mm/memory_hotplug: set magic number to page->freelist instead of page->lru.next
[linux-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
3565fce3 19#include <linux/percpu-refcount.h>
e9da73d6 20#include <linux/bit_spinlock.h>
b0d40c92 21#include <linux/shrinker.h>
9c599024 22#include <linux/resource.h>
e30825f1 23#include <linux/page_ext.h>
8025e5dd 24#include <linux/err.h>
fe896d18 25#include <linux/page_ref.h>
1da177e4
LT
26
27struct mempolicy;
28struct anon_vma;
bf181b9f 29struct anon_vma_chain;
4e950f6f 30struct file_ra_state;
e8edc6e0 31struct user_struct;
4e950f6f 32struct writeback_control;
682aa8e1 33struct bdi_writeback;
1da177e4 34
fccc9987 35#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 36extern unsigned long max_mapnr;
fccc9987
JL
37
38static inline void set_max_mapnr(unsigned long limit)
39{
40 max_mapnr = limit;
41}
42#else
43static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
44#endif
45
4481374c 46extern unsigned long totalram_pages;
1da177e4 47extern void * high_memory;
1da177e4
LT
48extern int page_cluster;
49
50#ifdef CONFIG_SYSCTL
51extern int sysctl_legacy_va_layout;
52#else
53#define sysctl_legacy_va_layout 0
54#endif
55
d07e2259
DC
56#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
57extern const int mmap_rnd_bits_min;
58extern const int mmap_rnd_bits_max;
59extern int mmap_rnd_bits __read_mostly;
60#endif
61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
62extern const int mmap_rnd_compat_bits_min;
63extern const int mmap_rnd_compat_bits_max;
64extern int mmap_rnd_compat_bits __read_mostly;
65#endif
66
1da177e4
LT
67#include <asm/page.h>
68#include <asm/pgtable.h>
69#include <asm/processor.h>
1da177e4 70
79442ed1
TC
71#ifndef __pa_symbol
72#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
73#endif
74
1dff8083
AB
75#ifndef page_to_virt
76#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
77#endif
78
568c5fe5
LA
79#ifndef lm_alias
80#define lm_alias(x) __va(__pa_symbol(x))
81#endif
82
593befa6
DD
83/*
84 * To prevent common memory management code establishing
85 * a zero page mapping on a read fault.
86 * This macro should be defined within <asm/pgtable.h>.
87 * s390 does this to prevent multiplexing of hardware bits
88 * related to the physical page in case of virtualization.
89 */
90#ifndef mm_forbids_zeropage
91#define mm_forbids_zeropage(X) (0)
92#endif
93
ea606cf5
AR
94/*
95 * Default maximum number of active map areas, this limits the number of vmas
96 * per mm struct. Users can overwrite this number by sysctl but there is a
97 * problem.
98 *
99 * When a program's coredump is generated as ELF format, a section is created
100 * per a vma. In ELF, the number of sections is represented in unsigned short.
101 * This means the number of sections should be smaller than 65535 at coredump.
102 * Because the kernel adds some informative sections to a image of program at
103 * generating coredump, we need some margin. The number of extra sections is
104 * 1-3 now and depends on arch. We use "5" as safe margin, here.
105 *
106 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
107 * not a hard limit any more. Although some userspace tools can be surprised by
108 * that.
109 */
110#define MAPCOUNT_ELF_CORE_MARGIN (5)
111#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
112
113extern int sysctl_max_map_count;
114
c9b1d098 115extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 116extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 117
49f0ce5f
JM
118extern int sysctl_overcommit_memory;
119extern int sysctl_overcommit_ratio;
120extern unsigned long sysctl_overcommit_kbytes;
121
122extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
123 size_t *, loff_t *);
124extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
125 size_t *, loff_t *);
126
1da177e4
LT
127#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
128
27ac792c
AR
129/* to align the pointer to the (next) page boundary */
130#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
131
0fa73b86 132/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 133#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 134
1da177e4
LT
135/*
136 * Linux kernel virtual memory manager primitives.
137 * The idea being to have a "virtual" mm in the same way
138 * we have a virtual fs - giving a cleaner interface to the
139 * mm details, and allowing different kinds of memory mappings
140 * (from shared memory to executable loading to arbitrary
141 * mmap() functions).
142 */
143
c43692e8
CL
144extern struct kmem_cache *vm_area_cachep;
145
1da177e4 146#ifndef CONFIG_MMU
8feae131
DH
147extern struct rb_root nommu_region_tree;
148extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
149
150extern unsigned int kobjsize(const void *objp);
151#endif
152
153/*
605d9288 154 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 155 * When changing, update also include/trace/events/mmflags.h
1da177e4 156 */
cc2383ec
KK
157#define VM_NONE 0x00000000
158
1da177e4
LT
159#define VM_READ 0x00000001 /* currently active flags */
160#define VM_WRITE 0x00000002
161#define VM_EXEC 0x00000004
162#define VM_SHARED 0x00000008
163
7e2cff42 164/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
165#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
166#define VM_MAYWRITE 0x00000020
167#define VM_MAYEXEC 0x00000040
168#define VM_MAYSHARE 0x00000080
169
170#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 171#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 172#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 173#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 174#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 175
1da177e4
LT
176#define VM_LOCKED 0x00002000
177#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
178
179 /* Used by sys_madvise() */
180#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
181#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
182
183#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
184#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 185#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 186#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 187#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 188#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 189#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 190#define VM_ARCH_2 0x02000000
0103bd16 191#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 192
d9104d1c
CG
193#ifdef CONFIG_MEM_SOFT_DIRTY
194# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
195#else
196# define VM_SOFTDIRTY 0
197#endif
198
b379d790 199#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
200#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
201#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 202#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 203
63c17fb8
DH
204#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
205#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
206#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
207#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
208#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
209#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
210#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
211#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
212#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
213#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
214
cc2383ec
KK
215#if defined(CONFIG_X86)
216# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
8f62c883
DH
217#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
218# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
219# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
220# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
221# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
222# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
223#endif
cc2383ec
KK
224#elif defined(CONFIG_PPC)
225# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
226#elif defined(CONFIG_PARISC)
227# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
228#elif defined(CONFIG_METAG)
229# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
230#elif defined(CONFIG_IA64)
231# define VM_GROWSUP VM_ARCH_1
232#elif !defined(CONFIG_MMU)
233# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
234#endif
235
4aae7e43
QR
236#if defined(CONFIG_X86)
237/* MPX specific bounds table or bounds directory */
238# define VM_MPX VM_ARCH_2
239#endif
240
cc2383ec
KK
241#ifndef VM_GROWSUP
242# define VM_GROWSUP VM_NONE
243#endif
244
a8bef8ff
MG
245/* Bits set in the VMA until the stack is in its final location */
246#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
247
1da177e4
LT
248#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
249#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
250#endif
251
252#ifdef CONFIG_STACK_GROWSUP
30bdbb78 253#define VM_STACK VM_GROWSUP
1da177e4 254#else
30bdbb78 255#define VM_STACK VM_GROWSDOWN
1da177e4
LT
256#endif
257
30bdbb78
KK
258#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
259
b291f000 260/*
78f11a25
AA
261 * Special vmas that are non-mergable, non-mlock()able.
262 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 263 */
9050d7eb 264#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 265
a0715cc2
AT
266/* This mask defines which mm->def_flags a process can inherit its parent */
267#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
268
de60f5f1
EM
269/* This mask is used to clear all the VMA flags used by mlock */
270#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
271
1da177e4
LT
272/*
273 * mapping from the currently active vm_flags protection bits (the
274 * low four bits) to a page protection mask..
275 */
276extern pgprot_t protection_map[16];
277
d0217ac0 278#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
279#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
280#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
281#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
282#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
283#define FAULT_FLAG_TRIED 0x20 /* Second try */
284#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 285#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 286#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 287
282a8e03
RZ
288#define FAULT_FLAG_TRACE \
289 { FAULT_FLAG_WRITE, "WRITE" }, \
290 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
291 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
292 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
293 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
294 { FAULT_FLAG_TRIED, "TRIED" }, \
295 { FAULT_FLAG_USER, "USER" }, \
296 { FAULT_FLAG_REMOTE, "REMOTE" }, \
297 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
298
54cb8821 299/*
d0217ac0 300 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
301 * ->fault function. The vma's ->fault is responsible for returning a bitmask
302 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 303 *
c20cd45e
MH
304 * MM layer fills up gfp_mask for page allocations but fault handler might
305 * alter it if its implementation requires a different allocation context.
306 *
9b4bdd2f 307 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 308 */
d0217ac0 309struct vm_fault {
82b0f8c3 310 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 311 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 312 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 313 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 314 unsigned long address; /* Faulting virtual address */
82b0f8c3 315 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b
JK
316 * the 'address' */
317 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 318
3917048d
JK
319 struct page *cow_page; /* Page handler may use for COW fault */
320 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 321 struct page *page; /* ->fault handlers should return a
83c54070 322 * page here, unless VM_FAULT_NOPAGE
d0217ac0 323 * is set (which is also implied by
83c54070 324 * VM_FAULT_ERROR).
d0217ac0 325 */
82b0f8c3 326 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
327 pte_t *pte; /* Pointer to pte entry matching
328 * the 'address'. NULL if the page
329 * table hasn't been allocated.
330 */
331 spinlock_t *ptl; /* Page table lock.
332 * Protects pte page table if 'pte'
333 * is not NULL, otherwise pmd.
334 */
7267ec00
KS
335 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
336 * vm_ops->map_pages() calls
337 * alloc_set_pte() from atomic context.
338 * do_fault_around() pre-allocates
339 * page table to avoid allocation from
340 * atomic context.
341 */
54cb8821 342};
1da177e4
LT
343
344/*
345 * These are the virtual MM functions - opening of an area, closing and
346 * unmapping it (needed to keep files on disk up-to-date etc), pointer
347 * to the functions called when a no-page or a wp-page exception occurs.
348 */
349struct vm_operations_struct {
350 void (*open)(struct vm_area_struct * area);
351 void (*close)(struct vm_area_struct * area);
5477e70a 352 int (*mremap)(struct vm_area_struct * area);
d0217ac0 353 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
f4200391 354 int (*pmd_fault)(struct vm_fault *vmf);
82b0f8c3 355 void (*map_pages)(struct vm_fault *vmf,
bae473a4 356 pgoff_t start_pgoff, pgoff_t end_pgoff);
9637a5ef
DH
357
358 /* notification that a previously read-only page is about to become
359 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 360 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20 361
dd906184
BH
362 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
363 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
364
28b2ee20
RR
365 /* called by access_process_vm when get_user_pages() fails, typically
366 * for use by special VMAs that can switch between memory and hardware
367 */
368 int (*access)(struct vm_area_struct *vma, unsigned long addr,
369 void *buf, int len, int write);
78d683e8
AL
370
371 /* Called by the /proc/PID/maps code to ask the vma whether it
372 * has a special name. Returning non-NULL will also cause this
373 * vma to be dumped unconditionally. */
374 const char *(*name)(struct vm_area_struct *vma);
375
1da177e4 376#ifdef CONFIG_NUMA
a6020ed7
LS
377 /*
378 * set_policy() op must add a reference to any non-NULL @new mempolicy
379 * to hold the policy upon return. Caller should pass NULL @new to
380 * remove a policy and fall back to surrounding context--i.e. do not
381 * install a MPOL_DEFAULT policy, nor the task or system default
382 * mempolicy.
383 */
1da177e4 384 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
385
386 /*
387 * get_policy() op must add reference [mpol_get()] to any policy at
388 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
389 * in mm/mempolicy.c will do this automatically.
390 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
391 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
392 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
393 * must return NULL--i.e., do not "fallback" to task or system default
394 * policy.
395 */
1da177e4
LT
396 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
397 unsigned long addr);
398#endif
667a0a06
DV
399 /*
400 * Called by vm_normal_page() for special PTEs to find the
401 * page for @addr. This is useful if the default behavior
402 * (using pte_page()) would not find the correct page.
403 */
404 struct page *(*find_special_page)(struct vm_area_struct *vma,
405 unsigned long addr);
1da177e4
LT
406};
407
408struct mmu_gather;
409struct inode;
410
349aef0b
AM
411#define page_private(page) ((page)->private)
412#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 413
5c7fb56e
DW
414#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
415static inline int pmd_devmap(pmd_t pmd)
416{
417 return 0;
418}
419#endif
420
1da177e4
LT
421/*
422 * FIXME: take this include out, include page-flags.h in
423 * files which need it (119 of them)
424 */
425#include <linux/page-flags.h>
71e3aac0 426#include <linux/huge_mm.h>
1da177e4
LT
427
428/*
429 * Methods to modify the page usage count.
430 *
431 * What counts for a page usage:
432 * - cache mapping (page->mapping)
433 * - private data (page->private)
434 * - page mapped in a task's page tables, each mapping
435 * is counted separately
436 *
437 * Also, many kernel routines increase the page count before a critical
438 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
439 */
440
441/*
da6052f7 442 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 443 */
7c8ee9a8
NP
444static inline int put_page_testzero(struct page *page)
445{
fe896d18
JK
446 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
447 return page_ref_dec_and_test(page);
7c8ee9a8 448}
1da177e4
LT
449
450/*
7c8ee9a8
NP
451 * Try to grab a ref unless the page has a refcount of zero, return false if
452 * that is the case.
8e0861fa
AK
453 * This can be called when MMU is off so it must not access
454 * any of the virtual mappings.
1da177e4 455 */
7c8ee9a8
NP
456static inline int get_page_unless_zero(struct page *page)
457{
fe896d18 458 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 459}
1da177e4 460
53df8fdc 461extern int page_is_ram(unsigned long pfn);
124fe20d
DW
462
463enum {
464 REGION_INTERSECTS,
465 REGION_DISJOINT,
466 REGION_MIXED,
467};
468
1c29f25b
TK
469int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
470 unsigned long desc);
53df8fdc 471
48667e7a 472/* Support for virtually mapped pages */
b3bdda02
CL
473struct page *vmalloc_to_page(const void *addr);
474unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 475
0738c4bb
PM
476/*
477 * Determine if an address is within the vmalloc range
478 *
479 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
480 * is no special casing required.
481 */
bb00a789 482static inline bool is_vmalloc_addr(const void *x)
9e2779fa 483{
0738c4bb 484#ifdef CONFIG_MMU
9e2779fa
CL
485 unsigned long addr = (unsigned long)x;
486
487 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 488#else
bb00a789 489 return false;
8ca3ed87 490#endif
0738c4bb 491}
81ac3ad9
KH
492#ifdef CONFIG_MMU
493extern int is_vmalloc_or_module_addr(const void *x);
494#else
934831d0 495static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
496{
497 return 0;
498}
499#endif
9e2779fa 500
39f1f78d
AV
501extern void kvfree(const void *addr);
502
53f9263b
KS
503static inline atomic_t *compound_mapcount_ptr(struct page *page)
504{
505 return &page[1].compound_mapcount;
506}
507
508static inline int compound_mapcount(struct page *page)
509{
5f527c2b 510 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
511 page = compound_head(page);
512 return atomic_read(compound_mapcount_ptr(page)) + 1;
513}
514
70b50f94
AA
515/*
516 * The atomic page->_mapcount, starts from -1: so that transitions
517 * both from it and to it can be tracked, using atomic_inc_and_test
518 * and atomic_add_negative(-1).
519 */
22b751c3 520static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
521{
522 atomic_set(&(page)->_mapcount, -1);
523}
524
b20ce5e0
KS
525int __page_mapcount(struct page *page);
526
70b50f94
AA
527static inline int page_mapcount(struct page *page)
528{
1d148e21 529 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 530
b20ce5e0
KS
531 if (unlikely(PageCompound(page)))
532 return __page_mapcount(page);
533 return atomic_read(&page->_mapcount) + 1;
534}
535
536#ifdef CONFIG_TRANSPARENT_HUGEPAGE
537int total_mapcount(struct page *page);
6d0a07ed 538int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
539#else
540static inline int total_mapcount(struct page *page)
541{
542 return page_mapcount(page);
70b50f94 543}
6d0a07ed
AA
544static inline int page_trans_huge_mapcount(struct page *page,
545 int *total_mapcount)
546{
547 int mapcount = page_mapcount(page);
548 if (total_mapcount)
549 *total_mapcount = mapcount;
550 return mapcount;
551}
b20ce5e0 552#endif
70b50f94 553
b49af68f
CL
554static inline struct page *virt_to_head_page(const void *x)
555{
556 struct page *page = virt_to_page(x);
ccaafd7f 557
1d798ca3 558 return compound_head(page);
b49af68f
CL
559}
560
ddc58f27
KS
561void __put_page(struct page *page);
562
1d7ea732 563void put_pages_list(struct list_head *pages);
1da177e4 564
8dfcc9ba 565void split_page(struct page *page, unsigned int order);
8dfcc9ba 566
33f2ef89
AW
567/*
568 * Compound pages have a destructor function. Provide a
569 * prototype for that function and accessor functions.
f1e61557 570 * These are _only_ valid on the head of a compound page.
33f2ef89 571 */
f1e61557
KS
572typedef void compound_page_dtor(struct page *);
573
574/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
575enum compound_dtor_id {
576 NULL_COMPOUND_DTOR,
577 COMPOUND_PAGE_DTOR,
578#ifdef CONFIG_HUGETLB_PAGE
579 HUGETLB_PAGE_DTOR,
9a982250
KS
580#endif
581#ifdef CONFIG_TRANSPARENT_HUGEPAGE
582 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
583#endif
584 NR_COMPOUND_DTORS,
585};
586extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
587
588static inline void set_compound_page_dtor(struct page *page,
f1e61557 589 enum compound_dtor_id compound_dtor)
33f2ef89 590{
f1e61557
KS
591 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
592 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
593}
594
595static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
596{
f1e61557
KS
597 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
598 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
599}
600
d00181b9 601static inline unsigned int compound_order(struct page *page)
d85f3385 602{
6d777953 603 if (!PageHead(page))
d85f3385 604 return 0;
e4b294c2 605 return page[1].compound_order;
d85f3385
CL
606}
607
f1e61557 608static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 609{
e4b294c2 610 page[1].compound_order = order;
d85f3385
CL
611}
612
9a982250
KS
613void free_compound_page(struct page *page);
614
3dece370 615#ifdef CONFIG_MMU
14fd403f
AA
616/*
617 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
618 * servicing faults for write access. In the normal case, do always want
619 * pte_mkwrite. But get_user_pages can cause write faults for mappings
620 * that do not have writing enabled, when used by access_process_vm.
621 */
622static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
623{
624 if (likely(vma->vm_flags & VM_WRITE))
625 pte = pte_mkwrite(pte);
626 return pte;
627}
8c6e50b0 628
82b0f8c3 629int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 630 struct page *page);
9118c0cb 631int finish_fault(struct vm_fault *vmf);
66a6197c 632int finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 633#endif
14fd403f 634
1da177e4
LT
635/*
636 * Multiple processes may "see" the same page. E.g. for untouched
637 * mappings of /dev/null, all processes see the same page full of
638 * zeroes, and text pages of executables and shared libraries have
639 * only one copy in memory, at most, normally.
640 *
641 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
642 * page_count() == 0 means the page is free. page->lru is then used for
643 * freelist management in the buddy allocator.
da6052f7 644 * page_count() > 0 means the page has been allocated.
1da177e4 645 *
da6052f7
NP
646 * Pages are allocated by the slab allocator in order to provide memory
647 * to kmalloc and kmem_cache_alloc. In this case, the management of the
648 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
649 * unless a particular usage is carefully commented. (the responsibility of
650 * freeing the kmalloc memory is the caller's, of course).
1da177e4 651 *
da6052f7
NP
652 * A page may be used by anyone else who does a __get_free_page().
653 * In this case, page_count still tracks the references, and should only
654 * be used through the normal accessor functions. The top bits of page->flags
655 * and page->virtual store page management information, but all other fields
656 * are unused and could be used privately, carefully. The management of this
657 * page is the responsibility of the one who allocated it, and those who have
658 * subsequently been given references to it.
659 *
660 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
661 * managed by the Linux memory manager: I/O, buffers, swapping etc.
662 * The following discussion applies only to them.
663 *
da6052f7
NP
664 * A pagecache page contains an opaque `private' member, which belongs to the
665 * page's address_space. Usually, this is the address of a circular list of
666 * the page's disk buffers. PG_private must be set to tell the VM to call
667 * into the filesystem to release these pages.
1da177e4 668 *
da6052f7
NP
669 * A page may belong to an inode's memory mapping. In this case, page->mapping
670 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 671 * in units of PAGE_SIZE.
1da177e4 672 *
da6052f7
NP
673 * If pagecache pages are not associated with an inode, they are said to be
674 * anonymous pages. These may become associated with the swapcache, and in that
675 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 676 *
da6052f7
NP
677 * In either case (swapcache or inode backed), the pagecache itself holds one
678 * reference to the page. Setting PG_private should also increment the
679 * refcount. The each user mapping also has a reference to the page.
1da177e4 680 *
da6052f7
NP
681 * The pagecache pages are stored in a per-mapping radix tree, which is
682 * rooted at mapping->page_tree, and indexed by offset.
683 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
684 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 685 *
da6052f7 686 * All pagecache pages may be subject to I/O:
1da177e4
LT
687 * - inode pages may need to be read from disk,
688 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
689 * to be written back to the inode on disk,
690 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
691 * modified may need to be swapped out to swap space and (later) to be read
692 * back into memory.
1da177e4
LT
693 */
694
695/*
696 * The zone field is never updated after free_area_init_core()
697 * sets it, so none of the operations on it need to be atomic.
1da177e4 698 */
348f8b6c 699
90572890 700/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 701#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
702#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
703#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 704#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 705
348f8b6c 706/*
25985edc 707 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
708 * sections we define the shift as 0; that plus a 0 mask ensures
709 * the compiler will optimise away reference to them.
710 */
d41dee36
AW
711#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
712#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
713#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 714#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 715
bce54bbf
WD
716/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
717#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 718#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
719#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
720 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 721#else
89689ae7 722#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
723#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
724 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
725#endif
726
bd8029b6 727#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 728
9223b419
CL
729#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
730#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
731#endif
732
d41dee36
AW
733#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
734#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
735#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 736#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 737#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 738
33dd4e0e 739static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 740{
348f8b6c 741 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 742}
1da177e4 743
260ae3f7 744#ifdef CONFIG_ZONE_DEVICE
3565fce3
DW
745void get_zone_device_page(struct page *page);
746void put_zone_device_page(struct page *page);
260ae3f7
DW
747static inline bool is_zone_device_page(const struct page *page)
748{
749 return page_zonenum(page) == ZONE_DEVICE;
750}
751#else
3565fce3
DW
752static inline void get_zone_device_page(struct page *page)
753{
754}
755static inline void put_zone_device_page(struct page *page)
756{
757}
260ae3f7
DW
758static inline bool is_zone_device_page(const struct page *page)
759{
760 return false;
761}
762#endif
763
3565fce3
DW
764static inline void get_page(struct page *page)
765{
766 page = compound_head(page);
767 /*
768 * Getting a normal page or the head of a compound page
0139aa7b 769 * requires to already have an elevated page->_refcount.
3565fce3 770 */
fe896d18
JK
771 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
772 page_ref_inc(page);
3565fce3
DW
773
774 if (unlikely(is_zone_device_page(page)))
775 get_zone_device_page(page);
776}
777
778static inline void put_page(struct page *page)
779{
780 page = compound_head(page);
781
782 if (put_page_testzero(page))
783 __put_page(page);
784
785 if (unlikely(is_zone_device_page(page)))
786 put_zone_device_page(page);
787}
788
9127ab4f
CS
789#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
790#define SECTION_IN_PAGE_FLAGS
791#endif
792
89689ae7 793/*
7a8010cd
VB
794 * The identification function is mainly used by the buddy allocator for
795 * determining if two pages could be buddies. We are not really identifying
796 * the zone since we could be using the section number id if we do not have
797 * node id available in page flags.
798 * We only guarantee that it will return the same value for two combinable
799 * pages in a zone.
89689ae7 800 */
cb2b95e1
AW
801static inline int page_zone_id(struct page *page)
802{
89689ae7 803 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
804}
805
25ba77c1 806static inline int zone_to_nid(struct zone *zone)
89fa3024 807{
d5f541ed
CL
808#ifdef CONFIG_NUMA
809 return zone->node;
810#else
811 return 0;
812#endif
89fa3024
CL
813}
814
89689ae7 815#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 816extern int page_to_nid(const struct page *page);
89689ae7 817#else
33dd4e0e 818static inline int page_to_nid(const struct page *page)
d41dee36 819{
89689ae7 820 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 821}
89689ae7
CL
822#endif
823
57e0a030 824#ifdef CONFIG_NUMA_BALANCING
90572890 825static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 826{
90572890 827 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
828}
829
90572890 830static inline int cpupid_to_pid(int cpupid)
57e0a030 831{
90572890 832 return cpupid & LAST__PID_MASK;
57e0a030 833}
b795854b 834
90572890 835static inline int cpupid_to_cpu(int cpupid)
b795854b 836{
90572890 837 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
838}
839
90572890 840static inline int cpupid_to_nid(int cpupid)
b795854b 841{
90572890 842 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
843}
844
90572890 845static inline bool cpupid_pid_unset(int cpupid)
57e0a030 846{
90572890 847 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
848}
849
90572890 850static inline bool cpupid_cpu_unset(int cpupid)
b795854b 851{
90572890 852 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
853}
854
8c8a743c
PZ
855static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
856{
857 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
858}
859
860#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
861#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
862static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 863{
1ae71d03 864 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 865}
90572890
PZ
866
867static inline int page_cpupid_last(struct page *page)
868{
869 return page->_last_cpupid;
870}
871static inline void page_cpupid_reset_last(struct page *page)
b795854b 872{
1ae71d03 873 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
874}
875#else
90572890 876static inline int page_cpupid_last(struct page *page)
75980e97 877{
90572890 878 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
879}
880
90572890 881extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 882
90572890 883static inline void page_cpupid_reset_last(struct page *page)
75980e97 884{
09940a4f 885 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 886}
90572890
PZ
887#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
888#else /* !CONFIG_NUMA_BALANCING */
889static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 890{
90572890 891 return page_to_nid(page); /* XXX */
57e0a030
MG
892}
893
90572890 894static inline int page_cpupid_last(struct page *page)
57e0a030 895{
90572890 896 return page_to_nid(page); /* XXX */
57e0a030
MG
897}
898
90572890 899static inline int cpupid_to_nid(int cpupid)
b795854b
MG
900{
901 return -1;
902}
903
90572890 904static inline int cpupid_to_pid(int cpupid)
b795854b
MG
905{
906 return -1;
907}
908
90572890 909static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
910{
911 return -1;
912}
913
90572890
PZ
914static inline int cpu_pid_to_cpupid(int nid, int pid)
915{
916 return -1;
917}
918
919static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
920{
921 return 1;
922}
923
90572890 924static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
925{
926}
8c8a743c
PZ
927
928static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
929{
930 return false;
931}
90572890 932#endif /* CONFIG_NUMA_BALANCING */
57e0a030 933
33dd4e0e 934static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
935{
936 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
937}
938
75ef7184
MG
939static inline pg_data_t *page_pgdat(const struct page *page)
940{
941 return NODE_DATA(page_to_nid(page));
942}
943
9127ab4f 944#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
945static inline void set_page_section(struct page *page, unsigned long section)
946{
947 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
948 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
949}
950
aa462abe 951static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
952{
953 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
954}
308c05e3 955#endif
d41dee36 956
2f1b6248 957static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
958{
959 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
960 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
961}
2f1b6248 962
348f8b6c
DH
963static inline void set_page_node(struct page *page, unsigned long node)
964{
965 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
966 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 967}
89689ae7 968
2f1b6248 969static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 970 unsigned long node, unsigned long pfn)
1da177e4 971{
348f8b6c
DH
972 set_page_zone(page, zone);
973 set_page_node(page, node);
9127ab4f 974#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 975 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 976#endif
1da177e4
LT
977}
978
0610c25d
GT
979#ifdef CONFIG_MEMCG
980static inline struct mem_cgroup *page_memcg(struct page *page)
981{
982 return page->mem_cgroup;
983}
55779ec7
JW
984static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
985{
986 WARN_ON_ONCE(!rcu_read_lock_held());
987 return READ_ONCE(page->mem_cgroup);
988}
0610c25d
GT
989#else
990static inline struct mem_cgroup *page_memcg(struct page *page)
991{
992 return NULL;
993}
55779ec7
JW
994static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
995{
996 WARN_ON_ONCE(!rcu_read_lock_held());
997 return NULL;
998}
0610c25d
GT
999#endif
1000
f6ac2354
CL
1001/*
1002 * Some inline functions in vmstat.h depend on page_zone()
1003 */
1004#include <linux/vmstat.h>
1005
33dd4e0e 1006static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1007{
1dff8083 1008 return page_to_virt(page);
1da177e4
LT
1009}
1010
1011#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1012#define HASHED_PAGE_VIRTUAL
1013#endif
1014
1015#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1016static inline void *page_address(const struct page *page)
1017{
1018 return page->virtual;
1019}
1020static inline void set_page_address(struct page *page, void *address)
1021{
1022 page->virtual = address;
1023}
1da177e4
LT
1024#define page_address_init() do { } while(0)
1025#endif
1026
1027#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1028void *page_address(const struct page *page);
1da177e4
LT
1029void set_page_address(struct page *page, void *virtual);
1030void page_address_init(void);
1031#endif
1032
1033#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1034#define page_address(page) lowmem_page_address(page)
1035#define set_page_address(page, address) do { } while(0)
1036#define page_address_init() do { } while(0)
1037#endif
1038
e39155ea
KS
1039extern void *page_rmapping(struct page *page);
1040extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1041extern struct address_space *page_mapping(struct page *page);
1da177e4 1042
f981c595
MG
1043extern struct address_space *__page_file_mapping(struct page *);
1044
1045static inline
1046struct address_space *page_file_mapping(struct page *page)
1047{
1048 if (unlikely(PageSwapCache(page)))
1049 return __page_file_mapping(page);
1050
1051 return page->mapping;
1052}
1053
f6ab1f7f
HY
1054extern pgoff_t __page_file_index(struct page *page);
1055
1da177e4
LT
1056/*
1057 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1058 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1059 */
1060static inline pgoff_t page_index(struct page *page)
1061{
1062 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1063 return __page_file_index(page);
1da177e4
LT
1064 return page->index;
1065}
1066
1aa8aea5 1067bool page_mapped(struct page *page);
bda807d4 1068struct address_space *page_mapping(struct page *page);
1da177e4 1069
2f064f34
MH
1070/*
1071 * Return true only if the page has been allocated with
1072 * ALLOC_NO_WATERMARKS and the low watermark was not
1073 * met implying that the system is under some pressure.
1074 */
1075static inline bool page_is_pfmemalloc(struct page *page)
1076{
1077 /*
1078 * Page index cannot be this large so this must be
1079 * a pfmemalloc page.
1080 */
1081 return page->index == -1UL;
1082}
1083
1084/*
1085 * Only to be called by the page allocator on a freshly allocated
1086 * page.
1087 */
1088static inline void set_page_pfmemalloc(struct page *page)
1089{
1090 page->index = -1UL;
1091}
1092
1093static inline void clear_page_pfmemalloc(struct page *page)
1094{
1095 page->index = 0;
1096}
1097
1da177e4
LT
1098/*
1099 * Different kinds of faults, as returned by handle_mm_fault().
1100 * Used to decide whether a process gets delivered SIGBUS or
1101 * just gets major/minor fault counters bumped up.
1102 */
d0217ac0 1103
83c54070
NP
1104#define VM_FAULT_OOM 0x0001
1105#define VM_FAULT_SIGBUS 0x0002
1106#define VM_FAULT_MAJOR 0x0004
1107#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1108#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1109#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1110#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1111
83c54070
NP
1112#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1113#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1114#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1115#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
b1aa812b 1116#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1da177e4 1117
aa50d3a7
AK
1118#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1119
33692f27
LT
1120#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1121 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1122 VM_FAULT_FALLBACK)
aa50d3a7 1123
282a8e03
RZ
1124#define VM_FAULT_RESULT_TRACE \
1125 { VM_FAULT_OOM, "OOM" }, \
1126 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1127 { VM_FAULT_MAJOR, "MAJOR" }, \
1128 { VM_FAULT_WRITE, "WRITE" }, \
1129 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1130 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1131 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1132 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1133 { VM_FAULT_LOCKED, "LOCKED" }, \
1134 { VM_FAULT_RETRY, "RETRY" }, \
1135 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1136 { VM_FAULT_DONE_COW, "DONE_COW" }
1137
aa50d3a7
AK
1138/* Encode hstate index for a hwpoisoned large page */
1139#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1140#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1141
1c0fe6e3
NP
1142/*
1143 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1144 */
1145extern void pagefault_out_of_memory(void);
1146
1da177e4
LT
1147#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1148
ddd588b5 1149/*
7bf02ea2 1150 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1151 * various contexts.
1152 */
4b59e6c4 1153#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1154
7bf02ea2
DR
1155extern void show_free_areas(unsigned int flags);
1156extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1157
1da177e4 1158int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1159#ifdef CONFIG_SHMEM
1160bool shmem_mapping(struct address_space *mapping);
1161#else
1162static inline bool shmem_mapping(struct address_space *mapping)
1163{
1164 return false;
1165}
1166#endif
1da177e4 1167
7f43add4 1168extern bool can_do_mlock(void);
1da177e4
LT
1169extern int user_shm_lock(size_t, struct user_struct *);
1170extern void user_shm_unlock(size_t, struct user_struct *);
1171
1172/*
1173 * Parameter block passed down to zap_pte_range in exceptional cases.
1174 */
1175struct zap_details {
1da177e4
LT
1176 struct address_space *check_mapping; /* Check page->mapping if set */
1177 pgoff_t first_index; /* Lowest page->index to unmap */
1178 pgoff_t last_index; /* Highest page->index to unmap */
aac45363
MH
1179 bool ignore_dirty; /* Ignore dirty pages */
1180 bool check_swap_entries; /* Check also swap entries */
1da177e4
LT
1181};
1182
7e675137
NP
1183struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1184 pte_t pte);
28093f9f
GS
1185struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1186 pmd_t pmd);
7e675137 1187
c627f9cc
JS
1188int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1189 unsigned long size);
14f5ff5d 1190void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1191 unsigned long size, struct zap_details *);
4f74d2c8
LT
1192void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1193 unsigned long start, unsigned long end);
e6473092
MM
1194
1195/**
1196 * mm_walk - callbacks for walk_page_range
e6473092 1197 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1198 * this handler is required to be able to handle
1199 * pmd_trans_huge() pmds. They may simply choose to
1200 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1201 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1202 * @pte_hole: if set, called for each hole at all levels
5dc37642 1203 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426 1204 * @test_walk: caller specific callback function to determine whether
f7e2355f 1205 * we walk over the current vma or not. Returning 0
fafaa426
NH
1206 * value means "do page table walk over the current vma,"
1207 * and a negative one means "abort current page table walk
f7e2355f 1208 * right now." 1 means "skip the current vma."
fafaa426
NH
1209 * @mm: mm_struct representing the target process of page table walk
1210 * @vma: vma currently walked (NULL if walking outside vmas)
1211 * @private: private data for callbacks' usage
e6473092 1212 *
fafaa426 1213 * (see the comment on walk_page_range() for more details)
e6473092
MM
1214 */
1215struct mm_walk {
0f157a5b
AM
1216 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1217 unsigned long next, struct mm_walk *walk);
1218 int (*pte_entry)(pte_t *pte, unsigned long addr,
1219 unsigned long next, struct mm_walk *walk);
1220 int (*pte_hole)(unsigned long addr, unsigned long next,
1221 struct mm_walk *walk);
1222 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1223 unsigned long addr, unsigned long next,
1224 struct mm_walk *walk);
fafaa426
NH
1225 int (*test_walk)(unsigned long addr, unsigned long next,
1226 struct mm_walk *walk);
2165009b 1227 struct mm_struct *mm;
fafaa426 1228 struct vm_area_struct *vma;
2165009b 1229 void *private;
e6473092
MM
1230};
1231
2165009b
DH
1232int walk_page_range(unsigned long addr, unsigned long end,
1233 struct mm_walk *walk);
900fc5f1 1234int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1235void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1236 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1237int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1238 struct vm_area_struct *vma);
1da177e4
LT
1239void unmap_mapping_range(struct address_space *mapping,
1240 loff_t const holebegin, loff_t const holelen, int even_cows);
09796395
RZ
1241int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1242 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1243int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1244 unsigned long *pfn);
d87fe660 1245int follow_phys(struct vm_area_struct *vma, unsigned long address,
1246 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1247int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1248 void *buf, int len, int write);
1da177e4
LT
1249
1250static inline void unmap_shared_mapping_range(struct address_space *mapping,
1251 loff_t const holebegin, loff_t const holelen)
1252{
1253 unmap_mapping_range(mapping, holebegin, holelen, 0);
1254}
1255
7caef267 1256extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1257extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1258void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1259void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1260int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1261int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1262int invalidate_inode_page(struct page *page);
1263
7ee1dd3f 1264#ifdef CONFIG_MMU
dcddffd4
KS
1265extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1266 unsigned int flags);
5c723ba5 1267extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1268 unsigned long address, unsigned int fault_flags,
1269 bool *unlocked);
7ee1dd3f 1270#else
dcddffd4
KS
1271static inline int handle_mm_fault(struct vm_area_struct *vma,
1272 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1273{
1274 /* should never happen if there's no MMU */
1275 BUG();
1276 return VM_FAULT_SIGBUS;
1277}
5c723ba5
PZ
1278static inline int fixup_user_fault(struct task_struct *tsk,
1279 struct mm_struct *mm, unsigned long address,
4a9e1cda 1280 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1281{
1282 /* should never happen if there's no MMU */
1283 BUG();
1284 return -EFAULT;
1285}
7ee1dd3f 1286#endif
f33ea7f4 1287
f307ab6d
LS
1288extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1289 unsigned int gup_flags);
5ddd36b9 1290extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1291 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1292extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1293 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1294
1e987790
DH
1295long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1296 unsigned long start, unsigned long nr_pages,
9beae1ea 1297 unsigned int gup_flags, struct page **pages,
5b56d49f 1298 struct vm_area_struct **vmas, int *locked);
c12d2da5 1299long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1300 unsigned int gup_flags, struct page **pages,
cde70140 1301 struct vm_area_struct **vmas);
c12d2da5 1302long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1303 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1304long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1305 struct page **pages, unsigned int gup_flags);
d2bf6be8
NP
1306int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1307 struct page **pages);
8025e5dd
JK
1308
1309/* Container for pinned pfns / pages */
1310struct frame_vector {
1311 unsigned int nr_allocated; /* Number of frames we have space for */
1312 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1313 bool got_ref; /* Did we pin pages by getting page ref? */
1314 bool is_pfns; /* Does array contain pages or pfns? */
1315 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1316 * pfns_vector_pages() or pfns_vector_pfns()
1317 * for access */
1318};
1319
1320struct frame_vector *frame_vector_create(unsigned int nr_frames);
1321void frame_vector_destroy(struct frame_vector *vec);
1322int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1323 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1324void put_vaddr_frames(struct frame_vector *vec);
1325int frame_vector_to_pages(struct frame_vector *vec);
1326void frame_vector_to_pfns(struct frame_vector *vec);
1327
1328static inline unsigned int frame_vector_count(struct frame_vector *vec)
1329{
1330 return vec->nr_frames;
1331}
1332
1333static inline struct page **frame_vector_pages(struct frame_vector *vec)
1334{
1335 if (vec->is_pfns) {
1336 int err = frame_vector_to_pages(vec);
1337
1338 if (err)
1339 return ERR_PTR(err);
1340 }
1341 return (struct page **)(vec->ptrs);
1342}
1343
1344static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1345{
1346 if (!vec->is_pfns)
1347 frame_vector_to_pfns(vec);
1348 return (unsigned long *)(vec->ptrs);
1349}
1350
18022c5d
MG
1351struct kvec;
1352int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1353 struct page **pages);
1354int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1355struct page *get_dump_page(unsigned long addr);
1da177e4 1356
cf9a2ae8 1357extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1358extern void do_invalidatepage(struct page *page, unsigned int offset,
1359 unsigned int length);
cf9a2ae8 1360
1da177e4 1361int __set_page_dirty_nobuffers(struct page *page);
76719325 1362int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1363int redirty_page_for_writepage(struct writeback_control *wbc,
1364 struct page *page);
62cccb8c 1365void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1366void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1367 struct bdi_writeback *wb);
b3c97528 1368int set_page_dirty(struct page *page);
1da177e4 1369int set_page_dirty_lock(struct page *page);
11f81bec 1370void cancel_dirty_page(struct page *page);
1da177e4 1371int clear_page_dirty_for_io(struct page *page);
b9ea2515 1372
a9090253 1373int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1374
39aa3cb3 1375/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1376static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1377{
1378 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1379}
1380
b5330628
ON
1381static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1382{
1383 return !vma->vm_ops;
1384}
1385
b0506e48
MR
1386#ifdef CONFIG_SHMEM
1387/*
1388 * The vma_is_shmem is not inline because it is used only by slow
1389 * paths in userfault.
1390 */
1391bool vma_is_shmem(struct vm_area_struct *vma);
1392#else
1393static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1394#endif
1395
a09a79f6
MP
1396static inline int stack_guard_page_start(struct vm_area_struct *vma,
1397 unsigned long addr)
1398{
1399 return (vma->vm_flags & VM_GROWSDOWN) &&
1400 (vma->vm_start == addr) &&
1401 !vma_growsdown(vma->vm_prev, addr);
1402}
1403
1404/* Is the vma a continuation of the stack vma below it? */
1405static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1406{
1407 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1408}
1409
1410static inline int stack_guard_page_end(struct vm_area_struct *vma,
1411 unsigned long addr)
1412{
1413 return (vma->vm_flags & VM_GROWSUP) &&
1414 (vma->vm_end == addr) &&
1415 !vma_growsup(vma->vm_next, addr);
1416}
1417
d17af505 1418int vma_is_stack_for_current(struct vm_area_struct *vma);
b7643757 1419
b6a2fea3
OW
1420extern unsigned long move_page_tables(struct vm_area_struct *vma,
1421 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1422 unsigned long new_addr, unsigned long len,
1423 bool need_rmap_locks);
7da4d641
PZ
1424extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1425 unsigned long end, pgprot_t newprot,
4b10e7d5 1426 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1427extern int mprotect_fixup(struct vm_area_struct *vma,
1428 struct vm_area_struct **pprev, unsigned long start,
1429 unsigned long end, unsigned long newflags);
1da177e4 1430
465a454f
PZ
1431/*
1432 * doesn't attempt to fault and will return short.
1433 */
1434int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1435 struct page **pages);
d559db08
KH
1436/*
1437 * per-process(per-mm_struct) statistics.
1438 */
d559db08
KH
1439static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1440{
69c97823
KK
1441 long val = atomic_long_read(&mm->rss_stat.count[member]);
1442
1443#ifdef SPLIT_RSS_COUNTING
1444 /*
1445 * counter is updated in asynchronous manner and may go to minus.
1446 * But it's never be expected number for users.
1447 */
1448 if (val < 0)
1449 val = 0;
172703b0 1450#endif
69c97823
KK
1451 return (unsigned long)val;
1452}
d559db08
KH
1453
1454static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1455{
172703b0 1456 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1457}
1458
1459static inline void inc_mm_counter(struct mm_struct *mm, int member)
1460{
172703b0 1461 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1462}
1463
1464static inline void dec_mm_counter(struct mm_struct *mm, int member)
1465{
172703b0 1466 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1467}
1468
eca56ff9
JM
1469/* Optimized variant when page is already known not to be PageAnon */
1470static inline int mm_counter_file(struct page *page)
1471{
1472 if (PageSwapBacked(page))
1473 return MM_SHMEMPAGES;
1474 return MM_FILEPAGES;
1475}
1476
1477static inline int mm_counter(struct page *page)
1478{
1479 if (PageAnon(page))
1480 return MM_ANONPAGES;
1481 return mm_counter_file(page);
1482}
1483
d559db08
KH
1484static inline unsigned long get_mm_rss(struct mm_struct *mm)
1485{
1486 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1487 get_mm_counter(mm, MM_ANONPAGES) +
1488 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1489}
1490
1491static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1492{
1493 return max(mm->hiwater_rss, get_mm_rss(mm));
1494}
1495
1496static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1497{
1498 return max(mm->hiwater_vm, mm->total_vm);
1499}
1500
1501static inline void update_hiwater_rss(struct mm_struct *mm)
1502{
1503 unsigned long _rss = get_mm_rss(mm);
1504
1505 if ((mm)->hiwater_rss < _rss)
1506 (mm)->hiwater_rss = _rss;
1507}
1508
1509static inline void update_hiwater_vm(struct mm_struct *mm)
1510{
1511 if (mm->hiwater_vm < mm->total_vm)
1512 mm->hiwater_vm = mm->total_vm;
1513}
1514
695f0559
PC
1515static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1516{
1517 mm->hiwater_rss = get_mm_rss(mm);
1518}
1519
d559db08
KH
1520static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1521 struct mm_struct *mm)
1522{
1523 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1524
1525 if (*maxrss < hiwater_rss)
1526 *maxrss = hiwater_rss;
1527}
1528
53bddb4e 1529#if defined(SPLIT_RSS_COUNTING)
05af2e10 1530void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1531#else
05af2e10 1532static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1533{
1534}
1535#endif
465a454f 1536
3565fce3
DW
1537#ifndef __HAVE_ARCH_PTE_DEVMAP
1538static inline int pte_devmap(pte_t pte)
1539{
1540 return 0;
1541}
1542#endif
1543
6d2329f8 1544int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1545
25ca1d6c
NK
1546extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1547 spinlock_t **ptl);
1548static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1549 spinlock_t **ptl)
1550{
1551 pte_t *ptep;
1552 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1553 return ptep;
1554}
c9cfcddf 1555
5f22df00
NP
1556#ifdef __PAGETABLE_PUD_FOLDED
1557static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1558 unsigned long address)
1559{
1560 return 0;
1561}
1562#else
1bb3630e 1563int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1564#endif
1565
2d2f5119 1566#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1567static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1568 unsigned long address)
1569{
1570 return 0;
1571}
dc6c9a35 1572
2d2f5119
KS
1573static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1574
dc6c9a35
KS
1575static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1576{
1577 return 0;
1578}
1579
1580static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1581static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1582
5f22df00 1583#else
1bb3630e 1584int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1585
2d2f5119
KS
1586static inline void mm_nr_pmds_init(struct mm_struct *mm)
1587{
1588 atomic_long_set(&mm->nr_pmds, 0);
1589}
1590
dc6c9a35
KS
1591static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1592{
1593 return atomic_long_read(&mm->nr_pmds);
1594}
1595
1596static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1597{
1598 atomic_long_inc(&mm->nr_pmds);
1599}
1600
1601static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1602{
1603 atomic_long_dec(&mm->nr_pmds);
1604}
5f22df00
NP
1605#endif
1606
3ed3a4f0 1607int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1bb3630e
HD
1608int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1609
1da177e4
LT
1610/*
1611 * The following ifdef needed to get the 4level-fixup.h header to work.
1612 * Remove it when 4level-fixup.h has been removed.
1613 */
1bb3630e 1614#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1615static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1616{
1bb3630e
HD
1617 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1618 NULL: pud_offset(pgd, address);
1da177e4
LT
1619}
1620
1621static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1622{
1bb3630e
HD
1623 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1624 NULL: pmd_offset(pud, address);
1da177e4 1625}
1bb3630e
HD
1626#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1627
57c1ffce 1628#if USE_SPLIT_PTE_PTLOCKS
597d795a 1629#if ALLOC_SPLIT_PTLOCKS
b35f1819 1630void __init ptlock_cache_init(void);
539edb58
PZ
1631extern bool ptlock_alloc(struct page *page);
1632extern void ptlock_free(struct page *page);
1633
1634static inline spinlock_t *ptlock_ptr(struct page *page)
1635{
1636 return page->ptl;
1637}
597d795a 1638#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1639static inline void ptlock_cache_init(void)
1640{
1641}
1642
49076ec2
KS
1643static inline bool ptlock_alloc(struct page *page)
1644{
49076ec2
KS
1645 return true;
1646}
539edb58 1647
49076ec2
KS
1648static inline void ptlock_free(struct page *page)
1649{
49076ec2
KS
1650}
1651
1652static inline spinlock_t *ptlock_ptr(struct page *page)
1653{
539edb58 1654 return &page->ptl;
49076ec2 1655}
597d795a 1656#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1657
1658static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1659{
1660 return ptlock_ptr(pmd_page(*pmd));
1661}
1662
1663static inline bool ptlock_init(struct page *page)
1664{
1665 /*
1666 * prep_new_page() initialize page->private (and therefore page->ptl)
1667 * with 0. Make sure nobody took it in use in between.
1668 *
1669 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1670 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1671 */
309381fe 1672 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1673 if (!ptlock_alloc(page))
1674 return false;
1675 spin_lock_init(ptlock_ptr(page));
1676 return true;
1677}
1678
1679/* Reset page->mapping so free_pages_check won't complain. */
1680static inline void pte_lock_deinit(struct page *page)
1681{
1682 page->mapping = NULL;
1683 ptlock_free(page);
1684}
1685
57c1ffce 1686#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1687/*
1688 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1689 */
49076ec2
KS
1690static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1691{
1692 return &mm->page_table_lock;
1693}
b35f1819 1694static inline void ptlock_cache_init(void) {}
49076ec2
KS
1695static inline bool ptlock_init(struct page *page) { return true; }
1696static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1697#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1698
b35f1819
KS
1699static inline void pgtable_init(void)
1700{
1701 ptlock_cache_init();
1702 pgtable_cache_init();
1703}
1704
390f44e2 1705static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1706{
706874e9
VD
1707 if (!ptlock_init(page))
1708 return false;
2f569afd 1709 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1710 return true;
2f569afd
MS
1711}
1712
1713static inline void pgtable_page_dtor(struct page *page)
1714{
1715 pte_lock_deinit(page);
1716 dec_zone_page_state(page, NR_PAGETABLE);
1717}
1718
c74df32c
HD
1719#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1720({ \
4c21e2f2 1721 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1722 pte_t *__pte = pte_offset_map(pmd, address); \
1723 *(ptlp) = __ptl; \
1724 spin_lock(__ptl); \
1725 __pte; \
1726})
1727
1728#define pte_unmap_unlock(pte, ptl) do { \
1729 spin_unlock(ptl); \
1730 pte_unmap(pte); \
1731} while (0)
1732
3ed3a4f0
KS
1733#define pte_alloc(mm, pmd, address) \
1734 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1735
1736#define pte_alloc_map(mm, pmd, address) \
1737 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1bb3630e 1738
c74df32c 1739#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3ed3a4f0
KS
1740 (pte_alloc(mm, pmd, address) ? \
1741 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 1742
1bb3630e 1743#define pte_alloc_kernel(pmd, address) \
8ac1f832 1744 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1745 NULL: pte_offset_kernel(pmd, address))
1da177e4 1746
e009bb30
KS
1747#if USE_SPLIT_PMD_PTLOCKS
1748
634391ac
MS
1749static struct page *pmd_to_page(pmd_t *pmd)
1750{
1751 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1752 return virt_to_page((void *)((unsigned long) pmd & mask));
1753}
1754
e009bb30
KS
1755static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1756{
634391ac 1757 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1758}
1759
1760static inline bool pgtable_pmd_page_ctor(struct page *page)
1761{
e009bb30
KS
1762#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1763 page->pmd_huge_pte = NULL;
1764#endif
49076ec2 1765 return ptlock_init(page);
e009bb30
KS
1766}
1767
1768static inline void pgtable_pmd_page_dtor(struct page *page)
1769{
1770#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1771 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1772#endif
49076ec2 1773 ptlock_free(page);
e009bb30
KS
1774}
1775
634391ac 1776#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1777
1778#else
1779
9a86cb7b
KS
1780static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1781{
1782 return &mm->page_table_lock;
1783}
1784
e009bb30
KS
1785static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1786static inline void pgtable_pmd_page_dtor(struct page *page) {}
1787
c389a250 1788#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1789
e009bb30
KS
1790#endif
1791
9a86cb7b
KS
1792static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1793{
1794 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1795 spin_lock(ptl);
1796 return ptl;
1797}
1798
62906027
NP
1799extern void __init pagecache_init(void);
1800
1da177e4 1801extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1802extern void free_area_init_node(int nid, unsigned long * zones_size,
1803 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1804extern void free_initmem(void);
1805
69afade7
JL
1806/*
1807 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1808 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1809 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1810 * Return pages freed into the buddy system.
1811 */
11199692 1812extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1813 int poison, char *s);
c3d5f5f0 1814
cfa11e08
JL
1815#ifdef CONFIG_HIGHMEM
1816/*
1817 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1818 * and totalram_pages.
1819 */
1820extern void free_highmem_page(struct page *page);
1821#endif
69afade7 1822
c3d5f5f0 1823extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1824extern void mem_init_print_info(const char *str);
69afade7 1825
4b50bcc7 1826extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 1827
69afade7
JL
1828/* Free the reserved page into the buddy system, so it gets managed. */
1829static inline void __free_reserved_page(struct page *page)
1830{
1831 ClearPageReserved(page);
1832 init_page_count(page);
1833 __free_page(page);
1834}
1835
1836static inline void free_reserved_page(struct page *page)
1837{
1838 __free_reserved_page(page);
1839 adjust_managed_page_count(page, 1);
1840}
1841
1842static inline void mark_page_reserved(struct page *page)
1843{
1844 SetPageReserved(page);
1845 adjust_managed_page_count(page, -1);
1846}
1847
1848/*
1849 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1850 * The freed pages will be poisoned with pattern "poison" if it's within
1851 * range [0, UCHAR_MAX].
1852 * Return pages freed into the buddy system.
69afade7
JL
1853 */
1854static inline unsigned long free_initmem_default(int poison)
1855{
1856 extern char __init_begin[], __init_end[];
1857
11199692 1858 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1859 poison, "unused kernel");
1860}
1861
7ee3d4e8
JL
1862static inline unsigned long get_num_physpages(void)
1863{
1864 int nid;
1865 unsigned long phys_pages = 0;
1866
1867 for_each_online_node(nid)
1868 phys_pages += node_present_pages(nid);
1869
1870 return phys_pages;
1871}
1872
0ee332c1 1873#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1874/*
0ee332c1 1875 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1876 * zones, allocate the backing mem_map and account for memory holes in a more
1877 * architecture independent manner. This is a substitute for creating the
1878 * zone_sizes[] and zholes_size[] arrays and passing them to
1879 * free_area_init_node()
1880 *
1881 * An architecture is expected to register range of page frames backed by
0ee332c1 1882 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1883 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1884 * usage, an architecture is expected to do something like
1885 *
1886 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1887 * max_highmem_pfn};
1888 * for_each_valid_physical_page_range()
0ee332c1 1889 * memblock_add_node(base, size, nid)
c713216d
MG
1890 * free_area_init_nodes(max_zone_pfns);
1891 *
0ee332c1
TH
1892 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1893 * registered physical page range. Similarly
1894 * sparse_memory_present_with_active_regions() calls memory_present() for
1895 * each range when SPARSEMEM is enabled.
c713216d
MG
1896 *
1897 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1898 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1899 */
1900extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1901unsigned long node_map_pfn_alignment(void);
32996250
YL
1902unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1903 unsigned long end_pfn);
c713216d
MG
1904extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1905 unsigned long end_pfn);
1906extern void get_pfn_range_for_nid(unsigned int nid,
1907 unsigned long *start_pfn, unsigned long *end_pfn);
1908extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1909extern void free_bootmem_with_active_regions(int nid,
1910 unsigned long max_low_pfn);
1911extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1912
0ee332c1 1913#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1914
0ee332c1 1915#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1916 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1917static inline int __early_pfn_to_nid(unsigned long pfn,
1918 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1919{
1920 return 0;
1921}
1922#else
1923/* please see mm/page_alloc.c */
1924extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1925/* there is a per-arch backend function. */
8a942fde
MG
1926extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1927 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1928#endif
1929
0e0b864e 1930extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1931extern void memmap_init_zone(unsigned long, int, unsigned long,
1932 unsigned long, enum memmap_context);
bc75d33f 1933extern void setup_per_zone_wmarks(void);
1b79acc9 1934extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1935extern void mem_init(void);
8feae131 1936extern void __init mmap_init(void);
b2b755b5 1937extern void show_mem(unsigned int flags);
d02bd27b 1938extern long si_mem_available(void);
1da177e4
LT
1939extern void si_meminfo(struct sysinfo * val);
1940extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
1941#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
1942extern unsigned long arch_reserved_kernel_pages(void);
1943#endif
1da177e4 1944
7877cdcc
MH
1945extern __printf(2, 3)
1946void warn_alloc(gfp_t gfp_mask, const char *fmt, ...);
a238ab5b 1947
e7c8d5c9 1948extern void setup_per_cpu_pageset(void);
e7c8d5c9 1949
112067f0 1950extern void zone_pcp_update(struct zone *zone);
340175b7 1951extern void zone_pcp_reset(struct zone *zone);
112067f0 1952
75f7ad8e
PS
1953/* page_alloc.c */
1954extern int min_free_kbytes;
795ae7a0 1955extern int watermark_scale_factor;
75f7ad8e 1956
8feae131 1957/* nommu.c */
33e5d769 1958extern atomic_long_t mmap_pages_allocated;
7e660872 1959extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1960
6b2dbba8 1961/* interval_tree.c */
6b2dbba8
ML
1962void vma_interval_tree_insert(struct vm_area_struct *node,
1963 struct rb_root *root);
9826a516
ML
1964void vma_interval_tree_insert_after(struct vm_area_struct *node,
1965 struct vm_area_struct *prev,
1966 struct rb_root *root);
6b2dbba8
ML
1967void vma_interval_tree_remove(struct vm_area_struct *node,
1968 struct rb_root *root);
1969struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1970 unsigned long start, unsigned long last);
1971struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1972 unsigned long start, unsigned long last);
1973
1974#define vma_interval_tree_foreach(vma, root, start, last) \
1975 for (vma = vma_interval_tree_iter_first(root, start, last); \
1976 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 1977
bf181b9f
ML
1978void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1979 struct rb_root *root);
1980void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1981 struct rb_root *root);
1982struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1983 struct rb_root *root, unsigned long start, unsigned long last);
1984struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1985 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1986#ifdef CONFIG_DEBUG_VM_RB
1987void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1988#endif
bf181b9f
ML
1989
1990#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1991 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1992 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1993
1da177e4 1994/* mmap.c */
34b4e4aa 1995extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
1996extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
1997 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
1998 struct vm_area_struct *expand);
1999static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2000 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2001{
2002 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2003}
1da177e4
LT
2004extern struct vm_area_struct *vma_merge(struct mm_struct *,
2005 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2006 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2007 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4
LT
2008extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2009extern int split_vma(struct mm_struct *,
2010 struct vm_area_struct *, unsigned long addr, int new_below);
2011extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2012extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2013 struct rb_node **, struct rb_node *);
a8fb5618 2014extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2015extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2016 unsigned long addr, unsigned long len, pgoff_t pgoff,
2017 bool *need_rmap_locks);
1da177e4 2018extern void exit_mmap(struct mm_struct *);
925d1c40 2019
9c599024
CG
2020static inline int check_data_rlimit(unsigned long rlim,
2021 unsigned long new,
2022 unsigned long start,
2023 unsigned long end_data,
2024 unsigned long start_data)
2025{
2026 if (rlim < RLIM_INFINITY) {
2027 if (((new - start) + (end_data - start_data)) > rlim)
2028 return -ENOSPC;
2029 }
2030
2031 return 0;
2032}
2033
7906d00c
AA
2034extern int mm_take_all_locks(struct mm_struct *mm);
2035extern void mm_drop_all_locks(struct mm_struct *mm);
2036
38646013
JS
2037extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2038extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2039extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2040
84638335
KK
2041extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2042extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2043
2eefd878
DS
2044extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2045 const struct vm_special_mapping *sm);
3935ed6a
SS
2046extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2047 unsigned long addr, unsigned long len,
a62c34bd
AL
2048 unsigned long flags,
2049 const struct vm_special_mapping *spec);
2050/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2051extern int install_special_mapping(struct mm_struct *mm,
2052 unsigned long addr, unsigned long len,
2053 unsigned long flags, struct page **pages);
1da177e4
LT
2054
2055extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2056
0165ab44 2057extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 2058 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1fcfd8db 2059extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2060 unsigned long len, unsigned long prot, unsigned long flags,
1fcfd8db 2061 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1da177e4
LT
2062extern int do_munmap(struct mm_struct *, unsigned long, size_t);
2063
1fcfd8db
ON
2064static inline unsigned long
2065do_mmap_pgoff(struct file *file, unsigned long addr,
2066 unsigned long len, unsigned long prot, unsigned long flags,
2067 unsigned long pgoff, unsigned long *populate)
2068{
2069 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
2070}
2071
bebeb3d6
ML
2072#ifdef CONFIG_MMU
2073extern int __mm_populate(unsigned long addr, unsigned long len,
2074 int ignore_errors);
2075static inline void mm_populate(unsigned long addr, unsigned long len)
2076{
2077 /* Ignore errors */
2078 (void) __mm_populate(addr, len, 1);
2079}
2080#else
2081static inline void mm_populate(unsigned long addr, unsigned long len) {}
2082#endif
2083
e4eb1ff6 2084/* These take the mm semaphore themselves */
5d22fc25 2085extern int __must_check vm_brk(unsigned long, unsigned long);
bfce281c 2086extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2087extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2088 unsigned long, unsigned long,
2089 unsigned long, unsigned long);
1da177e4 2090
db4fbfb9
ML
2091struct vm_unmapped_area_info {
2092#define VM_UNMAPPED_AREA_TOPDOWN 1
2093 unsigned long flags;
2094 unsigned long length;
2095 unsigned long low_limit;
2096 unsigned long high_limit;
2097 unsigned long align_mask;
2098 unsigned long align_offset;
2099};
2100
2101extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2102extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2103
2104/*
2105 * Search for an unmapped address range.
2106 *
2107 * We are looking for a range that:
2108 * - does not intersect with any VMA;
2109 * - is contained within the [low_limit, high_limit) interval;
2110 * - is at least the desired size.
2111 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2112 */
2113static inline unsigned long
2114vm_unmapped_area(struct vm_unmapped_area_info *info)
2115{
cdd7875e 2116 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2117 return unmapped_area_topdown(info);
cdd7875e
BP
2118 else
2119 return unmapped_area(info);
db4fbfb9
ML
2120}
2121
85821aab 2122/* truncate.c */
1da177e4 2123extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2124extern void truncate_inode_pages_range(struct address_space *,
2125 loff_t lstart, loff_t lend);
91b0abe3 2126extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2127
2128/* generic vm_area_ops exported for stackable file systems */
d0217ac0 2129extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
82b0f8c3 2130extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2131 pgoff_t start_pgoff, pgoff_t end_pgoff);
4fcf1c62 2132extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
2133
2134/* mm/page-writeback.c */
2135int write_one_page(struct page *page, int wait);
1cf6e7d8 2136void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2137
2138/* readahead.c */
2139#define VM_MAX_READAHEAD 128 /* kbytes */
2140#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2141
1da177e4 2142int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2143 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2144
2145void page_cache_sync_readahead(struct address_space *mapping,
2146 struct file_ra_state *ra,
2147 struct file *filp,
2148 pgoff_t offset,
2149 unsigned long size);
2150
2151void page_cache_async_readahead(struct address_space *mapping,
2152 struct file_ra_state *ra,
2153 struct file *filp,
2154 struct page *pg,
2155 pgoff_t offset,
2156 unsigned long size);
2157
d05f3169 2158/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2159extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2160
2161/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2162extern int expand_downwards(struct vm_area_struct *vma,
2163 unsigned long address);
8ca3eb08 2164#if VM_GROWSUP
46dea3d0 2165extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2166#else
fee7e49d 2167 #define expand_upwards(vma, address) (0)
9ab88515 2168#endif
1da177e4
LT
2169
2170/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2171extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2172extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2173 struct vm_area_struct **pprev);
2174
2175/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2176 NULL if none. Assume start_addr < end_addr. */
2177static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2178{
2179 struct vm_area_struct * vma = find_vma(mm,start_addr);
2180
2181 if (vma && end_addr <= vma->vm_start)
2182 vma = NULL;
2183 return vma;
2184}
2185
2186static inline unsigned long vma_pages(struct vm_area_struct *vma)
2187{
2188 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2189}
2190
640708a2
PE
2191/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2192static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2193 unsigned long vm_start, unsigned long vm_end)
2194{
2195 struct vm_area_struct *vma = find_vma(mm, vm_start);
2196
2197 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2198 vma = NULL;
2199
2200 return vma;
2201}
2202
bad849b3 2203#ifdef CONFIG_MMU
804af2cf 2204pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2205void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2206#else
2207static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2208{
2209 return __pgprot(0);
2210}
64e45507
PF
2211static inline void vma_set_page_prot(struct vm_area_struct *vma)
2212{
2213 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2214}
bad849b3
DH
2215#endif
2216
5877231f 2217#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2218unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2219 unsigned long start, unsigned long end);
2220#endif
2221
deceb6cd 2222struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2223int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2224 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2225int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2226int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2227 unsigned long pfn);
1745cbc5
AL
2228int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2229 unsigned long pfn, pgprot_t pgprot);
423bad60 2230int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2231 pfn_t pfn);
b4cbb197
LT
2232int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2233
deceb6cd 2234
240aadee
ML
2235struct page *follow_page_mask(struct vm_area_struct *vma,
2236 unsigned long address, unsigned int foll_flags,
2237 unsigned int *page_mask);
2238
2239static inline struct page *follow_page(struct vm_area_struct *vma,
2240 unsigned long address, unsigned int foll_flags)
2241{
2242 unsigned int unused_page_mask;
2243 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2244}
2245
deceb6cd
HD
2246#define FOLL_WRITE 0x01 /* check pte is writable */
2247#define FOLL_TOUCH 0x02 /* mark page accessed */
2248#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2249#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2250#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2251#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2252 * and return without waiting upon it */
84d33df2 2253#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2254#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2255#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2256#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2257#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2258#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2259#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2260#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2261#define FOLL_COW 0x4000 /* internal GUP flag */
1da177e4 2262
2f569afd 2263typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2264 void *data);
2265extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2266 unsigned long size, pte_fn_t fn, void *data);
2267
1da177e4 2268
8823b1db
LA
2269#ifdef CONFIG_PAGE_POISONING
2270extern bool page_poisoning_enabled(void);
2271extern void kernel_poison_pages(struct page *page, int numpages, int enable);
1414c7f4 2272extern bool page_is_poisoned(struct page *page);
8823b1db
LA
2273#else
2274static inline bool page_poisoning_enabled(void) { return false; }
2275static inline void kernel_poison_pages(struct page *page, int numpages,
2276 int enable) { }
1414c7f4 2277static inline bool page_is_poisoned(struct page *page) { return false; }
8823b1db
LA
2278#endif
2279
12d6f21e 2280#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2281extern bool _debug_pagealloc_enabled;
2282extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2283
2284static inline bool debug_pagealloc_enabled(void)
2285{
2286 return _debug_pagealloc_enabled;
2287}
2288
2289static inline void
2290kernel_map_pages(struct page *page, int numpages, int enable)
2291{
2292 if (!debug_pagealloc_enabled())
2293 return;
2294
2295 __kernel_map_pages(page, numpages, enable);
2296}
8a235efa
RW
2297#ifdef CONFIG_HIBERNATION
2298extern bool kernel_page_present(struct page *page);
40b44137
JK
2299#endif /* CONFIG_HIBERNATION */
2300#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2301static inline void
9858db50 2302kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2303#ifdef CONFIG_HIBERNATION
2304static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2305#endif /* CONFIG_HIBERNATION */
2306static inline bool debug_pagealloc_enabled(void)
2307{
2308 return false;
2309}
2310#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2311
a6c19dfe 2312#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2313extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2314extern int in_gate_area_no_mm(unsigned long addr);
2315extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2316#else
a6c19dfe
AL
2317static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2318{
2319 return NULL;
2320}
2321static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2322static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2323{
2324 return 0;
2325}
1da177e4
LT
2326#endif /* __HAVE_ARCH_GATE_AREA */
2327
44a70ade
MH
2328extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2329
146732ce
JT
2330#ifdef CONFIG_SYSCTL
2331extern int sysctl_drop_caches;
8d65af78 2332int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2333 void __user *, size_t *, loff_t *);
146732ce
JT
2334#endif
2335
cb731d6c
VD
2336void drop_slab(void);
2337void drop_slab_node(int nid);
9d0243bc 2338
7a9166e3
LY
2339#ifndef CONFIG_MMU
2340#define randomize_va_space 0
2341#else
a62eaf15 2342extern int randomize_va_space;
7a9166e3 2343#endif
a62eaf15 2344
045e72ac 2345const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2346void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2347
9bdac914
YL
2348void sparse_mem_maps_populate_node(struct page **map_map,
2349 unsigned long pnum_begin,
2350 unsigned long pnum_end,
2351 unsigned long map_count,
2352 int nodeid);
2353
98f3cfc1 2354struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2355pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2356pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2357pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2358pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2359void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc
DW
2360struct vmem_altmap;
2361void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2362 struct vmem_altmap *altmap);
2363static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2364{
2365 return __vmemmap_alloc_block_buf(size, node, NULL);
2366}
2367
8f6aac41 2368void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2369int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2370 int node);
2371int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2372void vmemmap_populate_print_last(void);
0197518c 2373#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2374void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2375#endif
46723bfa
YI
2376void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2377 unsigned long size);
6a46079c 2378
82ba011b
AK
2379enum mf_flags {
2380 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2381 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2382 MF_MUST_KILL = 1 << 2,
cf870c70 2383 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2384};
cd42f4a3 2385extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2386extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2387extern int unpoison_memory(unsigned long pfn);
ead07f6a 2388extern int get_hwpoison_page(struct page *page);
4e41a30c 2389#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2390extern int sysctl_memory_failure_early_kill;
2391extern int sysctl_memory_failure_recovery;
facb6011 2392extern void shake_page(struct page *p, int access);
293c07e3 2393extern atomic_long_t num_poisoned_pages;
facb6011 2394extern int soft_offline_page(struct page *page, int flags);
6a46079c 2395
cc637b17
XX
2396
2397/*
2398 * Error handlers for various types of pages.
2399 */
cc3e2af4 2400enum mf_result {
cc637b17
XX
2401 MF_IGNORED, /* Error: cannot be handled */
2402 MF_FAILED, /* Error: handling failed */
2403 MF_DELAYED, /* Will be handled later */
2404 MF_RECOVERED, /* Successfully recovered */
2405};
2406
2407enum mf_action_page_type {
2408 MF_MSG_KERNEL,
2409 MF_MSG_KERNEL_HIGH_ORDER,
2410 MF_MSG_SLAB,
2411 MF_MSG_DIFFERENT_COMPOUND,
2412 MF_MSG_POISONED_HUGE,
2413 MF_MSG_HUGE,
2414 MF_MSG_FREE_HUGE,
2415 MF_MSG_UNMAP_FAILED,
2416 MF_MSG_DIRTY_SWAPCACHE,
2417 MF_MSG_CLEAN_SWAPCACHE,
2418 MF_MSG_DIRTY_MLOCKED_LRU,
2419 MF_MSG_CLEAN_MLOCKED_LRU,
2420 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2421 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2422 MF_MSG_DIRTY_LRU,
2423 MF_MSG_CLEAN_LRU,
2424 MF_MSG_TRUNCATED_LRU,
2425 MF_MSG_BUDDY,
2426 MF_MSG_BUDDY_2ND,
2427 MF_MSG_UNKNOWN,
2428};
2429
47ad8475
AA
2430#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2431extern void clear_huge_page(struct page *page,
2432 unsigned long addr,
2433 unsigned int pages_per_huge_page);
2434extern void copy_user_huge_page(struct page *dst, struct page *src,
2435 unsigned long addr, struct vm_area_struct *vma,
2436 unsigned int pages_per_huge_page);
fa4d75c1
MK
2437extern long copy_huge_page_from_user(struct page *dst_page,
2438 const void __user *usr_src,
810a56b9
MK
2439 unsigned int pages_per_huge_page,
2440 bool allow_pagefault);
47ad8475
AA
2441#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2442
e30825f1
JK
2443extern struct page_ext_operations debug_guardpage_ops;
2444extern struct page_ext_operations page_poisoning_ops;
2445
c0a32fc5
SG
2446#ifdef CONFIG_DEBUG_PAGEALLOC
2447extern unsigned int _debug_guardpage_minorder;
e30825f1 2448extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2449
2450static inline unsigned int debug_guardpage_minorder(void)
2451{
2452 return _debug_guardpage_minorder;
2453}
2454
e30825f1
JK
2455static inline bool debug_guardpage_enabled(void)
2456{
2457 return _debug_guardpage_enabled;
2458}
2459
c0a32fc5
SG
2460static inline bool page_is_guard(struct page *page)
2461{
e30825f1
JK
2462 struct page_ext *page_ext;
2463
2464 if (!debug_guardpage_enabled())
2465 return false;
2466
2467 page_ext = lookup_page_ext(page);
0bb2fd13
YS
2468 if (unlikely(!page_ext))
2469 return false;
2470
e30825f1 2471 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2472}
2473#else
2474static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2475static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2476static inline bool page_is_guard(struct page *page) { return false; }
2477#endif /* CONFIG_DEBUG_PAGEALLOC */
2478
f9872caf
CS
2479#if MAX_NUMNODES > 1
2480void __init setup_nr_node_ids(void);
2481#else
2482static inline void setup_nr_node_ids(void) {}
2483#endif
2484
1da177e4
LT
2485#endif /* __KERNEL__ */
2486#endif /* _LINUX_MM_H */