mm: do not pass mm_struct into handle_mm_fault
[linux-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
3565fce3 19#include <linux/percpu-refcount.h>
e9da73d6 20#include <linux/bit_spinlock.h>
b0d40c92 21#include <linux/shrinker.h>
9c599024 22#include <linux/resource.h>
e30825f1 23#include <linux/page_ext.h>
8025e5dd 24#include <linux/err.h>
fe896d18 25#include <linux/page_ref.h>
1da177e4
LT
26
27struct mempolicy;
28struct anon_vma;
bf181b9f 29struct anon_vma_chain;
4e950f6f 30struct file_ra_state;
e8edc6e0 31struct user_struct;
4e950f6f 32struct writeback_control;
682aa8e1 33struct bdi_writeback;
1da177e4 34
fccc9987 35#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 36extern unsigned long max_mapnr;
fccc9987
JL
37
38static inline void set_max_mapnr(unsigned long limit)
39{
40 max_mapnr = limit;
41}
42#else
43static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
44#endif
45
4481374c 46extern unsigned long totalram_pages;
1da177e4 47extern void * high_memory;
1da177e4
LT
48extern int page_cluster;
49
50#ifdef CONFIG_SYSCTL
51extern int sysctl_legacy_va_layout;
52#else
53#define sysctl_legacy_va_layout 0
54#endif
55
d07e2259
DC
56#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
57extern const int mmap_rnd_bits_min;
58extern const int mmap_rnd_bits_max;
59extern int mmap_rnd_bits __read_mostly;
60#endif
61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
62extern const int mmap_rnd_compat_bits_min;
63extern const int mmap_rnd_compat_bits_max;
64extern int mmap_rnd_compat_bits __read_mostly;
65#endif
66
1da177e4
LT
67#include <asm/page.h>
68#include <asm/pgtable.h>
69#include <asm/processor.h>
1da177e4 70
79442ed1
TC
71#ifndef __pa_symbol
72#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
73#endif
74
1dff8083
AB
75#ifndef page_to_virt
76#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
77#endif
78
593befa6
DD
79/*
80 * To prevent common memory management code establishing
81 * a zero page mapping on a read fault.
82 * This macro should be defined within <asm/pgtable.h>.
83 * s390 does this to prevent multiplexing of hardware bits
84 * related to the physical page in case of virtualization.
85 */
86#ifndef mm_forbids_zeropage
87#define mm_forbids_zeropage(X) (0)
88#endif
89
ea606cf5
AR
90/*
91 * Default maximum number of active map areas, this limits the number of vmas
92 * per mm struct. Users can overwrite this number by sysctl but there is a
93 * problem.
94 *
95 * When a program's coredump is generated as ELF format, a section is created
96 * per a vma. In ELF, the number of sections is represented in unsigned short.
97 * This means the number of sections should be smaller than 65535 at coredump.
98 * Because the kernel adds some informative sections to a image of program at
99 * generating coredump, we need some margin. The number of extra sections is
100 * 1-3 now and depends on arch. We use "5" as safe margin, here.
101 *
102 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
103 * not a hard limit any more. Although some userspace tools can be surprised by
104 * that.
105 */
106#define MAPCOUNT_ELF_CORE_MARGIN (5)
107#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
108
109extern int sysctl_max_map_count;
110
c9b1d098 111extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 112extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 113
49f0ce5f
JM
114extern int sysctl_overcommit_memory;
115extern int sysctl_overcommit_ratio;
116extern unsigned long sysctl_overcommit_kbytes;
117
118extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
119 size_t *, loff_t *);
120extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
121 size_t *, loff_t *);
122
1da177e4
LT
123#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
124
27ac792c
AR
125/* to align the pointer to the (next) page boundary */
126#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
127
0fa73b86
AM
128/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
129#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
130
1da177e4
LT
131/*
132 * Linux kernel virtual memory manager primitives.
133 * The idea being to have a "virtual" mm in the same way
134 * we have a virtual fs - giving a cleaner interface to the
135 * mm details, and allowing different kinds of memory mappings
136 * (from shared memory to executable loading to arbitrary
137 * mmap() functions).
138 */
139
c43692e8
CL
140extern struct kmem_cache *vm_area_cachep;
141
1da177e4 142#ifndef CONFIG_MMU
8feae131
DH
143extern struct rb_root nommu_region_tree;
144extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
145
146extern unsigned int kobjsize(const void *objp);
147#endif
148
149/*
605d9288 150 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 151 * When changing, update also include/trace/events/mmflags.h
1da177e4 152 */
cc2383ec
KK
153#define VM_NONE 0x00000000
154
1da177e4
LT
155#define VM_READ 0x00000001 /* currently active flags */
156#define VM_WRITE 0x00000002
157#define VM_EXEC 0x00000004
158#define VM_SHARED 0x00000008
159
7e2cff42 160/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
161#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
162#define VM_MAYWRITE 0x00000020
163#define VM_MAYEXEC 0x00000040
164#define VM_MAYSHARE 0x00000080
165
166#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 167#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 168#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 169#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 170#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 171
1da177e4
LT
172#define VM_LOCKED 0x00002000
173#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
174
175 /* Used by sys_madvise() */
176#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
177#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
178
179#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
180#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 181#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 182#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 183#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 184#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 185#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 186#define VM_ARCH_2 0x02000000
0103bd16 187#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 188
d9104d1c
CG
189#ifdef CONFIG_MEM_SOFT_DIRTY
190# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
191#else
192# define VM_SOFTDIRTY 0
193#endif
194
b379d790 195#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
196#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
197#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 198#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 199
63c17fb8
DH
200#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
201#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
202#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
203#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
204#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
205#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
206#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
207#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
208#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
209#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
210
cc2383ec
KK
211#if defined(CONFIG_X86)
212# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
8f62c883
DH
213#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
214# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
215# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
216# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
217# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
218# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
219#endif
cc2383ec
KK
220#elif defined(CONFIG_PPC)
221# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
222#elif defined(CONFIG_PARISC)
223# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
224#elif defined(CONFIG_METAG)
225# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
226#elif defined(CONFIG_IA64)
227# define VM_GROWSUP VM_ARCH_1
228#elif !defined(CONFIG_MMU)
229# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
230#endif
231
4aae7e43
QR
232#if defined(CONFIG_X86)
233/* MPX specific bounds table or bounds directory */
234# define VM_MPX VM_ARCH_2
235#endif
236
cc2383ec
KK
237#ifndef VM_GROWSUP
238# define VM_GROWSUP VM_NONE
239#endif
240
a8bef8ff
MG
241/* Bits set in the VMA until the stack is in its final location */
242#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
243
1da177e4
LT
244#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
245#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
246#endif
247
248#ifdef CONFIG_STACK_GROWSUP
30bdbb78 249#define VM_STACK VM_GROWSUP
1da177e4 250#else
30bdbb78 251#define VM_STACK VM_GROWSDOWN
1da177e4
LT
252#endif
253
30bdbb78
KK
254#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
255
b291f000 256/*
78f11a25
AA
257 * Special vmas that are non-mergable, non-mlock()able.
258 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 259 */
9050d7eb 260#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 261
a0715cc2
AT
262/* This mask defines which mm->def_flags a process can inherit its parent */
263#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
264
de60f5f1
EM
265/* This mask is used to clear all the VMA flags used by mlock */
266#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
267
1da177e4
LT
268/*
269 * mapping from the currently active vm_flags protection bits (the
270 * low four bits) to a page protection mask..
271 */
272extern pgprot_t protection_map[16];
273
d0217ac0 274#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
275#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
276#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
277#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
278#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
279#define FAULT_FLAG_TRIED 0x20 /* Second try */
280#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 281#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 282#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 283
54cb8821 284/*
d0217ac0 285 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
286 * ->fault function. The vma's ->fault is responsible for returning a bitmask
287 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 288 *
c20cd45e
MH
289 * MM layer fills up gfp_mask for page allocations but fault handler might
290 * alter it if its implementation requires a different allocation context.
291 *
9b4bdd2f 292 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 293 */
d0217ac0
NP
294struct vm_fault {
295 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 296 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0
NP
297 pgoff_t pgoff; /* Logical page offset based on vma */
298 void __user *virtual_address; /* Faulting virtual address */
299
2e4cdab0 300 struct page *cow_page; /* Handler may choose to COW */
d0217ac0 301 struct page *page; /* ->fault handlers should return a
83c54070 302 * page here, unless VM_FAULT_NOPAGE
d0217ac0 303 * is set (which is also implied by
83c54070 304 * VM_FAULT_ERROR).
d0217ac0 305 */
bc2466e4
JK
306 void *entry; /* ->fault handler can alternatively
307 * return locked DAX entry. In that
308 * case handler should return
309 * VM_FAULT_DAX_LOCKED and fill in
310 * entry here.
311 */
8c6e50b0
KS
312 /* for ->map_pages() only */
313 pgoff_t max_pgoff; /* map pages for offset from pgoff till
314 * max_pgoff inclusive */
315 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 316};
1da177e4
LT
317
318/*
319 * These are the virtual MM functions - opening of an area, closing and
320 * unmapping it (needed to keep files on disk up-to-date etc), pointer
321 * to the functions called when a no-page or a wp-page exception occurs.
322 */
323struct vm_operations_struct {
324 void (*open)(struct vm_area_struct * area);
325 void (*close)(struct vm_area_struct * area);
5477e70a 326 int (*mremap)(struct vm_area_struct * area);
d0217ac0 327 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
b96375f7
MW
328 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
329 pmd_t *, unsigned int flags);
8c6e50b0 330 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
331
332 /* notification that a previously read-only page is about to become
333 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 334 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20 335
dd906184
BH
336 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
337 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
338
28b2ee20
RR
339 /* called by access_process_vm when get_user_pages() fails, typically
340 * for use by special VMAs that can switch between memory and hardware
341 */
342 int (*access)(struct vm_area_struct *vma, unsigned long addr,
343 void *buf, int len, int write);
78d683e8
AL
344
345 /* Called by the /proc/PID/maps code to ask the vma whether it
346 * has a special name. Returning non-NULL will also cause this
347 * vma to be dumped unconditionally. */
348 const char *(*name)(struct vm_area_struct *vma);
349
1da177e4 350#ifdef CONFIG_NUMA
a6020ed7
LS
351 /*
352 * set_policy() op must add a reference to any non-NULL @new mempolicy
353 * to hold the policy upon return. Caller should pass NULL @new to
354 * remove a policy and fall back to surrounding context--i.e. do not
355 * install a MPOL_DEFAULT policy, nor the task or system default
356 * mempolicy.
357 */
1da177e4 358 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
359
360 /*
361 * get_policy() op must add reference [mpol_get()] to any policy at
362 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
363 * in mm/mempolicy.c will do this automatically.
364 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
365 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
366 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
367 * must return NULL--i.e., do not "fallback" to task or system default
368 * policy.
369 */
1da177e4
LT
370 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
371 unsigned long addr);
372#endif
667a0a06
DV
373 /*
374 * Called by vm_normal_page() for special PTEs to find the
375 * page for @addr. This is useful if the default behavior
376 * (using pte_page()) would not find the correct page.
377 */
378 struct page *(*find_special_page)(struct vm_area_struct *vma,
379 unsigned long addr);
1da177e4
LT
380};
381
382struct mmu_gather;
383struct inode;
384
349aef0b
AM
385#define page_private(page) ((page)->private)
386#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 387
5c7fb56e
DW
388#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
389static inline int pmd_devmap(pmd_t pmd)
390{
391 return 0;
392}
393#endif
394
1da177e4
LT
395/*
396 * FIXME: take this include out, include page-flags.h in
397 * files which need it (119 of them)
398 */
399#include <linux/page-flags.h>
71e3aac0 400#include <linux/huge_mm.h>
1da177e4
LT
401
402/*
403 * Methods to modify the page usage count.
404 *
405 * What counts for a page usage:
406 * - cache mapping (page->mapping)
407 * - private data (page->private)
408 * - page mapped in a task's page tables, each mapping
409 * is counted separately
410 *
411 * Also, many kernel routines increase the page count before a critical
412 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
413 */
414
415/*
da6052f7 416 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 417 */
7c8ee9a8
NP
418static inline int put_page_testzero(struct page *page)
419{
fe896d18
JK
420 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
421 return page_ref_dec_and_test(page);
7c8ee9a8 422}
1da177e4
LT
423
424/*
7c8ee9a8
NP
425 * Try to grab a ref unless the page has a refcount of zero, return false if
426 * that is the case.
8e0861fa
AK
427 * This can be called when MMU is off so it must not access
428 * any of the virtual mappings.
1da177e4 429 */
7c8ee9a8
NP
430static inline int get_page_unless_zero(struct page *page)
431{
fe896d18 432 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 433}
1da177e4 434
53df8fdc 435extern int page_is_ram(unsigned long pfn);
124fe20d
DW
436
437enum {
438 REGION_INTERSECTS,
439 REGION_DISJOINT,
440 REGION_MIXED,
441};
442
1c29f25b
TK
443int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
444 unsigned long desc);
53df8fdc 445
48667e7a 446/* Support for virtually mapped pages */
b3bdda02
CL
447struct page *vmalloc_to_page(const void *addr);
448unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 449
0738c4bb
PM
450/*
451 * Determine if an address is within the vmalloc range
452 *
453 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
454 * is no special casing required.
455 */
bb00a789 456static inline bool is_vmalloc_addr(const void *x)
9e2779fa 457{
0738c4bb 458#ifdef CONFIG_MMU
9e2779fa
CL
459 unsigned long addr = (unsigned long)x;
460
461 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 462#else
bb00a789 463 return false;
8ca3ed87 464#endif
0738c4bb 465}
81ac3ad9
KH
466#ifdef CONFIG_MMU
467extern int is_vmalloc_or_module_addr(const void *x);
468#else
934831d0 469static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
470{
471 return 0;
472}
473#endif
9e2779fa 474
39f1f78d
AV
475extern void kvfree(const void *addr);
476
53f9263b
KS
477static inline atomic_t *compound_mapcount_ptr(struct page *page)
478{
479 return &page[1].compound_mapcount;
480}
481
482static inline int compound_mapcount(struct page *page)
483{
5f527c2b 484 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
485 page = compound_head(page);
486 return atomic_read(compound_mapcount_ptr(page)) + 1;
487}
488
70b50f94
AA
489/*
490 * The atomic page->_mapcount, starts from -1: so that transitions
491 * both from it and to it can be tracked, using atomic_inc_and_test
492 * and atomic_add_negative(-1).
493 */
22b751c3 494static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
495{
496 atomic_set(&(page)->_mapcount, -1);
497}
498
b20ce5e0
KS
499int __page_mapcount(struct page *page);
500
70b50f94
AA
501static inline int page_mapcount(struct page *page)
502{
1d148e21 503 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 504
b20ce5e0
KS
505 if (unlikely(PageCompound(page)))
506 return __page_mapcount(page);
507 return atomic_read(&page->_mapcount) + 1;
508}
509
510#ifdef CONFIG_TRANSPARENT_HUGEPAGE
511int total_mapcount(struct page *page);
6d0a07ed 512int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
513#else
514static inline int total_mapcount(struct page *page)
515{
516 return page_mapcount(page);
70b50f94 517}
6d0a07ed
AA
518static inline int page_trans_huge_mapcount(struct page *page,
519 int *total_mapcount)
520{
521 int mapcount = page_mapcount(page);
522 if (total_mapcount)
523 *total_mapcount = mapcount;
524 return mapcount;
525}
b20ce5e0 526#endif
70b50f94 527
b49af68f
CL
528static inline struct page *virt_to_head_page(const void *x)
529{
530 struct page *page = virt_to_page(x);
ccaafd7f 531
1d798ca3 532 return compound_head(page);
b49af68f
CL
533}
534
ddc58f27
KS
535void __put_page(struct page *page);
536
1d7ea732 537void put_pages_list(struct list_head *pages);
1da177e4 538
8dfcc9ba 539void split_page(struct page *page, unsigned int order);
8dfcc9ba 540
33f2ef89
AW
541/*
542 * Compound pages have a destructor function. Provide a
543 * prototype for that function and accessor functions.
f1e61557 544 * These are _only_ valid on the head of a compound page.
33f2ef89 545 */
f1e61557
KS
546typedef void compound_page_dtor(struct page *);
547
548/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
549enum compound_dtor_id {
550 NULL_COMPOUND_DTOR,
551 COMPOUND_PAGE_DTOR,
552#ifdef CONFIG_HUGETLB_PAGE
553 HUGETLB_PAGE_DTOR,
9a982250
KS
554#endif
555#ifdef CONFIG_TRANSPARENT_HUGEPAGE
556 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
557#endif
558 NR_COMPOUND_DTORS,
559};
560extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
561
562static inline void set_compound_page_dtor(struct page *page,
f1e61557 563 enum compound_dtor_id compound_dtor)
33f2ef89 564{
f1e61557
KS
565 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
566 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
567}
568
569static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
570{
f1e61557
KS
571 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
572 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
573}
574
d00181b9 575static inline unsigned int compound_order(struct page *page)
d85f3385 576{
6d777953 577 if (!PageHead(page))
d85f3385 578 return 0;
e4b294c2 579 return page[1].compound_order;
d85f3385
CL
580}
581
f1e61557 582static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 583{
e4b294c2 584 page[1].compound_order = order;
d85f3385
CL
585}
586
9a982250
KS
587void free_compound_page(struct page *page);
588
3dece370 589#ifdef CONFIG_MMU
14fd403f
AA
590/*
591 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
592 * servicing faults for write access. In the normal case, do always want
593 * pte_mkwrite. But get_user_pages can cause write faults for mappings
594 * that do not have writing enabled, when used by access_process_vm.
595 */
596static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
597{
598 if (likely(vma->vm_flags & VM_WRITE))
599 pte = pte_mkwrite(pte);
600 return pte;
601}
8c6e50b0
KS
602
603void do_set_pte(struct vm_area_struct *vma, unsigned long address,
315d09bf 604 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 605#endif
14fd403f 606
1da177e4
LT
607/*
608 * Multiple processes may "see" the same page. E.g. for untouched
609 * mappings of /dev/null, all processes see the same page full of
610 * zeroes, and text pages of executables and shared libraries have
611 * only one copy in memory, at most, normally.
612 *
613 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
614 * page_count() == 0 means the page is free. page->lru is then used for
615 * freelist management in the buddy allocator.
da6052f7 616 * page_count() > 0 means the page has been allocated.
1da177e4 617 *
da6052f7
NP
618 * Pages are allocated by the slab allocator in order to provide memory
619 * to kmalloc and kmem_cache_alloc. In this case, the management of the
620 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
621 * unless a particular usage is carefully commented. (the responsibility of
622 * freeing the kmalloc memory is the caller's, of course).
1da177e4 623 *
da6052f7
NP
624 * A page may be used by anyone else who does a __get_free_page().
625 * In this case, page_count still tracks the references, and should only
626 * be used through the normal accessor functions. The top bits of page->flags
627 * and page->virtual store page management information, but all other fields
628 * are unused and could be used privately, carefully. The management of this
629 * page is the responsibility of the one who allocated it, and those who have
630 * subsequently been given references to it.
631 *
632 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
633 * managed by the Linux memory manager: I/O, buffers, swapping etc.
634 * The following discussion applies only to them.
635 *
da6052f7
NP
636 * A pagecache page contains an opaque `private' member, which belongs to the
637 * page's address_space. Usually, this is the address of a circular list of
638 * the page's disk buffers. PG_private must be set to tell the VM to call
639 * into the filesystem to release these pages.
1da177e4 640 *
da6052f7
NP
641 * A page may belong to an inode's memory mapping. In this case, page->mapping
642 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 643 * in units of PAGE_SIZE.
1da177e4 644 *
da6052f7
NP
645 * If pagecache pages are not associated with an inode, they are said to be
646 * anonymous pages. These may become associated with the swapcache, and in that
647 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 648 *
da6052f7
NP
649 * In either case (swapcache or inode backed), the pagecache itself holds one
650 * reference to the page. Setting PG_private should also increment the
651 * refcount. The each user mapping also has a reference to the page.
1da177e4 652 *
da6052f7
NP
653 * The pagecache pages are stored in a per-mapping radix tree, which is
654 * rooted at mapping->page_tree, and indexed by offset.
655 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
656 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 657 *
da6052f7 658 * All pagecache pages may be subject to I/O:
1da177e4
LT
659 * - inode pages may need to be read from disk,
660 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
661 * to be written back to the inode on disk,
662 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
663 * modified may need to be swapped out to swap space and (later) to be read
664 * back into memory.
1da177e4
LT
665 */
666
667/*
668 * The zone field is never updated after free_area_init_core()
669 * sets it, so none of the operations on it need to be atomic.
1da177e4 670 */
348f8b6c 671
90572890 672/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 673#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
674#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
675#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 676#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 677
348f8b6c 678/*
25985edc 679 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
680 * sections we define the shift as 0; that plus a 0 mask ensures
681 * the compiler will optimise away reference to them.
682 */
d41dee36
AW
683#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
684#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
685#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 686#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 687
bce54bbf
WD
688/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
689#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 690#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
691#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
692 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 693#else
89689ae7 694#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
695#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
696 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
697#endif
698
bd8029b6 699#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 700
9223b419
CL
701#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
702#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
703#endif
704
d41dee36
AW
705#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
706#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
707#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 708#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 709#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 710
33dd4e0e 711static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 712{
348f8b6c 713 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 714}
1da177e4 715
260ae3f7 716#ifdef CONFIG_ZONE_DEVICE
3565fce3
DW
717void get_zone_device_page(struct page *page);
718void put_zone_device_page(struct page *page);
260ae3f7
DW
719static inline bool is_zone_device_page(const struct page *page)
720{
721 return page_zonenum(page) == ZONE_DEVICE;
722}
723#else
3565fce3
DW
724static inline void get_zone_device_page(struct page *page)
725{
726}
727static inline void put_zone_device_page(struct page *page)
728{
729}
260ae3f7
DW
730static inline bool is_zone_device_page(const struct page *page)
731{
732 return false;
733}
734#endif
735
3565fce3
DW
736static inline void get_page(struct page *page)
737{
738 page = compound_head(page);
739 /*
740 * Getting a normal page or the head of a compound page
0139aa7b 741 * requires to already have an elevated page->_refcount.
3565fce3 742 */
fe896d18
JK
743 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
744 page_ref_inc(page);
3565fce3
DW
745
746 if (unlikely(is_zone_device_page(page)))
747 get_zone_device_page(page);
748}
749
750static inline void put_page(struct page *page)
751{
752 page = compound_head(page);
753
754 if (put_page_testzero(page))
755 __put_page(page);
756
757 if (unlikely(is_zone_device_page(page)))
758 put_zone_device_page(page);
759}
760
9127ab4f
CS
761#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
762#define SECTION_IN_PAGE_FLAGS
763#endif
764
89689ae7 765/*
7a8010cd
VB
766 * The identification function is mainly used by the buddy allocator for
767 * determining if two pages could be buddies. We are not really identifying
768 * the zone since we could be using the section number id if we do not have
769 * node id available in page flags.
770 * We only guarantee that it will return the same value for two combinable
771 * pages in a zone.
89689ae7 772 */
cb2b95e1
AW
773static inline int page_zone_id(struct page *page)
774{
89689ae7 775 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
776}
777
25ba77c1 778static inline int zone_to_nid(struct zone *zone)
89fa3024 779{
d5f541ed
CL
780#ifdef CONFIG_NUMA
781 return zone->node;
782#else
783 return 0;
784#endif
89fa3024
CL
785}
786
89689ae7 787#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 788extern int page_to_nid(const struct page *page);
89689ae7 789#else
33dd4e0e 790static inline int page_to_nid(const struct page *page)
d41dee36 791{
89689ae7 792 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 793}
89689ae7
CL
794#endif
795
57e0a030 796#ifdef CONFIG_NUMA_BALANCING
90572890 797static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 798{
90572890 799 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
800}
801
90572890 802static inline int cpupid_to_pid(int cpupid)
57e0a030 803{
90572890 804 return cpupid & LAST__PID_MASK;
57e0a030 805}
b795854b 806
90572890 807static inline int cpupid_to_cpu(int cpupid)
b795854b 808{
90572890 809 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
810}
811
90572890 812static inline int cpupid_to_nid(int cpupid)
b795854b 813{
90572890 814 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
815}
816
90572890 817static inline bool cpupid_pid_unset(int cpupid)
57e0a030 818{
90572890 819 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
820}
821
90572890 822static inline bool cpupid_cpu_unset(int cpupid)
b795854b 823{
90572890 824 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
825}
826
8c8a743c
PZ
827static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
828{
829 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
830}
831
832#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
833#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
834static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 835{
1ae71d03 836 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 837}
90572890
PZ
838
839static inline int page_cpupid_last(struct page *page)
840{
841 return page->_last_cpupid;
842}
843static inline void page_cpupid_reset_last(struct page *page)
b795854b 844{
1ae71d03 845 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
846}
847#else
90572890 848static inline int page_cpupid_last(struct page *page)
75980e97 849{
90572890 850 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
851}
852
90572890 853extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 854
90572890 855static inline void page_cpupid_reset_last(struct page *page)
75980e97 856{
09940a4f 857 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 858}
90572890
PZ
859#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
860#else /* !CONFIG_NUMA_BALANCING */
861static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 862{
90572890 863 return page_to_nid(page); /* XXX */
57e0a030
MG
864}
865
90572890 866static inline int page_cpupid_last(struct page *page)
57e0a030 867{
90572890 868 return page_to_nid(page); /* XXX */
57e0a030
MG
869}
870
90572890 871static inline int cpupid_to_nid(int cpupid)
b795854b
MG
872{
873 return -1;
874}
875
90572890 876static inline int cpupid_to_pid(int cpupid)
b795854b
MG
877{
878 return -1;
879}
880
90572890 881static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
882{
883 return -1;
884}
885
90572890
PZ
886static inline int cpu_pid_to_cpupid(int nid, int pid)
887{
888 return -1;
889}
890
891static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
892{
893 return 1;
894}
895
90572890 896static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
897{
898}
8c8a743c
PZ
899
900static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
901{
902 return false;
903}
90572890 904#endif /* CONFIG_NUMA_BALANCING */
57e0a030 905
33dd4e0e 906static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
907{
908 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
909}
910
9127ab4f 911#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
912static inline void set_page_section(struct page *page, unsigned long section)
913{
914 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
915 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
916}
917
aa462abe 918static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
919{
920 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
921}
308c05e3 922#endif
d41dee36 923
2f1b6248 924static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
925{
926 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
927 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
928}
2f1b6248 929
348f8b6c
DH
930static inline void set_page_node(struct page *page, unsigned long node)
931{
932 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
933 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 934}
89689ae7 935
2f1b6248 936static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 937 unsigned long node, unsigned long pfn)
1da177e4 938{
348f8b6c
DH
939 set_page_zone(page, zone);
940 set_page_node(page, node);
9127ab4f 941#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 942 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 943#endif
1da177e4
LT
944}
945
0610c25d
GT
946#ifdef CONFIG_MEMCG
947static inline struct mem_cgroup *page_memcg(struct page *page)
948{
949 return page->mem_cgroup;
950}
0610c25d
GT
951#else
952static inline struct mem_cgroup *page_memcg(struct page *page)
953{
954 return NULL;
955}
0610c25d
GT
956#endif
957
f6ac2354
CL
958/*
959 * Some inline functions in vmstat.h depend on page_zone()
960 */
961#include <linux/vmstat.h>
962
33dd4e0e 963static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 964{
1dff8083 965 return page_to_virt(page);
1da177e4
LT
966}
967
968#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
969#define HASHED_PAGE_VIRTUAL
970#endif
971
972#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
973static inline void *page_address(const struct page *page)
974{
975 return page->virtual;
976}
977static inline void set_page_address(struct page *page, void *address)
978{
979 page->virtual = address;
980}
1da177e4
LT
981#define page_address_init() do { } while(0)
982#endif
983
984#if defined(HASHED_PAGE_VIRTUAL)
f9918794 985void *page_address(const struct page *page);
1da177e4
LT
986void set_page_address(struct page *page, void *virtual);
987void page_address_init(void);
988#endif
989
990#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
991#define page_address(page) lowmem_page_address(page)
992#define set_page_address(page, address) do { } while(0)
993#define page_address_init() do { } while(0)
994#endif
995
e39155ea
KS
996extern void *page_rmapping(struct page *page);
997extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 998extern struct address_space *page_mapping(struct page *page);
1da177e4 999
f981c595
MG
1000extern struct address_space *__page_file_mapping(struct page *);
1001
1002static inline
1003struct address_space *page_file_mapping(struct page *page)
1004{
1005 if (unlikely(PageSwapCache(page)))
1006 return __page_file_mapping(page);
1007
1008 return page->mapping;
1009}
1010
1da177e4
LT
1011/*
1012 * Return the pagecache index of the passed page. Regular pagecache pages
1013 * use ->index whereas swapcache pages use ->private
1014 */
1015static inline pgoff_t page_index(struct page *page)
1016{
1017 if (unlikely(PageSwapCache(page)))
4c21e2f2 1018 return page_private(page);
1da177e4
LT
1019 return page->index;
1020}
1021
f981c595
MG
1022extern pgoff_t __page_file_index(struct page *page);
1023
1024/*
1025 * Return the file index of the page. Regular pagecache pages use ->index
1026 * whereas swapcache pages use swp_offset(->private)
1027 */
1028static inline pgoff_t page_file_index(struct page *page)
1029{
1030 if (unlikely(PageSwapCache(page)))
1031 return __page_file_index(page);
1032
1033 return page->index;
1034}
1035
1aa8aea5 1036bool page_mapped(struct page *page);
bda807d4 1037struct address_space *page_mapping(struct page *page);
1da177e4 1038
2f064f34
MH
1039/*
1040 * Return true only if the page has been allocated with
1041 * ALLOC_NO_WATERMARKS and the low watermark was not
1042 * met implying that the system is under some pressure.
1043 */
1044static inline bool page_is_pfmemalloc(struct page *page)
1045{
1046 /*
1047 * Page index cannot be this large so this must be
1048 * a pfmemalloc page.
1049 */
1050 return page->index == -1UL;
1051}
1052
1053/*
1054 * Only to be called by the page allocator on a freshly allocated
1055 * page.
1056 */
1057static inline void set_page_pfmemalloc(struct page *page)
1058{
1059 page->index = -1UL;
1060}
1061
1062static inline void clear_page_pfmemalloc(struct page *page)
1063{
1064 page->index = 0;
1065}
1066
1da177e4
LT
1067/*
1068 * Different kinds of faults, as returned by handle_mm_fault().
1069 * Used to decide whether a process gets delivered SIGBUS or
1070 * just gets major/minor fault counters bumped up.
1071 */
d0217ac0 1072
83c54070
NP
1073#define VM_FAULT_OOM 0x0001
1074#define VM_FAULT_SIGBUS 0x0002
1075#define VM_FAULT_MAJOR 0x0004
1076#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1077#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1078#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1079#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1080
83c54070
NP
1081#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1082#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1083#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1084#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
bc2466e4 1085#define VM_FAULT_DAX_LOCKED 0x1000 /* ->fault has locked DAX entry */
1da177e4 1086
aa50d3a7
AK
1087#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1088
33692f27
LT
1089#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1090 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1091 VM_FAULT_FALLBACK)
aa50d3a7
AK
1092
1093/* Encode hstate index for a hwpoisoned large page */
1094#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1095#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1096
1c0fe6e3
NP
1097/*
1098 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1099 */
1100extern void pagefault_out_of_memory(void);
1101
1da177e4
LT
1102#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1103
ddd588b5 1104/*
7bf02ea2 1105 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1106 * various contexts.
1107 */
4b59e6c4 1108#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1109
7bf02ea2
DR
1110extern void show_free_areas(unsigned int flags);
1111extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1112
1da177e4 1113int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1114#ifdef CONFIG_SHMEM
1115bool shmem_mapping(struct address_space *mapping);
1116#else
1117static inline bool shmem_mapping(struct address_space *mapping)
1118{
1119 return false;
1120}
1121#endif
1da177e4 1122
7f43add4 1123extern bool can_do_mlock(void);
1da177e4
LT
1124extern int user_shm_lock(size_t, struct user_struct *);
1125extern void user_shm_unlock(size_t, struct user_struct *);
1126
1127/*
1128 * Parameter block passed down to zap_pte_range in exceptional cases.
1129 */
1130struct zap_details {
1da177e4
LT
1131 struct address_space *check_mapping; /* Check page->mapping if set */
1132 pgoff_t first_index; /* Lowest page->index to unmap */
1133 pgoff_t last_index; /* Highest page->index to unmap */
aac45363
MH
1134 bool ignore_dirty; /* Ignore dirty pages */
1135 bool check_swap_entries; /* Check also swap entries */
1da177e4
LT
1136};
1137
7e675137
NP
1138struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1139 pte_t pte);
28093f9f
GS
1140struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1141 pmd_t pmd);
7e675137 1142
c627f9cc
JS
1143int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1144 unsigned long size);
14f5ff5d 1145void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1146 unsigned long size, struct zap_details *);
4f74d2c8
LT
1147void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1148 unsigned long start, unsigned long end);
e6473092
MM
1149
1150/**
1151 * mm_walk - callbacks for walk_page_range
e6473092 1152 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1153 * this handler is required to be able to handle
1154 * pmd_trans_huge() pmds. They may simply choose to
1155 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1156 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1157 * @pte_hole: if set, called for each hole at all levels
5dc37642 1158 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426
NH
1159 * @test_walk: caller specific callback function to determine whether
1160 * we walk over the current vma or not. A positive returned
1161 * value means "do page table walk over the current vma,"
1162 * and a negative one means "abort current page table walk
1163 * right now." 0 means "skip the current vma."
1164 * @mm: mm_struct representing the target process of page table walk
1165 * @vma: vma currently walked (NULL if walking outside vmas)
1166 * @private: private data for callbacks' usage
e6473092 1167 *
fafaa426 1168 * (see the comment on walk_page_range() for more details)
e6473092
MM
1169 */
1170struct mm_walk {
0f157a5b
AM
1171 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1172 unsigned long next, struct mm_walk *walk);
1173 int (*pte_entry)(pte_t *pte, unsigned long addr,
1174 unsigned long next, struct mm_walk *walk);
1175 int (*pte_hole)(unsigned long addr, unsigned long next,
1176 struct mm_walk *walk);
1177 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1178 unsigned long addr, unsigned long next,
1179 struct mm_walk *walk);
fafaa426
NH
1180 int (*test_walk)(unsigned long addr, unsigned long next,
1181 struct mm_walk *walk);
2165009b 1182 struct mm_struct *mm;
fafaa426 1183 struct vm_area_struct *vma;
2165009b 1184 void *private;
e6473092
MM
1185};
1186
2165009b
DH
1187int walk_page_range(unsigned long addr, unsigned long end,
1188 struct mm_walk *walk);
900fc5f1 1189int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1190void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1191 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1192int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1193 struct vm_area_struct *vma);
1da177e4
LT
1194void unmap_mapping_range(struct address_space *mapping,
1195 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1196int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1197 unsigned long *pfn);
d87fe660 1198int follow_phys(struct vm_area_struct *vma, unsigned long address,
1199 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1200int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1201 void *buf, int len, int write);
1da177e4
LT
1202
1203static inline void unmap_shared_mapping_range(struct address_space *mapping,
1204 loff_t const holebegin, loff_t const holelen)
1205{
1206 unmap_mapping_range(mapping, holebegin, holelen, 0);
1207}
1208
7caef267 1209extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1210extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1211void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1212void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1213int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1214int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1215int invalidate_inode_page(struct page *page);
1216
7ee1dd3f 1217#ifdef CONFIG_MMU
dcddffd4
KS
1218extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1219 unsigned int flags);
5c723ba5 1220extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1221 unsigned long address, unsigned int fault_flags,
1222 bool *unlocked);
7ee1dd3f 1223#else
dcddffd4
KS
1224static inline int handle_mm_fault(struct vm_area_struct *vma,
1225 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1226{
1227 /* should never happen if there's no MMU */
1228 BUG();
1229 return VM_FAULT_SIGBUS;
1230}
5c723ba5
PZ
1231static inline int fixup_user_fault(struct task_struct *tsk,
1232 struct mm_struct *mm, unsigned long address,
4a9e1cda 1233 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1234{
1235 /* should never happen if there's no MMU */
1236 BUG();
1237 return -EFAULT;
1238}
7ee1dd3f 1239#endif
f33ea7f4 1240
1da177e4 1241extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1242extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1243 void *buf, int len, int write);
1da177e4 1244
28a35716
ML
1245long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1246 unsigned long start, unsigned long nr_pages,
1247 unsigned int foll_flags, struct page **pages,
1248 struct vm_area_struct **vmas, int *nonblocking);
1e987790
DH
1249long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1250 unsigned long start, unsigned long nr_pages,
1251 int write, int force, struct page **pages,
1252 struct vm_area_struct **vmas);
c12d2da5 1253long get_user_pages(unsigned long start, unsigned long nr_pages,
cde70140
DH
1254 int write, int force, struct page **pages,
1255 struct vm_area_struct **vmas);
c12d2da5 1256long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
cde70140 1257 int write, int force, struct page **pages, int *locked);
0fd71a56
AA
1258long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1259 unsigned long start, unsigned long nr_pages,
1260 int write, int force, struct page **pages,
1261 unsigned int gup_flags);
c12d2da5 1262long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
f0818f47 1263 int write, int force, struct page **pages);
d2bf6be8
NP
1264int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1265 struct page **pages);
8025e5dd
JK
1266
1267/* Container for pinned pfns / pages */
1268struct frame_vector {
1269 unsigned int nr_allocated; /* Number of frames we have space for */
1270 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1271 bool got_ref; /* Did we pin pages by getting page ref? */
1272 bool is_pfns; /* Does array contain pages or pfns? */
1273 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1274 * pfns_vector_pages() or pfns_vector_pfns()
1275 * for access */
1276};
1277
1278struct frame_vector *frame_vector_create(unsigned int nr_frames);
1279void frame_vector_destroy(struct frame_vector *vec);
1280int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1281 bool write, bool force, struct frame_vector *vec);
1282void put_vaddr_frames(struct frame_vector *vec);
1283int frame_vector_to_pages(struct frame_vector *vec);
1284void frame_vector_to_pfns(struct frame_vector *vec);
1285
1286static inline unsigned int frame_vector_count(struct frame_vector *vec)
1287{
1288 return vec->nr_frames;
1289}
1290
1291static inline struct page **frame_vector_pages(struct frame_vector *vec)
1292{
1293 if (vec->is_pfns) {
1294 int err = frame_vector_to_pages(vec);
1295
1296 if (err)
1297 return ERR_PTR(err);
1298 }
1299 return (struct page **)(vec->ptrs);
1300}
1301
1302static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1303{
1304 if (!vec->is_pfns)
1305 frame_vector_to_pfns(vec);
1306 return (unsigned long *)(vec->ptrs);
1307}
1308
18022c5d
MG
1309struct kvec;
1310int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1311 struct page **pages);
1312int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1313struct page *get_dump_page(unsigned long addr);
1da177e4 1314
cf9a2ae8 1315extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1316extern void do_invalidatepage(struct page *page, unsigned int offset,
1317 unsigned int length);
cf9a2ae8 1318
1da177e4 1319int __set_page_dirty_nobuffers(struct page *page);
76719325 1320int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1321int redirty_page_for_writepage(struct writeback_control *wbc,
1322 struct page *page);
62cccb8c 1323void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1324void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1325 struct bdi_writeback *wb);
b3c97528 1326int set_page_dirty(struct page *page);
1da177e4 1327int set_page_dirty_lock(struct page *page);
11f81bec 1328void cancel_dirty_page(struct page *page);
1da177e4 1329int clear_page_dirty_for_io(struct page *page);
b9ea2515 1330
a9090253 1331int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1332
39aa3cb3 1333/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1334static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1335{
1336 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1337}
1338
b5330628
ON
1339static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1340{
1341 return !vma->vm_ops;
1342}
1343
a09a79f6
MP
1344static inline int stack_guard_page_start(struct vm_area_struct *vma,
1345 unsigned long addr)
1346{
1347 return (vma->vm_flags & VM_GROWSDOWN) &&
1348 (vma->vm_start == addr) &&
1349 !vma_growsdown(vma->vm_prev, addr);
1350}
1351
1352/* Is the vma a continuation of the stack vma below it? */
1353static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1354{
1355 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1356}
1357
1358static inline int stack_guard_page_end(struct vm_area_struct *vma,
1359 unsigned long addr)
1360{
1361 return (vma->vm_flags & VM_GROWSUP) &&
1362 (vma->vm_end == addr) &&
1363 !vma_growsup(vma->vm_next, addr);
1364}
1365
65376df5 1366int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
b7643757 1367
b6a2fea3
OW
1368extern unsigned long move_page_tables(struct vm_area_struct *vma,
1369 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1370 unsigned long new_addr, unsigned long len,
1371 bool need_rmap_locks);
7da4d641
PZ
1372extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1373 unsigned long end, pgprot_t newprot,
4b10e7d5 1374 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1375extern int mprotect_fixup(struct vm_area_struct *vma,
1376 struct vm_area_struct **pprev, unsigned long start,
1377 unsigned long end, unsigned long newflags);
1da177e4 1378
465a454f
PZ
1379/*
1380 * doesn't attempt to fault and will return short.
1381 */
1382int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1383 struct page **pages);
d559db08
KH
1384/*
1385 * per-process(per-mm_struct) statistics.
1386 */
d559db08
KH
1387static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1388{
69c97823
KK
1389 long val = atomic_long_read(&mm->rss_stat.count[member]);
1390
1391#ifdef SPLIT_RSS_COUNTING
1392 /*
1393 * counter is updated in asynchronous manner and may go to minus.
1394 * But it's never be expected number for users.
1395 */
1396 if (val < 0)
1397 val = 0;
172703b0 1398#endif
69c97823
KK
1399 return (unsigned long)val;
1400}
d559db08
KH
1401
1402static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1403{
172703b0 1404 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1405}
1406
1407static inline void inc_mm_counter(struct mm_struct *mm, int member)
1408{
172703b0 1409 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1410}
1411
1412static inline void dec_mm_counter(struct mm_struct *mm, int member)
1413{
172703b0 1414 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1415}
1416
eca56ff9
JM
1417/* Optimized variant when page is already known not to be PageAnon */
1418static inline int mm_counter_file(struct page *page)
1419{
1420 if (PageSwapBacked(page))
1421 return MM_SHMEMPAGES;
1422 return MM_FILEPAGES;
1423}
1424
1425static inline int mm_counter(struct page *page)
1426{
1427 if (PageAnon(page))
1428 return MM_ANONPAGES;
1429 return mm_counter_file(page);
1430}
1431
d559db08
KH
1432static inline unsigned long get_mm_rss(struct mm_struct *mm)
1433{
1434 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1435 get_mm_counter(mm, MM_ANONPAGES) +
1436 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1437}
1438
1439static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1440{
1441 return max(mm->hiwater_rss, get_mm_rss(mm));
1442}
1443
1444static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1445{
1446 return max(mm->hiwater_vm, mm->total_vm);
1447}
1448
1449static inline void update_hiwater_rss(struct mm_struct *mm)
1450{
1451 unsigned long _rss = get_mm_rss(mm);
1452
1453 if ((mm)->hiwater_rss < _rss)
1454 (mm)->hiwater_rss = _rss;
1455}
1456
1457static inline void update_hiwater_vm(struct mm_struct *mm)
1458{
1459 if (mm->hiwater_vm < mm->total_vm)
1460 mm->hiwater_vm = mm->total_vm;
1461}
1462
695f0559
PC
1463static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1464{
1465 mm->hiwater_rss = get_mm_rss(mm);
1466}
1467
d559db08
KH
1468static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1469 struct mm_struct *mm)
1470{
1471 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1472
1473 if (*maxrss < hiwater_rss)
1474 *maxrss = hiwater_rss;
1475}
1476
53bddb4e 1477#if defined(SPLIT_RSS_COUNTING)
05af2e10 1478void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1479#else
05af2e10 1480static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1481{
1482}
1483#endif
465a454f 1484
3565fce3
DW
1485#ifndef __HAVE_ARCH_PTE_DEVMAP
1486static inline int pte_devmap(pte_t pte)
1487{
1488 return 0;
1489}
1490#endif
1491
4e950f6f 1492int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1493
25ca1d6c
NK
1494extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1495 spinlock_t **ptl);
1496static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1497 spinlock_t **ptl)
1498{
1499 pte_t *ptep;
1500 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1501 return ptep;
1502}
c9cfcddf 1503
5f22df00
NP
1504#ifdef __PAGETABLE_PUD_FOLDED
1505static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1506 unsigned long address)
1507{
1508 return 0;
1509}
1510#else
1bb3630e 1511int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1512#endif
1513
2d2f5119 1514#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1515static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1516 unsigned long address)
1517{
1518 return 0;
1519}
dc6c9a35 1520
2d2f5119
KS
1521static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1522
dc6c9a35
KS
1523static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1524{
1525 return 0;
1526}
1527
1528static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1529static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1530
5f22df00 1531#else
1bb3630e 1532int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1533
2d2f5119
KS
1534static inline void mm_nr_pmds_init(struct mm_struct *mm)
1535{
1536 atomic_long_set(&mm->nr_pmds, 0);
1537}
1538
dc6c9a35
KS
1539static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1540{
1541 return atomic_long_read(&mm->nr_pmds);
1542}
1543
1544static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1545{
1546 atomic_long_inc(&mm->nr_pmds);
1547}
1548
1549static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1550{
1551 atomic_long_dec(&mm->nr_pmds);
1552}
5f22df00
NP
1553#endif
1554
3ed3a4f0 1555int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1bb3630e
HD
1556int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1557
1da177e4
LT
1558/*
1559 * The following ifdef needed to get the 4level-fixup.h header to work.
1560 * Remove it when 4level-fixup.h has been removed.
1561 */
1bb3630e 1562#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1563static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1564{
1bb3630e
HD
1565 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1566 NULL: pud_offset(pgd, address);
1da177e4
LT
1567}
1568
1569static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1570{
1bb3630e
HD
1571 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1572 NULL: pmd_offset(pud, address);
1da177e4 1573}
1bb3630e
HD
1574#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1575
57c1ffce 1576#if USE_SPLIT_PTE_PTLOCKS
597d795a 1577#if ALLOC_SPLIT_PTLOCKS
b35f1819 1578void __init ptlock_cache_init(void);
539edb58
PZ
1579extern bool ptlock_alloc(struct page *page);
1580extern void ptlock_free(struct page *page);
1581
1582static inline spinlock_t *ptlock_ptr(struct page *page)
1583{
1584 return page->ptl;
1585}
597d795a 1586#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1587static inline void ptlock_cache_init(void)
1588{
1589}
1590
49076ec2
KS
1591static inline bool ptlock_alloc(struct page *page)
1592{
49076ec2
KS
1593 return true;
1594}
539edb58 1595
49076ec2
KS
1596static inline void ptlock_free(struct page *page)
1597{
49076ec2
KS
1598}
1599
1600static inline spinlock_t *ptlock_ptr(struct page *page)
1601{
539edb58 1602 return &page->ptl;
49076ec2 1603}
597d795a 1604#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1605
1606static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1607{
1608 return ptlock_ptr(pmd_page(*pmd));
1609}
1610
1611static inline bool ptlock_init(struct page *page)
1612{
1613 /*
1614 * prep_new_page() initialize page->private (and therefore page->ptl)
1615 * with 0. Make sure nobody took it in use in between.
1616 *
1617 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1618 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1619 */
309381fe 1620 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1621 if (!ptlock_alloc(page))
1622 return false;
1623 spin_lock_init(ptlock_ptr(page));
1624 return true;
1625}
1626
1627/* Reset page->mapping so free_pages_check won't complain. */
1628static inline void pte_lock_deinit(struct page *page)
1629{
1630 page->mapping = NULL;
1631 ptlock_free(page);
1632}
1633
57c1ffce 1634#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1635/*
1636 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1637 */
49076ec2
KS
1638static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1639{
1640 return &mm->page_table_lock;
1641}
b35f1819 1642static inline void ptlock_cache_init(void) {}
49076ec2
KS
1643static inline bool ptlock_init(struct page *page) { return true; }
1644static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1645#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1646
b35f1819
KS
1647static inline void pgtable_init(void)
1648{
1649 ptlock_cache_init();
1650 pgtable_cache_init();
1651}
1652
390f44e2 1653static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1654{
706874e9
VD
1655 if (!ptlock_init(page))
1656 return false;
2f569afd 1657 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1658 return true;
2f569afd
MS
1659}
1660
1661static inline void pgtable_page_dtor(struct page *page)
1662{
1663 pte_lock_deinit(page);
1664 dec_zone_page_state(page, NR_PAGETABLE);
1665}
1666
c74df32c
HD
1667#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1668({ \
4c21e2f2 1669 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1670 pte_t *__pte = pte_offset_map(pmd, address); \
1671 *(ptlp) = __ptl; \
1672 spin_lock(__ptl); \
1673 __pte; \
1674})
1675
1676#define pte_unmap_unlock(pte, ptl) do { \
1677 spin_unlock(ptl); \
1678 pte_unmap(pte); \
1679} while (0)
1680
3ed3a4f0
KS
1681#define pte_alloc(mm, pmd, address) \
1682 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1683
1684#define pte_alloc_map(mm, pmd, address) \
1685 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1bb3630e 1686
c74df32c 1687#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3ed3a4f0
KS
1688 (pte_alloc(mm, pmd, address) ? \
1689 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 1690
1bb3630e 1691#define pte_alloc_kernel(pmd, address) \
8ac1f832 1692 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1693 NULL: pte_offset_kernel(pmd, address))
1da177e4 1694
e009bb30
KS
1695#if USE_SPLIT_PMD_PTLOCKS
1696
634391ac
MS
1697static struct page *pmd_to_page(pmd_t *pmd)
1698{
1699 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1700 return virt_to_page((void *)((unsigned long) pmd & mask));
1701}
1702
e009bb30
KS
1703static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1704{
634391ac 1705 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1706}
1707
1708static inline bool pgtable_pmd_page_ctor(struct page *page)
1709{
e009bb30
KS
1710#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1711 page->pmd_huge_pte = NULL;
1712#endif
49076ec2 1713 return ptlock_init(page);
e009bb30
KS
1714}
1715
1716static inline void pgtable_pmd_page_dtor(struct page *page)
1717{
1718#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1719 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1720#endif
49076ec2 1721 ptlock_free(page);
e009bb30
KS
1722}
1723
634391ac 1724#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1725
1726#else
1727
9a86cb7b
KS
1728static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1729{
1730 return &mm->page_table_lock;
1731}
1732
e009bb30
KS
1733static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1734static inline void pgtable_pmd_page_dtor(struct page *page) {}
1735
c389a250 1736#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1737
e009bb30
KS
1738#endif
1739
9a86cb7b
KS
1740static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1741{
1742 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1743 spin_lock(ptl);
1744 return ptl;
1745}
1746
1da177e4 1747extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1748extern void free_area_init_node(int nid, unsigned long * zones_size,
1749 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1750extern void free_initmem(void);
1751
69afade7
JL
1752/*
1753 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1754 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1755 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1756 * Return pages freed into the buddy system.
1757 */
11199692 1758extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1759 int poison, char *s);
c3d5f5f0 1760
cfa11e08
JL
1761#ifdef CONFIG_HIGHMEM
1762/*
1763 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1764 * and totalram_pages.
1765 */
1766extern void free_highmem_page(struct page *page);
1767#endif
69afade7 1768
c3d5f5f0 1769extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1770extern void mem_init_print_info(const char *str);
69afade7 1771
4b50bcc7 1772extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 1773
69afade7
JL
1774/* Free the reserved page into the buddy system, so it gets managed. */
1775static inline void __free_reserved_page(struct page *page)
1776{
1777 ClearPageReserved(page);
1778 init_page_count(page);
1779 __free_page(page);
1780}
1781
1782static inline void free_reserved_page(struct page *page)
1783{
1784 __free_reserved_page(page);
1785 adjust_managed_page_count(page, 1);
1786}
1787
1788static inline void mark_page_reserved(struct page *page)
1789{
1790 SetPageReserved(page);
1791 adjust_managed_page_count(page, -1);
1792}
1793
1794/*
1795 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1796 * The freed pages will be poisoned with pattern "poison" if it's within
1797 * range [0, UCHAR_MAX].
1798 * Return pages freed into the buddy system.
69afade7
JL
1799 */
1800static inline unsigned long free_initmem_default(int poison)
1801{
1802 extern char __init_begin[], __init_end[];
1803
11199692 1804 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1805 poison, "unused kernel");
1806}
1807
7ee3d4e8
JL
1808static inline unsigned long get_num_physpages(void)
1809{
1810 int nid;
1811 unsigned long phys_pages = 0;
1812
1813 for_each_online_node(nid)
1814 phys_pages += node_present_pages(nid);
1815
1816 return phys_pages;
1817}
1818
0ee332c1 1819#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1820/*
0ee332c1 1821 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1822 * zones, allocate the backing mem_map and account for memory holes in a more
1823 * architecture independent manner. This is a substitute for creating the
1824 * zone_sizes[] and zholes_size[] arrays and passing them to
1825 * free_area_init_node()
1826 *
1827 * An architecture is expected to register range of page frames backed by
0ee332c1 1828 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1829 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1830 * usage, an architecture is expected to do something like
1831 *
1832 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1833 * max_highmem_pfn};
1834 * for_each_valid_physical_page_range()
0ee332c1 1835 * memblock_add_node(base, size, nid)
c713216d
MG
1836 * free_area_init_nodes(max_zone_pfns);
1837 *
0ee332c1
TH
1838 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1839 * registered physical page range. Similarly
1840 * sparse_memory_present_with_active_regions() calls memory_present() for
1841 * each range when SPARSEMEM is enabled.
c713216d
MG
1842 *
1843 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1844 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1845 */
1846extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1847unsigned long node_map_pfn_alignment(void);
32996250
YL
1848unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1849 unsigned long end_pfn);
c713216d
MG
1850extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1851 unsigned long end_pfn);
1852extern void get_pfn_range_for_nid(unsigned int nid,
1853 unsigned long *start_pfn, unsigned long *end_pfn);
1854extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1855extern void free_bootmem_with_active_regions(int nid,
1856 unsigned long max_low_pfn);
1857extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1858
0ee332c1 1859#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1860
0ee332c1 1861#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1862 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1863static inline int __early_pfn_to_nid(unsigned long pfn,
1864 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1865{
1866 return 0;
1867}
1868#else
1869/* please see mm/page_alloc.c */
1870extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1871/* there is a per-arch backend function. */
8a942fde
MG
1872extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1873 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1874#endif
1875
0e0b864e 1876extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1877extern void memmap_init_zone(unsigned long, int, unsigned long,
1878 unsigned long, enum memmap_context);
bc75d33f 1879extern void setup_per_zone_wmarks(void);
1b79acc9 1880extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1881extern void mem_init(void);
8feae131 1882extern void __init mmap_init(void);
b2b755b5 1883extern void show_mem(unsigned int flags);
d02bd27b 1884extern long si_mem_available(void);
1da177e4
LT
1885extern void si_meminfo(struct sysinfo * val);
1886extern void si_meminfo_node(struct sysinfo *val, int nid);
1887
3ee9a4f0 1888extern __printf(3, 4)
d00181b9
KS
1889void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1890 const char *fmt, ...);
a238ab5b 1891
e7c8d5c9 1892extern void setup_per_cpu_pageset(void);
e7c8d5c9 1893
112067f0 1894extern void zone_pcp_update(struct zone *zone);
340175b7 1895extern void zone_pcp_reset(struct zone *zone);
112067f0 1896
75f7ad8e
PS
1897/* page_alloc.c */
1898extern int min_free_kbytes;
795ae7a0 1899extern int watermark_scale_factor;
75f7ad8e 1900
8feae131 1901/* nommu.c */
33e5d769 1902extern atomic_long_t mmap_pages_allocated;
7e660872 1903extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1904
6b2dbba8 1905/* interval_tree.c */
6b2dbba8
ML
1906void vma_interval_tree_insert(struct vm_area_struct *node,
1907 struct rb_root *root);
9826a516
ML
1908void vma_interval_tree_insert_after(struct vm_area_struct *node,
1909 struct vm_area_struct *prev,
1910 struct rb_root *root);
6b2dbba8
ML
1911void vma_interval_tree_remove(struct vm_area_struct *node,
1912 struct rb_root *root);
1913struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1914 unsigned long start, unsigned long last);
1915struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1916 unsigned long start, unsigned long last);
1917
1918#define vma_interval_tree_foreach(vma, root, start, last) \
1919 for (vma = vma_interval_tree_iter_first(root, start, last); \
1920 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 1921
bf181b9f
ML
1922void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1923 struct rb_root *root);
1924void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1925 struct rb_root *root);
1926struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1927 struct rb_root *root, unsigned long start, unsigned long last);
1928struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1929 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1930#ifdef CONFIG_DEBUG_VM_RB
1931void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1932#endif
bf181b9f
ML
1933
1934#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1935 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1936 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1937
1da177e4 1938/* mmap.c */
34b4e4aa 1939extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1940extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1941 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1942extern struct vm_area_struct *vma_merge(struct mm_struct *,
1943 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1944 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 1945 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4
LT
1946extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1947extern int split_vma(struct mm_struct *,
1948 struct vm_area_struct *, unsigned long addr, int new_below);
1949extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1950extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1951 struct rb_node **, struct rb_node *);
a8fb5618 1952extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1953extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1954 unsigned long addr, unsigned long len, pgoff_t pgoff,
1955 bool *need_rmap_locks);
1da177e4 1956extern void exit_mmap(struct mm_struct *);
925d1c40 1957
9c599024
CG
1958static inline int check_data_rlimit(unsigned long rlim,
1959 unsigned long new,
1960 unsigned long start,
1961 unsigned long end_data,
1962 unsigned long start_data)
1963{
1964 if (rlim < RLIM_INFINITY) {
1965 if (((new - start) + (end_data - start_data)) > rlim)
1966 return -ENOSPC;
1967 }
1968
1969 return 0;
1970}
1971
7906d00c
AA
1972extern int mm_take_all_locks(struct mm_struct *mm);
1973extern void mm_drop_all_locks(struct mm_struct *mm);
1974
38646013
JS
1975extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1976extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1977
84638335
KK
1978extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
1979extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
1980
3935ed6a
SS
1981extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1982 unsigned long addr, unsigned long len,
a62c34bd
AL
1983 unsigned long flags,
1984 const struct vm_special_mapping *spec);
1985/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
1986extern int install_special_mapping(struct mm_struct *mm,
1987 unsigned long addr, unsigned long len,
1988 unsigned long flags, struct page **pages);
1da177e4
LT
1989
1990extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1991
0165ab44 1992extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1993 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1fcfd8db 1994extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 1995 unsigned long len, unsigned long prot, unsigned long flags,
1fcfd8db 1996 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1997extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1998
1fcfd8db
ON
1999static inline unsigned long
2000do_mmap_pgoff(struct file *file, unsigned long addr,
2001 unsigned long len, unsigned long prot, unsigned long flags,
2002 unsigned long pgoff, unsigned long *populate)
2003{
2004 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
2005}
2006
bebeb3d6
ML
2007#ifdef CONFIG_MMU
2008extern int __mm_populate(unsigned long addr, unsigned long len,
2009 int ignore_errors);
2010static inline void mm_populate(unsigned long addr, unsigned long len)
2011{
2012 /* Ignore errors */
2013 (void) __mm_populate(addr, len, 1);
2014}
2015#else
2016static inline void mm_populate(unsigned long addr, unsigned long len) {}
2017#endif
2018
e4eb1ff6 2019/* These take the mm semaphore themselves */
5d22fc25 2020extern int __must_check vm_brk(unsigned long, unsigned long);
bfce281c 2021extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2022extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2023 unsigned long, unsigned long,
2024 unsigned long, unsigned long);
1da177e4 2025
db4fbfb9
ML
2026struct vm_unmapped_area_info {
2027#define VM_UNMAPPED_AREA_TOPDOWN 1
2028 unsigned long flags;
2029 unsigned long length;
2030 unsigned long low_limit;
2031 unsigned long high_limit;
2032 unsigned long align_mask;
2033 unsigned long align_offset;
2034};
2035
2036extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2037extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2038
2039/*
2040 * Search for an unmapped address range.
2041 *
2042 * We are looking for a range that:
2043 * - does not intersect with any VMA;
2044 * - is contained within the [low_limit, high_limit) interval;
2045 * - is at least the desired size.
2046 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2047 */
2048static inline unsigned long
2049vm_unmapped_area(struct vm_unmapped_area_info *info)
2050{
cdd7875e 2051 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2052 return unmapped_area_topdown(info);
cdd7875e
BP
2053 else
2054 return unmapped_area(info);
db4fbfb9
ML
2055}
2056
85821aab 2057/* truncate.c */
1da177e4 2058extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2059extern void truncate_inode_pages_range(struct address_space *,
2060 loff_t lstart, loff_t lend);
91b0abe3 2061extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2062
2063/* generic vm_area_ops exported for stackable file systems */
d0217ac0 2064extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 2065extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 2066extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
2067
2068/* mm/page-writeback.c */
2069int write_one_page(struct page *page, int wait);
1cf6e7d8 2070void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2071
2072/* readahead.c */
2073#define VM_MAX_READAHEAD 128 /* kbytes */
2074#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2075
1da177e4 2076int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2077 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2078
2079void page_cache_sync_readahead(struct address_space *mapping,
2080 struct file_ra_state *ra,
2081 struct file *filp,
2082 pgoff_t offset,
2083 unsigned long size);
2084
2085void page_cache_async_readahead(struct address_space *mapping,
2086 struct file_ra_state *ra,
2087 struct file *filp,
2088 struct page *pg,
2089 pgoff_t offset,
2090 unsigned long size);
2091
d05f3169 2092/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2093extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2094
2095/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2096extern int expand_downwards(struct vm_area_struct *vma,
2097 unsigned long address);
8ca3eb08 2098#if VM_GROWSUP
46dea3d0 2099extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2100#else
fee7e49d 2101 #define expand_upwards(vma, address) (0)
9ab88515 2102#endif
1da177e4
LT
2103
2104/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2105extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2106extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2107 struct vm_area_struct **pprev);
2108
2109/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2110 NULL if none. Assume start_addr < end_addr. */
2111static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2112{
2113 struct vm_area_struct * vma = find_vma(mm,start_addr);
2114
2115 if (vma && end_addr <= vma->vm_start)
2116 vma = NULL;
2117 return vma;
2118}
2119
2120static inline unsigned long vma_pages(struct vm_area_struct *vma)
2121{
2122 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2123}
2124
640708a2
PE
2125/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2126static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2127 unsigned long vm_start, unsigned long vm_end)
2128{
2129 struct vm_area_struct *vma = find_vma(mm, vm_start);
2130
2131 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2132 vma = NULL;
2133
2134 return vma;
2135}
2136
bad849b3 2137#ifdef CONFIG_MMU
804af2cf 2138pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2139void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2140#else
2141static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2142{
2143 return __pgprot(0);
2144}
64e45507
PF
2145static inline void vma_set_page_prot(struct vm_area_struct *vma)
2146{
2147 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2148}
bad849b3
DH
2149#endif
2150
5877231f 2151#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2152unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2153 unsigned long start, unsigned long end);
2154#endif
2155
deceb6cd 2156struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2157int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2158 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2159int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2160int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2161 unsigned long pfn);
1745cbc5
AL
2162int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2163 unsigned long pfn, pgprot_t pgprot);
423bad60 2164int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2165 pfn_t pfn);
b4cbb197
LT
2166int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2167
deceb6cd 2168
240aadee
ML
2169struct page *follow_page_mask(struct vm_area_struct *vma,
2170 unsigned long address, unsigned int foll_flags,
2171 unsigned int *page_mask);
2172
2173static inline struct page *follow_page(struct vm_area_struct *vma,
2174 unsigned long address, unsigned int foll_flags)
2175{
2176 unsigned int unused_page_mask;
2177 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2178}
2179
deceb6cd
HD
2180#define FOLL_WRITE 0x01 /* check pte is writable */
2181#define FOLL_TOUCH 0x02 /* mark page accessed */
2182#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2183#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2184#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2185#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2186 * and return without waiting upon it */
84d33df2 2187#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2188#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2189#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2190#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2191#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2192#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2193#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2194#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
1da177e4 2195
2f569afd 2196typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2197 void *data);
2198extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2199 unsigned long size, pte_fn_t fn, void *data);
2200
1da177e4 2201
8823b1db
LA
2202#ifdef CONFIG_PAGE_POISONING
2203extern bool page_poisoning_enabled(void);
2204extern void kernel_poison_pages(struct page *page, int numpages, int enable);
1414c7f4 2205extern bool page_is_poisoned(struct page *page);
8823b1db
LA
2206#else
2207static inline bool page_poisoning_enabled(void) { return false; }
2208static inline void kernel_poison_pages(struct page *page, int numpages,
2209 int enable) { }
1414c7f4 2210static inline bool page_is_poisoned(struct page *page) { return false; }
8823b1db
LA
2211#endif
2212
12d6f21e 2213#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2214extern bool _debug_pagealloc_enabled;
2215extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2216
2217static inline bool debug_pagealloc_enabled(void)
2218{
2219 return _debug_pagealloc_enabled;
2220}
2221
2222static inline void
2223kernel_map_pages(struct page *page, int numpages, int enable)
2224{
2225 if (!debug_pagealloc_enabled())
2226 return;
2227
2228 __kernel_map_pages(page, numpages, enable);
2229}
8a235efa
RW
2230#ifdef CONFIG_HIBERNATION
2231extern bool kernel_page_present(struct page *page);
40b44137
JK
2232#endif /* CONFIG_HIBERNATION */
2233#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2234static inline void
9858db50 2235kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2236#ifdef CONFIG_HIBERNATION
2237static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2238#endif /* CONFIG_HIBERNATION */
2239static inline bool debug_pagealloc_enabled(void)
2240{
2241 return false;
2242}
2243#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2244
a6c19dfe 2245#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2246extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2247extern int in_gate_area_no_mm(unsigned long addr);
2248extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2249#else
a6c19dfe
AL
2250static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2251{
2252 return NULL;
2253}
2254static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2255static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2256{
2257 return 0;
2258}
1da177e4
LT
2259#endif /* __HAVE_ARCH_GATE_AREA */
2260
146732ce
JT
2261#ifdef CONFIG_SYSCTL
2262extern int sysctl_drop_caches;
8d65af78 2263int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2264 void __user *, size_t *, loff_t *);
146732ce
JT
2265#endif
2266
cb731d6c
VD
2267void drop_slab(void);
2268void drop_slab_node(int nid);
9d0243bc 2269
7a9166e3
LY
2270#ifndef CONFIG_MMU
2271#define randomize_va_space 0
2272#else
a62eaf15 2273extern int randomize_va_space;
7a9166e3 2274#endif
a62eaf15 2275
045e72ac 2276const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2277void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2278
9bdac914
YL
2279void sparse_mem_maps_populate_node(struct page **map_map,
2280 unsigned long pnum_begin,
2281 unsigned long pnum_end,
2282 unsigned long map_count,
2283 int nodeid);
2284
98f3cfc1 2285struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2286pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2287pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2288pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2289pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2290void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc
DW
2291struct vmem_altmap;
2292void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2293 struct vmem_altmap *altmap);
2294static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2295{
2296 return __vmemmap_alloc_block_buf(size, node, NULL);
2297}
2298
8f6aac41 2299void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2300int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2301 int node);
2302int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2303void vmemmap_populate_print_last(void);
0197518c 2304#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2305void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2306#endif
46723bfa
YI
2307void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2308 unsigned long size);
6a46079c 2309
82ba011b
AK
2310enum mf_flags {
2311 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2312 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2313 MF_MUST_KILL = 1 << 2,
cf870c70 2314 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2315};
cd42f4a3 2316extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2317extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2318extern int unpoison_memory(unsigned long pfn);
ead07f6a 2319extern int get_hwpoison_page(struct page *page);
4e41a30c 2320#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2321extern int sysctl_memory_failure_early_kill;
2322extern int sysctl_memory_failure_recovery;
facb6011 2323extern void shake_page(struct page *p, int access);
293c07e3 2324extern atomic_long_t num_poisoned_pages;
facb6011 2325extern int soft_offline_page(struct page *page, int flags);
6a46079c 2326
cc637b17
XX
2327
2328/*
2329 * Error handlers for various types of pages.
2330 */
cc3e2af4 2331enum mf_result {
cc637b17
XX
2332 MF_IGNORED, /* Error: cannot be handled */
2333 MF_FAILED, /* Error: handling failed */
2334 MF_DELAYED, /* Will be handled later */
2335 MF_RECOVERED, /* Successfully recovered */
2336};
2337
2338enum mf_action_page_type {
2339 MF_MSG_KERNEL,
2340 MF_MSG_KERNEL_HIGH_ORDER,
2341 MF_MSG_SLAB,
2342 MF_MSG_DIFFERENT_COMPOUND,
2343 MF_MSG_POISONED_HUGE,
2344 MF_MSG_HUGE,
2345 MF_MSG_FREE_HUGE,
2346 MF_MSG_UNMAP_FAILED,
2347 MF_MSG_DIRTY_SWAPCACHE,
2348 MF_MSG_CLEAN_SWAPCACHE,
2349 MF_MSG_DIRTY_MLOCKED_LRU,
2350 MF_MSG_CLEAN_MLOCKED_LRU,
2351 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2352 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2353 MF_MSG_DIRTY_LRU,
2354 MF_MSG_CLEAN_LRU,
2355 MF_MSG_TRUNCATED_LRU,
2356 MF_MSG_BUDDY,
2357 MF_MSG_BUDDY_2ND,
2358 MF_MSG_UNKNOWN,
2359};
2360
47ad8475
AA
2361#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2362extern void clear_huge_page(struct page *page,
2363 unsigned long addr,
2364 unsigned int pages_per_huge_page);
2365extern void copy_user_huge_page(struct page *dst, struct page *src,
2366 unsigned long addr, struct vm_area_struct *vma,
2367 unsigned int pages_per_huge_page);
2368#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2369
e30825f1
JK
2370extern struct page_ext_operations debug_guardpage_ops;
2371extern struct page_ext_operations page_poisoning_ops;
2372
c0a32fc5
SG
2373#ifdef CONFIG_DEBUG_PAGEALLOC
2374extern unsigned int _debug_guardpage_minorder;
e30825f1 2375extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2376
2377static inline unsigned int debug_guardpage_minorder(void)
2378{
2379 return _debug_guardpage_minorder;
2380}
2381
e30825f1
JK
2382static inline bool debug_guardpage_enabled(void)
2383{
2384 return _debug_guardpage_enabled;
2385}
2386
c0a32fc5
SG
2387static inline bool page_is_guard(struct page *page)
2388{
e30825f1
JK
2389 struct page_ext *page_ext;
2390
2391 if (!debug_guardpage_enabled())
2392 return false;
2393
2394 page_ext = lookup_page_ext(page);
0bb2fd13
YS
2395 if (unlikely(!page_ext))
2396 return false;
2397
e30825f1 2398 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2399}
2400#else
2401static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2402static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2403static inline bool page_is_guard(struct page *page) { return false; }
2404#endif /* CONFIG_DEBUG_PAGEALLOC */
2405
f9872caf
CS
2406#if MAX_NUMNODES > 1
2407void __init setup_nr_node_ids(void);
2408#else
2409static inline void setup_nr_node_ids(void) {}
2410#endif
2411
1da177e4
LT
2412#endif /* __KERNEL__ */
2413#endif /* _LINUX_MM_H */