um, pkeys: Add UML arch_*_access_permitted() methods
[linux-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
3565fce3 19#include <linux/percpu-refcount.h>
e9da73d6 20#include <linux/bit_spinlock.h>
b0d40c92 21#include <linux/shrinker.h>
9c599024 22#include <linux/resource.h>
e30825f1 23#include <linux/page_ext.h>
8025e5dd 24#include <linux/err.h>
1da177e4
LT
25
26struct mempolicy;
27struct anon_vma;
bf181b9f 28struct anon_vma_chain;
4e950f6f 29struct file_ra_state;
e8edc6e0 30struct user_struct;
4e950f6f 31struct writeback_control;
682aa8e1 32struct bdi_writeback;
1da177e4 33
fccc9987 34#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 35extern unsigned long max_mapnr;
fccc9987
JL
36
37static inline void set_max_mapnr(unsigned long limit)
38{
39 max_mapnr = limit;
40}
41#else
42static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
43#endif
44
4481374c 45extern unsigned long totalram_pages;
1da177e4 46extern void * high_memory;
1da177e4
LT
47extern int page_cluster;
48
49#ifdef CONFIG_SYSCTL
50extern int sysctl_legacy_va_layout;
51#else
52#define sysctl_legacy_va_layout 0
53#endif
54
d07e2259
DC
55#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
56extern const int mmap_rnd_bits_min;
57extern const int mmap_rnd_bits_max;
58extern int mmap_rnd_bits __read_mostly;
59#endif
60#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
61extern const int mmap_rnd_compat_bits_min;
62extern const int mmap_rnd_compat_bits_max;
63extern int mmap_rnd_compat_bits __read_mostly;
64#endif
65
1da177e4
LT
66#include <asm/page.h>
67#include <asm/pgtable.h>
68#include <asm/processor.h>
1da177e4 69
79442ed1
TC
70#ifndef __pa_symbol
71#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
72#endif
73
593befa6
DD
74/*
75 * To prevent common memory management code establishing
76 * a zero page mapping on a read fault.
77 * This macro should be defined within <asm/pgtable.h>.
78 * s390 does this to prevent multiplexing of hardware bits
79 * related to the physical page in case of virtualization.
80 */
81#ifndef mm_forbids_zeropage
82#define mm_forbids_zeropage(X) (0)
83#endif
84
c9b1d098 85extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 86extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 87
49f0ce5f
JM
88extern int sysctl_overcommit_memory;
89extern int sysctl_overcommit_ratio;
90extern unsigned long sysctl_overcommit_kbytes;
91
92extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
93 size_t *, loff_t *);
94extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
95 size_t *, loff_t *);
96
1da177e4
LT
97#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
98
27ac792c
AR
99/* to align the pointer to the (next) page boundary */
100#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
101
0fa73b86
AM
102/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
103#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
104
1da177e4
LT
105/*
106 * Linux kernel virtual memory manager primitives.
107 * The idea being to have a "virtual" mm in the same way
108 * we have a virtual fs - giving a cleaner interface to the
109 * mm details, and allowing different kinds of memory mappings
110 * (from shared memory to executable loading to arbitrary
111 * mmap() functions).
112 */
113
c43692e8
CL
114extern struct kmem_cache *vm_area_cachep;
115
1da177e4 116#ifndef CONFIG_MMU
8feae131
DH
117extern struct rb_root nommu_region_tree;
118extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
119
120extern unsigned int kobjsize(const void *objp);
121#endif
122
123/*
605d9288 124 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 125 */
cc2383ec
KK
126#define VM_NONE 0x00000000
127
1da177e4
LT
128#define VM_READ 0x00000001 /* currently active flags */
129#define VM_WRITE 0x00000002
130#define VM_EXEC 0x00000004
131#define VM_SHARED 0x00000008
132
7e2cff42 133/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
134#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
135#define VM_MAYWRITE 0x00000020
136#define VM_MAYEXEC 0x00000040
137#define VM_MAYSHARE 0x00000080
138
139#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 140#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 141#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 142#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 143#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 144
1da177e4
LT
145#define VM_LOCKED 0x00002000
146#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
147
148 /* Used by sys_madvise() */
149#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
150#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
151
152#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
153#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 154#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 155#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 156#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 157#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 158#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 159#define VM_ARCH_2 0x02000000
0103bd16 160#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 161
d9104d1c
CG
162#ifdef CONFIG_MEM_SOFT_DIRTY
163# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
164#else
165# define VM_SOFTDIRTY 0
166#endif
167
b379d790 168#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
169#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
170#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 171#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 172
63c17fb8
DH
173#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
174#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
175#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
176#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
177#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
178#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
179#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
180#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
181#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
182#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
183
cc2383ec
KK
184#if defined(CONFIG_X86)
185# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
8f62c883
DH
186#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
187# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
188# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
189# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
190# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
191# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
192#endif
cc2383ec
KK
193#elif defined(CONFIG_PPC)
194# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
195#elif defined(CONFIG_PARISC)
196# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
197#elif defined(CONFIG_METAG)
198# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
199#elif defined(CONFIG_IA64)
200# define VM_GROWSUP VM_ARCH_1
201#elif !defined(CONFIG_MMU)
202# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
203#endif
204
4aae7e43
QR
205#if defined(CONFIG_X86)
206/* MPX specific bounds table or bounds directory */
207# define VM_MPX VM_ARCH_2
208#endif
209
cc2383ec
KK
210#ifndef VM_GROWSUP
211# define VM_GROWSUP VM_NONE
212#endif
213
a8bef8ff
MG
214/* Bits set in the VMA until the stack is in its final location */
215#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
216
1da177e4
LT
217#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
218#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
219#endif
220
221#ifdef CONFIG_STACK_GROWSUP
30bdbb78 222#define VM_STACK VM_GROWSUP
1da177e4 223#else
30bdbb78 224#define VM_STACK VM_GROWSDOWN
1da177e4
LT
225#endif
226
30bdbb78
KK
227#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
228
b291f000 229/*
78f11a25
AA
230 * Special vmas that are non-mergable, non-mlock()able.
231 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 232 */
9050d7eb 233#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 234
a0715cc2
AT
235/* This mask defines which mm->def_flags a process can inherit its parent */
236#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
237
de60f5f1
EM
238/* This mask is used to clear all the VMA flags used by mlock */
239#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
240
1da177e4
LT
241/*
242 * mapping from the currently active vm_flags protection bits (the
243 * low four bits) to a page protection mask..
244 */
245extern pgprot_t protection_map[16];
246
d0217ac0 247#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
248#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
249#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
250#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
251#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
252#define FAULT_FLAG_TRIED 0x20 /* Second try */
253#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
d0217ac0 254
54cb8821 255/*
d0217ac0 256 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
257 * ->fault function. The vma's ->fault is responsible for returning a bitmask
258 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 259 *
c20cd45e
MH
260 * MM layer fills up gfp_mask for page allocations but fault handler might
261 * alter it if its implementation requires a different allocation context.
262 *
9b4bdd2f 263 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 264 */
d0217ac0
NP
265struct vm_fault {
266 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 267 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0
NP
268 pgoff_t pgoff; /* Logical page offset based on vma */
269 void __user *virtual_address; /* Faulting virtual address */
270
2e4cdab0 271 struct page *cow_page; /* Handler may choose to COW */
d0217ac0 272 struct page *page; /* ->fault handlers should return a
83c54070 273 * page here, unless VM_FAULT_NOPAGE
d0217ac0 274 * is set (which is also implied by
83c54070 275 * VM_FAULT_ERROR).
d0217ac0 276 */
8c6e50b0
KS
277 /* for ->map_pages() only */
278 pgoff_t max_pgoff; /* map pages for offset from pgoff till
279 * max_pgoff inclusive */
280 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 281};
1da177e4
LT
282
283/*
284 * These are the virtual MM functions - opening of an area, closing and
285 * unmapping it (needed to keep files on disk up-to-date etc), pointer
286 * to the functions called when a no-page or a wp-page exception occurs.
287 */
288struct vm_operations_struct {
289 void (*open)(struct vm_area_struct * area);
290 void (*close)(struct vm_area_struct * area);
5477e70a 291 int (*mremap)(struct vm_area_struct * area);
d0217ac0 292 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
b96375f7
MW
293 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
294 pmd_t *, unsigned int flags);
8c6e50b0 295 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
296
297 /* notification that a previously read-only page is about to become
298 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 299 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20 300
dd906184
BH
301 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
302 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
303
28b2ee20
RR
304 /* called by access_process_vm when get_user_pages() fails, typically
305 * for use by special VMAs that can switch between memory and hardware
306 */
307 int (*access)(struct vm_area_struct *vma, unsigned long addr,
308 void *buf, int len, int write);
78d683e8
AL
309
310 /* Called by the /proc/PID/maps code to ask the vma whether it
311 * has a special name. Returning non-NULL will also cause this
312 * vma to be dumped unconditionally. */
313 const char *(*name)(struct vm_area_struct *vma);
314
1da177e4 315#ifdef CONFIG_NUMA
a6020ed7
LS
316 /*
317 * set_policy() op must add a reference to any non-NULL @new mempolicy
318 * to hold the policy upon return. Caller should pass NULL @new to
319 * remove a policy and fall back to surrounding context--i.e. do not
320 * install a MPOL_DEFAULT policy, nor the task or system default
321 * mempolicy.
322 */
1da177e4 323 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
324
325 /*
326 * get_policy() op must add reference [mpol_get()] to any policy at
327 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
328 * in mm/mempolicy.c will do this automatically.
329 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
330 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
331 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
332 * must return NULL--i.e., do not "fallback" to task or system default
333 * policy.
334 */
1da177e4
LT
335 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
336 unsigned long addr);
337#endif
667a0a06
DV
338 /*
339 * Called by vm_normal_page() for special PTEs to find the
340 * page for @addr. This is useful if the default behavior
341 * (using pte_page()) would not find the correct page.
342 */
343 struct page *(*find_special_page)(struct vm_area_struct *vma,
344 unsigned long addr);
1da177e4
LT
345};
346
347struct mmu_gather;
348struct inode;
349
349aef0b
AM
350#define page_private(page) ((page)->private)
351#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 352
5c7fb56e
DW
353#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
354static inline int pmd_devmap(pmd_t pmd)
355{
356 return 0;
357}
358#endif
359
1da177e4
LT
360/*
361 * FIXME: take this include out, include page-flags.h in
362 * files which need it (119 of them)
363 */
364#include <linux/page-flags.h>
71e3aac0 365#include <linux/huge_mm.h>
1da177e4
LT
366
367/*
368 * Methods to modify the page usage count.
369 *
370 * What counts for a page usage:
371 * - cache mapping (page->mapping)
372 * - private data (page->private)
373 * - page mapped in a task's page tables, each mapping
374 * is counted separately
375 *
376 * Also, many kernel routines increase the page count before a critical
377 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
378 */
379
380/*
da6052f7 381 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 382 */
7c8ee9a8
NP
383static inline int put_page_testzero(struct page *page)
384{
309381fe 385 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 386 return atomic_dec_and_test(&page->_count);
7c8ee9a8 387}
1da177e4
LT
388
389/*
7c8ee9a8
NP
390 * Try to grab a ref unless the page has a refcount of zero, return false if
391 * that is the case.
8e0861fa
AK
392 * This can be called when MMU is off so it must not access
393 * any of the virtual mappings.
1da177e4 394 */
7c8ee9a8
NP
395static inline int get_page_unless_zero(struct page *page)
396{
8dc04efb 397 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 398}
1da177e4 399
53df8fdc 400extern int page_is_ram(unsigned long pfn);
124fe20d
DW
401
402enum {
403 REGION_INTERSECTS,
404 REGION_DISJOINT,
405 REGION_MIXED,
406};
407
408int region_intersects(resource_size_t offset, size_t size, const char *type);
53df8fdc 409
48667e7a 410/* Support for virtually mapped pages */
b3bdda02
CL
411struct page *vmalloc_to_page(const void *addr);
412unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 413
0738c4bb
PM
414/*
415 * Determine if an address is within the vmalloc range
416 *
417 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
418 * is no special casing required.
419 */
9e2779fa
CL
420static inline int is_vmalloc_addr(const void *x)
421{
0738c4bb 422#ifdef CONFIG_MMU
9e2779fa
CL
423 unsigned long addr = (unsigned long)x;
424
425 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
426#else
427 return 0;
8ca3ed87 428#endif
0738c4bb 429}
81ac3ad9
KH
430#ifdef CONFIG_MMU
431extern int is_vmalloc_or_module_addr(const void *x);
432#else
934831d0 433static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
434{
435 return 0;
436}
437#endif
9e2779fa 438
39f1f78d
AV
439extern void kvfree(const void *addr);
440
53f9263b
KS
441static inline atomic_t *compound_mapcount_ptr(struct page *page)
442{
443 return &page[1].compound_mapcount;
444}
445
446static inline int compound_mapcount(struct page *page)
447{
448 if (!PageCompound(page))
449 return 0;
450 page = compound_head(page);
451 return atomic_read(compound_mapcount_ptr(page)) + 1;
452}
453
70b50f94
AA
454/*
455 * The atomic page->_mapcount, starts from -1: so that transitions
456 * both from it and to it can be tracked, using atomic_inc_and_test
457 * and atomic_add_negative(-1).
458 */
22b751c3 459static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
460{
461 atomic_set(&(page)->_mapcount, -1);
462}
463
b20ce5e0
KS
464int __page_mapcount(struct page *page);
465
70b50f94
AA
466static inline int page_mapcount(struct page *page)
467{
1d148e21 468 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 469
b20ce5e0
KS
470 if (unlikely(PageCompound(page)))
471 return __page_mapcount(page);
472 return atomic_read(&page->_mapcount) + 1;
473}
474
475#ifdef CONFIG_TRANSPARENT_HUGEPAGE
476int total_mapcount(struct page *page);
477#else
478static inline int total_mapcount(struct page *page)
479{
480 return page_mapcount(page);
70b50f94 481}
b20ce5e0 482#endif
70b50f94 483
4c21e2f2 484static inline int page_count(struct page *page)
1da177e4 485{
d85f3385 486 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
487}
488
b49af68f
CL
489static inline struct page *virt_to_head_page(const void *x)
490{
491 struct page *page = virt_to_page(x);
ccaafd7f 492
1d798ca3 493 return compound_head(page);
b49af68f
CL
494}
495
7835e98b
NP
496/*
497 * Setup the page count before being freed into the page allocator for
498 * the first time (boot or memory hotplug)
499 */
500static inline void init_page_count(struct page *page)
501{
502 atomic_set(&page->_count, 1);
503}
504
ddc58f27
KS
505void __put_page(struct page *page);
506
1d7ea732 507void put_pages_list(struct list_head *pages);
1da177e4 508
8dfcc9ba 509void split_page(struct page *page, unsigned int order);
748446bb 510int split_free_page(struct page *page);
8dfcc9ba 511
33f2ef89
AW
512/*
513 * Compound pages have a destructor function. Provide a
514 * prototype for that function and accessor functions.
f1e61557 515 * These are _only_ valid on the head of a compound page.
33f2ef89 516 */
f1e61557
KS
517typedef void compound_page_dtor(struct page *);
518
519/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
520enum compound_dtor_id {
521 NULL_COMPOUND_DTOR,
522 COMPOUND_PAGE_DTOR,
523#ifdef CONFIG_HUGETLB_PAGE
524 HUGETLB_PAGE_DTOR,
9a982250
KS
525#endif
526#ifdef CONFIG_TRANSPARENT_HUGEPAGE
527 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
528#endif
529 NR_COMPOUND_DTORS,
530};
531extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
532
533static inline void set_compound_page_dtor(struct page *page,
f1e61557 534 enum compound_dtor_id compound_dtor)
33f2ef89 535{
f1e61557
KS
536 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
537 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
538}
539
540static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
541{
f1e61557
KS
542 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
543 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
544}
545
d00181b9 546static inline unsigned int compound_order(struct page *page)
d85f3385 547{
6d777953 548 if (!PageHead(page))
d85f3385 549 return 0;
e4b294c2 550 return page[1].compound_order;
d85f3385
CL
551}
552
f1e61557 553static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 554{
e4b294c2 555 page[1].compound_order = order;
d85f3385
CL
556}
557
9a982250
KS
558void free_compound_page(struct page *page);
559
3dece370 560#ifdef CONFIG_MMU
14fd403f
AA
561/*
562 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
563 * servicing faults for write access. In the normal case, do always want
564 * pte_mkwrite. But get_user_pages can cause write faults for mappings
565 * that do not have writing enabled, when used by access_process_vm.
566 */
567static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
568{
569 if (likely(vma->vm_flags & VM_WRITE))
570 pte = pte_mkwrite(pte);
571 return pte;
572}
8c6e50b0
KS
573
574void do_set_pte(struct vm_area_struct *vma, unsigned long address,
575 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 576#endif
14fd403f 577
1da177e4
LT
578/*
579 * Multiple processes may "see" the same page. E.g. for untouched
580 * mappings of /dev/null, all processes see the same page full of
581 * zeroes, and text pages of executables and shared libraries have
582 * only one copy in memory, at most, normally.
583 *
584 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
585 * page_count() == 0 means the page is free. page->lru is then used for
586 * freelist management in the buddy allocator.
da6052f7 587 * page_count() > 0 means the page has been allocated.
1da177e4 588 *
da6052f7
NP
589 * Pages are allocated by the slab allocator in order to provide memory
590 * to kmalloc and kmem_cache_alloc. In this case, the management of the
591 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
592 * unless a particular usage is carefully commented. (the responsibility of
593 * freeing the kmalloc memory is the caller's, of course).
1da177e4 594 *
da6052f7
NP
595 * A page may be used by anyone else who does a __get_free_page().
596 * In this case, page_count still tracks the references, and should only
597 * be used through the normal accessor functions. The top bits of page->flags
598 * and page->virtual store page management information, but all other fields
599 * are unused and could be used privately, carefully. The management of this
600 * page is the responsibility of the one who allocated it, and those who have
601 * subsequently been given references to it.
602 *
603 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
604 * managed by the Linux memory manager: I/O, buffers, swapping etc.
605 * The following discussion applies only to them.
606 *
da6052f7
NP
607 * A pagecache page contains an opaque `private' member, which belongs to the
608 * page's address_space. Usually, this is the address of a circular list of
609 * the page's disk buffers. PG_private must be set to tell the VM to call
610 * into the filesystem to release these pages.
1da177e4 611 *
da6052f7
NP
612 * A page may belong to an inode's memory mapping. In this case, page->mapping
613 * is the pointer to the inode, and page->index is the file offset of the page,
614 * in units of PAGE_CACHE_SIZE.
1da177e4 615 *
da6052f7
NP
616 * If pagecache pages are not associated with an inode, they are said to be
617 * anonymous pages. These may become associated with the swapcache, and in that
618 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 619 *
da6052f7
NP
620 * In either case (swapcache or inode backed), the pagecache itself holds one
621 * reference to the page. Setting PG_private should also increment the
622 * refcount. The each user mapping also has a reference to the page.
1da177e4 623 *
da6052f7
NP
624 * The pagecache pages are stored in a per-mapping radix tree, which is
625 * rooted at mapping->page_tree, and indexed by offset.
626 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
627 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 628 *
da6052f7 629 * All pagecache pages may be subject to I/O:
1da177e4
LT
630 * - inode pages may need to be read from disk,
631 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
632 * to be written back to the inode on disk,
633 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
634 * modified may need to be swapped out to swap space and (later) to be read
635 * back into memory.
1da177e4
LT
636 */
637
638/*
639 * The zone field is never updated after free_area_init_core()
640 * sets it, so none of the operations on it need to be atomic.
1da177e4 641 */
348f8b6c 642
90572890 643/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 644#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
645#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
646#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 647#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 648
348f8b6c 649/*
25985edc 650 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
651 * sections we define the shift as 0; that plus a 0 mask ensures
652 * the compiler will optimise away reference to them.
653 */
d41dee36
AW
654#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
655#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
656#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 657#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 658
bce54bbf
WD
659/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
660#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 661#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
662#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
663 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 664#else
89689ae7 665#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
666#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
667 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
668#endif
669
bd8029b6 670#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 671
9223b419
CL
672#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
673#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
674#endif
675
d41dee36
AW
676#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
677#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
678#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 679#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 680#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 681
33dd4e0e 682static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 683{
348f8b6c 684 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 685}
1da177e4 686
260ae3f7 687#ifdef CONFIG_ZONE_DEVICE
3565fce3
DW
688void get_zone_device_page(struct page *page);
689void put_zone_device_page(struct page *page);
260ae3f7
DW
690static inline bool is_zone_device_page(const struct page *page)
691{
692 return page_zonenum(page) == ZONE_DEVICE;
693}
694#else
3565fce3
DW
695static inline void get_zone_device_page(struct page *page)
696{
697}
698static inline void put_zone_device_page(struct page *page)
699{
700}
260ae3f7
DW
701static inline bool is_zone_device_page(const struct page *page)
702{
703 return false;
704}
705#endif
706
3565fce3
DW
707static inline void get_page(struct page *page)
708{
709 page = compound_head(page);
710 /*
711 * Getting a normal page or the head of a compound page
712 * requires to already have an elevated page->_count.
713 */
714 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
715 atomic_inc(&page->_count);
716
717 if (unlikely(is_zone_device_page(page)))
718 get_zone_device_page(page);
719}
720
721static inline void put_page(struct page *page)
722{
723 page = compound_head(page);
724
725 if (put_page_testzero(page))
726 __put_page(page);
727
728 if (unlikely(is_zone_device_page(page)))
729 put_zone_device_page(page);
730}
731
9127ab4f
CS
732#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
733#define SECTION_IN_PAGE_FLAGS
734#endif
735
89689ae7 736/*
7a8010cd
VB
737 * The identification function is mainly used by the buddy allocator for
738 * determining if two pages could be buddies. We are not really identifying
739 * the zone since we could be using the section number id if we do not have
740 * node id available in page flags.
741 * We only guarantee that it will return the same value for two combinable
742 * pages in a zone.
89689ae7 743 */
cb2b95e1
AW
744static inline int page_zone_id(struct page *page)
745{
89689ae7 746 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
747}
748
25ba77c1 749static inline int zone_to_nid(struct zone *zone)
89fa3024 750{
d5f541ed
CL
751#ifdef CONFIG_NUMA
752 return zone->node;
753#else
754 return 0;
755#endif
89fa3024
CL
756}
757
89689ae7 758#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 759extern int page_to_nid(const struct page *page);
89689ae7 760#else
33dd4e0e 761static inline int page_to_nid(const struct page *page)
d41dee36 762{
89689ae7 763 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 764}
89689ae7
CL
765#endif
766
57e0a030 767#ifdef CONFIG_NUMA_BALANCING
90572890 768static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 769{
90572890 770 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
771}
772
90572890 773static inline int cpupid_to_pid(int cpupid)
57e0a030 774{
90572890 775 return cpupid & LAST__PID_MASK;
57e0a030 776}
b795854b 777
90572890 778static inline int cpupid_to_cpu(int cpupid)
b795854b 779{
90572890 780 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
781}
782
90572890 783static inline int cpupid_to_nid(int cpupid)
b795854b 784{
90572890 785 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
786}
787
90572890 788static inline bool cpupid_pid_unset(int cpupid)
57e0a030 789{
90572890 790 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
791}
792
90572890 793static inline bool cpupid_cpu_unset(int cpupid)
b795854b 794{
90572890 795 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
796}
797
8c8a743c
PZ
798static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
799{
800 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
801}
802
803#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
804#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
805static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 806{
1ae71d03 807 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 808}
90572890
PZ
809
810static inline int page_cpupid_last(struct page *page)
811{
812 return page->_last_cpupid;
813}
814static inline void page_cpupid_reset_last(struct page *page)
b795854b 815{
1ae71d03 816 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
817}
818#else
90572890 819static inline int page_cpupid_last(struct page *page)
75980e97 820{
90572890 821 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
822}
823
90572890 824extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 825
90572890 826static inline void page_cpupid_reset_last(struct page *page)
75980e97 827{
90572890 828 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 829
90572890
PZ
830 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
831 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 832}
90572890
PZ
833#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
834#else /* !CONFIG_NUMA_BALANCING */
835static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 836{
90572890 837 return page_to_nid(page); /* XXX */
57e0a030
MG
838}
839
90572890 840static inline int page_cpupid_last(struct page *page)
57e0a030 841{
90572890 842 return page_to_nid(page); /* XXX */
57e0a030
MG
843}
844
90572890 845static inline int cpupid_to_nid(int cpupid)
b795854b
MG
846{
847 return -1;
848}
849
90572890 850static inline int cpupid_to_pid(int cpupid)
b795854b
MG
851{
852 return -1;
853}
854
90572890 855static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
856{
857 return -1;
858}
859
90572890
PZ
860static inline int cpu_pid_to_cpupid(int nid, int pid)
861{
862 return -1;
863}
864
865static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
866{
867 return 1;
868}
869
90572890 870static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
871{
872}
8c8a743c
PZ
873
874static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
875{
876 return false;
877}
90572890 878#endif /* CONFIG_NUMA_BALANCING */
57e0a030 879
33dd4e0e 880static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
881{
882 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
883}
884
9127ab4f 885#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
886static inline void set_page_section(struct page *page, unsigned long section)
887{
888 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
889 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
890}
891
aa462abe 892static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
893{
894 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
895}
308c05e3 896#endif
d41dee36 897
2f1b6248 898static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
899{
900 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
901 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
902}
2f1b6248 903
348f8b6c
DH
904static inline void set_page_node(struct page *page, unsigned long node)
905{
906 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
907 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 908}
89689ae7 909
2f1b6248 910static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 911 unsigned long node, unsigned long pfn)
1da177e4 912{
348f8b6c
DH
913 set_page_zone(page, zone);
914 set_page_node(page, node);
9127ab4f 915#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 916 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 917#endif
1da177e4
LT
918}
919
0610c25d
GT
920#ifdef CONFIG_MEMCG
921static inline struct mem_cgroup *page_memcg(struct page *page)
922{
923 return page->mem_cgroup;
924}
925
926static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
927{
928 page->mem_cgroup = memcg;
929}
930#else
931static inline struct mem_cgroup *page_memcg(struct page *page)
932{
933 return NULL;
934}
935
936static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
937{
938}
939#endif
940
f6ac2354
CL
941/*
942 * Some inline functions in vmstat.h depend on page_zone()
943 */
944#include <linux/vmstat.h>
945
33dd4e0e 946static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 947{
aa462abe 948 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
949}
950
951#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
952#define HASHED_PAGE_VIRTUAL
953#endif
954
955#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
956static inline void *page_address(const struct page *page)
957{
958 return page->virtual;
959}
960static inline void set_page_address(struct page *page, void *address)
961{
962 page->virtual = address;
963}
1da177e4
LT
964#define page_address_init() do { } while(0)
965#endif
966
967#if defined(HASHED_PAGE_VIRTUAL)
f9918794 968void *page_address(const struct page *page);
1da177e4
LT
969void set_page_address(struct page *page, void *virtual);
970void page_address_init(void);
971#endif
972
973#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
974#define page_address(page) lowmem_page_address(page)
975#define set_page_address(page, address) do { } while(0)
976#define page_address_init() do { } while(0)
977#endif
978
e39155ea
KS
979extern void *page_rmapping(struct page *page);
980extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 981extern struct address_space *page_mapping(struct page *page);
1da177e4 982
f981c595
MG
983extern struct address_space *__page_file_mapping(struct page *);
984
985static inline
986struct address_space *page_file_mapping(struct page *page)
987{
988 if (unlikely(PageSwapCache(page)))
989 return __page_file_mapping(page);
990
991 return page->mapping;
992}
993
1da177e4
LT
994/*
995 * Return the pagecache index of the passed page. Regular pagecache pages
996 * use ->index whereas swapcache pages use ->private
997 */
998static inline pgoff_t page_index(struct page *page)
999{
1000 if (unlikely(PageSwapCache(page)))
4c21e2f2 1001 return page_private(page);
1da177e4
LT
1002 return page->index;
1003}
1004
f981c595
MG
1005extern pgoff_t __page_file_index(struct page *page);
1006
1007/*
1008 * Return the file index of the page. Regular pagecache pages use ->index
1009 * whereas swapcache pages use swp_offset(->private)
1010 */
1011static inline pgoff_t page_file_index(struct page *page)
1012{
1013 if (unlikely(PageSwapCache(page)))
1014 return __page_file_index(page);
1015
1016 return page->index;
1017}
1018
1da177e4
LT
1019/*
1020 * Return true if this page is mapped into pagetables.
e1534ae9 1021 * For compound page it returns true if any subpage of compound page is mapped.
1da177e4 1022 */
e1534ae9 1023static inline bool page_mapped(struct page *page)
1da177e4 1024{
e1534ae9
KS
1025 int i;
1026 if (likely(!PageCompound(page)))
1027 return atomic_read(&page->_mapcount) >= 0;
1028 page = compound_head(page);
1029 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
1030 return true;
1031 for (i = 0; i < hpage_nr_pages(page); i++) {
1032 if (atomic_read(&page[i]._mapcount) >= 0)
1033 return true;
1034 }
1035 return false;
1da177e4
LT
1036}
1037
2f064f34
MH
1038/*
1039 * Return true only if the page has been allocated with
1040 * ALLOC_NO_WATERMARKS and the low watermark was not
1041 * met implying that the system is under some pressure.
1042 */
1043static inline bool page_is_pfmemalloc(struct page *page)
1044{
1045 /*
1046 * Page index cannot be this large so this must be
1047 * a pfmemalloc page.
1048 */
1049 return page->index == -1UL;
1050}
1051
1052/*
1053 * Only to be called by the page allocator on a freshly allocated
1054 * page.
1055 */
1056static inline void set_page_pfmemalloc(struct page *page)
1057{
1058 page->index = -1UL;
1059}
1060
1061static inline void clear_page_pfmemalloc(struct page *page)
1062{
1063 page->index = 0;
1064}
1065
1da177e4
LT
1066/*
1067 * Different kinds of faults, as returned by handle_mm_fault().
1068 * Used to decide whether a process gets delivered SIGBUS or
1069 * just gets major/minor fault counters bumped up.
1070 */
d0217ac0 1071
83c54070 1072#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1073
83c54070
NP
1074#define VM_FAULT_OOM 0x0001
1075#define VM_FAULT_SIGBUS 0x0002
1076#define VM_FAULT_MAJOR 0x0004
1077#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1078#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1079#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1080#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1081
83c54070
NP
1082#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1083#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1084#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1085#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1086
aa50d3a7
AK
1087#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1088
33692f27
LT
1089#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1090 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1091 VM_FAULT_FALLBACK)
aa50d3a7
AK
1092
1093/* Encode hstate index for a hwpoisoned large page */
1094#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1095#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1096
1c0fe6e3
NP
1097/*
1098 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1099 */
1100extern void pagefault_out_of_memory(void);
1101
1da177e4
LT
1102#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1103
ddd588b5 1104/*
7bf02ea2 1105 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1106 * various contexts.
1107 */
4b59e6c4 1108#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1109
7bf02ea2
DR
1110extern void show_free_areas(unsigned int flags);
1111extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1112
1da177e4 1113int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1114#ifdef CONFIG_SHMEM
1115bool shmem_mapping(struct address_space *mapping);
1116#else
1117static inline bool shmem_mapping(struct address_space *mapping)
1118{
1119 return false;
1120}
1121#endif
1da177e4 1122
7f43add4 1123extern bool can_do_mlock(void);
1da177e4
LT
1124extern int user_shm_lock(size_t, struct user_struct *);
1125extern void user_shm_unlock(size_t, struct user_struct *);
1126
1127/*
1128 * Parameter block passed down to zap_pte_range in exceptional cases.
1129 */
1130struct zap_details {
1da177e4
LT
1131 struct address_space *check_mapping; /* Check page->mapping if set */
1132 pgoff_t first_index; /* Lowest page->index to unmap */
1133 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1134};
1135
7e675137
NP
1136struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1137 pte_t pte);
1138
c627f9cc
JS
1139int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1140 unsigned long size);
14f5ff5d 1141void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1142 unsigned long size, struct zap_details *);
4f74d2c8
LT
1143void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1144 unsigned long start, unsigned long end);
e6473092
MM
1145
1146/**
1147 * mm_walk - callbacks for walk_page_range
e6473092 1148 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1149 * this handler is required to be able to handle
1150 * pmd_trans_huge() pmds. They may simply choose to
1151 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1152 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1153 * @pte_hole: if set, called for each hole at all levels
5dc37642 1154 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426
NH
1155 * @test_walk: caller specific callback function to determine whether
1156 * we walk over the current vma or not. A positive returned
1157 * value means "do page table walk over the current vma,"
1158 * and a negative one means "abort current page table walk
1159 * right now." 0 means "skip the current vma."
1160 * @mm: mm_struct representing the target process of page table walk
1161 * @vma: vma currently walked (NULL if walking outside vmas)
1162 * @private: private data for callbacks' usage
e6473092 1163 *
fafaa426 1164 * (see the comment on walk_page_range() for more details)
e6473092
MM
1165 */
1166struct mm_walk {
0f157a5b
AM
1167 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1168 unsigned long next, struct mm_walk *walk);
1169 int (*pte_entry)(pte_t *pte, unsigned long addr,
1170 unsigned long next, struct mm_walk *walk);
1171 int (*pte_hole)(unsigned long addr, unsigned long next,
1172 struct mm_walk *walk);
1173 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1174 unsigned long addr, unsigned long next,
1175 struct mm_walk *walk);
fafaa426
NH
1176 int (*test_walk)(unsigned long addr, unsigned long next,
1177 struct mm_walk *walk);
2165009b 1178 struct mm_struct *mm;
fafaa426 1179 struct vm_area_struct *vma;
2165009b 1180 void *private;
e6473092
MM
1181};
1182
2165009b
DH
1183int walk_page_range(unsigned long addr, unsigned long end,
1184 struct mm_walk *walk);
900fc5f1 1185int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1186void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1187 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1188int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1189 struct vm_area_struct *vma);
1da177e4
LT
1190void unmap_mapping_range(struct address_space *mapping,
1191 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1192int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1193 unsigned long *pfn);
d87fe660 1194int follow_phys(struct vm_area_struct *vma, unsigned long address,
1195 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1196int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1197 void *buf, int len, int write);
1da177e4
LT
1198
1199static inline void unmap_shared_mapping_range(struct address_space *mapping,
1200 loff_t const holebegin, loff_t const holelen)
1201{
1202 unmap_mapping_range(mapping, holebegin, holelen, 0);
1203}
1204
7caef267 1205extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1206extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1207void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1208void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1209int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1210int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1211int invalidate_inode_page(struct page *page);
1212
7ee1dd3f 1213#ifdef CONFIG_MMU
83c54070 1214extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1215 unsigned long address, unsigned int flags);
5c723ba5 1216extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1217 unsigned long address, unsigned int fault_flags,
1218 bool *unlocked);
7ee1dd3f
DH
1219#else
1220static inline int handle_mm_fault(struct mm_struct *mm,
1221 struct vm_area_struct *vma, unsigned long address,
d06063cc 1222 unsigned int flags)
7ee1dd3f
DH
1223{
1224 /* should never happen if there's no MMU */
1225 BUG();
1226 return VM_FAULT_SIGBUS;
1227}
5c723ba5
PZ
1228static inline int fixup_user_fault(struct task_struct *tsk,
1229 struct mm_struct *mm, unsigned long address,
4a9e1cda 1230 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1231{
1232 /* should never happen if there's no MMU */
1233 BUG();
1234 return -EFAULT;
1235}
7ee1dd3f 1236#endif
f33ea7f4 1237
1da177e4 1238extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1239extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1240 void *buf, int len, int write);
1da177e4 1241
28a35716
ML
1242long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1243 unsigned long start, unsigned long nr_pages,
1244 unsigned int foll_flags, struct page **pages,
1245 struct vm_area_struct **vmas, int *nonblocking);
1e987790
DH
1246long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1247 unsigned long start, unsigned long nr_pages,
1248 int write, int force, struct page **pages,
1249 struct vm_area_struct **vmas);
cde70140
DH
1250long get_user_pages6(unsigned long start, unsigned long nr_pages,
1251 int write, int force, struct page **pages,
1252 struct vm_area_struct **vmas);
1253long get_user_pages_locked6(unsigned long start, unsigned long nr_pages,
1254 int write, int force, struct page **pages, int *locked);
0fd71a56
AA
1255long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1256 unsigned long start, unsigned long nr_pages,
1257 int write, int force, struct page **pages,
1258 unsigned int gup_flags);
cde70140 1259long get_user_pages_unlocked5(unsigned long start, unsigned long nr_pages,
f0818f47 1260 int write, int force, struct page **pages);
d2bf6be8
NP
1261int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1262 struct page **pages);
8025e5dd 1263
cde70140
DH
1264/* suppress warnings from use in EXPORT_SYMBOL() */
1265#ifndef __DISABLE_GUP_DEPRECATED
1266#define __gup_deprecated __deprecated
1267#else
1268#define __gup_deprecated
1269#endif
1270/*
1271 * These macros provide backward-compatibility with the old
1272 * get_user_pages() variants which took tsk/mm. These
1273 * functions/macros provide both compile-time __deprecated so we
1274 * can catch old-style use and not break the build. The actual
1275 * functions also have WARN_ON()s to let us know at runtime if
1276 * the get_user_pages() should have been the "remote" variant.
1277 *
1278 * These are hideous, but temporary.
1279 *
1280 * If you run into one of these __deprecated warnings, look
1281 * at how you are calling get_user_pages(). If you are calling
1282 * it with current/current->mm as the first two arguments,
1283 * simply remove those arguments. The behavior will be the same
1284 * as it is now. If you are calling it on another task, use
1285 * get_user_pages_remote() instead.
1286 *
1287 * Any questions? Ask Dave Hansen <dave@sr71.net>
1288 */
1289long
1290__gup_deprecated
1291get_user_pages8(struct task_struct *tsk, struct mm_struct *mm,
1292 unsigned long start, unsigned long nr_pages,
1293 int write, int force, struct page **pages,
1294 struct vm_area_struct **vmas);
1295#define GUP_MACRO(_1, _2, _3, _4, _5, _6, _7, _8, get_user_pages, ...) \
1296 get_user_pages
1297#define get_user_pages(...) GUP_MACRO(__VA_ARGS__, \
1298 get_user_pages8, x, \
1299 get_user_pages6, x, x, x, x, x)(__VA_ARGS__)
1300
1301__gup_deprecated
1302long get_user_pages_locked8(struct task_struct *tsk, struct mm_struct *mm,
1303 unsigned long start, unsigned long nr_pages,
1304 int write, int force, struct page **pages,
1305 int *locked);
1306#define GUPL_MACRO(_1, _2, _3, _4, _5, _6, _7, _8, get_user_pages_locked, ...) \
1307 get_user_pages_locked
1308#define get_user_pages_locked(...) GUPL_MACRO(__VA_ARGS__, \
1309 get_user_pages_locked8, x, \
1310 get_user_pages_locked6, x, x, x, x)(__VA_ARGS__)
1311
1312__gup_deprecated
1313long get_user_pages_unlocked7(struct task_struct *tsk, struct mm_struct *mm,
1314 unsigned long start, unsigned long nr_pages,
1315 int write, int force, struct page **pages);
1316#define GUPU_MACRO(_1, _2, _3, _4, _5, _6, _7, get_user_pages_unlocked, ...) \
1317 get_user_pages_unlocked
1318#define get_user_pages_unlocked(...) GUPU_MACRO(__VA_ARGS__, \
1319 get_user_pages_unlocked7, x, \
1320 get_user_pages_unlocked5, x, x, x, x)(__VA_ARGS__)
1321
8025e5dd
JK
1322/* Container for pinned pfns / pages */
1323struct frame_vector {
1324 unsigned int nr_allocated; /* Number of frames we have space for */
1325 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1326 bool got_ref; /* Did we pin pages by getting page ref? */
1327 bool is_pfns; /* Does array contain pages or pfns? */
1328 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1329 * pfns_vector_pages() or pfns_vector_pfns()
1330 * for access */
1331};
1332
1333struct frame_vector *frame_vector_create(unsigned int nr_frames);
1334void frame_vector_destroy(struct frame_vector *vec);
1335int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1336 bool write, bool force, struct frame_vector *vec);
1337void put_vaddr_frames(struct frame_vector *vec);
1338int frame_vector_to_pages(struct frame_vector *vec);
1339void frame_vector_to_pfns(struct frame_vector *vec);
1340
1341static inline unsigned int frame_vector_count(struct frame_vector *vec)
1342{
1343 return vec->nr_frames;
1344}
1345
1346static inline struct page **frame_vector_pages(struct frame_vector *vec)
1347{
1348 if (vec->is_pfns) {
1349 int err = frame_vector_to_pages(vec);
1350
1351 if (err)
1352 return ERR_PTR(err);
1353 }
1354 return (struct page **)(vec->ptrs);
1355}
1356
1357static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1358{
1359 if (!vec->is_pfns)
1360 frame_vector_to_pfns(vec);
1361 return (unsigned long *)(vec->ptrs);
1362}
1363
18022c5d
MG
1364struct kvec;
1365int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1366 struct page **pages);
1367int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1368struct page *get_dump_page(unsigned long addr);
1da177e4 1369
cf9a2ae8 1370extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1371extern void do_invalidatepage(struct page *page, unsigned int offset,
1372 unsigned int length);
cf9a2ae8 1373
1da177e4 1374int __set_page_dirty_nobuffers(struct page *page);
76719325 1375int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1376int redirty_page_for_writepage(struct writeback_control *wbc,
1377 struct page *page);
c4843a75
GT
1378void account_page_dirtied(struct page *page, struct address_space *mapping,
1379 struct mem_cgroup *memcg);
1380void account_page_cleaned(struct page *page, struct address_space *mapping,
682aa8e1 1381 struct mem_cgroup *memcg, struct bdi_writeback *wb);
b3c97528 1382int set_page_dirty(struct page *page);
1da177e4 1383int set_page_dirty_lock(struct page *page);
11f81bec 1384void cancel_dirty_page(struct page *page);
1da177e4 1385int clear_page_dirty_for_io(struct page *page);
b9ea2515 1386
a9090253 1387int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1388
39aa3cb3 1389/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1390static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1391{
1392 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1393}
1394
b5330628
ON
1395static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1396{
1397 return !vma->vm_ops;
1398}
1399
a09a79f6
MP
1400static inline int stack_guard_page_start(struct vm_area_struct *vma,
1401 unsigned long addr)
1402{
1403 return (vma->vm_flags & VM_GROWSDOWN) &&
1404 (vma->vm_start == addr) &&
1405 !vma_growsdown(vma->vm_prev, addr);
1406}
1407
1408/* Is the vma a continuation of the stack vma below it? */
1409static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1410{
1411 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1412}
1413
1414static inline int stack_guard_page_end(struct vm_area_struct *vma,
1415 unsigned long addr)
1416{
1417 return (vma->vm_flags & VM_GROWSUP) &&
1418 (vma->vm_end == addr) &&
1419 !vma_growsup(vma->vm_next, addr);
1420}
1421
65376df5 1422int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
b7643757 1423
b6a2fea3
OW
1424extern unsigned long move_page_tables(struct vm_area_struct *vma,
1425 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1426 unsigned long new_addr, unsigned long len,
1427 bool need_rmap_locks);
7da4d641
PZ
1428extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1429 unsigned long end, pgprot_t newprot,
4b10e7d5 1430 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1431extern int mprotect_fixup(struct vm_area_struct *vma,
1432 struct vm_area_struct **pprev, unsigned long start,
1433 unsigned long end, unsigned long newflags);
1da177e4 1434
465a454f
PZ
1435/*
1436 * doesn't attempt to fault and will return short.
1437 */
1438int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1439 struct page **pages);
d559db08
KH
1440/*
1441 * per-process(per-mm_struct) statistics.
1442 */
d559db08
KH
1443static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1444{
69c97823
KK
1445 long val = atomic_long_read(&mm->rss_stat.count[member]);
1446
1447#ifdef SPLIT_RSS_COUNTING
1448 /*
1449 * counter is updated in asynchronous manner and may go to minus.
1450 * But it's never be expected number for users.
1451 */
1452 if (val < 0)
1453 val = 0;
172703b0 1454#endif
69c97823
KK
1455 return (unsigned long)val;
1456}
d559db08
KH
1457
1458static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1459{
172703b0 1460 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1461}
1462
1463static inline void inc_mm_counter(struct mm_struct *mm, int member)
1464{
172703b0 1465 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1466}
1467
1468static inline void dec_mm_counter(struct mm_struct *mm, int member)
1469{
172703b0 1470 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1471}
1472
eca56ff9
JM
1473/* Optimized variant when page is already known not to be PageAnon */
1474static inline int mm_counter_file(struct page *page)
1475{
1476 if (PageSwapBacked(page))
1477 return MM_SHMEMPAGES;
1478 return MM_FILEPAGES;
1479}
1480
1481static inline int mm_counter(struct page *page)
1482{
1483 if (PageAnon(page))
1484 return MM_ANONPAGES;
1485 return mm_counter_file(page);
1486}
1487
d559db08
KH
1488static inline unsigned long get_mm_rss(struct mm_struct *mm)
1489{
1490 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1491 get_mm_counter(mm, MM_ANONPAGES) +
1492 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1493}
1494
1495static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1496{
1497 return max(mm->hiwater_rss, get_mm_rss(mm));
1498}
1499
1500static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1501{
1502 return max(mm->hiwater_vm, mm->total_vm);
1503}
1504
1505static inline void update_hiwater_rss(struct mm_struct *mm)
1506{
1507 unsigned long _rss = get_mm_rss(mm);
1508
1509 if ((mm)->hiwater_rss < _rss)
1510 (mm)->hiwater_rss = _rss;
1511}
1512
1513static inline void update_hiwater_vm(struct mm_struct *mm)
1514{
1515 if (mm->hiwater_vm < mm->total_vm)
1516 mm->hiwater_vm = mm->total_vm;
1517}
1518
695f0559
PC
1519static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1520{
1521 mm->hiwater_rss = get_mm_rss(mm);
1522}
1523
d559db08
KH
1524static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1525 struct mm_struct *mm)
1526{
1527 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1528
1529 if (*maxrss < hiwater_rss)
1530 *maxrss = hiwater_rss;
1531}
1532
53bddb4e 1533#if defined(SPLIT_RSS_COUNTING)
05af2e10 1534void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1535#else
05af2e10 1536static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1537{
1538}
1539#endif
465a454f 1540
3565fce3
DW
1541#ifndef __HAVE_ARCH_PTE_DEVMAP
1542static inline int pte_devmap(pte_t pte)
1543{
1544 return 0;
1545}
1546#endif
1547
4e950f6f 1548int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1549
25ca1d6c
NK
1550extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1551 spinlock_t **ptl);
1552static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1553 spinlock_t **ptl)
1554{
1555 pte_t *ptep;
1556 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1557 return ptep;
1558}
c9cfcddf 1559
5f22df00
NP
1560#ifdef __PAGETABLE_PUD_FOLDED
1561static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1562 unsigned long address)
1563{
1564 return 0;
1565}
1566#else
1bb3630e 1567int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1568#endif
1569
2d2f5119 1570#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1571static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1572 unsigned long address)
1573{
1574 return 0;
1575}
dc6c9a35 1576
2d2f5119
KS
1577static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1578
dc6c9a35
KS
1579static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1580{
1581 return 0;
1582}
1583
1584static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1585static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1586
5f22df00 1587#else
1bb3630e 1588int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1589
2d2f5119
KS
1590static inline void mm_nr_pmds_init(struct mm_struct *mm)
1591{
1592 atomic_long_set(&mm->nr_pmds, 0);
1593}
1594
dc6c9a35
KS
1595static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1596{
1597 return atomic_long_read(&mm->nr_pmds);
1598}
1599
1600static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1601{
1602 atomic_long_inc(&mm->nr_pmds);
1603}
1604
1605static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1606{
1607 atomic_long_dec(&mm->nr_pmds);
1608}
5f22df00
NP
1609#endif
1610
8ac1f832
AA
1611int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1612 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1613int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1614
1da177e4
LT
1615/*
1616 * The following ifdef needed to get the 4level-fixup.h header to work.
1617 * Remove it when 4level-fixup.h has been removed.
1618 */
1bb3630e 1619#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1620static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1621{
1bb3630e
HD
1622 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1623 NULL: pud_offset(pgd, address);
1da177e4
LT
1624}
1625
1626static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1627{
1bb3630e
HD
1628 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1629 NULL: pmd_offset(pud, address);
1da177e4 1630}
1bb3630e
HD
1631#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1632
57c1ffce 1633#if USE_SPLIT_PTE_PTLOCKS
597d795a 1634#if ALLOC_SPLIT_PTLOCKS
b35f1819 1635void __init ptlock_cache_init(void);
539edb58
PZ
1636extern bool ptlock_alloc(struct page *page);
1637extern void ptlock_free(struct page *page);
1638
1639static inline spinlock_t *ptlock_ptr(struct page *page)
1640{
1641 return page->ptl;
1642}
597d795a 1643#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1644static inline void ptlock_cache_init(void)
1645{
1646}
1647
49076ec2
KS
1648static inline bool ptlock_alloc(struct page *page)
1649{
49076ec2
KS
1650 return true;
1651}
539edb58 1652
49076ec2
KS
1653static inline void ptlock_free(struct page *page)
1654{
49076ec2
KS
1655}
1656
1657static inline spinlock_t *ptlock_ptr(struct page *page)
1658{
539edb58 1659 return &page->ptl;
49076ec2 1660}
597d795a 1661#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1662
1663static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1664{
1665 return ptlock_ptr(pmd_page(*pmd));
1666}
1667
1668static inline bool ptlock_init(struct page *page)
1669{
1670 /*
1671 * prep_new_page() initialize page->private (and therefore page->ptl)
1672 * with 0. Make sure nobody took it in use in between.
1673 *
1674 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1675 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1676 */
309381fe 1677 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1678 if (!ptlock_alloc(page))
1679 return false;
1680 spin_lock_init(ptlock_ptr(page));
1681 return true;
1682}
1683
1684/* Reset page->mapping so free_pages_check won't complain. */
1685static inline void pte_lock_deinit(struct page *page)
1686{
1687 page->mapping = NULL;
1688 ptlock_free(page);
1689}
1690
57c1ffce 1691#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1692/*
1693 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1694 */
49076ec2
KS
1695static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1696{
1697 return &mm->page_table_lock;
1698}
b35f1819 1699static inline void ptlock_cache_init(void) {}
49076ec2
KS
1700static inline bool ptlock_init(struct page *page) { return true; }
1701static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1702#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1703
b35f1819
KS
1704static inline void pgtable_init(void)
1705{
1706 ptlock_cache_init();
1707 pgtable_cache_init();
1708}
1709
390f44e2 1710static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1711{
706874e9
VD
1712 if (!ptlock_init(page))
1713 return false;
2f569afd 1714 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1715 return true;
2f569afd
MS
1716}
1717
1718static inline void pgtable_page_dtor(struct page *page)
1719{
1720 pte_lock_deinit(page);
1721 dec_zone_page_state(page, NR_PAGETABLE);
1722}
1723
c74df32c
HD
1724#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1725({ \
4c21e2f2 1726 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1727 pte_t *__pte = pte_offset_map(pmd, address); \
1728 *(ptlp) = __ptl; \
1729 spin_lock(__ptl); \
1730 __pte; \
1731})
1732
1733#define pte_unmap_unlock(pte, ptl) do { \
1734 spin_unlock(ptl); \
1735 pte_unmap(pte); \
1736} while (0)
1737
8ac1f832
AA
1738#define pte_alloc_map(mm, vma, pmd, address) \
1739 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1740 pmd, address))? \
1741 NULL: pte_offset_map(pmd, address))
1bb3630e 1742
c74df32c 1743#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1744 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1745 pmd, address))? \
c74df32c
HD
1746 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1747
1bb3630e 1748#define pte_alloc_kernel(pmd, address) \
8ac1f832 1749 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1750 NULL: pte_offset_kernel(pmd, address))
1da177e4 1751
e009bb30
KS
1752#if USE_SPLIT_PMD_PTLOCKS
1753
634391ac
MS
1754static struct page *pmd_to_page(pmd_t *pmd)
1755{
1756 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1757 return virt_to_page((void *)((unsigned long) pmd & mask));
1758}
1759
e009bb30
KS
1760static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1761{
634391ac 1762 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1763}
1764
1765static inline bool pgtable_pmd_page_ctor(struct page *page)
1766{
e009bb30
KS
1767#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1768 page->pmd_huge_pte = NULL;
1769#endif
49076ec2 1770 return ptlock_init(page);
e009bb30
KS
1771}
1772
1773static inline void pgtable_pmd_page_dtor(struct page *page)
1774{
1775#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1776 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1777#endif
49076ec2 1778 ptlock_free(page);
e009bb30
KS
1779}
1780
634391ac 1781#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1782
1783#else
1784
9a86cb7b
KS
1785static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1786{
1787 return &mm->page_table_lock;
1788}
1789
e009bb30
KS
1790static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1791static inline void pgtable_pmd_page_dtor(struct page *page) {}
1792
c389a250 1793#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1794
e009bb30
KS
1795#endif
1796
9a86cb7b
KS
1797static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1798{
1799 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1800 spin_lock(ptl);
1801 return ptl;
1802}
1803
1da177e4 1804extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1805extern void free_area_init_node(int nid, unsigned long * zones_size,
1806 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1807extern void free_initmem(void);
1808
69afade7
JL
1809/*
1810 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1811 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1812 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1813 * Return pages freed into the buddy system.
1814 */
11199692 1815extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1816 int poison, char *s);
c3d5f5f0 1817
cfa11e08
JL
1818#ifdef CONFIG_HIGHMEM
1819/*
1820 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1821 * and totalram_pages.
1822 */
1823extern void free_highmem_page(struct page *page);
1824#endif
69afade7 1825
c3d5f5f0 1826extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1827extern void mem_init_print_info(const char *str);
69afade7 1828
92923ca3
NZ
1829extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1830
69afade7
JL
1831/* Free the reserved page into the buddy system, so it gets managed. */
1832static inline void __free_reserved_page(struct page *page)
1833{
1834 ClearPageReserved(page);
1835 init_page_count(page);
1836 __free_page(page);
1837}
1838
1839static inline void free_reserved_page(struct page *page)
1840{
1841 __free_reserved_page(page);
1842 adjust_managed_page_count(page, 1);
1843}
1844
1845static inline void mark_page_reserved(struct page *page)
1846{
1847 SetPageReserved(page);
1848 adjust_managed_page_count(page, -1);
1849}
1850
1851/*
1852 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1853 * The freed pages will be poisoned with pattern "poison" if it's within
1854 * range [0, UCHAR_MAX].
1855 * Return pages freed into the buddy system.
69afade7
JL
1856 */
1857static inline unsigned long free_initmem_default(int poison)
1858{
1859 extern char __init_begin[], __init_end[];
1860
11199692 1861 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1862 poison, "unused kernel");
1863}
1864
7ee3d4e8
JL
1865static inline unsigned long get_num_physpages(void)
1866{
1867 int nid;
1868 unsigned long phys_pages = 0;
1869
1870 for_each_online_node(nid)
1871 phys_pages += node_present_pages(nid);
1872
1873 return phys_pages;
1874}
1875
0ee332c1 1876#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1877/*
0ee332c1 1878 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1879 * zones, allocate the backing mem_map and account for memory holes in a more
1880 * architecture independent manner. This is a substitute for creating the
1881 * zone_sizes[] and zholes_size[] arrays and passing them to
1882 * free_area_init_node()
1883 *
1884 * An architecture is expected to register range of page frames backed by
0ee332c1 1885 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1886 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1887 * usage, an architecture is expected to do something like
1888 *
1889 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1890 * max_highmem_pfn};
1891 * for_each_valid_physical_page_range()
0ee332c1 1892 * memblock_add_node(base, size, nid)
c713216d
MG
1893 * free_area_init_nodes(max_zone_pfns);
1894 *
0ee332c1
TH
1895 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1896 * registered physical page range. Similarly
1897 * sparse_memory_present_with_active_regions() calls memory_present() for
1898 * each range when SPARSEMEM is enabled.
c713216d
MG
1899 *
1900 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1901 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1902 */
1903extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1904unsigned long node_map_pfn_alignment(void);
32996250
YL
1905unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1906 unsigned long end_pfn);
c713216d
MG
1907extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1908 unsigned long end_pfn);
1909extern void get_pfn_range_for_nid(unsigned int nid,
1910 unsigned long *start_pfn, unsigned long *end_pfn);
1911extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1912extern void free_bootmem_with_active_regions(int nid,
1913 unsigned long max_low_pfn);
1914extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1915
0ee332c1 1916#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1917
0ee332c1 1918#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1919 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1920static inline int __early_pfn_to_nid(unsigned long pfn,
1921 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1922{
1923 return 0;
1924}
1925#else
1926/* please see mm/page_alloc.c */
1927extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1928/* there is a per-arch backend function. */
8a942fde
MG
1929extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1930 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1931#endif
1932
0e0b864e 1933extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1934extern void memmap_init_zone(unsigned long, int, unsigned long,
1935 unsigned long, enum memmap_context);
bc75d33f 1936extern void setup_per_zone_wmarks(void);
1b79acc9 1937extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1938extern void mem_init(void);
8feae131 1939extern void __init mmap_init(void);
b2b755b5 1940extern void show_mem(unsigned int flags);
1da177e4
LT
1941extern void si_meminfo(struct sysinfo * val);
1942extern void si_meminfo_node(struct sysinfo *val, int nid);
1943
3ee9a4f0 1944extern __printf(3, 4)
d00181b9
KS
1945void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1946 const char *fmt, ...);
a238ab5b 1947
e7c8d5c9 1948extern void setup_per_cpu_pageset(void);
e7c8d5c9 1949
112067f0 1950extern void zone_pcp_update(struct zone *zone);
340175b7 1951extern void zone_pcp_reset(struct zone *zone);
112067f0 1952
75f7ad8e
PS
1953/* page_alloc.c */
1954extern int min_free_kbytes;
1955
8feae131 1956/* nommu.c */
33e5d769 1957extern atomic_long_t mmap_pages_allocated;
7e660872 1958extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1959
6b2dbba8 1960/* interval_tree.c */
6b2dbba8
ML
1961void vma_interval_tree_insert(struct vm_area_struct *node,
1962 struct rb_root *root);
9826a516
ML
1963void vma_interval_tree_insert_after(struct vm_area_struct *node,
1964 struct vm_area_struct *prev,
1965 struct rb_root *root);
6b2dbba8
ML
1966void vma_interval_tree_remove(struct vm_area_struct *node,
1967 struct rb_root *root);
1968struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1969 unsigned long start, unsigned long last);
1970struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1971 unsigned long start, unsigned long last);
1972
1973#define vma_interval_tree_foreach(vma, root, start, last) \
1974 for (vma = vma_interval_tree_iter_first(root, start, last); \
1975 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 1976
bf181b9f
ML
1977void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1978 struct rb_root *root);
1979void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1980 struct rb_root *root);
1981struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1982 struct rb_root *root, unsigned long start, unsigned long last);
1983struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1984 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1985#ifdef CONFIG_DEBUG_VM_RB
1986void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1987#endif
bf181b9f
ML
1988
1989#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1990 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1991 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1992
1da177e4 1993/* mmap.c */
34b4e4aa 1994extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1995extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1996 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1997extern struct vm_area_struct *vma_merge(struct mm_struct *,
1998 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1999 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2000 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4
LT
2001extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2002extern int split_vma(struct mm_struct *,
2003 struct vm_area_struct *, unsigned long addr, int new_below);
2004extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2005extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2006 struct rb_node **, struct rb_node *);
a8fb5618 2007extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2008extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2009 unsigned long addr, unsigned long len, pgoff_t pgoff,
2010 bool *need_rmap_locks);
1da177e4 2011extern void exit_mmap(struct mm_struct *);
925d1c40 2012
9c599024
CG
2013static inline int check_data_rlimit(unsigned long rlim,
2014 unsigned long new,
2015 unsigned long start,
2016 unsigned long end_data,
2017 unsigned long start_data)
2018{
2019 if (rlim < RLIM_INFINITY) {
2020 if (((new - start) + (end_data - start_data)) > rlim)
2021 return -ENOSPC;
2022 }
2023
2024 return 0;
2025}
2026
7906d00c
AA
2027extern int mm_take_all_locks(struct mm_struct *mm);
2028extern void mm_drop_all_locks(struct mm_struct *mm);
2029
38646013
JS
2030extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2031extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 2032
84638335
KK
2033extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2034extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2035
3935ed6a
SS
2036extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2037 unsigned long addr, unsigned long len,
a62c34bd
AL
2038 unsigned long flags,
2039 const struct vm_special_mapping *spec);
2040/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2041extern int install_special_mapping(struct mm_struct *mm,
2042 unsigned long addr, unsigned long len,
2043 unsigned long flags, struct page **pages);
1da177e4
LT
2044
2045extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2046
0165ab44 2047extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 2048 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1fcfd8db 2049extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2050 unsigned long len, unsigned long prot, unsigned long flags,
1fcfd8db 2051 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1da177e4
LT
2052extern int do_munmap(struct mm_struct *, unsigned long, size_t);
2053
1fcfd8db
ON
2054static inline unsigned long
2055do_mmap_pgoff(struct file *file, unsigned long addr,
2056 unsigned long len, unsigned long prot, unsigned long flags,
2057 unsigned long pgoff, unsigned long *populate)
2058{
2059 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
2060}
2061
bebeb3d6
ML
2062#ifdef CONFIG_MMU
2063extern int __mm_populate(unsigned long addr, unsigned long len,
2064 int ignore_errors);
2065static inline void mm_populate(unsigned long addr, unsigned long len)
2066{
2067 /* Ignore errors */
2068 (void) __mm_populate(addr, len, 1);
2069}
2070#else
2071static inline void mm_populate(unsigned long addr, unsigned long len) {}
2072#endif
2073
e4eb1ff6
LT
2074/* These take the mm semaphore themselves */
2075extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 2076extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
2077extern unsigned long vm_mmap(struct file *, unsigned long,
2078 unsigned long, unsigned long,
2079 unsigned long, unsigned long);
1da177e4 2080
db4fbfb9
ML
2081struct vm_unmapped_area_info {
2082#define VM_UNMAPPED_AREA_TOPDOWN 1
2083 unsigned long flags;
2084 unsigned long length;
2085 unsigned long low_limit;
2086 unsigned long high_limit;
2087 unsigned long align_mask;
2088 unsigned long align_offset;
2089};
2090
2091extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2092extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2093
2094/*
2095 * Search for an unmapped address range.
2096 *
2097 * We are looking for a range that:
2098 * - does not intersect with any VMA;
2099 * - is contained within the [low_limit, high_limit) interval;
2100 * - is at least the desired size.
2101 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2102 */
2103static inline unsigned long
2104vm_unmapped_area(struct vm_unmapped_area_info *info)
2105{
cdd7875e 2106 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2107 return unmapped_area_topdown(info);
cdd7875e
BP
2108 else
2109 return unmapped_area(info);
db4fbfb9
ML
2110}
2111
85821aab 2112/* truncate.c */
1da177e4 2113extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2114extern void truncate_inode_pages_range(struct address_space *,
2115 loff_t lstart, loff_t lend);
91b0abe3 2116extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2117
2118/* generic vm_area_ops exported for stackable file systems */
d0217ac0 2119extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 2120extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 2121extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
2122
2123/* mm/page-writeback.c */
2124int write_one_page(struct page *page, int wait);
1cf6e7d8 2125void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2126
2127/* readahead.c */
2128#define VM_MAX_READAHEAD 128 /* kbytes */
2129#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2130
1da177e4 2131int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2132 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2133
2134void page_cache_sync_readahead(struct address_space *mapping,
2135 struct file_ra_state *ra,
2136 struct file *filp,
2137 pgoff_t offset,
2138 unsigned long size);
2139
2140void page_cache_async_readahead(struct address_space *mapping,
2141 struct file_ra_state *ra,
2142 struct file *filp,
2143 struct page *pg,
2144 pgoff_t offset,
2145 unsigned long size);
2146
d05f3169 2147/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2148extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2149
2150/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2151extern int expand_downwards(struct vm_area_struct *vma,
2152 unsigned long address);
8ca3eb08 2153#if VM_GROWSUP
46dea3d0 2154extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2155#else
fee7e49d 2156 #define expand_upwards(vma, address) (0)
9ab88515 2157#endif
1da177e4
LT
2158
2159/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2160extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2161extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2162 struct vm_area_struct **pprev);
2163
2164/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2165 NULL if none. Assume start_addr < end_addr. */
2166static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2167{
2168 struct vm_area_struct * vma = find_vma(mm,start_addr);
2169
2170 if (vma && end_addr <= vma->vm_start)
2171 vma = NULL;
2172 return vma;
2173}
2174
2175static inline unsigned long vma_pages(struct vm_area_struct *vma)
2176{
2177 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2178}
2179
640708a2
PE
2180/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2181static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2182 unsigned long vm_start, unsigned long vm_end)
2183{
2184 struct vm_area_struct *vma = find_vma(mm, vm_start);
2185
2186 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2187 vma = NULL;
2188
2189 return vma;
2190}
2191
bad849b3 2192#ifdef CONFIG_MMU
804af2cf 2193pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2194void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2195#else
2196static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2197{
2198 return __pgprot(0);
2199}
64e45507
PF
2200static inline void vma_set_page_prot(struct vm_area_struct *vma)
2201{
2202 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2203}
bad849b3
DH
2204#endif
2205
5877231f 2206#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2207unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2208 unsigned long start, unsigned long end);
2209#endif
2210
deceb6cd 2211struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2212int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2213 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2214int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2215int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2216 unsigned long pfn);
1745cbc5
AL
2217int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2218 unsigned long pfn, pgprot_t pgprot);
423bad60 2219int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2220 pfn_t pfn);
b4cbb197
LT
2221int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2222
deceb6cd 2223
240aadee
ML
2224struct page *follow_page_mask(struct vm_area_struct *vma,
2225 unsigned long address, unsigned int foll_flags,
2226 unsigned int *page_mask);
2227
2228static inline struct page *follow_page(struct vm_area_struct *vma,
2229 unsigned long address, unsigned int foll_flags)
2230{
2231 unsigned int unused_page_mask;
2232 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2233}
2234
deceb6cd
HD
2235#define FOLL_WRITE 0x01 /* check pte is writable */
2236#define FOLL_TOUCH 0x02 /* mark page accessed */
2237#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2238#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2239#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2240#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2241 * and return without waiting upon it */
84d33df2 2242#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2243#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2244#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2245#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2246#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2247#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2248#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2249#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
1da177e4 2250
2f569afd 2251typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2252 void *data);
2253extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2254 unsigned long size, pte_fn_t fn, void *data);
2255
1da177e4 2256
12d6f21e 2257#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2258extern bool _debug_pagealloc_enabled;
2259extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2260
2261static inline bool debug_pagealloc_enabled(void)
2262{
2263 return _debug_pagealloc_enabled;
2264}
2265
2266static inline void
2267kernel_map_pages(struct page *page, int numpages, int enable)
2268{
2269 if (!debug_pagealloc_enabled())
2270 return;
2271
2272 __kernel_map_pages(page, numpages, enable);
2273}
8a235efa
RW
2274#ifdef CONFIG_HIBERNATION
2275extern bool kernel_page_present(struct page *page);
2276#endif /* CONFIG_HIBERNATION */
12d6f21e 2277#else
1da177e4 2278static inline void
9858db50 2279kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2280#ifdef CONFIG_HIBERNATION
2281static inline bool kernel_page_present(struct page *page) { return true; }
2282#endif /* CONFIG_HIBERNATION */
1da177e4
LT
2283#endif
2284
a6c19dfe 2285#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2286extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2287extern int in_gate_area_no_mm(unsigned long addr);
2288extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2289#else
a6c19dfe
AL
2290static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2291{
2292 return NULL;
2293}
2294static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2295static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2296{
2297 return 0;
2298}
1da177e4
LT
2299#endif /* __HAVE_ARCH_GATE_AREA */
2300
146732ce
JT
2301#ifdef CONFIG_SYSCTL
2302extern int sysctl_drop_caches;
8d65af78 2303int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2304 void __user *, size_t *, loff_t *);
146732ce
JT
2305#endif
2306
cb731d6c
VD
2307void drop_slab(void);
2308void drop_slab_node(int nid);
9d0243bc 2309
7a9166e3
LY
2310#ifndef CONFIG_MMU
2311#define randomize_va_space 0
2312#else
a62eaf15 2313extern int randomize_va_space;
7a9166e3 2314#endif
a62eaf15 2315
045e72ac 2316const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2317void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2318
9bdac914
YL
2319void sparse_mem_maps_populate_node(struct page **map_map,
2320 unsigned long pnum_begin,
2321 unsigned long pnum_end,
2322 unsigned long map_count,
2323 int nodeid);
2324
98f3cfc1 2325struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2326pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2327pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2328pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2329pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2330void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc
DW
2331struct vmem_altmap;
2332void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2333 struct vmem_altmap *altmap);
2334static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2335{
2336 return __vmemmap_alloc_block_buf(size, node, NULL);
2337}
2338
8f6aac41 2339void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2340int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2341 int node);
2342int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2343void vmemmap_populate_print_last(void);
0197518c 2344#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2345void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2346#endif
46723bfa
YI
2347void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2348 unsigned long size);
6a46079c 2349
82ba011b
AK
2350enum mf_flags {
2351 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2352 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2353 MF_MUST_KILL = 1 << 2,
cf870c70 2354 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2355};
cd42f4a3 2356extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2357extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2358extern int unpoison_memory(unsigned long pfn);
ead07f6a 2359extern int get_hwpoison_page(struct page *page);
4e41a30c 2360#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2361extern int sysctl_memory_failure_early_kill;
2362extern int sysctl_memory_failure_recovery;
facb6011 2363extern void shake_page(struct page *p, int access);
293c07e3 2364extern atomic_long_t num_poisoned_pages;
facb6011 2365extern int soft_offline_page(struct page *page, int flags);
6a46079c 2366
cc637b17
XX
2367
2368/*
2369 * Error handlers for various types of pages.
2370 */
cc3e2af4 2371enum mf_result {
cc637b17
XX
2372 MF_IGNORED, /* Error: cannot be handled */
2373 MF_FAILED, /* Error: handling failed */
2374 MF_DELAYED, /* Will be handled later */
2375 MF_RECOVERED, /* Successfully recovered */
2376};
2377
2378enum mf_action_page_type {
2379 MF_MSG_KERNEL,
2380 MF_MSG_KERNEL_HIGH_ORDER,
2381 MF_MSG_SLAB,
2382 MF_MSG_DIFFERENT_COMPOUND,
2383 MF_MSG_POISONED_HUGE,
2384 MF_MSG_HUGE,
2385 MF_MSG_FREE_HUGE,
2386 MF_MSG_UNMAP_FAILED,
2387 MF_MSG_DIRTY_SWAPCACHE,
2388 MF_MSG_CLEAN_SWAPCACHE,
2389 MF_MSG_DIRTY_MLOCKED_LRU,
2390 MF_MSG_CLEAN_MLOCKED_LRU,
2391 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2392 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2393 MF_MSG_DIRTY_LRU,
2394 MF_MSG_CLEAN_LRU,
2395 MF_MSG_TRUNCATED_LRU,
2396 MF_MSG_BUDDY,
2397 MF_MSG_BUDDY_2ND,
2398 MF_MSG_UNKNOWN,
2399};
2400
47ad8475
AA
2401#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2402extern void clear_huge_page(struct page *page,
2403 unsigned long addr,
2404 unsigned int pages_per_huge_page);
2405extern void copy_user_huge_page(struct page *dst, struct page *src,
2406 unsigned long addr, struct vm_area_struct *vma,
2407 unsigned int pages_per_huge_page);
2408#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2409
e30825f1
JK
2410extern struct page_ext_operations debug_guardpage_ops;
2411extern struct page_ext_operations page_poisoning_ops;
2412
c0a32fc5
SG
2413#ifdef CONFIG_DEBUG_PAGEALLOC
2414extern unsigned int _debug_guardpage_minorder;
e30825f1 2415extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2416
2417static inline unsigned int debug_guardpage_minorder(void)
2418{
2419 return _debug_guardpage_minorder;
2420}
2421
e30825f1
JK
2422static inline bool debug_guardpage_enabled(void)
2423{
2424 return _debug_guardpage_enabled;
2425}
2426
c0a32fc5
SG
2427static inline bool page_is_guard(struct page *page)
2428{
e30825f1
JK
2429 struct page_ext *page_ext;
2430
2431 if (!debug_guardpage_enabled())
2432 return false;
2433
2434 page_ext = lookup_page_ext(page);
2435 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2436}
2437#else
2438static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2439static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2440static inline bool page_is_guard(struct page *page) { return false; }
2441#endif /* CONFIG_DEBUG_PAGEALLOC */
2442
f9872caf
CS
2443#if MAX_NUMNODES > 1
2444void __init setup_nr_node_ids(void);
2445#else
2446static inline void setup_nr_node_ids(void) {}
2447#endif
2448
1da177e4
LT
2449#endif /* __KERNEL__ */
2450#endif /* _LINUX_MM_H */