coccinelle: devm_free: reduce false positives
[linux-2.6-block.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
55782138
LZ
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/block.h>
1da177e4 40
8324aa91 41#include "blk.h"
43a5e4e2 42#include "blk-mq.h"
bd166ef1 43#include "blk-mq-sched.h"
87760e5e 44#include "blk-wbt.h"
8324aa91 45
18fbda91
OS
46#ifdef CONFIG_DEBUG_FS
47struct dentry *blk_debugfs_root;
48#endif
49
d07335e5 50EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 51EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 55
a73f730d
TH
56DEFINE_IDA(blk_queue_ida);
57
1da177e4
LT
58/*
59 * For the allocated request tables
60 */
d674d414 61struct kmem_cache *request_cachep;
1da177e4
LT
62
63/*
64 * For queue allocation
65 */
6728cb0e 66struct kmem_cache *blk_requestq_cachep;
1da177e4 67
1da177e4
LT
68/*
69 * Controlling structure to kblockd
70 */
ff856bad 71static struct workqueue_struct *kblockd_workqueue;
1da177e4 72
d40f75a0
TH
73static void blk_clear_congested(struct request_list *rl, int sync)
74{
d40f75a0
TH
75#ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77#else
482cf79c
TH
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
dc3b17cc 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
84#endif
85}
86
87static void blk_set_congested(struct request_list *rl, int sync)
88{
d40f75a0
TH
89#ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91#else
482cf79c
TH
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
dc3b17cc 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
95#endif
96}
97
8324aa91 98void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
99{
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111}
112
2a4aa30c 113void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 114{
1afb20f3
FT
115 memset(rq, 0, sizeof(*rq));
116
1da177e4 117 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 118 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 119 rq->cpu = -1;
63a71386 120 rq->q = q;
a2dec7b3 121 rq->__sector = (sector_t) -1;
2e662b65
JA
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
63a71386 124 rq->tag = -1;
bd166ef1 125 rq->internal_tag = -1;
b243ddcb 126 rq->start_time = jiffies;
9195291e 127 set_start_time_ns(rq);
09e099d4 128 rq->part = NULL;
1d9bd516
TH
129 seqcount_init(&rq->gstate_seq);
130 u64_stats_init(&rq->aborted_gstate_sync);
1da177e4 131}
2a4aa30c 132EXPORT_SYMBOL(blk_rq_init);
1da177e4 133
2a842aca
CH
134static const struct {
135 int errno;
136 const char *name;
137} blk_errors[] = {
138 [BLK_STS_OK] = { 0, "" },
139 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
140 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
141 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
142 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
143 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
144 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
145 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
146 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
147 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
03a07c92 148 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 149
4e4cbee9
CH
150 /* device mapper special case, should not leak out: */
151 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
152
2a842aca
CH
153 /* everything else not covered above: */
154 [BLK_STS_IOERR] = { -EIO, "I/O" },
155};
156
157blk_status_t errno_to_blk_status(int errno)
158{
159 int i;
160
161 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
162 if (blk_errors[i].errno == errno)
163 return (__force blk_status_t)i;
164 }
165
166 return BLK_STS_IOERR;
167}
168EXPORT_SYMBOL_GPL(errno_to_blk_status);
169
170int blk_status_to_errno(blk_status_t status)
171{
172 int idx = (__force int)status;
173
34bd9c1c 174 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
175 return -EIO;
176 return blk_errors[idx].errno;
177}
178EXPORT_SYMBOL_GPL(blk_status_to_errno);
179
180static void print_req_error(struct request *req, blk_status_t status)
181{
182 int idx = (__force int)status;
183
34bd9c1c 184 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
185 return;
186
187 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
188 __func__, blk_errors[idx].name, req->rq_disk ?
189 req->rq_disk->disk_name : "?",
190 (unsigned long long)blk_rq_pos(req));
191}
192
5bb23a68 193static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 194 unsigned int nbytes, blk_status_t error)
1da177e4 195{
78d8e58a 196 if (error)
4e4cbee9 197 bio->bi_status = error;
797e7dbb 198
e8064021 199 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 200 bio_set_flag(bio, BIO_QUIET);
08bafc03 201
f79ea416 202 bio_advance(bio, nbytes);
7ba1ba12 203
143a87f4 204 /* don't actually finish bio if it's part of flush sequence */
e8064021 205 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 206 bio_endio(bio);
1da177e4 207}
1da177e4 208
1da177e4
LT
209void blk_dump_rq_flags(struct request *rq, char *msg)
210{
aebf526b
CH
211 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
212 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 213 (unsigned long long) rq->cmd_flags);
1da177e4 214
83096ebf
TH
215 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
216 (unsigned long long)blk_rq_pos(rq),
217 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
218 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
219 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 220}
1da177e4
LT
221EXPORT_SYMBOL(blk_dump_rq_flags);
222
3cca6dc1 223static void blk_delay_work(struct work_struct *work)
1da177e4 224{
3cca6dc1 225 struct request_queue *q;
1da177e4 226
3cca6dc1
JA
227 q = container_of(work, struct request_queue, delay_work.work);
228 spin_lock_irq(q->queue_lock);
24ecfbe2 229 __blk_run_queue(q);
3cca6dc1 230 spin_unlock_irq(q->queue_lock);
1da177e4 231}
1da177e4
LT
232
233/**
3cca6dc1
JA
234 * blk_delay_queue - restart queueing after defined interval
235 * @q: The &struct request_queue in question
236 * @msecs: Delay in msecs
1da177e4
LT
237 *
238 * Description:
3cca6dc1
JA
239 * Sometimes queueing needs to be postponed for a little while, to allow
240 * resources to come back. This function will make sure that queueing is
2fff8a92 241 * restarted around the specified time.
3cca6dc1
JA
242 */
243void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 244{
2fff8a92 245 lockdep_assert_held(q->queue_lock);
332ebbf7 246 WARN_ON_ONCE(q->mq_ops);
2fff8a92 247
70460571
BVA
248 if (likely(!blk_queue_dead(q)))
249 queue_delayed_work(kblockd_workqueue, &q->delay_work,
250 msecs_to_jiffies(msecs));
2ad8b1ef 251}
3cca6dc1 252EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 253
21491412
JA
254/**
255 * blk_start_queue_async - asynchronously restart a previously stopped queue
256 * @q: The &struct request_queue in question
257 *
258 * Description:
259 * blk_start_queue_async() will clear the stop flag on the queue, and
260 * ensure that the request_fn for the queue is run from an async
261 * context.
262 **/
263void blk_start_queue_async(struct request_queue *q)
264{
2fff8a92 265 lockdep_assert_held(q->queue_lock);
332ebbf7 266 WARN_ON_ONCE(q->mq_ops);
2fff8a92 267
21491412
JA
268 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
269 blk_run_queue_async(q);
270}
271EXPORT_SYMBOL(blk_start_queue_async);
272
1da177e4
LT
273/**
274 * blk_start_queue - restart a previously stopped queue
165125e1 275 * @q: The &struct request_queue in question
1da177e4
LT
276 *
277 * Description:
278 * blk_start_queue() will clear the stop flag on the queue, and call
279 * the request_fn for the queue if it was in a stopped state when
2fff8a92 280 * entered. Also see blk_stop_queue().
1da177e4 281 **/
165125e1 282void blk_start_queue(struct request_queue *q)
1da177e4 283{
2fff8a92 284 lockdep_assert_held(q->queue_lock);
4ddd56b0 285 WARN_ON(!in_interrupt() && !irqs_disabled());
332ebbf7 286 WARN_ON_ONCE(q->mq_ops);
a038e253 287
75ad23bc 288 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 289 __blk_run_queue(q);
1da177e4 290}
1da177e4
LT
291EXPORT_SYMBOL(blk_start_queue);
292
293/**
294 * blk_stop_queue - stop a queue
165125e1 295 * @q: The &struct request_queue in question
1da177e4
LT
296 *
297 * Description:
298 * The Linux block layer assumes that a block driver will consume all
299 * entries on the request queue when the request_fn strategy is called.
300 * Often this will not happen, because of hardware limitations (queue
301 * depth settings). If a device driver gets a 'queue full' response,
302 * or if it simply chooses not to queue more I/O at one point, it can
303 * call this function to prevent the request_fn from being called until
304 * the driver has signalled it's ready to go again. This happens by calling
2fff8a92 305 * blk_start_queue() to restart queue operations.
1da177e4 306 **/
165125e1 307void blk_stop_queue(struct request_queue *q)
1da177e4 308{
2fff8a92 309 lockdep_assert_held(q->queue_lock);
332ebbf7 310 WARN_ON_ONCE(q->mq_ops);
2fff8a92 311
136b5721 312 cancel_delayed_work(&q->delay_work);
75ad23bc 313 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
314}
315EXPORT_SYMBOL(blk_stop_queue);
316
317/**
318 * blk_sync_queue - cancel any pending callbacks on a queue
319 * @q: the queue
320 *
321 * Description:
322 * The block layer may perform asynchronous callback activity
323 * on a queue, such as calling the unplug function after a timeout.
324 * A block device may call blk_sync_queue to ensure that any
325 * such activity is cancelled, thus allowing it to release resources
59c51591 326 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
327 * that its ->make_request_fn will not re-add plugging prior to calling
328 * this function.
329 *
da527770 330 * This function does not cancel any asynchronous activity arising
da3dae54 331 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 332 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 333 *
1da177e4
LT
334 */
335void blk_sync_queue(struct request_queue *q)
336{
70ed28b9 337 del_timer_sync(&q->timeout);
4e9b6f20 338 cancel_work_sync(&q->timeout_work);
f04c1fe7
ML
339
340 if (q->mq_ops) {
341 struct blk_mq_hw_ctx *hctx;
342 int i;
343
aba7afc5 344 cancel_delayed_work_sync(&q->requeue_work);
21c6e939 345 queue_for_each_hw_ctx(q, hctx, i)
9f993737 346 cancel_delayed_work_sync(&hctx->run_work);
f04c1fe7
ML
347 } else {
348 cancel_delayed_work_sync(&q->delay_work);
349 }
1da177e4
LT
350}
351EXPORT_SYMBOL(blk_sync_queue);
352
c9254f2d
BVA
353/**
354 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
355 * @q: request queue pointer
356 *
357 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
358 * set and 1 if the flag was already set.
359 */
360int blk_set_preempt_only(struct request_queue *q)
361{
362 unsigned long flags;
363 int res;
364
365 spin_lock_irqsave(q->queue_lock, flags);
366 res = queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
367 spin_unlock_irqrestore(q->queue_lock, flags);
368
369 return res;
370}
371EXPORT_SYMBOL_GPL(blk_set_preempt_only);
372
373void blk_clear_preempt_only(struct request_queue *q)
374{
375 unsigned long flags;
376
377 spin_lock_irqsave(q->queue_lock, flags);
378 queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
3a0a5299 379 wake_up_all(&q->mq_freeze_wq);
c9254f2d
BVA
380 spin_unlock_irqrestore(q->queue_lock, flags);
381}
382EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
383
c246e80d
BVA
384/**
385 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
386 * @q: The queue to run
387 *
388 * Description:
389 * Invoke request handling on a queue if there are any pending requests.
390 * May be used to restart request handling after a request has completed.
391 * This variant runs the queue whether or not the queue has been
392 * stopped. Must be called with the queue lock held and interrupts
393 * disabled. See also @blk_run_queue.
394 */
395inline void __blk_run_queue_uncond(struct request_queue *q)
396{
2fff8a92 397 lockdep_assert_held(q->queue_lock);
332ebbf7 398 WARN_ON_ONCE(q->mq_ops);
2fff8a92 399
c246e80d
BVA
400 if (unlikely(blk_queue_dead(q)))
401 return;
402
24faf6f6
BVA
403 /*
404 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
405 * the queue lock internally. As a result multiple threads may be
406 * running such a request function concurrently. Keep track of the
407 * number of active request_fn invocations such that blk_drain_queue()
408 * can wait until all these request_fn calls have finished.
409 */
410 q->request_fn_active++;
c246e80d 411 q->request_fn(q);
24faf6f6 412 q->request_fn_active--;
c246e80d 413}
a7928c15 414EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 415
1da177e4 416/**
80a4b58e 417 * __blk_run_queue - run a single device queue
1da177e4 418 * @q: The queue to run
80a4b58e
JA
419 *
420 * Description:
2fff8a92 421 * See @blk_run_queue.
1da177e4 422 */
24ecfbe2 423void __blk_run_queue(struct request_queue *q)
1da177e4 424{
2fff8a92 425 lockdep_assert_held(q->queue_lock);
332ebbf7 426 WARN_ON_ONCE(q->mq_ops);
2fff8a92 427
a538cd03
TH
428 if (unlikely(blk_queue_stopped(q)))
429 return;
430
c246e80d 431 __blk_run_queue_uncond(q);
75ad23bc
NP
432}
433EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 434
24ecfbe2
CH
435/**
436 * blk_run_queue_async - run a single device queue in workqueue context
437 * @q: The queue to run
438 *
439 * Description:
440 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
2fff8a92
BVA
441 * of us.
442 *
443 * Note:
444 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
445 * has canceled q->delay_work, callers must hold the queue lock to avoid
446 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
24ecfbe2
CH
447 */
448void blk_run_queue_async(struct request_queue *q)
449{
2fff8a92 450 lockdep_assert_held(q->queue_lock);
332ebbf7 451 WARN_ON_ONCE(q->mq_ops);
2fff8a92 452
70460571 453 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 454 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 455}
c21e6beb 456EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 457
75ad23bc
NP
458/**
459 * blk_run_queue - run a single device queue
460 * @q: The queue to run
80a4b58e
JA
461 *
462 * Description:
463 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 464 * May be used to restart queueing when a request has completed.
75ad23bc
NP
465 */
466void blk_run_queue(struct request_queue *q)
467{
468 unsigned long flags;
469
332ebbf7
BVA
470 WARN_ON_ONCE(q->mq_ops);
471
75ad23bc 472 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 473 __blk_run_queue(q);
1da177e4
LT
474 spin_unlock_irqrestore(q->queue_lock, flags);
475}
476EXPORT_SYMBOL(blk_run_queue);
477
165125e1 478void blk_put_queue(struct request_queue *q)
483f4afc
AV
479{
480 kobject_put(&q->kobj);
481}
d86e0e83 482EXPORT_SYMBOL(blk_put_queue);
483f4afc 483
e3c78ca5 484/**
807592a4 485 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 486 * @q: queue to drain
c9a929dd 487 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 488 *
c9a929dd
TH
489 * Drain requests from @q. If @drain_all is set, all requests are drained.
490 * If not, only ELVPRIV requests are drained. The caller is responsible
491 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 492 */
807592a4
BVA
493static void __blk_drain_queue(struct request_queue *q, bool drain_all)
494 __releases(q->queue_lock)
495 __acquires(q->queue_lock)
e3c78ca5 496{
458f27a9
AH
497 int i;
498
807592a4 499 lockdep_assert_held(q->queue_lock);
332ebbf7 500 WARN_ON_ONCE(q->mq_ops);
807592a4 501
e3c78ca5 502 while (true) {
481a7d64 503 bool drain = false;
e3c78ca5 504
b855b04a
TH
505 /*
506 * The caller might be trying to drain @q before its
507 * elevator is initialized.
508 */
509 if (q->elevator)
510 elv_drain_elevator(q);
511
5efd6113 512 blkcg_drain_queue(q);
e3c78ca5 513
4eabc941
TH
514 /*
515 * This function might be called on a queue which failed
b855b04a
TH
516 * driver init after queue creation or is not yet fully
517 * active yet. Some drivers (e.g. fd and loop) get unhappy
518 * in such cases. Kick queue iff dispatch queue has
519 * something on it and @q has request_fn set.
4eabc941 520 */
b855b04a 521 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 522 __blk_run_queue(q);
c9a929dd 523
8a5ecdd4 524 drain |= q->nr_rqs_elvpriv;
24faf6f6 525 drain |= q->request_fn_active;
481a7d64
TH
526
527 /*
528 * Unfortunately, requests are queued at and tracked from
529 * multiple places and there's no single counter which can
530 * be drained. Check all the queues and counters.
531 */
532 if (drain_all) {
e97c293c 533 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
534 drain |= !list_empty(&q->queue_head);
535 for (i = 0; i < 2; i++) {
8a5ecdd4 536 drain |= q->nr_rqs[i];
481a7d64 537 drain |= q->in_flight[i];
7c94e1c1
ML
538 if (fq)
539 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
540 }
541 }
e3c78ca5 542
481a7d64 543 if (!drain)
e3c78ca5 544 break;
807592a4
BVA
545
546 spin_unlock_irq(q->queue_lock);
547
e3c78ca5 548 msleep(10);
807592a4
BVA
549
550 spin_lock_irq(q->queue_lock);
e3c78ca5 551 }
458f27a9
AH
552
553 /*
554 * With queue marked dead, any woken up waiter will fail the
555 * allocation path, so the wakeup chaining is lost and we're
556 * left with hung waiters. We need to wake up those waiters.
557 */
558 if (q->request_fn) {
a051661c
TH
559 struct request_list *rl;
560
a051661c
TH
561 blk_queue_for_each_rl(rl, q)
562 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
563 wake_up_all(&rl->wait[i]);
458f27a9 564 }
e3c78ca5
TH
565}
566
454be724
ML
567void blk_drain_queue(struct request_queue *q)
568{
569 spin_lock_irq(q->queue_lock);
570 __blk_drain_queue(q, true);
571 spin_unlock_irq(q->queue_lock);
572}
573
d732580b
TH
574/**
575 * blk_queue_bypass_start - enter queue bypass mode
576 * @q: queue of interest
577 *
578 * In bypass mode, only the dispatch FIFO queue of @q is used. This
579 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 580 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
581 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
582 * inside queue or RCU read lock.
d732580b
TH
583 */
584void blk_queue_bypass_start(struct request_queue *q)
585{
332ebbf7
BVA
586 WARN_ON_ONCE(q->mq_ops);
587
d732580b 588 spin_lock_irq(q->queue_lock);
776687bc 589 q->bypass_depth++;
d732580b
TH
590 queue_flag_set(QUEUE_FLAG_BYPASS, q);
591 spin_unlock_irq(q->queue_lock);
592
776687bc
TH
593 /*
594 * Queues start drained. Skip actual draining till init is
595 * complete. This avoids lenghty delays during queue init which
596 * can happen many times during boot.
597 */
598 if (blk_queue_init_done(q)) {
807592a4
BVA
599 spin_lock_irq(q->queue_lock);
600 __blk_drain_queue(q, false);
601 spin_unlock_irq(q->queue_lock);
602
b82d4b19
TH
603 /* ensure blk_queue_bypass() is %true inside RCU read lock */
604 synchronize_rcu();
605 }
d732580b
TH
606}
607EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
608
609/**
610 * blk_queue_bypass_end - leave queue bypass mode
611 * @q: queue of interest
612 *
613 * Leave bypass mode and restore the normal queueing behavior.
332ebbf7
BVA
614 *
615 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
616 * this function is called for both blk-sq and blk-mq queues.
d732580b
TH
617 */
618void blk_queue_bypass_end(struct request_queue *q)
619{
620 spin_lock_irq(q->queue_lock);
621 if (!--q->bypass_depth)
622 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
623 WARN_ON_ONCE(q->bypass_depth < 0);
624 spin_unlock_irq(q->queue_lock);
625}
626EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
627
aed3ea94
JA
628void blk_set_queue_dying(struct request_queue *q)
629{
1b856086
BVA
630 spin_lock_irq(q->queue_lock);
631 queue_flag_set(QUEUE_FLAG_DYING, q);
632 spin_unlock_irq(q->queue_lock);
aed3ea94 633
d3cfb2a0
ML
634 /*
635 * When queue DYING flag is set, we need to block new req
636 * entering queue, so we call blk_freeze_queue_start() to
637 * prevent I/O from crossing blk_queue_enter().
638 */
639 blk_freeze_queue_start(q);
640
aed3ea94
JA
641 if (q->mq_ops)
642 blk_mq_wake_waiters(q);
643 else {
644 struct request_list *rl;
645
bbfc3c5d 646 spin_lock_irq(q->queue_lock);
aed3ea94
JA
647 blk_queue_for_each_rl(rl, q) {
648 if (rl->rq_pool) {
34d9715a
ML
649 wake_up_all(&rl->wait[BLK_RW_SYNC]);
650 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
aed3ea94
JA
651 }
652 }
bbfc3c5d 653 spin_unlock_irq(q->queue_lock);
aed3ea94 654 }
055f6e18
ML
655
656 /* Make blk_queue_enter() reexamine the DYING flag. */
657 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
658}
659EXPORT_SYMBOL_GPL(blk_set_queue_dying);
660
c9a929dd
TH
661/**
662 * blk_cleanup_queue - shutdown a request queue
663 * @q: request queue to shutdown
664 *
c246e80d
BVA
665 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
666 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 667 */
6728cb0e 668void blk_cleanup_queue(struct request_queue *q)
483f4afc 669{
c9a929dd 670 spinlock_t *lock = q->queue_lock;
e3335de9 671
3f3299d5 672 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 673 mutex_lock(&q->sysfs_lock);
aed3ea94 674 blk_set_queue_dying(q);
c9a929dd 675 spin_lock_irq(lock);
6ecf23af 676
80fd9979 677 /*
3f3299d5 678 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
679 * that, unlike blk_queue_bypass_start(), we aren't performing
680 * synchronize_rcu() after entering bypass mode to avoid the delay
681 * as some drivers create and destroy a lot of queues while
682 * probing. This is still safe because blk_release_queue() will be
683 * called only after the queue refcnt drops to zero and nothing,
684 * RCU or not, would be traversing the queue by then.
685 */
6ecf23af
TH
686 q->bypass_depth++;
687 queue_flag_set(QUEUE_FLAG_BYPASS, q);
688
c9a929dd
TH
689 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
690 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 691 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
692 spin_unlock_irq(lock);
693 mutex_unlock(&q->sysfs_lock);
694
c246e80d
BVA
695 /*
696 * Drain all requests queued before DYING marking. Set DEAD flag to
697 * prevent that q->request_fn() gets invoked after draining finished.
698 */
3ef28e83 699 blk_freeze_queue(q);
9c1051aa 700 spin_lock_irq(lock);
c246e80d 701 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 702 spin_unlock_irq(lock);
c9a929dd 703
c2856ae2
ML
704 /*
705 * make sure all in-progress dispatch are completed because
706 * blk_freeze_queue() can only complete all requests, and
707 * dispatch may still be in-progress since we dispatch requests
708 * from more than one contexts
709 */
710 if (q->mq_ops)
711 blk_mq_quiesce_queue(q);
712
5a48fc14
DW
713 /* for synchronous bio-based driver finish in-flight integrity i/o */
714 blk_flush_integrity();
715
c9a929dd 716 /* @q won't process any more request, flush async actions */
dc3b17cc 717 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
718 blk_sync_queue(q);
719
45a9c9d9
BVA
720 if (q->mq_ops)
721 blk_mq_free_queue(q);
3ef28e83 722 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 723
5e5cfac0
AH
724 spin_lock_irq(lock);
725 if (q->queue_lock != &q->__queue_lock)
726 q->queue_lock = &q->__queue_lock;
727 spin_unlock_irq(lock);
728
c9a929dd 729 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
730 blk_put_queue(q);
731}
1da177e4
LT
732EXPORT_SYMBOL(blk_cleanup_queue);
733
271508db 734/* Allocate memory local to the request queue */
6d247d7f 735static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 736{
6d247d7f
CH
737 struct request_queue *q = data;
738
739 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
740}
741
6d247d7f 742static void free_request_simple(void *element, void *data)
271508db
DR
743{
744 kmem_cache_free(request_cachep, element);
745}
746
6d247d7f
CH
747static void *alloc_request_size(gfp_t gfp_mask, void *data)
748{
749 struct request_queue *q = data;
750 struct request *rq;
751
752 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
753 q->node);
754 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
755 kfree(rq);
756 rq = NULL;
757 }
758 return rq;
759}
760
761static void free_request_size(void *element, void *data)
762{
763 struct request_queue *q = data;
764
765 if (q->exit_rq_fn)
766 q->exit_rq_fn(q, element);
767 kfree(element);
768}
769
5b788ce3
TH
770int blk_init_rl(struct request_list *rl, struct request_queue *q,
771 gfp_t gfp_mask)
1da177e4 772{
85acb3ba 773 if (unlikely(rl->rq_pool) || q->mq_ops)
1abec4fd
MS
774 return 0;
775
5b788ce3 776 rl->q = q;
1faa16d2
JA
777 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
778 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
779 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
780 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 781
6d247d7f
CH
782 if (q->cmd_size) {
783 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
784 alloc_request_size, free_request_size,
785 q, gfp_mask, q->node);
786 } else {
787 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
788 alloc_request_simple, free_request_simple,
789 q, gfp_mask, q->node);
790 }
1da177e4
LT
791 if (!rl->rq_pool)
792 return -ENOMEM;
793
b425e504
BVA
794 if (rl != &q->root_rl)
795 WARN_ON_ONCE(!blk_get_queue(q));
796
1da177e4
LT
797 return 0;
798}
799
b425e504 800void blk_exit_rl(struct request_queue *q, struct request_list *rl)
5b788ce3 801{
b425e504 802 if (rl->rq_pool) {
5b788ce3 803 mempool_destroy(rl->rq_pool);
b425e504
BVA
804 if (rl != &q->root_rl)
805 blk_put_queue(q);
806 }
5b788ce3
TH
807}
808
165125e1 809struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 810{
c304a51b 811 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
812}
813EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 814
3a0a5299
BVA
815/**
816 * blk_queue_enter() - try to increase q->q_usage_counter
817 * @q: request queue pointer
818 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
819 */
9a95e4ef 820int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 821{
3a0a5299
BVA
822 const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
823
3ef28e83 824 while (true) {
3a0a5299 825 bool success = false;
3ef28e83
DW
826 int ret;
827
3a0a5299
BVA
828 rcu_read_lock_sched();
829 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
830 /*
831 * The code that sets the PREEMPT_ONLY flag is
832 * responsible for ensuring that that flag is globally
833 * visible before the queue is unfrozen.
834 */
835 if (preempt || !blk_queue_preempt_only(q)) {
836 success = true;
837 } else {
838 percpu_ref_put(&q->q_usage_counter);
839 }
840 }
841 rcu_read_unlock_sched();
842
843 if (success)
3ef28e83
DW
844 return 0;
845
3a0a5299 846 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
847 return -EBUSY;
848
5ed61d3f 849 /*
1671d522 850 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 851 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
852 * .q_usage_counter and reading .mq_freeze_depth or
853 * queue dying flag, otherwise the following wait may
854 * never return if the two reads are reordered.
5ed61d3f
ML
855 */
856 smp_rmb();
857
3ef28e83 858 ret = wait_event_interruptible(q->mq_freeze_wq,
3a0a5299
BVA
859 (atomic_read(&q->mq_freeze_depth) == 0 &&
860 (preempt || !blk_queue_preempt_only(q))) ||
3ef28e83
DW
861 blk_queue_dying(q));
862 if (blk_queue_dying(q))
863 return -ENODEV;
864 if (ret)
865 return ret;
866 }
867}
868
869void blk_queue_exit(struct request_queue *q)
870{
871 percpu_ref_put(&q->q_usage_counter);
872}
873
874static void blk_queue_usage_counter_release(struct percpu_ref *ref)
875{
876 struct request_queue *q =
877 container_of(ref, struct request_queue, q_usage_counter);
878
879 wake_up_all(&q->mq_freeze_wq);
880}
881
bca237a5 882static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 883{
bca237a5 884 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
885
886 kblockd_schedule_work(&q->timeout_work);
887}
888
165125e1 889struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 890{
165125e1 891 struct request_queue *q;
1946089a 892
8324aa91 893 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 894 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
895 if (!q)
896 return NULL;
897
00380a40 898 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 899 if (q->id < 0)
3d2936f4 900 goto fail_q;
a73f730d 901
93b27e72 902 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
54efd50b
KO
903 if (!q->bio_split)
904 goto fail_id;
905
d03f6cdc
JK
906 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
907 if (!q->backing_dev_info)
908 goto fail_split;
909
a83b576c
JA
910 q->stats = blk_alloc_queue_stats();
911 if (!q->stats)
912 goto fail_stats;
913
dc3b17cc 914 q->backing_dev_info->ra_pages =
09cbfeaf 915 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
916 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
917 q->backing_dev_info->name = "block";
5151412d 918 q->node = node_id;
0989a025 919
bca237a5
KC
920 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
921 laptop_mode_timer_fn, 0);
922 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
4e9b6f20 923 INIT_WORK(&q->timeout_work, NULL);
b855b04a 924 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 925 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 926 INIT_LIST_HEAD(&q->icq_list);
4eef3049 927#ifdef CONFIG_BLK_CGROUP
e8989fae 928 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 929#endif
3cca6dc1 930 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 931
8324aa91 932 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 933
5acb3cc2
WL
934#ifdef CONFIG_BLK_DEV_IO_TRACE
935 mutex_init(&q->blk_trace_mutex);
936#endif
483f4afc 937 mutex_init(&q->sysfs_lock);
e7e72bf6 938 spin_lock_init(&q->__queue_lock);
483f4afc 939
c94a96ac
VG
940 /*
941 * By default initialize queue_lock to internal lock and driver can
942 * override it later if need be.
943 */
944 q->queue_lock = &q->__queue_lock;
945
b82d4b19
TH
946 /*
947 * A queue starts its life with bypass turned on to avoid
948 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
949 * init. The initial bypass will be finished when the queue is
950 * registered by blk_register_queue().
b82d4b19
TH
951 */
952 q->bypass_depth = 1;
953 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
954
320ae51f
JA
955 init_waitqueue_head(&q->mq_freeze_wq);
956
3ef28e83
DW
957 /*
958 * Init percpu_ref in atomic mode so that it's faster to shutdown.
959 * See blk_register_queue() for details.
960 */
961 if (percpu_ref_init(&q->q_usage_counter,
962 blk_queue_usage_counter_release,
963 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 964 goto fail_bdi;
f51b802c 965
3ef28e83
DW
966 if (blkcg_init_queue(q))
967 goto fail_ref;
968
1da177e4 969 return q;
a73f730d 970
3ef28e83
DW
971fail_ref:
972 percpu_ref_exit(&q->q_usage_counter);
fff4996b 973fail_bdi:
a83b576c
JA
974 blk_free_queue_stats(q->stats);
975fail_stats:
d03f6cdc 976 bdi_put(q->backing_dev_info);
54efd50b
KO
977fail_split:
978 bioset_free(q->bio_split);
a73f730d
TH
979fail_id:
980 ida_simple_remove(&blk_queue_ida, q->id);
981fail_q:
982 kmem_cache_free(blk_requestq_cachep, q);
983 return NULL;
1da177e4 984}
1946089a 985EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
986
987/**
988 * blk_init_queue - prepare a request queue for use with a block device
989 * @rfn: The function to be called to process requests that have been
990 * placed on the queue.
991 * @lock: Request queue spin lock
992 *
993 * Description:
994 * If a block device wishes to use the standard request handling procedures,
995 * which sorts requests and coalesces adjacent requests, then it must
996 * call blk_init_queue(). The function @rfn will be called when there
997 * are requests on the queue that need to be processed. If the device
998 * supports plugging, then @rfn may not be called immediately when requests
999 * are available on the queue, but may be called at some time later instead.
1000 * Plugged queues are generally unplugged when a buffer belonging to one
1001 * of the requests on the queue is needed, or due to memory pressure.
1002 *
1003 * @rfn is not required, or even expected, to remove all requests off the
1004 * queue, but only as many as it can handle at a time. If it does leave
1005 * requests on the queue, it is responsible for arranging that the requests
1006 * get dealt with eventually.
1007 *
1008 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1009 * request queue; this lock will be taken also from interrupt context, so irq
1010 * disabling is needed for it.
1da177e4 1011 *
710027a4 1012 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
1013 * it didn't succeed.
1014 *
1015 * Note:
1016 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1017 * when the block device is deactivated (such as at module unload).
1018 **/
1946089a 1019
165125e1 1020struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 1021{
c304a51b 1022 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
1023}
1024EXPORT_SYMBOL(blk_init_queue);
1025
165125e1 1026struct request_queue *
1946089a
CL
1027blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1028{
5ea708d1 1029 struct request_queue *q;
1da177e4 1030
5ea708d1
CH
1031 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1032 if (!q)
c86d1b8a
MS
1033 return NULL;
1034
5ea708d1
CH
1035 q->request_fn = rfn;
1036 if (lock)
1037 q->queue_lock = lock;
1038 if (blk_init_allocated_queue(q) < 0) {
1039 blk_cleanup_queue(q);
1040 return NULL;
1041 }
18741986 1042
7982e90c 1043 return q;
01effb0d
MS
1044}
1045EXPORT_SYMBOL(blk_init_queue_node);
1046
dece1635 1047static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 1048
1da177e4 1049
5ea708d1
CH
1050int blk_init_allocated_queue(struct request_queue *q)
1051{
332ebbf7
BVA
1052 WARN_ON_ONCE(q->mq_ops);
1053
6d247d7f 1054 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
ba483388 1055 if (!q->fq)
5ea708d1 1056 return -ENOMEM;
7982e90c 1057
6d247d7f
CH
1058 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1059 goto out_free_flush_queue;
7982e90c 1060
a051661c 1061 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 1062 goto out_exit_flush_rq;
1da177e4 1063
287922eb 1064 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 1065 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 1066
f3b144aa
JA
1067 /*
1068 * This also sets hw/phys segments, boundary and size
1069 */
c20e8de2 1070 blk_queue_make_request(q, blk_queue_bio);
1da177e4 1071
44ec9542
AS
1072 q->sg_reserved_size = INT_MAX;
1073
eb1c160b
TS
1074 /* Protect q->elevator from elevator_change */
1075 mutex_lock(&q->sysfs_lock);
1076
b82d4b19 1077 /* init elevator */
eb1c160b
TS
1078 if (elevator_init(q, NULL)) {
1079 mutex_unlock(&q->sysfs_lock);
6d247d7f 1080 goto out_exit_flush_rq;
eb1c160b
TS
1081 }
1082
1083 mutex_unlock(&q->sysfs_lock);
5ea708d1 1084 return 0;
eb1c160b 1085
6d247d7f
CH
1086out_exit_flush_rq:
1087 if (q->exit_rq_fn)
1088 q->exit_rq_fn(q, q->fq->flush_rq);
1089out_free_flush_queue:
ba483388 1090 blk_free_flush_queue(q->fq);
5ea708d1 1091 return -ENOMEM;
1da177e4 1092}
5151412d 1093EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 1094
09ac46c4 1095bool blk_get_queue(struct request_queue *q)
1da177e4 1096{
3f3299d5 1097 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
1098 __blk_get_queue(q);
1099 return true;
1da177e4
LT
1100 }
1101
09ac46c4 1102 return false;
1da177e4 1103}
d86e0e83 1104EXPORT_SYMBOL(blk_get_queue);
1da177e4 1105
5b788ce3 1106static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 1107{
e8064021 1108 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 1109 elv_put_request(rl->q, rq);
f1f8cc94 1110 if (rq->elv.icq)
11a3122f 1111 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
1112 }
1113
5b788ce3 1114 mempool_free(rq, rl->rq_pool);
1da177e4
LT
1115}
1116
1da177e4
LT
1117/*
1118 * ioc_batching returns true if the ioc is a valid batching request and
1119 * should be given priority access to a request.
1120 */
165125e1 1121static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1122{
1123 if (!ioc)
1124 return 0;
1125
1126 /*
1127 * Make sure the process is able to allocate at least 1 request
1128 * even if the batch times out, otherwise we could theoretically
1129 * lose wakeups.
1130 */
1131 return ioc->nr_batch_requests == q->nr_batching ||
1132 (ioc->nr_batch_requests > 0
1133 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1134}
1135
1136/*
1137 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1138 * will cause the process to be a "batcher" on all queues in the system. This
1139 * is the behaviour we want though - once it gets a wakeup it should be given
1140 * a nice run.
1141 */
165125e1 1142static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1143{
1144 if (!ioc || ioc_batching(q, ioc))
1145 return;
1146
1147 ioc->nr_batch_requests = q->nr_batching;
1148 ioc->last_waited = jiffies;
1149}
1150
5b788ce3 1151static void __freed_request(struct request_list *rl, int sync)
1da177e4 1152{
5b788ce3 1153 struct request_queue *q = rl->q;
1da177e4 1154
d40f75a0
TH
1155 if (rl->count[sync] < queue_congestion_off_threshold(q))
1156 blk_clear_congested(rl, sync);
1da177e4 1157
1faa16d2
JA
1158 if (rl->count[sync] + 1 <= q->nr_requests) {
1159 if (waitqueue_active(&rl->wait[sync]))
1160 wake_up(&rl->wait[sync]);
1da177e4 1161
5b788ce3 1162 blk_clear_rl_full(rl, sync);
1da177e4
LT
1163 }
1164}
1165
1166/*
1167 * A request has just been released. Account for it, update the full and
1168 * congestion status, wake up any waiters. Called under q->queue_lock.
1169 */
e8064021
CH
1170static void freed_request(struct request_list *rl, bool sync,
1171 req_flags_t rq_flags)
1da177e4 1172{
5b788ce3 1173 struct request_queue *q = rl->q;
1da177e4 1174
8a5ecdd4 1175 q->nr_rqs[sync]--;
1faa16d2 1176 rl->count[sync]--;
e8064021 1177 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 1178 q->nr_rqs_elvpriv--;
1da177e4 1179
5b788ce3 1180 __freed_request(rl, sync);
1da177e4 1181
1faa16d2 1182 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 1183 __freed_request(rl, sync ^ 1);
1da177e4
LT
1184}
1185
e3a2b3f9
JA
1186int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1187{
1188 struct request_list *rl;
d40f75a0 1189 int on_thresh, off_thresh;
e3a2b3f9 1190
332ebbf7
BVA
1191 WARN_ON_ONCE(q->mq_ops);
1192
e3a2b3f9
JA
1193 spin_lock_irq(q->queue_lock);
1194 q->nr_requests = nr;
1195 blk_queue_congestion_threshold(q);
d40f75a0
TH
1196 on_thresh = queue_congestion_on_threshold(q);
1197 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1198
d40f75a0
TH
1199 blk_queue_for_each_rl(rl, q) {
1200 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1201 blk_set_congested(rl, BLK_RW_SYNC);
1202 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1203 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1204
d40f75a0
TH
1205 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1206 blk_set_congested(rl, BLK_RW_ASYNC);
1207 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1208 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1209
e3a2b3f9
JA
1210 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1211 blk_set_rl_full(rl, BLK_RW_SYNC);
1212 } else {
1213 blk_clear_rl_full(rl, BLK_RW_SYNC);
1214 wake_up(&rl->wait[BLK_RW_SYNC]);
1215 }
1216
1217 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1218 blk_set_rl_full(rl, BLK_RW_ASYNC);
1219 } else {
1220 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1221 wake_up(&rl->wait[BLK_RW_ASYNC]);
1222 }
1223 }
1224
1225 spin_unlock_irq(q->queue_lock);
1226 return 0;
1227}
1228
da8303c6 1229/**
a06e05e6 1230 * __get_request - get a free request
5b788ce3 1231 * @rl: request list to allocate from
ef295ecf 1232 * @op: operation and flags
da8303c6 1233 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1234 * @flags: BLQ_MQ_REQ_* flags
da8303c6
TH
1235 *
1236 * Get a free request from @q. This function may fail under memory
1237 * pressure or if @q is dead.
1238 *
da3dae54 1239 * Must be called with @q->queue_lock held and,
a492f075
JL
1240 * Returns ERR_PTR on failure, with @q->queue_lock held.
1241 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1242 */
ef295ecf 1243static struct request *__get_request(struct request_list *rl, unsigned int op,
9a95e4ef 1244 struct bio *bio, blk_mq_req_flags_t flags)
1da177e4 1245{
5b788ce3 1246 struct request_queue *q = rl->q;
b679281a 1247 struct request *rq;
7f4b35d1
TH
1248 struct elevator_type *et = q->elevator->type;
1249 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1250 struct io_cq *icq = NULL;
ef295ecf 1251 const bool is_sync = op_is_sync(op);
75eb6c37 1252 int may_queue;
6a15674d
BVA
1253 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1254 __GFP_DIRECT_RECLAIM;
e8064021 1255 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1256
2fff8a92
BVA
1257 lockdep_assert_held(q->queue_lock);
1258
3f3299d5 1259 if (unlikely(blk_queue_dying(q)))
a492f075 1260 return ERR_PTR(-ENODEV);
da8303c6 1261
ef295ecf 1262 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1263 if (may_queue == ELV_MQUEUE_NO)
1264 goto rq_starved;
1265
1faa16d2
JA
1266 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1267 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1268 /*
1269 * The queue will fill after this allocation, so set
1270 * it as full, and mark this process as "batching".
1271 * This process will be allowed to complete a batch of
1272 * requests, others will be blocked.
1273 */
5b788ce3 1274 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1275 ioc_set_batching(q, ioc);
5b788ce3 1276 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1277 } else {
1278 if (may_queue != ELV_MQUEUE_MUST
1279 && !ioc_batching(q, ioc)) {
1280 /*
1281 * The queue is full and the allocating
1282 * process is not a "batcher", and not
1283 * exempted by the IO scheduler
1284 */
a492f075 1285 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1286 }
1287 }
1da177e4 1288 }
d40f75a0 1289 blk_set_congested(rl, is_sync);
1da177e4
LT
1290 }
1291
082cf69e
JA
1292 /*
1293 * Only allow batching queuers to allocate up to 50% over the defined
1294 * limit of requests, otherwise we could have thousands of requests
1295 * allocated with any setting of ->nr_requests
1296 */
1faa16d2 1297 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1298 return ERR_PTR(-ENOMEM);
fd782a4a 1299
8a5ecdd4 1300 q->nr_rqs[is_sync]++;
1faa16d2
JA
1301 rl->count[is_sync]++;
1302 rl->starved[is_sync] = 0;
cb98fc8b 1303
f1f8cc94
TH
1304 /*
1305 * Decide whether the new request will be managed by elevator. If
e8064021 1306 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1307 * prevent the current elevator from being destroyed until the new
1308 * request is freed. This guarantees icq's won't be destroyed and
1309 * makes creating new ones safe.
1310 *
e6f7f93d
CH
1311 * Flush requests do not use the elevator so skip initialization.
1312 * This allows a request to share the flush and elevator data.
1313 *
f1f8cc94
TH
1314 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1315 * it will be created after releasing queue_lock.
1316 */
e6f7f93d 1317 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1318 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1319 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1320 if (et->icq_cache && ioc)
1321 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1322 }
cb98fc8b 1323
f253b86b 1324 if (blk_queue_io_stat(q))
e8064021 1325 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1326 spin_unlock_irq(q->queue_lock);
1327
29e2b09a 1328 /* allocate and init request */
5b788ce3 1329 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1330 if (!rq)
b679281a 1331 goto fail_alloc;
1da177e4 1332
29e2b09a 1333 blk_rq_init(q, rq);
a051661c 1334 blk_rq_set_rl(rq, rl);
ef295ecf 1335 rq->cmd_flags = op;
e8064021 1336 rq->rq_flags = rq_flags;
1b6d65a0
BVA
1337 if (flags & BLK_MQ_REQ_PREEMPT)
1338 rq->rq_flags |= RQF_PREEMPT;
29e2b09a 1339
aaf7c680 1340 /* init elvpriv */
e8064021 1341 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1342 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1343 if (ioc)
1344 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1345 if (!icq)
1346 goto fail_elvpriv;
29e2b09a 1347 }
aaf7c680
TH
1348
1349 rq->elv.icq = icq;
1350 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1351 goto fail_elvpriv;
1352
1353 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1354 if (icq)
1355 get_io_context(icq->ioc);
1356 }
aaf7c680 1357out:
88ee5ef1
JA
1358 /*
1359 * ioc may be NULL here, and ioc_batching will be false. That's
1360 * OK, if the queue is under the request limit then requests need
1361 * not count toward the nr_batch_requests limit. There will always
1362 * be some limit enforced by BLK_BATCH_TIME.
1363 */
1da177e4
LT
1364 if (ioc_batching(q, ioc))
1365 ioc->nr_batch_requests--;
6728cb0e 1366
e6a40b09 1367 trace_block_getrq(q, bio, op);
1da177e4 1368 return rq;
b679281a 1369
aaf7c680
TH
1370fail_elvpriv:
1371 /*
1372 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1373 * and may fail indefinitely under memory pressure and thus
1374 * shouldn't stall IO. Treat this request as !elvpriv. This will
1375 * disturb iosched and blkcg but weird is bettern than dead.
1376 */
7b2b10e0 1377 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
dc3b17cc 1378 __func__, dev_name(q->backing_dev_info->dev));
aaf7c680 1379
e8064021 1380 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1381 rq->elv.icq = NULL;
1382
1383 spin_lock_irq(q->queue_lock);
8a5ecdd4 1384 q->nr_rqs_elvpriv--;
aaf7c680
TH
1385 spin_unlock_irq(q->queue_lock);
1386 goto out;
1387
b679281a
TH
1388fail_alloc:
1389 /*
1390 * Allocation failed presumably due to memory. Undo anything we
1391 * might have messed up.
1392 *
1393 * Allocating task should really be put onto the front of the wait
1394 * queue, but this is pretty rare.
1395 */
1396 spin_lock_irq(q->queue_lock);
e8064021 1397 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1398
1399 /*
1400 * in the very unlikely event that allocation failed and no
1401 * requests for this direction was pending, mark us starved so that
1402 * freeing of a request in the other direction will notice
1403 * us. another possible fix would be to split the rq mempool into
1404 * READ and WRITE
1405 */
1406rq_starved:
1407 if (unlikely(rl->count[is_sync] == 0))
1408 rl->starved[is_sync] = 1;
a492f075 1409 return ERR_PTR(-ENOMEM);
1da177e4
LT
1410}
1411
da8303c6 1412/**
a06e05e6 1413 * get_request - get a free request
da8303c6 1414 * @q: request_queue to allocate request from
ef295ecf 1415 * @op: operation and flags
da8303c6 1416 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1417 * @flags: BLK_MQ_REQ_* flags.
da8303c6 1418 *
d0164adc
MG
1419 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1420 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1421 *
da3dae54 1422 * Must be called with @q->queue_lock held and,
a492f075
JL
1423 * Returns ERR_PTR on failure, with @q->queue_lock held.
1424 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1425 */
ef295ecf 1426static struct request *get_request(struct request_queue *q, unsigned int op,
9a95e4ef 1427 struct bio *bio, blk_mq_req_flags_t flags)
1da177e4 1428{
ef295ecf 1429 const bool is_sync = op_is_sync(op);
a06e05e6 1430 DEFINE_WAIT(wait);
a051661c 1431 struct request_list *rl;
1da177e4 1432 struct request *rq;
a051661c 1433
2fff8a92 1434 lockdep_assert_held(q->queue_lock);
332ebbf7 1435 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1436
a051661c 1437 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1438retry:
6a15674d 1439 rq = __get_request(rl, op, bio, flags);
a492f075 1440 if (!IS_ERR(rq))
a06e05e6 1441 return rq;
1da177e4 1442
03a07c92
GR
1443 if (op & REQ_NOWAIT) {
1444 blk_put_rl(rl);
1445 return ERR_PTR(-EAGAIN);
1446 }
1447
6a15674d 1448 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1449 blk_put_rl(rl);
a492f075 1450 return rq;
a051661c 1451 }
1da177e4 1452
a06e05e6
TH
1453 /* wait on @rl and retry */
1454 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1455 TASK_UNINTERRUPTIBLE);
1da177e4 1456
e6a40b09 1457 trace_block_sleeprq(q, bio, op);
1da177e4 1458
a06e05e6
TH
1459 spin_unlock_irq(q->queue_lock);
1460 io_schedule();
d6344532 1461
a06e05e6
TH
1462 /*
1463 * After sleeping, we become a "batching" process and will be able
1464 * to allocate at least one request, and up to a big batch of them
1465 * for a small period time. See ioc_batching, ioc_set_batching
1466 */
a06e05e6 1467 ioc_set_batching(q, current->io_context);
05caf8db 1468
a06e05e6
TH
1469 spin_lock_irq(q->queue_lock);
1470 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1471
a06e05e6 1472 goto retry;
1da177e4
LT
1473}
1474
6a15674d 1475/* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
cd6ce148 1476static struct request *blk_old_get_request(struct request_queue *q,
9a95e4ef 1477 unsigned int op, blk_mq_req_flags_t flags)
1da177e4
LT
1478{
1479 struct request *rq;
6a15674d
BVA
1480 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1481 __GFP_DIRECT_RECLAIM;
055f6e18 1482 int ret = 0;
1da177e4 1483
332ebbf7
BVA
1484 WARN_ON_ONCE(q->mq_ops);
1485
7f4b35d1
TH
1486 /* create ioc upfront */
1487 create_io_context(gfp_mask, q->node);
1488
3a0a5299 1489 ret = blk_queue_enter(q, flags);
055f6e18
ML
1490 if (ret)
1491 return ERR_PTR(ret);
d6344532 1492 spin_lock_irq(q->queue_lock);
6a15674d 1493 rq = get_request(q, op, NULL, flags);
0c4de0f3 1494 if (IS_ERR(rq)) {
da8303c6 1495 spin_unlock_irq(q->queue_lock);
055f6e18 1496 blk_queue_exit(q);
0c4de0f3
CH
1497 return rq;
1498 }
1da177e4 1499
0c4de0f3
CH
1500 /* q->queue_lock is unlocked at this point */
1501 rq->__data_len = 0;
1502 rq->__sector = (sector_t) -1;
1503 rq->bio = rq->biotail = NULL;
1da177e4
LT
1504 return rq;
1505}
320ae51f 1506
6a15674d
BVA
1507/**
1508 * blk_get_request_flags - allocate a request
1509 * @q: request queue to allocate a request for
1510 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1511 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1512 */
1513struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
9a95e4ef 1514 blk_mq_req_flags_t flags)
320ae51f 1515{
d280bab3
BVA
1516 struct request *req;
1517
6a15674d 1518 WARN_ON_ONCE(op & REQ_NOWAIT);
1b6d65a0 1519 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
6a15674d 1520
d280bab3 1521 if (q->mq_ops) {
6a15674d 1522 req = blk_mq_alloc_request(q, op, flags);
d280bab3
BVA
1523 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1524 q->mq_ops->initialize_rq_fn(req);
1525 } else {
6a15674d 1526 req = blk_old_get_request(q, op, flags);
d280bab3
BVA
1527 if (!IS_ERR(req) && q->initialize_rq_fn)
1528 q->initialize_rq_fn(req);
1529 }
1530
1531 return req;
320ae51f 1532}
6a15674d
BVA
1533EXPORT_SYMBOL(blk_get_request_flags);
1534
1535struct request *blk_get_request(struct request_queue *q, unsigned int op,
1536 gfp_t gfp_mask)
1537{
1538 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1539 0 : BLK_MQ_REQ_NOWAIT);
1540}
1da177e4
LT
1541EXPORT_SYMBOL(blk_get_request);
1542
1543/**
1544 * blk_requeue_request - put a request back on queue
1545 * @q: request queue where request should be inserted
1546 * @rq: request to be inserted
1547 *
1548 * Description:
1549 * Drivers often keep queueing requests until the hardware cannot accept
1550 * more, when that condition happens we need to put the request back
1551 * on the queue. Must be called with queue lock held.
1552 */
165125e1 1553void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1554{
2fff8a92 1555 lockdep_assert_held(q->queue_lock);
332ebbf7 1556 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1557
242f9dcb
JA
1558 blk_delete_timer(rq);
1559 blk_clear_rq_complete(rq);
5f3ea37c 1560 trace_block_rq_requeue(q, rq);
87760e5e 1561 wbt_requeue(q->rq_wb, &rq->issue_stat);
2056a782 1562
e8064021 1563 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1564 blk_queue_end_tag(q, rq);
1565
ba396a6c
JB
1566 BUG_ON(blk_queued_rq(rq));
1567
1da177e4
LT
1568 elv_requeue_request(q, rq);
1569}
1da177e4
LT
1570EXPORT_SYMBOL(blk_requeue_request);
1571
73c10101
JA
1572static void add_acct_request(struct request_queue *q, struct request *rq,
1573 int where)
1574{
320ae51f 1575 blk_account_io_start(rq, true);
7eaceacc 1576 __elv_add_request(q, rq, where);
73c10101
JA
1577}
1578
d62e26b3 1579static void part_round_stats_single(struct request_queue *q, int cpu,
b8d62b3a
JA
1580 struct hd_struct *part, unsigned long now,
1581 unsigned int inflight)
074a7aca 1582{
b8d62b3a 1583 if (inflight) {
074a7aca 1584 __part_stat_add(cpu, part, time_in_queue,
b8d62b3a 1585 inflight * (now - part->stamp));
074a7aca
TH
1586 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1587 }
1588 part->stamp = now;
1589}
1590
1591/**
496aa8a9 1592 * part_round_stats() - Round off the performance stats on a struct disk_stats.
d62e26b3 1593 * @q: target block queue
496aa8a9
RD
1594 * @cpu: cpu number for stats access
1595 * @part: target partition
1da177e4
LT
1596 *
1597 * The average IO queue length and utilisation statistics are maintained
1598 * by observing the current state of the queue length and the amount of
1599 * time it has been in this state for.
1600 *
1601 * Normally, that accounting is done on IO completion, but that can result
1602 * in more than a second's worth of IO being accounted for within any one
1603 * second, leading to >100% utilisation. To deal with that, we call this
1604 * function to do a round-off before returning the results when reading
1605 * /proc/diskstats. This accounts immediately for all queue usage up to
1606 * the current jiffies and restarts the counters again.
1607 */
d62e26b3 1608void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
6f2576af 1609{
b8d62b3a 1610 struct hd_struct *part2 = NULL;
6f2576af 1611 unsigned long now = jiffies;
b8d62b3a
JA
1612 unsigned int inflight[2];
1613 int stats = 0;
1614
1615 if (part->stamp != now)
1616 stats |= 1;
1617
1618 if (part->partno) {
1619 part2 = &part_to_disk(part)->part0;
1620 if (part2->stamp != now)
1621 stats |= 2;
1622 }
1623
1624 if (!stats)
1625 return;
1626
1627 part_in_flight(q, part, inflight);
6f2576af 1628
b8d62b3a
JA
1629 if (stats & 2)
1630 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1631 if (stats & 1)
1632 part_round_stats_single(q, cpu, part, now, inflight[0]);
6f2576af 1633}
074a7aca 1634EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1635
47fafbc7 1636#ifdef CONFIG_PM
c8158819
LM
1637static void blk_pm_put_request(struct request *rq)
1638{
e8064021 1639 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1640 pm_runtime_mark_last_busy(rq->q->dev);
1641}
1642#else
1643static inline void blk_pm_put_request(struct request *rq) {}
1644#endif
1645
165125e1 1646void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1647{
e8064021
CH
1648 req_flags_t rq_flags = req->rq_flags;
1649
1da177e4
LT
1650 if (unlikely(!q))
1651 return;
1da177e4 1652
6f5ba581
CH
1653 if (q->mq_ops) {
1654 blk_mq_free_request(req);
1655 return;
1656 }
1657
2fff8a92
BVA
1658 lockdep_assert_held(q->queue_lock);
1659
6cc77e9c 1660 blk_req_zone_write_unlock(req);
c8158819
LM
1661 blk_pm_put_request(req);
1662
8922e16c
TH
1663 elv_completed_request(q, req);
1664
1cd96c24
BH
1665 /* this is a bio leak */
1666 WARN_ON(req->bio != NULL);
1667
87760e5e
JA
1668 wbt_done(q->rq_wb, &req->issue_stat);
1669
1da177e4
LT
1670 /*
1671 * Request may not have originated from ll_rw_blk. if not,
1672 * it didn't come out of our reserved rq pools
1673 */
e8064021 1674 if (rq_flags & RQF_ALLOCED) {
a051661c 1675 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1676 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1677
1da177e4 1678 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1679 BUG_ON(ELV_ON_HASH(req));
1da177e4 1680
a051661c 1681 blk_free_request(rl, req);
e8064021 1682 freed_request(rl, sync, rq_flags);
a051661c 1683 blk_put_rl(rl);
055f6e18 1684 blk_queue_exit(q);
1da177e4
LT
1685 }
1686}
6e39b69e
MC
1687EXPORT_SYMBOL_GPL(__blk_put_request);
1688
1da177e4
LT
1689void blk_put_request(struct request *req)
1690{
165125e1 1691 struct request_queue *q = req->q;
8922e16c 1692
320ae51f
JA
1693 if (q->mq_ops)
1694 blk_mq_free_request(req);
1695 else {
1696 unsigned long flags;
1697
1698 spin_lock_irqsave(q->queue_lock, flags);
1699 __blk_put_request(q, req);
1700 spin_unlock_irqrestore(q->queue_lock, flags);
1701 }
1da177e4 1702}
1da177e4
LT
1703EXPORT_SYMBOL(blk_put_request);
1704
320ae51f
JA
1705bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1706 struct bio *bio)
73c10101 1707{
1eff9d32 1708 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1709
73c10101
JA
1710 if (!ll_back_merge_fn(q, req, bio))
1711 return false;
1712
8c1cf6bb 1713 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1714
1715 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1716 blk_rq_set_mixed_merge(req);
1717
1718 req->biotail->bi_next = bio;
1719 req->biotail = bio;
4f024f37 1720 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1721 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1722
320ae51f 1723 blk_account_io_start(req, false);
73c10101
JA
1724 return true;
1725}
1726
320ae51f
JA
1727bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1728 struct bio *bio)
73c10101 1729{
1eff9d32 1730 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1731
73c10101
JA
1732 if (!ll_front_merge_fn(q, req, bio))
1733 return false;
1734
8c1cf6bb 1735 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1736
1737 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1738 blk_rq_set_mixed_merge(req);
1739
73c10101
JA
1740 bio->bi_next = req->bio;
1741 req->bio = bio;
1742
4f024f37
KO
1743 req->__sector = bio->bi_iter.bi_sector;
1744 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1745 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1746
320ae51f 1747 blk_account_io_start(req, false);
73c10101
JA
1748 return true;
1749}
1750
1e739730
CH
1751bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1752 struct bio *bio)
1753{
1754 unsigned short segments = blk_rq_nr_discard_segments(req);
1755
1756 if (segments >= queue_max_discard_segments(q))
1757 goto no_merge;
1758 if (blk_rq_sectors(req) + bio_sectors(bio) >
1759 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1760 goto no_merge;
1761
1762 req->biotail->bi_next = bio;
1763 req->biotail = bio;
1764 req->__data_len += bio->bi_iter.bi_size;
1765 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1766 req->nr_phys_segments = segments + 1;
1767
1768 blk_account_io_start(req, false);
1769 return true;
1770no_merge:
1771 req_set_nomerge(q, req);
1772 return false;
1773}
1774
bd87b589 1775/**
320ae51f 1776 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1777 * @q: request_queue new bio is being queued at
1778 * @bio: new bio being queued
1779 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1780 * @same_queue_rq: pointer to &struct request that gets filled in when
1781 * another request associated with @q is found on the plug list
1782 * (optional, may be %NULL)
bd87b589
TH
1783 *
1784 * Determine whether @bio being queued on @q can be merged with a request
1785 * on %current's plugged list. Returns %true if merge was successful,
1786 * otherwise %false.
1787 *
07c2bd37
TH
1788 * Plugging coalesces IOs from the same issuer for the same purpose without
1789 * going through @q->queue_lock. As such it's more of an issuing mechanism
1790 * than scheduling, and the request, while may have elvpriv data, is not
1791 * added on the elevator at this point. In addition, we don't have
1792 * reliable access to the elevator outside queue lock. Only check basic
1793 * merging parameters without querying the elevator.
da41a589
RE
1794 *
1795 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1796 */
320ae51f 1797bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1798 unsigned int *request_count,
1799 struct request **same_queue_rq)
73c10101
JA
1800{
1801 struct blk_plug *plug;
1802 struct request *rq;
92f399c7 1803 struct list_head *plug_list;
73c10101 1804
bd87b589 1805 plug = current->plug;
73c10101 1806 if (!plug)
34fe7c05 1807 return false;
56ebdaf2 1808 *request_count = 0;
73c10101 1809
92f399c7
SL
1810 if (q->mq_ops)
1811 plug_list = &plug->mq_list;
1812 else
1813 plug_list = &plug->list;
1814
1815 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 1816 bool merged = false;
73c10101 1817
5b3f341f 1818 if (rq->q == q) {
1b2e19f1 1819 (*request_count)++;
5b3f341f
SL
1820 /*
1821 * Only blk-mq multiple hardware queues case checks the
1822 * rq in the same queue, there should be only one such
1823 * rq in a queue
1824 **/
1825 if (same_queue_rq)
1826 *same_queue_rq = rq;
1827 }
56ebdaf2 1828
07c2bd37 1829 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1830 continue;
1831
34fe7c05
CH
1832 switch (blk_try_merge(rq, bio)) {
1833 case ELEVATOR_BACK_MERGE:
1834 merged = bio_attempt_back_merge(q, rq, bio);
1835 break;
1836 case ELEVATOR_FRONT_MERGE:
1837 merged = bio_attempt_front_merge(q, rq, bio);
1838 break;
1e739730
CH
1839 case ELEVATOR_DISCARD_MERGE:
1840 merged = bio_attempt_discard_merge(q, rq, bio);
1841 break;
34fe7c05
CH
1842 default:
1843 break;
73c10101 1844 }
34fe7c05
CH
1845
1846 if (merged)
1847 return true;
73c10101 1848 }
34fe7c05
CH
1849
1850 return false;
73c10101
JA
1851}
1852
0809e3ac
JM
1853unsigned int blk_plug_queued_count(struct request_queue *q)
1854{
1855 struct blk_plug *plug;
1856 struct request *rq;
1857 struct list_head *plug_list;
1858 unsigned int ret = 0;
1859
1860 plug = current->plug;
1861 if (!plug)
1862 goto out;
1863
1864 if (q->mq_ops)
1865 plug_list = &plug->mq_list;
1866 else
1867 plug_list = &plug->list;
1868
1869 list_for_each_entry(rq, plug_list, queuelist) {
1870 if (rq->q == q)
1871 ret++;
1872 }
1873out:
1874 return ret;
1875}
1876
da8d7f07 1877void blk_init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1878{
0be0dee6
BVA
1879 struct io_context *ioc = rq_ioc(bio);
1880
1eff9d32 1881 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1882 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1883
4f024f37 1884 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1885 if (ioprio_valid(bio_prio(bio)))
1886 req->ioprio = bio_prio(bio);
0be0dee6
BVA
1887 else if (ioc)
1888 req->ioprio = ioc->ioprio;
1889 else
1890 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
cb6934f8 1891 req->write_hint = bio->bi_write_hint;
bc1c56fd 1892 blk_rq_bio_prep(req->q, req, bio);
52d9e675 1893}
da8d7f07 1894EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
52d9e675 1895
dece1635 1896static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1897{
73c10101 1898 struct blk_plug *plug;
34fe7c05 1899 int where = ELEVATOR_INSERT_SORT;
e4d750c9 1900 struct request *req, *free;
56ebdaf2 1901 unsigned int request_count = 0;
87760e5e 1902 unsigned int wb_acct;
1da177e4 1903
1da177e4
LT
1904 /*
1905 * low level driver can indicate that it wants pages above a
1906 * certain limit bounced to low memory (ie for highmem, or even
1907 * ISA dma in theory)
1908 */
1909 blk_queue_bounce(q, &bio);
1910
af67c31f 1911 blk_queue_split(q, &bio);
23688bf4 1912
e23947bd 1913 if (!bio_integrity_prep(bio))
dece1635 1914 return BLK_QC_T_NONE;
ffecfd1a 1915
f73f44eb 1916 if (op_is_flush(bio->bi_opf)) {
73c10101 1917 spin_lock_irq(q->queue_lock);
ae1b1539 1918 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1919 goto get_rq;
1920 }
1921
73c10101
JA
1922 /*
1923 * Check if we can merge with the plugged list before grabbing
1924 * any locks.
1925 */
0809e3ac
JM
1926 if (!blk_queue_nomerges(q)) {
1927 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1928 return BLK_QC_T_NONE;
0809e3ac
JM
1929 } else
1930 request_count = blk_plug_queued_count(q);
1da177e4 1931
73c10101 1932 spin_lock_irq(q->queue_lock);
2056a782 1933
34fe7c05
CH
1934 switch (elv_merge(q, &req, bio)) {
1935 case ELEVATOR_BACK_MERGE:
1936 if (!bio_attempt_back_merge(q, req, bio))
1937 break;
1938 elv_bio_merged(q, req, bio);
1939 free = attempt_back_merge(q, req);
1940 if (free)
1941 __blk_put_request(q, free);
1942 else
1943 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1944 goto out_unlock;
1945 case ELEVATOR_FRONT_MERGE:
1946 if (!bio_attempt_front_merge(q, req, bio))
1947 break;
1948 elv_bio_merged(q, req, bio);
1949 free = attempt_front_merge(q, req);
1950 if (free)
1951 __blk_put_request(q, free);
1952 else
1953 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1954 goto out_unlock;
1955 default:
1956 break;
1da177e4
LT
1957 }
1958
450991bc 1959get_rq:
87760e5e
JA
1960 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1961
1da177e4 1962 /*
450991bc 1963 * Grab a free request. This is might sleep but can not fail.
d6344532 1964 * Returns with the queue unlocked.
450991bc 1965 */
055f6e18 1966 blk_queue_enter_live(q);
6a15674d 1967 req = get_request(q, bio->bi_opf, bio, 0);
a492f075 1968 if (IS_ERR(req)) {
055f6e18 1969 blk_queue_exit(q);
87760e5e 1970 __wbt_done(q->rq_wb, wb_acct);
4e4cbee9
CH
1971 if (PTR_ERR(req) == -ENOMEM)
1972 bio->bi_status = BLK_STS_RESOURCE;
1973 else
1974 bio->bi_status = BLK_STS_IOERR;
4246a0b6 1975 bio_endio(bio);
da8303c6
TH
1976 goto out_unlock;
1977 }
d6344532 1978
87760e5e
JA
1979 wbt_track(&req->issue_stat, wb_acct);
1980
450991bc
NP
1981 /*
1982 * After dropping the lock and possibly sleeping here, our request
1983 * may now be mergeable after it had proven unmergeable (above).
1984 * We don't worry about that case for efficiency. It won't happen
1985 * often, and the elevators are able to handle it.
1da177e4 1986 */
da8d7f07 1987 blk_init_request_from_bio(req, bio);
1da177e4 1988
9562ad9a 1989 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1990 req->cpu = raw_smp_processor_id();
73c10101
JA
1991
1992 plug = current->plug;
721a9602 1993 if (plug) {
dc6d36c9
JA
1994 /*
1995 * If this is the first request added after a plug, fire
7aef2e78 1996 * of a plug trace.
0a6219a9
ML
1997 *
1998 * @request_count may become stale because of schedule
1999 * out, so check plug list again.
dc6d36c9 2000 */
0a6219a9 2001 if (!request_count || list_empty(&plug->list))
dc6d36c9 2002 trace_block_plug(q);
3540d5e8 2003 else {
50d24c34
SL
2004 struct request *last = list_entry_rq(plug->list.prev);
2005 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2006 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 2007 blk_flush_plug_list(plug, false);
019ceb7d
SL
2008 trace_block_plug(q);
2009 }
73c10101 2010 }
73c10101 2011 list_add_tail(&req->queuelist, &plug->list);
320ae51f 2012 blk_account_io_start(req, true);
73c10101
JA
2013 } else {
2014 spin_lock_irq(q->queue_lock);
2015 add_acct_request(q, req, where);
24ecfbe2 2016 __blk_run_queue(q);
73c10101
JA
2017out_unlock:
2018 spin_unlock_irq(q->queue_lock);
2019 }
dece1635
JA
2020
2021 return BLK_QC_T_NONE;
1da177e4
LT
2022}
2023
1da177e4
LT
2024static void handle_bad_sector(struct bio *bio)
2025{
2026 char b[BDEVNAME_SIZE];
2027
2028 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 2029 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
74d46992 2030 bio_devname(bio, b), bio->bi_opf,
f73a1c7d 2031 (unsigned long long)bio_end_sector(bio),
74d46992 2032 (long long)get_capacity(bio->bi_disk));
1da177e4
LT
2033}
2034
c17bb495
AM
2035#ifdef CONFIG_FAIL_MAKE_REQUEST
2036
2037static DECLARE_FAULT_ATTR(fail_make_request);
2038
2039static int __init setup_fail_make_request(char *str)
2040{
2041 return setup_fault_attr(&fail_make_request, str);
2042}
2043__setup("fail_make_request=", setup_fail_make_request);
2044
b2c9cd37 2045static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 2046{
b2c9cd37 2047 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
2048}
2049
2050static int __init fail_make_request_debugfs(void)
2051{
dd48c085
AM
2052 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2053 NULL, &fail_make_request);
2054
21f9fcd8 2055 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
2056}
2057
2058late_initcall(fail_make_request_debugfs);
2059
2060#else /* CONFIG_FAIL_MAKE_REQUEST */
2061
b2c9cd37
AM
2062static inline bool should_fail_request(struct hd_struct *part,
2063 unsigned int bytes)
c17bb495 2064{
b2c9cd37 2065 return false;
c17bb495
AM
2066}
2067
2068#endif /* CONFIG_FAIL_MAKE_REQUEST */
2069
721c7fc7
ID
2070static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2071{
2072 if (part->policy && op_is_write(bio_op(bio))) {
2073 char b[BDEVNAME_SIZE];
2074
2075 printk(KERN_ERR
2076 "generic_make_request: Trying to write "
2077 "to read-only block-device %s (partno %d)\n",
2078 bio_devname(bio, b), part->partno);
2079 return true;
2080 }
2081
2082 return false;
2083}
2084
74d46992
CH
2085/*
2086 * Remap block n of partition p to block n+start(p) of the disk.
2087 */
2088static inline int blk_partition_remap(struct bio *bio)
2089{
2090 struct hd_struct *p;
2091 int ret = 0;
2092
721c7fc7
ID
2093 rcu_read_lock();
2094 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2095 if (unlikely(!p || should_fail_request(p, bio->bi_iter.bi_size) ||
2096 bio_check_ro(bio, p))) {
2097 ret = -EIO;
2098 goto out;
2099 }
2100
74d46992
CH
2101 /*
2102 * Zone reset does not include bi_size so bio_sectors() is always 0.
2103 * Include a test for the reset op code and perform the remap if needed.
2104 */
721c7fc7
ID
2105 if (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET)
2106 goto out;
74d46992 2107
721c7fc7
ID
2108 bio->bi_iter.bi_sector += p->start_sect;
2109 bio->bi_partno = 0;
2110 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2111 bio->bi_iter.bi_sector - p->start_sect);
74d46992 2112
721c7fc7
ID
2113out:
2114 rcu_read_unlock();
74d46992
CH
2115 return ret;
2116}
2117
c07e2b41
JA
2118/*
2119 * Check whether this bio extends beyond the end of the device.
2120 */
2121static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2122{
2123 sector_t maxsector;
2124
2125 if (!nr_sectors)
2126 return 0;
2127
2128 /* Test device or partition size, when known. */
74d46992 2129 maxsector = get_capacity(bio->bi_disk);
c07e2b41 2130 if (maxsector) {
4f024f37 2131 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
2132
2133 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2134 /*
2135 * This may well happen - the kernel calls bread()
2136 * without checking the size of the device, e.g., when
2137 * mounting a device.
2138 */
2139 handle_bad_sector(bio);
2140 return 1;
2141 }
2142 }
2143
2144 return 0;
2145}
2146
27a84d54
CH
2147static noinline_for_stack bool
2148generic_make_request_checks(struct bio *bio)
1da177e4 2149{
165125e1 2150 struct request_queue *q;
5a7bbad2 2151 int nr_sectors = bio_sectors(bio);
4e4cbee9 2152 blk_status_t status = BLK_STS_IOERR;
5a7bbad2 2153 char b[BDEVNAME_SIZE];
1da177e4
LT
2154
2155 might_sleep();
1da177e4 2156
c07e2b41
JA
2157 if (bio_check_eod(bio, nr_sectors))
2158 goto end_io;
1da177e4 2159
74d46992 2160 q = bio->bi_disk->queue;
5a7bbad2
CH
2161 if (unlikely(!q)) {
2162 printk(KERN_ERR
2163 "generic_make_request: Trying to access "
2164 "nonexistent block-device %s (%Lu)\n",
74d46992 2165 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
5a7bbad2
CH
2166 goto end_io;
2167 }
c17bb495 2168
03a07c92
GR
2169 /*
2170 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2171 * if queue is not a request based queue.
2172 */
03a07c92
GR
2173 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2174 goto not_supported;
2175
74d46992 2176 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
5a7bbad2 2177 goto end_io;
2056a782 2178
721c7fc7
ID
2179 if (!bio->bi_partno) {
2180 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2181 goto end_io;
2182 } else {
2183 if (blk_partition_remap(bio))
2184 goto end_io;
2185 }
2056a782 2186
5a7bbad2
CH
2187 if (bio_check_eod(bio, nr_sectors))
2188 goto end_io;
1e87901e 2189
5a7bbad2
CH
2190 /*
2191 * Filter flush bio's early so that make_request based
2192 * drivers without flush support don't have to worry
2193 * about them.
2194 */
f3a8ab7d 2195 if (op_is_flush(bio->bi_opf) &&
c888a8f9 2196 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 2197 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 2198 if (!nr_sectors) {
4e4cbee9 2199 status = BLK_STS_OK;
51fd77bd
JA
2200 goto end_io;
2201 }
5a7bbad2 2202 }
5ddfe969 2203
288dab8a
CH
2204 switch (bio_op(bio)) {
2205 case REQ_OP_DISCARD:
2206 if (!blk_queue_discard(q))
2207 goto not_supported;
2208 break;
2209 case REQ_OP_SECURE_ERASE:
2210 if (!blk_queue_secure_erase(q))
2211 goto not_supported;
2212 break;
2213 case REQ_OP_WRITE_SAME:
74d46992 2214 if (!q->limits.max_write_same_sectors)
288dab8a 2215 goto not_supported;
58886785 2216 break;
2d253440
ST
2217 case REQ_OP_ZONE_REPORT:
2218 case REQ_OP_ZONE_RESET:
74d46992 2219 if (!blk_queue_is_zoned(q))
2d253440 2220 goto not_supported;
288dab8a 2221 break;
a6f0788e 2222 case REQ_OP_WRITE_ZEROES:
74d46992 2223 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
2224 goto not_supported;
2225 break;
288dab8a
CH
2226 default:
2227 break;
5a7bbad2 2228 }
01edede4 2229
7f4b35d1
TH
2230 /*
2231 * Various block parts want %current->io_context and lazy ioc
2232 * allocation ends up trading a lot of pain for a small amount of
2233 * memory. Just allocate it upfront. This may fail and block
2234 * layer knows how to live with it.
2235 */
2236 create_io_context(GFP_ATOMIC, q->node);
2237
ae118896
TH
2238 if (!blkcg_bio_issue_check(q, bio))
2239 return false;
27a84d54 2240
fbbaf700
N
2241 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2242 trace_block_bio_queue(q, bio);
2243 /* Now that enqueuing has been traced, we need to trace
2244 * completion as well.
2245 */
2246 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2247 }
27a84d54 2248 return true;
a7384677 2249
288dab8a 2250not_supported:
4e4cbee9 2251 status = BLK_STS_NOTSUPP;
a7384677 2252end_io:
4e4cbee9 2253 bio->bi_status = status;
4246a0b6 2254 bio_endio(bio);
27a84d54 2255 return false;
1da177e4
LT
2256}
2257
27a84d54
CH
2258/**
2259 * generic_make_request - hand a buffer to its device driver for I/O
2260 * @bio: The bio describing the location in memory and on the device.
2261 *
2262 * generic_make_request() is used to make I/O requests of block
2263 * devices. It is passed a &struct bio, which describes the I/O that needs
2264 * to be done.
2265 *
2266 * generic_make_request() does not return any status. The
2267 * success/failure status of the request, along with notification of
2268 * completion, is delivered asynchronously through the bio->bi_end_io
2269 * function described (one day) else where.
2270 *
2271 * The caller of generic_make_request must make sure that bi_io_vec
2272 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2273 * set to describe the device address, and the
2274 * bi_end_io and optionally bi_private are set to describe how
2275 * completion notification should be signaled.
2276 *
2277 * generic_make_request and the drivers it calls may use bi_next if this
2278 * bio happens to be merged with someone else, and may resubmit the bio to
2279 * a lower device by calling into generic_make_request recursively, which
2280 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2281 */
dece1635 2282blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2283{
f5fe1b51
N
2284 /*
2285 * bio_list_on_stack[0] contains bios submitted by the current
2286 * make_request_fn.
2287 * bio_list_on_stack[1] contains bios that were submitted before
2288 * the current make_request_fn, but that haven't been processed
2289 * yet.
2290 */
2291 struct bio_list bio_list_on_stack[2];
dece1635 2292 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2293
27a84d54 2294 if (!generic_make_request_checks(bio))
dece1635 2295 goto out;
27a84d54
CH
2296
2297 /*
2298 * We only want one ->make_request_fn to be active at a time, else
2299 * stack usage with stacked devices could be a problem. So use
2300 * current->bio_list to keep a list of requests submited by a
2301 * make_request_fn function. current->bio_list is also used as a
2302 * flag to say if generic_make_request is currently active in this
2303 * task or not. If it is NULL, then no make_request is active. If
2304 * it is non-NULL, then a make_request is active, and new requests
2305 * should be added at the tail
2306 */
bddd87c7 2307 if (current->bio_list) {
f5fe1b51 2308 bio_list_add(&current->bio_list[0], bio);
dece1635 2309 goto out;
d89d8796 2310 }
27a84d54 2311
d89d8796
NB
2312 /* following loop may be a bit non-obvious, and so deserves some
2313 * explanation.
2314 * Before entering the loop, bio->bi_next is NULL (as all callers
2315 * ensure that) so we have a list with a single bio.
2316 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2317 * we assign bio_list to a pointer to the bio_list_on_stack,
2318 * thus initialising the bio_list of new bios to be
27a84d54 2319 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2320 * through a recursive call to generic_make_request. If it
2321 * did, we find a non-NULL value in bio_list and re-enter the loop
2322 * from the top. In this case we really did just take the bio
bddd87c7 2323 * of the top of the list (no pretending) and so remove it from
27a84d54 2324 * bio_list, and call into ->make_request() again.
d89d8796
NB
2325 */
2326 BUG_ON(bio->bi_next);
f5fe1b51
N
2327 bio_list_init(&bio_list_on_stack[0]);
2328 current->bio_list = bio_list_on_stack;
d89d8796 2329 do {
74d46992 2330 struct request_queue *q = bio->bi_disk->queue;
9a95e4ef 2331 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
3a0a5299 2332 BLK_MQ_REQ_NOWAIT : 0;
27a84d54 2333
3a0a5299 2334 if (likely(blk_queue_enter(q, flags) == 0)) {
79bd9959
N
2335 struct bio_list lower, same;
2336
2337 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
2338 bio_list_on_stack[1] = bio_list_on_stack[0];
2339 bio_list_init(&bio_list_on_stack[0]);
dece1635 2340 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2341
2342 blk_queue_exit(q);
27a84d54 2343
79bd9959
N
2344 /* sort new bios into those for a lower level
2345 * and those for the same level
2346 */
2347 bio_list_init(&lower);
2348 bio_list_init(&same);
f5fe1b51 2349 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
74d46992 2350 if (q == bio->bi_disk->queue)
79bd9959
N
2351 bio_list_add(&same, bio);
2352 else
2353 bio_list_add(&lower, bio);
2354 /* now assemble so we handle the lowest level first */
f5fe1b51
N
2355 bio_list_merge(&bio_list_on_stack[0], &lower);
2356 bio_list_merge(&bio_list_on_stack[0], &same);
2357 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 2358 } else {
03a07c92
GR
2359 if (unlikely(!blk_queue_dying(q) &&
2360 (bio->bi_opf & REQ_NOWAIT)))
2361 bio_wouldblock_error(bio);
2362 else
2363 bio_io_error(bio);
3ef28e83 2364 }
f5fe1b51 2365 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 2366 } while (bio);
bddd87c7 2367 current->bio_list = NULL; /* deactivate */
dece1635
JA
2368
2369out:
2370 return ret;
d89d8796 2371}
1da177e4
LT
2372EXPORT_SYMBOL(generic_make_request);
2373
f421e1d9
CH
2374/**
2375 * direct_make_request - hand a buffer directly to its device driver for I/O
2376 * @bio: The bio describing the location in memory and on the device.
2377 *
2378 * This function behaves like generic_make_request(), but does not protect
2379 * against recursion. Must only be used if the called driver is known
2380 * to not call generic_make_request (or direct_make_request) again from
2381 * its make_request function. (Calling direct_make_request again from
2382 * a workqueue is perfectly fine as that doesn't recurse).
2383 */
2384blk_qc_t direct_make_request(struct bio *bio)
2385{
2386 struct request_queue *q = bio->bi_disk->queue;
2387 bool nowait = bio->bi_opf & REQ_NOWAIT;
2388 blk_qc_t ret;
2389
2390 if (!generic_make_request_checks(bio))
2391 return BLK_QC_T_NONE;
2392
3a0a5299 2393 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
f421e1d9
CH
2394 if (nowait && !blk_queue_dying(q))
2395 bio->bi_status = BLK_STS_AGAIN;
2396 else
2397 bio->bi_status = BLK_STS_IOERR;
2398 bio_endio(bio);
2399 return BLK_QC_T_NONE;
2400 }
2401
2402 ret = q->make_request_fn(q, bio);
2403 blk_queue_exit(q);
2404 return ret;
2405}
2406EXPORT_SYMBOL_GPL(direct_make_request);
2407
1da177e4 2408/**
710027a4 2409 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2410 * @bio: The &struct bio which describes the I/O
2411 *
2412 * submit_bio() is very similar in purpose to generic_make_request(), and
2413 * uses that function to do most of the work. Both are fairly rough
710027a4 2414 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2415 *
2416 */
4e49ea4a 2417blk_qc_t submit_bio(struct bio *bio)
1da177e4 2418{
bf2de6f5
JA
2419 /*
2420 * If it's a regular read/write or a barrier with data attached,
2421 * go through the normal accounting stuff before submission.
2422 */
e2a60da7 2423 if (bio_has_data(bio)) {
4363ac7c
MP
2424 unsigned int count;
2425
95fe6c1a 2426 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
74d46992 2427 count = queue_logical_block_size(bio->bi_disk->queue);
4363ac7c
MP
2428 else
2429 count = bio_sectors(bio);
2430
a8ebb056 2431 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2432 count_vm_events(PGPGOUT, count);
2433 } else {
4f024f37 2434 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2435 count_vm_events(PGPGIN, count);
2436 }
2437
2438 if (unlikely(block_dump)) {
2439 char b[BDEVNAME_SIZE];
8dcbdc74 2440 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2441 current->comm, task_pid_nr(current),
a8ebb056 2442 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2443 (unsigned long long)bio->bi_iter.bi_sector,
74d46992 2444 bio_devname(bio, b), count);
bf2de6f5 2445 }
1da177e4
LT
2446 }
2447
dece1635 2448 return generic_make_request(bio);
1da177e4 2449}
1da177e4
LT
2450EXPORT_SYMBOL(submit_bio);
2451
ea435e1b
CH
2452bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2453{
2454 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2455 return false;
2456
2457 if (current->plug)
2458 blk_flush_plug_list(current->plug, false);
2459 return q->poll_fn(q, cookie);
2460}
2461EXPORT_SYMBOL_GPL(blk_poll);
2462
82124d60 2463/**
bf4e6b4e
HR
2464 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2465 * for new the queue limits
82124d60
KU
2466 * @q: the queue
2467 * @rq: the request being checked
2468 *
2469 * Description:
2470 * @rq may have been made based on weaker limitations of upper-level queues
2471 * in request stacking drivers, and it may violate the limitation of @q.
2472 * Since the block layer and the underlying device driver trust @rq
2473 * after it is inserted to @q, it should be checked against @q before
2474 * the insertion using this generic function.
2475 *
82124d60 2476 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2477 * limits when retrying requests on other queues. Those requests need
2478 * to be checked against the new queue limits again during dispatch.
82124d60 2479 */
bf4e6b4e
HR
2480static int blk_cloned_rq_check_limits(struct request_queue *q,
2481 struct request *rq)
82124d60 2482{
8fe0d473 2483 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2484 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2485 return -EIO;
2486 }
2487
2488 /*
2489 * queue's settings related to segment counting like q->bounce_pfn
2490 * may differ from that of other stacking queues.
2491 * Recalculate it to check the request correctly on this queue's
2492 * limitation.
2493 */
2494 blk_recalc_rq_segments(rq);
8a78362c 2495 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2496 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2497 return -EIO;
2498 }
2499
2500 return 0;
2501}
82124d60
KU
2502
2503/**
2504 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2505 * @q: the queue to submit the request
2506 * @rq: the request being queued
2507 */
2a842aca 2508blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60
KU
2509{
2510 unsigned long flags;
4853abaa 2511 int where = ELEVATOR_INSERT_BACK;
82124d60 2512
bf4e6b4e 2513 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 2514 return BLK_STS_IOERR;
82124d60 2515
b2c9cd37
AM
2516 if (rq->rq_disk &&
2517 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 2518 return BLK_STS_IOERR;
82124d60 2519
7fb4898e
KB
2520 if (q->mq_ops) {
2521 if (blk_queue_io_stat(q))
2522 blk_account_io_start(rq, true);
157f377b
JA
2523 /*
2524 * Since we have a scheduler attached on the top device,
2525 * bypass a potential scheduler on the bottom device for
2526 * insert.
2527 */
c77ff7fd 2528 return blk_mq_request_issue_directly(rq);
7fb4898e
KB
2529 }
2530
82124d60 2531 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2532 if (unlikely(blk_queue_dying(q))) {
8ba61435 2533 spin_unlock_irqrestore(q->queue_lock, flags);
2a842aca 2534 return BLK_STS_IOERR;
8ba61435 2535 }
82124d60
KU
2536
2537 /*
2538 * Submitting request must be dequeued before calling this function
2539 * because it will be linked to another request_queue
2540 */
2541 BUG_ON(blk_queued_rq(rq));
2542
f73f44eb 2543 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2544 where = ELEVATOR_INSERT_FLUSH;
2545
2546 add_acct_request(q, rq, where);
e67b77c7
JM
2547 if (where == ELEVATOR_INSERT_FLUSH)
2548 __blk_run_queue(q);
82124d60
KU
2549 spin_unlock_irqrestore(q->queue_lock, flags);
2550
2a842aca 2551 return BLK_STS_OK;
82124d60
KU
2552}
2553EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2554
80a761fd
TH
2555/**
2556 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2557 * @rq: request to examine
2558 *
2559 * Description:
2560 * A request could be merge of IOs which require different failure
2561 * handling. This function determines the number of bytes which
2562 * can be failed from the beginning of the request without
2563 * crossing into area which need to be retried further.
2564 *
2565 * Return:
2566 * The number of bytes to fail.
80a761fd
TH
2567 */
2568unsigned int blk_rq_err_bytes(const struct request *rq)
2569{
2570 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2571 unsigned int bytes = 0;
2572 struct bio *bio;
2573
e8064021 2574 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2575 return blk_rq_bytes(rq);
2576
2577 /*
2578 * Currently the only 'mixing' which can happen is between
2579 * different fastfail types. We can safely fail portions
2580 * which have all the failfast bits that the first one has -
2581 * the ones which are at least as eager to fail as the first
2582 * one.
2583 */
2584 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2585 if ((bio->bi_opf & ff) != ff)
80a761fd 2586 break;
4f024f37 2587 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2588 }
2589
2590 /* this could lead to infinite loop */
2591 BUG_ON(blk_rq_bytes(rq) && !bytes);
2592 return bytes;
2593}
2594EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2595
320ae51f 2596void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2597{
c2553b58 2598 if (blk_do_io_stat(req)) {
bc58ba94
JA
2599 const int rw = rq_data_dir(req);
2600 struct hd_struct *part;
2601 int cpu;
2602
2603 cpu = part_stat_lock();
09e099d4 2604 part = req->part;
bc58ba94
JA
2605 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2606 part_stat_unlock();
2607 }
2608}
2609
320ae51f 2610void blk_account_io_done(struct request *req)
bc58ba94 2611{
bc58ba94 2612 /*
dd4c133f
TH
2613 * Account IO completion. flush_rq isn't accounted as a
2614 * normal IO on queueing nor completion. Accounting the
2615 * containing request is enough.
bc58ba94 2616 */
e8064021 2617 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
bc58ba94
JA
2618 unsigned long duration = jiffies - req->start_time;
2619 const int rw = rq_data_dir(req);
2620 struct hd_struct *part;
2621 int cpu;
2622
2623 cpu = part_stat_lock();
09e099d4 2624 part = req->part;
bc58ba94
JA
2625
2626 part_stat_inc(cpu, part, ios[rw]);
2627 part_stat_add(cpu, part, ticks[rw], duration);
d62e26b3
JA
2628 part_round_stats(req->q, cpu, part);
2629 part_dec_in_flight(req->q, part, rw);
bc58ba94 2630
6c23a968 2631 hd_struct_put(part);
bc58ba94
JA
2632 part_stat_unlock();
2633 }
2634}
2635
47fafbc7 2636#ifdef CONFIG_PM
c8158819
LM
2637/*
2638 * Don't process normal requests when queue is suspended
2639 * or in the process of suspending/resuming
2640 */
e4f36b24 2641static bool blk_pm_allow_request(struct request *rq)
c8158819 2642{
e4f36b24
CH
2643 switch (rq->q->rpm_status) {
2644 case RPM_RESUMING:
2645 case RPM_SUSPENDING:
2646 return rq->rq_flags & RQF_PM;
2647 case RPM_SUSPENDED:
2648 return false;
2649 }
2650
2651 return true;
c8158819
LM
2652}
2653#else
e4f36b24 2654static bool blk_pm_allow_request(struct request *rq)
c8158819 2655{
e4f36b24 2656 return true;
c8158819
LM
2657}
2658#endif
2659
320ae51f
JA
2660void blk_account_io_start(struct request *rq, bool new_io)
2661{
2662 struct hd_struct *part;
2663 int rw = rq_data_dir(rq);
2664 int cpu;
2665
2666 if (!blk_do_io_stat(rq))
2667 return;
2668
2669 cpu = part_stat_lock();
2670
2671 if (!new_io) {
2672 part = rq->part;
2673 part_stat_inc(cpu, part, merges[rw]);
2674 } else {
2675 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2676 if (!hd_struct_try_get(part)) {
2677 /*
2678 * The partition is already being removed,
2679 * the request will be accounted on the disk only
2680 *
2681 * We take a reference on disk->part0 although that
2682 * partition will never be deleted, so we can treat
2683 * it as any other partition.
2684 */
2685 part = &rq->rq_disk->part0;
2686 hd_struct_get(part);
2687 }
d62e26b3
JA
2688 part_round_stats(rq->q, cpu, part);
2689 part_inc_in_flight(rq->q, part, rw);
320ae51f
JA
2690 rq->part = part;
2691 }
2692
2693 part_stat_unlock();
2694}
2695
9c988374
CH
2696static struct request *elv_next_request(struct request_queue *q)
2697{
2698 struct request *rq;
2699 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2700
2701 WARN_ON_ONCE(q->mq_ops);
2702
2703 while (1) {
e4f36b24
CH
2704 list_for_each_entry(rq, &q->queue_head, queuelist) {
2705 if (blk_pm_allow_request(rq))
2706 return rq;
2707
2708 if (rq->rq_flags & RQF_SOFTBARRIER)
2709 break;
9c988374
CH
2710 }
2711
2712 /*
2713 * Flush request is running and flush request isn't queueable
2714 * in the drive, we can hold the queue till flush request is
2715 * finished. Even we don't do this, driver can't dispatch next
2716 * requests and will requeue them. And this can improve
2717 * throughput too. For example, we have request flush1, write1,
2718 * flush 2. flush1 is dispatched, then queue is hold, write1
2719 * isn't inserted to queue. After flush1 is finished, flush2
2720 * will be dispatched. Since disk cache is already clean,
2721 * flush2 will be finished very soon, so looks like flush2 is
2722 * folded to flush1.
2723 * Since the queue is hold, a flag is set to indicate the queue
2724 * should be restarted later. Please see flush_end_io() for
2725 * details.
2726 */
2727 if (fq->flush_pending_idx != fq->flush_running_idx &&
2728 !queue_flush_queueable(q)) {
2729 fq->flush_queue_delayed = 1;
2730 return NULL;
2731 }
2732 if (unlikely(blk_queue_bypass(q)) ||
2733 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2734 return NULL;
2735 }
2736}
2737
3bcddeac 2738/**
9934c8c0
TH
2739 * blk_peek_request - peek at the top of a request queue
2740 * @q: request queue to peek at
2741 *
2742 * Description:
2743 * Return the request at the top of @q. The returned request
2744 * should be started using blk_start_request() before LLD starts
2745 * processing it.
2746 *
2747 * Return:
2748 * Pointer to the request at the top of @q if available. Null
2749 * otherwise.
9934c8c0
TH
2750 */
2751struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2752{
2753 struct request *rq;
2754 int ret;
2755
2fff8a92 2756 lockdep_assert_held(q->queue_lock);
332ebbf7 2757 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2758
9c988374 2759 while ((rq = elv_next_request(q)) != NULL) {
e8064021 2760 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2761 /*
2762 * This is the first time the device driver
2763 * sees this request (possibly after
2764 * requeueing). Notify IO scheduler.
2765 */
e8064021 2766 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2767 elv_activate_rq(q, rq);
2768
2769 /*
2770 * just mark as started even if we don't start
2771 * it, a request that has been delayed should
2772 * not be passed by new incoming requests
2773 */
e8064021 2774 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2775 trace_block_rq_issue(q, rq);
2776 }
2777
2778 if (!q->boundary_rq || q->boundary_rq == rq) {
2779 q->end_sector = rq_end_sector(rq);
2780 q->boundary_rq = NULL;
2781 }
2782
e8064021 2783 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2784 break;
2785
2e46e8b2 2786 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2787 /*
2788 * make sure space for the drain appears we
2789 * know we can do this because max_hw_segments
2790 * has been adjusted to be one fewer than the
2791 * device can handle
2792 */
2793 rq->nr_phys_segments++;
2794 }
2795
2796 if (!q->prep_rq_fn)
2797 break;
2798
2799 ret = q->prep_rq_fn(q, rq);
2800 if (ret == BLKPREP_OK) {
2801 break;
2802 } else if (ret == BLKPREP_DEFER) {
2803 /*
2804 * the request may have been (partially) prepped.
2805 * we need to keep this request in the front to
e8064021 2806 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2807 * prevent other fs requests from passing this one.
2808 */
2e46e8b2 2809 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2810 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2811 /*
2812 * remove the space for the drain we added
2813 * so that we don't add it again
2814 */
2815 --rq->nr_phys_segments;
2816 }
2817
2818 rq = NULL;
2819 break;
0fb5b1fb 2820 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
e8064021 2821 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2822 /*
2823 * Mark this request as started so we don't trigger
2824 * any debug logic in the end I/O path.
2825 */
2826 blk_start_request(rq);
2a842aca
CH
2827 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2828 BLK_STS_TARGET : BLK_STS_IOERR);
158dbda0
TH
2829 } else {
2830 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2831 break;
2832 }
2833 }
2834
2835 return rq;
2836}
9934c8c0 2837EXPORT_SYMBOL(blk_peek_request);
158dbda0 2838
5034435c 2839static void blk_dequeue_request(struct request *rq)
158dbda0 2840{
9934c8c0
TH
2841 struct request_queue *q = rq->q;
2842
158dbda0
TH
2843 BUG_ON(list_empty(&rq->queuelist));
2844 BUG_ON(ELV_ON_HASH(rq));
2845
2846 list_del_init(&rq->queuelist);
2847
2848 /*
2849 * the time frame between a request being removed from the lists
2850 * and to it is freed is accounted as io that is in progress at
2851 * the driver side.
2852 */
9195291e 2853 if (blk_account_rq(rq)) {
0a7ae2ff 2854 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2855 set_io_start_time_ns(rq);
2856 }
158dbda0
TH
2857}
2858
9934c8c0
TH
2859/**
2860 * blk_start_request - start request processing on the driver
2861 * @req: request to dequeue
2862 *
2863 * Description:
2864 * Dequeue @req and start timeout timer on it. This hands off the
2865 * request to the driver.
9934c8c0
TH
2866 */
2867void blk_start_request(struct request *req)
2868{
2fff8a92 2869 lockdep_assert_held(req->q->queue_lock);
332ebbf7 2870 WARN_ON_ONCE(req->q->mq_ops);
2fff8a92 2871
9934c8c0
TH
2872 blk_dequeue_request(req);
2873
cf43e6be 2874 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
88eeca49 2875 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
cf43e6be 2876 req->rq_flags |= RQF_STATS;
87760e5e 2877 wbt_issue(req->q->rq_wb, &req->issue_stat);
cf43e6be
JA
2878 }
2879
e14575b3 2880 BUG_ON(blk_rq_is_complete(req));
9934c8c0
TH
2881 blk_add_timer(req);
2882}
2883EXPORT_SYMBOL(blk_start_request);
2884
2885/**
2886 * blk_fetch_request - fetch a request from a request queue
2887 * @q: request queue to fetch a request from
2888 *
2889 * Description:
2890 * Return the request at the top of @q. The request is started on
2891 * return and LLD can start processing it immediately.
2892 *
2893 * Return:
2894 * Pointer to the request at the top of @q if available. Null
2895 * otherwise.
9934c8c0
TH
2896 */
2897struct request *blk_fetch_request(struct request_queue *q)
2898{
2899 struct request *rq;
2900
2fff8a92 2901 lockdep_assert_held(q->queue_lock);
332ebbf7 2902 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2903
9934c8c0
TH
2904 rq = blk_peek_request(q);
2905 if (rq)
2906 blk_start_request(rq);
2907 return rq;
2908}
2909EXPORT_SYMBOL(blk_fetch_request);
2910
ef71de8b
CH
2911/*
2912 * Steal bios from a request and add them to a bio list.
2913 * The request must not have been partially completed before.
2914 */
2915void blk_steal_bios(struct bio_list *list, struct request *rq)
2916{
2917 if (rq->bio) {
2918 if (list->tail)
2919 list->tail->bi_next = rq->bio;
2920 else
2921 list->head = rq->bio;
2922 list->tail = rq->biotail;
2923
2924 rq->bio = NULL;
2925 rq->biotail = NULL;
2926 }
2927
2928 rq->__data_len = 0;
2929}
2930EXPORT_SYMBOL_GPL(blk_steal_bios);
2931
3bcddeac 2932/**
2e60e022 2933 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2934 * @req: the request being processed
2a842aca 2935 * @error: block status code
8ebf9756 2936 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2937 *
2938 * Description:
8ebf9756
RD
2939 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2940 * the request structure even if @req doesn't have leftover.
2941 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2942 *
2943 * This special helper function is only for request stacking drivers
2944 * (e.g. request-based dm) so that they can handle partial completion.
2945 * Actual device drivers should use blk_end_request instead.
2946 *
2947 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2948 * %false return from this function.
3bcddeac
KU
2949 *
2950 * Return:
2e60e022
TH
2951 * %false - this request doesn't have any more data
2952 * %true - this request has more data
3bcddeac 2953 **/
2a842aca
CH
2954bool blk_update_request(struct request *req, blk_status_t error,
2955 unsigned int nr_bytes)
1da177e4 2956{
f79ea416 2957 int total_bytes;
1da177e4 2958
2a842aca 2959 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 2960
2e60e022
TH
2961 if (!req->bio)
2962 return false;
2963
2a842aca
CH
2964 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2965 !(req->rq_flags & RQF_QUIET)))
2966 print_req_error(req, error);
1da177e4 2967
bc58ba94 2968 blk_account_io_completion(req, nr_bytes);
d72d904a 2969
f79ea416
KO
2970 total_bytes = 0;
2971 while (req->bio) {
2972 struct bio *bio = req->bio;
4f024f37 2973 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2974
4f024f37 2975 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2976 req->bio = bio->bi_next;
1da177e4 2977
fbbaf700
N
2978 /* Completion has already been traced */
2979 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 2980 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2981
f79ea416
KO
2982 total_bytes += bio_bytes;
2983 nr_bytes -= bio_bytes;
1da177e4 2984
f79ea416
KO
2985 if (!nr_bytes)
2986 break;
1da177e4
LT
2987 }
2988
2989 /*
2990 * completely done
2991 */
2e60e022
TH
2992 if (!req->bio) {
2993 /*
2994 * Reset counters so that the request stacking driver
2995 * can find how many bytes remain in the request
2996 * later.
2997 */
a2dec7b3 2998 req->__data_len = 0;
2e60e022
TH
2999 return false;
3000 }
1da177e4 3001
a2dec7b3 3002 req->__data_len -= total_bytes;
2e46e8b2
TH
3003
3004 /* update sector only for requests with clear definition of sector */
57292b58 3005 if (!blk_rq_is_passthrough(req))
a2dec7b3 3006 req->__sector += total_bytes >> 9;
2e46e8b2 3007
80a761fd 3008 /* mixed attributes always follow the first bio */
e8064021 3009 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 3010 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 3011 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
3012 }
3013
ed6565e7
CH
3014 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3015 /*
3016 * If total number of sectors is less than the first segment
3017 * size, something has gone terribly wrong.
3018 */
3019 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3020 blk_dump_rq_flags(req, "request botched");
3021 req->__data_len = blk_rq_cur_bytes(req);
3022 }
2e46e8b2 3023
ed6565e7
CH
3024 /* recalculate the number of segments */
3025 blk_recalc_rq_segments(req);
3026 }
2e46e8b2 3027
2e60e022 3028 return true;
1da177e4 3029}
2e60e022 3030EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 3031
2a842aca 3032static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2e60e022
TH
3033 unsigned int nr_bytes,
3034 unsigned int bidi_bytes)
5efccd17 3035{
2e60e022
TH
3036 if (blk_update_request(rq, error, nr_bytes))
3037 return true;
5efccd17 3038
2e60e022
TH
3039 /* Bidi request must be completed as a whole */
3040 if (unlikely(blk_bidi_rq(rq)) &&
3041 blk_update_request(rq->next_rq, error, bidi_bytes))
3042 return true;
5efccd17 3043
e2e1a148
JA
3044 if (blk_queue_add_random(rq->q))
3045 add_disk_randomness(rq->rq_disk);
2e60e022
TH
3046
3047 return false;
1da177e4
LT
3048}
3049
28018c24
JB
3050/**
3051 * blk_unprep_request - unprepare a request
3052 * @req: the request
3053 *
3054 * This function makes a request ready for complete resubmission (or
3055 * completion). It happens only after all error handling is complete,
3056 * so represents the appropriate moment to deallocate any resources
3057 * that were allocated to the request in the prep_rq_fn. The queue
3058 * lock is held when calling this.
3059 */
3060void blk_unprep_request(struct request *req)
3061{
3062 struct request_queue *q = req->q;
3063
e8064021 3064 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
3065 if (q->unprep_rq_fn)
3066 q->unprep_rq_fn(q, req);
3067}
3068EXPORT_SYMBOL_GPL(blk_unprep_request);
3069
2a842aca 3070void blk_finish_request(struct request *req, blk_status_t error)
1da177e4 3071{
cf43e6be
JA
3072 struct request_queue *q = req->q;
3073
2fff8a92 3074 lockdep_assert_held(req->q->queue_lock);
332ebbf7 3075 WARN_ON_ONCE(q->mq_ops);
2fff8a92 3076
cf43e6be 3077 if (req->rq_flags & RQF_STATS)
34dbad5d 3078 blk_stat_add(req);
cf43e6be 3079
e8064021 3080 if (req->rq_flags & RQF_QUEUED)
cf43e6be 3081 blk_queue_end_tag(q, req);
b8286239 3082
ba396a6c 3083 BUG_ON(blk_queued_rq(req));
1da177e4 3084
57292b58 3085 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
dc3b17cc 3086 laptop_io_completion(req->q->backing_dev_info);
1da177e4 3087
e78042e5
MA
3088 blk_delete_timer(req);
3089
e8064021 3090 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
3091 blk_unprep_request(req);
3092
bc58ba94 3093 blk_account_io_done(req);
b8286239 3094
87760e5e
JA
3095 if (req->end_io) {
3096 wbt_done(req->q->rq_wb, &req->issue_stat);
8ffdc655 3097 req->end_io(req, error);
87760e5e 3098 } else {
b8286239
KU
3099 if (blk_bidi_rq(req))
3100 __blk_put_request(req->next_rq->q, req->next_rq);
3101
cf43e6be 3102 __blk_put_request(q, req);
b8286239 3103 }
1da177e4 3104}
12120077 3105EXPORT_SYMBOL(blk_finish_request);
1da177e4 3106
3b11313a 3107/**
2e60e022
TH
3108 * blk_end_bidi_request - Complete a bidi request
3109 * @rq: the request to complete
2a842aca 3110 * @error: block status code
2e60e022
TH
3111 * @nr_bytes: number of bytes to complete @rq
3112 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
3113 *
3114 * Description:
e3a04fe3 3115 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
3116 * Drivers that supports bidi can safely call this member for any
3117 * type of request, bidi or uni. In the later case @bidi_bytes is
3118 * just ignored.
336cdb40
KU
3119 *
3120 * Return:
2e60e022
TH
3121 * %false - we are done with this request
3122 * %true - still buffers pending for this request
a0cd1285 3123 **/
2a842aca 3124static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
32fab448
KU
3125 unsigned int nr_bytes, unsigned int bidi_bytes)
3126{
336cdb40 3127 struct request_queue *q = rq->q;
2e60e022 3128 unsigned long flags;
32fab448 3129
332ebbf7
BVA
3130 WARN_ON_ONCE(q->mq_ops);
3131
2e60e022
TH
3132 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3133 return true;
32fab448 3134
336cdb40 3135 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 3136 blk_finish_request(rq, error);
336cdb40
KU
3137 spin_unlock_irqrestore(q->queue_lock, flags);
3138
2e60e022 3139 return false;
32fab448
KU
3140}
3141
336cdb40 3142/**
2e60e022
TH
3143 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3144 * @rq: the request to complete
2a842aca 3145 * @error: block status code
e3a04fe3
KU
3146 * @nr_bytes: number of bytes to complete @rq
3147 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
3148 *
3149 * Description:
2e60e022
TH
3150 * Identical to blk_end_bidi_request() except that queue lock is
3151 * assumed to be locked on entry and remains so on return.
336cdb40
KU
3152 *
3153 * Return:
2e60e022
TH
3154 * %false - we are done with this request
3155 * %true - still buffers pending for this request
336cdb40 3156 **/
2a842aca 3157static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
b1f74493 3158 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 3159{
2fff8a92 3160 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3161 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3162
2e60e022
TH
3163 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3164 return true;
336cdb40 3165
2e60e022 3166 blk_finish_request(rq, error);
336cdb40 3167
2e60e022 3168 return false;
336cdb40 3169}
e19a3ab0
KU
3170
3171/**
3172 * blk_end_request - Helper function for drivers to complete the request.
3173 * @rq: the request being processed
2a842aca 3174 * @error: block status code
e19a3ab0
KU
3175 * @nr_bytes: number of bytes to complete
3176 *
3177 * Description:
3178 * Ends I/O on a number of bytes attached to @rq.
3179 * If @rq has leftover, sets it up for the next range of segments.
3180 *
3181 * Return:
b1f74493
FT
3182 * %false - we are done with this request
3183 * %true - still buffers pending for this request
e19a3ab0 3184 **/
2a842aca
CH
3185bool blk_end_request(struct request *rq, blk_status_t error,
3186 unsigned int nr_bytes)
e19a3ab0 3187{
332ebbf7 3188 WARN_ON_ONCE(rq->q->mq_ops);
b1f74493 3189 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 3190}
56ad1740 3191EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
3192
3193/**
b1f74493
FT
3194 * blk_end_request_all - Helper function for drives to finish the request.
3195 * @rq: the request to finish
2a842aca 3196 * @error: block status code
336cdb40
KU
3197 *
3198 * Description:
b1f74493
FT
3199 * Completely finish @rq.
3200 */
2a842aca 3201void blk_end_request_all(struct request *rq, blk_status_t error)
336cdb40 3202{
b1f74493
FT
3203 bool pending;
3204 unsigned int bidi_bytes = 0;
336cdb40 3205
b1f74493
FT
3206 if (unlikely(blk_bidi_rq(rq)))
3207 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 3208
b1f74493
FT
3209 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3210 BUG_ON(pending);
3211}
56ad1740 3212EXPORT_SYMBOL(blk_end_request_all);
336cdb40 3213
e3a04fe3 3214/**
b1f74493
FT
3215 * __blk_end_request - Helper function for drivers to complete the request.
3216 * @rq: the request being processed
2a842aca 3217 * @error: block status code
b1f74493 3218 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
3219 *
3220 * Description:
b1f74493 3221 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
3222 *
3223 * Return:
b1f74493
FT
3224 * %false - we are done with this request
3225 * %true - still buffers pending for this request
e3a04fe3 3226 **/
2a842aca
CH
3227bool __blk_end_request(struct request *rq, blk_status_t error,
3228 unsigned int nr_bytes)
e3a04fe3 3229{
2fff8a92 3230 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3231 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3232
b1f74493 3233 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 3234}
56ad1740 3235EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 3236
32fab448 3237/**
b1f74493
FT
3238 * __blk_end_request_all - Helper function for drives to finish the request.
3239 * @rq: the request to finish
2a842aca 3240 * @error: block status code
32fab448
KU
3241 *
3242 * Description:
b1f74493 3243 * Completely finish @rq. Must be called with queue lock held.
32fab448 3244 */
2a842aca 3245void __blk_end_request_all(struct request *rq, blk_status_t error)
32fab448 3246{
b1f74493
FT
3247 bool pending;
3248 unsigned int bidi_bytes = 0;
3249
2fff8a92 3250 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3251 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3252
b1f74493
FT
3253 if (unlikely(blk_bidi_rq(rq)))
3254 bidi_bytes = blk_rq_bytes(rq->next_rq);
3255
3256 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3257 BUG_ON(pending);
32fab448 3258}
56ad1740 3259EXPORT_SYMBOL(__blk_end_request_all);
32fab448 3260
e19a3ab0 3261/**
b1f74493
FT
3262 * __blk_end_request_cur - Helper function to finish the current request chunk.
3263 * @rq: the request to finish the current chunk for
2a842aca 3264 * @error: block status code
e19a3ab0
KU
3265 *
3266 * Description:
b1f74493
FT
3267 * Complete the current consecutively mapped chunk from @rq. Must
3268 * be called with queue lock held.
e19a3ab0
KU
3269 *
3270 * Return:
b1f74493
FT
3271 * %false - we are done with this request
3272 * %true - still buffers pending for this request
3273 */
2a842aca 3274bool __blk_end_request_cur(struct request *rq, blk_status_t error)
e19a3ab0 3275{
b1f74493 3276 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 3277}
56ad1740 3278EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 3279
86db1e29
JA
3280void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3281 struct bio *bio)
1da177e4 3282{
b4f42e28 3283 if (bio_has_data(bio))
fb2dce86 3284 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 3285
4f024f37 3286 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 3287 rq->bio = rq->biotail = bio;
1da177e4 3288
74d46992
CH
3289 if (bio->bi_disk)
3290 rq->rq_disk = bio->bi_disk;
66846572 3291}
1da177e4 3292
2d4dc890
IL
3293#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3294/**
3295 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3296 * @rq: the request to be flushed
3297 *
3298 * Description:
3299 * Flush all pages in @rq.
3300 */
3301void rq_flush_dcache_pages(struct request *rq)
3302{
3303 struct req_iterator iter;
7988613b 3304 struct bio_vec bvec;
2d4dc890
IL
3305
3306 rq_for_each_segment(bvec, rq, iter)
7988613b 3307 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
3308}
3309EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3310#endif
3311
ef9e3fac
KU
3312/**
3313 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3314 * @q : the queue of the device being checked
3315 *
3316 * Description:
3317 * Check if underlying low-level drivers of a device are busy.
3318 * If the drivers want to export their busy state, they must set own
3319 * exporting function using blk_queue_lld_busy() first.
3320 *
3321 * Basically, this function is used only by request stacking drivers
3322 * to stop dispatching requests to underlying devices when underlying
3323 * devices are busy. This behavior helps more I/O merging on the queue
3324 * of the request stacking driver and prevents I/O throughput regression
3325 * on burst I/O load.
3326 *
3327 * Return:
3328 * 0 - Not busy (The request stacking driver should dispatch request)
3329 * 1 - Busy (The request stacking driver should stop dispatching request)
3330 */
3331int blk_lld_busy(struct request_queue *q)
3332{
3333 if (q->lld_busy_fn)
3334 return q->lld_busy_fn(q);
3335
3336 return 0;
3337}
3338EXPORT_SYMBOL_GPL(blk_lld_busy);
3339
78d8e58a
MS
3340/**
3341 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3342 * @rq: the clone request to be cleaned up
3343 *
3344 * Description:
3345 * Free all bios in @rq for a cloned request.
3346 */
3347void blk_rq_unprep_clone(struct request *rq)
3348{
3349 struct bio *bio;
3350
3351 while ((bio = rq->bio) != NULL) {
3352 rq->bio = bio->bi_next;
3353
3354 bio_put(bio);
3355 }
3356}
3357EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3358
3359/*
3360 * Copy attributes of the original request to the clone request.
3361 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3362 */
3363static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3364{
3365 dst->cpu = src->cpu;
b0fd271d
KU
3366 dst->__sector = blk_rq_pos(src);
3367 dst->__data_len = blk_rq_bytes(src);
3368 dst->nr_phys_segments = src->nr_phys_segments;
3369 dst->ioprio = src->ioprio;
3370 dst->extra_len = src->extra_len;
78d8e58a
MS
3371}
3372
3373/**
3374 * blk_rq_prep_clone - Helper function to setup clone request
3375 * @rq: the request to be setup
3376 * @rq_src: original request to be cloned
3377 * @bs: bio_set that bios for clone are allocated from
3378 * @gfp_mask: memory allocation mask for bio
3379 * @bio_ctr: setup function to be called for each clone bio.
3380 * Returns %0 for success, non %0 for failure.
3381 * @data: private data to be passed to @bio_ctr
3382 *
3383 * Description:
3384 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3385 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3386 * are not copied, and copying such parts is the caller's responsibility.
3387 * Also, pages which the original bios are pointing to are not copied
3388 * and the cloned bios just point same pages.
3389 * So cloned bios must be completed before original bios, which means
3390 * the caller must complete @rq before @rq_src.
3391 */
3392int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3393 struct bio_set *bs, gfp_t gfp_mask,
3394 int (*bio_ctr)(struct bio *, struct bio *, void *),
3395 void *data)
3396{
3397 struct bio *bio, *bio_src;
3398
3399 if (!bs)
3400 bs = fs_bio_set;
3401
3402 __rq_for_each_bio(bio_src, rq_src) {
3403 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3404 if (!bio)
3405 goto free_and_out;
3406
3407 if (bio_ctr && bio_ctr(bio, bio_src, data))
3408 goto free_and_out;
3409
3410 if (rq->bio) {
3411 rq->biotail->bi_next = bio;
3412 rq->biotail = bio;
3413 } else
3414 rq->bio = rq->biotail = bio;
3415 }
3416
3417 __blk_rq_prep_clone(rq, rq_src);
3418
3419 return 0;
3420
3421free_and_out:
3422 if (bio)
3423 bio_put(bio);
3424 blk_rq_unprep_clone(rq);
3425
3426 return -ENOMEM;
b0fd271d
KU
3427}
3428EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3429
59c3d45e 3430int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3431{
3432 return queue_work(kblockd_workqueue, work);
3433}
1da177e4
LT
3434EXPORT_SYMBOL(kblockd_schedule_work);
3435
ee63cfa7
JA
3436int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3437{
3438 return queue_work_on(cpu, kblockd_workqueue, work);
3439}
3440EXPORT_SYMBOL(kblockd_schedule_work_on);
3441
818cd1cb
JA
3442int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3443 unsigned long delay)
3444{
3445 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3446}
3447EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3448
75df7136
SJ
3449/**
3450 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3451 * @plug: The &struct blk_plug that needs to be initialized
3452 *
3453 * Description:
3454 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3455 * pending I/O should the task end up blocking between blk_start_plug() and
3456 * blk_finish_plug(). This is important from a performance perspective, but
3457 * also ensures that we don't deadlock. For instance, if the task is blocking
3458 * for a memory allocation, memory reclaim could end up wanting to free a
3459 * page belonging to that request that is currently residing in our private
3460 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3461 * this kind of deadlock.
3462 */
73c10101
JA
3463void blk_start_plug(struct blk_plug *plug)
3464{
3465 struct task_struct *tsk = current;
3466
dd6cf3e1
SL
3467 /*
3468 * If this is a nested plug, don't actually assign it.
3469 */
3470 if (tsk->plug)
3471 return;
3472
73c10101 3473 INIT_LIST_HEAD(&plug->list);
320ae51f 3474 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3475 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3476 /*
dd6cf3e1
SL
3477 * Store ordering should not be needed here, since a potential
3478 * preempt will imply a full memory barrier
73c10101 3479 */
dd6cf3e1 3480 tsk->plug = plug;
73c10101
JA
3481}
3482EXPORT_SYMBOL(blk_start_plug);
3483
3484static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3485{
3486 struct request *rqa = container_of(a, struct request, queuelist);
3487 struct request *rqb = container_of(b, struct request, queuelist);
3488
975927b9
JM
3489 return !(rqa->q < rqb->q ||
3490 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3491}
3492
49cac01e
JA
3493/*
3494 * If 'from_schedule' is true, then postpone the dispatch of requests
3495 * until a safe kblockd context. We due this to avoid accidental big
3496 * additional stack usage in driver dispatch, in places where the originally
3497 * plugger did not intend it.
3498 */
f6603783 3499static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3500 bool from_schedule)
99e22598 3501 __releases(q->queue_lock)
94b5eb28 3502{
2fff8a92
BVA
3503 lockdep_assert_held(q->queue_lock);
3504
49cac01e 3505 trace_block_unplug(q, depth, !from_schedule);
99e22598 3506
70460571 3507 if (from_schedule)
24ecfbe2 3508 blk_run_queue_async(q);
70460571 3509 else
24ecfbe2 3510 __blk_run_queue(q);
70460571 3511 spin_unlock(q->queue_lock);
94b5eb28
JA
3512}
3513
74018dc3 3514static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3515{
3516 LIST_HEAD(callbacks);
3517
2a7d5559
SL
3518 while (!list_empty(&plug->cb_list)) {
3519 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3520
2a7d5559
SL
3521 while (!list_empty(&callbacks)) {
3522 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3523 struct blk_plug_cb,
3524 list);
2a7d5559 3525 list_del(&cb->list);
74018dc3 3526 cb->callback(cb, from_schedule);
2a7d5559 3527 }
048c9374
N
3528 }
3529}
3530
9cbb1750
N
3531struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3532 int size)
3533{
3534 struct blk_plug *plug = current->plug;
3535 struct blk_plug_cb *cb;
3536
3537 if (!plug)
3538 return NULL;
3539
3540 list_for_each_entry(cb, &plug->cb_list, list)
3541 if (cb->callback == unplug && cb->data == data)
3542 return cb;
3543
3544 /* Not currently on the callback list */
3545 BUG_ON(size < sizeof(*cb));
3546 cb = kzalloc(size, GFP_ATOMIC);
3547 if (cb) {
3548 cb->data = data;
3549 cb->callback = unplug;
3550 list_add(&cb->list, &plug->cb_list);
3551 }
3552 return cb;
3553}
3554EXPORT_SYMBOL(blk_check_plugged);
3555
49cac01e 3556void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3557{
3558 struct request_queue *q;
3559 unsigned long flags;
3560 struct request *rq;
109b8129 3561 LIST_HEAD(list);
94b5eb28 3562 unsigned int depth;
73c10101 3563
74018dc3 3564 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3565
3566 if (!list_empty(&plug->mq_list))
3567 blk_mq_flush_plug_list(plug, from_schedule);
3568
73c10101
JA
3569 if (list_empty(&plug->list))
3570 return;
3571
109b8129
N
3572 list_splice_init(&plug->list, &list);
3573
422765c2 3574 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3575
3576 q = NULL;
94b5eb28 3577 depth = 0;
18811272
JA
3578
3579 /*
3580 * Save and disable interrupts here, to avoid doing it for every
3581 * queue lock we have to take.
3582 */
73c10101 3583 local_irq_save(flags);
109b8129
N
3584 while (!list_empty(&list)) {
3585 rq = list_entry_rq(list.next);
73c10101 3586 list_del_init(&rq->queuelist);
73c10101
JA
3587 BUG_ON(!rq->q);
3588 if (rq->q != q) {
99e22598
JA
3589 /*
3590 * This drops the queue lock
3591 */
3592 if (q)
49cac01e 3593 queue_unplugged(q, depth, from_schedule);
73c10101 3594 q = rq->q;
94b5eb28 3595 depth = 0;
73c10101
JA
3596 spin_lock(q->queue_lock);
3597 }
8ba61435
TH
3598
3599 /*
3600 * Short-circuit if @q is dead
3601 */
3f3299d5 3602 if (unlikely(blk_queue_dying(q))) {
2a842aca 3603 __blk_end_request_all(rq, BLK_STS_IOERR);
8ba61435
TH
3604 continue;
3605 }
3606
73c10101
JA
3607 /*
3608 * rq is already accounted, so use raw insert
3609 */
f73f44eb 3610 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3611 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3612 else
3613 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3614
3615 depth++;
73c10101
JA
3616 }
3617
99e22598
JA
3618 /*
3619 * This drops the queue lock
3620 */
3621 if (q)
49cac01e 3622 queue_unplugged(q, depth, from_schedule);
73c10101 3623
73c10101
JA
3624 local_irq_restore(flags);
3625}
73c10101
JA
3626
3627void blk_finish_plug(struct blk_plug *plug)
3628{
dd6cf3e1
SL
3629 if (plug != current->plug)
3630 return;
f6603783 3631 blk_flush_plug_list(plug, false);
73c10101 3632
dd6cf3e1 3633 current->plug = NULL;
73c10101 3634}
88b996cd 3635EXPORT_SYMBOL(blk_finish_plug);
73c10101 3636
47fafbc7 3637#ifdef CONFIG_PM
6c954667
LM
3638/**
3639 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3640 * @q: the queue of the device
3641 * @dev: the device the queue belongs to
3642 *
3643 * Description:
3644 * Initialize runtime-PM-related fields for @q and start auto suspend for
3645 * @dev. Drivers that want to take advantage of request-based runtime PM
3646 * should call this function after @dev has been initialized, and its
3647 * request queue @q has been allocated, and runtime PM for it can not happen
3648 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3649 * cases, driver should call this function before any I/O has taken place.
3650 *
3651 * This function takes care of setting up using auto suspend for the device,
3652 * the autosuspend delay is set to -1 to make runtime suspend impossible
3653 * until an updated value is either set by user or by driver. Drivers do
3654 * not need to touch other autosuspend settings.
3655 *
3656 * The block layer runtime PM is request based, so only works for drivers
3657 * that use request as their IO unit instead of those directly use bio's.
3658 */
3659void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3660{
765e40b6
CH
3661 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3662 if (q->mq_ops)
3663 return;
3664
6c954667
LM
3665 q->dev = dev;
3666 q->rpm_status = RPM_ACTIVE;
3667 pm_runtime_set_autosuspend_delay(q->dev, -1);
3668 pm_runtime_use_autosuspend(q->dev);
3669}
3670EXPORT_SYMBOL(blk_pm_runtime_init);
3671
3672/**
3673 * blk_pre_runtime_suspend - Pre runtime suspend check
3674 * @q: the queue of the device
3675 *
3676 * Description:
3677 * This function will check if runtime suspend is allowed for the device
3678 * by examining if there are any requests pending in the queue. If there
3679 * are requests pending, the device can not be runtime suspended; otherwise,
3680 * the queue's status will be updated to SUSPENDING and the driver can
3681 * proceed to suspend the device.
3682 *
3683 * For the not allowed case, we mark last busy for the device so that
3684 * runtime PM core will try to autosuspend it some time later.
3685 *
3686 * This function should be called near the start of the device's
3687 * runtime_suspend callback.
3688 *
3689 * Return:
3690 * 0 - OK to runtime suspend the device
3691 * -EBUSY - Device should not be runtime suspended
3692 */
3693int blk_pre_runtime_suspend(struct request_queue *q)
3694{
3695 int ret = 0;
3696
4fd41a85
KX
3697 if (!q->dev)
3698 return ret;
3699
6c954667
LM
3700 spin_lock_irq(q->queue_lock);
3701 if (q->nr_pending) {
3702 ret = -EBUSY;
3703 pm_runtime_mark_last_busy(q->dev);
3704 } else {
3705 q->rpm_status = RPM_SUSPENDING;
3706 }
3707 spin_unlock_irq(q->queue_lock);
3708 return ret;
3709}
3710EXPORT_SYMBOL(blk_pre_runtime_suspend);
3711
3712/**
3713 * blk_post_runtime_suspend - Post runtime suspend processing
3714 * @q: the queue of the device
3715 * @err: return value of the device's runtime_suspend function
3716 *
3717 * Description:
3718 * Update the queue's runtime status according to the return value of the
3719 * device's runtime suspend function and mark last busy for the device so
3720 * that PM core will try to auto suspend the device at a later time.
3721 *
3722 * This function should be called near the end of the device's
3723 * runtime_suspend callback.
3724 */
3725void blk_post_runtime_suspend(struct request_queue *q, int err)
3726{
4fd41a85
KX
3727 if (!q->dev)
3728 return;
3729
6c954667
LM
3730 spin_lock_irq(q->queue_lock);
3731 if (!err) {
3732 q->rpm_status = RPM_SUSPENDED;
3733 } else {
3734 q->rpm_status = RPM_ACTIVE;
3735 pm_runtime_mark_last_busy(q->dev);
3736 }
3737 spin_unlock_irq(q->queue_lock);
3738}
3739EXPORT_SYMBOL(blk_post_runtime_suspend);
3740
3741/**
3742 * blk_pre_runtime_resume - Pre runtime resume processing
3743 * @q: the queue of the device
3744 *
3745 * Description:
3746 * Update the queue's runtime status to RESUMING in preparation for the
3747 * runtime resume of the device.
3748 *
3749 * This function should be called near the start of the device's
3750 * runtime_resume callback.
3751 */
3752void blk_pre_runtime_resume(struct request_queue *q)
3753{
4fd41a85
KX
3754 if (!q->dev)
3755 return;
3756
6c954667
LM
3757 spin_lock_irq(q->queue_lock);
3758 q->rpm_status = RPM_RESUMING;
3759 spin_unlock_irq(q->queue_lock);
3760}
3761EXPORT_SYMBOL(blk_pre_runtime_resume);
3762
3763/**
3764 * blk_post_runtime_resume - Post runtime resume processing
3765 * @q: the queue of the device
3766 * @err: return value of the device's runtime_resume function
3767 *
3768 * Description:
3769 * Update the queue's runtime status according to the return value of the
3770 * device's runtime_resume function. If it is successfully resumed, process
3771 * the requests that are queued into the device's queue when it is resuming
3772 * and then mark last busy and initiate autosuspend for it.
3773 *
3774 * This function should be called near the end of the device's
3775 * runtime_resume callback.
3776 */
3777void blk_post_runtime_resume(struct request_queue *q, int err)
3778{
4fd41a85
KX
3779 if (!q->dev)
3780 return;
3781
6c954667
LM
3782 spin_lock_irq(q->queue_lock);
3783 if (!err) {
3784 q->rpm_status = RPM_ACTIVE;
3785 __blk_run_queue(q);
3786 pm_runtime_mark_last_busy(q->dev);
c60855cd 3787 pm_request_autosuspend(q->dev);
6c954667
LM
3788 } else {
3789 q->rpm_status = RPM_SUSPENDED;
3790 }
3791 spin_unlock_irq(q->queue_lock);
3792}
3793EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3794
3795/**
3796 * blk_set_runtime_active - Force runtime status of the queue to be active
3797 * @q: the queue of the device
3798 *
3799 * If the device is left runtime suspended during system suspend the resume
3800 * hook typically resumes the device and corrects runtime status
3801 * accordingly. However, that does not affect the queue runtime PM status
3802 * which is still "suspended". This prevents processing requests from the
3803 * queue.
3804 *
3805 * This function can be used in driver's resume hook to correct queue
3806 * runtime PM status and re-enable peeking requests from the queue. It
3807 * should be called before first request is added to the queue.
3808 */
3809void blk_set_runtime_active(struct request_queue *q)
3810{
3811 spin_lock_irq(q->queue_lock);
3812 q->rpm_status = RPM_ACTIVE;
3813 pm_runtime_mark_last_busy(q->dev);
3814 pm_request_autosuspend(q->dev);
3815 spin_unlock_irq(q->queue_lock);
3816}
3817EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3818#endif
3819
1da177e4
LT
3820int __init blk_dev_init(void)
3821{
ef295ecf
CH
3822 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3823 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3824 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3825 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3826 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3827
89b90be2
TH
3828 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3829 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3830 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3831 if (!kblockd_workqueue)
3832 panic("Failed to create kblockd\n");
3833
3834 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3835 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3836
c2789bd4 3837 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3838 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3839
18fbda91
OS
3840#ifdef CONFIG_DEBUG_FS
3841 blk_debugfs_root = debugfs_create_dir("block", NULL);
3842#endif
3843
d38ecf93 3844 return 0;
1da177e4 3845}