Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6-block.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
5a0e3ad6 10#include <linux/slab.h>
1cc9be68
AV
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
ad5ebd2f 13#include <linux/jiffies.h>
1da177e4 14#include <linux/rbtree.h>
22e2c507 15#include <linux/ioprio.h>
7b679138 16#include <linux/blktrace_api.h>
25bc6b07 17#include "blk-cgroup.h"
1da177e4
LT
18
19/*
20 * tunables
21 */
fe094d98 22/* max queue in one round of service */
abc3c744 23static const int cfq_quantum = 8;
64100099 24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
25/* maximum backwards seek, in KiB */
26static const int cfq_back_max = 16 * 1024;
27/* penalty of a backwards seek */
28static const int cfq_back_penalty = 2;
64100099 29static const int cfq_slice_sync = HZ / 10;
3b18152c 30static int cfq_slice_async = HZ / 25;
64100099 31static const int cfq_slice_async_rq = 2;
caaa5f9f 32static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
33static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
34static const int cfq_hist_divisor = 4;
22e2c507 35
d9e7620e 36/*
0871714e 37 * offset from end of service tree
d9e7620e 38 */
0871714e 39#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
40
41/*
42 * below this threshold, we consider thinktime immediate
43 */
44#define CFQ_MIN_TT (2)
45
22e2c507 46#define CFQ_SLICE_SCALE (5)
45333d5a 47#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 48#define CFQ_SERVICE_SHIFT 12
22e2c507 49
3dde36dd 50#define CFQQ_SEEK_THR (sector_t)(8 * 100)
e9ce335d 51#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
41647e7a 52#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 53#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 54
fe094d98
JA
55#define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 57#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 58
e18b890b
CL
59static struct kmem_cache *cfq_pool;
60static struct kmem_cache *cfq_ioc_pool;
1da177e4 61
245b2e70 62static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 63static struct completion *ioc_gone;
9a11b4ed 64static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 65
22e2c507
JA
66#define CFQ_PRIO_LISTS IOPRIO_BE_NR
67#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
68#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69
206dc69b 70#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 71#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 72
cc09e299
JA
73/*
74 * Most of our rbtree usage is for sorting with min extraction, so
75 * if we cache the leftmost node we don't have to walk down the tree
76 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77 * move this into the elevator for the rq sorting as well.
78 */
79struct cfq_rb_root {
80 struct rb_root rb;
81 struct rb_node *left;
aa6f6a3d 82 unsigned count;
73e9ffdd 83 unsigned total_weight;
1fa8f6d6 84 u64 min_vdisktime;
25bc6b07 85 struct rb_node *active;
cc09e299 86};
73e9ffdd
RK
87#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
88 .count = 0, .min_vdisktime = 0, }
cc09e299 89
6118b70b
JA
90/*
91 * Per process-grouping structure
92 */
93struct cfq_queue {
94 /* reference count */
95 atomic_t ref;
96 /* various state flags, see below */
97 unsigned int flags;
98 /* parent cfq_data */
99 struct cfq_data *cfqd;
100 /* service_tree member */
101 struct rb_node rb_node;
102 /* service_tree key */
103 unsigned long rb_key;
104 /* prio tree member */
105 struct rb_node p_node;
106 /* prio tree root we belong to, if any */
107 struct rb_root *p_root;
108 /* sorted list of pending requests */
109 struct rb_root sort_list;
110 /* if fifo isn't expired, next request to serve */
111 struct request *next_rq;
112 /* requests queued in sort_list */
113 int queued[2];
114 /* currently allocated requests */
115 int allocated[2];
116 /* fifo list of requests in sort_list */
117 struct list_head fifo;
118
dae739eb
VG
119 /* time when queue got scheduled in to dispatch first request. */
120 unsigned long dispatch_start;
f75edf2d 121 unsigned int allocated_slice;
c4081ba5 122 unsigned int slice_dispatch;
dae739eb
VG
123 /* time when first request from queue completed and slice started. */
124 unsigned long slice_start;
6118b70b
JA
125 unsigned long slice_end;
126 long slice_resid;
6118b70b
JA
127
128 /* pending metadata requests */
129 int meta_pending;
130 /* number of requests that are on the dispatch list or inside driver */
131 int dispatched;
132
133 /* io prio of this group */
134 unsigned short ioprio, org_ioprio;
135 unsigned short ioprio_class, org_ioprio_class;
136
c4081ba5
RK
137 pid_t pid;
138
3dde36dd 139 u32 seek_history;
b2c18e1e
JM
140 sector_t last_request_pos;
141
aa6f6a3d 142 struct cfq_rb_root *service_tree;
df5fe3e8 143 struct cfq_queue *new_cfqq;
cdb16e8f 144 struct cfq_group *cfqg;
ae30c286 145 struct cfq_group *orig_cfqg;
22084190
VG
146 /* Sectors dispatched in current dispatch round */
147 unsigned long nr_sectors;
6118b70b
JA
148};
149
c0324a02 150/*
718eee05 151 * First index in the service_trees.
c0324a02
CZ
152 * IDLE is handled separately, so it has negative index
153 */
154enum wl_prio_t {
c0324a02 155 BE_WORKLOAD = 0,
615f0259
VG
156 RT_WORKLOAD = 1,
157 IDLE_WORKLOAD = 2,
c0324a02
CZ
158};
159
718eee05
CZ
160/*
161 * Second index in the service_trees.
162 */
163enum wl_type_t {
164 ASYNC_WORKLOAD = 0,
165 SYNC_NOIDLE_WORKLOAD = 1,
166 SYNC_WORKLOAD = 2
167};
168
cdb16e8f
VG
169/* This is per cgroup per device grouping structure */
170struct cfq_group {
1fa8f6d6
VG
171 /* group service_tree member */
172 struct rb_node rb_node;
173
174 /* group service_tree key */
175 u64 vdisktime;
25bc6b07 176 unsigned int weight;
1fa8f6d6
VG
177 bool on_st;
178
179 /* number of cfqq currently on this group */
180 int nr_cfqq;
181
58ff82f3
VG
182 /* Per group busy queus average. Useful for workload slice calc. */
183 unsigned int busy_queues_avg[2];
cdb16e8f
VG
184 /*
185 * rr lists of queues with requests, onle rr for each priority class.
186 * Counts are embedded in the cfq_rb_root
187 */
188 struct cfq_rb_root service_trees[2][3];
189 struct cfq_rb_root service_tree_idle;
dae739eb
VG
190
191 unsigned long saved_workload_slice;
192 enum wl_type_t saved_workload;
193 enum wl_prio_t saved_serving_prio;
25fb5169
VG
194 struct blkio_group blkg;
195#ifdef CONFIG_CFQ_GROUP_IOSCHED
196 struct hlist_node cfqd_node;
b1c35769 197 atomic_t ref;
25fb5169 198#endif
cdb16e8f 199};
718eee05 200
22e2c507
JA
201/*
202 * Per block device queue structure
203 */
1da177e4 204struct cfq_data {
165125e1 205 struct request_queue *queue;
1fa8f6d6
VG
206 /* Root service tree for cfq_groups */
207 struct cfq_rb_root grp_service_tree;
cdb16e8f 208 struct cfq_group root_group;
22e2c507 209
c0324a02
CZ
210 /*
211 * The priority currently being served
22e2c507 212 */
c0324a02 213 enum wl_prio_t serving_prio;
718eee05
CZ
214 enum wl_type_t serving_type;
215 unsigned long workload_expires;
cdb16e8f 216 struct cfq_group *serving_group;
8e550632 217 bool noidle_tree_requires_idle;
a36e71f9
JA
218
219 /*
220 * Each priority tree is sorted by next_request position. These
221 * trees are used when determining if two or more queues are
222 * interleaving requests (see cfq_close_cooperator).
223 */
224 struct rb_root prio_trees[CFQ_PRIO_LISTS];
225
22e2c507
JA
226 unsigned int busy_queues;
227
53c583d2
CZ
228 int rq_in_driver;
229 int rq_in_flight[2];
45333d5a
AC
230
231 /*
232 * queue-depth detection
233 */
234 int rq_queued;
25776e35 235 int hw_tag;
e459dd08
CZ
236 /*
237 * hw_tag can be
238 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
239 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
240 * 0 => no NCQ
241 */
242 int hw_tag_est_depth;
243 unsigned int hw_tag_samples;
1da177e4 244
22e2c507
JA
245 /*
246 * idle window management
247 */
248 struct timer_list idle_slice_timer;
23e018a1 249 struct work_struct unplug_work;
1da177e4 250
22e2c507
JA
251 struct cfq_queue *active_queue;
252 struct cfq_io_context *active_cic;
22e2c507 253
c2dea2d1
VT
254 /*
255 * async queue for each priority case
256 */
257 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
258 struct cfq_queue *async_idle_cfqq;
15c31be4 259
6d048f53 260 sector_t last_position;
1da177e4 261
1da177e4
LT
262 /*
263 * tunables, see top of file
264 */
265 unsigned int cfq_quantum;
22e2c507 266 unsigned int cfq_fifo_expire[2];
1da177e4
LT
267 unsigned int cfq_back_penalty;
268 unsigned int cfq_back_max;
22e2c507
JA
269 unsigned int cfq_slice[2];
270 unsigned int cfq_slice_async_rq;
271 unsigned int cfq_slice_idle;
963b72fc 272 unsigned int cfq_latency;
ae30c286 273 unsigned int cfq_group_isolation;
d9ff4187
AV
274
275 struct list_head cic_list;
1da177e4 276
6118b70b
JA
277 /*
278 * Fallback dummy cfqq for extreme OOM conditions
279 */
280 struct cfq_queue oom_cfqq;
365722bb 281
573412b2 282 unsigned long last_delayed_sync;
25fb5169
VG
283
284 /* List of cfq groups being managed on this device*/
285 struct hlist_head cfqg_list;
bb729bc9 286 struct rcu_head rcu;
1da177e4
LT
287};
288
25fb5169
VG
289static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
290
cdb16e8f
VG
291static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
292 enum wl_prio_t prio,
65b32a57 293 enum wl_type_t type)
c0324a02 294{
1fa8f6d6
VG
295 if (!cfqg)
296 return NULL;
297
c0324a02 298 if (prio == IDLE_WORKLOAD)
cdb16e8f 299 return &cfqg->service_tree_idle;
c0324a02 300
cdb16e8f 301 return &cfqg->service_trees[prio][type];
c0324a02
CZ
302}
303
3b18152c 304enum cfqq_state_flags {
b0b8d749
JA
305 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
306 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 307 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 308 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
309 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
310 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
311 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 312 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 313 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 314 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 315 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 316 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 317 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
318};
319
320#define CFQ_CFQQ_FNS(name) \
321static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
322{ \
fe094d98 323 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
324} \
325static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
326{ \
fe094d98 327 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
328} \
329static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
330{ \
fe094d98 331 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
332}
333
334CFQ_CFQQ_FNS(on_rr);
335CFQ_CFQQ_FNS(wait_request);
b029195d 336CFQ_CFQQ_FNS(must_dispatch);
3b18152c 337CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
338CFQ_CFQQ_FNS(fifo_expire);
339CFQ_CFQQ_FNS(idle_window);
340CFQ_CFQQ_FNS(prio_changed);
44f7c160 341CFQ_CFQQ_FNS(slice_new);
91fac317 342CFQ_CFQQ_FNS(sync);
a36e71f9 343CFQ_CFQQ_FNS(coop);
ae54abed 344CFQ_CFQQ_FNS(split_coop);
76280aff 345CFQ_CFQQ_FNS(deep);
f75edf2d 346CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
347#undef CFQ_CFQQ_FNS
348
2868ef7b
VG
349#ifdef CONFIG_DEBUG_CFQ_IOSCHED
350#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
351 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
352 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
353 blkg_path(&(cfqq)->cfqg->blkg), ##args);
354
355#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
356 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
357 blkg_path(&(cfqg)->blkg), ##args); \
358
359#else
7b679138
JA
360#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
361 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
362#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
363#endif
7b679138
JA
364#define cfq_log(cfqd, fmt, args...) \
365 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
366
615f0259
VG
367/* Traverses through cfq group service trees */
368#define for_each_cfqg_st(cfqg, i, j, st) \
369 for (i = 0; i <= IDLE_WORKLOAD; i++) \
370 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
371 : &cfqg->service_tree_idle; \
372 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
373 (i == IDLE_WORKLOAD && j == 0); \
374 j++, st = i < IDLE_WORKLOAD ? \
375 &cfqg->service_trees[i][j]: NULL) \
376
377
c0324a02
CZ
378static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
379{
380 if (cfq_class_idle(cfqq))
381 return IDLE_WORKLOAD;
382 if (cfq_class_rt(cfqq))
383 return RT_WORKLOAD;
384 return BE_WORKLOAD;
385}
386
718eee05
CZ
387
388static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
389{
390 if (!cfq_cfqq_sync(cfqq))
391 return ASYNC_WORKLOAD;
392 if (!cfq_cfqq_idle_window(cfqq))
393 return SYNC_NOIDLE_WORKLOAD;
394 return SYNC_WORKLOAD;
395}
396
58ff82f3
VG
397static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
398 struct cfq_data *cfqd,
399 struct cfq_group *cfqg)
c0324a02
CZ
400{
401 if (wl == IDLE_WORKLOAD)
cdb16e8f 402 return cfqg->service_tree_idle.count;
c0324a02 403
cdb16e8f
VG
404 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
405 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
406 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
407}
408
f26bd1f0
VG
409static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
410 struct cfq_group *cfqg)
411{
412 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
413 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
414}
415
165125e1 416static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 417static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 418 struct io_context *, gfp_t);
4ac845a2 419static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
420 struct io_context *);
421
422static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 423 bool is_sync)
91fac317 424{
a6151c3a 425 return cic->cfqq[is_sync];
91fac317
VT
426}
427
428static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 429 struct cfq_queue *cfqq, bool is_sync)
91fac317 430{
a6151c3a 431 cic->cfqq[is_sync] = cfqq;
91fac317
VT
432}
433
434/*
435 * We regard a request as SYNC, if it's either a read or has the SYNC bit
436 * set (in which case it could also be direct WRITE).
437 */
a6151c3a 438static inline bool cfq_bio_sync(struct bio *bio)
91fac317 439{
a6151c3a 440 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 441}
1da177e4 442
99f95e52
AM
443/*
444 * scheduler run of queue, if there are requests pending and no one in the
445 * driver that will restart queueing
446 */
23e018a1 447static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 448{
7b679138
JA
449 if (cfqd->busy_queues) {
450 cfq_log(cfqd, "schedule dispatch");
23e018a1 451 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 452 }
99f95e52
AM
453}
454
165125e1 455static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
456{
457 struct cfq_data *cfqd = q->elevator->elevator_data;
458
f04a6424 459 return !cfqd->rq_queued;
99f95e52
AM
460}
461
44f7c160
JA
462/*
463 * Scale schedule slice based on io priority. Use the sync time slice only
464 * if a queue is marked sync and has sync io queued. A sync queue with async
465 * io only, should not get full sync slice length.
466 */
a6151c3a 467static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 468 unsigned short prio)
44f7c160 469{
d9e7620e 470 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 471
d9e7620e
JA
472 WARN_ON(prio >= IOPRIO_BE_NR);
473
474 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
475}
44f7c160 476
d9e7620e
JA
477static inline int
478cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
479{
480 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
481}
482
25bc6b07
VG
483static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
484{
485 u64 d = delta << CFQ_SERVICE_SHIFT;
486
487 d = d * BLKIO_WEIGHT_DEFAULT;
488 do_div(d, cfqg->weight);
489 return d;
490}
491
492static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
493{
494 s64 delta = (s64)(vdisktime - min_vdisktime);
495 if (delta > 0)
496 min_vdisktime = vdisktime;
497
498 return min_vdisktime;
499}
500
501static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
502{
503 s64 delta = (s64)(vdisktime - min_vdisktime);
504 if (delta < 0)
505 min_vdisktime = vdisktime;
506
507 return min_vdisktime;
508}
509
510static void update_min_vdisktime(struct cfq_rb_root *st)
511{
512 u64 vdisktime = st->min_vdisktime;
513 struct cfq_group *cfqg;
514
515 if (st->active) {
516 cfqg = rb_entry_cfqg(st->active);
517 vdisktime = cfqg->vdisktime;
518 }
519
520 if (st->left) {
521 cfqg = rb_entry_cfqg(st->left);
522 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
523 }
524
525 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
526}
527
5db5d642
CZ
528/*
529 * get averaged number of queues of RT/BE priority.
530 * average is updated, with a formula that gives more weight to higher numbers,
531 * to quickly follows sudden increases and decrease slowly
532 */
533
58ff82f3
VG
534static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
535 struct cfq_group *cfqg, bool rt)
5869619c 536{
5db5d642
CZ
537 unsigned min_q, max_q;
538 unsigned mult = cfq_hist_divisor - 1;
539 unsigned round = cfq_hist_divisor / 2;
58ff82f3 540 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 541
58ff82f3
VG
542 min_q = min(cfqg->busy_queues_avg[rt], busy);
543 max_q = max(cfqg->busy_queues_avg[rt], busy);
544 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 545 cfq_hist_divisor;
58ff82f3
VG
546 return cfqg->busy_queues_avg[rt];
547}
548
549static inline unsigned
550cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
551{
552 struct cfq_rb_root *st = &cfqd->grp_service_tree;
553
554 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
555}
556
44f7c160
JA
557static inline void
558cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
559{
5db5d642
CZ
560 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
561 if (cfqd->cfq_latency) {
58ff82f3
VG
562 /*
563 * interested queues (we consider only the ones with the same
564 * priority class in the cfq group)
565 */
566 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
567 cfq_class_rt(cfqq));
5db5d642
CZ
568 unsigned sync_slice = cfqd->cfq_slice[1];
569 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
570 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
571
572 if (expect_latency > group_slice) {
5db5d642
CZ
573 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
574 /* scale low_slice according to IO priority
575 * and sync vs async */
576 unsigned low_slice =
577 min(slice, base_low_slice * slice / sync_slice);
578 /* the adapted slice value is scaled to fit all iqs
579 * into the target latency */
58ff82f3 580 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
581 low_slice);
582 }
583 }
dae739eb 584 cfqq->slice_start = jiffies;
5db5d642 585 cfqq->slice_end = jiffies + slice;
f75edf2d 586 cfqq->allocated_slice = slice;
7b679138 587 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
588}
589
590/*
591 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
592 * isn't valid until the first request from the dispatch is activated
593 * and the slice time set.
594 */
a6151c3a 595static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
596{
597 if (cfq_cfqq_slice_new(cfqq))
598 return 0;
599 if (time_before(jiffies, cfqq->slice_end))
600 return 0;
601
602 return 1;
603}
604
1da177e4 605/*
5e705374 606 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 607 * We choose the request that is closest to the head right now. Distance
e8a99053 608 * behind the head is penalized and only allowed to a certain extent.
1da177e4 609 */
5e705374 610static struct request *
cf7c25cf 611cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 612{
cf7c25cf 613 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 614 unsigned long back_max;
e8a99053
AM
615#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
616#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
617 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 618
5e705374
JA
619 if (rq1 == NULL || rq1 == rq2)
620 return rq2;
621 if (rq2 == NULL)
622 return rq1;
9c2c38a1 623
5e705374
JA
624 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
625 return rq1;
626 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
627 return rq2;
374f84ac
JA
628 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
629 return rq1;
630 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
631 return rq2;
1da177e4 632
83096ebf
TH
633 s1 = blk_rq_pos(rq1);
634 s2 = blk_rq_pos(rq2);
1da177e4 635
1da177e4
LT
636 /*
637 * by definition, 1KiB is 2 sectors
638 */
639 back_max = cfqd->cfq_back_max * 2;
640
641 /*
642 * Strict one way elevator _except_ in the case where we allow
643 * short backward seeks which are biased as twice the cost of a
644 * similar forward seek.
645 */
646 if (s1 >= last)
647 d1 = s1 - last;
648 else if (s1 + back_max >= last)
649 d1 = (last - s1) * cfqd->cfq_back_penalty;
650 else
e8a99053 651 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
652
653 if (s2 >= last)
654 d2 = s2 - last;
655 else if (s2 + back_max >= last)
656 d2 = (last - s2) * cfqd->cfq_back_penalty;
657 else
e8a99053 658 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
659
660 /* Found required data */
e8a99053
AM
661
662 /*
663 * By doing switch() on the bit mask "wrap" we avoid having to
664 * check two variables for all permutations: --> faster!
665 */
666 switch (wrap) {
5e705374 667 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 668 if (d1 < d2)
5e705374 669 return rq1;
e8a99053 670 else if (d2 < d1)
5e705374 671 return rq2;
e8a99053
AM
672 else {
673 if (s1 >= s2)
5e705374 674 return rq1;
e8a99053 675 else
5e705374 676 return rq2;
e8a99053 677 }
1da177e4 678
e8a99053 679 case CFQ_RQ2_WRAP:
5e705374 680 return rq1;
e8a99053 681 case CFQ_RQ1_WRAP:
5e705374
JA
682 return rq2;
683 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
684 default:
685 /*
686 * Since both rqs are wrapped,
687 * start with the one that's further behind head
688 * (--> only *one* back seek required),
689 * since back seek takes more time than forward.
690 */
691 if (s1 <= s2)
5e705374 692 return rq1;
1da177e4 693 else
5e705374 694 return rq2;
1da177e4
LT
695 }
696}
697
498d3aa2
JA
698/*
699 * The below is leftmost cache rbtree addon
700 */
0871714e 701static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 702{
615f0259
VG
703 /* Service tree is empty */
704 if (!root->count)
705 return NULL;
706
cc09e299
JA
707 if (!root->left)
708 root->left = rb_first(&root->rb);
709
0871714e
JA
710 if (root->left)
711 return rb_entry(root->left, struct cfq_queue, rb_node);
712
713 return NULL;
cc09e299
JA
714}
715
1fa8f6d6
VG
716static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
717{
718 if (!root->left)
719 root->left = rb_first(&root->rb);
720
721 if (root->left)
722 return rb_entry_cfqg(root->left);
723
724 return NULL;
725}
726
a36e71f9
JA
727static void rb_erase_init(struct rb_node *n, struct rb_root *root)
728{
729 rb_erase(n, root);
730 RB_CLEAR_NODE(n);
731}
732
cc09e299
JA
733static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
734{
735 if (root->left == n)
736 root->left = NULL;
a36e71f9 737 rb_erase_init(n, &root->rb);
aa6f6a3d 738 --root->count;
cc09e299
JA
739}
740
1da177e4
LT
741/*
742 * would be nice to take fifo expire time into account as well
743 */
5e705374
JA
744static struct request *
745cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
746 struct request *last)
1da177e4 747{
21183b07
JA
748 struct rb_node *rbnext = rb_next(&last->rb_node);
749 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 750 struct request *next = NULL, *prev = NULL;
1da177e4 751
21183b07 752 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
753
754 if (rbprev)
5e705374 755 prev = rb_entry_rq(rbprev);
1da177e4 756
21183b07 757 if (rbnext)
5e705374 758 next = rb_entry_rq(rbnext);
21183b07
JA
759 else {
760 rbnext = rb_first(&cfqq->sort_list);
761 if (rbnext && rbnext != &last->rb_node)
5e705374 762 next = rb_entry_rq(rbnext);
21183b07 763 }
1da177e4 764
cf7c25cf 765 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
766}
767
d9e7620e
JA
768static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
769 struct cfq_queue *cfqq)
1da177e4 770{
d9e7620e
JA
771 /*
772 * just an approximation, should be ok.
773 */
cdb16e8f 774 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 775 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
776}
777
1fa8f6d6
VG
778static inline s64
779cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
780{
781 return cfqg->vdisktime - st->min_vdisktime;
782}
783
784static void
785__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
786{
787 struct rb_node **node = &st->rb.rb_node;
788 struct rb_node *parent = NULL;
789 struct cfq_group *__cfqg;
790 s64 key = cfqg_key(st, cfqg);
791 int left = 1;
792
793 while (*node != NULL) {
794 parent = *node;
795 __cfqg = rb_entry_cfqg(parent);
796
797 if (key < cfqg_key(st, __cfqg))
798 node = &parent->rb_left;
799 else {
800 node = &parent->rb_right;
801 left = 0;
802 }
803 }
804
805 if (left)
806 st->left = &cfqg->rb_node;
807
808 rb_link_node(&cfqg->rb_node, parent, node);
809 rb_insert_color(&cfqg->rb_node, &st->rb);
810}
811
812static void
813cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
814{
815 struct cfq_rb_root *st = &cfqd->grp_service_tree;
816 struct cfq_group *__cfqg;
817 struct rb_node *n;
818
819 cfqg->nr_cfqq++;
820 if (cfqg->on_st)
821 return;
822
823 /*
824 * Currently put the group at the end. Later implement something
825 * so that groups get lesser vtime based on their weights, so that
826 * if group does not loose all if it was not continously backlogged.
827 */
828 n = rb_last(&st->rb);
829 if (n) {
830 __cfqg = rb_entry_cfqg(n);
831 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
832 } else
833 cfqg->vdisktime = st->min_vdisktime;
834
835 __cfq_group_service_tree_add(st, cfqg);
836 cfqg->on_st = true;
58ff82f3 837 st->total_weight += cfqg->weight;
1fa8f6d6
VG
838}
839
840static void
841cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
842{
843 struct cfq_rb_root *st = &cfqd->grp_service_tree;
844
25bc6b07
VG
845 if (st->active == &cfqg->rb_node)
846 st->active = NULL;
847
1fa8f6d6
VG
848 BUG_ON(cfqg->nr_cfqq < 1);
849 cfqg->nr_cfqq--;
25bc6b07 850
1fa8f6d6
VG
851 /* If there are other cfq queues under this group, don't delete it */
852 if (cfqg->nr_cfqq)
853 return;
854
2868ef7b 855 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1fa8f6d6 856 cfqg->on_st = false;
58ff82f3 857 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
858 if (!RB_EMPTY_NODE(&cfqg->rb_node))
859 cfq_rb_erase(&cfqg->rb_node, st);
dae739eb 860 cfqg->saved_workload_slice = 0;
22084190 861 blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
862}
863
864static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
865{
f75edf2d 866 unsigned int slice_used;
dae739eb
VG
867
868 /*
869 * Queue got expired before even a single request completed or
870 * got expired immediately after first request completion.
871 */
872 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
873 /*
874 * Also charge the seek time incurred to the group, otherwise
875 * if there are mutiple queues in the group, each can dispatch
876 * a single request on seeky media and cause lots of seek time
877 * and group will never know it.
878 */
879 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
880 1);
881 } else {
882 slice_used = jiffies - cfqq->slice_start;
f75edf2d
VG
883 if (slice_used > cfqq->allocated_slice)
884 slice_used = cfqq->allocated_slice;
dae739eb
VG
885 }
886
22084190
VG
887 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
888 cfqq->nr_sectors);
dae739eb
VG
889 return slice_used;
890}
891
892static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
893 struct cfq_queue *cfqq)
894{
895 struct cfq_rb_root *st = &cfqd->grp_service_tree;
f26bd1f0
VG
896 unsigned int used_sl, charge_sl;
897 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
898 - cfqg->service_tree_idle.count;
899
900 BUG_ON(nr_sync < 0);
901 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
dae739eb 902
f26bd1f0
VG
903 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
904 charge_sl = cfqq->allocated_slice;
dae739eb
VG
905
906 /* Can't update vdisktime while group is on service tree */
907 cfq_rb_erase(&cfqg->rb_node, st);
f26bd1f0 908 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
dae739eb
VG
909 __cfq_group_service_tree_add(st, cfqg);
910
911 /* This group is being expired. Save the context */
912 if (time_after(cfqd->workload_expires, jiffies)) {
913 cfqg->saved_workload_slice = cfqd->workload_expires
914 - jiffies;
915 cfqg->saved_workload = cfqd->serving_type;
916 cfqg->saved_serving_prio = cfqd->serving_prio;
917 } else
918 cfqg->saved_workload_slice = 0;
2868ef7b
VG
919
920 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
921 st->min_vdisktime);
22084190
VG
922 blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
923 cfqq->nr_sectors);
1fa8f6d6
VG
924}
925
25fb5169
VG
926#ifdef CONFIG_CFQ_GROUP_IOSCHED
927static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
928{
929 if (blkg)
930 return container_of(blkg, struct cfq_group, blkg);
931 return NULL;
932}
933
f8d461d6
VG
934void
935cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
936{
937 cfqg_of_blkg(blkg)->weight = weight;
938}
939
25fb5169
VG
940static struct cfq_group *
941cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
942{
943 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
944 struct cfq_group *cfqg = NULL;
945 void *key = cfqd;
946 int i, j;
947 struct cfq_rb_root *st;
22084190
VG
948 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
949 unsigned int major, minor;
25fb5169 950
25fb5169 951 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
a74b2ada
RB
952 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
953 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
954 cfqg->blkg.dev = MKDEV(major, minor);
955 goto done;
956 }
25fb5169
VG
957 if (cfqg || !create)
958 goto done;
959
960 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
961 if (!cfqg)
962 goto done;
963
964 cfqg->weight = blkcg->weight;
965 for_each_cfqg_st(cfqg, i, j, st)
966 *st = CFQ_RB_ROOT;
967 RB_CLEAR_NODE(&cfqg->rb_node);
968
b1c35769
VG
969 /*
970 * Take the initial reference that will be released on destroy
971 * This can be thought of a joint reference by cgroup and
972 * elevator which will be dropped by either elevator exit
973 * or cgroup deletion path depending on who is exiting first.
974 */
975 atomic_set(&cfqg->ref, 1);
976
25fb5169 977 /* Add group onto cgroup list */
22084190
VG
978 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
979 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
980 MKDEV(major, minor));
25fb5169
VG
981
982 /* Add group on cfqd list */
983 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
984
985done:
25fb5169
VG
986 return cfqg;
987}
988
989/*
990 * Search for the cfq group current task belongs to. If create = 1, then also
991 * create the cfq group if it does not exist. request_queue lock must be held.
992 */
993static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
994{
995 struct cgroup *cgroup;
996 struct cfq_group *cfqg = NULL;
997
998 rcu_read_lock();
999 cgroup = task_cgroup(current, blkio_subsys_id);
1000 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1001 if (!cfqg && create)
1002 cfqg = &cfqd->root_group;
1003 rcu_read_unlock();
1004 return cfqg;
1005}
1006
1007static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1008{
1009 /* Currently, all async queues are mapped to root group */
1010 if (!cfq_cfqq_sync(cfqq))
1011 cfqg = &cfqq->cfqd->root_group;
1012
1013 cfqq->cfqg = cfqg;
b1c35769
VG
1014 /* cfqq reference on cfqg */
1015 atomic_inc(&cfqq->cfqg->ref);
1016}
1017
1018static void cfq_put_cfqg(struct cfq_group *cfqg)
1019{
1020 struct cfq_rb_root *st;
1021 int i, j;
1022
1023 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1024 if (!atomic_dec_and_test(&cfqg->ref))
1025 return;
1026 for_each_cfqg_st(cfqg, i, j, st)
1027 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1028 kfree(cfqg);
1029}
1030
1031static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1032{
1033 /* Something wrong if we are trying to remove same group twice */
1034 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1035
1036 hlist_del_init(&cfqg->cfqd_node);
1037
1038 /*
1039 * Put the reference taken at the time of creation so that when all
1040 * queues are gone, group can be destroyed.
1041 */
1042 cfq_put_cfqg(cfqg);
1043}
1044
1045static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1046{
1047 struct hlist_node *pos, *n;
1048 struct cfq_group *cfqg;
1049
1050 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1051 /*
1052 * If cgroup removal path got to blk_group first and removed
1053 * it from cgroup list, then it will take care of destroying
1054 * cfqg also.
1055 */
1056 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1057 cfq_destroy_cfqg(cfqd, cfqg);
1058 }
25fb5169 1059}
b1c35769
VG
1060
1061/*
1062 * Blk cgroup controller notification saying that blkio_group object is being
1063 * delinked as associated cgroup object is going away. That also means that
1064 * no new IO will come in this group. So get rid of this group as soon as
1065 * any pending IO in the group is finished.
1066 *
1067 * This function is called under rcu_read_lock(). key is the rcu protected
1068 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1069 * read lock.
1070 *
1071 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1072 * it should not be NULL as even if elevator was exiting, cgroup deltion
1073 * path got to it first.
1074 */
1075void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1076{
1077 unsigned long flags;
1078 struct cfq_data *cfqd = key;
1079
1080 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1081 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1082 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1083}
1084
25fb5169
VG
1085#else /* GROUP_IOSCHED */
1086static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1087{
1088 return &cfqd->root_group;
1089}
1090static inline void
1091cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1092 cfqq->cfqg = cfqg;
1093}
1094
b1c35769
VG
1095static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1096static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1097
25fb5169
VG
1098#endif /* GROUP_IOSCHED */
1099
498d3aa2 1100/*
c0324a02 1101 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1102 * requests waiting to be processed. It is sorted in the order that
1103 * we will service the queues.
1104 */
a36e71f9 1105static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1106 bool add_front)
d9e7620e 1107{
0871714e
JA
1108 struct rb_node **p, *parent;
1109 struct cfq_queue *__cfqq;
d9e7620e 1110 unsigned long rb_key;
c0324a02 1111 struct cfq_rb_root *service_tree;
498d3aa2 1112 int left;
dae739eb 1113 int new_cfqq = 1;
ae30c286
VG
1114 int group_changed = 0;
1115
1116#ifdef CONFIG_CFQ_GROUP_IOSCHED
1117 if (!cfqd->cfq_group_isolation
1118 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1119 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1120 /* Move this cfq to root group */
1121 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1122 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1123 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1124 cfqq->orig_cfqg = cfqq->cfqg;
1125 cfqq->cfqg = &cfqd->root_group;
1126 atomic_inc(&cfqd->root_group.ref);
1127 group_changed = 1;
1128 } else if (!cfqd->cfq_group_isolation
1129 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1130 /* cfqq is sequential now needs to go to its original group */
1131 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1132 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1133 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1134 cfq_put_cfqg(cfqq->cfqg);
1135 cfqq->cfqg = cfqq->orig_cfqg;
1136 cfqq->orig_cfqg = NULL;
1137 group_changed = 1;
1138 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1139 }
1140#endif
d9e7620e 1141
cdb16e8f 1142 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1143 cfqq_type(cfqq));
0871714e
JA
1144 if (cfq_class_idle(cfqq)) {
1145 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1146 parent = rb_last(&service_tree->rb);
0871714e
JA
1147 if (parent && parent != &cfqq->rb_node) {
1148 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1149 rb_key += __cfqq->rb_key;
1150 } else
1151 rb_key += jiffies;
1152 } else if (!add_front) {
b9c8946b
JA
1153 /*
1154 * Get our rb key offset. Subtract any residual slice
1155 * value carried from last service. A negative resid
1156 * count indicates slice overrun, and this should position
1157 * the next service time further away in the tree.
1158 */
edd75ffd 1159 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1160 rb_key -= cfqq->slice_resid;
edd75ffd 1161 cfqq->slice_resid = 0;
48e025e6
CZ
1162 } else {
1163 rb_key = -HZ;
aa6f6a3d 1164 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1165 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1166 }
1da177e4 1167
d9e7620e 1168 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1169 new_cfqq = 0;
99f9628a 1170 /*
d9e7620e 1171 * same position, nothing more to do
99f9628a 1172 */
c0324a02
CZ
1173 if (rb_key == cfqq->rb_key &&
1174 cfqq->service_tree == service_tree)
d9e7620e 1175 return;
1da177e4 1176
aa6f6a3d
CZ
1177 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1178 cfqq->service_tree = NULL;
1da177e4 1179 }
d9e7620e 1180
498d3aa2 1181 left = 1;
0871714e 1182 parent = NULL;
aa6f6a3d
CZ
1183 cfqq->service_tree = service_tree;
1184 p = &service_tree->rb.rb_node;
d9e7620e 1185 while (*p) {
67060e37 1186 struct rb_node **n;
cc09e299 1187
d9e7620e
JA
1188 parent = *p;
1189 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1190
0c534e0a 1191 /*
c0324a02 1192 * sort by key, that represents service time.
0c534e0a 1193 */
c0324a02 1194 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1195 n = &(*p)->rb_left;
c0324a02 1196 else {
67060e37 1197 n = &(*p)->rb_right;
cc09e299 1198 left = 0;
c0324a02 1199 }
67060e37
JA
1200
1201 p = n;
d9e7620e
JA
1202 }
1203
cc09e299 1204 if (left)
aa6f6a3d 1205 service_tree->left = &cfqq->rb_node;
cc09e299 1206
d9e7620e
JA
1207 cfqq->rb_key = rb_key;
1208 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1209 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1210 service_tree->count++;
ae30c286 1211 if ((add_front || !new_cfqq) && !group_changed)
dae739eb 1212 return;
1fa8f6d6 1213 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
1214}
1215
a36e71f9 1216static struct cfq_queue *
f2d1f0ae
JA
1217cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1218 sector_t sector, struct rb_node **ret_parent,
1219 struct rb_node ***rb_link)
a36e71f9 1220{
a36e71f9
JA
1221 struct rb_node **p, *parent;
1222 struct cfq_queue *cfqq = NULL;
1223
1224 parent = NULL;
1225 p = &root->rb_node;
1226 while (*p) {
1227 struct rb_node **n;
1228
1229 parent = *p;
1230 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1231
1232 /*
1233 * Sort strictly based on sector. Smallest to the left,
1234 * largest to the right.
1235 */
2e46e8b2 1236 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1237 n = &(*p)->rb_right;
2e46e8b2 1238 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1239 n = &(*p)->rb_left;
1240 else
1241 break;
1242 p = n;
3ac6c9f8 1243 cfqq = NULL;
a36e71f9
JA
1244 }
1245
1246 *ret_parent = parent;
1247 if (rb_link)
1248 *rb_link = p;
3ac6c9f8 1249 return cfqq;
a36e71f9
JA
1250}
1251
1252static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1253{
a36e71f9
JA
1254 struct rb_node **p, *parent;
1255 struct cfq_queue *__cfqq;
1256
f2d1f0ae
JA
1257 if (cfqq->p_root) {
1258 rb_erase(&cfqq->p_node, cfqq->p_root);
1259 cfqq->p_root = NULL;
1260 }
a36e71f9
JA
1261
1262 if (cfq_class_idle(cfqq))
1263 return;
1264 if (!cfqq->next_rq)
1265 return;
1266
f2d1f0ae 1267 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1268 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1269 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1270 if (!__cfqq) {
1271 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1272 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1273 } else
1274 cfqq->p_root = NULL;
a36e71f9
JA
1275}
1276
498d3aa2
JA
1277/*
1278 * Update cfqq's position in the service tree.
1279 */
edd75ffd 1280static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1281{
6d048f53
JA
1282 /*
1283 * Resorting requires the cfqq to be on the RR list already.
1284 */
a36e71f9 1285 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1286 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1287 cfq_prio_tree_add(cfqd, cfqq);
1288 }
6d048f53
JA
1289}
1290
1da177e4
LT
1291/*
1292 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1293 * the pending list according to last request service
1da177e4 1294 */
febffd61 1295static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1296{
7b679138 1297 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1298 BUG_ON(cfq_cfqq_on_rr(cfqq));
1299 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
1300 cfqd->busy_queues++;
1301
edd75ffd 1302 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1303}
1304
498d3aa2
JA
1305/*
1306 * Called when the cfqq no longer has requests pending, remove it from
1307 * the service tree.
1308 */
febffd61 1309static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1310{
7b679138 1311 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1312 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1313 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1314
aa6f6a3d
CZ
1315 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1316 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1317 cfqq->service_tree = NULL;
1318 }
f2d1f0ae
JA
1319 if (cfqq->p_root) {
1320 rb_erase(&cfqq->p_node, cfqq->p_root);
1321 cfqq->p_root = NULL;
1322 }
d9e7620e 1323
1fa8f6d6 1324 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1325 BUG_ON(!cfqd->busy_queues);
1326 cfqd->busy_queues--;
1327}
1328
1329/*
1330 * rb tree support functions
1331 */
febffd61 1332static void cfq_del_rq_rb(struct request *rq)
1da177e4 1333{
5e705374 1334 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1335 const int sync = rq_is_sync(rq);
1da177e4 1336
b4878f24
JA
1337 BUG_ON(!cfqq->queued[sync]);
1338 cfqq->queued[sync]--;
1da177e4 1339
5e705374 1340 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1341
f04a6424
VG
1342 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1343 /*
1344 * Queue will be deleted from service tree when we actually
1345 * expire it later. Right now just remove it from prio tree
1346 * as it is empty.
1347 */
1348 if (cfqq->p_root) {
1349 rb_erase(&cfqq->p_node, cfqq->p_root);
1350 cfqq->p_root = NULL;
1351 }
1352 }
1da177e4
LT
1353}
1354
5e705374 1355static void cfq_add_rq_rb(struct request *rq)
1da177e4 1356{
5e705374 1357 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1358 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1359 struct request *__alias, *prev;
1da177e4 1360
5380a101 1361 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1362
1363 /*
1364 * looks a little odd, but the first insert might return an alias.
1365 * if that happens, put the alias on the dispatch list
1366 */
21183b07 1367 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1368 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1369
1370 if (!cfq_cfqq_on_rr(cfqq))
1371 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1372
1373 /*
1374 * check if this request is a better next-serve candidate
1375 */
a36e71f9 1376 prev = cfqq->next_rq;
cf7c25cf 1377 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1378
1379 /*
1380 * adjust priority tree position, if ->next_rq changes
1381 */
1382 if (prev != cfqq->next_rq)
1383 cfq_prio_tree_add(cfqd, cfqq);
1384
5044eed4 1385 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1386}
1387
febffd61 1388static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1389{
5380a101
JA
1390 elv_rb_del(&cfqq->sort_list, rq);
1391 cfqq->queued[rq_is_sync(rq)]--;
5e705374 1392 cfq_add_rq_rb(rq);
1da177e4
LT
1393}
1394
206dc69b
JA
1395static struct request *
1396cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1397{
206dc69b 1398 struct task_struct *tsk = current;
91fac317 1399 struct cfq_io_context *cic;
206dc69b 1400 struct cfq_queue *cfqq;
1da177e4 1401
4ac845a2 1402 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1403 if (!cic)
1404 return NULL;
1405
1406 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1407 if (cfqq) {
1408 sector_t sector = bio->bi_sector + bio_sectors(bio);
1409
21183b07 1410 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1411 }
1da177e4 1412
1da177e4
LT
1413 return NULL;
1414}
1415
165125e1 1416static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1417{
22e2c507 1418 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1419
53c583d2 1420 cfqd->rq_in_driver++;
7b679138 1421 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1422 cfqd->rq_in_driver);
25776e35 1423
5b93629b 1424 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1425}
1426
165125e1 1427static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1428{
b4878f24
JA
1429 struct cfq_data *cfqd = q->elevator->elevator_data;
1430
53c583d2
CZ
1431 WARN_ON(!cfqd->rq_in_driver);
1432 cfqd->rq_in_driver--;
7b679138 1433 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1434 cfqd->rq_in_driver);
1da177e4
LT
1435}
1436
b4878f24 1437static void cfq_remove_request(struct request *rq)
1da177e4 1438{
5e705374 1439 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1440
5e705374
JA
1441 if (cfqq->next_rq == rq)
1442 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1443
b4878f24 1444 list_del_init(&rq->queuelist);
5e705374 1445 cfq_del_rq_rb(rq);
374f84ac 1446
45333d5a 1447 cfqq->cfqd->rq_queued--;
374f84ac
JA
1448 if (rq_is_meta(rq)) {
1449 WARN_ON(!cfqq->meta_pending);
1450 cfqq->meta_pending--;
1451 }
1da177e4
LT
1452}
1453
165125e1
JA
1454static int cfq_merge(struct request_queue *q, struct request **req,
1455 struct bio *bio)
1da177e4
LT
1456{
1457 struct cfq_data *cfqd = q->elevator->elevator_data;
1458 struct request *__rq;
1da177e4 1459
206dc69b 1460 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1461 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1462 *req = __rq;
1463 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1464 }
1465
1466 return ELEVATOR_NO_MERGE;
1da177e4
LT
1467}
1468
165125e1 1469static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1470 int type)
1da177e4 1471{
21183b07 1472 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1473 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1474
5e705374 1475 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1476 }
1da177e4
LT
1477}
1478
1479static void
165125e1 1480cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1481 struct request *next)
1482{
cf7c25cf 1483 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1484 /*
1485 * reposition in fifo if next is older than rq
1486 */
1487 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1488 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1489 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1490 rq_set_fifo_time(rq, rq_fifo_time(next));
1491 }
22e2c507 1492
cf7c25cf
CZ
1493 if (cfqq->next_rq == next)
1494 cfqq->next_rq = rq;
b4878f24 1495 cfq_remove_request(next);
22e2c507
JA
1496}
1497
165125e1 1498static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1499 struct bio *bio)
1500{
1501 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1502 struct cfq_io_context *cic;
da775265 1503 struct cfq_queue *cfqq;
da775265
JA
1504
1505 /*
ec8acb69 1506 * Disallow merge of a sync bio into an async request.
da775265 1507 */
91fac317 1508 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1509 return false;
da775265
JA
1510
1511 /*
719d3402
JA
1512 * Lookup the cfqq that this bio will be queued with. Allow
1513 * merge only if rq is queued there.
da775265 1514 */
4ac845a2 1515 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1516 if (!cic)
a6151c3a 1517 return false;
719d3402 1518
91fac317 1519 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1520 return cfqq == RQ_CFQQ(rq);
da775265
JA
1521}
1522
febffd61
JA
1523static void __cfq_set_active_queue(struct cfq_data *cfqd,
1524 struct cfq_queue *cfqq)
22e2c507
JA
1525{
1526 if (cfqq) {
b1ffe737
DS
1527 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1528 cfqd->serving_prio, cfqd->serving_type);
dae739eb
VG
1529 cfqq->slice_start = 0;
1530 cfqq->dispatch_start = jiffies;
f75edf2d 1531 cfqq->allocated_slice = 0;
22e2c507 1532 cfqq->slice_end = 0;
2f5cb738 1533 cfqq->slice_dispatch = 0;
22084190 1534 cfqq->nr_sectors = 0;
2f5cb738 1535
2f5cb738 1536 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1537 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1538 cfq_clear_cfqq_must_alloc_slice(cfqq);
1539 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1540 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
1541
1542 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
1543 }
1544
1545 cfqd->active_queue = cfqq;
1546}
1547
7b14e3b5
JA
1548/*
1549 * current cfqq expired its slice (or was too idle), select new one
1550 */
1551static void
1552__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1553 bool timed_out)
7b14e3b5 1554{
7b679138
JA
1555 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1556
7b14e3b5
JA
1557 if (cfq_cfqq_wait_request(cfqq))
1558 del_timer(&cfqd->idle_slice_timer);
1559
7b14e3b5 1560 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1561 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1562
ae54abed
SL
1563 /*
1564 * If this cfqq is shared between multiple processes, check to
1565 * make sure that those processes are still issuing I/Os within
1566 * the mean seek distance. If not, it may be time to break the
1567 * queues apart again.
1568 */
1569 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1570 cfq_mark_cfqq_split_coop(cfqq);
1571
7b14e3b5 1572 /*
6084cdda 1573 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1574 */
7b679138 1575 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1576 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1577 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1578 }
7b14e3b5 1579
dae739eb
VG
1580 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1581
f04a6424
VG
1582 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1583 cfq_del_cfqq_rr(cfqd, cfqq);
1584
edd75ffd 1585 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1586
1587 if (cfqq == cfqd->active_queue)
1588 cfqd->active_queue = NULL;
1589
dae739eb
VG
1590 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1591 cfqd->grp_service_tree.active = NULL;
1592
7b14e3b5
JA
1593 if (cfqd->active_cic) {
1594 put_io_context(cfqd->active_cic->ioc);
1595 cfqd->active_cic = NULL;
1596 }
7b14e3b5
JA
1597}
1598
a6151c3a 1599static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1600{
1601 struct cfq_queue *cfqq = cfqd->active_queue;
1602
1603 if (cfqq)
6084cdda 1604 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1605}
1606
498d3aa2
JA
1607/*
1608 * Get next queue for service. Unless we have a queue preemption,
1609 * we'll simply select the first cfqq in the service tree.
1610 */
6d048f53 1611static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1612{
c0324a02 1613 struct cfq_rb_root *service_tree =
cdb16e8f 1614 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1615 cfqd->serving_type);
d9e7620e 1616
f04a6424
VG
1617 if (!cfqd->rq_queued)
1618 return NULL;
1619
1fa8f6d6
VG
1620 /* There is nothing to dispatch */
1621 if (!service_tree)
1622 return NULL;
c0324a02
CZ
1623 if (RB_EMPTY_ROOT(&service_tree->rb))
1624 return NULL;
1625 return cfq_rb_first(service_tree);
6d048f53
JA
1626}
1627
f04a6424
VG
1628static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1629{
25fb5169 1630 struct cfq_group *cfqg;
f04a6424
VG
1631 struct cfq_queue *cfqq;
1632 int i, j;
1633 struct cfq_rb_root *st;
1634
1635 if (!cfqd->rq_queued)
1636 return NULL;
1637
25fb5169
VG
1638 cfqg = cfq_get_next_cfqg(cfqd);
1639 if (!cfqg)
1640 return NULL;
1641
f04a6424
VG
1642 for_each_cfqg_st(cfqg, i, j, st)
1643 if ((cfqq = cfq_rb_first(st)) != NULL)
1644 return cfqq;
1645 return NULL;
1646}
1647
498d3aa2
JA
1648/*
1649 * Get and set a new active queue for service.
1650 */
a36e71f9
JA
1651static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1652 struct cfq_queue *cfqq)
6d048f53 1653{
e00ef799 1654 if (!cfqq)
a36e71f9 1655 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1656
22e2c507 1657 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1658 return cfqq;
22e2c507
JA
1659}
1660
d9e7620e
JA
1661static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1662 struct request *rq)
1663{
83096ebf
TH
1664 if (blk_rq_pos(rq) >= cfqd->last_position)
1665 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1666 else
83096ebf 1667 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1668}
1669
b2c18e1e 1670static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e9ce335d 1671 struct request *rq)
6d048f53 1672{
e9ce335d 1673 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
6d048f53
JA
1674}
1675
a36e71f9
JA
1676static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1677 struct cfq_queue *cur_cfqq)
1678{
f2d1f0ae 1679 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1680 struct rb_node *parent, *node;
1681 struct cfq_queue *__cfqq;
1682 sector_t sector = cfqd->last_position;
1683
1684 if (RB_EMPTY_ROOT(root))
1685 return NULL;
1686
1687 /*
1688 * First, if we find a request starting at the end of the last
1689 * request, choose it.
1690 */
f2d1f0ae 1691 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1692 if (__cfqq)
1693 return __cfqq;
1694
1695 /*
1696 * If the exact sector wasn't found, the parent of the NULL leaf
1697 * will contain the closest sector.
1698 */
1699 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
e9ce335d 1700 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1701 return __cfqq;
1702
2e46e8b2 1703 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1704 node = rb_next(&__cfqq->p_node);
1705 else
1706 node = rb_prev(&__cfqq->p_node);
1707 if (!node)
1708 return NULL;
1709
1710 __cfqq = rb_entry(node, struct cfq_queue, p_node);
e9ce335d 1711 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1712 return __cfqq;
1713
1714 return NULL;
1715}
1716
1717/*
1718 * cfqd - obvious
1719 * cur_cfqq - passed in so that we don't decide that the current queue is
1720 * closely cooperating with itself.
1721 *
1722 * So, basically we're assuming that that cur_cfqq has dispatched at least
1723 * one request, and that cfqd->last_position reflects a position on the disk
1724 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1725 * assumption.
1726 */
1727static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1728 struct cfq_queue *cur_cfqq)
6d048f53 1729{
a36e71f9
JA
1730 struct cfq_queue *cfqq;
1731
39c01b21
DS
1732 if (cfq_class_idle(cur_cfqq))
1733 return NULL;
e6c5bc73
JM
1734 if (!cfq_cfqq_sync(cur_cfqq))
1735 return NULL;
1736 if (CFQQ_SEEKY(cur_cfqq))
1737 return NULL;
1738
b9d8f4c7
GJ
1739 /*
1740 * Don't search priority tree if it's the only queue in the group.
1741 */
1742 if (cur_cfqq->cfqg->nr_cfqq == 1)
1743 return NULL;
1744
6d048f53 1745 /*
d9e7620e
JA
1746 * We should notice if some of the queues are cooperating, eg
1747 * working closely on the same area of the disk. In that case,
1748 * we can group them together and don't waste time idling.
6d048f53 1749 */
a36e71f9
JA
1750 cfqq = cfqq_close(cfqd, cur_cfqq);
1751 if (!cfqq)
1752 return NULL;
1753
8682e1f1
VG
1754 /* If new queue belongs to different cfq_group, don't choose it */
1755 if (cur_cfqq->cfqg != cfqq->cfqg)
1756 return NULL;
1757
df5fe3e8
JM
1758 /*
1759 * It only makes sense to merge sync queues.
1760 */
1761 if (!cfq_cfqq_sync(cfqq))
1762 return NULL;
e6c5bc73
JM
1763 if (CFQQ_SEEKY(cfqq))
1764 return NULL;
df5fe3e8 1765
c0324a02
CZ
1766 /*
1767 * Do not merge queues of different priority classes
1768 */
1769 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1770 return NULL;
1771
a36e71f9 1772 return cfqq;
6d048f53
JA
1773}
1774
a6d44e98
CZ
1775/*
1776 * Determine whether we should enforce idle window for this queue.
1777 */
1778
1779static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1780{
1781 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1782 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1783
f04a6424
VG
1784 BUG_ON(!service_tree);
1785 BUG_ON(!service_tree->count);
1786
a6d44e98
CZ
1787 /* We never do for idle class queues. */
1788 if (prio == IDLE_WORKLOAD)
1789 return false;
1790
1791 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1792 if (cfq_cfqq_idle_window(cfqq) &&
1793 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1794 return true;
1795
1796 /*
1797 * Otherwise, we do only if they are the last ones
1798 * in their service tree.
1799 */
b1ffe737
DS
1800 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1801 return 1;
1802 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1803 service_tree->count);
1804 return 0;
a6d44e98
CZ
1805}
1806
6d048f53 1807static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1808{
1792669c 1809 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1810 struct cfq_io_context *cic;
7b14e3b5
JA
1811 unsigned long sl;
1812
a68bbddb 1813 /*
f7d7b7a7
JA
1814 * SSD device without seek penalty, disable idling. But only do so
1815 * for devices that support queuing, otherwise we still have a problem
1816 * with sync vs async workloads.
a68bbddb 1817 */
f7d7b7a7 1818 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1819 return;
1820
dd67d051 1821 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1822 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1823
1824 /*
1825 * idle is disabled, either manually or by past process history
1826 */
a6d44e98 1827 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1828 return;
1829
7b679138 1830 /*
8e550632 1831 * still active requests from this queue, don't idle
7b679138 1832 */
8e550632 1833 if (cfqq->dispatched)
7b679138
JA
1834 return;
1835
22e2c507
JA
1836 /*
1837 * task has exited, don't wait
1838 */
206dc69b 1839 cic = cfqd->active_cic;
66dac98e 1840 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1841 return;
1842
355b659c
CZ
1843 /*
1844 * If our average think time is larger than the remaining time
1845 * slice, then don't idle. This avoids overrunning the allotted
1846 * time slice.
1847 */
1848 if (sample_valid(cic->ttime_samples) &&
b1ffe737
DS
1849 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1850 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1851 cic->ttime_mean);
355b659c 1852 return;
b1ffe737 1853 }
355b659c 1854
3b18152c 1855 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1856
6d048f53 1857 sl = cfqd->cfq_slice_idle;
206dc69b 1858
7b14e3b5 1859 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1860 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1861}
1862
498d3aa2
JA
1863/*
1864 * Move request from internal lists to the request queue dispatch list.
1865 */
165125e1 1866static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1867{
3ed9a296 1868 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1869 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1870
7b679138
JA
1871 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1872
06d21886 1873 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1874 cfq_remove_request(rq);
6d048f53 1875 cfqq->dispatched++;
5380a101 1876 elv_dispatch_sort(q, rq);
3ed9a296 1877
53c583d2 1878 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
22084190 1879 cfqq->nr_sectors += blk_rq_sectors(rq);
1da177e4
LT
1880}
1881
1882/*
1883 * return expired entry, or NULL to just start from scratch in rbtree
1884 */
febffd61 1885static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1886{
30996f40 1887 struct request *rq = NULL;
1da177e4 1888
3b18152c 1889 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1890 return NULL;
cb887411
JA
1891
1892 cfq_mark_cfqq_fifo_expire(cfqq);
1893
89850f7e
JA
1894 if (list_empty(&cfqq->fifo))
1895 return NULL;
1da177e4 1896
89850f7e 1897 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1898 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1899 rq = NULL;
1da177e4 1900
30996f40 1901 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1902 return rq;
1da177e4
LT
1903}
1904
22e2c507
JA
1905static inline int
1906cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1907{
1908 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1909
22e2c507 1910 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1911
22e2c507 1912 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1913}
1914
df5fe3e8
JM
1915/*
1916 * Must be called with the queue_lock held.
1917 */
1918static int cfqq_process_refs(struct cfq_queue *cfqq)
1919{
1920 int process_refs, io_refs;
1921
1922 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1923 process_refs = atomic_read(&cfqq->ref) - io_refs;
1924 BUG_ON(process_refs < 0);
1925 return process_refs;
1926}
1927
1928static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1929{
e6c5bc73 1930 int process_refs, new_process_refs;
df5fe3e8
JM
1931 struct cfq_queue *__cfqq;
1932
1933 /* Avoid a circular list and skip interim queue merges */
1934 while ((__cfqq = new_cfqq->new_cfqq)) {
1935 if (__cfqq == cfqq)
1936 return;
1937 new_cfqq = __cfqq;
1938 }
1939
1940 process_refs = cfqq_process_refs(cfqq);
1941 /*
1942 * If the process for the cfqq has gone away, there is no
1943 * sense in merging the queues.
1944 */
1945 if (process_refs == 0)
1946 return;
1947
e6c5bc73
JM
1948 /*
1949 * Merge in the direction of the lesser amount of work.
1950 */
1951 new_process_refs = cfqq_process_refs(new_cfqq);
1952 if (new_process_refs >= process_refs) {
1953 cfqq->new_cfqq = new_cfqq;
1954 atomic_add(process_refs, &new_cfqq->ref);
1955 } else {
1956 new_cfqq->new_cfqq = cfqq;
1957 atomic_add(new_process_refs, &cfqq->ref);
1958 }
df5fe3e8
JM
1959}
1960
cdb16e8f 1961static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 1962 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
1963{
1964 struct cfq_queue *queue;
1965 int i;
1966 bool key_valid = false;
1967 unsigned long lowest_key = 0;
1968 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1969
65b32a57
VG
1970 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
1971 /* select the one with lowest rb_key */
1972 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
1973 if (queue &&
1974 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1975 lowest_key = queue->rb_key;
1976 cur_best = i;
1977 key_valid = true;
1978 }
1979 }
1980
1981 return cur_best;
1982}
1983
cdb16e8f 1984static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 1985{
718eee05
CZ
1986 unsigned slice;
1987 unsigned count;
cdb16e8f 1988 struct cfq_rb_root *st;
58ff82f3 1989 unsigned group_slice;
718eee05 1990
1fa8f6d6
VG
1991 if (!cfqg) {
1992 cfqd->serving_prio = IDLE_WORKLOAD;
1993 cfqd->workload_expires = jiffies + 1;
1994 return;
1995 }
1996
718eee05 1997 /* Choose next priority. RT > BE > IDLE */
58ff82f3 1998 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 1999 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2000 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2001 cfqd->serving_prio = BE_WORKLOAD;
2002 else {
2003 cfqd->serving_prio = IDLE_WORKLOAD;
2004 cfqd->workload_expires = jiffies + 1;
2005 return;
2006 }
2007
2008 /*
2009 * For RT and BE, we have to choose also the type
2010 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2011 * expiration time
2012 */
65b32a57 2013 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2014 count = st->count;
718eee05
CZ
2015
2016 /*
65b32a57 2017 * check workload expiration, and that we still have other queues ready
718eee05 2018 */
65b32a57 2019 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2020 return;
2021
2022 /* otherwise select new workload type */
2023 cfqd->serving_type =
65b32a57
VG
2024 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2025 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2026 count = st->count;
718eee05
CZ
2027
2028 /*
2029 * the workload slice is computed as a fraction of target latency
2030 * proportional to the number of queues in that workload, over
2031 * all the queues in the same priority class
2032 */
58ff82f3
VG
2033 group_slice = cfq_group_slice(cfqd, cfqg);
2034
2035 slice = group_slice * count /
2036 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2037 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2038
f26bd1f0
VG
2039 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2040 unsigned int tmp;
2041
2042 /*
2043 * Async queues are currently system wide. Just taking
2044 * proportion of queues with-in same group will lead to higher
2045 * async ratio system wide as generally root group is going
2046 * to have higher weight. A more accurate thing would be to
2047 * calculate system wide asnc/sync ratio.
2048 */
2049 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2050 tmp = tmp/cfqd->busy_queues;
2051 slice = min_t(unsigned, slice, tmp);
2052
718eee05
CZ
2053 /* async workload slice is scaled down according to
2054 * the sync/async slice ratio. */
2055 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2056 } else
718eee05
CZ
2057 /* sync workload slice is at least 2 * cfq_slice_idle */
2058 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2059
2060 slice = max_t(unsigned, slice, CFQ_MIN_TT);
b1ffe737 2061 cfq_log(cfqd, "workload slice:%d", slice);
718eee05 2062 cfqd->workload_expires = jiffies + slice;
8e550632 2063 cfqd->noidle_tree_requires_idle = false;
718eee05
CZ
2064}
2065
1fa8f6d6
VG
2066static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2067{
2068 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2069 struct cfq_group *cfqg;
1fa8f6d6
VG
2070
2071 if (RB_EMPTY_ROOT(&st->rb))
2072 return NULL;
25bc6b07
VG
2073 cfqg = cfq_rb_first_group(st);
2074 st->active = &cfqg->rb_node;
2075 update_min_vdisktime(st);
2076 return cfqg;
1fa8f6d6
VG
2077}
2078
cdb16e8f
VG
2079static void cfq_choose_cfqg(struct cfq_data *cfqd)
2080{
1fa8f6d6
VG
2081 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2082
2083 cfqd->serving_group = cfqg;
dae739eb
VG
2084
2085 /* Restore the workload type data */
2086 if (cfqg->saved_workload_slice) {
2087 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2088 cfqd->serving_type = cfqg->saved_workload;
2089 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2090 } else
2091 cfqd->workload_expires = jiffies - 1;
2092
1fa8f6d6 2093 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2094}
2095
22e2c507 2096/*
498d3aa2
JA
2097 * Select a queue for service. If we have a current active queue,
2098 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2099 */
1b5ed5e1 2100static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2101{
a36e71f9 2102 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2103
22e2c507
JA
2104 cfqq = cfqd->active_queue;
2105 if (!cfqq)
2106 goto new_queue;
1da177e4 2107
f04a6424
VG
2108 if (!cfqd->rq_queued)
2109 return NULL;
c244bb50
VG
2110
2111 /*
2112 * We were waiting for group to get backlogged. Expire the queue
2113 */
2114 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2115 goto expire;
2116
22e2c507 2117 /*
6d048f53 2118 * The active queue has run out of time, expire it and select new.
22e2c507 2119 */
7667aa06
VG
2120 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2121 /*
2122 * If slice had not expired at the completion of last request
2123 * we might not have turned on wait_busy flag. Don't expire
2124 * the queue yet. Allow the group to get backlogged.
2125 *
2126 * The very fact that we have used the slice, that means we
2127 * have been idling all along on this queue and it should be
2128 * ok to wait for this request to complete.
2129 */
82bbbf28
VG
2130 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2131 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2132 cfqq = NULL;
7667aa06 2133 goto keep_queue;
82bbbf28 2134 } else
7667aa06
VG
2135 goto expire;
2136 }
1da177e4 2137
22e2c507 2138 /*
6d048f53
JA
2139 * The active queue has requests and isn't expired, allow it to
2140 * dispatch.
22e2c507 2141 */
dd67d051 2142 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2143 goto keep_queue;
6d048f53 2144
a36e71f9
JA
2145 /*
2146 * If another queue has a request waiting within our mean seek
2147 * distance, let it run. The expire code will check for close
2148 * cooperators and put the close queue at the front of the service
df5fe3e8 2149 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2150 */
b3b6d040 2151 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2152 if (new_cfqq) {
2153 if (!cfqq->new_cfqq)
2154 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2155 goto expire;
df5fe3e8 2156 }
a36e71f9 2157
6d048f53
JA
2158 /*
2159 * No requests pending. If the active queue still has requests in
2160 * flight or is idling for a new request, allow either of these
2161 * conditions to happen (or time out) before selecting a new queue.
2162 */
cc197479 2163 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 2164 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
2165 cfqq = NULL;
2166 goto keep_queue;
22e2c507
JA
2167 }
2168
3b18152c 2169expire:
6084cdda 2170 cfq_slice_expired(cfqd, 0);
3b18152c 2171new_queue:
718eee05
CZ
2172 /*
2173 * Current queue expired. Check if we have to switch to a new
2174 * service tree
2175 */
2176 if (!new_cfqq)
cdb16e8f 2177 cfq_choose_cfqg(cfqd);
718eee05 2178
a36e71f9 2179 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2180keep_queue:
3b18152c 2181 return cfqq;
22e2c507
JA
2182}
2183
febffd61 2184static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2185{
2186 int dispatched = 0;
2187
2188 while (cfqq->next_rq) {
2189 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2190 dispatched++;
2191 }
2192
2193 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2194
2195 /* By default cfqq is not expired if it is empty. Do it explicitly */
2196 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2197 return dispatched;
2198}
2199
498d3aa2
JA
2200/*
2201 * Drain our current requests. Used for barriers and when switching
2202 * io schedulers on-the-fly.
2203 */
d9e7620e 2204static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2205{
0871714e 2206 struct cfq_queue *cfqq;
d9e7620e 2207 int dispatched = 0;
cdb16e8f 2208
3440c49f
DS
2209 /* Expire the timeslice of the current active queue first */
2210 cfq_slice_expired(cfqd, 0);
2211 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2212 __cfq_set_active_queue(cfqd, cfqq);
f04a6424 2213 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3440c49f 2214 }
1b5ed5e1 2215
1b5ed5e1
TH
2216 BUG_ON(cfqd->busy_queues);
2217
6923715a 2218 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2219 return dispatched;
2220}
2221
abc3c744
SL
2222static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2223 struct cfq_queue *cfqq)
2224{
2225 /* the queue hasn't finished any request, can't estimate */
2226 if (cfq_cfqq_slice_new(cfqq))
2227 return 1;
2228 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2229 cfqq->slice_end))
2230 return 1;
2231
2232 return 0;
2233}
2234
0b182d61 2235static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2236{
2f5cb738 2237 unsigned int max_dispatch;
22e2c507 2238
5ad531db
JA
2239 /*
2240 * Drain async requests before we start sync IO
2241 */
53c583d2 2242 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2243 return false;
5ad531db 2244
2f5cb738
JA
2245 /*
2246 * If this is an async queue and we have sync IO in flight, let it wait
2247 */
53c583d2 2248 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2249 return false;
2f5cb738 2250
abc3c744 2251 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2f5cb738
JA
2252 if (cfq_class_idle(cfqq))
2253 max_dispatch = 1;
b4878f24 2254
2f5cb738
JA
2255 /*
2256 * Does this cfqq already have too much IO in flight?
2257 */
2258 if (cfqq->dispatched >= max_dispatch) {
2259 /*
2260 * idle queue must always only have a single IO in flight
2261 */
3ed9a296 2262 if (cfq_class_idle(cfqq))
0b182d61 2263 return false;
3ed9a296 2264
2f5cb738
JA
2265 /*
2266 * We have other queues, don't allow more IO from this one
2267 */
abc3c744 2268 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
0b182d61 2269 return false;
9ede209e 2270
365722bb 2271 /*
474b18cc 2272 * Sole queue user, no limit
365722bb 2273 */
abc3c744
SL
2274 if (cfqd->busy_queues == 1)
2275 max_dispatch = -1;
2276 else
2277 /*
2278 * Normally we start throttling cfqq when cfq_quantum/2
2279 * requests have been dispatched. But we can drive
2280 * deeper queue depths at the beginning of slice
2281 * subjected to upper limit of cfq_quantum.
2282 * */
2283 max_dispatch = cfqd->cfq_quantum;
8e296755
JA
2284 }
2285
2286 /*
2287 * Async queues must wait a bit before being allowed dispatch.
2288 * We also ramp up the dispatch depth gradually for async IO,
2289 * based on the last sync IO we serviced
2290 */
963b72fc 2291 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2292 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2293 unsigned int depth;
365722bb 2294
61f0c1dc 2295 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2296 if (!depth && !cfqq->dispatched)
2297 depth = 1;
8e296755
JA
2298 if (depth < max_dispatch)
2299 max_dispatch = depth;
2f5cb738 2300 }
3ed9a296 2301
0b182d61
JA
2302 /*
2303 * If we're below the current max, allow a dispatch
2304 */
2305 return cfqq->dispatched < max_dispatch;
2306}
2307
2308/*
2309 * Dispatch a request from cfqq, moving them to the request queue
2310 * dispatch list.
2311 */
2312static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2313{
2314 struct request *rq;
2315
2316 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2317
2318 if (!cfq_may_dispatch(cfqd, cfqq))
2319 return false;
2320
2321 /*
2322 * follow expired path, else get first next available
2323 */
2324 rq = cfq_check_fifo(cfqq);
2325 if (!rq)
2326 rq = cfqq->next_rq;
2327
2328 /*
2329 * insert request into driver dispatch list
2330 */
2331 cfq_dispatch_insert(cfqd->queue, rq);
2332
2333 if (!cfqd->active_cic) {
2334 struct cfq_io_context *cic = RQ_CIC(rq);
2335
2336 atomic_long_inc(&cic->ioc->refcount);
2337 cfqd->active_cic = cic;
2338 }
2339
2340 return true;
2341}
2342
2343/*
2344 * Find the cfqq that we need to service and move a request from that to the
2345 * dispatch list
2346 */
2347static int cfq_dispatch_requests(struct request_queue *q, int force)
2348{
2349 struct cfq_data *cfqd = q->elevator->elevator_data;
2350 struct cfq_queue *cfqq;
2351
2352 if (!cfqd->busy_queues)
2353 return 0;
2354
2355 if (unlikely(force))
2356 return cfq_forced_dispatch(cfqd);
2357
2358 cfqq = cfq_select_queue(cfqd);
2359 if (!cfqq)
8e296755
JA
2360 return 0;
2361
2f5cb738 2362 /*
0b182d61 2363 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2364 */
0b182d61
JA
2365 if (!cfq_dispatch_request(cfqd, cfqq))
2366 return 0;
2367
2f5cb738 2368 cfqq->slice_dispatch++;
b029195d 2369 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2370
2f5cb738
JA
2371 /*
2372 * expire an async queue immediately if it has used up its slice. idle
2373 * queue always expire after 1 dispatch round.
2374 */
2375 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2376 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2377 cfq_class_idle(cfqq))) {
2378 cfqq->slice_end = jiffies + 1;
2379 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2380 }
2381
b217a903 2382 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2383 return 1;
1da177e4
LT
2384}
2385
1da177e4 2386/*
5e705374
JA
2387 * task holds one reference to the queue, dropped when task exits. each rq
2388 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2389 *
b1c35769 2390 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2391 * queue lock must be held here.
2392 */
2393static void cfq_put_queue(struct cfq_queue *cfqq)
2394{
22e2c507 2395 struct cfq_data *cfqd = cfqq->cfqd;
878eaddd 2396 struct cfq_group *cfqg, *orig_cfqg;
22e2c507
JA
2397
2398 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
2399
2400 if (!atomic_dec_and_test(&cfqq->ref))
2401 return;
2402
7b679138 2403 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2404 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2405 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2406 cfqg = cfqq->cfqg;
878eaddd 2407 orig_cfqg = cfqq->orig_cfqg;
1da177e4 2408
28f95cbc 2409 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 2410 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2411 cfq_schedule_dispatch(cfqd);
28f95cbc 2412 }
22e2c507 2413
f04a6424 2414 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2415 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2416 cfq_put_cfqg(cfqg);
878eaddd
VG
2417 if (orig_cfqg)
2418 cfq_put_cfqg(orig_cfqg);
1da177e4
LT
2419}
2420
d6de8be7
JA
2421/*
2422 * Must always be called with the rcu_read_lock() held
2423 */
07416d29
JA
2424static void
2425__call_for_each_cic(struct io_context *ioc,
2426 void (*func)(struct io_context *, struct cfq_io_context *))
2427{
2428 struct cfq_io_context *cic;
2429 struct hlist_node *n;
2430
2431 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2432 func(ioc, cic);
2433}
2434
4ac845a2 2435/*
34e6bbf2 2436 * Call func for each cic attached to this ioc.
4ac845a2 2437 */
34e6bbf2 2438static void
4ac845a2
JA
2439call_for_each_cic(struct io_context *ioc,
2440 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2441{
4ac845a2 2442 rcu_read_lock();
07416d29 2443 __call_for_each_cic(ioc, func);
4ac845a2 2444 rcu_read_unlock();
34e6bbf2
FC
2445}
2446
2447static void cfq_cic_free_rcu(struct rcu_head *head)
2448{
2449 struct cfq_io_context *cic;
2450
2451 cic = container_of(head, struct cfq_io_context, rcu_head);
2452
2453 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2454 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2455
9a11b4ed
JA
2456 if (ioc_gone) {
2457 /*
2458 * CFQ scheduler is exiting, grab exit lock and check
2459 * the pending io context count. If it hits zero,
2460 * complete ioc_gone and set it back to NULL
2461 */
2462 spin_lock(&ioc_gone_lock);
245b2e70 2463 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2464 complete(ioc_gone);
2465 ioc_gone = NULL;
2466 }
2467 spin_unlock(&ioc_gone_lock);
2468 }
34e6bbf2 2469}
4ac845a2 2470
34e6bbf2
FC
2471static void cfq_cic_free(struct cfq_io_context *cic)
2472{
2473 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2474}
2475
2476static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2477{
2478 unsigned long flags;
2479
2480 BUG_ON(!cic->dead_key);
2481
2482 spin_lock_irqsave(&ioc->lock, flags);
2483 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 2484 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2485 spin_unlock_irqrestore(&ioc->lock, flags);
2486
34e6bbf2 2487 cfq_cic_free(cic);
4ac845a2
JA
2488}
2489
d6de8be7
JA
2490/*
2491 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2492 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2493 * and ->trim() which is called with the task lock held
2494 */
4ac845a2
JA
2495static void cfq_free_io_context(struct io_context *ioc)
2496{
4ac845a2 2497 /*
34e6bbf2
FC
2498 * ioc->refcount is zero here, or we are called from elv_unregister(),
2499 * so no more cic's are allowed to be linked into this ioc. So it
2500 * should be ok to iterate over the known list, we will see all cic's
2501 * since no new ones are added.
4ac845a2 2502 */
07416d29 2503 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2504}
2505
89850f7e 2506static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 2507{
df5fe3e8
JM
2508 struct cfq_queue *__cfqq, *next;
2509
28f95cbc 2510 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 2511 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2512 cfq_schedule_dispatch(cfqd);
28f95cbc 2513 }
22e2c507 2514
df5fe3e8
JM
2515 /*
2516 * If this queue was scheduled to merge with another queue, be
2517 * sure to drop the reference taken on that queue (and others in
2518 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2519 */
2520 __cfqq = cfqq->new_cfqq;
2521 while (__cfqq) {
2522 if (__cfqq == cfqq) {
2523 WARN(1, "cfqq->new_cfqq loop detected\n");
2524 break;
2525 }
2526 next = __cfqq->new_cfqq;
2527 cfq_put_queue(__cfqq);
2528 __cfqq = next;
2529 }
2530
89850f7e
JA
2531 cfq_put_queue(cfqq);
2532}
22e2c507 2533
89850f7e
JA
2534static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2535 struct cfq_io_context *cic)
2536{
4faa3c81
FC
2537 struct io_context *ioc = cic->ioc;
2538
fc46379d 2539 list_del_init(&cic->queue_list);
4ac845a2
JA
2540
2541 /*
2542 * Make sure key == NULL is seen for dead queues
2543 */
fc46379d 2544 smp_wmb();
4ac845a2 2545 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
2546 cic->key = NULL;
2547
4faa3c81
FC
2548 if (ioc->ioc_data == cic)
2549 rcu_assign_pointer(ioc->ioc_data, NULL);
2550
ff6657c6
JA
2551 if (cic->cfqq[BLK_RW_ASYNC]) {
2552 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2553 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2554 }
2555
ff6657c6
JA
2556 if (cic->cfqq[BLK_RW_SYNC]) {
2557 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2558 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2559 }
89850f7e
JA
2560}
2561
4ac845a2
JA
2562static void cfq_exit_single_io_context(struct io_context *ioc,
2563 struct cfq_io_context *cic)
89850f7e
JA
2564{
2565 struct cfq_data *cfqd = cic->key;
2566
89850f7e 2567 if (cfqd) {
165125e1 2568 struct request_queue *q = cfqd->queue;
4ac845a2 2569 unsigned long flags;
89850f7e 2570
4ac845a2 2571 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2572
2573 /*
2574 * Ensure we get a fresh copy of the ->key to prevent
2575 * race between exiting task and queue
2576 */
2577 smp_read_barrier_depends();
2578 if (cic->key)
2579 __cfq_exit_single_io_context(cfqd, cic);
2580
4ac845a2 2581 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2582 }
1da177e4
LT
2583}
2584
498d3aa2
JA
2585/*
2586 * The process that ioc belongs to has exited, we need to clean up
2587 * and put the internal structures we have that belongs to that process.
2588 */
e2d74ac0 2589static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2590{
4ac845a2 2591 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2592}
2593
22e2c507 2594static struct cfq_io_context *
8267e268 2595cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2596{
b5deef90 2597 struct cfq_io_context *cic;
1da177e4 2598
94f6030c
CL
2599 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2600 cfqd->queue->node);
1da177e4 2601 if (cic) {
22e2c507 2602 cic->last_end_request = jiffies;
553698f9 2603 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2604 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2605 cic->dtor = cfq_free_io_context;
2606 cic->exit = cfq_exit_io_context;
245b2e70 2607 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2608 }
2609
2610 return cic;
2611}
2612
fd0928df 2613static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2614{
2615 struct task_struct *tsk = current;
2616 int ioprio_class;
2617
3b18152c 2618 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2619 return;
2620
fd0928df 2621 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2622 switch (ioprio_class) {
fe094d98
JA
2623 default:
2624 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2625 case IOPRIO_CLASS_NONE:
2626 /*
6d63c275 2627 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2628 */
2629 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2630 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2631 break;
2632 case IOPRIO_CLASS_RT:
2633 cfqq->ioprio = task_ioprio(ioc);
2634 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2635 break;
2636 case IOPRIO_CLASS_BE:
2637 cfqq->ioprio = task_ioprio(ioc);
2638 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2639 break;
2640 case IOPRIO_CLASS_IDLE:
2641 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2642 cfqq->ioprio = 7;
2643 cfq_clear_cfqq_idle_window(cfqq);
2644 break;
22e2c507
JA
2645 }
2646
2647 /*
2648 * keep track of original prio settings in case we have to temporarily
2649 * elevate the priority of this queue
2650 */
2651 cfqq->org_ioprio = cfqq->ioprio;
2652 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2653 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2654}
2655
febffd61 2656static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2657{
478a82b0
AV
2658 struct cfq_data *cfqd = cic->key;
2659 struct cfq_queue *cfqq;
c1b707d2 2660 unsigned long flags;
35e6077c 2661
caaa5f9f
JA
2662 if (unlikely(!cfqd))
2663 return;
2664
c1b707d2 2665 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2666
ff6657c6 2667 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2668 if (cfqq) {
2669 struct cfq_queue *new_cfqq;
ff6657c6
JA
2670 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2671 GFP_ATOMIC);
caaa5f9f 2672 if (new_cfqq) {
ff6657c6 2673 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2674 cfq_put_queue(cfqq);
2675 }
22e2c507 2676 }
caaa5f9f 2677
ff6657c6 2678 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2679 if (cfqq)
2680 cfq_mark_cfqq_prio_changed(cfqq);
2681
c1b707d2 2682 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2683}
2684
fc46379d 2685static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2686{
4ac845a2 2687 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2688 ioc->ioprio_changed = 0;
22e2c507
JA
2689}
2690
d5036d77 2691static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2692 pid_t pid, bool is_sync)
d5036d77
JA
2693{
2694 RB_CLEAR_NODE(&cfqq->rb_node);
2695 RB_CLEAR_NODE(&cfqq->p_node);
2696 INIT_LIST_HEAD(&cfqq->fifo);
2697
2698 atomic_set(&cfqq->ref, 0);
2699 cfqq->cfqd = cfqd;
2700
2701 cfq_mark_cfqq_prio_changed(cfqq);
2702
2703 if (is_sync) {
2704 if (!cfq_class_idle(cfqq))
2705 cfq_mark_cfqq_idle_window(cfqq);
2706 cfq_mark_cfqq_sync(cfqq);
2707 }
2708 cfqq->pid = pid;
2709}
2710
24610333
VG
2711#ifdef CONFIG_CFQ_GROUP_IOSCHED
2712static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2713{
2714 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2715 struct cfq_data *cfqd = cic->key;
2716 unsigned long flags;
2717 struct request_queue *q;
2718
2719 if (unlikely(!cfqd))
2720 return;
2721
2722 q = cfqd->queue;
2723
2724 spin_lock_irqsave(q->queue_lock, flags);
2725
2726 if (sync_cfqq) {
2727 /*
2728 * Drop reference to sync queue. A new sync queue will be
2729 * assigned in new group upon arrival of a fresh request.
2730 */
2731 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2732 cic_set_cfqq(cic, NULL, 1);
2733 cfq_put_queue(sync_cfqq);
2734 }
2735
2736 spin_unlock_irqrestore(q->queue_lock, flags);
2737}
2738
2739static void cfq_ioc_set_cgroup(struct io_context *ioc)
2740{
2741 call_for_each_cic(ioc, changed_cgroup);
2742 ioc->cgroup_changed = 0;
2743}
2744#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2745
22e2c507 2746static struct cfq_queue *
a6151c3a 2747cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2748 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2749{
22e2c507 2750 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2751 struct cfq_io_context *cic;
cdb16e8f 2752 struct cfq_group *cfqg;
22e2c507
JA
2753
2754retry:
cdb16e8f 2755 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2756 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2757 /* cic always exists here */
2758 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2759
6118b70b
JA
2760 /*
2761 * Always try a new alloc if we fell back to the OOM cfqq
2762 * originally, since it should just be a temporary situation.
2763 */
2764 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2765 cfqq = NULL;
22e2c507
JA
2766 if (new_cfqq) {
2767 cfqq = new_cfqq;
2768 new_cfqq = NULL;
2769 } else if (gfp_mask & __GFP_WAIT) {
2770 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2771 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2772 gfp_mask | __GFP_ZERO,
94f6030c 2773 cfqd->queue->node);
22e2c507 2774 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2775 if (new_cfqq)
2776 goto retry;
22e2c507 2777 } else {
94f6030c
CL
2778 cfqq = kmem_cache_alloc_node(cfq_pool,
2779 gfp_mask | __GFP_ZERO,
2780 cfqd->queue->node);
22e2c507
JA
2781 }
2782
6118b70b
JA
2783 if (cfqq) {
2784 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2785 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2786 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2787 cfq_log_cfqq(cfqd, cfqq, "alloced");
2788 } else
2789 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2790 }
2791
2792 if (new_cfqq)
2793 kmem_cache_free(cfq_pool, new_cfqq);
2794
22e2c507
JA
2795 return cfqq;
2796}
2797
c2dea2d1
VT
2798static struct cfq_queue **
2799cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2800{
fe094d98 2801 switch (ioprio_class) {
c2dea2d1
VT
2802 case IOPRIO_CLASS_RT:
2803 return &cfqd->async_cfqq[0][ioprio];
2804 case IOPRIO_CLASS_BE:
2805 return &cfqd->async_cfqq[1][ioprio];
2806 case IOPRIO_CLASS_IDLE:
2807 return &cfqd->async_idle_cfqq;
2808 default:
2809 BUG();
2810 }
2811}
2812
15c31be4 2813static struct cfq_queue *
a6151c3a 2814cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2815 gfp_t gfp_mask)
2816{
fd0928df
JA
2817 const int ioprio = task_ioprio(ioc);
2818 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2819 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2820 struct cfq_queue *cfqq = NULL;
2821
c2dea2d1
VT
2822 if (!is_sync) {
2823 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2824 cfqq = *async_cfqq;
2825 }
2826
6118b70b 2827 if (!cfqq)
fd0928df 2828 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2829
2830 /*
2831 * pin the queue now that it's allocated, scheduler exit will prune it
2832 */
c2dea2d1 2833 if (!is_sync && !(*async_cfqq)) {
15c31be4 2834 atomic_inc(&cfqq->ref);
c2dea2d1 2835 *async_cfqq = cfqq;
15c31be4
JA
2836 }
2837
2838 atomic_inc(&cfqq->ref);
2839 return cfqq;
2840}
2841
498d3aa2
JA
2842/*
2843 * We drop cfq io contexts lazily, so we may find a dead one.
2844 */
dbecf3ab 2845static void
4ac845a2
JA
2846cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2847 struct cfq_io_context *cic)
dbecf3ab 2848{
4ac845a2
JA
2849 unsigned long flags;
2850
fc46379d 2851 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2852
4ac845a2
JA
2853 spin_lock_irqsave(&ioc->lock, flags);
2854
4faa3c81 2855 BUG_ON(ioc->ioc_data == cic);
597bc485 2856
4ac845a2 2857 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2858 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2859 spin_unlock_irqrestore(&ioc->lock, flags);
2860
2861 cfq_cic_free(cic);
dbecf3ab
OH
2862}
2863
e2d74ac0 2864static struct cfq_io_context *
4ac845a2 2865cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2866{
e2d74ac0 2867 struct cfq_io_context *cic;
d6de8be7 2868 unsigned long flags;
4ac845a2 2869 void *k;
e2d74ac0 2870
91fac317
VT
2871 if (unlikely(!ioc))
2872 return NULL;
2873
d6de8be7
JA
2874 rcu_read_lock();
2875
597bc485
JA
2876 /*
2877 * we maintain a last-hit cache, to avoid browsing over the tree
2878 */
4ac845a2 2879 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2880 if (cic && cic->key == cfqd) {
2881 rcu_read_unlock();
597bc485 2882 return cic;
d6de8be7 2883 }
597bc485 2884
4ac845a2 2885 do {
4ac845a2
JA
2886 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2887 rcu_read_unlock();
2888 if (!cic)
2889 break;
be3b0753
OH
2890 /* ->key must be copied to avoid race with cfq_exit_queue() */
2891 k = cic->key;
2892 if (unlikely(!k)) {
4ac845a2 2893 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2894 rcu_read_lock();
4ac845a2 2895 continue;
dbecf3ab 2896 }
e2d74ac0 2897
d6de8be7 2898 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2899 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2900 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2901 break;
2902 } while (1);
e2d74ac0 2903
4ac845a2 2904 return cic;
e2d74ac0
JA
2905}
2906
4ac845a2
JA
2907/*
2908 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2909 * the process specific cfq io context when entered from the block layer.
2910 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2911 */
febffd61
JA
2912static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2913 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2914{
0261d688 2915 unsigned long flags;
4ac845a2 2916 int ret;
e2d74ac0 2917
4ac845a2
JA
2918 ret = radix_tree_preload(gfp_mask);
2919 if (!ret) {
2920 cic->ioc = ioc;
2921 cic->key = cfqd;
e2d74ac0 2922
4ac845a2
JA
2923 spin_lock_irqsave(&ioc->lock, flags);
2924 ret = radix_tree_insert(&ioc->radix_root,
2925 (unsigned long) cfqd, cic);
ffc4e759
JA
2926 if (!ret)
2927 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2928 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2929
4ac845a2
JA
2930 radix_tree_preload_end();
2931
2932 if (!ret) {
2933 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2934 list_add(&cic->queue_list, &cfqd->cic_list);
2935 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2936 }
e2d74ac0
JA
2937 }
2938
4ac845a2
JA
2939 if (ret)
2940 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2941
4ac845a2 2942 return ret;
e2d74ac0
JA
2943}
2944
1da177e4
LT
2945/*
2946 * Setup general io context and cfq io context. There can be several cfq
2947 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2948 * than one device managed by cfq.
1da177e4
LT
2949 */
2950static struct cfq_io_context *
e2d74ac0 2951cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2952{
22e2c507 2953 struct io_context *ioc = NULL;
1da177e4 2954 struct cfq_io_context *cic;
1da177e4 2955
22e2c507 2956 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2957
b5deef90 2958 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2959 if (!ioc)
2960 return NULL;
2961
4ac845a2 2962 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2963 if (cic)
2964 goto out;
1da177e4 2965
e2d74ac0
JA
2966 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2967 if (cic == NULL)
2968 goto err;
1da177e4 2969
4ac845a2
JA
2970 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2971 goto err_free;
2972
1da177e4 2973out:
fc46379d
JA
2974 smp_read_barrier_depends();
2975 if (unlikely(ioc->ioprio_changed))
2976 cfq_ioc_set_ioprio(ioc);
2977
24610333
VG
2978#ifdef CONFIG_CFQ_GROUP_IOSCHED
2979 if (unlikely(ioc->cgroup_changed))
2980 cfq_ioc_set_cgroup(ioc);
2981#endif
1da177e4 2982 return cic;
4ac845a2
JA
2983err_free:
2984 cfq_cic_free(cic);
1da177e4
LT
2985err:
2986 put_io_context(ioc);
2987 return NULL;
2988}
2989
22e2c507
JA
2990static void
2991cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2992{
aaf1228d
JA
2993 unsigned long elapsed = jiffies - cic->last_end_request;
2994 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2995
22e2c507
JA
2996 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2997 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2998 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2999}
1da177e4 3000
206dc69b 3001static void
b2c18e1e 3002cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 3003 struct request *rq)
206dc69b 3004{
3dde36dd 3005 sector_t sdist = 0;
41647e7a 3006 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
3007 if (cfqq->last_request_pos) {
3008 if (cfqq->last_request_pos < blk_rq_pos(rq))
3009 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3010 else
3011 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3012 }
206dc69b 3013
3dde36dd 3014 cfqq->seek_history <<= 1;
41647e7a
CZ
3015 if (blk_queue_nonrot(cfqd->queue))
3016 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3017 else
3018 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 3019}
1da177e4 3020
22e2c507
JA
3021/*
3022 * Disable idle window if the process thinks too long or seeks so much that
3023 * it doesn't matter
3024 */
3025static void
3026cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3027 struct cfq_io_context *cic)
3028{
7b679138 3029 int old_idle, enable_idle;
1be92f2f 3030
0871714e
JA
3031 /*
3032 * Don't idle for async or idle io prio class
3033 */
3034 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3035 return;
3036
c265a7f4 3037 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3038
76280aff
CZ
3039 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3040 cfq_mark_cfqq_deep(cfqq);
3041
66dac98e 3042 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3dde36dd 3043 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507
JA
3044 enable_idle = 0;
3045 else if (sample_valid(cic->ttime_samples)) {
718eee05 3046 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3047 enable_idle = 0;
3048 else
3049 enable_idle = 1;
1da177e4
LT
3050 }
3051
7b679138
JA
3052 if (old_idle != enable_idle) {
3053 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3054 if (enable_idle)
3055 cfq_mark_cfqq_idle_window(cfqq);
3056 else
3057 cfq_clear_cfqq_idle_window(cfqq);
3058 }
22e2c507 3059}
1da177e4 3060
22e2c507
JA
3061/*
3062 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3063 * no or if we aren't sure, a 1 will cause a preempt.
3064 */
a6151c3a 3065static bool
22e2c507 3066cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3067 struct request *rq)
22e2c507 3068{
6d048f53 3069 struct cfq_queue *cfqq;
22e2c507 3070
6d048f53
JA
3071 cfqq = cfqd->active_queue;
3072 if (!cfqq)
a6151c3a 3073 return false;
22e2c507 3074
6d048f53 3075 if (cfq_class_idle(new_cfqq))
a6151c3a 3076 return false;
22e2c507
JA
3077
3078 if (cfq_class_idle(cfqq))
a6151c3a 3079 return true;
1e3335de 3080
875feb63
DS
3081 /*
3082 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3083 */
3084 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3085 return false;
3086
374f84ac
JA
3087 /*
3088 * if the new request is sync, but the currently running queue is
3089 * not, let the sync request have priority.
3090 */
5e705374 3091 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3092 return true;
1e3335de 3093
8682e1f1
VG
3094 if (new_cfqq->cfqg != cfqq->cfqg)
3095 return false;
3096
3097 if (cfq_slice_used(cfqq))
3098 return true;
3099
3100 /* Allow preemption only if we are idling on sync-noidle tree */
3101 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3102 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3103 new_cfqq->service_tree->count == 2 &&
3104 RB_EMPTY_ROOT(&cfqq->sort_list))
3105 return true;
3106
374f84ac
JA
3107 /*
3108 * So both queues are sync. Let the new request get disk time if
3109 * it's a metadata request and the current queue is doing regular IO.
3110 */
3111 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 3112 return true;
22e2c507 3113
3a9a3f6c
DS
3114 /*
3115 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3116 */
3117 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3118 return true;
3a9a3f6c 3119
1e3335de 3120 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3121 return false;
1e3335de
JA
3122
3123 /*
3124 * if this request is as-good as one we would expect from the
3125 * current cfqq, let it preempt
3126 */
e9ce335d 3127 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3128 return true;
1e3335de 3129
a6151c3a 3130 return false;
22e2c507
JA
3131}
3132
3133/*
3134 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3135 * let it have half of its nominal slice.
3136 */
3137static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3138{
7b679138 3139 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 3140 cfq_slice_expired(cfqd, 1);
22e2c507 3141
bf572256
JA
3142 /*
3143 * Put the new queue at the front of the of the current list,
3144 * so we know that it will be selected next.
3145 */
3146 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3147
3148 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 3149
44f7c160
JA
3150 cfqq->slice_end = 0;
3151 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3152}
3153
22e2c507 3154/*
5e705374 3155 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3156 * something we should do about it
3157 */
3158static void
5e705374
JA
3159cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3160 struct request *rq)
22e2c507 3161{
5e705374 3162 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3163
45333d5a 3164 cfqd->rq_queued++;
374f84ac
JA
3165 if (rq_is_meta(rq))
3166 cfqq->meta_pending++;
3167
9c2c38a1 3168 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3169 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3170 cfq_update_idle_window(cfqd, cfqq, cic);
3171
b2c18e1e 3172 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3173
3174 if (cfqq == cfqd->active_queue) {
3175 /*
b029195d
JA
3176 * Remember that we saw a request from this process, but
3177 * don't start queuing just yet. Otherwise we risk seeing lots
3178 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3179 * and merging. If the request is already larger than a single
3180 * page, let it rip immediately. For that case we assume that
2d870722
JA
3181 * merging is already done. Ditto for a busy system that
3182 * has other work pending, don't risk delaying until the
3183 * idle timer unplug to continue working.
22e2c507 3184 */
d6ceb25e 3185 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3186 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3187 cfqd->busy_queues > 1) {
d6ceb25e 3188 del_timer(&cfqd->idle_slice_timer);
554554f6 3189 cfq_clear_cfqq_wait_request(cfqq);
bf791937
VG
3190 __blk_run_queue(cfqd->queue);
3191 } else
3192 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 3193 }
5e705374 3194 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3195 /*
3196 * not the active queue - expire current slice if it is
3197 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3198 * has some old slice time left and is of higher priority or
3199 * this new queue is RT and the current one is BE
22e2c507
JA
3200 */
3201 cfq_preempt_queue(cfqd, cfqq);
a7f55792 3202 __blk_run_queue(cfqd->queue);
22e2c507 3203 }
1da177e4
LT
3204}
3205
165125e1 3206static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3207{
b4878f24 3208 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3209 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3210
7b679138 3211 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3212 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3213
30996f40 3214 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3215 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3216 cfq_add_rq_rb(rq);
22e2c507 3217
5e705374 3218 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3219}
3220
45333d5a
AC
3221/*
3222 * Update hw_tag based on peak queue depth over 50 samples under
3223 * sufficient load.
3224 */
3225static void cfq_update_hw_tag(struct cfq_data *cfqd)
3226{
1a1238a7
SL
3227 struct cfq_queue *cfqq = cfqd->active_queue;
3228
53c583d2
CZ
3229 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3230 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3231
3232 if (cfqd->hw_tag == 1)
3233 return;
45333d5a
AC
3234
3235 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3236 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3237 return;
3238
1a1238a7
SL
3239 /*
3240 * If active queue hasn't enough requests and can idle, cfq might not
3241 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3242 * case
3243 */
3244 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3245 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3246 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3247 return;
3248
45333d5a
AC
3249 if (cfqd->hw_tag_samples++ < 50)
3250 return;
3251
e459dd08 3252 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3253 cfqd->hw_tag = 1;
3254 else
3255 cfqd->hw_tag = 0;
45333d5a
AC
3256}
3257
7667aa06
VG
3258static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3259{
3260 struct cfq_io_context *cic = cfqd->active_cic;
3261
3262 /* If there are other queues in the group, don't wait */
3263 if (cfqq->cfqg->nr_cfqq > 1)
3264 return false;
3265
3266 if (cfq_slice_used(cfqq))
3267 return true;
3268
3269 /* if slice left is less than think time, wait busy */
3270 if (cic && sample_valid(cic->ttime_samples)
3271 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3272 return true;
3273
3274 /*
3275 * If think times is less than a jiffy than ttime_mean=0 and above
3276 * will not be true. It might happen that slice has not expired yet
3277 * but will expire soon (4-5 ns) during select_queue(). To cover the
3278 * case where think time is less than a jiffy, mark the queue wait
3279 * busy if only 1 jiffy is left in the slice.
3280 */
3281 if (cfqq->slice_end - jiffies == 1)
3282 return true;
3283
3284 return false;
3285}
3286
165125e1 3287static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3288{
5e705374 3289 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3290 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3291 const int sync = rq_is_sync(rq);
b4878f24 3292 unsigned long now;
1da177e4 3293
b4878f24 3294 now = jiffies;
2868ef7b 3295 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
1da177e4 3296
45333d5a
AC
3297 cfq_update_hw_tag(cfqd);
3298
53c583d2 3299 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3300 WARN_ON(!cfqq->dispatched);
53c583d2 3301 cfqd->rq_in_driver--;
6d048f53 3302 cfqq->dispatched--;
1da177e4 3303
53c583d2 3304 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3305
365722bb 3306 if (sync) {
5e705374 3307 RQ_CIC(rq)->last_end_request = now;
573412b2
CZ
3308 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3309 cfqd->last_delayed_sync = now;
365722bb 3310 }
caaa5f9f
JA
3311
3312 /*
3313 * If this is the active queue, check if it needs to be expired,
3314 * or if we want to idle in case it has no pending requests.
3315 */
3316 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3317 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3318
44f7c160
JA
3319 if (cfq_cfqq_slice_new(cfqq)) {
3320 cfq_set_prio_slice(cfqd, cfqq);
3321 cfq_clear_cfqq_slice_new(cfqq);
3322 }
f75edf2d
VG
3323
3324 /*
7667aa06
VG
3325 * Should we wait for next request to come in before we expire
3326 * the queue.
f75edf2d 3327 */
7667aa06 3328 if (cfq_should_wait_busy(cfqd, cfqq)) {
f75edf2d
VG
3329 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3330 cfq_mark_cfqq_wait_busy(cfqq);
b1ffe737 3331 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
f75edf2d
VG
3332 }
3333
a36e71f9 3334 /*
8e550632
CZ
3335 * Idling is not enabled on:
3336 * - expired queues
3337 * - idle-priority queues
3338 * - async queues
3339 * - queues with still some requests queued
3340 * - when there is a close cooperator
a36e71f9 3341 */
0871714e 3342 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 3343 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3344 else if (sync && cfqq_empty &&
3345 !cfq_close_cooperator(cfqd, cfqq)) {
3346 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3347 /*
3348 * Idling is enabled for SYNC_WORKLOAD.
3349 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3350 * only if we processed at least one !rq_noidle request
3351 */
3352 if (cfqd->serving_type == SYNC_WORKLOAD
c04645e5
VG
3353 || cfqd->noidle_tree_requires_idle
3354 || cfqq->cfqg->nr_cfqq == 1)
8e550632
CZ
3355 cfq_arm_slice_timer(cfqd);
3356 }
caaa5f9f 3357 }
6d048f53 3358
53c583d2 3359 if (!cfqd->rq_in_driver)
23e018a1 3360 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3361}
3362
22e2c507
JA
3363/*
3364 * we temporarily boost lower priority queues if they are holding fs exclusive
3365 * resources. they are boosted to normal prio (CLASS_BE/4)
3366 */
3367static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3368{
22e2c507
JA
3369 if (has_fs_excl()) {
3370 /*
3371 * boost idle prio on transactions that would lock out other
3372 * users of the filesystem
3373 */
3374 if (cfq_class_idle(cfqq))
3375 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3376 if (cfqq->ioprio > IOPRIO_NORM)
3377 cfqq->ioprio = IOPRIO_NORM;
3378 } else {
3379 /*
dddb7451 3380 * unboost the queue (if needed)
22e2c507 3381 */
dddb7451
CZ
3382 cfqq->ioprio_class = cfqq->org_ioprio_class;
3383 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3384 }
22e2c507 3385}
1da177e4 3386
89850f7e 3387static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3388{
1b379d8d 3389 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3390 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3391 return ELV_MQUEUE_MUST;
3b18152c 3392 }
1da177e4 3393
22e2c507 3394 return ELV_MQUEUE_MAY;
22e2c507
JA
3395}
3396
165125e1 3397static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3398{
3399 struct cfq_data *cfqd = q->elevator->elevator_data;
3400 struct task_struct *tsk = current;
91fac317 3401 struct cfq_io_context *cic;
22e2c507
JA
3402 struct cfq_queue *cfqq;
3403
3404 /*
3405 * don't force setup of a queue from here, as a call to may_queue
3406 * does not necessarily imply that a request actually will be queued.
3407 * so just lookup a possibly existing queue, or return 'may queue'
3408 * if that fails
3409 */
4ac845a2 3410 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3411 if (!cic)
3412 return ELV_MQUEUE_MAY;
3413
b0b78f81 3414 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3415 if (cfqq) {
fd0928df 3416 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3417 cfq_prio_boost(cfqq);
3418
89850f7e 3419 return __cfq_may_queue(cfqq);
22e2c507
JA
3420 }
3421
3422 return ELV_MQUEUE_MAY;
1da177e4
LT
3423}
3424
1da177e4
LT
3425/*
3426 * queue lock held here
3427 */
bb37b94c 3428static void cfq_put_request(struct request *rq)
1da177e4 3429{
5e705374 3430 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3431
5e705374 3432 if (cfqq) {
22e2c507 3433 const int rw = rq_data_dir(rq);
1da177e4 3434
22e2c507
JA
3435 BUG_ON(!cfqq->allocated[rw]);
3436 cfqq->allocated[rw]--;
1da177e4 3437
5e705374 3438 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3439
1da177e4 3440 rq->elevator_private = NULL;
5e705374 3441 rq->elevator_private2 = NULL;
1da177e4 3442
1da177e4
LT
3443 cfq_put_queue(cfqq);
3444 }
3445}
3446
df5fe3e8
JM
3447static struct cfq_queue *
3448cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3449 struct cfq_queue *cfqq)
3450{
3451 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3452 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3453 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3454 cfq_put_queue(cfqq);
3455 return cic_to_cfqq(cic, 1);
3456}
3457
e6c5bc73
JM
3458/*
3459 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3460 * was the last process referring to said cfqq.
3461 */
3462static struct cfq_queue *
3463split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3464{
3465 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3466 cfqq->pid = current->pid;
3467 cfq_clear_cfqq_coop(cfqq);
ae54abed 3468 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3469 return cfqq;
3470 }
3471
3472 cic_set_cfqq(cic, NULL, 1);
3473 cfq_put_queue(cfqq);
3474 return NULL;
3475}
1da177e4 3476/*
22e2c507 3477 * Allocate cfq data structures associated with this request.
1da177e4 3478 */
22e2c507 3479static int
165125e1 3480cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3481{
3482 struct cfq_data *cfqd = q->elevator->elevator_data;
3483 struct cfq_io_context *cic;
3484 const int rw = rq_data_dir(rq);
a6151c3a 3485 const bool is_sync = rq_is_sync(rq);
22e2c507 3486 struct cfq_queue *cfqq;
1da177e4
LT
3487 unsigned long flags;
3488
3489 might_sleep_if(gfp_mask & __GFP_WAIT);
3490
e2d74ac0 3491 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3492
1da177e4
LT
3493 spin_lock_irqsave(q->queue_lock, flags);
3494
22e2c507
JA
3495 if (!cic)
3496 goto queue_fail;
3497
e6c5bc73 3498new_queue:
91fac317 3499 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3500 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3501 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3502 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3503 } else {
e6c5bc73
JM
3504 /*
3505 * If the queue was seeky for too long, break it apart.
3506 */
ae54abed 3507 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3508 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3509 cfqq = split_cfqq(cic, cfqq);
3510 if (!cfqq)
3511 goto new_queue;
3512 }
3513
df5fe3e8
JM
3514 /*
3515 * Check to see if this queue is scheduled to merge with
3516 * another, closely cooperating queue. The merging of
3517 * queues happens here as it must be done in process context.
3518 * The reference on new_cfqq was taken in merge_cfqqs.
3519 */
3520 if (cfqq->new_cfqq)
3521 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3522 }
1da177e4
LT
3523
3524 cfqq->allocated[rw]++;
22e2c507 3525 atomic_inc(&cfqq->ref);
1da177e4 3526
5e705374 3527 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 3528
5e705374
JA
3529 rq->elevator_private = cic;
3530 rq->elevator_private2 = cfqq;
3531 return 0;
1da177e4 3532
22e2c507
JA
3533queue_fail:
3534 if (cic)
3535 put_io_context(cic->ioc);
89850f7e 3536
23e018a1 3537 cfq_schedule_dispatch(cfqd);
1da177e4 3538 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3539 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3540 return 1;
3541}
3542
65f27f38 3543static void cfq_kick_queue(struct work_struct *work)
22e2c507 3544{
65f27f38 3545 struct cfq_data *cfqd =
23e018a1 3546 container_of(work, struct cfq_data, unplug_work);
165125e1 3547 struct request_queue *q = cfqd->queue;
22e2c507 3548
40bb54d1 3549 spin_lock_irq(q->queue_lock);
a7f55792 3550 __blk_run_queue(cfqd->queue);
40bb54d1 3551 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3552}
3553
3554/*
3555 * Timer running if the active_queue is currently idling inside its time slice
3556 */
3557static void cfq_idle_slice_timer(unsigned long data)
3558{
3559 struct cfq_data *cfqd = (struct cfq_data *) data;
3560 struct cfq_queue *cfqq;
3561 unsigned long flags;
3c6bd2f8 3562 int timed_out = 1;
22e2c507 3563
7b679138
JA
3564 cfq_log(cfqd, "idle timer fired");
3565
22e2c507
JA
3566 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3567
fe094d98
JA
3568 cfqq = cfqd->active_queue;
3569 if (cfqq) {
3c6bd2f8
JA
3570 timed_out = 0;
3571
b029195d
JA
3572 /*
3573 * We saw a request before the queue expired, let it through
3574 */
3575 if (cfq_cfqq_must_dispatch(cfqq))
3576 goto out_kick;
3577
22e2c507
JA
3578 /*
3579 * expired
3580 */
44f7c160 3581 if (cfq_slice_used(cfqq))
22e2c507
JA
3582 goto expire;
3583
3584 /*
3585 * only expire and reinvoke request handler, if there are
3586 * other queues with pending requests
3587 */
caaa5f9f 3588 if (!cfqd->busy_queues)
22e2c507 3589 goto out_cont;
22e2c507
JA
3590
3591 /*
3592 * not expired and it has a request pending, let it dispatch
3593 */
75e50984 3594 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3595 goto out_kick;
76280aff
CZ
3596
3597 /*
3598 * Queue depth flag is reset only when the idle didn't succeed
3599 */
3600 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3601 }
3602expire:
6084cdda 3603 cfq_slice_expired(cfqd, timed_out);
22e2c507 3604out_kick:
23e018a1 3605 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3606out_cont:
3607 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3608}
3609
3b18152c
JA
3610static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3611{
3612 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3613 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3614}
22e2c507 3615
c2dea2d1
VT
3616static void cfq_put_async_queues(struct cfq_data *cfqd)
3617{
3618 int i;
3619
3620 for (i = 0; i < IOPRIO_BE_NR; i++) {
3621 if (cfqd->async_cfqq[0][i])
3622 cfq_put_queue(cfqd->async_cfqq[0][i]);
3623 if (cfqd->async_cfqq[1][i])
3624 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3625 }
2389d1ef
ON
3626
3627 if (cfqd->async_idle_cfqq)
3628 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3629}
3630
bb729bc9
JA
3631static void cfq_cfqd_free(struct rcu_head *head)
3632{
3633 kfree(container_of(head, struct cfq_data, rcu));
3634}
3635
b374d18a 3636static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3637{
22e2c507 3638 struct cfq_data *cfqd = e->elevator_data;
165125e1 3639 struct request_queue *q = cfqd->queue;
22e2c507 3640
3b18152c 3641 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3642
d9ff4187 3643 spin_lock_irq(q->queue_lock);
e2d74ac0 3644
d9ff4187 3645 if (cfqd->active_queue)
6084cdda 3646 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3647
3648 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3649 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3650 struct cfq_io_context,
3651 queue_list);
89850f7e
JA
3652
3653 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3654 }
e2d74ac0 3655
c2dea2d1 3656 cfq_put_async_queues(cfqd);
b1c35769
VG
3657 cfq_release_cfq_groups(cfqd);
3658 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
15c31be4 3659
d9ff4187 3660 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3661
3662 cfq_shutdown_timer_wq(cfqd);
3663
b1c35769 3664 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
bb729bc9 3665 call_rcu(&cfqd->rcu, cfq_cfqd_free);
1da177e4
LT
3666}
3667
165125e1 3668static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3669{
3670 struct cfq_data *cfqd;
718eee05 3671 int i, j;
cdb16e8f 3672 struct cfq_group *cfqg;
615f0259 3673 struct cfq_rb_root *st;
1da177e4 3674
94f6030c 3675 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3676 if (!cfqd)
bc1c1169 3677 return NULL;
1da177e4 3678
1fa8f6d6
VG
3679 /* Init root service tree */
3680 cfqd->grp_service_tree = CFQ_RB_ROOT;
3681
cdb16e8f
VG
3682 /* Init root group */
3683 cfqg = &cfqd->root_group;
615f0259
VG
3684 for_each_cfqg_st(cfqg, i, j, st)
3685 *st = CFQ_RB_ROOT;
1fa8f6d6 3686 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3687
25bc6b07
VG
3688 /* Give preference to root group over other groups */
3689 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3690
25fb5169 3691#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769
VG
3692 /*
3693 * Take a reference to root group which we never drop. This is just
3694 * to make sure that cfq_put_cfqg() does not try to kfree root group
3695 */
3696 atomic_set(&cfqg->ref, 1);
22084190
VG
3697 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3698 0);
25fb5169 3699#endif
26a2ac00
JA
3700 /*
3701 * Not strictly needed (since RB_ROOT just clears the node and we
3702 * zeroed cfqd on alloc), but better be safe in case someone decides
3703 * to add magic to the rb code
3704 */
3705 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3706 cfqd->prio_trees[i] = RB_ROOT;
3707
6118b70b
JA
3708 /*
3709 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3710 * Grab a permanent reference to it, so that the normal code flow
3711 * will not attempt to free it.
3712 */
3713 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3714 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3715 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3716
d9ff4187 3717 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3718
1da177e4 3719 cfqd->queue = q;
1da177e4 3720
22e2c507
JA
3721 init_timer(&cfqd->idle_slice_timer);
3722 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3723 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3724
23e018a1 3725 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3726
1da177e4 3727 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3728 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3729 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3730 cfqd->cfq_back_max = cfq_back_max;
3731 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3732 cfqd->cfq_slice[0] = cfq_slice_async;
3733 cfqd->cfq_slice[1] = cfq_slice_sync;
3734 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3735 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 3736 cfqd->cfq_latency = 1;
ae30c286 3737 cfqd->cfq_group_isolation = 0;
e459dd08 3738 cfqd->hw_tag = -1;
edc71131
CZ
3739 /*
3740 * we optimistically start assuming sync ops weren't delayed in last
3741 * second, in order to have larger depth for async operations.
3742 */
573412b2 3743 cfqd->last_delayed_sync = jiffies - HZ;
bb729bc9 3744 INIT_RCU_HEAD(&cfqd->rcu);
bc1c1169 3745 return cfqd;
1da177e4
LT
3746}
3747
3748static void cfq_slab_kill(void)
3749{
d6de8be7
JA
3750 /*
3751 * Caller already ensured that pending RCU callbacks are completed,
3752 * so we should have no busy allocations at this point.
3753 */
1da177e4
LT
3754 if (cfq_pool)
3755 kmem_cache_destroy(cfq_pool);
3756 if (cfq_ioc_pool)
3757 kmem_cache_destroy(cfq_ioc_pool);
3758}
3759
3760static int __init cfq_slab_setup(void)
3761{
0a31bd5f 3762 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3763 if (!cfq_pool)
3764 goto fail;
3765
34e6bbf2 3766 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3767 if (!cfq_ioc_pool)
3768 goto fail;
3769
3770 return 0;
3771fail:
3772 cfq_slab_kill();
3773 return -ENOMEM;
3774}
3775
1da177e4
LT
3776/*
3777 * sysfs parts below -->
3778 */
1da177e4
LT
3779static ssize_t
3780cfq_var_show(unsigned int var, char *page)
3781{
3782 return sprintf(page, "%d\n", var);
3783}
3784
3785static ssize_t
3786cfq_var_store(unsigned int *var, const char *page, size_t count)
3787{
3788 char *p = (char *) page;
3789
3790 *var = simple_strtoul(p, &p, 10);
3791 return count;
3792}
3793
1da177e4 3794#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3795static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3796{ \
3d1ab40f 3797 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3798 unsigned int __data = __VAR; \
3799 if (__CONV) \
3800 __data = jiffies_to_msecs(__data); \
3801 return cfq_var_show(__data, (page)); \
3802}
3803SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3804SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3805SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3806SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3807SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3808SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3809SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3810SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3811SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3812SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
ae30c286 3813SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
1da177e4
LT
3814#undef SHOW_FUNCTION
3815
3816#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3817static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3818{ \
3d1ab40f 3819 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3820 unsigned int __data; \
3821 int ret = cfq_var_store(&__data, (page), count); \
3822 if (__data < (MIN)) \
3823 __data = (MIN); \
3824 else if (__data > (MAX)) \
3825 __data = (MAX); \
3826 if (__CONV) \
3827 *(__PTR) = msecs_to_jiffies(__data); \
3828 else \
3829 *(__PTR) = __data; \
3830 return ret; \
3831}
3832STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3833STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3834 UINT_MAX, 1);
3835STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3836 UINT_MAX, 1);
e572ec7e 3837STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3838STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3839 UINT_MAX, 0);
22e2c507
JA
3840STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3841STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3842STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3843STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3844 UINT_MAX, 0);
963b72fc 3845STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
ae30c286 3846STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
1da177e4
LT
3847#undef STORE_FUNCTION
3848
e572ec7e
AV
3849#define CFQ_ATTR(name) \
3850 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3851
3852static struct elv_fs_entry cfq_attrs[] = {
3853 CFQ_ATTR(quantum),
e572ec7e
AV
3854 CFQ_ATTR(fifo_expire_sync),
3855 CFQ_ATTR(fifo_expire_async),
3856 CFQ_ATTR(back_seek_max),
3857 CFQ_ATTR(back_seek_penalty),
3858 CFQ_ATTR(slice_sync),
3859 CFQ_ATTR(slice_async),
3860 CFQ_ATTR(slice_async_rq),
3861 CFQ_ATTR(slice_idle),
963b72fc 3862 CFQ_ATTR(low_latency),
ae30c286 3863 CFQ_ATTR(group_isolation),
e572ec7e 3864 __ATTR_NULL
1da177e4
LT
3865};
3866
1da177e4
LT
3867static struct elevator_type iosched_cfq = {
3868 .ops = {
3869 .elevator_merge_fn = cfq_merge,
3870 .elevator_merged_fn = cfq_merged_request,
3871 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3872 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 3873 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3874 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3875 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3876 .elevator_deactivate_req_fn = cfq_deactivate_request,
3877 .elevator_queue_empty_fn = cfq_queue_empty,
3878 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3879 .elevator_former_req_fn = elv_rb_former_request,
3880 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3881 .elevator_set_req_fn = cfq_set_request,
3882 .elevator_put_req_fn = cfq_put_request,
3883 .elevator_may_queue_fn = cfq_may_queue,
3884 .elevator_init_fn = cfq_init_queue,
3885 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3886 .trim = cfq_free_io_context,
1da177e4 3887 },
3d1ab40f 3888 .elevator_attrs = cfq_attrs,
1da177e4
LT
3889 .elevator_name = "cfq",
3890 .elevator_owner = THIS_MODULE,
3891};
3892
3e252066
VG
3893#ifdef CONFIG_CFQ_GROUP_IOSCHED
3894static struct blkio_policy_type blkio_policy_cfq = {
3895 .ops = {
3896 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3897 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3898 },
3899};
3900#else
3901static struct blkio_policy_type blkio_policy_cfq;
3902#endif
3903
1da177e4
LT
3904static int __init cfq_init(void)
3905{
22e2c507
JA
3906 /*
3907 * could be 0 on HZ < 1000 setups
3908 */
3909 if (!cfq_slice_async)
3910 cfq_slice_async = 1;
3911 if (!cfq_slice_idle)
3912 cfq_slice_idle = 1;
3913
1da177e4
LT
3914 if (cfq_slab_setup())
3915 return -ENOMEM;
3916
2fdd82bd 3917 elv_register(&iosched_cfq);
3e252066 3918 blkio_policy_register(&blkio_policy_cfq);
1da177e4 3919
2fdd82bd 3920 return 0;
1da177e4
LT
3921}
3922
3923static void __exit cfq_exit(void)
3924{
6e9a4738 3925 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 3926 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 3927 elv_unregister(&iosched_cfq);
334e94de 3928 ioc_gone = &all_gone;
fba82272
OH
3929 /* ioc_gone's update must be visible before reading ioc_count */
3930 smp_wmb();
d6de8be7
JA
3931
3932 /*
3933 * this also protects us from entering cfq_slab_kill() with
3934 * pending RCU callbacks
3935 */
245b2e70 3936 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3937 wait_for_completion(&all_gone);
83521d3e 3938 cfq_slab_kill();
1da177e4
LT
3939}
3940
3941module_init(cfq_init);
3942module_exit(cfq_exit);
3943
3944MODULE_AUTHOR("Jens Axboe");
3945MODULE_LICENSE("GPL");
3946MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");