slab: remove cachep in struct slab_rcu
[linux-2.6-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
072bb0aa
MG
160/*
161 * true if a page was allocated from pfmemalloc reserves for network-based
162 * swap
163 */
164static bool pfmemalloc_active __read_mostly;
165
1da177e4
LT
166/*
167 * kmem_bufctl_t:
168 *
169 * Bufctl's are used for linking objs within a slab
170 * linked offsets.
171 *
172 * This implementation relies on "struct page" for locating the cache &
173 * slab an object belongs to.
174 * This allows the bufctl structure to be small (one int), but limits
175 * the number of objects a slab (not a cache) can contain when off-slab
176 * bufctls are used. The limit is the size of the largest general cache
177 * that does not use off-slab slabs.
178 * For 32bit archs with 4 kB pages, is this 56.
179 * This is not serious, as it is only for large objects, when it is unwise
180 * to have too many per slab.
181 * Note: This limit can be raised by introducing a general cache whose size
182 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
183 */
184
fa5b08d5 185typedef unsigned int kmem_bufctl_t;
1da177e4
LT
186#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
187#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
188#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
189#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 190
1da177e4
LT
191/*
192 * struct slab_rcu
193 *
194 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
195 * arrange for kmem_freepages to be called via RCU. This is useful if
196 * we need to approach a kernel structure obliquely, from its address
197 * obtained without the usual locking. We can lock the structure to
198 * stabilize it and check it's still at the given address, only if we
199 * can be sure that the memory has not been meanwhile reused for some
200 * other kind of object (which our subsystem's lock might corrupt).
201 *
202 * rcu_read_lock before reading the address, then rcu_read_unlock after
203 * taking the spinlock within the structure expected at that address.
1da177e4
LT
204 */
205struct slab_rcu {
b28a02de 206 struct rcu_head head;
0c3aa83e 207 struct page *page;
1da177e4
LT
208};
209
5bfe53a7
LJ
210/*
211 * struct slab
212 *
213 * Manages the objs in a slab. Placed either at the beginning of mem allocated
214 * for a slab, or allocated from an general cache.
215 * Slabs are chained into three list: fully used, partial, fully free slabs.
216 */
217struct slab {
218 union {
219 struct {
220 struct list_head list;
5bfe53a7
LJ
221 void *s_mem; /* including colour offset */
222 unsigned int inuse; /* num of objs active in slab */
223 kmem_bufctl_t free;
5bfe53a7
LJ
224 };
225 struct slab_rcu __slab_cover_slab_rcu;
226 };
227};
228
1da177e4
LT
229/*
230 * struct array_cache
231 *
1da177e4
LT
232 * Purpose:
233 * - LIFO ordering, to hand out cache-warm objects from _alloc
234 * - reduce the number of linked list operations
235 * - reduce spinlock operations
236 *
237 * The limit is stored in the per-cpu structure to reduce the data cache
238 * footprint.
239 *
240 */
241struct array_cache {
242 unsigned int avail;
243 unsigned int limit;
244 unsigned int batchcount;
245 unsigned int touched;
e498be7d 246 spinlock_t lock;
bda5b655 247 void *entry[]; /*
a737b3e2
AM
248 * Must have this definition in here for the proper
249 * alignment of array_cache. Also simplifies accessing
250 * the entries.
072bb0aa
MG
251 *
252 * Entries should not be directly dereferenced as
253 * entries belonging to slabs marked pfmemalloc will
254 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 255 */
1da177e4
LT
256};
257
072bb0aa
MG
258#define SLAB_OBJ_PFMEMALLOC 1
259static inline bool is_obj_pfmemalloc(void *objp)
260{
261 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
262}
263
264static inline void set_obj_pfmemalloc(void **objp)
265{
266 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
267 return;
268}
269
270static inline void clear_obj_pfmemalloc(void **objp)
271{
272 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
273}
274
a737b3e2
AM
275/*
276 * bootstrap: The caches do not work without cpuarrays anymore, but the
277 * cpuarrays are allocated from the generic caches...
1da177e4
LT
278 */
279#define BOOT_CPUCACHE_ENTRIES 1
280struct arraycache_init {
281 struct array_cache cache;
b28a02de 282 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
283};
284
e498be7d
CL
285/*
286 * Need this for bootstrapping a per node allocator.
287 */
556a169d 288#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
ce8eb6c4 289static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 290#define CACHE_CACHE 0
556a169d 291#define SIZE_AC MAX_NUMNODES
ce8eb6c4 292#define SIZE_NODE (2 * MAX_NUMNODES)
e498be7d 293
ed11d9eb 294static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 295 struct kmem_cache_node *n, int tofree);
ed11d9eb
CL
296static void free_block(struct kmem_cache *cachep, void **objpp, int len,
297 int node);
83b519e8 298static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 299static void cache_reap(struct work_struct *unused);
ed11d9eb 300
e0a42726
IM
301static int slab_early_init = 1;
302
e3366016 303#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
ce8eb6c4 304#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 305
ce8eb6c4 306static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
307{
308 INIT_LIST_HEAD(&parent->slabs_full);
309 INIT_LIST_HEAD(&parent->slabs_partial);
310 INIT_LIST_HEAD(&parent->slabs_free);
311 parent->shared = NULL;
312 parent->alien = NULL;
2e1217cf 313 parent->colour_next = 0;
e498be7d
CL
314 spin_lock_init(&parent->list_lock);
315 parent->free_objects = 0;
316 parent->free_touched = 0;
317}
318
a737b3e2
AM
319#define MAKE_LIST(cachep, listp, slab, nodeid) \
320 do { \
321 INIT_LIST_HEAD(listp); \
6a67368c 322 list_splice(&(cachep->node[nodeid]->slab), listp); \
e498be7d
CL
323 } while (0)
324
a737b3e2
AM
325#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
326 do { \
e498be7d
CL
327 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
328 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
329 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
330 } while (0)
1da177e4 331
1da177e4
LT
332#define CFLGS_OFF_SLAB (0x80000000UL)
333#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
334
335#define BATCHREFILL_LIMIT 16
a737b3e2
AM
336/*
337 * Optimization question: fewer reaps means less probability for unnessary
338 * cpucache drain/refill cycles.
1da177e4 339 *
dc6f3f27 340 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
341 * which could lock up otherwise freeable slabs.
342 */
343#define REAPTIMEOUT_CPUC (2*HZ)
344#define REAPTIMEOUT_LIST3 (4*HZ)
345
346#if STATS
347#define STATS_INC_ACTIVE(x) ((x)->num_active++)
348#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
349#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
350#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 351#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
352#define STATS_SET_HIGH(x) \
353 do { \
354 if ((x)->num_active > (x)->high_mark) \
355 (x)->high_mark = (x)->num_active; \
356 } while (0)
1da177e4
LT
357#define STATS_INC_ERR(x) ((x)->errors++)
358#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 359#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 360#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
361#define STATS_SET_FREEABLE(x, i) \
362 do { \
363 if ((x)->max_freeable < i) \
364 (x)->max_freeable = i; \
365 } while (0)
1da177e4
LT
366#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
367#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
368#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
369#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
370#else
371#define STATS_INC_ACTIVE(x) do { } while (0)
372#define STATS_DEC_ACTIVE(x) do { } while (0)
373#define STATS_INC_ALLOCED(x) do { } while (0)
374#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 375#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
376#define STATS_SET_HIGH(x) do { } while (0)
377#define STATS_INC_ERR(x) do { } while (0)
378#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 379#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 380#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 381#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
382#define STATS_INC_ALLOCHIT(x) do { } while (0)
383#define STATS_INC_ALLOCMISS(x) do { } while (0)
384#define STATS_INC_FREEHIT(x) do { } while (0)
385#define STATS_INC_FREEMISS(x) do { } while (0)
386#endif
387
388#if DEBUG
1da177e4 389
a737b3e2
AM
390/*
391 * memory layout of objects:
1da177e4 392 * 0 : objp
3dafccf2 393 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
394 * the end of an object is aligned with the end of the real
395 * allocation. Catches writes behind the end of the allocation.
3dafccf2 396 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 397 * redzone word.
3dafccf2 398 * cachep->obj_offset: The real object.
3b0efdfa
CL
399 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
400 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 401 * [BYTES_PER_WORD long]
1da177e4 402 */
343e0d7a 403static int obj_offset(struct kmem_cache *cachep)
1da177e4 404{
3dafccf2 405 return cachep->obj_offset;
1da177e4
LT
406}
407
b46b8f19 408static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
409{
410 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
411 return (unsigned long long*) (objp + obj_offset(cachep) -
412 sizeof(unsigned long long));
1da177e4
LT
413}
414
b46b8f19 415static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
416{
417 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
418 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 419 return (unsigned long long *)(objp + cachep->size -
b46b8f19 420 sizeof(unsigned long long) -
87a927c7 421 REDZONE_ALIGN);
3b0efdfa 422 return (unsigned long long *) (objp + cachep->size -
b46b8f19 423 sizeof(unsigned long long));
1da177e4
LT
424}
425
343e0d7a 426static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
427{
428 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 429 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
430}
431
432#else
433
3dafccf2 434#define obj_offset(x) 0
b46b8f19
DW
435#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
436#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
437#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
438
439#endif
440
1da177e4 441/*
3df1cccd
DR
442 * Do not go above this order unless 0 objects fit into the slab or
443 * overridden on the command line.
1da177e4 444 */
543585cc
DR
445#define SLAB_MAX_ORDER_HI 1
446#define SLAB_MAX_ORDER_LO 0
447static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 448static bool slab_max_order_set __initdata;
1da177e4 449
6ed5eb22
PE
450static inline struct kmem_cache *virt_to_cache(const void *obj)
451{
b49af68f 452 struct page *page = virt_to_head_page(obj);
35026088 453 return page->slab_cache;
6ed5eb22
PE
454}
455
456static inline struct slab *virt_to_slab(const void *obj)
457{
b49af68f 458 struct page *page = virt_to_head_page(obj);
35026088
CL
459
460 VM_BUG_ON(!PageSlab(page));
461 return page->slab_page;
6ed5eb22
PE
462}
463
8fea4e96
PE
464static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
465 unsigned int idx)
466{
3b0efdfa 467 return slab->s_mem + cache->size * idx;
8fea4e96
PE
468}
469
6a2d7a95 470/*
3b0efdfa
CL
471 * We want to avoid an expensive divide : (offset / cache->size)
472 * Using the fact that size is a constant for a particular cache,
473 * we can replace (offset / cache->size) by
6a2d7a95
ED
474 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
475 */
476static inline unsigned int obj_to_index(const struct kmem_cache *cache,
477 const struct slab *slab, void *obj)
8fea4e96 478{
6a2d7a95
ED
479 u32 offset = (obj - slab->s_mem);
480 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
481}
482
1da177e4 483static struct arraycache_init initarray_generic =
b28a02de 484 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
485
486/* internal cache of cache description objs */
9b030cb8 487static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
488 .batchcount = 1,
489 .limit = BOOT_CPUCACHE_ENTRIES,
490 .shared = 1,
3b0efdfa 491 .size = sizeof(struct kmem_cache),
b28a02de 492 .name = "kmem_cache",
1da177e4
LT
493};
494
056c6241
RT
495#define BAD_ALIEN_MAGIC 0x01020304ul
496
f1aaee53
AV
497#ifdef CONFIG_LOCKDEP
498
499/*
500 * Slab sometimes uses the kmalloc slabs to store the slab headers
501 * for other slabs "off slab".
502 * The locking for this is tricky in that it nests within the locks
503 * of all other slabs in a few places; to deal with this special
504 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
505 *
506 * We set lock class for alien array caches which are up during init.
507 * The lock annotation will be lost if all cpus of a node goes down and
508 * then comes back up during hotplug
f1aaee53 509 */
056c6241
RT
510static struct lock_class_key on_slab_l3_key;
511static struct lock_class_key on_slab_alc_key;
512
83835b3d
PZ
513static struct lock_class_key debugobj_l3_key;
514static struct lock_class_key debugobj_alc_key;
515
516static void slab_set_lock_classes(struct kmem_cache *cachep,
517 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
518 int q)
519{
520 struct array_cache **alc;
ce8eb6c4 521 struct kmem_cache_node *n;
83835b3d
PZ
522 int r;
523
ce8eb6c4
CL
524 n = cachep->node[q];
525 if (!n)
83835b3d
PZ
526 return;
527
ce8eb6c4
CL
528 lockdep_set_class(&n->list_lock, l3_key);
529 alc = n->alien;
83835b3d
PZ
530 /*
531 * FIXME: This check for BAD_ALIEN_MAGIC
532 * should go away when common slab code is taught to
533 * work even without alien caches.
534 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
535 * for alloc_alien_cache,
536 */
537 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
538 return;
539 for_each_node(r) {
540 if (alc[r])
541 lockdep_set_class(&alc[r]->lock, alc_key);
542 }
543}
544
545static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
546{
547 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
548}
549
550static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
551{
552 int node;
553
554 for_each_online_node(node)
555 slab_set_debugobj_lock_classes_node(cachep, node);
556}
557
ce79ddc8 558static void init_node_lock_keys(int q)
f1aaee53 559{
e3366016 560 int i;
056c6241 561
97d06609 562 if (slab_state < UP)
ce79ddc8
PE
563 return;
564
0f8f8094 565 for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
ce8eb6c4 566 struct kmem_cache_node *n;
e3366016
CL
567 struct kmem_cache *cache = kmalloc_caches[i];
568
569 if (!cache)
570 continue;
ce79ddc8 571
ce8eb6c4
CL
572 n = cache->node[q];
573 if (!n || OFF_SLAB(cache))
00afa758 574 continue;
83835b3d 575
e3366016 576 slab_set_lock_classes(cache, &on_slab_l3_key,
83835b3d 577 &on_slab_alc_key, q);
f1aaee53
AV
578 }
579}
ce79ddc8 580
6ccfb5bc
GC
581static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
582{
6a67368c 583 if (!cachep->node[q])
6ccfb5bc
GC
584 return;
585
586 slab_set_lock_classes(cachep, &on_slab_l3_key,
587 &on_slab_alc_key, q);
588}
589
590static inline void on_slab_lock_classes(struct kmem_cache *cachep)
591{
592 int node;
593
594 VM_BUG_ON(OFF_SLAB(cachep));
595 for_each_node(node)
596 on_slab_lock_classes_node(cachep, node);
597}
598
ce79ddc8
PE
599static inline void init_lock_keys(void)
600{
601 int node;
602
603 for_each_node(node)
604 init_node_lock_keys(node);
605}
f1aaee53 606#else
ce79ddc8
PE
607static void init_node_lock_keys(int q)
608{
609}
610
056c6241 611static inline void init_lock_keys(void)
f1aaee53
AV
612{
613}
83835b3d 614
6ccfb5bc
GC
615static inline void on_slab_lock_classes(struct kmem_cache *cachep)
616{
617}
618
619static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
620{
621}
622
83835b3d
PZ
623static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
624{
625}
626
627static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
628{
629}
f1aaee53
AV
630#endif
631
1871e52c 632static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 633
343e0d7a 634static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
635{
636 return cachep->array[smp_processor_id()];
637}
638
fbaccacf 639static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 640{
fbaccacf
SR
641 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
642}
1da177e4 643
a737b3e2
AM
644/*
645 * Calculate the number of objects and left-over bytes for a given buffer size.
646 */
fbaccacf
SR
647static void cache_estimate(unsigned long gfporder, size_t buffer_size,
648 size_t align, int flags, size_t *left_over,
649 unsigned int *num)
650{
651 int nr_objs;
652 size_t mgmt_size;
653 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 654
fbaccacf
SR
655 /*
656 * The slab management structure can be either off the slab or
657 * on it. For the latter case, the memory allocated for a
658 * slab is used for:
659 *
660 * - The struct slab
661 * - One kmem_bufctl_t for each object
662 * - Padding to respect alignment of @align
663 * - @buffer_size bytes for each object
664 *
665 * If the slab management structure is off the slab, then the
666 * alignment will already be calculated into the size. Because
667 * the slabs are all pages aligned, the objects will be at the
668 * correct alignment when allocated.
669 */
670 if (flags & CFLGS_OFF_SLAB) {
671 mgmt_size = 0;
672 nr_objs = slab_size / buffer_size;
673
674 if (nr_objs > SLAB_LIMIT)
675 nr_objs = SLAB_LIMIT;
676 } else {
677 /*
678 * Ignore padding for the initial guess. The padding
679 * is at most @align-1 bytes, and @buffer_size is at
680 * least @align. In the worst case, this result will
681 * be one greater than the number of objects that fit
682 * into the memory allocation when taking the padding
683 * into account.
684 */
685 nr_objs = (slab_size - sizeof(struct slab)) /
686 (buffer_size + sizeof(kmem_bufctl_t));
687
688 /*
689 * This calculated number will be either the right
690 * amount, or one greater than what we want.
691 */
692 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
693 > slab_size)
694 nr_objs--;
695
696 if (nr_objs > SLAB_LIMIT)
697 nr_objs = SLAB_LIMIT;
698
699 mgmt_size = slab_mgmt_size(nr_objs, align);
700 }
701 *num = nr_objs;
702 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
703}
704
f28510d3 705#if DEBUG
d40cee24 706#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 707
a737b3e2
AM
708static void __slab_error(const char *function, struct kmem_cache *cachep,
709 char *msg)
1da177e4
LT
710{
711 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 712 function, cachep->name, msg);
1da177e4 713 dump_stack();
373d4d09 714 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 715}
f28510d3 716#endif
1da177e4 717
3395ee05
PM
718/*
719 * By default on NUMA we use alien caches to stage the freeing of
720 * objects allocated from other nodes. This causes massive memory
721 * inefficiencies when using fake NUMA setup to split memory into a
722 * large number of small nodes, so it can be disabled on the command
723 * line
724 */
725
726static int use_alien_caches __read_mostly = 1;
727static int __init noaliencache_setup(char *s)
728{
729 use_alien_caches = 0;
730 return 1;
731}
732__setup("noaliencache", noaliencache_setup);
733
3df1cccd
DR
734static int __init slab_max_order_setup(char *str)
735{
736 get_option(&str, &slab_max_order);
737 slab_max_order = slab_max_order < 0 ? 0 :
738 min(slab_max_order, MAX_ORDER - 1);
739 slab_max_order_set = true;
740
741 return 1;
742}
743__setup("slab_max_order=", slab_max_order_setup);
744
8fce4d8e
CL
745#ifdef CONFIG_NUMA
746/*
747 * Special reaping functions for NUMA systems called from cache_reap().
748 * These take care of doing round robin flushing of alien caches (containing
749 * objects freed on different nodes from which they were allocated) and the
750 * flushing of remote pcps by calling drain_node_pages.
751 */
1871e52c 752static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
753
754static void init_reap_node(int cpu)
755{
756 int node;
757
7d6e6d09 758 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 759 if (node == MAX_NUMNODES)
442295c9 760 node = first_node(node_online_map);
8fce4d8e 761
1871e52c 762 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
763}
764
765static void next_reap_node(void)
766{
909ea964 767 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 768
8fce4d8e
CL
769 node = next_node(node, node_online_map);
770 if (unlikely(node >= MAX_NUMNODES))
771 node = first_node(node_online_map);
909ea964 772 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
773}
774
775#else
776#define init_reap_node(cpu) do { } while (0)
777#define next_reap_node(void) do { } while (0)
778#endif
779
1da177e4
LT
780/*
781 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
782 * via the workqueue/eventd.
783 * Add the CPU number into the expiration time to minimize the possibility of
784 * the CPUs getting into lockstep and contending for the global cache chain
785 * lock.
786 */
0db0628d 787static void start_cpu_timer(int cpu)
1da177e4 788{
1871e52c 789 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
790
791 /*
792 * When this gets called from do_initcalls via cpucache_init(),
793 * init_workqueues() has already run, so keventd will be setup
794 * at that time.
795 */
52bad64d 796 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 797 init_reap_node(cpu);
203b42f7 798 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
799 schedule_delayed_work_on(cpu, reap_work,
800 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
801 }
802}
803
e498be7d 804static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 805 int batchcount, gfp_t gfp)
1da177e4 806{
b28a02de 807 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
808 struct array_cache *nc = NULL;
809
83b519e8 810 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
811 /*
812 * The array_cache structures contain pointers to free object.
25985edc 813 * However, when such objects are allocated or transferred to another
d5cff635
CM
814 * cache the pointers are not cleared and they could be counted as
815 * valid references during a kmemleak scan. Therefore, kmemleak must
816 * not scan such objects.
817 */
818 kmemleak_no_scan(nc);
1da177e4
LT
819 if (nc) {
820 nc->avail = 0;
821 nc->limit = entries;
822 nc->batchcount = batchcount;
823 nc->touched = 0;
e498be7d 824 spin_lock_init(&nc->lock);
1da177e4
LT
825 }
826 return nc;
827}
828
072bb0aa
MG
829static inline bool is_slab_pfmemalloc(struct slab *slabp)
830{
831 struct page *page = virt_to_page(slabp->s_mem);
832
833 return PageSlabPfmemalloc(page);
834}
835
836/* Clears pfmemalloc_active if no slabs have pfmalloc set */
837static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
838 struct array_cache *ac)
839{
ce8eb6c4 840 struct kmem_cache_node *n = cachep->node[numa_mem_id()];
072bb0aa
MG
841 struct slab *slabp;
842 unsigned long flags;
843
844 if (!pfmemalloc_active)
845 return;
846
ce8eb6c4
CL
847 spin_lock_irqsave(&n->list_lock, flags);
848 list_for_each_entry(slabp, &n->slabs_full, list)
072bb0aa
MG
849 if (is_slab_pfmemalloc(slabp))
850 goto out;
851
ce8eb6c4 852 list_for_each_entry(slabp, &n->slabs_partial, list)
072bb0aa
MG
853 if (is_slab_pfmemalloc(slabp))
854 goto out;
855
ce8eb6c4 856 list_for_each_entry(slabp, &n->slabs_free, list)
072bb0aa
MG
857 if (is_slab_pfmemalloc(slabp))
858 goto out;
859
860 pfmemalloc_active = false;
861out:
ce8eb6c4 862 spin_unlock_irqrestore(&n->list_lock, flags);
072bb0aa
MG
863}
864
381760ea 865static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
866 gfp_t flags, bool force_refill)
867{
868 int i;
869 void *objp = ac->entry[--ac->avail];
870
871 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
872 if (unlikely(is_obj_pfmemalloc(objp))) {
ce8eb6c4 873 struct kmem_cache_node *n;
072bb0aa
MG
874
875 if (gfp_pfmemalloc_allowed(flags)) {
876 clear_obj_pfmemalloc(&objp);
877 return objp;
878 }
879
880 /* The caller cannot use PFMEMALLOC objects, find another one */
d014dc2e 881 for (i = 0; i < ac->avail; i++) {
072bb0aa
MG
882 /* If a !PFMEMALLOC object is found, swap them */
883 if (!is_obj_pfmemalloc(ac->entry[i])) {
884 objp = ac->entry[i];
885 ac->entry[i] = ac->entry[ac->avail];
886 ac->entry[ac->avail] = objp;
887 return objp;
888 }
889 }
890
891 /*
892 * If there are empty slabs on the slabs_free list and we are
893 * being forced to refill the cache, mark this one !pfmemalloc.
894 */
ce8eb6c4
CL
895 n = cachep->node[numa_mem_id()];
896 if (!list_empty(&n->slabs_free) && force_refill) {
072bb0aa 897 struct slab *slabp = virt_to_slab(objp);
30c29bea 898 ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
072bb0aa
MG
899 clear_obj_pfmemalloc(&objp);
900 recheck_pfmemalloc_active(cachep, ac);
901 return objp;
902 }
903
904 /* No !PFMEMALLOC objects available */
905 ac->avail++;
906 objp = NULL;
907 }
908
909 return objp;
910}
911
381760ea
MG
912static inline void *ac_get_obj(struct kmem_cache *cachep,
913 struct array_cache *ac, gfp_t flags, bool force_refill)
914{
915 void *objp;
916
917 if (unlikely(sk_memalloc_socks()))
918 objp = __ac_get_obj(cachep, ac, flags, force_refill);
919 else
920 objp = ac->entry[--ac->avail];
921
922 return objp;
923}
924
925static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
926 void *objp)
927{
928 if (unlikely(pfmemalloc_active)) {
929 /* Some pfmemalloc slabs exist, check if this is one */
73293c2f
JK
930 struct slab *slabp = virt_to_slab(objp);
931 struct page *page = virt_to_head_page(slabp->s_mem);
072bb0aa
MG
932 if (PageSlabPfmemalloc(page))
933 set_obj_pfmemalloc(&objp);
934 }
935
381760ea
MG
936 return objp;
937}
938
939static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
940 void *objp)
941{
942 if (unlikely(sk_memalloc_socks()))
943 objp = __ac_put_obj(cachep, ac, objp);
944
072bb0aa
MG
945 ac->entry[ac->avail++] = objp;
946}
947
3ded175a
CL
948/*
949 * Transfer objects in one arraycache to another.
950 * Locking must be handled by the caller.
951 *
952 * Return the number of entries transferred.
953 */
954static int transfer_objects(struct array_cache *to,
955 struct array_cache *from, unsigned int max)
956{
957 /* Figure out how many entries to transfer */
732eacc0 958 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
959
960 if (!nr)
961 return 0;
962
963 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
964 sizeof(void *) *nr);
965
966 from->avail -= nr;
967 to->avail += nr;
3ded175a
CL
968 return nr;
969}
970
765c4507
CL
971#ifndef CONFIG_NUMA
972
973#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 974#define reap_alien(cachep, n) do { } while (0)
765c4507 975
83b519e8 976static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
977{
978 return (struct array_cache **)BAD_ALIEN_MAGIC;
979}
980
981static inline void free_alien_cache(struct array_cache **ac_ptr)
982{
983}
984
985static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
986{
987 return 0;
988}
989
990static inline void *alternate_node_alloc(struct kmem_cache *cachep,
991 gfp_t flags)
992{
993 return NULL;
994}
995
8b98c169 996static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
997 gfp_t flags, int nodeid)
998{
999 return NULL;
1000}
1001
1002#else /* CONFIG_NUMA */
1003
8b98c169 1004static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1005static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1006
83b519e8 1007static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
1008{
1009 struct array_cache **ac_ptr;
8ef82866 1010 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1011 int i;
1012
1013 if (limit > 1)
1014 limit = 12;
f3186a9c 1015 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
1016 if (ac_ptr) {
1017 for_each_node(i) {
f3186a9c 1018 if (i == node || !node_online(i))
e498be7d 1019 continue;
83b519e8 1020 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 1021 if (!ac_ptr[i]) {
cc550def 1022 for (i--; i >= 0; i--)
e498be7d
CL
1023 kfree(ac_ptr[i]);
1024 kfree(ac_ptr);
1025 return NULL;
1026 }
1027 }
1028 }
1029 return ac_ptr;
1030}
1031
5295a74c 1032static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1033{
1034 int i;
1035
1036 if (!ac_ptr)
1037 return;
e498be7d 1038 for_each_node(i)
b28a02de 1039 kfree(ac_ptr[i]);
e498be7d
CL
1040 kfree(ac_ptr);
1041}
1042
343e0d7a 1043static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1044 struct array_cache *ac, int node)
e498be7d 1045{
ce8eb6c4 1046 struct kmem_cache_node *n = cachep->node[node];
e498be7d
CL
1047
1048 if (ac->avail) {
ce8eb6c4 1049 spin_lock(&n->list_lock);
e00946fe
CL
1050 /*
1051 * Stuff objects into the remote nodes shared array first.
1052 * That way we could avoid the overhead of putting the objects
1053 * into the free lists and getting them back later.
1054 */
ce8eb6c4
CL
1055 if (n->shared)
1056 transfer_objects(n->shared, ac, ac->limit);
e00946fe 1057
ff69416e 1058 free_block(cachep, ac->entry, ac->avail, node);
e498be7d 1059 ac->avail = 0;
ce8eb6c4 1060 spin_unlock(&n->list_lock);
e498be7d
CL
1061 }
1062}
1063
8fce4d8e
CL
1064/*
1065 * Called from cache_reap() to regularly drain alien caches round robin.
1066 */
ce8eb6c4 1067static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 1068{
909ea964 1069 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 1070
ce8eb6c4
CL
1071 if (n->alien) {
1072 struct array_cache *ac = n->alien[node];
e00946fe
CL
1073
1074 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1075 __drain_alien_cache(cachep, ac, node);
1076 spin_unlock_irq(&ac->lock);
1077 }
1078 }
1079}
1080
a737b3e2
AM
1081static void drain_alien_cache(struct kmem_cache *cachep,
1082 struct array_cache **alien)
e498be7d 1083{
b28a02de 1084 int i = 0;
e498be7d
CL
1085 struct array_cache *ac;
1086 unsigned long flags;
1087
1088 for_each_online_node(i) {
4484ebf1 1089 ac = alien[i];
e498be7d
CL
1090 if (ac) {
1091 spin_lock_irqsave(&ac->lock, flags);
1092 __drain_alien_cache(cachep, ac, i);
1093 spin_unlock_irqrestore(&ac->lock, flags);
1094 }
1095 }
1096}
729bd0b7 1097
873623df 1098static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7 1099{
1ea991b0 1100 int nodeid = page_to_nid(virt_to_page(objp));
ce8eb6c4 1101 struct kmem_cache_node *n;
729bd0b7 1102 struct array_cache *alien = NULL;
1ca4cb24
PE
1103 int node;
1104
7d6e6d09 1105 node = numa_mem_id();
729bd0b7
PE
1106
1107 /*
1108 * Make sure we are not freeing a object from another node to the array
1109 * cache on this cpu.
1110 */
1ea991b0 1111 if (likely(nodeid == node))
729bd0b7
PE
1112 return 0;
1113
ce8eb6c4 1114 n = cachep->node[node];
729bd0b7 1115 STATS_INC_NODEFREES(cachep);
ce8eb6c4
CL
1116 if (n->alien && n->alien[nodeid]) {
1117 alien = n->alien[nodeid];
873623df 1118 spin_lock(&alien->lock);
729bd0b7
PE
1119 if (unlikely(alien->avail == alien->limit)) {
1120 STATS_INC_ACOVERFLOW(cachep);
1121 __drain_alien_cache(cachep, alien, nodeid);
1122 }
072bb0aa 1123 ac_put_obj(cachep, alien, objp);
729bd0b7
PE
1124 spin_unlock(&alien->lock);
1125 } else {
6a67368c 1126 spin_lock(&(cachep->node[nodeid])->list_lock);
729bd0b7 1127 free_block(cachep, &objp, 1, nodeid);
6a67368c 1128 spin_unlock(&(cachep->node[nodeid])->list_lock);
729bd0b7
PE
1129 }
1130 return 1;
1131}
e498be7d
CL
1132#endif
1133
8f9f8d9e 1134/*
6a67368c 1135 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 1136 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 1137 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 1138 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
1139 * already in use.
1140 *
18004c5d 1141 * Must hold slab_mutex.
8f9f8d9e 1142 */
6a67368c 1143static int init_cache_node_node(int node)
8f9f8d9e
DR
1144{
1145 struct kmem_cache *cachep;
ce8eb6c4 1146 struct kmem_cache_node *n;
6744f087 1147 const int memsize = sizeof(struct kmem_cache_node);
8f9f8d9e 1148
18004c5d 1149 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1150 /*
1151 * Set up the size64 kmemlist for cpu before we can
1152 * begin anything. Make sure some other cpu on this
1153 * node has not already allocated this
1154 */
6a67368c 1155 if (!cachep->node[node]) {
ce8eb6c4
CL
1156 n = kmalloc_node(memsize, GFP_KERNEL, node);
1157 if (!n)
8f9f8d9e 1158 return -ENOMEM;
ce8eb6c4
CL
1159 kmem_cache_node_init(n);
1160 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
8f9f8d9e
DR
1161 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1162
1163 /*
1164 * The l3s don't come and go as CPUs come and
18004c5d 1165 * go. slab_mutex is sufficient
8f9f8d9e
DR
1166 * protection here.
1167 */
ce8eb6c4 1168 cachep->node[node] = n;
8f9f8d9e
DR
1169 }
1170
6a67368c
CL
1171 spin_lock_irq(&cachep->node[node]->list_lock);
1172 cachep->node[node]->free_limit =
8f9f8d9e
DR
1173 (1 + nr_cpus_node(node)) *
1174 cachep->batchcount + cachep->num;
6a67368c 1175 spin_unlock_irq(&cachep->node[node]->list_lock);
8f9f8d9e
DR
1176 }
1177 return 0;
1178}
1179
0fa8103b
WL
1180static inline int slabs_tofree(struct kmem_cache *cachep,
1181 struct kmem_cache_node *n)
1182{
1183 return (n->free_objects + cachep->num - 1) / cachep->num;
1184}
1185
0db0628d 1186static void cpuup_canceled(long cpu)
fbf1e473
AM
1187{
1188 struct kmem_cache *cachep;
ce8eb6c4 1189 struct kmem_cache_node *n = NULL;
7d6e6d09 1190 int node = cpu_to_mem(cpu);
a70f7302 1191 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1192
18004c5d 1193 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1194 struct array_cache *nc;
1195 struct array_cache *shared;
1196 struct array_cache **alien;
fbf1e473 1197
fbf1e473
AM
1198 /* cpu is dead; no one can alloc from it. */
1199 nc = cachep->array[cpu];
1200 cachep->array[cpu] = NULL;
ce8eb6c4 1201 n = cachep->node[node];
fbf1e473 1202
ce8eb6c4 1203 if (!n)
fbf1e473
AM
1204 goto free_array_cache;
1205
ce8eb6c4 1206 spin_lock_irq(&n->list_lock);
fbf1e473 1207
ce8eb6c4
CL
1208 /* Free limit for this kmem_cache_node */
1209 n->free_limit -= cachep->batchcount;
fbf1e473
AM
1210 if (nc)
1211 free_block(cachep, nc->entry, nc->avail, node);
1212
58463c1f 1213 if (!cpumask_empty(mask)) {
ce8eb6c4 1214 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1215 goto free_array_cache;
1216 }
1217
ce8eb6c4 1218 shared = n->shared;
fbf1e473
AM
1219 if (shared) {
1220 free_block(cachep, shared->entry,
1221 shared->avail, node);
ce8eb6c4 1222 n->shared = NULL;
fbf1e473
AM
1223 }
1224
ce8eb6c4
CL
1225 alien = n->alien;
1226 n->alien = NULL;
fbf1e473 1227
ce8eb6c4 1228 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1229
1230 kfree(shared);
1231 if (alien) {
1232 drain_alien_cache(cachep, alien);
1233 free_alien_cache(alien);
1234 }
1235free_array_cache:
1236 kfree(nc);
1237 }
1238 /*
1239 * In the previous loop, all the objects were freed to
1240 * the respective cache's slabs, now we can go ahead and
1241 * shrink each nodelist to its limit.
1242 */
18004c5d 1243 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4
CL
1244 n = cachep->node[node];
1245 if (!n)
fbf1e473 1246 continue;
0fa8103b 1247 drain_freelist(cachep, n, slabs_tofree(cachep, n));
fbf1e473
AM
1248 }
1249}
1250
0db0628d 1251static int cpuup_prepare(long cpu)
1da177e4 1252{
343e0d7a 1253 struct kmem_cache *cachep;
ce8eb6c4 1254 struct kmem_cache_node *n = NULL;
7d6e6d09 1255 int node = cpu_to_mem(cpu);
8f9f8d9e 1256 int err;
1da177e4 1257
fbf1e473
AM
1258 /*
1259 * We need to do this right in the beginning since
1260 * alloc_arraycache's are going to use this list.
1261 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1262 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1263 */
6a67368c 1264 err = init_cache_node_node(node);
8f9f8d9e
DR
1265 if (err < 0)
1266 goto bad;
fbf1e473
AM
1267
1268 /*
1269 * Now we can go ahead with allocating the shared arrays and
1270 * array caches
1271 */
18004c5d 1272 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1273 struct array_cache *nc;
1274 struct array_cache *shared = NULL;
1275 struct array_cache **alien = NULL;
1276
1277 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1278 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1279 if (!nc)
1280 goto bad;
1281 if (cachep->shared) {
1282 shared = alloc_arraycache(node,
1283 cachep->shared * cachep->batchcount,
83b519e8 1284 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1285 if (!shared) {
1286 kfree(nc);
1da177e4 1287 goto bad;
12d00f6a 1288 }
fbf1e473
AM
1289 }
1290 if (use_alien_caches) {
83b519e8 1291 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1292 if (!alien) {
1293 kfree(shared);
1294 kfree(nc);
fbf1e473 1295 goto bad;
12d00f6a 1296 }
fbf1e473
AM
1297 }
1298 cachep->array[cpu] = nc;
ce8eb6c4
CL
1299 n = cachep->node[node];
1300 BUG_ON(!n);
fbf1e473 1301
ce8eb6c4
CL
1302 spin_lock_irq(&n->list_lock);
1303 if (!n->shared) {
fbf1e473
AM
1304 /*
1305 * We are serialised from CPU_DEAD or
1306 * CPU_UP_CANCELLED by the cpucontrol lock
1307 */
ce8eb6c4 1308 n->shared = shared;
fbf1e473
AM
1309 shared = NULL;
1310 }
4484ebf1 1311#ifdef CONFIG_NUMA
ce8eb6c4
CL
1312 if (!n->alien) {
1313 n->alien = alien;
fbf1e473 1314 alien = NULL;
1da177e4 1315 }
fbf1e473 1316#endif
ce8eb6c4 1317 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1318 kfree(shared);
1319 free_alien_cache(alien);
83835b3d
PZ
1320 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1321 slab_set_debugobj_lock_classes_node(cachep, node);
6ccfb5bc
GC
1322 else if (!OFF_SLAB(cachep) &&
1323 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1324 on_slab_lock_classes_node(cachep, node);
fbf1e473 1325 }
ce79ddc8
PE
1326 init_node_lock_keys(node);
1327
fbf1e473
AM
1328 return 0;
1329bad:
12d00f6a 1330 cpuup_canceled(cpu);
fbf1e473
AM
1331 return -ENOMEM;
1332}
1333
0db0628d 1334static int cpuup_callback(struct notifier_block *nfb,
fbf1e473
AM
1335 unsigned long action, void *hcpu)
1336{
1337 long cpu = (long)hcpu;
1338 int err = 0;
1339
1340 switch (action) {
fbf1e473
AM
1341 case CPU_UP_PREPARE:
1342 case CPU_UP_PREPARE_FROZEN:
18004c5d 1343 mutex_lock(&slab_mutex);
fbf1e473 1344 err = cpuup_prepare(cpu);
18004c5d 1345 mutex_unlock(&slab_mutex);
1da177e4
LT
1346 break;
1347 case CPU_ONLINE:
8bb78442 1348 case CPU_ONLINE_FROZEN:
1da177e4
LT
1349 start_cpu_timer(cpu);
1350 break;
1351#ifdef CONFIG_HOTPLUG_CPU
5830c590 1352 case CPU_DOWN_PREPARE:
8bb78442 1353 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1354 /*
18004c5d 1355 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1356 * held so that if cache_reap() is invoked it cannot do
1357 * anything expensive but will only modify reap_work
1358 * and reschedule the timer.
1359 */
afe2c511 1360 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1361 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1362 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1363 break;
1364 case CPU_DOWN_FAILED:
8bb78442 1365 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1366 start_cpu_timer(cpu);
1367 break;
1da177e4 1368 case CPU_DEAD:
8bb78442 1369 case CPU_DEAD_FROZEN:
4484ebf1
RT
1370 /*
1371 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1372 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1373 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1374 * memory from the node of the cpu going down. The node
4484ebf1
RT
1375 * structure is usually allocated from kmem_cache_create() and
1376 * gets destroyed at kmem_cache_destroy().
1377 */
183ff22b 1378 /* fall through */
8f5be20b 1379#endif
1da177e4 1380 case CPU_UP_CANCELED:
8bb78442 1381 case CPU_UP_CANCELED_FROZEN:
18004c5d 1382 mutex_lock(&slab_mutex);
fbf1e473 1383 cpuup_canceled(cpu);
18004c5d 1384 mutex_unlock(&slab_mutex);
1da177e4 1385 break;
1da177e4 1386 }
eac40680 1387 return notifier_from_errno(err);
1da177e4
LT
1388}
1389
0db0628d 1390static struct notifier_block cpucache_notifier = {
74b85f37
CS
1391 &cpuup_callback, NULL, 0
1392};
1da177e4 1393
8f9f8d9e
DR
1394#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1395/*
1396 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1397 * Returns -EBUSY if all objects cannot be drained so that the node is not
1398 * removed.
1399 *
18004c5d 1400 * Must hold slab_mutex.
8f9f8d9e 1401 */
6a67368c 1402static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1403{
1404 struct kmem_cache *cachep;
1405 int ret = 0;
1406
18004c5d 1407 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1408 struct kmem_cache_node *n;
8f9f8d9e 1409
ce8eb6c4
CL
1410 n = cachep->node[node];
1411 if (!n)
8f9f8d9e
DR
1412 continue;
1413
0fa8103b 1414 drain_freelist(cachep, n, slabs_tofree(cachep, n));
8f9f8d9e 1415
ce8eb6c4
CL
1416 if (!list_empty(&n->slabs_full) ||
1417 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1418 ret = -EBUSY;
1419 break;
1420 }
1421 }
1422 return ret;
1423}
1424
1425static int __meminit slab_memory_callback(struct notifier_block *self,
1426 unsigned long action, void *arg)
1427{
1428 struct memory_notify *mnb = arg;
1429 int ret = 0;
1430 int nid;
1431
1432 nid = mnb->status_change_nid;
1433 if (nid < 0)
1434 goto out;
1435
1436 switch (action) {
1437 case MEM_GOING_ONLINE:
18004c5d 1438 mutex_lock(&slab_mutex);
6a67368c 1439 ret = init_cache_node_node(nid);
18004c5d 1440 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1441 break;
1442 case MEM_GOING_OFFLINE:
18004c5d 1443 mutex_lock(&slab_mutex);
6a67368c 1444 ret = drain_cache_node_node(nid);
18004c5d 1445 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1446 break;
1447 case MEM_ONLINE:
1448 case MEM_OFFLINE:
1449 case MEM_CANCEL_ONLINE:
1450 case MEM_CANCEL_OFFLINE:
1451 break;
1452 }
1453out:
5fda1bd5 1454 return notifier_from_errno(ret);
8f9f8d9e
DR
1455}
1456#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1457
e498be7d 1458/*
ce8eb6c4 1459 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1460 */
6744f087 1461static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1462 int nodeid)
e498be7d 1463{
6744f087 1464 struct kmem_cache_node *ptr;
e498be7d 1465
6744f087 1466 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1467 BUG_ON(!ptr);
1468
6744f087 1469 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1470 /*
1471 * Do not assume that spinlocks can be initialized via memcpy:
1472 */
1473 spin_lock_init(&ptr->list_lock);
1474
e498be7d 1475 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1476 cachep->node[nodeid] = ptr;
e498be7d
CL
1477}
1478
556a169d 1479/*
ce8eb6c4
CL
1480 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1481 * size of kmem_cache_node.
556a169d 1482 */
ce8eb6c4 1483static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1484{
1485 int node;
1486
1487 for_each_online_node(node) {
ce8eb6c4 1488 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1489 cachep->node[node]->next_reap = jiffies +
556a169d
PE
1490 REAPTIMEOUT_LIST3 +
1491 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1492 }
1493}
1494
3c583465
CL
1495/*
1496 * The memory after the last cpu cache pointer is used for the
6a67368c 1497 * the node pointer.
3c583465 1498 */
6a67368c 1499static void setup_node_pointer(struct kmem_cache *cachep)
3c583465 1500{
6a67368c 1501 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
3c583465
CL
1502}
1503
a737b3e2
AM
1504/*
1505 * Initialisation. Called after the page allocator have been initialised and
1506 * before smp_init().
1da177e4
LT
1507 */
1508void __init kmem_cache_init(void)
1509{
e498be7d
CL
1510 int i;
1511
9b030cb8 1512 kmem_cache = &kmem_cache_boot;
6a67368c 1513 setup_node_pointer(kmem_cache);
9b030cb8 1514
b6e68bc1 1515 if (num_possible_nodes() == 1)
62918a03
SS
1516 use_alien_caches = 0;
1517
3c583465 1518 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1519 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1520
ce8eb6c4 1521 set_up_node(kmem_cache, CACHE_CACHE);
1da177e4
LT
1522
1523 /*
1524 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1525 * page orders on machines with more than 32MB of memory if
1526 * not overridden on the command line.
1da177e4 1527 */
3df1cccd 1528 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1529 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1530
1da177e4
LT
1531 /* Bootstrap is tricky, because several objects are allocated
1532 * from caches that do not exist yet:
9b030cb8
CL
1533 * 1) initialize the kmem_cache cache: it contains the struct
1534 * kmem_cache structures of all caches, except kmem_cache itself:
1535 * kmem_cache is statically allocated.
e498be7d 1536 * Initially an __init data area is used for the head array and the
ce8eb6c4 1537 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1538 * array at the end of the bootstrap.
1da177e4 1539 * 2) Create the first kmalloc cache.
343e0d7a 1540 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1541 * An __init data area is used for the head array.
1542 * 3) Create the remaining kmalloc caches, with minimally sized
1543 * head arrays.
9b030cb8 1544 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1545 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1546 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1547 * the other cache's with kmalloc allocated memory.
1548 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1549 */
1550
9b030cb8 1551 /* 1) create the kmem_cache */
1da177e4 1552
8da3430d 1553 /*
b56efcf0 1554 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1555 */
2f9baa9f
CL
1556 create_boot_cache(kmem_cache, "kmem_cache",
1557 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
6744f087 1558 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1559 SLAB_HWCACHE_ALIGN);
1560 list_add(&kmem_cache->list, &slab_caches);
1da177e4
LT
1561
1562 /* 2+3) create the kmalloc caches */
1da177e4 1563
a737b3e2
AM
1564 /*
1565 * Initialize the caches that provide memory for the array cache and the
ce8eb6c4 1566 * kmem_cache_node structures first. Without this, further allocations will
a737b3e2 1567 * bug.
e498be7d
CL
1568 */
1569
e3366016
CL
1570 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1571 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
45530c44 1572
ce8eb6c4
CL
1573 if (INDEX_AC != INDEX_NODE)
1574 kmalloc_caches[INDEX_NODE] =
1575 create_kmalloc_cache("kmalloc-node",
1576 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
e498be7d 1577
e0a42726
IM
1578 slab_early_init = 0;
1579
1da177e4
LT
1580 /* 4) Replace the bootstrap head arrays */
1581 {
2b2d5493 1582 struct array_cache *ptr;
e498be7d 1583
83b519e8 1584 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1585
9b030cb8 1586 memcpy(ptr, cpu_cache_get(kmem_cache),
b28a02de 1587 sizeof(struct arraycache_init));
2b2d5493
IM
1588 /*
1589 * Do not assume that spinlocks can be initialized via memcpy:
1590 */
1591 spin_lock_init(&ptr->lock);
1592
9b030cb8 1593 kmem_cache->array[smp_processor_id()] = ptr;
e498be7d 1594
83b519e8 1595 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1596
e3366016 1597 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
b28a02de 1598 != &initarray_generic.cache);
e3366016 1599 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
b28a02de 1600 sizeof(struct arraycache_init));
2b2d5493
IM
1601 /*
1602 * Do not assume that spinlocks can be initialized via memcpy:
1603 */
1604 spin_lock_init(&ptr->lock);
1605
e3366016 1606 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1da177e4 1607 }
ce8eb6c4 1608 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1609 {
1ca4cb24
PE
1610 int nid;
1611
9c09a95c 1612 for_each_online_node(nid) {
ce8eb6c4 1613 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1614
e3366016 1615 init_list(kmalloc_caches[INDEX_AC],
ce8eb6c4 1616 &init_kmem_cache_node[SIZE_AC + nid], nid);
e498be7d 1617
ce8eb6c4
CL
1618 if (INDEX_AC != INDEX_NODE) {
1619 init_list(kmalloc_caches[INDEX_NODE],
1620 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1621 }
1622 }
1623 }
1da177e4 1624
f97d5f63 1625 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1626}
1627
1628void __init kmem_cache_init_late(void)
1629{
1630 struct kmem_cache *cachep;
1631
97d06609 1632 slab_state = UP;
52cef189 1633
8429db5c 1634 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1635 mutex_lock(&slab_mutex);
1636 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1637 if (enable_cpucache(cachep, GFP_NOWAIT))
1638 BUG();
18004c5d 1639 mutex_unlock(&slab_mutex);
056c6241 1640
947ca185
MW
1641 /* Annotate slab for lockdep -- annotate the malloc caches */
1642 init_lock_keys();
1643
97d06609
CL
1644 /* Done! */
1645 slab_state = FULL;
1646
a737b3e2
AM
1647 /*
1648 * Register a cpu startup notifier callback that initializes
1649 * cpu_cache_get for all new cpus
1da177e4
LT
1650 */
1651 register_cpu_notifier(&cpucache_notifier);
1da177e4 1652
8f9f8d9e
DR
1653#ifdef CONFIG_NUMA
1654 /*
1655 * Register a memory hotplug callback that initializes and frees
6a67368c 1656 * node.
8f9f8d9e
DR
1657 */
1658 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1659#endif
1660
a737b3e2
AM
1661 /*
1662 * The reap timers are started later, with a module init call: That part
1663 * of the kernel is not yet operational.
1da177e4
LT
1664 */
1665}
1666
1667static int __init cpucache_init(void)
1668{
1669 int cpu;
1670
a737b3e2
AM
1671 /*
1672 * Register the timers that return unneeded pages to the page allocator
1da177e4 1673 */
e498be7d 1674 for_each_online_cpu(cpu)
a737b3e2 1675 start_cpu_timer(cpu);
a164f896
GC
1676
1677 /* Done! */
97d06609 1678 slab_state = FULL;
1da177e4
LT
1679 return 0;
1680}
1da177e4
LT
1681__initcall(cpucache_init);
1682
8bdec192
RA
1683static noinline void
1684slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1685{
ce8eb6c4 1686 struct kmem_cache_node *n;
8bdec192
RA
1687 struct slab *slabp;
1688 unsigned long flags;
1689 int node;
1690
1691 printk(KERN_WARNING
1692 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1693 nodeid, gfpflags);
1694 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1695 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1696
1697 for_each_online_node(node) {
1698 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1699 unsigned long active_slabs = 0, num_slabs = 0;
1700
ce8eb6c4
CL
1701 n = cachep->node[node];
1702 if (!n)
8bdec192
RA
1703 continue;
1704
ce8eb6c4
CL
1705 spin_lock_irqsave(&n->list_lock, flags);
1706 list_for_each_entry(slabp, &n->slabs_full, list) {
8bdec192
RA
1707 active_objs += cachep->num;
1708 active_slabs++;
1709 }
ce8eb6c4 1710 list_for_each_entry(slabp, &n->slabs_partial, list) {
8bdec192
RA
1711 active_objs += slabp->inuse;
1712 active_slabs++;
1713 }
ce8eb6c4 1714 list_for_each_entry(slabp, &n->slabs_free, list)
8bdec192
RA
1715 num_slabs++;
1716
ce8eb6c4
CL
1717 free_objects += n->free_objects;
1718 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1719
1720 num_slabs += active_slabs;
1721 num_objs = num_slabs * cachep->num;
1722 printk(KERN_WARNING
1723 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1724 node, active_slabs, num_slabs, active_objs, num_objs,
1725 free_objects);
1726 }
1727}
1728
1da177e4
LT
1729/*
1730 * Interface to system's page allocator. No need to hold the cache-lock.
1731 *
1732 * If we requested dmaable memory, we will get it. Even if we
1733 * did not request dmaable memory, we might get it, but that
1734 * would be relatively rare and ignorable.
1735 */
0c3aa83e
JK
1736static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1737 int nodeid)
1da177e4
LT
1738{
1739 struct page *page;
e1b6aa6f 1740 int nr_pages;
1da177e4
LT
1741 int i;
1742
d6fef9da 1743#ifndef CONFIG_MMU
e1b6aa6f
CH
1744 /*
1745 * Nommu uses slab's for process anonymous memory allocations, and thus
1746 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1747 */
e1b6aa6f 1748 flags |= __GFP_COMP;
d6fef9da 1749#endif
765c4507 1750
a618e89f 1751 flags |= cachep->allocflags;
e12ba74d
MG
1752 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1753 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1754
517d0869 1755 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192
RA
1756 if (!page) {
1757 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1758 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1759 return NULL;
8bdec192 1760 }
1da177e4 1761
b37f1dd0 1762 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1763 if (unlikely(page->pfmemalloc))
1764 pfmemalloc_active = true;
1765
e1b6aa6f 1766 nr_pages = (1 << cachep->gfporder);
1da177e4 1767 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1768 add_zone_page_state(page_zone(page),
1769 NR_SLAB_RECLAIMABLE, nr_pages);
1770 else
1771 add_zone_page_state(page_zone(page),
1772 NR_SLAB_UNRECLAIMABLE, nr_pages);
072bb0aa 1773 for (i = 0; i < nr_pages; i++) {
e1b6aa6f 1774 __SetPageSlab(page + i);
c175eea4 1775
072bb0aa 1776 if (page->pfmemalloc)
73293c2f 1777 SetPageSlabPfmemalloc(page);
072bb0aa 1778 }
1f458cbf 1779 memcg_bind_pages(cachep, cachep->gfporder);
072bb0aa 1780
b1eeab67
VN
1781 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1782 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1783
1784 if (cachep->ctor)
1785 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1786 else
1787 kmemcheck_mark_unallocated_pages(page, nr_pages);
1788 }
c175eea4 1789
0c3aa83e 1790 return page;
1da177e4
LT
1791}
1792
1793/*
1794 * Interface to system's page release.
1795 */
0c3aa83e 1796static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1797{
b28a02de 1798 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1799 const unsigned long nr_freed = i;
1800
b1eeab67 1801 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1802
972d1a7b
CL
1803 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1804 sub_zone_page_state(page_zone(page),
1805 NR_SLAB_RECLAIMABLE, nr_freed);
1806 else
1807 sub_zone_page_state(page_zone(page),
1808 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f
JK
1809
1810 __ClearPageSlabPfmemalloc(page);
1da177e4 1811 while (i--) {
f205b2fe
NP
1812 BUG_ON(!PageSlab(page));
1813 __ClearPageSlab(page);
1da177e4
LT
1814 page++;
1815 }
1f458cbf
GC
1816
1817 memcg_release_pages(cachep, cachep->gfporder);
1da177e4
LT
1818 if (current->reclaim_state)
1819 current->reclaim_state->reclaimed_slab += nr_freed;
0c3aa83e 1820 __free_memcg_kmem_pages(page, cachep->gfporder);
1da177e4
LT
1821}
1822
1823static void kmem_rcu_free(struct rcu_head *head)
1824{
b28a02de 1825 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
07d417a1 1826 struct kmem_cache *cachep = slab_rcu->page->slab_cache;
1da177e4 1827
0c3aa83e 1828 kmem_freepages(cachep, slab_rcu->page);
1da177e4
LT
1829 if (OFF_SLAB(cachep))
1830 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1831}
1832
1833#if DEBUG
1834
1835#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1836static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1837 unsigned long caller)
1da177e4 1838{
8c138bc0 1839 int size = cachep->object_size;
1da177e4 1840
3dafccf2 1841 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1842
b28a02de 1843 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1844 return;
1845
b28a02de
PE
1846 *addr++ = 0x12345678;
1847 *addr++ = caller;
1848 *addr++ = smp_processor_id();
1849 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1850 {
1851 unsigned long *sptr = &caller;
1852 unsigned long svalue;
1853
1854 while (!kstack_end(sptr)) {
1855 svalue = *sptr++;
1856 if (kernel_text_address(svalue)) {
b28a02de 1857 *addr++ = svalue;
1da177e4
LT
1858 size -= sizeof(unsigned long);
1859 if (size <= sizeof(unsigned long))
1860 break;
1861 }
1862 }
1863
1864 }
b28a02de 1865 *addr++ = 0x87654321;
1da177e4
LT
1866}
1867#endif
1868
343e0d7a 1869static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1870{
8c138bc0 1871 int size = cachep->object_size;
3dafccf2 1872 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1873
1874 memset(addr, val, size);
b28a02de 1875 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1876}
1877
1878static void dump_line(char *data, int offset, int limit)
1879{
1880 int i;
aa83aa40
DJ
1881 unsigned char error = 0;
1882 int bad_count = 0;
1883
fdde6abb 1884 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1885 for (i = 0; i < limit; i++) {
1886 if (data[offset + i] != POISON_FREE) {
1887 error = data[offset + i];
1888 bad_count++;
1889 }
aa83aa40 1890 }
fdde6abb
SAS
1891 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1892 &data[offset], limit, 1);
aa83aa40
DJ
1893
1894 if (bad_count == 1) {
1895 error ^= POISON_FREE;
1896 if (!(error & (error - 1))) {
1897 printk(KERN_ERR "Single bit error detected. Probably "
1898 "bad RAM.\n");
1899#ifdef CONFIG_X86
1900 printk(KERN_ERR "Run memtest86+ or a similar memory "
1901 "test tool.\n");
1902#else
1903 printk(KERN_ERR "Run a memory test tool.\n");
1904#endif
1905 }
1906 }
1da177e4
LT
1907}
1908#endif
1909
1910#if DEBUG
1911
343e0d7a 1912static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1913{
1914 int i, size;
1915 char *realobj;
1916
1917 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1918 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1919 *dbg_redzone1(cachep, objp),
1920 *dbg_redzone2(cachep, objp));
1da177e4
LT
1921 }
1922
1923 if (cachep->flags & SLAB_STORE_USER) {
071361d3
JP
1924 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1925 *dbg_userword(cachep, objp),
1926 *dbg_userword(cachep, objp));
1da177e4 1927 }
3dafccf2 1928 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1929 size = cachep->object_size;
b28a02de 1930 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1931 int limit;
1932 limit = 16;
b28a02de
PE
1933 if (i + limit > size)
1934 limit = size - i;
1da177e4
LT
1935 dump_line(realobj, i, limit);
1936 }
1937}
1938
343e0d7a 1939static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1940{
1941 char *realobj;
1942 int size, i;
1943 int lines = 0;
1944
3dafccf2 1945 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1946 size = cachep->object_size;
1da177e4 1947
b28a02de 1948 for (i = 0; i < size; i++) {
1da177e4 1949 char exp = POISON_FREE;
b28a02de 1950 if (i == size - 1)
1da177e4
LT
1951 exp = POISON_END;
1952 if (realobj[i] != exp) {
1953 int limit;
1954 /* Mismatch ! */
1955 /* Print header */
1956 if (lines == 0) {
b28a02de 1957 printk(KERN_ERR
face37f5
DJ
1958 "Slab corruption (%s): %s start=%p, len=%d\n",
1959 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
1960 print_objinfo(cachep, objp, 0);
1961 }
1962 /* Hexdump the affected line */
b28a02de 1963 i = (i / 16) * 16;
1da177e4 1964 limit = 16;
b28a02de
PE
1965 if (i + limit > size)
1966 limit = size - i;
1da177e4
LT
1967 dump_line(realobj, i, limit);
1968 i += 16;
1969 lines++;
1970 /* Limit to 5 lines */
1971 if (lines > 5)
1972 break;
1973 }
1974 }
1975 if (lines != 0) {
1976 /* Print some data about the neighboring objects, if they
1977 * exist:
1978 */
6ed5eb22 1979 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1980 unsigned int objnr;
1da177e4 1981
8fea4e96 1982 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1983 if (objnr) {
8fea4e96 1984 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1985 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1986 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1987 realobj, size);
1da177e4
LT
1988 print_objinfo(cachep, objp, 2);
1989 }
b28a02de 1990 if (objnr + 1 < cachep->num) {
8fea4e96 1991 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1992 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1993 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1994 realobj, size);
1da177e4
LT
1995 print_objinfo(cachep, objp, 2);
1996 }
1997 }
1998}
1999#endif
2000
12dd36fa 2001#if DEBUG
e79aec29 2002static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 2003{
1da177e4
LT
2004 int i;
2005 for (i = 0; i < cachep->num; i++) {
8fea4e96 2006 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2007
2008 if (cachep->flags & SLAB_POISON) {
2009#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2010 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 2011 OFF_SLAB(cachep))
b28a02de 2012 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2013 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2014 else
2015 check_poison_obj(cachep, objp);
2016#else
2017 check_poison_obj(cachep, objp);
2018#endif
2019 }
2020 if (cachep->flags & SLAB_RED_ZONE) {
2021 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2022 slab_error(cachep, "start of a freed object "
b28a02de 2023 "was overwritten");
1da177e4
LT
2024 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2025 slab_error(cachep, "end of a freed object "
b28a02de 2026 "was overwritten");
1da177e4 2027 }
1da177e4 2028 }
12dd36fa 2029}
1da177e4 2030#else
e79aec29 2031static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2032{
12dd36fa 2033}
1da177e4
LT
2034#endif
2035
911851e6
RD
2036/**
2037 * slab_destroy - destroy and release all objects in a slab
2038 * @cachep: cache pointer being destroyed
2039 * @slabp: slab pointer being destroyed
2040 *
12dd36fa 2041 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
2042 * Before calling the slab must have been unlinked from the cache. The
2043 * cache-lock is not held/needed.
12dd36fa 2044 */
343e0d7a 2045static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2046{
0c3aa83e 2047 struct page *page = virt_to_head_page(slabp->s_mem);
12dd36fa 2048
e79aec29 2049 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
2050 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2051 struct slab_rcu *slab_rcu;
2052
b28a02de 2053 slab_rcu = (struct slab_rcu *)slabp;
0c3aa83e 2054 slab_rcu->page = page;
1da177e4
LT
2055 call_rcu(&slab_rcu->head, kmem_rcu_free);
2056 } else {
0c3aa83e 2057 kmem_freepages(cachep, page);
873623df
IM
2058 if (OFF_SLAB(cachep))
2059 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
2060 }
2061}
2062
4d268eba 2063/**
a70773dd
RD
2064 * calculate_slab_order - calculate size (page order) of slabs
2065 * @cachep: pointer to the cache that is being created
2066 * @size: size of objects to be created in this cache.
2067 * @align: required alignment for the objects.
2068 * @flags: slab allocation flags
2069 *
2070 * Also calculates the number of objects per slab.
4d268eba
PE
2071 *
2072 * This could be made much more intelligent. For now, try to avoid using
2073 * high order pages for slabs. When the gfp() functions are more friendly
2074 * towards high-order requests, this should be changed.
2075 */
a737b3e2 2076static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2077 size_t size, size_t align, unsigned long flags)
4d268eba 2078{
b1ab41c4 2079 unsigned long offslab_limit;
4d268eba 2080 size_t left_over = 0;
9888e6fa 2081 int gfporder;
4d268eba 2082
0aa817f0 2083 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2084 unsigned int num;
2085 size_t remainder;
2086
9888e6fa 2087 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2088 if (!num)
2089 continue;
9888e6fa 2090
b1ab41c4
IM
2091 if (flags & CFLGS_OFF_SLAB) {
2092 /*
2093 * Max number of objs-per-slab for caches which
2094 * use off-slab slabs. Needed to avoid a possible
2095 * looping condition in cache_grow().
2096 */
2097 offslab_limit = size - sizeof(struct slab);
2098 offslab_limit /= sizeof(kmem_bufctl_t);
2099
2100 if (num > offslab_limit)
2101 break;
2102 }
4d268eba 2103
9888e6fa 2104 /* Found something acceptable - save it away */
4d268eba 2105 cachep->num = num;
9888e6fa 2106 cachep->gfporder = gfporder;
4d268eba
PE
2107 left_over = remainder;
2108
f78bb8ad
LT
2109 /*
2110 * A VFS-reclaimable slab tends to have most allocations
2111 * as GFP_NOFS and we really don't want to have to be allocating
2112 * higher-order pages when we are unable to shrink dcache.
2113 */
2114 if (flags & SLAB_RECLAIM_ACCOUNT)
2115 break;
2116
4d268eba
PE
2117 /*
2118 * Large number of objects is good, but very large slabs are
2119 * currently bad for the gfp()s.
2120 */
543585cc 2121 if (gfporder >= slab_max_order)
4d268eba
PE
2122 break;
2123
9888e6fa
LT
2124 /*
2125 * Acceptable internal fragmentation?
2126 */
a737b3e2 2127 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2128 break;
2129 }
2130 return left_over;
2131}
2132
83b519e8 2133static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2134{
97d06609 2135 if (slab_state >= FULL)
83b519e8 2136 return enable_cpucache(cachep, gfp);
2ed3a4ef 2137
97d06609 2138 if (slab_state == DOWN) {
f30cf7d1 2139 /*
2f9baa9f 2140 * Note: Creation of first cache (kmem_cache).
ce8eb6c4 2141 * The setup_node is taken care
2f9baa9f
CL
2142 * of by the caller of __kmem_cache_create
2143 */
2144 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2145 slab_state = PARTIAL;
2146 } else if (slab_state == PARTIAL) {
2147 /*
2148 * Note: the second kmem_cache_create must create the cache
f30cf7d1
PE
2149 * that's used by kmalloc(24), otherwise the creation of
2150 * further caches will BUG().
2151 */
2152 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2153
2154 /*
ce8eb6c4
CL
2155 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2156 * the second cache, then we need to set up all its node/,
f30cf7d1
PE
2157 * otherwise the creation of further caches will BUG().
2158 */
ce8eb6c4
CL
2159 set_up_node(cachep, SIZE_AC);
2160 if (INDEX_AC == INDEX_NODE)
2161 slab_state = PARTIAL_NODE;
f30cf7d1 2162 else
97d06609 2163 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1 2164 } else {
2f9baa9f 2165 /* Remaining boot caches */
f30cf7d1 2166 cachep->array[smp_processor_id()] =
83b519e8 2167 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2168
97d06609 2169 if (slab_state == PARTIAL_ARRAYCACHE) {
ce8eb6c4
CL
2170 set_up_node(cachep, SIZE_NODE);
2171 slab_state = PARTIAL_NODE;
f30cf7d1
PE
2172 } else {
2173 int node;
556a169d 2174 for_each_online_node(node) {
6a67368c 2175 cachep->node[node] =
6744f087 2176 kmalloc_node(sizeof(struct kmem_cache_node),
eb91f1d0 2177 gfp, node);
6a67368c 2178 BUG_ON(!cachep->node[node]);
ce8eb6c4 2179 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
2180 }
2181 }
2182 }
6a67368c 2183 cachep->node[numa_mem_id()]->next_reap =
f30cf7d1
PE
2184 jiffies + REAPTIMEOUT_LIST3 +
2185 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2186
2187 cpu_cache_get(cachep)->avail = 0;
2188 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2189 cpu_cache_get(cachep)->batchcount = 1;
2190 cpu_cache_get(cachep)->touched = 0;
2191 cachep->batchcount = 1;
2192 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2193 return 0;
f30cf7d1
PE
2194}
2195
1da177e4 2196/**
039363f3 2197 * __kmem_cache_create - Create a cache.
a755b76a 2198 * @cachep: cache management descriptor
1da177e4 2199 * @flags: SLAB flags
1da177e4
LT
2200 *
2201 * Returns a ptr to the cache on success, NULL on failure.
2202 * Cannot be called within a int, but can be interrupted.
20c2df83 2203 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2204 *
1da177e4
LT
2205 * The flags are
2206 *
2207 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2208 * to catch references to uninitialised memory.
2209 *
2210 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2211 * for buffer overruns.
2212 *
1da177e4
LT
2213 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2214 * cacheline. This can be beneficial if you're counting cycles as closely
2215 * as davem.
2216 */
278b1bb1 2217int
8a13a4cc 2218__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4
LT
2219{
2220 size_t left_over, slab_size, ralign;
83b519e8 2221 gfp_t gfp;
278b1bb1 2222 int err;
8a13a4cc 2223 size_t size = cachep->size;
1da177e4 2224
1da177e4 2225#if DEBUG
1da177e4
LT
2226#if FORCED_DEBUG
2227 /*
2228 * Enable redzoning and last user accounting, except for caches with
2229 * large objects, if the increased size would increase the object size
2230 * above the next power of two: caches with object sizes just above a
2231 * power of two have a significant amount of internal fragmentation.
2232 */
87a927c7
DW
2233 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2234 2 * sizeof(unsigned long long)))
b28a02de 2235 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2236 if (!(flags & SLAB_DESTROY_BY_RCU))
2237 flags |= SLAB_POISON;
2238#endif
2239 if (flags & SLAB_DESTROY_BY_RCU)
2240 BUG_ON(flags & SLAB_POISON);
2241#endif
1da177e4 2242
a737b3e2
AM
2243 /*
2244 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2245 * unaligned accesses for some archs when redzoning is used, and makes
2246 * sure any on-slab bufctl's are also correctly aligned.
2247 */
b28a02de
PE
2248 if (size & (BYTES_PER_WORD - 1)) {
2249 size += (BYTES_PER_WORD - 1);
2250 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2251 }
2252
ca5f9703 2253 /*
87a927c7
DW
2254 * Redzoning and user store require word alignment or possibly larger.
2255 * Note this will be overridden by architecture or caller mandated
2256 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2257 */
87a927c7
DW
2258 if (flags & SLAB_STORE_USER)
2259 ralign = BYTES_PER_WORD;
2260
2261 if (flags & SLAB_RED_ZONE) {
2262 ralign = REDZONE_ALIGN;
2263 /* If redzoning, ensure that the second redzone is suitably
2264 * aligned, by adjusting the object size accordingly. */
2265 size += REDZONE_ALIGN - 1;
2266 size &= ~(REDZONE_ALIGN - 1);
2267 }
ca5f9703 2268
a44b56d3 2269 /* 3) caller mandated alignment */
8a13a4cc
CL
2270 if (ralign < cachep->align) {
2271 ralign = cachep->align;
1da177e4 2272 }
3ff84a7f
PE
2273 /* disable debug if necessary */
2274 if (ralign > __alignof__(unsigned long long))
a44b56d3 2275 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2276 /*
ca5f9703 2277 * 4) Store it.
1da177e4 2278 */
8a13a4cc 2279 cachep->align = ralign;
1da177e4 2280
83b519e8
PE
2281 if (slab_is_available())
2282 gfp = GFP_KERNEL;
2283 else
2284 gfp = GFP_NOWAIT;
2285
6a67368c 2286 setup_node_pointer(cachep);
1da177e4 2287#if DEBUG
1da177e4 2288
ca5f9703
PE
2289 /*
2290 * Both debugging options require word-alignment which is calculated
2291 * into align above.
2292 */
1da177e4 2293 if (flags & SLAB_RED_ZONE) {
1da177e4 2294 /* add space for red zone words */
3ff84a7f
PE
2295 cachep->obj_offset += sizeof(unsigned long long);
2296 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2297 }
2298 if (flags & SLAB_STORE_USER) {
ca5f9703 2299 /* user store requires one word storage behind the end of
87a927c7
DW
2300 * the real object. But if the second red zone needs to be
2301 * aligned to 64 bits, we must allow that much space.
1da177e4 2302 */
87a927c7
DW
2303 if (flags & SLAB_RED_ZONE)
2304 size += REDZONE_ALIGN;
2305 else
2306 size += BYTES_PER_WORD;
1da177e4
LT
2307 }
2308#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
ce8eb6c4 2309 if (size >= kmalloc_size(INDEX_NODE + 1)
608da7e3
TH
2310 && cachep->object_size > cache_line_size()
2311 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2312 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
1da177e4
LT
2313 size = PAGE_SIZE;
2314 }
2315#endif
2316#endif
2317
e0a42726
IM
2318 /*
2319 * Determine if the slab management is 'on' or 'off' slab.
2320 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2321 * it too early on. Always use on-slab management when
2322 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2323 */
e7cb55b9
CM
2324 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2325 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2326 /*
2327 * Size is large, assume best to place the slab management obj
2328 * off-slab (should allow better packing of objs).
2329 */
2330 flags |= CFLGS_OFF_SLAB;
2331
8a13a4cc 2332 size = ALIGN(size, cachep->align);
1da177e4 2333
8a13a4cc 2334 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
1da177e4 2335
8a13a4cc 2336 if (!cachep->num)
278b1bb1 2337 return -E2BIG;
1da177e4 2338
b28a02de 2339 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
8a13a4cc 2340 + sizeof(struct slab), cachep->align);
1da177e4
LT
2341
2342 /*
2343 * If the slab has been placed off-slab, and we have enough space then
2344 * move it on-slab. This is at the expense of any extra colouring.
2345 */
2346 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2347 flags &= ~CFLGS_OFF_SLAB;
2348 left_over -= slab_size;
2349 }
2350
2351 if (flags & CFLGS_OFF_SLAB) {
2352 /* really off slab. No need for manual alignment */
b28a02de
PE
2353 slab_size =
2354 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2355
2356#ifdef CONFIG_PAGE_POISONING
2357 /* If we're going to use the generic kernel_map_pages()
2358 * poisoning, then it's going to smash the contents of
2359 * the redzone and userword anyhow, so switch them off.
2360 */
2361 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2362 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2363#endif
1da177e4
LT
2364 }
2365
2366 cachep->colour_off = cache_line_size();
2367 /* Offset must be a multiple of the alignment. */
8a13a4cc
CL
2368 if (cachep->colour_off < cachep->align)
2369 cachep->colour_off = cachep->align;
b28a02de 2370 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2371 cachep->slab_size = slab_size;
2372 cachep->flags = flags;
a618e89f 2373 cachep->allocflags = 0;
4b51d669 2374 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2375 cachep->allocflags |= GFP_DMA;
3b0efdfa 2376 cachep->size = size;
6a2d7a95 2377 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2378
e5ac9c5a 2379 if (flags & CFLGS_OFF_SLAB) {
2c59dd65 2380 cachep->slabp_cache = kmalloc_slab(slab_size, 0u);
e5ac9c5a
RT
2381 /*
2382 * This is a possibility for one of the malloc_sizes caches.
2383 * But since we go off slab only for object size greater than
2384 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2385 * this should not happen at all.
2386 * But leave a BUG_ON for some lucky dude.
2387 */
6cb8f913 2388 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2389 }
1da177e4 2390
278b1bb1
CL
2391 err = setup_cpu_cache(cachep, gfp);
2392 if (err) {
12c3667f 2393 __kmem_cache_shutdown(cachep);
278b1bb1 2394 return err;
2ed3a4ef 2395 }
1da177e4 2396
83835b3d
PZ
2397 if (flags & SLAB_DEBUG_OBJECTS) {
2398 /*
2399 * Would deadlock through slab_destroy()->call_rcu()->
2400 * debug_object_activate()->kmem_cache_alloc().
2401 */
2402 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2403
2404 slab_set_debugobj_lock_classes(cachep);
6ccfb5bc
GC
2405 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2406 on_slab_lock_classes(cachep);
83835b3d 2407
278b1bb1 2408 return 0;
1da177e4 2409}
1da177e4
LT
2410
2411#if DEBUG
2412static void check_irq_off(void)
2413{
2414 BUG_ON(!irqs_disabled());
2415}
2416
2417static void check_irq_on(void)
2418{
2419 BUG_ON(irqs_disabled());
2420}
2421
343e0d7a 2422static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2423{
2424#ifdef CONFIG_SMP
2425 check_irq_off();
6a67368c 2426 assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
1da177e4
LT
2427#endif
2428}
e498be7d 2429
343e0d7a 2430static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2431{
2432#ifdef CONFIG_SMP
2433 check_irq_off();
6a67368c 2434 assert_spin_locked(&cachep->node[node]->list_lock);
e498be7d
CL
2435#endif
2436}
2437
1da177e4
LT
2438#else
2439#define check_irq_off() do { } while(0)
2440#define check_irq_on() do { } while(0)
2441#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2442#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2443#endif
2444
ce8eb6c4 2445static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
aab2207c
CL
2446 struct array_cache *ac,
2447 int force, int node);
2448
1da177e4
LT
2449static void do_drain(void *arg)
2450{
a737b3e2 2451 struct kmem_cache *cachep = arg;
1da177e4 2452 struct array_cache *ac;
7d6e6d09 2453 int node = numa_mem_id();
1da177e4
LT
2454
2455 check_irq_off();
9a2dba4b 2456 ac = cpu_cache_get(cachep);
6a67368c 2457 spin_lock(&cachep->node[node]->list_lock);
ff69416e 2458 free_block(cachep, ac->entry, ac->avail, node);
6a67368c 2459 spin_unlock(&cachep->node[node]->list_lock);
1da177e4
LT
2460 ac->avail = 0;
2461}
2462
343e0d7a 2463static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2464{
ce8eb6c4 2465 struct kmem_cache_node *n;
e498be7d
CL
2466 int node;
2467
15c8b6c1 2468 on_each_cpu(do_drain, cachep, 1);
1da177e4 2469 check_irq_on();
b28a02de 2470 for_each_online_node(node) {
ce8eb6c4
CL
2471 n = cachep->node[node];
2472 if (n && n->alien)
2473 drain_alien_cache(cachep, n->alien);
a4523a8b
RD
2474 }
2475
2476 for_each_online_node(node) {
ce8eb6c4
CL
2477 n = cachep->node[node];
2478 if (n)
2479 drain_array(cachep, n, n->shared, 1, node);
e498be7d 2480 }
1da177e4
LT
2481}
2482
ed11d9eb
CL
2483/*
2484 * Remove slabs from the list of free slabs.
2485 * Specify the number of slabs to drain in tofree.
2486 *
2487 * Returns the actual number of slabs released.
2488 */
2489static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2490 struct kmem_cache_node *n, int tofree)
1da177e4 2491{
ed11d9eb
CL
2492 struct list_head *p;
2493 int nr_freed;
1da177e4 2494 struct slab *slabp;
1da177e4 2495
ed11d9eb 2496 nr_freed = 0;
ce8eb6c4 2497 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2498
ce8eb6c4
CL
2499 spin_lock_irq(&n->list_lock);
2500 p = n->slabs_free.prev;
2501 if (p == &n->slabs_free) {
2502 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2503 goto out;
2504 }
1da177e4 2505
ed11d9eb 2506 slabp = list_entry(p, struct slab, list);
1da177e4 2507#if DEBUG
40094fa6 2508 BUG_ON(slabp->inuse);
1da177e4
LT
2509#endif
2510 list_del(&slabp->list);
ed11d9eb
CL
2511 /*
2512 * Safe to drop the lock. The slab is no longer linked
2513 * to the cache.
2514 */
ce8eb6c4
CL
2515 n->free_objects -= cache->num;
2516 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2517 slab_destroy(cache, slabp);
2518 nr_freed++;
1da177e4 2519 }
ed11d9eb
CL
2520out:
2521 return nr_freed;
1da177e4
LT
2522}
2523
18004c5d 2524/* Called with slab_mutex held to protect against cpu hotplug */
343e0d7a 2525static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2526{
2527 int ret = 0, i = 0;
ce8eb6c4 2528 struct kmem_cache_node *n;
e498be7d
CL
2529
2530 drain_cpu_caches(cachep);
2531
2532 check_irq_on();
2533 for_each_online_node(i) {
ce8eb6c4
CL
2534 n = cachep->node[i];
2535 if (!n)
ed11d9eb
CL
2536 continue;
2537
0fa8103b 2538 drain_freelist(cachep, n, slabs_tofree(cachep, n));
ed11d9eb 2539
ce8eb6c4
CL
2540 ret += !list_empty(&n->slabs_full) ||
2541 !list_empty(&n->slabs_partial);
e498be7d
CL
2542 }
2543 return (ret ? 1 : 0);
2544}
2545
1da177e4
LT
2546/**
2547 * kmem_cache_shrink - Shrink a cache.
2548 * @cachep: The cache to shrink.
2549 *
2550 * Releases as many slabs as possible for a cache.
2551 * To help debugging, a zero exit status indicates all slabs were released.
2552 */
343e0d7a 2553int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2554{
8f5be20b 2555 int ret;
40094fa6 2556 BUG_ON(!cachep || in_interrupt());
1da177e4 2557
95402b38 2558 get_online_cpus();
18004c5d 2559 mutex_lock(&slab_mutex);
8f5be20b 2560 ret = __cache_shrink(cachep);
18004c5d 2561 mutex_unlock(&slab_mutex);
95402b38 2562 put_online_cpus();
8f5be20b 2563 return ret;
1da177e4
LT
2564}
2565EXPORT_SYMBOL(kmem_cache_shrink);
2566
945cf2b6 2567int __kmem_cache_shutdown(struct kmem_cache *cachep)
1da177e4 2568{
12c3667f 2569 int i;
ce8eb6c4 2570 struct kmem_cache_node *n;
12c3667f 2571 int rc = __cache_shrink(cachep);
1da177e4 2572
12c3667f
CL
2573 if (rc)
2574 return rc;
1da177e4 2575
12c3667f
CL
2576 for_each_online_cpu(i)
2577 kfree(cachep->array[i]);
1da177e4 2578
ce8eb6c4 2579 /* NUMA: free the node structures */
12c3667f 2580 for_each_online_node(i) {
ce8eb6c4
CL
2581 n = cachep->node[i];
2582 if (n) {
2583 kfree(n->shared);
2584 free_alien_cache(n->alien);
2585 kfree(n);
12c3667f
CL
2586 }
2587 }
2588 return 0;
1da177e4 2589}
1da177e4 2590
e5ac9c5a
RT
2591/*
2592 * Get the memory for a slab management obj.
2593 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2594 * always come from malloc_sizes caches. The slab descriptor cannot
2595 * come from the same cache which is getting created because,
2596 * when we are searching for an appropriate cache for these
2597 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2598 * If we are creating a malloc_sizes cache here it would not be visible to
2599 * kmem_find_general_cachep till the initialization is complete.
2600 * Hence we cannot have slabp_cache same as the original cache.
2601 */
0c3aa83e
JK
2602static struct slab *alloc_slabmgmt(struct kmem_cache *cachep,
2603 struct page *page, int colour_off,
2604 gfp_t local_flags, int nodeid)
1da177e4
LT
2605{
2606 struct slab *slabp;
0c3aa83e 2607 void *addr = page_address(page);
b28a02de 2608
1da177e4
LT
2609 if (OFF_SLAB(cachep)) {
2610 /* Slab management obj is off-slab. */
5b74ada7 2611 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2612 local_flags, nodeid);
d5cff635
CM
2613 /*
2614 * If the first object in the slab is leaked (it's allocated
2615 * but no one has a reference to it), we want to make sure
2616 * kmemleak does not treat the ->s_mem pointer as a reference
2617 * to the object. Otherwise we will not report the leak.
2618 */
c017b4be
CM
2619 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2620 local_flags);
1da177e4
LT
2621 if (!slabp)
2622 return NULL;
2623 } else {
0c3aa83e 2624 slabp = addr + colour_off;
1da177e4
LT
2625 colour_off += cachep->slab_size;
2626 }
2627 slabp->inuse = 0;
0c3aa83e 2628 slabp->s_mem = addr + colour_off;
e51bfd0a 2629 slabp->free = 0;
1da177e4
LT
2630 return slabp;
2631}
2632
2633static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2634{
b28a02de 2635 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2636}
2637
343e0d7a 2638static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2639 struct slab *slabp)
1da177e4
LT
2640{
2641 int i;
2642
2643 for (i = 0; i < cachep->num; i++) {
8fea4e96 2644 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2645#if DEBUG
2646 /* need to poison the objs? */
2647 if (cachep->flags & SLAB_POISON)
2648 poison_obj(cachep, objp, POISON_FREE);
2649 if (cachep->flags & SLAB_STORE_USER)
2650 *dbg_userword(cachep, objp) = NULL;
2651
2652 if (cachep->flags & SLAB_RED_ZONE) {
2653 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2654 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2655 }
2656 /*
a737b3e2
AM
2657 * Constructors are not allowed to allocate memory from the same
2658 * cache which they are a constructor for. Otherwise, deadlock.
2659 * They must also be threaded.
1da177e4
LT
2660 */
2661 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2662 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2663
2664 if (cachep->flags & SLAB_RED_ZONE) {
2665 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2666 slab_error(cachep, "constructor overwrote the"
b28a02de 2667 " end of an object");
1da177e4
LT
2668 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2669 slab_error(cachep, "constructor overwrote the"
b28a02de 2670 " start of an object");
1da177e4 2671 }
3b0efdfa 2672 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2673 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2674 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2675 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2676#else
2677 if (cachep->ctor)
51cc5068 2678 cachep->ctor(objp);
1da177e4 2679#endif
b28a02de 2680 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2681 }
b28a02de 2682 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2683}
2684
343e0d7a 2685static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2686{
4b51d669
CL
2687 if (CONFIG_ZONE_DMA_FLAG) {
2688 if (flags & GFP_DMA)
a618e89f 2689 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2690 else
a618e89f 2691 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2692 }
1da177e4
LT
2693}
2694
a737b3e2
AM
2695static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2696 int nodeid)
78d382d7 2697{
8fea4e96 2698 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2699 kmem_bufctl_t next;
2700
2701 slabp->inuse++;
2702 next = slab_bufctl(slabp)[slabp->free];
2703#if DEBUG
2704 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
1ea991b0 2705 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7
MD
2706#endif
2707 slabp->free = next;
2708
2709 return objp;
2710}
2711
a737b3e2
AM
2712static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2713 void *objp, int nodeid)
78d382d7 2714{
8fea4e96 2715 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2716
2717#if DEBUG
2718 /* Verify that the slab belongs to the intended node */
1ea991b0 2719 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7 2720
871751e2 2721 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2722 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2723 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2724 BUG();
2725 }
2726#endif
2727 slab_bufctl(slabp)[objnr] = slabp->free;
2728 slabp->free = objnr;
2729 slabp->inuse--;
2730}
2731
4776874f
PE
2732/*
2733 * Map pages beginning at addr to the given cache and slab. This is required
2734 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2735 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2736 */
2737static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
0c3aa83e 2738 struct page *page)
1da177e4 2739{
4776874f 2740 int nr_pages;
84097518 2741
4776874f 2742 nr_pages = 1;
84097518 2743 if (likely(!PageCompound(page)))
4776874f
PE
2744 nr_pages <<= cache->gfporder;
2745
1da177e4 2746 do {
35026088
CL
2747 page->slab_cache = cache;
2748 page->slab_page = slab;
1da177e4 2749 page++;
4776874f 2750 } while (--nr_pages);
1da177e4
LT
2751}
2752
2753/*
2754 * Grow (by 1) the number of slabs within a cache. This is called by
2755 * kmem_cache_alloc() when there are no active objs left in a cache.
2756 */
3c517a61 2757static int cache_grow(struct kmem_cache *cachep,
0c3aa83e 2758 gfp_t flags, int nodeid, struct page *page)
1da177e4 2759{
b28a02de 2760 struct slab *slabp;
b28a02de
PE
2761 size_t offset;
2762 gfp_t local_flags;
ce8eb6c4 2763 struct kmem_cache_node *n;
1da177e4 2764
a737b3e2
AM
2765 /*
2766 * Be lazy and only check for valid flags here, keeping it out of the
2767 * critical path in kmem_cache_alloc().
1da177e4 2768 */
6cb06229
CL
2769 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2770 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2771
ce8eb6c4 2772 /* Take the node list lock to change the colour_next on this node */
1da177e4 2773 check_irq_off();
ce8eb6c4
CL
2774 n = cachep->node[nodeid];
2775 spin_lock(&n->list_lock);
1da177e4
LT
2776
2777 /* Get colour for the slab, and cal the next value. */
ce8eb6c4
CL
2778 offset = n->colour_next;
2779 n->colour_next++;
2780 if (n->colour_next >= cachep->colour)
2781 n->colour_next = 0;
2782 spin_unlock(&n->list_lock);
1da177e4 2783
2e1217cf 2784 offset *= cachep->colour_off;
1da177e4
LT
2785
2786 if (local_flags & __GFP_WAIT)
2787 local_irq_enable();
2788
2789 /*
2790 * The test for missing atomic flag is performed here, rather than
2791 * the more obvious place, simply to reduce the critical path length
2792 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2793 * will eventually be caught here (where it matters).
2794 */
2795 kmem_flagcheck(cachep, flags);
2796
a737b3e2
AM
2797 /*
2798 * Get mem for the objs. Attempt to allocate a physical page from
2799 * 'nodeid'.
e498be7d 2800 */
0c3aa83e
JK
2801 if (!page)
2802 page = kmem_getpages(cachep, local_flags, nodeid);
2803 if (!page)
1da177e4
LT
2804 goto failed;
2805
2806 /* Get slab management. */
0c3aa83e 2807 slabp = alloc_slabmgmt(cachep, page, offset,
6cb06229 2808 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2809 if (!slabp)
1da177e4
LT
2810 goto opps1;
2811
0c3aa83e 2812 slab_map_pages(cachep, slabp, page);
1da177e4 2813
a35afb83 2814 cache_init_objs(cachep, slabp);
1da177e4
LT
2815
2816 if (local_flags & __GFP_WAIT)
2817 local_irq_disable();
2818 check_irq_off();
ce8eb6c4 2819 spin_lock(&n->list_lock);
1da177e4
LT
2820
2821 /* Make slab active. */
ce8eb6c4 2822 list_add_tail(&slabp->list, &(n->slabs_free));
1da177e4 2823 STATS_INC_GROWN(cachep);
ce8eb6c4
CL
2824 n->free_objects += cachep->num;
2825 spin_unlock(&n->list_lock);
1da177e4 2826 return 1;
a737b3e2 2827opps1:
0c3aa83e 2828 kmem_freepages(cachep, page);
a737b3e2 2829failed:
1da177e4
LT
2830 if (local_flags & __GFP_WAIT)
2831 local_irq_disable();
2832 return 0;
2833}
2834
2835#if DEBUG
2836
2837/*
2838 * Perform extra freeing checks:
2839 * - detect bad pointers.
2840 * - POISON/RED_ZONE checking
1da177e4
LT
2841 */
2842static void kfree_debugcheck(const void *objp)
2843{
1da177e4
LT
2844 if (!virt_addr_valid(objp)) {
2845 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2846 (unsigned long)objp);
2847 BUG();
1da177e4 2848 }
1da177e4
LT
2849}
2850
58ce1fd5
PE
2851static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2852{
b46b8f19 2853 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2854
2855 redzone1 = *dbg_redzone1(cache, obj);
2856 redzone2 = *dbg_redzone2(cache, obj);
2857
2858 /*
2859 * Redzone is ok.
2860 */
2861 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2862 return;
2863
2864 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2865 slab_error(cache, "double free detected");
2866 else
2867 slab_error(cache, "memory outside object was overwritten");
2868
b46b8f19 2869 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2870 obj, redzone1, redzone2);
2871}
2872
343e0d7a 2873static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2874 unsigned long caller)
1da177e4
LT
2875{
2876 struct page *page;
2877 unsigned int objnr;
2878 struct slab *slabp;
2879
80cbd911
MW
2880 BUG_ON(virt_to_cache(objp) != cachep);
2881
3dafccf2 2882 objp -= obj_offset(cachep);
1da177e4 2883 kfree_debugcheck(objp);
b49af68f 2884 page = virt_to_head_page(objp);
1da177e4 2885
35026088 2886 slabp = page->slab_page;
1da177e4
LT
2887
2888 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2889 verify_redzone_free(cachep, objp);
1da177e4
LT
2890 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2891 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2892 }
2893 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2894 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 2895
8fea4e96 2896 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2897
2898 BUG_ON(objnr >= cachep->num);
8fea4e96 2899 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2900
871751e2
AV
2901#ifdef CONFIG_DEBUG_SLAB_LEAK
2902 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2903#endif
1da177e4
LT
2904 if (cachep->flags & SLAB_POISON) {
2905#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2906 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
7c0cb9c6 2907 store_stackinfo(cachep, objp, caller);
b28a02de 2908 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2909 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2910 } else {
2911 poison_obj(cachep, objp, POISON_FREE);
2912 }
2913#else
2914 poison_obj(cachep, objp, POISON_FREE);
2915#endif
2916 }
2917 return objp;
2918}
2919
343e0d7a 2920static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2921{
2922 kmem_bufctl_t i;
2923 int entries = 0;
b28a02de 2924
1da177e4
LT
2925 /* Check slab's freelist to see if this obj is there. */
2926 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2927 entries++;
2928 if (entries > cachep->num || i >= cachep->num)
2929 goto bad;
2930 }
2931 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2932bad:
2933 printk(KERN_ERR "slab: Internal list corruption detected in "
face37f5
DJ
2934 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
2935 cachep->name, cachep->num, slabp, slabp->inuse,
2936 print_tainted());
fdde6abb
SAS
2937 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
2938 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
2939 1);
1da177e4
LT
2940 BUG();
2941 }
2942}
2943#else
2944#define kfree_debugcheck(x) do { } while(0)
2945#define cache_free_debugcheck(x,objp,z) (objp)
2946#define check_slabp(x,y) do { } while(0)
2947#endif
2948
072bb0aa
MG
2949static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2950 bool force_refill)
1da177e4
LT
2951{
2952 int batchcount;
ce8eb6c4 2953 struct kmem_cache_node *n;
1da177e4 2954 struct array_cache *ac;
1ca4cb24
PE
2955 int node;
2956
1da177e4 2957 check_irq_off();
7d6e6d09 2958 node = numa_mem_id();
072bb0aa
MG
2959 if (unlikely(force_refill))
2960 goto force_grow;
2961retry:
9a2dba4b 2962 ac = cpu_cache_get(cachep);
1da177e4
LT
2963 batchcount = ac->batchcount;
2964 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2965 /*
2966 * If there was little recent activity on this cache, then
2967 * perform only a partial refill. Otherwise we could generate
2968 * refill bouncing.
1da177e4
LT
2969 */
2970 batchcount = BATCHREFILL_LIMIT;
2971 }
ce8eb6c4 2972 n = cachep->node[node];
e498be7d 2973
ce8eb6c4
CL
2974 BUG_ON(ac->avail > 0 || !n);
2975 spin_lock(&n->list_lock);
1da177e4 2976
3ded175a 2977 /* See if we can refill from the shared array */
ce8eb6c4
CL
2978 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2979 n->shared->touched = 1;
3ded175a 2980 goto alloc_done;
44b57f1c 2981 }
3ded175a 2982
1da177e4
LT
2983 while (batchcount > 0) {
2984 struct list_head *entry;
2985 struct slab *slabp;
2986 /* Get slab alloc is to come from. */
ce8eb6c4
CL
2987 entry = n->slabs_partial.next;
2988 if (entry == &n->slabs_partial) {
2989 n->free_touched = 1;
2990 entry = n->slabs_free.next;
2991 if (entry == &n->slabs_free)
1da177e4
LT
2992 goto must_grow;
2993 }
2994
2995 slabp = list_entry(entry, struct slab, list);
2996 check_slabp(cachep, slabp);
2997 check_spinlock_acquired(cachep);
714b8171
PE
2998
2999 /*
3000 * The slab was either on partial or free list so
3001 * there must be at least one object available for
3002 * allocation.
3003 */
249b9f33 3004 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3005
1da177e4 3006 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3007 STATS_INC_ALLOCED(cachep);
3008 STATS_INC_ACTIVE(cachep);
3009 STATS_SET_HIGH(cachep);
3010
072bb0aa
MG
3011 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3012 node));
1da177e4
LT
3013 }
3014 check_slabp(cachep, slabp);
3015
3016 /* move slabp to correct slabp list: */
3017 list_del(&slabp->list);
3018 if (slabp->free == BUFCTL_END)
ce8eb6c4 3019 list_add(&slabp->list, &n->slabs_full);
1da177e4 3020 else
ce8eb6c4 3021 list_add(&slabp->list, &n->slabs_partial);
1da177e4
LT
3022 }
3023
a737b3e2 3024must_grow:
ce8eb6c4 3025 n->free_objects -= ac->avail;
a737b3e2 3026alloc_done:
ce8eb6c4 3027 spin_unlock(&n->list_lock);
1da177e4
LT
3028
3029 if (unlikely(!ac->avail)) {
3030 int x;
072bb0aa 3031force_grow:
3c517a61 3032 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3033
a737b3e2 3034 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3035 ac = cpu_cache_get(cachep);
51cd8e6f 3036 node = numa_mem_id();
072bb0aa
MG
3037
3038 /* no objects in sight? abort */
3039 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
3040 return NULL;
3041
a737b3e2 3042 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3043 goto retry;
3044 }
3045 ac->touched = 1;
072bb0aa
MG
3046
3047 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
3048}
3049
a737b3e2
AM
3050static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3051 gfp_t flags)
1da177e4
LT
3052{
3053 might_sleep_if(flags & __GFP_WAIT);
3054#if DEBUG
3055 kmem_flagcheck(cachep, flags);
3056#endif
3057}
3058
3059#if DEBUG
a737b3e2 3060static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3061 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3062{
b28a02de 3063 if (!objp)
1da177e4 3064 return objp;
b28a02de 3065 if (cachep->flags & SLAB_POISON) {
1da177e4 3066#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3067 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3068 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3069 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
3070 else
3071 check_poison_obj(cachep, objp);
3072#else
3073 check_poison_obj(cachep, objp);
3074#endif
3075 poison_obj(cachep, objp, POISON_INUSE);
3076 }
3077 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3078 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3079
3080 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3081 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3082 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3083 slab_error(cachep, "double free, or memory outside"
3084 " object was overwritten");
b28a02de 3085 printk(KERN_ERR
b46b8f19 3086 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3087 objp, *dbg_redzone1(cachep, objp),
3088 *dbg_redzone2(cachep, objp));
1da177e4
LT
3089 }
3090 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3091 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3092 }
871751e2
AV
3093#ifdef CONFIG_DEBUG_SLAB_LEAK
3094 {
3095 struct slab *slabp;
3096 unsigned objnr;
3097
35026088 3098 slabp = virt_to_head_page(objp)->slab_page;
3b0efdfa 3099 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
871751e2
AV
3100 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3101 }
3102#endif
3dafccf2 3103 objp += obj_offset(cachep);
4f104934 3104 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3105 cachep->ctor(objp);
7ea466f2
TH
3106 if (ARCH_SLAB_MINALIGN &&
3107 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3108 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3109 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3110 }
1da177e4
LT
3111 return objp;
3112}
3113#else
3114#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3115#endif
3116
773ff60e 3117static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502 3118{
9b030cb8 3119 if (cachep == kmem_cache)
773ff60e 3120 return false;
8a8b6502 3121
8c138bc0 3122 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
3123}
3124
343e0d7a 3125static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3126{
b28a02de 3127 void *objp;
1da177e4 3128 struct array_cache *ac;
072bb0aa 3129 bool force_refill = false;
1da177e4 3130
5c382300 3131 check_irq_off();
8a8b6502 3132
9a2dba4b 3133 ac = cpu_cache_get(cachep);
1da177e4 3134 if (likely(ac->avail)) {
1da177e4 3135 ac->touched = 1;
072bb0aa
MG
3136 objp = ac_get_obj(cachep, ac, flags, false);
3137
ddbf2e83 3138 /*
072bb0aa
MG
3139 * Allow for the possibility all avail objects are not allowed
3140 * by the current flags
ddbf2e83 3141 */
072bb0aa
MG
3142 if (objp) {
3143 STATS_INC_ALLOCHIT(cachep);
3144 goto out;
3145 }
3146 force_refill = true;
1da177e4 3147 }
072bb0aa
MG
3148
3149 STATS_INC_ALLOCMISS(cachep);
3150 objp = cache_alloc_refill(cachep, flags, force_refill);
3151 /*
3152 * the 'ac' may be updated by cache_alloc_refill(),
3153 * and kmemleak_erase() requires its correct value.
3154 */
3155 ac = cpu_cache_get(cachep);
3156
3157out:
d5cff635
CM
3158 /*
3159 * To avoid a false negative, if an object that is in one of the
3160 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3161 * treat the array pointers as a reference to the object.
3162 */
f3d8b53a
O
3163 if (objp)
3164 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3165 return objp;
3166}
3167
e498be7d 3168#ifdef CONFIG_NUMA
c61afb18 3169/*
b2455396 3170 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3171 *
3172 * If we are in_interrupt, then process context, including cpusets and
3173 * mempolicy, may not apply and should not be used for allocation policy.
3174 */
3175static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3176{
3177 int nid_alloc, nid_here;
3178
765c4507 3179 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3180 return NULL;
7d6e6d09 3181 nid_alloc = nid_here = numa_mem_id();
c61afb18 3182 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3183 nid_alloc = cpuset_slab_spread_node();
c61afb18 3184 else if (current->mempolicy)
e7b691b0 3185 nid_alloc = slab_node();
c61afb18 3186 if (nid_alloc != nid_here)
8b98c169 3187 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3188 return NULL;
3189}
3190
765c4507
CL
3191/*
3192 * Fallback function if there was no memory available and no objects on a
3c517a61 3193 * certain node and fall back is permitted. First we scan all the
6a67368c 3194 * available node for available objects. If that fails then we
3c517a61
CL
3195 * perform an allocation without specifying a node. This allows the page
3196 * allocator to do its reclaim / fallback magic. We then insert the
3197 * slab into the proper nodelist and then allocate from it.
765c4507 3198 */
8c8cc2c1 3199static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3200{
8c8cc2c1
PE
3201 struct zonelist *zonelist;
3202 gfp_t local_flags;
dd1a239f 3203 struct zoneref *z;
54a6eb5c
MG
3204 struct zone *zone;
3205 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3206 void *obj = NULL;
3c517a61 3207 int nid;
cc9a6c87 3208 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3209
3210 if (flags & __GFP_THISNODE)
3211 return NULL;
3212
6cb06229 3213 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3214
cc9a6c87
MG
3215retry_cpuset:
3216 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 3217 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87 3218
3c517a61
CL
3219retry:
3220 /*
3221 * Look through allowed nodes for objects available
3222 * from existing per node queues.
3223 */
54a6eb5c
MG
3224 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3225 nid = zone_to_nid(zone);
aedb0eb1 3226
54a6eb5c 3227 if (cpuset_zone_allowed_hardwall(zone, flags) &&
6a67368c
CL
3228 cache->node[nid] &&
3229 cache->node[nid]->free_objects) {
3c517a61
CL
3230 obj = ____cache_alloc_node(cache,
3231 flags | GFP_THISNODE, nid);
481c5346
CL
3232 if (obj)
3233 break;
3234 }
3c517a61
CL
3235 }
3236
cfce6604 3237 if (!obj) {
3c517a61
CL
3238 /*
3239 * This allocation will be performed within the constraints
3240 * of the current cpuset / memory policy requirements.
3241 * We may trigger various forms of reclaim on the allowed
3242 * set and go into memory reserves if necessary.
3243 */
0c3aa83e
JK
3244 struct page *page;
3245
dd47ea75
CL
3246 if (local_flags & __GFP_WAIT)
3247 local_irq_enable();
3248 kmem_flagcheck(cache, flags);
0c3aa83e 3249 page = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3250 if (local_flags & __GFP_WAIT)
3251 local_irq_disable();
0c3aa83e 3252 if (page) {
3c517a61
CL
3253 /*
3254 * Insert into the appropriate per node queues
3255 */
0c3aa83e
JK
3256 nid = page_to_nid(page);
3257 if (cache_grow(cache, flags, nid, page)) {
3c517a61
CL
3258 obj = ____cache_alloc_node(cache,
3259 flags | GFP_THISNODE, nid);
3260 if (!obj)
3261 /*
3262 * Another processor may allocate the
3263 * objects in the slab since we are
3264 * not holding any locks.
3265 */
3266 goto retry;
3267 } else {
b6a60451 3268 /* cache_grow already freed obj */
3c517a61
CL
3269 obj = NULL;
3270 }
3271 }
aedb0eb1 3272 }
cc9a6c87
MG
3273
3274 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3275 goto retry_cpuset;
765c4507
CL
3276 return obj;
3277}
3278
e498be7d
CL
3279/*
3280 * A interface to enable slab creation on nodeid
1da177e4 3281 */
8b98c169 3282static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3283 int nodeid)
e498be7d
CL
3284{
3285 struct list_head *entry;
b28a02de 3286 struct slab *slabp;
ce8eb6c4 3287 struct kmem_cache_node *n;
b28a02de 3288 void *obj;
b28a02de
PE
3289 int x;
3290
14e50c6a 3291 VM_BUG_ON(nodeid > num_online_nodes());
ce8eb6c4
CL
3292 n = cachep->node[nodeid];
3293 BUG_ON(!n);
b28a02de 3294
a737b3e2 3295retry:
ca3b9b91 3296 check_irq_off();
ce8eb6c4
CL
3297 spin_lock(&n->list_lock);
3298 entry = n->slabs_partial.next;
3299 if (entry == &n->slabs_partial) {
3300 n->free_touched = 1;
3301 entry = n->slabs_free.next;
3302 if (entry == &n->slabs_free)
b28a02de
PE
3303 goto must_grow;
3304 }
3305
3306 slabp = list_entry(entry, struct slab, list);
3307 check_spinlock_acquired_node(cachep, nodeid);
3308 check_slabp(cachep, slabp);
3309
3310 STATS_INC_NODEALLOCS(cachep);
3311 STATS_INC_ACTIVE(cachep);
3312 STATS_SET_HIGH(cachep);
3313
3314 BUG_ON(slabp->inuse == cachep->num);
3315
78d382d7 3316 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de 3317 check_slabp(cachep, slabp);
ce8eb6c4 3318 n->free_objects--;
b28a02de
PE
3319 /* move slabp to correct slabp list: */
3320 list_del(&slabp->list);
3321
a737b3e2 3322 if (slabp->free == BUFCTL_END)
ce8eb6c4 3323 list_add(&slabp->list, &n->slabs_full);
a737b3e2 3324 else
ce8eb6c4 3325 list_add(&slabp->list, &n->slabs_partial);
e498be7d 3326
ce8eb6c4 3327 spin_unlock(&n->list_lock);
b28a02de 3328 goto done;
e498be7d 3329
a737b3e2 3330must_grow:
ce8eb6c4 3331 spin_unlock(&n->list_lock);
3c517a61 3332 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3333 if (x)
3334 goto retry;
1da177e4 3335
8c8cc2c1 3336 return fallback_alloc(cachep, flags);
e498be7d 3337
a737b3e2 3338done:
b28a02de 3339 return obj;
e498be7d 3340}
8c8cc2c1 3341
8c8cc2c1 3342static __always_inline void *
48356303 3343slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3344 unsigned long caller)
8c8cc2c1
PE
3345{
3346 unsigned long save_flags;
3347 void *ptr;
7d6e6d09 3348 int slab_node = numa_mem_id();
8c8cc2c1 3349
dcce284a 3350 flags &= gfp_allowed_mask;
7e85ee0c 3351
cf40bd16
NP
3352 lockdep_trace_alloc(flags);
3353
773ff60e 3354 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3355 return NULL;
3356
d79923fa
GC
3357 cachep = memcg_kmem_get_cache(cachep, flags);
3358
8c8cc2c1
PE
3359 cache_alloc_debugcheck_before(cachep, flags);
3360 local_irq_save(save_flags);
3361
eacbbae3 3362 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3363 nodeid = slab_node;
8c8cc2c1 3364
6a67368c 3365 if (unlikely(!cachep->node[nodeid])) {
8c8cc2c1
PE
3366 /* Node not bootstrapped yet */
3367 ptr = fallback_alloc(cachep, flags);
3368 goto out;
3369 }
3370
7d6e6d09 3371 if (nodeid == slab_node) {
8c8cc2c1
PE
3372 /*
3373 * Use the locally cached objects if possible.
3374 * However ____cache_alloc does not allow fallback
3375 * to other nodes. It may fail while we still have
3376 * objects on other nodes available.
3377 */
3378 ptr = ____cache_alloc(cachep, flags);
3379 if (ptr)
3380 goto out;
3381 }
3382 /* ___cache_alloc_node can fall back to other nodes */
3383 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3384 out:
3385 local_irq_restore(save_flags);
3386 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3387 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3388 flags);
8c8cc2c1 3389
c175eea4 3390 if (likely(ptr))
8c138bc0 3391 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
c175eea4 3392
d07dbea4 3393 if (unlikely((flags & __GFP_ZERO) && ptr))
8c138bc0 3394 memset(ptr, 0, cachep->object_size);
d07dbea4 3395
8c8cc2c1
PE
3396 return ptr;
3397}
3398
3399static __always_inline void *
3400__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3401{
3402 void *objp;
3403
3404 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3405 objp = alternate_node_alloc(cache, flags);
3406 if (objp)
3407 goto out;
3408 }
3409 objp = ____cache_alloc(cache, flags);
3410
3411 /*
3412 * We may just have run out of memory on the local node.
3413 * ____cache_alloc_node() knows how to locate memory on other nodes
3414 */
7d6e6d09
LS
3415 if (!objp)
3416 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3417
3418 out:
3419 return objp;
3420}
3421#else
3422
3423static __always_inline void *
3424__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3425{
3426 return ____cache_alloc(cachep, flags);
3427}
3428
3429#endif /* CONFIG_NUMA */
3430
3431static __always_inline void *
48356303 3432slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3433{
3434 unsigned long save_flags;
3435 void *objp;
3436
dcce284a 3437 flags &= gfp_allowed_mask;
7e85ee0c 3438
cf40bd16
NP
3439 lockdep_trace_alloc(flags);
3440
773ff60e 3441 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3442 return NULL;
3443
d79923fa
GC
3444 cachep = memcg_kmem_get_cache(cachep, flags);
3445
8c8cc2c1
PE
3446 cache_alloc_debugcheck_before(cachep, flags);
3447 local_irq_save(save_flags);
3448 objp = __do_cache_alloc(cachep, flags);
3449 local_irq_restore(save_flags);
3450 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3451 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3452 flags);
8c8cc2c1
PE
3453 prefetchw(objp);
3454
c175eea4 3455 if (likely(objp))
8c138bc0 3456 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
c175eea4 3457
d07dbea4 3458 if (unlikely((flags & __GFP_ZERO) && objp))
8c138bc0 3459 memset(objp, 0, cachep->object_size);
d07dbea4 3460
8c8cc2c1
PE
3461 return objp;
3462}
e498be7d
CL
3463
3464/*
3465 * Caller needs to acquire correct kmem_list's list_lock
3466 */
343e0d7a 3467static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3468 int node)
1da177e4
LT
3469{
3470 int i;
ce8eb6c4 3471 struct kmem_cache_node *n;
1da177e4
LT
3472
3473 for (i = 0; i < nr_objects; i++) {
072bb0aa 3474 void *objp;
1da177e4 3475 struct slab *slabp;
1da177e4 3476
072bb0aa
MG
3477 clear_obj_pfmemalloc(&objpp[i]);
3478 objp = objpp[i];
3479
6ed5eb22 3480 slabp = virt_to_slab(objp);
ce8eb6c4 3481 n = cachep->node[node];
1da177e4 3482 list_del(&slabp->list);
ff69416e 3483 check_spinlock_acquired_node(cachep, node);
1da177e4 3484 check_slabp(cachep, slabp);
78d382d7 3485 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3486 STATS_DEC_ACTIVE(cachep);
ce8eb6c4 3487 n->free_objects++;
1da177e4
LT
3488 check_slabp(cachep, slabp);
3489
3490 /* fixup slab chains */
3491 if (slabp->inuse == 0) {
ce8eb6c4
CL
3492 if (n->free_objects > n->free_limit) {
3493 n->free_objects -= cachep->num;
e5ac9c5a
RT
3494 /* No need to drop any previously held
3495 * lock here, even if we have a off-slab slab
3496 * descriptor it is guaranteed to come from
3497 * a different cache, refer to comments before
3498 * alloc_slabmgmt.
3499 */
1da177e4
LT
3500 slab_destroy(cachep, slabp);
3501 } else {
ce8eb6c4 3502 list_add(&slabp->list, &n->slabs_free);
1da177e4
LT
3503 }
3504 } else {
3505 /* Unconditionally move a slab to the end of the
3506 * partial list on free - maximum time for the
3507 * other objects to be freed, too.
3508 */
ce8eb6c4 3509 list_add_tail(&slabp->list, &n->slabs_partial);
1da177e4
LT
3510 }
3511 }
3512}
3513
343e0d7a 3514static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3515{
3516 int batchcount;
ce8eb6c4 3517 struct kmem_cache_node *n;
7d6e6d09 3518 int node = numa_mem_id();
1da177e4
LT
3519
3520 batchcount = ac->batchcount;
3521#if DEBUG
3522 BUG_ON(!batchcount || batchcount > ac->avail);
3523#endif
3524 check_irq_off();
ce8eb6c4
CL
3525 n = cachep->node[node];
3526 spin_lock(&n->list_lock);
3527 if (n->shared) {
3528 struct array_cache *shared_array = n->shared;
b28a02de 3529 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3530 if (max) {
3531 if (batchcount > max)
3532 batchcount = max;
e498be7d 3533 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3534 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3535 shared_array->avail += batchcount;
3536 goto free_done;
3537 }
3538 }
3539
ff69416e 3540 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3541free_done:
1da177e4
LT
3542#if STATS
3543 {
3544 int i = 0;
3545 struct list_head *p;
3546
ce8eb6c4
CL
3547 p = n->slabs_free.next;
3548 while (p != &(n->slabs_free)) {
1da177e4
LT
3549 struct slab *slabp;
3550
3551 slabp = list_entry(p, struct slab, list);
3552 BUG_ON(slabp->inuse);
3553
3554 i++;
3555 p = p->next;
3556 }
3557 STATS_SET_FREEABLE(cachep, i);
3558 }
3559#endif
ce8eb6c4 3560 spin_unlock(&n->list_lock);
1da177e4 3561 ac->avail -= batchcount;
a737b3e2 3562 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3563}
3564
3565/*
a737b3e2
AM
3566 * Release an obj back to its cache. If the obj has a constructed state, it must
3567 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3568 */
a947eb95 3569static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3570 unsigned long caller)
1da177e4 3571{
9a2dba4b 3572 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3573
3574 check_irq_off();
d5cff635 3575 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3576 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3577
8c138bc0 3578 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3579
1807a1aa
SS
3580 /*
3581 * Skip calling cache_free_alien() when the platform is not numa.
3582 * This will avoid cache misses that happen while accessing slabp (which
3583 * is per page memory reference) to get nodeid. Instead use a global
3584 * variable to skip the call, which is mostly likely to be present in
3585 * the cache.
3586 */
b6e68bc1 3587 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3588 return;
3589
1da177e4
LT
3590 if (likely(ac->avail < ac->limit)) {
3591 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3592 } else {
3593 STATS_INC_FREEMISS(cachep);
3594 cache_flusharray(cachep, ac);
1da177e4 3595 }
42c8c99c 3596
072bb0aa 3597 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3598}
3599
3600/**
3601 * kmem_cache_alloc - Allocate an object
3602 * @cachep: The cache to allocate from.
3603 * @flags: See kmalloc().
3604 *
3605 * Allocate an object from this cache. The flags are only relevant
3606 * if the cache has no available objects.
3607 */
343e0d7a 3608void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3609{
48356303 3610 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3611
ca2b84cb 3612 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3613 cachep->object_size, cachep->size, flags);
36555751
EGM
3614
3615 return ret;
1da177e4
LT
3616}
3617EXPORT_SYMBOL(kmem_cache_alloc);
3618
0f24f128 3619#ifdef CONFIG_TRACING
85beb586 3620void *
4052147c 3621kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3622{
85beb586
SR
3623 void *ret;
3624
48356303 3625 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3626
3627 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3628 size, cachep->size, flags);
85beb586 3629 return ret;
36555751 3630}
85beb586 3631EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3632#endif
3633
1da177e4 3634#ifdef CONFIG_NUMA
d0d04b78
ZL
3635/**
3636 * kmem_cache_alloc_node - Allocate an object on the specified node
3637 * @cachep: The cache to allocate from.
3638 * @flags: See kmalloc().
3639 * @nodeid: node number of the target node.
3640 *
3641 * Identical to kmem_cache_alloc but it will allocate memory on the given
3642 * node, which can improve the performance for cpu bound structures.
3643 *
3644 * Fallback to other node is possible if __GFP_THISNODE is not set.
3645 */
8b98c169
CH
3646void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3647{
48356303 3648 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3649
ca2b84cb 3650 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3651 cachep->object_size, cachep->size,
ca2b84cb 3652 flags, nodeid);
36555751
EGM
3653
3654 return ret;
8b98c169 3655}
1da177e4
LT
3656EXPORT_SYMBOL(kmem_cache_alloc_node);
3657
0f24f128 3658#ifdef CONFIG_TRACING
4052147c 3659void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3660 gfp_t flags,
4052147c
EG
3661 int nodeid,
3662 size_t size)
36555751 3663{
85beb586
SR
3664 void *ret;
3665
592f4145 3666 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3667
85beb586 3668 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3669 size, cachep->size,
85beb586
SR
3670 flags, nodeid);
3671 return ret;
36555751 3672}
85beb586 3673EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3674#endif
3675
8b98c169 3676static __always_inline void *
7c0cb9c6 3677__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3678{
343e0d7a 3679 struct kmem_cache *cachep;
97e2bde4 3680
2c59dd65 3681 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3682 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3683 return cachep;
4052147c 3684 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3685}
8b98c169 3686
0bb38a5c 3687#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3688void *__kmalloc_node(size_t size, gfp_t flags, int node)
3689{
7c0cb9c6 3690 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3691}
dbe5e69d 3692EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3693
3694void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3695 int node, unsigned long caller)
8b98c169 3696{
7c0cb9c6 3697 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3698}
3699EXPORT_SYMBOL(__kmalloc_node_track_caller);
3700#else
3701void *__kmalloc_node(size_t size, gfp_t flags, int node)
3702{
7c0cb9c6 3703 return __do_kmalloc_node(size, flags, node, 0);
8b98c169
CH
3704}
3705EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3706#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3707#endif /* CONFIG_NUMA */
1da177e4
LT
3708
3709/**
800590f5 3710 * __do_kmalloc - allocate memory
1da177e4 3711 * @size: how many bytes of memory are required.
800590f5 3712 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3713 * @caller: function caller for debug tracking of the caller
1da177e4 3714 */
7fd6b141 3715static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3716 unsigned long caller)
1da177e4 3717{
343e0d7a 3718 struct kmem_cache *cachep;
36555751 3719 void *ret;
1da177e4 3720
97e2bde4
MS
3721 /* If you want to save a few bytes .text space: replace
3722 * __ with kmem_.
3723 * Then kmalloc uses the uninlined functions instead of the inline
3724 * functions.
3725 */
2c59dd65 3726 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3727 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3728 return cachep;
48356303 3729 ret = slab_alloc(cachep, flags, caller);
36555751 3730
7c0cb9c6 3731 trace_kmalloc(caller, ret,
3b0efdfa 3732 size, cachep->size, flags);
36555751
EGM
3733
3734 return ret;
7fd6b141
PE
3735}
3736
7fd6b141 3737
0bb38a5c 3738#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3739void *__kmalloc(size_t size, gfp_t flags)
3740{
7c0cb9c6 3741 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3742}
3743EXPORT_SYMBOL(__kmalloc);
3744
ce71e27c 3745void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3746{
7c0cb9c6 3747 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3748}
3749EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3750
3751#else
3752void *__kmalloc(size_t size, gfp_t flags)
3753{
7c0cb9c6 3754 return __do_kmalloc(size, flags, 0);
1d2c8eea
CH
3755}
3756EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3757#endif
3758
1da177e4
LT
3759/**
3760 * kmem_cache_free - Deallocate an object
3761 * @cachep: The cache the allocation was from.
3762 * @objp: The previously allocated object.
3763 *
3764 * Free an object which was previously allocated from this
3765 * cache.
3766 */
343e0d7a 3767void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3768{
3769 unsigned long flags;
b9ce5ef4
GC
3770 cachep = cache_from_obj(cachep, objp);
3771 if (!cachep)
3772 return;
1da177e4
LT
3773
3774 local_irq_save(flags);
d97d476b 3775 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3776 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3777 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3778 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3779 local_irq_restore(flags);
36555751 3780
ca2b84cb 3781 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3782}
3783EXPORT_SYMBOL(kmem_cache_free);
3784
1da177e4
LT
3785/**
3786 * kfree - free previously allocated memory
3787 * @objp: pointer returned by kmalloc.
3788 *
80e93eff
PE
3789 * If @objp is NULL, no operation is performed.
3790 *
1da177e4
LT
3791 * Don't free memory not originally allocated by kmalloc()
3792 * or you will run into trouble.
3793 */
3794void kfree(const void *objp)
3795{
343e0d7a 3796 struct kmem_cache *c;
1da177e4
LT
3797 unsigned long flags;
3798
2121db74
PE
3799 trace_kfree(_RET_IP_, objp);
3800
6cb8f913 3801 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3802 return;
3803 local_irq_save(flags);
3804 kfree_debugcheck(objp);
6ed5eb22 3805 c = virt_to_cache(objp);
8c138bc0
CL
3806 debug_check_no_locks_freed(objp, c->object_size);
3807
3808 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3809 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3810 local_irq_restore(flags);
3811}
3812EXPORT_SYMBOL(kfree);
3813
e498be7d 3814/*
ce8eb6c4 3815 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3816 */
83b519e8 3817static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3818{
3819 int node;
ce8eb6c4 3820 struct kmem_cache_node *n;
cafeb02e 3821 struct array_cache *new_shared;
3395ee05 3822 struct array_cache **new_alien = NULL;
e498be7d 3823
9c09a95c 3824 for_each_online_node(node) {
cafeb02e 3825
3395ee05 3826 if (use_alien_caches) {
83b519e8 3827 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3828 if (!new_alien)
3829 goto fail;
3830 }
cafeb02e 3831
63109846
ED
3832 new_shared = NULL;
3833 if (cachep->shared) {
3834 new_shared = alloc_arraycache(node,
0718dc2a 3835 cachep->shared*cachep->batchcount,
83b519e8 3836 0xbaadf00d, gfp);
63109846
ED
3837 if (!new_shared) {
3838 free_alien_cache(new_alien);
3839 goto fail;
3840 }
0718dc2a 3841 }
cafeb02e 3842
ce8eb6c4
CL
3843 n = cachep->node[node];
3844 if (n) {
3845 struct array_cache *shared = n->shared;
cafeb02e 3846
ce8eb6c4 3847 spin_lock_irq(&n->list_lock);
e498be7d 3848
cafeb02e 3849 if (shared)
0718dc2a
CL
3850 free_block(cachep, shared->entry,
3851 shared->avail, node);
e498be7d 3852
ce8eb6c4
CL
3853 n->shared = new_shared;
3854 if (!n->alien) {
3855 n->alien = new_alien;
e498be7d
CL
3856 new_alien = NULL;
3857 }
ce8eb6c4 3858 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3859 cachep->batchcount + cachep->num;
ce8eb6c4 3860 spin_unlock_irq(&n->list_lock);
cafeb02e 3861 kfree(shared);
e498be7d
CL
3862 free_alien_cache(new_alien);
3863 continue;
3864 }
ce8eb6c4
CL
3865 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3866 if (!n) {
0718dc2a
CL
3867 free_alien_cache(new_alien);
3868 kfree(new_shared);
e498be7d 3869 goto fail;
0718dc2a 3870 }
e498be7d 3871
ce8eb6c4
CL
3872 kmem_cache_node_init(n);
3873 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3874 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
ce8eb6c4
CL
3875 n->shared = new_shared;
3876 n->alien = new_alien;
3877 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3878 cachep->batchcount + cachep->num;
ce8eb6c4 3879 cachep->node[node] = n;
e498be7d 3880 }
cafeb02e 3881 return 0;
0718dc2a 3882
a737b3e2 3883fail:
3b0efdfa 3884 if (!cachep->list.next) {
0718dc2a
CL
3885 /* Cache is not active yet. Roll back what we did */
3886 node--;
3887 while (node >= 0) {
6a67368c 3888 if (cachep->node[node]) {
ce8eb6c4 3889 n = cachep->node[node];
0718dc2a 3890
ce8eb6c4
CL
3891 kfree(n->shared);
3892 free_alien_cache(n->alien);
3893 kfree(n);
6a67368c 3894 cachep->node[node] = NULL;
0718dc2a
CL
3895 }
3896 node--;
3897 }
3898 }
cafeb02e 3899 return -ENOMEM;
e498be7d
CL
3900}
3901
1da177e4 3902struct ccupdate_struct {
343e0d7a 3903 struct kmem_cache *cachep;
acfe7d74 3904 struct array_cache *new[0];
1da177e4
LT
3905};
3906
3907static void do_ccupdate_local(void *info)
3908{
a737b3e2 3909 struct ccupdate_struct *new = info;
1da177e4
LT
3910 struct array_cache *old;
3911
3912 check_irq_off();
9a2dba4b 3913 old = cpu_cache_get(new->cachep);
e498be7d 3914
1da177e4
LT
3915 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3916 new->new[smp_processor_id()] = old;
3917}
3918
18004c5d 3919/* Always called with the slab_mutex held */
943a451a 3920static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3921 int batchcount, int shared, gfp_t gfp)
1da177e4 3922{
d2e7b7d0 3923 struct ccupdate_struct *new;
2ed3a4ef 3924 int i;
1da177e4 3925
acfe7d74
ED
3926 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3927 gfp);
d2e7b7d0
SS
3928 if (!new)
3929 return -ENOMEM;
3930
e498be7d 3931 for_each_online_cpu(i) {
7d6e6d09 3932 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 3933 batchcount, gfp);
d2e7b7d0 3934 if (!new->new[i]) {
b28a02de 3935 for (i--; i >= 0; i--)
d2e7b7d0
SS
3936 kfree(new->new[i]);
3937 kfree(new);
e498be7d 3938 return -ENOMEM;
1da177e4
LT
3939 }
3940 }
d2e7b7d0 3941 new->cachep = cachep;
1da177e4 3942
15c8b6c1 3943 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 3944
1da177e4 3945 check_irq_on();
1da177e4
LT
3946 cachep->batchcount = batchcount;
3947 cachep->limit = limit;
e498be7d 3948 cachep->shared = shared;
1da177e4 3949
e498be7d 3950 for_each_online_cpu(i) {
d2e7b7d0 3951 struct array_cache *ccold = new->new[i];
1da177e4
LT
3952 if (!ccold)
3953 continue;
6a67368c 3954 spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
7d6e6d09 3955 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
6a67368c 3956 spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
1da177e4
LT
3957 kfree(ccold);
3958 }
d2e7b7d0 3959 kfree(new);
83b519e8 3960 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
3961}
3962
943a451a
GC
3963static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3964 int batchcount, int shared, gfp_t gfp)
3965{
3966 int ret;
3967 struct kmem_cache *c = NULL;
3968 int i = 0;
3969
3970 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3971
3972 if (slab_state < FULL)
3973 return ret;
3974
3975 if ((ret < 0) || !is_root_cache(cachep))
3976 return ret;
3977
ebe945c2 3978 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
943a451a
GC
3979 for_each_memcg_cache_index(i) {
3980 c = cache_from_memcg(cachep, i);
3981 if (c)
3982 /* return value determined by the parent cache only */
3983 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3984 }
3985
3986 return ret;
3987}
3988
18004c5d 3989/* Called with slab_mutex held always */
83b519e8 3990static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3991{
3992 int err;
943a451a
GC
3993 int limit = 0;
3994 int shared = 0;
3995 int batchcount = 0;
3996
3997 if (!is_root_cache(cachep)) {
3998 struct kmem_cache *root = memcg_root_cache(cachep);
3999 limit = root->limit;
4000 shared = root->shared;
4001 batchcount = root->batchcount;
4002 }
1da177e4 4003
943a451a
GC
4004 if (limit && shared && batchcount)
4005 goto skip_setup;
a737b3e2
AM
4006 /*
4007 * The head array serves three purposes:
1da177e4
LT
4008 * - create a LIFO ordering, i.e. return objects that are cache-warm
4009 * - reduce the number of spinlock operations.
a737b3e2 4010 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4011 * bufctl chains: array operations are cheaper.
4012 * The numbers are guessed, we should auto-tune as described by
4013 * Bonwick.
4014 */
3b0efdfa 4015 if (cachep->size > 131072)
1da177e4 4016 limit = 1;
3b0efdfa 4017 else if (cachep->size > PAGE_SIZE)
1da177e4 4018 limit = 8;
3b0efdfa 4019 else if (cachep->size > 1024)
1da177e4 4020 limit = 24;
3b0efdfa 4021 else if (cachep->size > 256)
1da177e4
LT
4022 limit = 54;
4023 else
4024 limit = 120;
4025
a737b3e2
AM
4026 /*
4027 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4028 * allocation behaviour: Most allocs on one cpu, most free operations
4029 * on another cpu. For these cases, an efficient object passing between
4030 * cpus is necessary. This is provided by a shared array. The array
4031 * replaces Bonwick's magazine layer.
4032 * On uniprocessor, it's functionally equivalent (but less efficient)
4033 * to a larger limit. Thus disabled by default.
4034 */
4035 shared = 0;
3b0efdfa 4036 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4037 shared = 8;
1da177e4
LT
4038
4039#if DEBUG
a737b3e2
AM
4040 /*
4041 * With debugging enabled, large batchcount lead to excessively long
4042 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4043 */
4044 if (limit > 32)
4045 limit = 32;
4046#endif
943a451a
GC
4047 batchcount = (limit + 1) / 2;
4048skip_setup:
4049 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4
LT
4050 if (err)
4051 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4052 cachep->name, -err);
2ed3a4ef 4053 return err;
1da177e4
LT
4054}
4055
1b55253a 4056/*
ce8eb6c4
CL
4057 * Drain an array if it contains any elements taking the node lock only if
4058 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 4059 * if drain_array() is used on the shared array.
1b55253a 4060 */
ce8eb6c4 4061static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
1b55253a 4062 struct array_cache *ac, int force, int node)
1da177e4
LT
4063{
4064 int tofree;
4065
1b55253a
CL
4066 if (!ac || !ac->avail)
4067 return;
1da177e4
LT
4068 if (ac->touched && !force) {
4069 ac->touched = 0;
b18e7e65 4070 } else {
ce8eb6c4 4071 spin_lock_irq(&n->list_lock);
b18e7e65
CL
4072 if (ac->avail) {
4073 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4074 if (tofree > ac->avail)
4075 tofree = (ac->avail + 1) / 2;
4076 free_block(cachep, ac->entry, tofree, node);
4077 ac->avail -= tofree;
4078 memmove(ac->entry, &(ac->entry[tofree]),
4079 sizeof(void *) * ac->avail);
4080 }
ce8eb6c4 4081 spin_unlock_irq(&n->list_lock);
1da177e4
LT
4082 }
4083}
4084
4085/**
4086 * cache_reap - Reclaim memory from caches.
05fb6bf0 4087 * @w: work descriptor
1da177e4
LT
4088 *
4089 * Called from workqueue/eventd every few seconds.
4090 * Purpose:
4091 * - clear the per-cpu caches for this CPU.
4092 * - return freeable pages to the main free memory pool.
4093 *
a737b3e2
AM
4094 * If we cannot acquire the cache chain mutex then just give up - we'll try
4095 * again on the next iteration.
1da177e4 4096 */
7c5cae36 4097static void cache_reap(struct work_struct *w)
1da177e4 4098{
7a7c381d 4099 struct kmem_cache *searchp;
ce8eb6c4 4100 struct kmem_cache_node *n;
7d6e6d09 4101 int node = numa_mem_id();
bf6aede7 4102 struct delayed_work *work = to_delayed_work(w);
1da177e4 4103
18004c5d 4104 if (!mutex_trylock(&slab_mutex))
1da177e4 4105 /* Give up. Setup the next iteration. */
7c5cae36 4106 goto out;
1da177e4 4107
18004c5d 4108 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4109 check_irq_on();
4110
35386e3b 4111 /*
ce8eb6c4 4112 * We only take the node lock if absolutely necessary and we
35386e3b
CL
4113 * have established with reasonable certainty that
4114 * we can do some work if the lock was obtained.
4115 */
ce8eb6c4 4116 n = searchp->node[node];
35386e3b 4117
ce8eb6c4 4118 reap_alien(searchp, n);
1da177e4 4119
ce8eb6c4 4120 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
1da177e4 4121
35386e3b
CL
4122 /*
4123 * These are racy checks but it does not matter
4124 * if we skip one check or scan twice.
4125 */
ce8eb6c4 4126 if (time_after(n->next_reap, jiffies))
35386e3b 4127 goto next;
1da177e4 4128
ce8eb6c4 4129 n->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4130
ce8eb6c4 4131 drain_array(searchp, n, n->shared, 0, node);
1da177e4 4132
ce8eb6c4
CL
4133 if (n->free_touched)
4134 n->free_touched = 0;
ed11d9eb
CL
4135 else {
4136 int freed;
1da177e4 4137
ce8eb6c4 4138 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4139 5 * searchp->num - 1) / (5 * searchp->num));
4140 STATS_ADD_REAPED(searchp, freed);
4141 }
35386e3b 4142next:
1da177e4
LT
4143 cond_resched();
4144 }
4145 check_irq_on();
18004c5d 4146 mutex_unlock(&slab_mutex);
8fce4d8e 4147 next_reap_node();
7c5cae36 4148out:
a737b3e2 4149 /* Set up the next iteration */
7c5cae36 4150 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4151}
4152
158a9624 4153#ifdef CONFIG_SLABINFO
0d7561c6 4154void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4155{
b28a02de
PE
4156 struct slab *slabp;
4157 unsigned long active_objs;
4158 unsigned long num_objs;
4159 unsigned long active_slabs = 0;
4160 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4161 const char *name;
1da177e4 4162 char *error = NULL;
e498be7d 4163 int node;
ce8eb6c4 4164 struct kmem_cache_node *n;
1da177e4 4165
1da177e4
LT
4166 active_objs = 0;
4167 num_slabs = 0;
e498be7d 4168 for_each_online_node(node) {
ce8eb6c4
CL
4169 n = cachep->node[node];
4170 if (!n)
e498be7d
CL
4171 continue;
4172
ca3b9b91 4173 check_irq_on();
ce8eb6c4 4174 spin_lock_irq(&n->list_lock);
e498be7d 4175
ce8eb6c4 4176 list_for_each_entry(slabp, &n->slabs_full, list) {
e498be7d
CL
4177 if (slabp->inuse != cachep->num && !error)
4178 error = "slabs_full accounting error";
4179 active_objs += cachep->num;
4180 active_slabs++;
4181 }
ce8eb6c4 4182 list_for_each_entry(slabp, &n->slabs_partial, list) {
e498be7d
CL
4183 if (slabp->inuse == cachep->num && !error)
4184 error = "slabs_partial inuse accounting error";
4185 if (!slabp->inuse && !error)
4186 error = "slabs_partial/inuse accounting error";
4187 active_objs += slabp->inuse;
4188 active_slabs++;
4189 }
ce8eb6c4 4190 list_for_each_entry(slabp, &n->slabs_free, list) {
e498be7d
CL
4191 if (slabp->inuse && !error)
4192 error = "slabs_free/inuse accounting error";
4193 num_slabs++;
4194 }
ce8eb6c4
CL
4195 free_objects += n->free_objects;
4196 if (n->shared)
4197 shared_avail += n->shared->avail;
e498be7d 4198
ce8eb6c4 4199 spin_unlock_irq(&n->list_lock);
1da177e4 4200 }
b28a02de
PE
4201 num_slabs += active_slabs;
4202 num_objs = num_slabs * cachep->num;
e498be7d 4203 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4204 error = "free_objects accounting error";
4205
b28a02de 4206 name = cachep->name;
1da177e4
LT
4207 if (error)
4208 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4209
0d7561c6
GC
4210 sinfo->active_objs = active_objs;
4211 sinfo->num_objs = num_objs;
4212 sinfo->active_slabs = active_slabs;
4213 sinfo->num_slabs = num_slabs;
4214 sinfo->shared_avail = shared_avail;
4215 sinfo->limit = cachep->limit;
4216 sinfo->batchcount = cachep->batchcount;
4217 sinfo->shared = cachep->shared;
4218 sinfo->objects_per_slab = cachep->num;
4219 sinfo->cache_order = cachep->gfporder;
4220}
4221
4222void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4223{
1da177e4 4224#if STATS
ce8eb6c4 4225 { /* node stats */
1da177e4
LT
4226 unsigned long high = cachep->high_mark;
4227 unsigned long allocs = cachep->num_allocations;
4228 unsigned long grown = cachep->grown;
4229 unsigned long reaped = cachep->reaped;
4230 unsigned long errors = cachep->errors;
4231 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4232 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4233 unsigned long node_frees = cachep->node_frees;
fb7faf33 4234 unsigned long overflows = cachep->node_overflow;
1da177e4 4235
e92dd4fd
JP
4236 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4237 "%4lu %4lu %4lu %4lu %4lu",
4238 allocs, high, grown,
4239 reaped, errors, max_freeable, node_allocs,
4240 node_frees, overflows);
1da177e4
LT
4241 }
4242 /* cpu stats */
4243 {
4244 unsigned long allochit = atomic_read(&cachep->allochit);
4245 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4246 unsigned long freehit = atomic_read(&cachep->freehit);
4247 unsigned long freemiss = atomic_read(&cachep->freemiss);
4248
4249 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4250 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4251 }
4252#endif
1da177e4
LT
4253}
4254
1da177e4
LT
4255#define MAX_SLABINFO_WRITE 128
4256/**
4257 * slabinfo_write - Tuning for the slab allocator
4258 * @file: unused
4259 * @buffer: user buffer
4260 * @count: data length
4261 * @ppos: unused
4262 */
b7454ad3 4263ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4264 size_t count, loff_t *ppos)
1da177e4 4265{
b28a02de 4266 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4267 int limit, batchcount, shared, res;
7a7c381d 4268 struct kmem_cache *cachep;
b28a02de 4269
1da177e4
LT
4270 if (count > MAX_SLABINFO_WRITE)
4271 return -EINVAL;
4272 if (copy_from_user(&kbuf, buffer, count))
4273 return -EFAULT;
b28a02de 4274 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4275
4276 tmp = strchr(kbuf, ' ');
4277 if (!tmp)
4278 return -EINVAL;
4279 *tmp = '\0';
4280 tmp++;
4281 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4282 return -EINVAL;
4283
4284 /* Find the cache in the chain of caches. */
18004c5d 4285 mutex_lock(&slab_mutex);
1da177e4 4286 res = -EINVAL;
18004c5d 4287 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4288 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4289 if (limit < 1 || batchcount < 1 ||
4290 batchcount > limit || shared < 0) {
e498be7d 4291 res = 0;
1da177e4 4292 } else {
e498be7d 4293 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4294 batchcount, shared,
4295 GFP_KERNEL);
1da177e4
LT
4296 }
4297 break;
4298 }
4299 }
18004c5d 4300 mutex_unlock(&slab_mutex);
1da177e4
LT
4301 if (res >= 0)
4302 res = count;
4303 return res;
4304}
871751e2
AV
4305
4306#ifdef CONFIG_DEBUG_SLAB_LEAK
4307
4308static void *leaks_start(struct seq_file *m, loff_t *pos)
4309{
18004c5d
CL
4310 mutex_lock(&slab_mutex);
4311 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4312}
4313
4314static inline int add_caller(unsigned long *n, unsigned long v)
4315{
4316 unsigned long *p;
4317 int l;
4318 if (!v)
4319 return 1;
4320 l = n[1];
4321 p = n + 2;
4322 while (l) {
4323 int i = l/2;
4324 unsigned long *q = p + 2 * i;
4325 if (*q == v) {
4326 q[1]++;
4327 return 1;
4328 }
4329 if (*q > v) {
4330 l = i;
4331 } else {
4332 p = q + 2;
4333 l -= i + 1;
4334 }
4335 }
4336 if (++n[1] == n[0])
4337 return 0;
4338 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4339 p[0] = v;
4340 p[1] = 1;
4341 return 1;
4342}
4343
4344static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4345{
4346 void *p;
4347 int i;
4348 if (n[0] == n[1])
4349 return;
3b0efdfa 4350 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
871751e2
AV
4351 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4352 continue;
4353 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4354 return;
4355 }
4356}
4357
4358static void show_symbol(struct seq_file *m, unsigned long address)
4359{
4360#ifdef CONFIG_KALLSYMS
871751e2 4361 unsigned long offset, size;
9281acea 4362 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4363
a5c43dae 4364 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4365 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4366 if (modname[0])
871751e2
AV
4367 seq_printf(m, " [%s]", modname);
4368 return;
4369 }
4370#endif
4371 seq_printf(m, "%p", (void *)address);
4372}
4373
4374static int leaks_show(struct seq_file *m, void *p)
4375{
0672aa7c 4376 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
871751e2 4377 struct slab *slabp;
ce8eb6c4 4378 struct kmem_cache_node *n;
871751e2 4379 const char *name;
db845067 4380 unsigned long *x = m->private;
871751e2
AV
4381 int node;
4382 int i;
4383
4384 if (!(cachep->flags & SLAB_STORE_USER))
4385 return 0;
4386 if (!(cachep->flags & SLAB_RED_ZONE))
4387 return 0;
4388
4389 /* OK, we can do it */
4390
db845067 4391 x[1] = 0;
871751e2
AV
4392
4393 for_each_online_node(node) {
ce8eb6c4
CL
4394 n = cachep->node[node];
4395 if (!n)
871751e2
AV
4396 continue;
4397
4398 check_irq_on();
ce8eb6c4 4399 spin_lock_irq(&n->list_lock);
871751e2 4400
ce8eb6c4 4401 list_for_each_entry(slabp, &n->slabs_full, list)
db845067 4402 handle_slab(x, cachep, slabp);
ce8eb6c4 4403 list_for_each_entry(slabp, &n->slabs_partial, list)
db845067 4404 handle_slab(x, cachep, slabp);
ce8eb6c4 4405 spin_unlock_irq(&n->list_lock);
871751e2
AV
4406 }
4407 name = cachep->name;
db845067 4408 if (x[0] == x[1]) {
871751e2 4409 /* Increase the buffer size */
18004c5d 4410 mutex_unlock(&slab_mutex);
db845067 4411 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4412 if (!m->private) {
4413 /* Too bad, we are really out */
db845067 4414 m->private = x;
18004c5d 4415 mutex_lock(&slab_mutex);
871751e2
AV
4416 return -ENOMEM;
4417 }
db845067
CL
4418 *(unsigned long *)m->private = x[0] * 2;
4419 kfree(x);
18004c5d 4420 mutex_lock(&slab_mutex);
871751e2
AV
4421 /* Now make sure this entry will be retried */
4422 m->count = m->size;
4423 return 0;
4424 }
db845067
CL
4425 for (i = 0; i < x[1]; i++) {
4426 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4427 show_symbol(m, x[2*i+2]);
871751e2
AV
4428 seq_putc(m, '\n');
4429 }
d2e7b7d0 4430
871751e2
AV
4431 return 0;
4432}
4433
a0ec95a8 4434static const struct seq_operations slabstats_op = {
871751e2 4435 .start = leaks_start,
276a2439
WL
4436 .next = slab_next,
4437 .stop = slab_stop,
871751e2
AV
4438 .show = leaks_show,
4439};
a0ec95a8
AD
4440
4441static int slabstats_open(struct inode *inode, struct file *file)
4442{
4443 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4444 int ret = -ENOMEM;
4445 if (n) {
4446 ret = seq_open(file, &slabstats_op);
4447 if (!ret) {
4448 struct seq_file *m = file->private_data;
4449 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4450 m->private = n;
4451 n = NULL;
4452 }
4453 kfree(n);
4454 }
4455 return ret;
4456}
4457
4458static const struct file_operations proc_slabstats_operations = {
4459 .open = slabstats_open,
4460 .read = seq_read,
4461 .llseek = seq_lseek,
4462 .release = seq_release_private,
4463};
4464#endif
4465
4466static int __init slab_proc_init(void)
4467{
4468#ifdef CONFIG_DEBUG_SLAB_LEAK
4469 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4470#endif
a0ec95a8
AD
4471 return 0;
4472}
4473module_init(slab_proc_init);
1da177e4
LT
4474#endif
4475
00e145b6
MS
4476/**
4477 * ksize - get the actual amount of memory allocated for a given object
4478 * @objp: Pointer to the object
4479 *
4480 * kmalloc may internally round up allocations and return more memory
4481 * than requested. ksize() can be used to determine the actual amount of
4482 * memory allocated. The caller may use this additional memory, even though
4483 * a smaller amount of memory was initially specified with the kmalloc call.
4484 * The caller must guarantee that objp points to a valid object previously
4485 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4486 * must not be freed during the duration of the call.
4487 */
fd76bab2 4488size_t ksize(const void *objp)
1da177e4 4489{
ef8b4520
CL
4490 BUG_ON(!objp);
4491 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4492 return 0;
1da177e4 4493
8c138bc0 4494 return virt_to_cache(objp)->object_size;
1da177e4 4495}
b1aabecd 4496EXPORT_SYMBOL(ksize);