ce8eb6c4
CL
1357 n = cachep->node[node];
1358 if (!n)
8f9f8d9e
DR
1359 continue;
1360
0fa8103b 1361 drain_freelist(cachep, n, slabs_tofree(cachep, n));
8f9f8d9e 1362
ce8eb6c4
CL
1363 if (!list_empty(&n->slabs_full) ||
1364 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1365 ret = -EBUSY;
1366 break;
1367 }
1368 }
1369 return ret;
1370}
1371
1372static int __meminit slab_memory_callback(struct notifier_block *self,
1373 unsigned long action, void *arg)
1374{
1375 struct memory_notify *mnb = arg;
1376 int ret = 0;
1377 int nid;
1378
1379 nid = mnb->status_change_nid;
1380 if (nid < 0)
1381 goto out;
1382
1383 switch (action) {
1384 case MEM_GOING_ONLINE:
18004c5d 1385 mutex_lock(&slab_mutex);
6a67368c 1386 ret = init_cache_node_node(nid);
18004c5d 1387 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1388 break;
1389 case MEM_GOING_OFFLINE:
18004c5d 1390 mutex_lock(&slab_mutex);
6a67368c 1391 ret = drain_cache_node_node(nid);
18004c5d 1392 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1393 break;
1394 case MEM_ONLINE:
1395 case MEM_OFFLINE:
1396 case MEM_CANCEL_ONLINE:
1397 case MEM_CANCEL_OFFLINE:
1398 break;
1399 }
1400out:
5fda1bd5 1401 return notifier_from_errno(ret);
8f9f8d9e
DR
1402}
1403#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1404
e498be7d 1405/*
ce8eb6c4 1406 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1407 */
6744f087 1408static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1409 int nodeid)
e498be7d 1410{
6744f087 1411 struct kmem_cache_node *ptr;
e498be7d 1412
6744f087 1413 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1414 BUG_ON(!ptr);
1415
6744f087 1416 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1417 /*
1418 * Do not assume that spinlocks can be initialized via memcpy:
1419 */
1420 spin_lock_init(&ptr->list_lock);
1421
e498be7d 1422 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1423 cachep->node[nodeid] = ptr;
e498be7d
CL
1424}
1425
556a169d 1426/*
ce8eb6c4
CL
1427 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1428 * size of kmem_cache_node.
556a169d 1429 */
ce8eb6c4 1430static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1431{
1432 int node;
1433
1434 for_each_online_node(node) {
ce8eb6c4 1435 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1436 cachep->node[node]->next_reap = jiffies +
556a169d
PE
1437 REAPTIMEOUT_LIST3 +
1438 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1439 }
1440}
1441
3c583465
CL
1442/*
1443 * The memory after the last cpu cache pointer is used for the
6a67368c 1444 * the node pointer.
3c583465 1445 */
6a67368c 1446static void setup_node_pointer(struct kmem_cache *cachep)
3c583465 1447{
6a67368c 1448 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
3c583465
CL
1449}
1450
a737b3e2
AM
1451/*
1452 * Initialisation. Called after the page allocator have been initialised and
1453 * before smp_init().
1da177e4
LT
1454 */
1455void __init kmem_cache_init(void)
1456{
e498be7d
CL
1457 int i;
1458
68126702
JK
1459 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1460 sizeof(struct rcu_head));
9b030cb8 1461 kmem_cache = &kmem_cache_boot;
6a67368c 1462 setup_node_pointer(kmem_cache);
9b030cb8 1463
b6e68bc1 1464 if (num_possible_nodes() == 1)
62918a03
SS
1465 use_alien_caches = 0;
1466
3c583465 1467 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1468 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1469
ce8eb6c4 1470 set_up_node(kmem_cache, CACHE_CACHE);
1da177e4
LT
1471
1472 /*
1473 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1474 * page orders on machines with more than 32MB of memory if
1475 * not overridden on the command line.
1da177e4 1476 */
3df1cccd 1477 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1478 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1479
1da177e4
LT
1480 /* Bootstrap is tricky, because several objects are allocated
1481 * from caches that do not exist yet:
9b030cb8
CL
1482 * 1) initialize the kmem_cache cache: it contains the struct
1483 * kmem_cache structures of all caches, except kmem_cache itself:
1484 * kmem_cache is statically allocated.
e498be7d 1485 * Initially an __init data area is used for the head array and the
ce8eb6c4 1486 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1487 * array at the end of the bootstrap.
1da177e4 1488 * 2) Create the first kmalloc cache.
343e0d7a 1489 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1490 * An __init data area is used for the head array.
1491 * 3) Create the remaining kmalloc caches, with minimally sized
1492 * head arrays.
9b030cb8 1493 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1494 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1495 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1496 * the other cache's with kmalloc allocated memory.
1497 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1498 */
1499
9b030cb8 1500 /* 1) create the kmem_cache */
1da177e4 1501
8da3430d 1502 /*
b56efcf0 1503 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1504 */
2f9baa9f
CL
1505 create_boot_cache(kmem_cache, "kmem_cache",
1506 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
6744f087 1507 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1508 SLAB_HWCACHE_ALIGN);
1509 list_add(&kmem_cache->list, &slab_caches);
1da177e4
LT
1510
1511 /* 2+3) create the kmalloc caches */
1da177e4 1512
a737b3e2
AM
1513 /*
1514 * Initialize the caches that provide memory for the array cache and the
ce8eb6c4 1515 * kmem_cache_node structures first. Without this, further allocations will
a737b3e2 1516 * bug.
e498be7d
CL
1517 */
1518
e3366016
CL
1519 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1520 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
45530c44 1521
ce8eb6c4
CL
1522 if (INDEX_AC != INDEX_NODE)
1523 kmalloc_caches[INDEX_NODE] =
1524 create_kmalloc_cache("kmalloc-node",
1525 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
e498be7d 1526
e0a42726
IM
1527 slab_early_init = 0;
1528
1da177e4
LT
1529 /* 4) Replace the bootstrap head arrays */
1530 {
2b2d5493 1531 struct array_cache *ptr;
e498be7d 1532
83b519e8 1533 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1534
9b030cb8 1535 memcpy(ptr, cpu_cache_get(kmem_cache),
b28a02de 1536 sizeof(struct arraycache_init));
2b2d5493
IM
1537 /*
1538 * Do not assume that spinlocks can be initialized via memcpy:
1539 */
1540 spin_lock_init(&ptr->lock);
1541
9b030cb8 1542 kmem_cache->array[smp_processor_id()] = ptr;
e498be7d 1543
83b519e8 1544 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1545
e3366016 1546 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
b28a02de 1547 != &initarray_generic.cache);
e3366016 1548 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
b28a02de 1549 sizeof(struct arraycache_init));
2b2d5493
IM
1550 /*
1551 * Do not assume that spinlocks can be initialized via memcpy:
1552 */
1553 spin_lock_init(&ptr->lock);
1554
e3366016 1555 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1da177e4 1556 }
ce8eb6c4 1557 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1558 {
1ca4cb24
PE
1559 int nid;
1560
9c09a95c 1561 for_each_online_node(nid) {
ce8eb6c4 1562 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1563
e3366016 1564 init_list(kmalloc_caches[INDEX_AC],
ce8eb6c4 1565 &init_kmem_cache_node[SIZE_AC + nid], nid);
e498be7d 1566
ce8eb6c4
CL
1567 if (INDEX_AC != INDEX_NODE) {
1568 init_list(kmalloc_caches[INDEX_NODE],
1569 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1570 }
1571 }
1572 }
1da177e4 1573
f97d5f63 1574 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1575}
1576
1577void __init kmem_cache_init_late(void)
1578{
1579 struct kmem_cache *cachep;
1580
97d06609 1581 slab_state = UP;
52cef189 1582
8429db5c 1583 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1584 mutex_lock(&slab_mutex);
1585 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1586 if (enable_cpucache(cachep, GFP_NOWAIT))
1587 BUG();
18004c5d 1588 mutex_unlock(&slab_mutex);
056c6241 1589
947ca185
MW
1590 /* Annotate slab for lockdep -- annotate the malloc caches */
1591 init_lock_keys();
1592
97d06609
CL
1593 /* Done! */
1594 slab_state = FULL;
1595
a737b3e2
AM
1596 /*
1597 * Register a cpu startup notifier callback that initializes
1598 * cpu_cache_get for all new cpus
1da177e4
LT
1599 */
1600 register_cpu_notifier(&cpucache_notifier);
1da177e4 1601
8f9f8d9e
DR
1602#ifdef CONFIG_NUMA
1603 /*
1604 * Register a memory hotplug callback that initializes and frees
6a67368c 1605 * node.
8f9f8d9e
DR
1606 */
1607 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1608#endif
1609
a737b3e2
AM
1610 /*
1611 * The reap timers are started later, with a module init call: That part
1612 * of the kernel is not yet operational.
1da177e4
LT
1613 */
1614}
1615
1616static int __init cpucache_init(void)
1617{
1618 int cpu;
1619
a737b3e2
AM
1620 /*
1621 * Register the timers that return unneeded pages to the page allocator
1da177e4 1622 */
e498be7d 1623 for_each_online_cpu(cpu)
a737b3e2 1624 start_cpu_timer(cpu);
a164f896
GC
1625
1626 /* Done! */
97d06609 1627 slab_state = FULL;
1da177e4
LT
1628 return 0;
1629}
1da177e4
LT
1630__initcall(cpucache_init);
1631
8bdec192
RA
1632static noinline void
1633slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1634{
ce8eb6c4 1635 struct kmem_cache_node *n;
8bdec192
RA
1636 struct slab *slabp;
1637 unsigned long flags;
1638 int node;
1639
1640 printk(KERN_WARNING
1641 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1642 nodeid, gfpflags);
1643 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1644 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1645
1646 for_each_online_node(node) {
1647 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1648 unsigned long active_slabs = 0, num_slabs = 0;
1649
ce8eb6c4
CL
1650 n = cachep->node[node];
1651 if (!n)
8bdec192
RA
1652 continue;
1653
ce8eb6c4
CL
1654 spin_lock_irqsave(&n->list_lock, flags);
1655 list_for_each_entry(slabp, &n->slabs_full, list) {
8bdec192
RA
1656 active_objs += cachep->num;
1657 active_slabs++;
1658 }
ce8eb6c4 1659 list_for_each_entry(slabp, &n->slabs_partial, list) {
106a74e1 1660 active_objs += slabp->active;
8bdec192
RA
1661 active_slabs++;
1662 }
ce8eb6c4 1663 list_for_each_entry(slabp, &n->slabs_free, list)
8bdec192
RA
1664 num_slabs++;
1665
ce8eb6c4
CL
1666 free_objects += n->free_objects;
1667 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1668
1669 num_slabs += active_slabs;
1670 num_objs = num_slabs * cachep->num;
1671 printk(KERN_WARNING
1672 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1673 node, active_slabs, num_slabs, active_objs, num_objs,
1674 free_objects);
1675 }
1676}
1677
1da177e4
LT
1678/*
1679 * Interface to system's page allocator. No need to hold the cache-lock.
1680 *
1681 * If we requested dmaable memory, we will get it. Even if we
1682 * did not request dmaable memory, we might get it, but that
1683 * would be relatively rare and ignorable.
1684 */
0c3aa83e
JK
1685static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1686 int nodeid)
1da177e4
LT
1687{
1688 struct page *page;
e1b6aa6f 1689 int nr_pages;
765c4507 1690
a618e89f 1691 flags |= cachep->allocflags;
e12ba74d
MG
1692 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1693 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1694
517d0869 1695 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192
RA
1696 if (!page) {
1697 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1698 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1699 return NULL;
8bdec192 1700 }
1da177e4 1701
b37f1dd0 1702 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1703 if (unlikely(page->pfmemalloc))
1704 pfmemalloc_active = true;
1705
e1b6aa6f 1706 nr_pages = (1 << cachep->gfporder);
1da177e4 1707 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1708 add_zone_page_state(page_zone(page),
1709 NR_SLAB_RECLAIMABLE, nr_pages);
1710 else
1711 add_zone_page_state(page_zone(page),
1712 NR_SLAB_UNRECLAIMABLE, nr_pages);
a57a4988
JK
1713 __SetPageSlab(page);
1714 if (page->pfmemalloc)
1715 SetPageSlabPfmemalloc(page);
1f458cbf 1716 memcg_bind_pages(cachep, cachep->gfporder);
072bb0aa 1717
b1eeab67
VN
1718 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1719 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1720
1721 if (cachep->ctor)
1722 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1723 else
1724 kmemcheck_mark_unallocated_pages(page, nr_pages);
1725 }
c175eea4 1726
0c3aa83e 1727 return page;
1da177e4
LT
1728}
1729
1730/*
1731 * Interface to system's page release.
1732 */
0c3aa83e 1733static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1734{
a57a4988 1735 const unsigned long nr_freed = (1 << cachep->gfporder);
1da177e4 1736
b1eeab67 1737 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1738
972d1a7b
CL
1739 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1740 sub_zone_page_state(page_zone(page),
1741 NR_SLAB_RECLAIMABLE, nr_freed);
1742 else
1743 sub_zone_page_state(page_zone(page),
1744 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f 1745
a57a4988 1746 BUG_ON(!PageSlab(page));
73293c2f 1747 __ClearPageSlabPfmemalloc(page);
a57a4988 1748 __ClearPageSlab(page);
1f458cbf
GC
1749
1750 memcg_release_pages(cachep, cachep->gfporder);
1da177e4
LT
1751 if (current->reclaim_state)
1752 current->reclaim_state->reclaimed_slab += nr_freed;
0c3aa83e 1753 __free_memcg_kmem_pages(page, cachep->gfporder);
1da177e4
LT
1754}
1755
1756static void kmem_rcu_free(struct rcu_head *head)
1757{
68126702
JK
1758 struct kmem_cache *cachep;
1759 struct page *page;
1da177e4 1760
68126702
JK
1761 page = container_of(head, struct page, rcu_head);
1762 cachep = page->slab_cache;
1763
1764 kmem_freepages(cachep, page);
1da177e4
LT
1765}
1766
1767#if DEBUG
1768
1769#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1770static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1771 unsigned long caller)
1da177e4 1772{
8c138bc0 1773 int size = cachep->object_size;
1da177e4 1774
3dafccf2 1775 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1776
b28a02de 1777 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1778 return;
1779
b28a02de
PE
1780 *addr++ = 0x12345678;
1781 *addr++ = caller;
1782 *addr++ = smp_processor_id();
1783 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1784 {
1785 unsigned long *sptr = &caller;
1786 unsigned long svalue;
1787
1788 while (!kstack_end(sptr)) {
1789 svalue = *sptr++;
1790 if (kernel_text_address(svalue)) {
b28a02de 1791 *addr++ = svalue;
1da177e4
LT
1792 size -= sizeof(unsigned long);
1793 if (size <= sizeof(unsigned long))
1794 break;
1795 }
1796 }
1797
1798 }
b28a02de 1799 *addr++ = 0x87654321;
1da177e4
LT
1800}
1801#endif
1802
343e0d7a 1803static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1804{
8c138bc0 1805 int size = cachep->object_size;
3dafccf2 1806 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1807
1808 memset(addr, val, size);
b28a02de 1809 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1810}
1811
1812static void dump_line(char *data, int offset, int limit)
1813{
1814 int i;
aa83aa40
DJ
1815 unsigned char error = 0;
1816 int bad_count = 0;
1817
fdde6abb 1818 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1819 for (i = 0; i < limit; i++) {
1820 if (data[offset + i] != POISON_FREE) {
1821 error = data[offset + i];
1822 bad_count++;
1823 }
aa83aa40 1824 }
fdde6abb
SAS
1825 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1826 &data[offset], limit, 1);
aa83aa40
DJ
1827
1828 if (bad_count == 1) {
1829 error ^= POISON_FREE;
1830 if (!(error & (error - 1))) {
1831 printk(KERN_ERR "Single bit error detected. Probably "
1832 "bad RAM.\n");
1833#ifdef CONFIG_X86
1834 printk(KERN_ERR "Run memtest86+ or a similar memory "
1835 "test tool.\n");
1836#else
1837 printk(KERN_ERR "Run a memory test tool.\n");
1838#endif
1839 }
1840 }
1da177e4
LT
1841}
1842#endif
1843
1844#if DEBUG
1845
343e0d7a 1846static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1847{
1848 int i, size;
1849 char *realobj;
1850
1851 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1852 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1853 *dbg_redzone1(cachep, objp),
1854 *dbg_redzone2(cachep, objp));
1da177e4
LT
1855 }
1856
1857 if (cachep->flags & SLAB_STORE_USER) {
071361d3
JP
1858 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1859 *dbg_userword(cachep, objp),
1860 *dbg_userword(cachep, objp));
1da177e4 1861 }
3dafccf2 1862 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1863 size = cachep->object_size;
b28a02de 1864 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1865 int limit;
1866 limit = 16;
b28a02de
PE
1867 if (i + limit > size)
1868 limit = size - i;
1da177e4
LT
1869 dump_line(realobj, i, limit);
1870 }
1871}
1872
343e0d7a 1873static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1874{
1875 char *realobj;
1876 int size, i;
1877 int lines = 0;
1878
3dafccf2 1879 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1880 size = cachep->object_size;
1da177e4 1881
b28a02de 1882 for (i = 0; i < size; i++) {
1da177e4 1883 char exp = POISON_FREE;
b28a02de 1884 if (i == size - 1)
1da177e4
LT
1885 exp = POISON_END;
1886 if (realobj[i] != exp) {
1887 int limit;
1888 /* Mismatch ! */
1889 /* Print header */
1890 if (lines == 0) {
b28a02de 1891 printk(KERN_ERR
face37f5
DJ
1892 "Slab corruption (%s): %s start=%p, len=%d\n",
1893 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
1894 print_objinfo(cachep, objp, 0);
1895 }
1896 /* Hexdump the affected line */
b28a02de 1897 i = (i / 16) * 16;
1da177e4 1898 limit = 16;
b28a02de
PE
1899 if (i + limit > size)
1900 limit = size - i;
1da177e4
LT
1901 dump_line(realobj, i, limit);
1902 i += 16;
1903 lines++;
1904 /* Limit to 5 lines */
1905 if (lines > 5)
1906 break;
1907 }
1908 }
1909 if (lines != 0) {
1910 /* Print some data about the neighboring objects, if they
1911 * exist:
1912 */
6ed5eb22 1913 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1914 unsigned int objnr;
1da177e4 1915
8fea4e96 1916 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1917 if (objnr) {
8fea4e96 1918 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1919 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1920 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1921 realobj, size);
1da177e4
LT
1922 print_objinfo(cachep, objp, 2);
1923 }
b28a02de 1924 if (objnr + 1 < cachep->num) {
8fea4e96 1925 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1926 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1927 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1928 realobj, size);
1da177e4
LT
1929 print_objinfo(cachep, objp, 2);
1930 }
1931 }
1932}
1933#endif
1934
12dd36fa 1935#if DEBUG
e79aec29 1936static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1937{
1da177e4
LT
1938 int i;
1939 for (i = 0; i < cachep->num; i++) {
8fea4e96 1940 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1941
1942 if (cachep->flags & SLAB_POISON) {
1943#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 1944 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 1945 OFF_SLAB(cachep))
b28a02de 1946 kernel_map_pages(virt_to_page(objp),
3b0efdfa 1947 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
1948 else
1949 check_poison_obj(cachep, objp);
1950#else
1951 check_poison_obj(cachep, objp);
1952#endif
1953 }
1954 if (cachep->flags & SLAB_RED_ZONE) {
1955 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1956 slab_error(cachep, "start of a freed object "
b28a02de 1957 "was overwritten");
1da177e4
LT
1958 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1959 slab_error(cachep, "end of a freed object "
b28a02de 1960 "was overwritten");
1da177e4 1961 }
1da177e4 1962 }
12dd36fa 1963}
1da177e4 1964#else
e79aec29 1965static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1966{
12dd36fa 1967}
1da177e4
LT
1968#endif
1969
911851e6
RD
1970/**
1971 * slab_destroy - destroy and release all objects in a slab
1972 * @cachep: cache pointer being destroyed
1973 * @slabp: slab pointer being destroyed
1974 *
12dd36fa 1975 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1976 * Before calling the slab must have been unlinked from the cache. The
1977 * cache-lock is not held/needed.
12dd36fa 1978 */
343e0d7a 1979static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1980{
0c3aa83e 1981 struct page *page = virt_to_head_page(slabp->s_mem);
12dd36fa 1982
e79aec29 1983 slab_destroy_debugcheck(cachep, slabp);
1da177e4 1984 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
68126702
JK
1985 struct rcu_head *head;
1986
1987 /*
1988 * RCU free overloads the RCU head over the LRU.
1989 * slab_page has been overloeaded over the LRU,
1990 * however it is not used from now on so that
1991 * we can use it safely.
1992 */
1993 head = (void *)&page->rcu_head;
1994 call_rcu(head, kmem_rcu_free);
1da177e4 1995
1da177e4 1996 } else {
0c3aa83e 1997 kmem_freepages(cachep, page);
1da177e4 1998 }
68126702
JK
1999
2000 /*
2001 * From now on, we don't use slab management
2002 * although actual page can be freed in rcu context
2003 */
2004 if (OFF_SLAB(cachep))
2005 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
2006}
2007
4d268eba 2008/**
a70773dd
RD
2009 * calculate_slab_order - calculate size (page order) of slabs
2010 * @cachep: pointer to the cache that is being created
2011 * @size: size of objects to be created in this cache.
2012 * @align: required alignment for the objects.
2013 * @flags: slab allocation flags
2014 *
2015 * Also calculates the number of objects per slab.
4d268eba
PE
2016 *
2017 * This could be made much more intelligent. For now, try to avoid using
2018 * high order pages for slabs. When the gfp() functions are more friendly
2019 * towards high-order requests, this should be changed.
2020 */
a737b3e2 2021static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2022 size_t size, size_t align, unsigned long flags)
4d268eba 2023{
b1ab41c4 2024 unsigned long offslab_limit;
4d268eba 2025 size_t left_over = 0;
9888e6fa 2026 int gfporder;
4d268eba 2027
0aa817f0 2028 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2029 unsigned int num;
2030 size_t remainder;
2031
9888e6fa 2032 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2033 if (!num)
2034 continue;
9888e6fa 2035
b1ab41c4
IM
2036 if (flags & CFLGS_OFF_SLAB) {
2037 /*
2038 * Max number of objs-per-slab for caches which
2039 * use off-slab slabs. Needed to avoid a possible
2040 * looping condition in cache_grow().
2041 */
2042 offslab_limit = size - sizeof(struct slab);
16025177 2043 offslab_limit /= sizeof(unsigned int);
b1ab41c4
IM
2044
2045 if (num > offslab_limit)
2046 break;
2047 }
4d268eba 2048
9888e6fa 2049 /* Found something acceptable - save it away */
4d268eba 2050 cachep->num = num;
9888e6fa 2051 cachep->gfporder = gfporder;
4d268eba
PE
2052 left_over = remainder;
2053
f78bb8ad
LT
2054 /*
2055 * A VFS-reclaimable slab tends to have most allocations
2056 * as GFP_NOFS and we really don't want to have to be allocating
2057 * higher-order pages when we are unable to shrink dcache.
2058 */
2059 if (flags & SLAB_RECLAIM_ACCOUNT)
2060 break;
2061
4d268eba
PE
2062 /*
2063 * Large number of objects is good, but very large slabs are
2064 * currently bad for the gfp()s.
2065 */
543585cc 2066 if (gfporder >= slab_max_order)
4d268eba
PE
2067 break;
2068
9888e6fa
LT
2069 /*
2070 * Acceptable internal fragmentation?
2071 */
a737b3e2 2072 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2073 break;
2074 }
2075 return left_over;
2076}
2077
83b519e8 2078static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2079{
97d06609 2080 if (slab_state >= FULL)
83b519e8 2081 return enable_cpucache(cachep, gfp);
2ed3a4ef 2082
97d06609 2083 if (slab_state == DOWN) {
f30cf7d1 2084 /*
2f9baa9f 2085 * Note: Creation of first cache (kmem_cache).
ce8eb6c4 2086 * The setup_node is taken care
2f9baa9f
CL
2087 * of by the caller of __kmem_cache_create
2088 */
2089 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2090 slab_state = PARTIAL;
2091 } else if (slab_state == PARTIAL) {
2092 /*
2093 * Note: the second kmem_cache_create must create the cache
f30cf7d1
PE
2094 * that's used by kmalloc(24), otherwise the creation of
2095 * further caches will BUG().
2096 */
2097 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2098
2099 /*
ce8eb6c4
CL
2100 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2101 * the second cache, then we need to set up all its node/,
f30cf7d1
PE
2102 * otherwise the creation of further caches will BUG().
2103 */
ce8eb6c4
CL
2104 set_up_node(cachep, SIZE_AC);
2105 if (INDEX_AC == INDEX_NODE)
2106 slab_state = PARTIAL_NODE;
f30cf7d1 2107 else
97d06609 2108 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1 2109 } else {
2f9baa9f 2110 /* Remaining boot caches */
f30cf7d1 2111 cachep->array[smp_processor_id()] =
83b519e8 2112 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2113
97d06609 2114 if (slab_state == PARTIAL_ARRAYCACHE) {
ce8eb6c4
CL
2115 set_up_node(cachep, SIZE_NODE);
2116 slab_state = PARTIAL_NODE;
f30cf7d1
PE
2117 } else {
2118 int node;
556a169d 2119 for_each_online_node(node) {
6a67368c 2120 cachep->node[node] =
6744f087 2121 kmalloc_node(sizeof(struct kmem_cache_node),
eb91f1d0 2122 gfp, node);
6a67368c 2123 BUG_ON(!cachep->node[node]);
ce8eb6c4 2124 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
2125 }
2126 }
2127 }
6a67368c 2128 cachep->node[numa_mem_id()]->next_reap =
f30cf7d1
PE
2129 jiffies + REAPTIMEOUT_LIST3 +
2130 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2131
2132 cpu_cache_get(cachep)->avail = 0;
2133 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2134 cpu_cache_get(cachep)->batchcount = 1;
2135 cpu_cache_get(cachep)->touched = 0;
2136 cachep->batchcount = 1;
2137 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2138 return 0;
f30cf7d1
PE
2139}
2140
1da177e4 2141/**
039363f3 2142 * __kmem_cache_create - Create a cache.
a755b76a 2143 * @cachep: cache management descriptor
1da177e4 2144 * @flags: SLAB flags
1da177e4
LT
2145 *
2146 * Returns a ptr to the cache on success, NULL on failure.
2147 * Cannot be called within a int, but can be interrupted.
20c2df83 2148 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2149 *
1da177e4
LT
2150 * The flags are
2151 *
2152 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2153 * to catch references to uninitialised memory.
2154 *
2155 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2156 * for buffer overruns.
2157 *
1da177e4
LT
2158 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2159 * cacheline. This can be beneficial if you're counting cycles as closely
2160 * as davem.
2161 */
278b1bb1 2162int
8a13a4cc 2163__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4
LT
2164{
2165 size_t left_over, slab_size, ralign;
83b519e8 2166 gfp_t gfp;
278b1bb1 2167 int err;
8a13a4cc 2168 size_t size = cachep->size;
1da177e4 2169
1da177e4 2170#if DEBUG
1da177e4
LT
2171#if FORCED_DEBUG
2172 /*
2173 * Enable redzoning and last user accounting, except for caches with
2174 * large objects, if the increased size would increase the object size
2175 * above the next power of two: caches with object sizes just above a
2176 * power of two have a significant amount of internal fragmentation.
2177 */
87a927c7
DW
2178 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2179 2 * sizeof(unsigned long long)))
b28a02de 2180 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2181 if (!(flags & SLAB_DESTROY_BY_RCU))
2182 flags |= SLAB_POISON;
2183#endif
2184 if (flags & SLAB_DESTROY_BY_RCU)
2185 BUG_ON(flags & SLAB_POISON);
2186#endif
1da177e4 2187
a737b3e2
AM
2188 /*
2189 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2190 * unaligned accesses for some archs when redzoning is used, and makes
2191 * sure any on-slab bufctl's are also correctly aligned.
2192 */
b28a02de
PE
2193 if (size & (BYTES_PER_WORD - 1)) {
2194 size += (BYTES_PER_WORD - 1);
2195 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2196 }
2197
ca5f9703 2198 /*
87a927c7
DW
2199 * Redzoning and user store require word alignment or possibly larger.
2200 * Note this will be overridden by architecture or caller mandated
2201 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2202 */
87a927c7
DW
2203 if (flags & SLAB_STORE_USER)
2204 ralign = BYTES_PER_WORD;
2205
2206 if (flags & SLAB_RED_ZONE) {
2207 ralign = REDZONE_ALIGN;
2208 /* If redzoning, ensure that the second redzone is suitably
2209 * aligned, by adjusting the object size accordingly. */
2210 size += REDZONE_ALIGN - 1;
2211 size &= ~(REDZONE_ALIGN - 1);
2212 }
ca5f9703 2213
a44b56d3 2214 /* 3) caller mandated alignment */
8a13a4cc
CL
2215 if (ralign < cachep->align) {
2216 ralign = cachep->align;
1da177e4 2217 }
3ff84a7f
PE
2218 /* disable debug if necessary */
2219 if (ralign > __alignof__(unsigned long long))
a44b56d3 2220 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2221 /*
ca5f9703 2222 * 4) Store it.
1da177e4 2223 */
8a13a4cc 2224 cachep->align = ralign;
1da177e4 2225
83b519e8
PE
2226 if (slab_is_available())
2227 gfp = GFP_KERNEL;
2228 else
2229 gfp = GFP_NOWAIT;
2230
6a67368c 2231 setup_node_pointer(cachep);
1da177e4 2232#if DEBUG
1da177e4 2233
ca5f9703
PE
2234 /*
2235 * Both debugging options require word-alignment which is calculated
2236 * into align above.
2237 */
1da177e4 2238 if (flags & SLAB_RED_ZONE) {
1da177e4 2239 /* add space for red zone words */
3ff84a7f
PE
2240 cachep->obj_offset += sizeof(unsigned long long);
2241 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2242 }
2243 if (flags & SLAB_STORE_USER) {
ca5f9703 2244 /* user store requires one word storage behind the end of
87a927c7
DW
2245 * the real object. But if the second red zone needs to be
2246 * aligned to 64 bits, we must allow that much space.
1da177e4 2247 */
87a927c7
DW
2248 if (flags & SLAB_RED_ZONE)
2249 size += REDZONE_ALIGN;
2250 else
2251 size += BYTES_PER_WORD;
1da177e4
LT
2252 }
2253#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
ce8eb6c4 2254 if (size >= kmalloc_size(INDEX_NODE + 1)
608da7e3
TH
2255 && cachep->object_size > cache_line_size()
2256 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2257 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
1da177e4
LT
2258 size = PAGE_SIZE;
2259 }
2260#endif
2261#endif
2262
e0a42726
IM
2263 /*
2264 * Determine if the slab management is 'on' or 'off' slab.
2265 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2266 * it too early on. Always use on-slab management when
2267 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2268 */
e7cb55b9
CM
2269 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2270 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2271 /*
2272 * Size is large, assume best to place the slab management obj
2273 * off-slab (should allow better packing of objs).
2274 */
2275 flags |= CFLGS_OFF_SLAB;
2276
8a13a4cc 2277 size = ALIGN(size, cachep->align);
1da177e4 2278
8a13a4cc 2279 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
1da177e4 2280
8a13a4cc 2281 if (!cachep->num)
278b1bb1 2282 return -E2BIG;
1da177e4 2283
16025177 2284 slab_size = ALIGN(cachep->num * sizeof(unsigned int)
8a13a4cc 2285 + sizeof(struct slab), cachep->align);
1da177e4
LT
2286
2287 /*
2288 * If the slab has been placed off-slab, and we have enough space then
2289 * move it on-slab. This is at the expense of any extra colouring.
2290 */
2291 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2292 flags &= ~CFLGS_OFF_SLAB;
2293 left_over -= slab_size;
2294 }
2295
2296 if (flags & CFLGS_OFF_SLAB) {
2297 /* really off slab. No need for manual alignment */
b28a02de 2298 slab_size =
16025177 2299 cachep->num * sizeof(unsigned int) + sizeof(struct slab);
67461365
RL
2300
2301#ifdef CONFIG_PAGE_POISONING
2302 /* If we're going to use the generic kernel_map_pages()
2303 * poisoning, then it's going to smash the contents of
2304 * the redzone and userword anyhow, so switch them off.
2305 */
2306 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2307 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2308#endif
1da177e4
LT
2309 }
2310
2311 cachep->colour_off = cache_line_size();
2312 /* Offset must be a multiple of the alignment. */
8a13a4cc
CL
2313 if (cachep->colour_off < cachep->align)
2314 cachep->colour_off = cachep->align;
b28a02de 2315 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2316 cachep->slab_size = slab_size;
2317 cachep->flags = flags;
a57a4988 2318 cachep->allocflags = __GFP_COMP;
4b51d669 2319 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2320 cachep->allocflags |= GFP_DMA;
3b0efdfa 2321 cachep->size = size;
6a2d7a95 2322 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2323
e5ac9c5a 2324 if (flags & CFLGS_OFF_SLAB) {
2c59dd65 2325 cachep->slabp_cache = kmalloc_slab(slab_size, 0u);
e5ac9c5a
RT
2326 /*
2327 * This is a possibility for one of the malloc_sizes caches.
2328 * But since we go off slab only for object size greater than
2329 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2330 * this should not happen at all.
2331 * But leave a BUG_ON for some lucky dude.
2332 */
6cb8f913 2333 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2334 }
1da177e4 2335
278b1bb1
CL
2336 err = setup_cpu_cache(cachep, gfp);
2337 if (err) {
12c3667f 2338 __kmem_cache_shutdown(cachep);
278b1bb1 2339 return err;
2ed3a4ef 2340 }
1da177e4 2341
83835b3d
PZ
2342 if (flags & SLAB_DEBUG_OBJECTS) {
2343 /*
2344 * Would deadlock through slab_destroy()->call_rcu()->
2345 * debug_object_activate()->kmem_cache_alloc().
2346 */
2347 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2348
2349 slab_set_debugobj_lock_classes(cachep);
6ccfb5bc
GC
2350 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2351 on_slab_lock_classes(cachep);
83835b3d 2352
278b1bb1 2353 return 0;
1da177e4 2354}
1da177e4
LT
2355
2356#if DEBUG
2357static void check_irq_off(void)
2358{
2359 BUG_ON(!irqs_disabled());
2360}
2361
2362static void check_irq_on(void)
2363{
2364 BUG_ON(irqs_disabled());
2365}
2366
343e0d7a 2367static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2368{
2369#ifdef CONFIG_SMP
2370 check_irq_off();
6a67368c 2371 assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
1da177e4
LT
2372#endif
2373}
e498be7d 2374
343e0d7a 2375static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2376{
2377#ifdef CONFIG_SMP
2378 check_irq_off();
6a67368c 2379 assert_spin_locked(&cachep->node[node]->list_lock);
e498be7d
CL
2380#endif
2381}
2382
1da177e4
LT
2383#else
2384#define check_irq_off() do { } while(0)
2385#define check_irq_on() do { } while(0)
2386#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2387#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2388#endif
2389
ce8eb6c4 2390static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
aab2207c
CL
2391 struct array_cache *ac,
2392 int force, int node);
2393
1da177e4
LT
2394static void do_drain(void *arg)
2395{
a737b3e2 2396 struct kmem_cache *cachep = arg;
1da177e4 2397 struct array_cache *ac;
7d6e6d09 2398 int node = numa_mem_id();
1da177e4
LT
2399
2400 check_irq_off();
9a2dba4b 2401 ac = cpu_cache_get(cachep);
6a67368c 2402 spin_lock(&cachep->node[node]->list_lock);
ff69416e 2403 free_block(cachep, ac->entry, ac->avail, node);
6a67368c 2404 spin_unlock(&cachep->node[node]->list_lock);
1da177e4
LT
2405 ac->avail = 0;
2406}
2407
343e0d7a 2408static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2409{
ce8eb6c4 2410 struct kmem_cache_node *n;
e498be7d
CL
2411 int node;
2412
15c8b6c1 2413 on_each_cpu(do_drain, cachep, 1);
1da177e4 2414 check_irq_on();
b28a02de 2415 for_each_online_node(node) {
ce8eb6c4
CL
2416 n = cachep->node[node];
2417 if (n && n->alien)
2418 drain_alien_cache(cachep, n->alien);
a4523a8b
RD
2419 }
2420
2421 for_each_online_node(node) {
ce8eb6c4
CL
2422 n = cachep->node[node];
2423 if (n)
2424 drain_array(cachep, n, n->shared, 1, node);
e498be7d 2425 }
1da177e4
LT
2426}
2427
ed11d9eb
CL
2428/*
2429 * Remove slabs from the list of free slabs.
2430 * Specify the number of slabs to drain in tofree.
2431 *
2432 * Returns the actual number of slabs released.
2433 */
2434static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2435 struct kmem_cache_node *n, int tofree)
1da177e4 2436{
ed11d9eb
CL
2437 struct list_head *p;
2438 int nr_freed;
1da177e4 2439 struct slab *slabp;
1da177e4 2440
ed11d9eb 2441 nr_freed = 0;
ce8eb6c4 2442 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2443
ce8eb6c4
CL
2444 spin_lock_irq(&n->list_lock);
2445 p = n->slabs_free.prev;
2446 if (p == &n->slabs_free) {
2447 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2448 goto out;
2449 }
1da177e4 2450
ed11d9eb 2451 slabp = list_entry(p, struct slab, list);
1da177e4 2452#if DEBUG
106a74e1 2453 BUG_ON(slabp->active);
1da177e4
LT
2454#endif
2455 list_del(&slabp->list);
ed11d9eb
CL
2456 /*
2457 * Safe to drop the lock. The slab is no longer linked
2458 * to the cache.
2459 */
ce8eb6c4
CL
2460 n->free_objects -= cache->num;
2461 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2462 slab_destroy(cache, slabp);
2463 nr_freed++;
1da177e4 2464 }
ed11d9eb
CL
2465out:
2466 return nr_freed;
1da177e4
LT
2467}
2468
18004c5d 2469/* Called with slab_mutex held to protect against cpu hotplug */
343e0d7a 2470static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2471{
2472 int ret = 0, i = 0;
ce8eb6c4 2473 struct kmem_cache_node *n;
e498be7d
CL
2474
2475 drain_cpu_caches(cachep);
2476
2477 check_irq_on();
2478 for_each_online_node(i) {
ce8eb6c4
CL
2479 n = cachep->node[i];
2480 if (!n)
ed11d9eb
CL
2481 continue;
2482
0fa8103b 2483 drain_freelist(cachep, n, slabs_tofree(cachep, n));
ed11d9eb 2484
ce8eb6c4
CL
2485 ret += !list_empty(&n->slabs_full) ||
2486 !list_empty(&n->slabs_partial);
e498be7d
CL
2487 }
2488 return (ret ? 1 : 0);
2489}
2490
1da177e4
LT
2491/**
2492 * kmem_cache_shrink - Shrink a cache.
2493 * @cachep: The cache to shrink.
2494 *
2495 * Releases as many slabs as possible for a cache.
2496 * To help debugging, a zero exit status indicates all slabs were released.
2497 */
343e0d7a 2498int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2499{
8f5be20b 2500 int ret;
40094fa6 2501 BUG_ON(!cachep || in_interrupt());
1da177e4 2502
95402b38 2503 get_online_cpus();
18004c5d 2504 mutex_lock(&slab_mutex);
8f5be20b 2505 ret = __cache_shrink(cachep);
18004c5d 2506 mutex_unlock(&slab_mutex);
95402b38 2507 put_online_cpus();
8f5be20b 2508 return ret;
1da177e4
LT
2509}
2510EXPORT_SYMBOL(kmem_cache_shrink);
2511
945cf2b6 2512int __kmem_cache_shutdown(struct kmem_cache *cachep)
1da177e4 2513{
12c3667f 2514 int i;
ce8eb6c4 2515 struct kmem_cache_node *n;
12c3667f 2516 int rc = __cache_shrink(cachep);
1da177e4 2517
12c3667f
CL
2518 if (rc)
2519 return rc;
1da177e4 2520
12c3667f
CL
2521 for_each_online_cpu(i)
2522 kfree(cachep->array[i]);
1da177e4 2523
ce8eb6c4 2524 /* NUMA: free the node structures */
12c3667f 2525 for_each_online_node(i) {
ce8eb6c4
CL
2526 n = cachep->node[i];
2527 if (n) {
2528 kfree(n->shared);
2529 free_alien_cache(n->alien);
2530 kfree(n);
12c3667f
CL
2531 }
2532 }
2533 return 0;
1da177e4 2534}
1da177e4 2535
e5ac9c5a
RT
2536/*
2537 * Get the memory for a slab management obj.
2538 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2539 * always come from malloc_sizes caches. The slab descriptor cannot
2540 * come from the same cache which is getting created because,
2541 * when we are searching for an appropriate cache for these
2542 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2543 * If we are creating a malloc_sizes cache here it would not be visible to
2544 * kmem_find_general_cachep till the initialization is complete.
2545 * Hence we cannot have slabp_cache same as the original cache.
2546 */
0c3aa83e
JK
2547static struct slab *alloc_slabmgmt(struct kmem_cache *cachep,
2548 struct page *page, int colour_off,
2549 gfp_t local_flags, int nodeid)
1da177e4
LT
2550{
2551 struct slab *slabp;
0c3aa83e 2552 void *addr = page_address(page);
b28a02de 2553
1da177e4
LT
2554 if (OFF_SLAB(cachep)) {
2555 /* Slab management obj is off-slab. */
5b74ada7 2556 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2557 local_flags, nodeid);
d5cff635
CM
2558 /*
2559 * If the first object in the slab is leaked (it's allocated
2560 * but no one has a reference to it), we want to make sure
2561 * kmemleak does not treat the ->s_mem pointer as a reference
2562 * to the object. Otherwise we will not report the leak.
2563 */
c017b4be
CM
2564 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2565 local_flags);
1da177e4
LT
2566 if (!slabp)
2567 return NULL;
2568 } else {
0c3aa83e 2569 slabp = addr + colour_off;
1da177e4
LT
2570 colour_off += cachep->slab_size;
2571 }
106a74e1 2572 slabp->active = 0;
0c3aa83e 2573 slabp->s_mem = addr + colour_off;
1da177e4
LT
2574 return slabp;
2575}
2576
16025177 2577static inline unsigned int *slab_bufctl(struct slab *slabp)
1da177e4 2578{
16025177 2579 return (unsigned int *) (slabp + 1);
1da177e4
LT
2580}
2581
343e0d7a 2582static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2583 struct slab *slabp)
1da177e4
LT
2584{
2585 int i;
2586
2587 for (i = 0; i < cachep->num; i++) {
8fea4e96 2588 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2589#if DEBUG
2590 /* need to poison the objs? */
2591 if (cachep->flags & SLAB_POISON)
2592 poison_obj(cachep, objp, POISON_FREE);
2593 if (cachep->flags & SLAB_STORE_USER)
2594 *dbg_userword(cachep, objp) = NULL;
2595
2596 if (cachep->flags & SLAB_RED_ZONE) {
2597 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2598 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2599 }
2600 /*
a737b3e2
AM
2601 * Constructors are not allowed to allocate memory from the same
2602 * cache which they are a constructor for. Otherwise, deadlock.
2603 * They must also be threaded.
1da177e4
LT
2604 */
2605 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2606 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2607
2608 if (cachep->flags & SLAB_RED_ZONE) {
2609 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2610 slab_error(cachep, "constructor overwrote the"
b28a02de 2611 " end of an object");
1da177e4
LT
2612 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2613 slab_error(cachep, "constructor overwrote the"
b28a02de 2614 " start of an object");
1da177e4 2615 }
3b0efdfa 2616 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2617 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2618 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2619 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2620#else
2621 if (cachep->ctor)
51cc5068 2622 cachep->ctor(objp);
1da177e4 2623#endif
b1cb0982 2624 slab_bufctl(slabp)[i] = i;
1da177e4 2625 }
1da177e4
LT
2626}
2627
343e0d7a 2628static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2629{
4b51d669
CL
2630 if (CONFIG_ZONE_DMA_FLAG) {
2631 if (flags & GFP_DMA)
a618e89f 2632 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2633 else
a618e89f 2634 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2635 }
1da177e4
LT
2636}
2637
a737b3e2
AM
2638static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2639 int nodeid)
78d382d7 2640{
b1cb0982 2641 void *objp;
78d382d7 2642
106a74e1
JK
2643 objp = index_to_obj(cachep, slabp, slab_bufctl(slabp)[slabp->active]);
2644 slabp->active++;
78d382d7 2645#if DEBUG
1ea991b0 2646 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7 2647#endif
78d382d7
MD
2648
2649 return objp;
2650}
2651
a737b3e2
AM
2652static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2653 void *objp, int nodeid)
78d382d7 2654{
8fea4e96 2655 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7 2656#if DEBUG
16025177 2657 unsigned int i;
b1cb0982 2658
78d382d7 2659 /* Verify that the slab belongs to the intended node */
1ea991b0 2660 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7 2661
b1cb0982 2662 /* Verify double free bug */
106a74e1 2663 for (i = slabp->active; i < cachep->num; i++) {
b1cb0982
JK
2664 if (slab_bufctl(slabp)[i] == objnr) {
2665 printk(KERN_ERR "slab: double free detected in cache "
2666 "'%s', objp %p\n", cachep->name, objp);
2667 BUG();
2668 }
78d382d7
MD
2669 }
2670#endif
106a74e1
JK
2671 slabp->active--;
2672 slab_bufctl(slabp)[slabp->active] = objnr;
78d382d7
MD
2673}
2674
4776874f
PE
2675/*
2676 * Map pages beginning at addr to the given cache and slab. This is required
2677 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2678 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2679 */
2680static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
0c3aa83e 2681 struct page *page)
1da177e4 2682{
a57a4988
JK
2683 page->slab_cache = cache;
2684 page->slab_page = slab;
1da177e4
LT
2685}
2686
2687/*
2688 * Grow (by 1) the number of slabs within a cache. This is called by
2689 * kmem_cache_alloc() when there are no active objs left in a cache.
2690 */
3c517a61 2691static int cache_grow(struct kmem_cache *cachep,
0c3aa83e 2692 gfp_t flags, int nodeid, struct page *page)
1da177e4 2693{
b28a02de 2694 struct slab *slabp;
b28a02de
PE
2695 size_t offset;
2696 gfp_t local_flags;
ce8eb6c4 2697 struct kmem_cache_node *n;
1da177e4 2698
a737b3e2
AM
2699 /*
2700 * Be lazy and only check for valid flags here, keeping it out of the
2701 * critical path in kmem_cache_alloc().
1da177e4 2702 */
6cb06229
CL
2703 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2704 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2705
ce8eb6c4 2706 /* Take the node list lock to change the colour_next on this node */
1da177e4 2707 check_irq_off();
ce8eb6c4
CL
2708 n = cachep->node[nodeid];
2709 spin_lock(&n->list_lock);
1da177e4
LT
2710
2711 /* Get colour for the slab, and cal the next value. */
ce8eb6c4
CL
2712 offset = n->colour_next;
2713 n->colour_next++;
2714 if (n->colour_next >= cachep->colour)
2715 n->colour_next = 0;
2716 spin_unlock(&n->list_lock);
1da177e4 2717
2e1217cf 2718 offset *= cachep->colour_off;
1da177e4
LT
2719
2720 if (local_flags & __GFP_WAIT)
2721 local_irq_enable();
2722
2723 /*
2724 * The test for missing atomic flag is performed here, rather than
2725 * the more obvious place, simply to reduce the critical path length
2726 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2727 * will eventually be caught here (where it matters).
2728 */
2729 kmem_flagcheck(cachep, flags);
2730
a737b3e2
AM
2731 /*
2732 * Get mem for the objs. Attempt to allocate a physical page from
2733 * 'nodeid'.
e498be7d 2734 */
0c3aa83e
JK
2735 if (!page)
2736 page = kmem_getpages(cachep, local_flags, nodeid);
2737 if (!page)
1da177e4
LT
2738 goto failed;
2739
2740 /* Get slab management. */
0c3aa83e 2741 slabp = alloc_slabmgmt(cachep, page, offset,
6cb06229 2742 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2743 if (!slabp)
1da177e4
LT
2744 goto opps1;
2745
0c3aa83e 2746 slab_map_pages(cachep, slabp, page);
1da177e4 2747
a35afb83 2748 cache_init_objs(cachep, slabp);
1da177e4
LT
2749
2750 if (local_flags & __GFP_WAIT)
2751 local_irq_disable();
2752 check_irq_off();
ce8eb6c4 2753 spin_lock(&n->list_lock);
1da177e4
LT
2754
2755 /* Make slab active. */
ce8eb6c4 2756 list_add_tail(&slabp->list, &(n->slabs_free));
1da177e4 2757 STATS_INC_GROWN(cachep);
ce8eb6c4
CL
2758 n->free_objects += cachep->num;
2759 spin_unlock(&n->list_lock);
1da177e4 2760 return 1;
a737b3e2 2761opps1:
0c3aa83e 2762 kmem_freepages(cachep, page);
a737b3e2 2763failed:
1da177e4
LT
2764 if (local_flags & __GFP_WAIT)
2765 local_irq_disable();
2766 return 0;
2767}
2768
2769#if DEBUG
2770
2771/*
2772 * Perform extra freeing checks:
2773 * - detect bad pointers.
2774 * - POISON/RED_ZONE checking
1da177e4
LT
2775 */
2776static void kfree_debugcheck(const void *objp)
2777{
1da177e4
LT
2778 if (!virt_addr_valid(objp)) {
2779 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2780 (unsigned long)objp);
2781 BUG();
1da177e4 2782 }
1da177e4
LT
2783}
2784
58ce1fd5
PE
2785static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2786{
b46b8f19 2787 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2788
2789 redzone1 = *dbg_redzone1(cache, obj);
2790 redzone2 = *dbg_redzone2(cache, obj);
2791
2792 /*
2793 * Redzone is ok.
2794 */
2795 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2796 return;
2797
2798 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2799 slab_error(cache, "double free detected");
2800 else
2801 slab_error(cache, "memory outside object was overwritten");
2802
b46b8f19 2803 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2804 obj, redzone1, redzone2);
2805}
2806
343e0d7a 2807static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2808 unsigned long caller)
1da177e4 2809{
1da177e4
LT
2810 unsigned int objnr;
2811 struct slab *slabp;
2812
80cbd911
MW
2813 BUG_ON(virt_to_cache(objp) != cachep);
2814
3dafccf2 2815 objp -= obj_offset(cachep);
1da177e4 2816 kfree_debugcheck(objp);
56f295ef 2817 slabp = virt_to_slab(objp);
1da177e4
LT
2818
2819 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2820 verify_redzone_free(cachep, objp);
1da177e4
LT
2821 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2822 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2823 }
2824 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2825 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 2826
8fea4e96 2827 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2828
2829 BUG_ON(objnr >= cachep->num);
8fea4e96 2830 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2831
1da177e4
LT
2832 if (cachep->flags & SLAB_POISON) {
2833#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2834 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
7c0cb9c6 2835 store_stackinfo(cachep, objp, caller);
b28a02de 2836 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2837 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2838 } else {
2839 poison_obj(cachep, objp, POISON_FREE);
2840 }
2841#else
2842 poison_obj(cachep, objp, POISON_FREE);
2843#endif
2844 }
2845 return objp;
2846}
2847
1da177e4
LT
2848#else
2849#define kfree_debugcheck(x) do { } while(0)
2850#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2851#endif
2852
072bb0aa
MG
2853static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2854 bool force_refill)
1da177e4
LT
2855{
2856 int batchcount;
ce8eb6c4 2857 struct kmem_cache_node *n;
1da177e4 2858 struct array_cache *ac;
1ca4cb24
PE
2859 int node;
2860
1da177e4 2861 check_irq_off();
7d6e6d09 2862 node = numa_mem_id();
072bb0aa
MG
2863 if (unlikely(force_refill))
2864 goto force_grow;
2865retry:
9a2dba4b 2866 ac = cpu_cache_get(cachep);
1da177e4
LT
2867 batchcount = ac->batchcount;
2868 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2869 /*
2870 * If there was little recent activity on this cache, then
2871 * perform only a partial refill. Otherwise we could generate
2872 * refill bouncing.
1da177e4
LT
2873 */
2874 batchcount = BATCHREFILL_LIMIT;
2875 }
ce8eb6c4 2876 n = cachep->node[node];
e498be7d 2877
ce8eb6c4
CL
2878 BUG_ON(ac->avail > 0 || !n);
2879 spin_lock(&n->list_lock);
1da177e4 2880
3ded175a 2881 /* See if we can refill from the shared array */
ce8eb6c4
CL
2882 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2883 n->shared->touched = 1;
3ded175a 2884 goto alloc_done;
44b57f1c 2885 }
3ded175a 2886
1da177e4
LT
2887 while (batchcount > 0) {
2888 struct list_head *entry;
2889 struct slab *slabp;
2890 /* Get slab alloc is to come from. */
ce8eb6c4
CL
2891 entry = n->slabs_partial.next;
2892 if (entry == &n->slabs_partial) {
2893 n->free_touched = 1;
2894 entry = n->slabs_free.next;
2895 if (entry == &n->slabs_free)
1da177e4
LT
2896 goto must_grow;
2897 }
2898
2899 slabp = list_entry(entry, struct slab, list);
1da177e4 2900 check_spinlock_acquired(cachep);
714b8171
PE
2901
2902 /*
2903 * The slab was either on partial or free list so
2904 * there must be at least one object available for
2905 * allocation.
2906 */
106a74e1 2907 BUG_ON(slabp->active >= cachep->num);
714b8171 2908
106a74e1 2909 while (slabp->active < cachep->num && batchcount--) {
1da177e4
LT
2910 STATS_INC_ALLOCED(cachep);
2911 STATS_INC_ACTIVE(cachep);
2912 STATS_SET_HIGH(cachep);
2913
072bb0aa
MG
2914 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
2915 node));
1da177e4 2916 }
1da177e4
LT
2917
2918 /* move slabp to correct slabp list: */
2919 list_del(&slabp->list);
106a74e1 2920 if (slabp->active == cachep->num)
ce8eb6c4 2921 list_add(&slabp->list, &n->slabs_full);
1da177e4 2922 else
ce8eb6c4 2923 list_add(&slabp->list, &n->slabs_partial);
1da177e4
LT
2924 }
2925
a737b3e2 2926must_grow:
ce8eb6c4 2927 n->free_objects -= ac->avail;
a737b3e2 2928alloc_done:
ce8eb6c4 2929 spin_unlock(&n->list_lock);
1da177e4
LT
2930
2931 if (unlikely(!ac->avail)) {
2932 int x;
072bb0aa 2933force_grow:
3c517a61 2934 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 2935
a737b3e2 2936 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2937 ac = cpu_cache_get(cachep);
51cd8e6f 2938 node = numa_mem_id();
072bb0aa
MG
2939
2940 /* no objects in sight? abort */
2941 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
2942 return NULL;
2943
a737b3e2 2944 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2945 goto retry;
2946 }
2947 ac->touched = 1;
072bb0aa
MG
2948
2949 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
2950}
2951
a737b3e2
AM
2952static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2953 gfp_t flags)
1da177e4
LT
2954{
2955 might_sleep_if(flags & __GFP_WAIT);
2956#if DEBUG
2957 kmem_flagcheck(cachep, flags);
2958#endif
2959}
2960
2961#if DEBUG
a737b3e2 2962static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 2963 gfp_t flags, void *objp, unsigned long caller)
1da177e4 2964{
b28a02de 2965 if (!objp)
1da177e4 2966 return objp;
b28a02de 2967 if (cachep->flags & SLAB_POISON) {
1da177e4 2968#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2969 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 2970 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2971 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2972 else
2973 check_poison_obj(cachep, objp);
2974#else
2975 check_poison_obj(cachep, objp);
2976#endif
2977 poison_obj(cachep, objp, POISON_INUSE);
2978 }
2979 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2980 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
2981
2982 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2983 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2984 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2985 slab_error(cachep, "double free, or memory outside"
2986 " object was overwritten");
b28a02de 2987 printk(KERN_ERR
b46b8f19 2988 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
2989 objp, *dbg_redzone1(cachep, objp),
2990 *dbg_redzone2(cachep, objp));
1da177e4
LT
2991 }
2992 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2993 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2994 }
3dafccf2 2995 objp += obj_offset(cachep);
4f104934 2996 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 2997 cachep->ctor(objp);
7ea466f2
TH
2998 if (ARCH_SLAB_MINALIGN &&
2999 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3000 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3001 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3002 }
1da177e4
LT
3003 return objp;
3004}
3005#else
3006#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3007#endif
3008
773ff60e 3009static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502 3010{
9b030cb8 3011 if (cachep == kmem_cache)
773ff60e 3012 return false;
8a8b6502 3013
8c138bc0 3014 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
3015}
3016
343e0d7a 3017static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3018{
b28a02de 3019 void *objp;
1da177e4 3020 struct array_cache *ac;
072bb0aa 3021 bool force_refill = false;
1da177e4 3022
5c382300 3023 check_irq_off();
8a8b6502 3024
9a2dba4b 3025 ac = cpu_cache_get(cachep);
1da177e4 3026 if (likely(ac->avail)) {
1da177e4 3027 ac->touched = 1;
072bb0aa
MG
3028 objp = ac_get_obj(cachep, ac, flags, false);
3029
ddbf2e83 3030 /*
072bb0aa
MG
3031 * Allow for the possibility all avail objects are not allowed
3032 * by the current flags
ddbf2e83 3033 */
072bb0aa
MG
3034 if (objp) {
3035 STATS_INC_ALLOCHIT(cachep);
3036 goto out;
3037 }
3038 force_refill = true;
1da177e4 3039 }
072bb0aa
MG
3040
3041 STATS_INC_ALLOCMISS(cachep);
3042 objp = cache_alloc_refill(cachep, flags, force_refill);
3043 /*
3044 * the 'ac' may be updated by cache_alloc_refill(),
3045 * and kmemleak_erase() requires its correct value.
3046 */
3047 ac = cpu_cache_get(cachep);
3048
3049out:
d5cff635
CM
3050 /*
3051 * To avoid a false negative, if an object that is in one of the
3052 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3053 * treat the array pointers as a reference to the object.
3054 */
f3d8b53a
O
3055 if (objp)
3056 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3057 return objp;
3058}
3059
e498be7d 3060#ifdef CONFIG_NUMA
c61afb18 3061/*
b2455396 3062 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3063 *
3064 * If we are in_interrupt, then process context, including cpusets and
3065 * mempolicy, may not apply and should not be used for allocation policy.
3066 */
3067static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3068{
3069 int nid_alloc, nid_here;
3070
765c4507 3071 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3072 return NULL;
7d6e6d09 3073 nid_alloc = nid_here = numa_mem_id();
c61afb18 3074 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3075 nid_alloc = cpuset_slab_spread_node();
c61afb18 3076 else if (current->mempolicy)
e7b691b0 3077 nid_alloc = slab_node();
c61afb18 3078 if (nid_alloc != nid_here)
8b98c169 3079 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3080 return NULL;
3081}
3082
765c4507
CL
3083/*
3084 * Fallback function if there was no memory available and no objects on a
3c517a61 3085 * certain node and fall back is permitted. First we scan all the
6a67368c 3086 * available node for available objects. If that fails then we
3c517a61
CL
3087 * perform an allocation without specifying a node. This allows the page
3088 * allocator to do its reclaim / fallback magic. We then insert the
3089 * slab into the proper nodelist and then allocate from it.
765c4507 3090 */
8c8cc2c1 3091static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3092{
8c8cc2c1
PE
3093 struct zonelist *zonelist;
3094 gfp_t local_flags;
dd1a239f 3095 struct zoneref *z;
54a6eb5c
MG
3096 struct zone *zone;
3097 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3098 void *obj = NULL;
3c517a61 3099 int nid;
cc9a6c87 3100 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3101
3102 if (flags & __GFP_THISNODE)
3103 return NULL;
3104
6cb06229 3105 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3106
cc9a6c87
MG
3107retry_cpuset:
3108 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 3109 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87 3110
3c517a61
CL
3111retry:
3112 /*
3113 * Look through allowed nodes for objects available
3114 * from existing per node queues.
3115 */
54a6eb5c
MG
3116 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3117 nid = zone_to_nid(zone);
aedb0eb1 3118
54a6eb5c 3119 if (cpuset_zone_allowed_hardwall(zone, flags) &&
6a67368c
CL
3120 cache->node[nid] &&
3121 cache->node[nid]->free_objects) {
3c517a61
CL
3122 obj = ____cache_alloc_node(cache,
3123 flags | GFP_THISNODE, nid);
481c5346
CL
3124 if (obj)
3125 break;
3126 }
3c517a61
CL
3127 }
3128
cfce6604 3129 if (!obj) {
3c517a61
CL
3130 /*
3131 * This allocation will be performed within the constraints
3132 * of the current cpuset / memory policy requirements.
3133 * We may trigger various forms of reclaim on the allowed
3134 * set and go into memory reserves if necessary.
3135 */
0c3aa83e
JK
3136 struct page *page;
3137
dd47ea75
CL
3138 if (local_flags & __GFP_WAIT)
3139 local_irq_enable();
3140 kmem_flagcheck(cache, flags);
0c3aa83e 3141 page = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3142 if (local_flags & __GFP_WAIT)
3143 local_irq_disable();
0c3aa83e 3144 if (page) {
3c517a61
CL
3145 /*
3146 * Insert into the appropriate per node queues
3147 */
0c3aa83e
JK
3148 nid = page_to_nid(page);
3149 if (cache_grow(cache, flags, nid, page)) {
3c517a61
CL
3150 obj = ____cache_alloc_node(cache,
3151 flags | GFP_THISNODE, nid);
3152 if (!obj)
3153 /*
3154 * Another processor may allocate the
3155 * objects in the slab since we are
3156 * not holding any locks.
3157 */
3158 goto retry;
3159 } else {
b6a60451 3160 /* cache_grow already freed obj */
3c517a61
CL
3161 obj = NULL;
3162 }
3163 }
aedb0eb1 3164 }
cc9a6c87
MG
3165
3166 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3167 goto retry_cpuset;
765c4507
CL
3168 return obj;
3169}
3170
e498be7d
CL
3171/*
3172 * A interface to enable slab creation on nodeid
1da177e4 3173 */
8b98c169 3174static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3175 int nodeid)
e498be7d
CL
3176{
3177 struct list_head *entry;
b28a02de 3178 struct slab *slabp;
ce8eb6c4 3179 struct kmem_cache_node *n;
b28a02de 3180 void *obj;
b28a02de
PE
3181 int x;
3182
14e50c6a 3183 VM_BUG_ON(nodeid > num_online_nodes());
ce8eb6c4
CL
3184 n = cachep->node[nodeid];
3185 BUG_ON(!n);
b28a02de 3186
a737b3e2 3187retry:
ca3b9b91 3188 check_irq_off();
ce8eb6c4
CL
3189 spin_lock(&n->list_lock);
3190 entry = n->slabs_partial.next;
3191 if (entry == &n->slabs_partial) {
3192 n->free_touched = 1;
3193 entry = n->slabs_free.next;
3194 if (entry == &n->slabs_free)
b28a02de
PE
3195 goto must_grow;
3196 }
3197
3198 slabp = list_entry(entry, struct slab, list);
3199 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3200
3201 STATS_INC_NODEALLOCS(cachep);
3202 STATS_INC_ACTIVE(cachep);
3203 STATS_SET_HIGH(cachep);
3204
106a74e1 3205 BUG_ON(slabp->active == cachep->num);
b28a02de 3206
78d382d7 3207 obj = slab_get_obj(cachep, slabp, nodeid);
ce8eb6c4 3208 n->free_objects--;
b28a02de
PE
3209 /* move slabp to correct slabp list: */
3210 list_del(&slabp->list);
3211
106a74e1 3212 if (slabp->active == cachep->num)
ce8eb6c4 3213 list_add(&slabp->list, &n->slabs_full);
a737b3e2 3214 else
ce8eb6c4 3215 list_add(&slabp->list, &n->slabs_partial);
e498be7d 3216
ce8eb6c4 3217 spin_unlock(&n->list_lock);
b28a02de 3218 goto done;
e498be7d 3219
a737b3e2 3220must_grow:
ce8eb6c4 3221 spin_unlock(&n->list_lock);
3c517a61 3222 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3223 if (x)
3224 goto retry;
1da177e4 3225
8c8cc2c1 3226 return fallback_alloc(cachep, flags);
e498be7d 3227
a737b3e2 3228done:
b28a02de 3229 return obj;
e498be7d 3230}
8c8cc2c1 3231
8c8cc2c1 3232static __always_inline void *
48356303 3233slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3234 unsigned long caller)
8c8cc2c1
PE
3235{
3236 unsigned long save_flags;
3237 void *ptr;
7d6e6d09 3238 int slab_node = numa_mem_id();
8c8cc2c1 3239
dcce284a 3240 flags &= gfp_allowed_mask;
7e85ee0c 3241
cf40bd16
NP
3242 lockdep_trace_alloc(flags);
3243
773ff60e 3244 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3245 return NULL;
3246
d79923fa
GC
3247 cachep = memcg_kmem_get_cache(cachep, flags);
3248
8c8cc2c1
PE
3249 cache_alloc_debugcheck_before(cachep, flags);
3250 local_irq_save(save_flags);
3251
eacbbae3 3252 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3253 nodeid = slab_node;
8c8cc2c1 3254
6a67368c 3255 if (unlikely(!cachep->node[nodeid])) {
8c8cc2c1
PE
3256 /* Node not bootstrapped yet */
3257 ptr = fallback_alloc(cachep, flags);
3258 goto out;
3259 }
3260
7d6e6d09 3261 if (nodeid == slab_node) {
8c8cc2c1
PE
3262 /*
3263 * Use the locally cached objects if possible.
3264 * However ____cache_alloc does not allow fallback
3265 * to other nodes. It may fail while we still have
3266 * objects on other nodes available.
3267 */
3268 ptr = ____cache_alloc(cachep, flags);
3269 if (ptr)
3270 goto out;
3271 }
3272 /* ___cache_alloc_node can fall back to other nodes */
3273 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3274 out:
3275 local_irq_restore(save_flags);
3276 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3277 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3278 flags);
8c8cc2c1 3279
c175eea4 3280 if (likely(ptr))
8c138bc0 3281 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
c175eea4 3282
d07dbea4 3283 if (unlikely((flags & __GFP_ZERO) && ptr))
8c138bc0 3284 memset(ptr, 0, cachep->object_size);
d07dbea4 3285
8c8cc2c1
PE
3286 return ptr;
3287}
3288
3289static __always_inline void *
3290__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3291{
3292 void *objp;
3293
3294 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3295 objp = alternate_node_alloc(cache, flags);
3296 if (objp)
3297 goto out;
3298 }
3299 objp = ____cache_alloc(cache, flags);
3300
3301 /*
3302 * We may just have run out of memory on the local node.
3303 * ____cache_alloc_node() knows how to locate memory on other nodes
3304 */
7d6e6d09
LS
3305 if (!objp)
3306 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3307
3308 out:
3309 return objp;
3310}
3311#else
3312
3313static __always_inline void *
3314__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3315{
3316 return ____cache_alloc(cachep, flags);
3317}
3318
3319#endif /* CONFIG_NUMA */
3320
3321static __always_inline void *
48356303 3322slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3323{
3324 unsigned long save_flags;
3325 void *objp;
3326
dcce284a 3327 flags &= gfp_allowed_mask;
7e85ee0c 3328
cf40bd16
NP
3329 lockdep_trace_alloc(flags);
3330
773ff60e 3331 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3332 return NULL;
3333
d79923fa
GC
3334 cachep = memcg_kmem_get_cache(cachep, flags);
3335
8c8cc2c1
PE
3336 cache_alloc_debugcheck_before(cachep, flags);
3337 local_irq_save(save_flags);
3338 objp = __do_cache_alloc(cachep, flags);
3339 local_irq_restore(save_flags);
3340 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3341 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3342 flags);
8c8cc2c1
PE
3343 prefetchw(objp);
3344
c175eea4 3345 if (likely(objp))
8c138bc0 3346 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
c175eea4 3347
d07dbea4 3348 if (unlikely((flags & __GFP_ZERO) && objp))
8c138bc0 3349 memset(objp, 0, cachep->object_size);
d07dbea4 3350
8c8cc2c1
PE
3351 return objp;
3352}
e498be7d
CL
3353
3354/*
3355 * Caller needs to acquire correct kmem_list's list_lock
3356 */
343e0d7a 3357static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3358 int node)
1da177e4
LT
3359{
3360 int i;
ce8eb6c4 3361 struct kmem_cache_node *n;
1da177e4
LT
3362
3363 for (i = 0; i < nr_objects; i++) {
072bb0aa 3364 void *objp;
1da177e4 3365 struct slab *slabp;
1da177e4 3366
072bb0aa
MG
3367 clear_obj_pfmemalloc(&objpp[i]);
3368 objp = objpp[i];
3369
6ed5eb22 3370 slabp = virt_to_slab(objp);
ce8eb6c4 3371 n = cachep->node[node];
1da177e4 3372 list_del(&slabp->list);
ff69416e 3373 check_spinlock_acquired_node(cachep, node);
78d382d7 3374 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3375 STATS_DEC_ACTIVE(cachep);
ce8eb6c4 3376 n->free_objects++;
1da177e4
LT
3377
3378 /* fixup slab chains */
106a74e1 3379 if (slabp->active == 0) {
ce8eb6c4
CL
3380 if (n->free_objects > n->free_limit) {
3381 n->free_objects -= cachep->num;
e5ac9c5a
RT
3382 /* No need to drop any previously held
3383 * lock here, even if we have a off-slab slab
3384 * descriptor it is guaranteed to come from
3385 * a different cache, refer to comments before
3386 * alloc_slabmgmt.
3387 */
1da177e4
LT
3388 slab_destroy(cachep, slabp);
3389 } else {
ce8eb6c4 3390 list_add(&slabp->list, &n->slabs_free);
1da177e4
LT
3391 }
3392 } else {
3393 /* Unconditionally move a slab to the end of the
3394 * partial list on free - maximum time for the
3395 * other objects to be freed, too.
3396 */
ce8eb6c4 3397 list_add_tail(&slabp->list, &n->slabs_partial);
1da177e4
LT
3398 }
3399 }
3400}
3401
343e0d7a 3402static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3403{
3404 int batchcount;
ce8eb6c4 3405 struct kmem_cache_node *n;
7d6e6d09 3406 int node = numa_mem_id();
1da177e4
LT
3407
3408 batchcount = ac->batchcount;
3409#if DEBUG
3410 BUG_ON(!batchcount || batchcount > ac->avail);
3411#endif
3412 check_irq_off();
ce8eb6c4
CL
3413 n = cachep->node[node];
3414 spin_lock(&n->list_lock);
3415 if (n->shared) {
3416 struct array_cache *shared_array = n->shared;
b28a02de 3417 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3418 if (max) {
3419 if (batchcount > max)
3420 batchcount = max;
e498be7d 3421 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3422 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3423 shared_array->avail += batchcount;
3424 goto free_done;
3425 }
3426 }
3427
ff69416e 3428 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3429free_done:
1da177e4
LT
3430#if STATS
3431 {
3432 int i = 0;
3433 struct list_head *p;
3434
ce8eb6c4
CL
3435 p = n->slabs_free.next;
3436 while (p != &(n->slabs_free)) {
1da177e4
LT
3437 struct slab *slabp;
3438
3439 slabp = list_entry(p, struct slab, list);
106a74e1 3440 BUG_ON(slabp->active);
1da177e4
LT
3441
3442 i++;
3443 p = p->next;
3444 }
3445 STATS_SET_FREEABLE(cachep, i);
3446 }
3447#endif
ce8eb6c4 3448 spin_unlock(&n->list_lock);
1da177e4 3449 ac->avail -= batchcount;
a737b3e2 3450 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3451}
3452
3453/*
a737b3e2
AM
3454 * Release an obj back to its cache. If the obj has a constructed state, it must
3455 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3456 */
a947eb95 3457static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3458 unsigned long caller)
1da177e4 3459{
9a2dba4b 3460 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3461
3462 check_irq_off();
d5cff635 3463 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3464 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3465
8c138bc0 3466 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3467
1807a1aa
SS
3468 /*
3469 * Skip calling cache_free_alien() when the platform is not numa.
3470 * This will avoid cache misses that happen while accessing slabp (which
3471 * is per page memory reference) to get nodeid. Instead use a global
3472 * variable to skip the call, which is mostly likely to be present in
3473 * the cache.
3474 */
b6e68bc1 3475 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3476 return;
3477
1da177e4
LT
3478 if (likely(ac->avail < ac->limit)) {
3479 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3480 } else {
3481 STATS_INC_FREEMISS(cachep);
3482 cache_flusharray(cachep, ac);
1da177e4 3483 }
42c8c99c 3484
072bb0aa 3485 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3486}
3487
3488/**
3489 * kmem_cache_alloc - Allocate an object
3490 * @cachep: The cache to allocate from.
3491 * @flags: See kmalloc().
3492 *
3493 * Allocate an object from this cache. The flags are only relevant
3494 * if the cache has no available objects.
3495 */
343e0d7a 3496void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3497{
48356303 3498 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3499
ca2b84cb 3500 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3501 cachep->object_size, cachep->size, flags);
36555751
EGM
3502
3503 return ret;
1da177e4
LT
3504}
3505EXPORT_SYMBOL(kmem_cache_alloc);
3506
0f24f128 3507#ifdef CONFIG_TRACING
85beb586 3508void *
4052147c 3509kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3510{
85beb586
SR
3511 void *ret;
3512
48356303 3513 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3514
3515 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3516 size, cachep->size, flags);
85beb586 3517 return ret;
36555751 3518}
85beb586 3519EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3520#endif
3521
1da177e4 3522#ifdef CONFIG_NUMA
d0d04b78
ZL
3523/**
3524 * kmem_cache_alloc_node - Allocate an object on the specified node
3525 * @cachep: The cache to allocate from.
3526 * @flags: See kmalloc().
3527 * @nodeid: node number of the target node.
3528 *
3529 * Identical to kmem_cache_alloc but it will allocate memory on the given
3530 * node, which can improve the performance for cpu bound structures.
3531 *
3532 * Fallback to other node is possible if __GFP_THISNODE is not set.
3533 */
8b98c169
CH
3534void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3535{
48356303 3536 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3537
ca2b84cb 3538 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3539 cachep->object_size, cachep->size,
ca2b84cb 3540 flags, nodeid);
36555751
EGM
3541
3542 return ret;
8b98c169 3543}
1da177e4
LT
3544EXPORT_SYMBOL(kmem_cache_alloc_node);
3545
0f24f128 3546#ifdef CONFIG_TRACING
4052147c 3547void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3548 gfp_t flags,
4052147c
EG
3549 int nodeid,
3550 size_t size)
36555751 3551{
85beb586
SR
3552 void *ret;
3553
592f4145 3554 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3555
85beb586 3556 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3557 size, cachep->size,
85beb586
SR
3558 flags, nodeid);
3559 return ret;
36555751 3560}
85beb586 3561EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3562#endif
3563
8b98c169 3564static __always_inline void *
7c0cb9c6 3565__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3566{
343e0d7a 3567 struct kmem_cache *cachep;
97e2bde4 3568
2c59dd65 3569 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3570 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3571 return cachep;
4052147c 3572 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3573}
8b98c169 3574
0bb38a5c 3575#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3576void *__kmalloc_node(size_t size, gfp_t flags, int node)
3577{
7c0cb9c6 3578 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3579}
dbe5e69d 3580EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3581
3582void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3583 int node, unsigned long caller)
8b98c169 3584{
7c0cb9c6 3585 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3586}
3587EXPORT_SYMBOL(__kmalloc_node_track_caller);
3588#else
3589void *__kmalloc_node(size_t size, gfp_t flags, int node)
3590{
7c0cb9c6 3591 return __do_kmalloc_node(size, flags, node, 0);
8b98c169
CH
3592}
3593EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3594#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3595#endif /* CONFIG_NUMA */
1da177e4
LT
3596
3597/**
800590f5 3598 * __do_kmalloc - allocate memory
1da177e4 3599 * @size: how many bytes of memory are required.
800590f5 3600 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3601 * @caller: function caller for debug tracking of the caller
1da177e4 3602 */
7fd6b141 3603static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3604 unsigned long caller)
1da177e4 3605{
343e0d7a 3606 struct kmem_cache *cachep;
36555751 3607 void *ret;
1da177e4 3608
97e2bde4
MS
3609 /* If you want to save a few bytes .text space: replace
3610 * __ with kmem_.
3611 * Then kmalloc uses the uninlined functions instead of the inline
3612 * functions.
3613 */
2c59dd65 3614 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3615 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3616 return cachep;
48356303 3617 ret = slab_alloc(cachep, flags, caller);
36555751 3618
7c0cb9c6 3619 trace_kmalloc(caller, ret,
3b0efdfa 3620 size, cachep->size, flags);
36555751
EGM
3621
3622 return ret;
7fd6b141
PE
3623}
3624
7fd6b141 3625
0bb38a5c 3626#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3627void *__kmalloc(size_t size, gfp_t flags)
3628{
7c0cb9c6 3629 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3630}
3631EXPORT_SYMBOL(__kmalloc);
3632
ce71e27c 3633void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3634{
7c0cb9c6 3635 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3636}
3637EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3638
3639#else
3640void *__kmalloc(size_t size, gfp_t flags)
3641{
7c0cb9c6 3642 return __do_kmalloc(size, flags, 0);
1d2c8eea
CH
3643}
3644EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3645#endif
3646
1da177e4
LT
3647/**
3648 * kmem_cache_free - Deallocate an object
3649 * @cachep: The cache the allocation was from.
3650 * @objp: The previously allocated object.
3651 *
3652 * Free an object which was previously allocated from this
3653 * cache.
3654 */
343e0d7a 3655void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3656{
3657 unsigned long flags;
b9ce5ef4
GC
3658 cachep = cache_from_obj(cachep, objp);
3659 if (!cachep)
3660 return;
1da177e4
LT
3661
3662 local_irq_save(flags);
d97d476b 3663 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3664 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3665 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3666 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3667 local_irq_restore(flags);
36555751 3668
ca2b84cb 3669 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3670}
3671EXPORT_SYMBOL(kmem_cache_free);
3672
1da177e4
LT
3673/**
3674 * kfree - free previously allocated memory
3675 * @objp: pointer returned by kmalloc.
3676 *
80e93eff
PE
3677 * If @objp is NULL, no operation is performed.
3678 *
1da177e4
LT
3679 * Don't free memory not originally allocated by kmalloc()
3680 * or you will run into trouble.
3681 */
3682void kfree(const void *objp)
3683{
343e0d7a 3684 struct kmem_cache *c;
1da177e4
LT
3685 unsigned long flags;
3686
2121db74
PE
3687 trace_kfree(_RET_IP_, objp);
3688
6cb8f913 3689 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3690 return;
3691 local_irq_save(flags);
3692 kfree_debugcheck(objp);
6ed5eb22 3693 c = virt_to_cache(objp);
8c138bc0
CL
3694 debug_check_no_locks_freed(objp, c->object_size);
3695
3696 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3697 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3698 local_irq_restore(flags);
3699}
3700EXPORT_SYMBOL(kfree);
3701
e498be7d 3702/*
ce8eb6c4 3703 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3704 */
83b519e8 3705static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3706{
3707 int node;
ce8eb6c4 3708 struct kmem_cache_node *n;
cafeb02e 3709 struct array_cache *new_shared;
3395ee05 3710 struct array_cache **new_alien = NULL;
e498be7d 3711
9c09a95c 3712 for_each_online_node(node) {
cafeb02e 3713
3395ee05 3714 if (use_alien_caches) {
83b519e8 3715 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3716 if (!new_alien)
3717 goto fail;
3718 }
cafeb02e 3719
63109846
ED
3720 new_shared = NULL;
3721 if (cachep->shared) {
3722 new_shared = alloc_arraycache(node,
0718dc2a 3723 cachep->shared*cachep->batchcount,
83b519e8 3724 0xbaadf00d, gfp);
63109846
ED
3725 if (!new_shared) {
3726 free_alien_cache(new_alien);
3727 goto fail;
3728 }
0718dc2a 3729 }
cafeb02e 3730
ce8eb6c4
CL
3731 n = cachep->node[node];
3732 if (n) {
3733 struct array_cache *shared = n->shared;
cafeb02e 3734
ce8eb6c4 3735 spin_lock_irq(&n->list_lock);
e498be7d 3736
cafeb02e 3737 if (shared)
0718dc2a
CL
3738 free_block(cachep, shared->entry,
3739 shared->avail, node);
e498be7d 3740
ce8eb6c4
CL
3741 n->shared = new_shared;
3742 if (!n->alien) {
3743 n->alien = new_alien;
e498be7d
CL
3744 new_alien = NULL;
3745 }
ce8eb6c4 3746 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3747 cachep->batchcount + cachep->num;
ce8eb6c4 3748 spin_unlock_irq(&n->list_lock);
cafeb02e 3749 kfree(shared);
e498be7d
CL
3750 free_alien_cache(new_alien);
3751 continue;
3752 }
ce8eb6c4
CL
3753 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3754 if (!n) {
0718dc2a
CL
3755 free_alien_cache(new_alien);
3756 kfree(new_shared);
e498be7d 3757 goto fail;
0718dc2a 3758 }
e498be7d 3759
ce8eb6c4
CL
3760 kmem_cache_node_init(n);
3761 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3762 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
ce8eb6c4
CL
3763 n->shared = new_shared;
3764 n->alien = new_alien;
3765 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3766 cachep->batchcount + cachep->num;
ce8eb6c4 3767 cachep->node[node] = n;
e498be7d 3768 }
cafeb02e 3769 return 0;
0718dc2a 3770
a737b3e2 3771fail:
3b0efdfa 3772 if (!cachep->list.next) {
0718dc2a
CL
3773 /* Cache is not active yet. Roll back what we did */
3774 node--;
3775 while (node >= 0) {
6a67368c 3776 if (cachep->node[node]) {
ce8eb6c4 3777 n = cachep->node[node];
0718dc2a 3778
ce8eb6c4
CL
3779 kfree(n->shared);
3780 free_alien_cache(n->alien);
3781 kfree(n);
6a67368c 3782 cachep->node[node] = NULL;
0718dc2a
CL
3783 }
3784 node--;
3785 }
3786 }
cafeb02e 3787 return -ENOMEM;
e498be7d
CL
3788}
3789
1da177e4 3790struct ccupdate_struct {
343e0d7a 3791 struct kmem_cache *cachep;
acfe7d74 3792 struct array_cache *new[0];
1da177e4
LT
3793};
3794
3795static void do_ccupdate_local(void *info)
3796{
a737b3e2 3797 struct ccupdate_struct *new = info;
1da177e4
LT
3798 struct array_cache *old;
3799
3800 check_irq_off();
9a2dba4b 3801 old = cpu_cache_get(new->cachep);
e498be7d 3802
1da177e4
LT
3803 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3804 new->new[smp_processor_id()] = old;
3805}
3806
18004c5d 3807/* Always called with the slab_mutex held */
943a451a 3808static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3809 int batchcount, int shared, gfp_t gfp)
1da177e4 3810{
d2e7b7d0 3811 struct ccupdate_struct *new;
2ed3a4ef 3812 int i;
1da177e4 3813
acfe7d74
ED
3814 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3815 gfp);
d2e7b7d0
SS
3816 if (!new)
3817 return -ENOMEM;
3818
e498be7d 3819 for_each_online_cpu(i) {
7d6e6d09 3820 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 3821 batchcount, gfp);
d2e7b7d0 3822 if (!new->new[i]) {
b28a02de 3823 for (i--; i >= 0; i--)
d2e7b7d0
SS
3824 kfree(new->new[i]);
3825 kfree(new);
e498be7d 3826 return -ENOMEM;
1da177e4
LT
3827 }
3828 }
d2e7b7d0 3829 new->cachep = cachep;
1da177e4 3830
15c8b6c1 3831 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 3832
1da177e4 3833 check_irq_on();
1da177e4
LT
3834 cachep->batchcount = batchcount;
3835 cachep->limit = limit;
e498be7d 3836 cachep->shared = shared;
1da177e4 3837
e498be7d 3838 for_each_online_cpu(i) {
d2e7b7d0 3839 struct array_cache *ccold = new->new[i];
1da177e4
LT
3840 if (!ccold)
3841 continue;
6a67368c 3842 spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
7d6e6d09 3843 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
6a67368c 3844 spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
1da177e4
LT
3845 kfree(ccold);
3846 }
d2e7b7d0 3847 kfree(new);
83b519e8 3848 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
3849}
3850
943a451a
GC
3851static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3852 int batchcount, int shared, gfp_t gfp)
3853{
3854 int ret;
3855 struct kmem_cache *c = NULL;
3856 int i = 0;
3857
3858 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3859
3860 if (slab_state < FULL)
3861 return ret;
3862
3863 if ((ret < 0) || !is_root_cache(cachep))
3864 return ret;
3865
ebe945c2 3866 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
943a451a
GC
3867 for_each_memcg_cache_index(i) {
3868 c = cache_from_memcg(cachep, i);
3869 if (c)
3870 /* return value determined by the parent cache only */
3871 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3872 }
3873
3874 return ret;
3875}
3876
18004c5d 3877/* Called with slab_mutex held always */
83b519e8 3878static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3879{
3880 int err;
943a451a
GC
3881 int limit = 0;
3882 int shared = 0;
3883 int batchcount = 0;
3884
3885 if (!is_root_cache(cachep)) {
3886 struct kmem_cache *root = memcg_root_cache(cachep);
3887 limit = root->limit;
3888 shared = root->shared;
3889 batchcount = root->batchcount;
3890 }
1da177e4 3891
943a451a
GC
3892 if (limit && shared && batchcount)
3893 goto skip_setup;
a737b3e2
AM
3894 /*
3895 * The head array serves three purposes:
1da177e4
LT
3896 * - create a LIFO ordering, i.e. return objects that are cache-warm
3897 * - reduce the number of spinlock operations.
a737b3e2 3898 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3899 * bufctl chains: array operations are cheaper.
3900 * The numbers are guessed, we should auto-tune as described by
3901 * Bonwick.
3902 */
3b0efdfa 3903 if (cachep->size > 131072)
1da177e4 3904 limit = 1;
3b0efdfa 3905 else if (cachep->size > PAGE_SIZE)
1da177e4 3906 limit = 8;
3b0efdfa 3907 else if (cachep->size > 1024)
1da177e4 3908 limit = 24;
3b0efdfa 3909 else if (cachep->size > 256)
1da177e4
LT
3910 limit = 54;
3911 else
3912 limit = 120;
3913
a737b3e2
AM
3914 /*
3915 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3916 * allocation behaviour: Most allocs on one cpu, most free operations
3917 * on another cpu. For these cases, an efficient object passing between
3918 * cpus is necessary. This is provided by a shared array. The array
3919 * replaces Bonwick's magazine layer.
3920 * On uniprocessor, it's functionally equivalent (but less efficient)
3921 * to a larger limit. Thus disabled by default.
3922 */
3923 shared = 0;
3b0efdfa 3924 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3925 shared = 8;
1da177e4
LT
3926
3927#if DEBUG
a737b3e2
AM
3928 /*
3929 * With debugging enabled, large batchcount lead to excessively long
3930 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3931 */
3932 if (limit > 32)
3933 limit = 32;
3934#endif
943a451a
GC
3935 batchcount = (limit + 1) / 2;
3936skip_setup:
3937 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4
LT
3938 if (err)
3939 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3940 cachep->name, -err);
2ed3a4ef 3941 return err;
1da177e4
LT
3942}
3943
1b55253a 3944/*
ce8eb6c4
CL
3945 * Drain an array if it contains any elements taking the node lock only if
3946 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3947 * if drain_array() is used on the shared array.
1b55253a 3948 */
ce8eb6c4 3949static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
1b55253a 3950 struct array_cache *ac, int force, int node)
1da177e4
LT
3951{
3952 int tofree;
3953
1b55253a
CL
3954 if (!ac || !ac->avail)
3955 return;
1da177e4
LT
3956 if (ac->touched && !force) {
3957 ac->touched = 0;
b18e7e65 3958 } else {
ce8eb6c4 3959 spin_lock_irq(&n->list_lock);
b18e7e65
CL
3960 if (ac->avail) {
3961 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3962 if (tofree > ac->avail)
3963 tofree = (ac->avail + 1) / 2;
3964 free_block(cachep, ac->entry, tofree, node);
3965 ac->avail -= tofree;
3966 memmove(ac->entry, &(ac->entry[tofree]),
3967 sizeof(void *) * ac->avail);
3968 }
ce8eb6c4 3969 spin_unlock_irq(&n->list_lock);
1da177e4
LT
3970 }
3971}
3972
3973/**
3974 * cache_reap - Reclaim memory from caches.
05fb6bf0 3975 * @w: work descriptor
1da177e4
LT
3976 *
3977 * Called from workqueue/eventd every few seconds.
3978 * Purpose:
3979 * - clear the per-cpu caches for this CPU.
3980 * - return freeable pages to the main free memory pool.
3981 *
a737b3e2
AM
3982 * If we cannot acquire the cache chain mutex then just give up - we'll try
3983 * again on the next iteration.
1da177e4 3984 */
7c5cae36 3985static void cache_reap(struct work_struct *w)
1da177e4 3986{
7a7c381d 3987 struct kmem_cache *searchp;
ce8eb6c4 3988 struct kmem_cache_node *n;
7d6e6d09 3989 int node = numa_mem_id();
bf6aede7 3990 struct delayed_work *work = to_delayed_work(w);
1da177e4 3991
18004c5d 3992 if (!mutex_trylock(&slab_mutex))
1da177e4 3993 /* Give up. Setup the next iteration. */
7c5cae36 3994 goto out;
1da177e4 3995
18004c5d 3996 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
3997 check_irq_on();
3998
35386e3b 3999 /*
ce8eb6c4 4000 * We only take the node lock if absolutely necessary and we
35386e3b
CL
4001 * have established with reasonable certainty that
4002 * we can do some work if the lock was obtained.
4003 */
ce8eb6c4 4004 n = searchp->node[node];
35386e3b 4005
ce8eb6c4 4006 reap_alien(searchp, n);
1da177e4 4007
ce8eb6c4 4008 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
1da177e4 4009
35386e3b
CL
4010 /*
4011 * These are racy checks but it does not matter
4012 * if we skip one check or scan twice.
4013 */
ce8eb6c4 4014 if (time_after(n->next_reap, jiffies))
35386e3b 4015 goto next;
1da177e4 4016
ce8eb6c4 4017 n->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4018
ce8eb6c4 4019 drain_array(searchp, n, n->shared, 0, node);
1da177e4 4020
ce8eb6c4
CL
4021 if (n->free_touched)
4022 n->free_touched = 0;
ed11d9eb
CL
4023 else {
4024 int freed;
1da177e4 4025
ce8eb6c4 4026 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4027 5 * searchp->num - 1) / (5 * searchp->num));
4028 STATS_ADD_REAPED(searchp, freed);
4029 }
35386e3b 4030next:
1da177e4
LT
4031 cond_resched();
4032 }
4033 check_irq_on();
18004c5d 4034 mutex_unlock(&slab_mutex);
8fce4d8e 4035 next_reap_node();
7c5cae36 4036out:
a737b3e2 4037 /* Set up the next iteration */
7c5cae36 4038 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4039}
4040
158a9624 4041#ifdef CONFIG_SLABINFO
0d7561c6 4042void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4043{
b28a02de
PE
4044 struct slab *slabp;
4045 unsigned long active_objs;
4046 unsigned long num_objs;
4047 unsigned long active_slabs = 0;
4048 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4049 const char *name;
1da177e4 4050 char *error = NULL;
e498be7d 4051 int node;
ce8eb6c4 4052 struct kmem_cache_node *n;
1da177e4 4053
1da177e4
LT
4054 active_objs = 0;
4055 num_slabs = 0;
e498be7d 4056 for_each_online_node(node) {
ce8eb6c4
CL
4057 n = cachep->node[node];
4058 if (!n)
e498be7d
CL
4059 continue;
4060
ca3b9b91 4061 check_irq_on();
ce8eb6c4 4062 spin_lock_irq(&n->list_lock);
e498be7d 4063
ce8eb6c4 4064 list_for_each_entry(slabp, &n->slabs_full, list) {
106a74e1 4065 if (slabp->active != cachep->num && !error)
e498be7d
CL
4066 error = "slabs_full accounting error";
4067 active_objs += cachep->num;
4068 active_slabs++;
4069 }
ce8eb6c4 4070 list_for_each_entry(slabp, &n->slabs_partial, list) {
106a74e1
JK
4071 if (slabp->active == cachep->num && !error)
4072 error = "slabs_partial accounting error";
4073 if (!slabp->active && !error)
4074 error = "slabs_partial accounting error";
4075 active_objs += slabp->active;
e498be7d
CL
4076 active_slabs++;
4077 }
ce8eb6c4 4078 list_for_each_entry(slabp, &n->slabs_free, list) {
106a74e1
JK
4079 if (slabp->active && !error)
4080 error = "slabs_free accounting error";
e498be7d
CL
4081 num_slabs++;
4082 }
ce8eb6c4
CL
4083 free_objects += n->free_objects;
4084 if (n->shared)
4085 shared_avail += n->shared->avail;
e498be7d 4086
ce8eb6c4 4087 spin_unlock_irq(&n->list_lock);
1da177e4 4088 }
b28a02de
PE
4089 num_slabs += active_slabs;
4090 num_objs = num_slabs * cachep->num;
e498be7d 4091 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4092 error = "free_objects accounting error";
4093
b28a02de 4094 name = cachep->name;
1da177e4
LT
4095 if (error)
4096 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4097
0d7561c6
GC
4098 sinfo->active_objs = active_objs;
4099 sinfo->num_objs = num_objs;
4100 sinfo->active_slabs = active_slabs;
4101 sinfo->num_slabs = num_slabs;
4102 sinfo->shared_avail = shared_avail;
4103 sinfo->limit = cachep->limit;
4104 sinfo->batchcount = cachep->batchcount;
4105 sinfo->shared = cachep->shared;
4106 sinfo->objects_per_slab = cachep->num;
4107 sinfo->cache_order = cachep->gfporder;
4108}
4109
4110void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4111{
1da177e4 4112#if STATS
ce8eb6c4 4113 { /* node stats */
1da177e4
LT
4114 unsigned long high = cachep->high_mark;
4115 unsigned long allocs = cachep->num_allocations;
4116 unsigned long grown = cachep->grown;
4117 unsigned long reaped = cachep->reaped;
4118 unsigned long errors = cachep->errors;
4119 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4120 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4121 unsigned long node_frees = cachep->node_frees;
fb7faf33 4122 unsigned long overflows = cachep->node_overflow;
1da177e4 4123
e92dd4fd
JP
4124 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4125 "%4lu %4lu %4lu %4lu %4lu",
4126 allocs, high, grown,
4127 reaped, errors, max_freeable, node_allocs,
4128 node_frees, overflows);
1da177e4
LT
4129 }
4130 /* cpu stats */
4131 {
4132 unsigned long allochit = atomic_read(&cachep->allochit);
4133 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4134 unsigned long freehit = atomic_read(&cachep->freehit);
4135 unsigned long freemiss = atomic_read(&cachep->freemiss);
4136
4137 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4138 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4139 }
4140#endif
1da177e4
LT
4141}
4142
1da177e4
LT
4143#define MAX_SLABINFO_WRITE 128
4144/**
4145 * slabinfo_write - Tuning for the slab allocator
4146 * @file: unused
4147 * @buffer: user buffer
4148 * @count: data length
4149 * @ppos: unused
4150 */
b7454ad3 4151ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4152 size_t count, loff_t *ppos)
1da177e4 4153{
b28a02de 4154 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4155 int limit, batchcount, shared, res;
7a7c381d 4156 struct kmem_cache *cachep;
b28a02de 4157
1da177e4
LT
4158 if (count > MAX_SLABINFO_WRITE)
4159 return -EINVAL;
4160 if (copy_from_user(&kbuf, buffer, count))
4161 return -EFAULT;
b28a02de 4162 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4163
4164 tmp = strchr(kbuf, ' ');
4165 if (!tmp)
4166 return -EINVAL;
4167 *tmp = '\0';
4168 tmp++;
4169 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4170 return -EINVAL;
4171
4172 /* Find the cache in the chain of caches. */
18004c5d 4173 mutex_lock(&slab_mutex);
1da177e4 4174 res = -EINVAL;
18004c5d 4175 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4176 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4177 if (limit < 1 || batchcount < 1 ||
4178 batchcount > limit || shared < 0) {
e498be7d 4179 res = 0;
1da177e4 4180 } else {
e498be7d 4181 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4182 batchcount, shared,
4183 GFP_KERNEL);
1da177e4
LT
4184 }
4185 break;
4186 }
4187 }
18004c5d 4188 mutex_unlock(&slab_mutex);
1da177e4
LT
4189 if (res >= 0)
4190 res = count;
4191 return res;
4192}
871751e2
AV
4193
4194#ifdef CONFIG_DEBUG_SLAB_LEAK
4195
4196static void *leaks_start(struct seq_file *m, loff_t *pos)
4197{
18004c5d
CL
4198 mutex_lock(&slab_mutex);
4199 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4200}
4201
4202static inline int add_caller(unsigned long *n, unsigned long v)
4203{
4204 unsigned long *p;
4205 int l;
4206 if (!v)
4207 return 1;
4208 l = n[1];
4209 p = n + 2;
4210 while (l) {
4211 int i = l/2;
4212 unsigned long *q = p + 2 * i;
4213 if (*q == v) {
4214 q[1]++;
4215 return 1;
4216 }
4217 if (*q > v) {
4218 l = i;
4219 } else {
4220 p = q + 2;
4221 l -= i + 1;
4222 }
4223 }
4224 if (++n[1] == n[0])
4225 return 0;
4226 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4227 p[0] = v;
4228 p[1] = 1;
4229 return 1;
4230}
4231
4232static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4233{
4234 void *p;
b1cb0982
JK
4235 int i, j;
4236
871751e2
AV
4237 if (n[0] == n[1])
4238 return;
3b0efdfa 4239 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
b1cb0982
JK
4240 bool active = true;
4241
106a74e1 4242 for (j = s->active; j < c->num; j++) {
b1cb0982
JK
4243 /* Skip freed item */
4244 if (slab_bufctl(s)[j] == i) {
4245 active = false;
4246 break;
4247 }
4248 }
4249 if (!active)
871751e2 4250 continue;
b1cb0982 4251
871751e2
AV
4252 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4253 return;
4254 }
4255}
4256
4257static void show_symbol(struct seq_file *m, unsigned long address)
4258{
4259#ifdef CONFIG_KALLSYMS
871751e2 4260 unsigned long offset, size;
9281acea 4261 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4262
a5c43dae 4263 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4264 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4265 if (modname[0])
871751e2
AV
4266 seq_printf(m, " [%s]", modname);
4267 return;
4268 }
4269#endif
4270 seq_printf(m, "%p", (void *)address);
4271}
4272
4273static int leaks_show(struct seq_file *m, void *p)
4274{
0672aa7c 4275 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
871751e2 4276 struct slab *slabp;
ce8eb6c4 4277 struct kmem_cache_node *n;
871751e2 4278 const char *name;
db845067 4279 unsigned long *x = m->private;
871751e2
AV
4280 int node;
4281 int i;
4282
4283 if (!(cachep->flags & SLAB_STORE_USER))
4284 return 0;
4285 if (!(cachep->flags & SLAB_RED_ZONE))
4286 return 0;
4287
4288 /* OK, we can do it */
4289
db845067 4290 x[1] = 0;
871751e2
AV
4291
4292 for_each_online_node(node) {
ce8eb6c4
CL
4293 n = cachep->node[node];
4294 if (!n)
871751e2
AV
4295 continue;
4296
4297 check_irq_on();
ce8eb6c4 4298 spin_lock_irq(&n->list_lock);
871751e2 4299
ce8eb6c4 4300 list_for_each_entry(slabp, &n->slabs_full, list)
db845067 4301 handle_slab(x, cachep, slabp);
ce8eb6c4 4302 list_for_each_entry(slabp, &n->slabs_partial, list)
db845067 4303 handle_slab(x, cachep, slabp);
ce8eb6c4 4304 spin_unlock_irq(&n->list_lock);
871751e2
AV
4305 }
4306 name = cachep->name;
db845067 4307 if (x[0] == x[1]) {
871751e2 4308 /* Increase the buffer size */
18004c5d 4309 mutex_unlock(&slab_mutex);
db845067 4310 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4311 if (!m->private) {
4312 /* Too bad, we are really out */
db845067 4313 m->private = x;
18004c5d 4314 mutex_lock(&slab_mutex);
871751e2
AV
4315 return -ENOMEM;
4316 }
db845067
CL
4317 *(unsigned long *)m->private = x[0] * 2;
4318 kfree(x);
18004c5d 4319 mutex_lock(&slab_mutex);
871751e2
AV
4320 /* Now make sure this entry will be retried */
4321 m->count = m->size;
4322 return 0;
4323 }
db845067
CL
4324 for (i = 0; i < x[1]; i++) {
4325 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4326 show_symbol(m, x[2*i+2]);
871751e2
AV
4327 seq_putc(m, '\n');
4328 }
d2e7b7d0 4329
871751e2
AV
4330 return 0;
4331}
4332
a0ec95a8 4333static const struct seq_operations slabstats_op = {
871751e2 4334 .start = leaks_start,
276a2439
WL
4335 .next = slab_next,
4336 .stop = slab_stop,
871751e2
AV
4337 .show = leaks_show,
4338};
a0ec95a8
AD
4339
4340static int slabstats_open(struct inode *inode, struct file *file)
4341{
4342 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4343 int ret = -ENOMEM;
4344 if (n) {
4345 ret = seq_open(file, &slabstats_op);
4346 if (!ret) {
4347 struct seq_file *m = file->private_data;
4348 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4349 m->private = n;
4350 n = NULL;
4351 }
4352 kfree(n);
4353 }
4354 return ret;
4355}
4356
4357static const struct file_operations proc_slabstats_operations = {
4358 .open = slabstats_open,
4359 .read = seq_read,
4360 .llseek = seq_lseek,
4361 .release = seq_release_private,
4362};
4363#endif
4364
4365static int __init slab_proc_init(void)
4366{
4367#ifdef CONFIG_DEBUG_SLAB_LEAK
4368 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4369#endif
a0ec95a8
AD
4370 return 0;
4371}
4372module_init(slab_proc_init);
1da177e4
LT
4373#endif
4374
00e145b6
MS
4375/**
4376 * ksize - get the actual amount of memory allocated for a given object
4377 * @objp: Pointer to the object
4378 *
4379 * kmalloc may internally round up allocations and return more memory
4380 * than requested. ksize() can be used to determine the actual amount of
4381 * memory allocated. The caller may use this additional memory, even though
4382 * a smaller amount of memory was initially specified with the kmalloc call.
4383 * The caller must guarantee that objp points to a valid object previously
4384 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4385 * must not be freed during the duration of the call.
4386 */
fd76bab2 4387size_t ksize(const void *objp)
1da177e4 4388{
ef8b4520
CL
4389 BUG_ON(!objp);
4390 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4391 return 0;
1da177e4 4392
8c138bc0 4393 return virt_to_cache(objp)->object_size;
1da177e4 4394}
b1aabecd 4395EXPORT_SYMBOL(ksize);