dax: support for transparent PUD pages for device DAX
[linux-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
3565fce3 19#include <linux/percpu-refcount.h>
e9da73d6 20#include <linux/bit_spinlock.h>
b0d40c92 21#include <linux/shrinker.h>
9c599024 22#include <linux/resource.h>
e30825f1 23#include <linux/page_ext.h>
8025e5dd 24#include <linux/err.h>
fe896d18 25#include <linux/page_ref.h>
1da177e4
LT
26
27struct mempolicy;
28struct anon_vma;
bf181b9f 29struct anon_vma_chain;
4e950f6f 30struct file_ra_state;
e8edc6e0 31struct user_struct;
4e950f6f 32struct writeback_control;
682aa8e1 33struct bdi_writeback;
1da177e4 34
fccc9987 35#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 36extern unsigned long max_mapnr;
fccc9987
JL
37
38static inline void set_max_mapnr(unsigned long limit)
39{
40 max_mapnr = limit;
41}
42#else
43static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
44#endif
45
4481374c 46extern unsigned long totalram_pages;
1da177e4 47extern void * high_memory;
1da177e4
LT
48extern int page_cluster;
49
50#ifdef CONFIG_SYSCTL
51extern int sysctl_legacy_va_layout;
52#else
53#define sysctl_legacy_va_layout 0
54#endif
55
d07e2259
DC
56#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
57extern const int mmap_rnd_bits_min;
58extern const int mmap_rnd_bits_max;
59extern int mmap_rnd_bits __read_mostly;
60#endif
61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
62extern const int mmap_rnd_compat_bits_min;
63extern const int mmap_rnd_compat_bits_max;
64extern int mmap_rnd_compat_bits __read_mostly;
65#endif
66
1da177e4
LT
67#include <asm/page.h>
68#include <asm/pgtable.h>
69#include <asm/processor.h>
1da177e4 70
79442ed1
TC
71#ifndef __pa_symbol
72#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
73#endif
74
1dff8083
AB
75#ifndef page_to_virt
76#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
77#endif
78
568c5fe5
LA
79#ifndef lm_alias
80#define lm_alias(x) __va(__pa_symbol(x))
81#endif
82
593befa6
DD
83/*
84 * To prevent common memory management code establishing
85 * a zero page mapping on a read fault.
86 * This macro should be defined within <asm/pgtable.h>.
87 * s390 does this to prevent multiplexing of hardware bits
88 * related to the physical page in case of virtualization.
89 */
90#ifndef mm_forbids_zeropage
91#define mm_forbids_zeropage(X) (0)
92#endif
93
ea606cf5
AR
94/*
95 * Default maximum number of active map areas, this limits the number of vmas
96 * per mm struct. Users can overwrite this number by sysctl but there is a
97 * problem.
98 *
99 * When a program's coredump is generated as ELF format, a section is created
100 * per a vma. In ELF, the number of sections is represented in unsigned short.
101 * This means the number of sections should be smaller than 65535 at coredump.
102 * Because the kernel adds some informative sections to a image of program at
103 * generating coredump, we need some margin. The number of extra sections is
104 * 1-3 now and depends on arch. We use "5" as safe margin, here.
105 *
106 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
107 * not a hard limit any more. Although some userspace tools can be surprised by
108 * that.
109 */
110#define MAPCOUNT_ELF_CORE_MARGIN (5)
111#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
112
113extern int sysctl_max_map_count;
114
c9b1d098 115extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 116extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 117
49f0ce5f
JM
118extern int sysctl_overcommit_memory;
119extern int sysctl_overcommit_ratio;
120extern unsigned long sysctl_overcommit_kbytes;
121
122extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
123 size_t *, loff_t *);
124extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
125 size_t *, loff_t *);
126
1da177e4
LT
127#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
128
27ac792c
AR
129/* to align the pointer to the (next) page boundary */
130#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
131
0fa73b86 132/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 133#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 134
1da177e4
LT
135/*
136 * Linux kernel virtual memory manager primitives.
137 * The idea being to have a "virtual" mm in the same way
138 * we have a virtual fs - giving a cleaner interface to the
139 * mm details, and allowing different kinds of memory mappings
140 * (from shared memory to executable loading to arbitrary
141 * mmap() functions).
142 */
143
c43692e8
CL
144extern struct kmem_cache *vm_area_cachep;
145
1da177e4 146#ifndef CONFIG_MMU
8feae131
DH
147extern struct rb_root nommu_region_tree;
148extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
149
150extern unsigned int kobjsize(const void *objp);
151#endif
152
153/*
605d9288 154 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 155 * When changing, update also include/trace/events/mmflags.h
1da177e4 156 */
cc2383ec
KK
157#define VM_NONE 0x00000000
158
1da177e4
LT
159#define VM_READ 0x00000001 /* currently active flags */
160#define VM_WRITE 0x00000002
161#define VM_EXEC 0x00000004
162#define VM_SHARED 0x00000008
163
7e2cff42 164/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
165#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
166#define VM_MAYWRITE 0x00000020
167#define VM_MAYEXEC 0x00000040
168#define VM_MAYSHARE 0x00000080
169
170#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 171#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 172#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 173#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 174#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 175
1da177e4
LT
176#define VM_LOCKED 0x00002000
177#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
178
179 /* Used by sys_madvise() */
180#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
181#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
182
183#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
184#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 185#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 186#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 187#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 188#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 189#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 190#define VM_ARCH_2 0x02000000
0103bd16 191#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 192
d9104d1c
CG
193#ifdef CONFIG_MEM_SOFT_DIRTY
194# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
195#else
196# define VM_SOFTDIRTY 0
197#endif
198
b379d790 199#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
200#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
201#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 202#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 203
63c17fb8
DH
204#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
205#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
206#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
207#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
208#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
209#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
210#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
211#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
212#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
213#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
214
cc2383ec
KK
215#if defined(CONFIG_X86)
216# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
8f62c883
DH
217#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
218# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
219# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
220# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
221# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
222# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
223#endif
cc2383ec
KK
224#elif defined(CONFIG_PPC)
225# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
226#elif defined(CONFIG_PARISC)
227# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
228#elif defined(CONFIG_METAG)
229# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
230#elif defined(CONFIG_IA64)
231# define VM_GROWSUP VM_ARCH_1
232#elif !defined(CONFIG_MMU)
233# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
234#endif
235
4aae7e43
QR
236#if defined(CONFIG_X86)
237/* MPX specific bounds table or bounds directory */
238# define VM_MPX VM_ARCH_2
239#endif
240
cc2383ec
KK
241#ifndef VM_GROWSUP
242# define VM_GROWSUP VM_NONE
243#endif
244
a8bef8ff
MG
245/* Bits set in the VMA until the stack is in its final location */
246#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
247
1da177e4
LT
248#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
249#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
250#endif
251
252#ifdef CONFIG_STACK_GROWSUP
30bdbb78 253#define VM_STACK VM_GROWSUP
1da177e4 254#else
30bdbb78 255#define VM_STACK VM_GROWSDOWN
1da177e4
LT
256#endif
257
30bdbb78
KK
258#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
259
b291f000 260/*
78f11a25
AA
261 * Special vmas that are non-mergable, non-mlock()able.
262 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 263 */
9050d7eb 264#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 265
a0715cc2
AT
266/* This mask defines which mm->def_flags a process can inherit its parent */
267#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
268
de60f5f1
EM
269/* This mask is used to clear all the VMA flags used by mlock */
270#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
271
1da177e4
LT
272/*
273 * mapping from the currently active vm_flags protection bits (the
274 * low four bits) to a page protection mask..
275 */
276extern pgprot_t protection_map[16];
277
d0217ac0 278#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
279#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
280#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
281#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
282#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
283#define FAULT_FLAG_TRIED 0x20 /* Second try */
284#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 285#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 286#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 287
a2d58167
DJ
288#define FAULT_FLAG_SIZE_MASK 0x7000 /* Support up to 8-level page tables */
289#define FAULT_FLAG_SIZE_PTE 0x0000 /* First level (eg 4k) */
290#define FAULT_FLAG_SIZE_PMD 0x1000 /* Second level (eg 2MB) */
291#define FAULT_FLAG_SIZE_PUD 0x2000 /* Third level (eg 1GB) */
292
282a8e03
RZ
293#define FAULT_FLAG_TRACE \
294 { FAULT_FLAG_WRITE, "WRITE" }, \
295 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
296 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
297 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
298 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
299 { FAULT_FLAG_TRIED, "TRIED" }, \
300 { FAULT_FLAG_USER, "USER" }, \
301 { FAULT_FLAG_REMOTE, "REMOTE" }, \
302 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
303
54cb8821 304/*
d0217ac0 305 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
306 * ->fault function. The vma's ->fault is responsible for returning a bitmask
307 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 308 *
c20cd45e
MH
309 * MM layer fills up gfp_mask for page allocations but fault handler might
310 * alter it if its implementation requires a different allocation context.
311 *
9b4bdd2f 312 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 313 */
d0217ac0 314struct vm_fault {
82b0f8c3 315 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 316 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 317 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 318 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 319 unsigned long address; /* Faulting virtual address */
82b0f8c3 320 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 321 * the 'address' */
a2d58167
DJ
322 pud_t *pud; /* Pointer to pud entry matching
323 * the 'address'
324 */
2994302b 325 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 326
3917048d
JK
327 struct page *cow_page; /* Page handler may use for COW fault */
328 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 329 struct page *page; /* ->fault handlers should return a
83c54070 330 * page here, unless VM_FAULT_NOPAGE
d0217ac0 331 * is set (which is also implied by
83c54070 332 * VM_FAULT_ERROR).
d0217ac0 333 */
82b0f8c3 334 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
335 pte_t *pte; /* Pointer to pte entry matching
336 * the 'address'. NULL if the page
337 * table hasn't been allocated.
338 */
339 spinlock_t *ptl; /* Page table lock.
340 * Protects pte page table if 'pte'
341 * is not NULL, otherwise pmd.
342 */
7267ec00
KS
343 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
344 * vm_ops->map_pages() calls
345 * alloc_set_pte() from atomic context.
346 * do_fault_around() pre-allocates
347 * page table to avoid allocation from
348 * atomic context.
349 */
54cb8821 350};
1da177e4
LT
351
352/*
353 * These are the virtual MM functions - opening of an area, closing and
354 * unmapping it (needed to keep files on disk up-to-date etc), pointer
355 * to the functions called when a no-page or a wp-page exception occurs.
356 */
357struct vm_operations_struct {
358 void (*open)(struct vm_area_struct * area);
359 void (*close)(struct vm_area_struct * area);
5477e70a 360 int (*mremap)(struct vm_area_struct * area);
11bac800 361 int (*fault)(struct vm_fault *vmf);
a2d58167 362 int (*huge_fault)(struct vm_fault *vmf);
82b0f8c3 363 void (*map_pages)(struct vm_fault *vmf,
bae473a4 364 pgoff_t start_pgoff, pgoff_t end_pgoff);
9637a5ef
DH
365
366 /* notification that a previously read-only page is about to become
367 * writable, if an error is returned it will cause a SIGBUS */
11bac800 368 int (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 369
dd906184 370 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
11bac800 371 int (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 372
28b2ee20
RR
373 /* called by access_process_vm when get_user_pages() fails, typically
374 * for use by special VMAs that can switch between memory and hardware
375 */
376 int (*access)(struct vm_area_struct *vma, unsigned long addr,
377 void *buf, int len, int write);
78d683e8
AL
378
379 /* Called by the /proc/PID/maps code to ask the vma whether it
380 * has a special name. Returning non-NULL will also cause this
381 * vma to be dumped unconditionally. */
382 const char *(*name)(struct vm_area_struct *vma);
383
1da177e4 384#ifdef CONFIG_NUMA
a6020ed7
LS
385 /*
386 * set_policy() op must add a reference to any non-NULL @new mempolicy
387 * to hold the policy upon return. Caller should pass NULL @new to
388 * remove a policy and fall back to surrounding context--i.e. do not
389 * install a MPOL_DEFAULT policy, nor the task or system default
390 * mempolicy.
391 */
1da177e4 392 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
393
394 /*
395 * get_policy() op must add reference [mpol_get()] to any policy at
396 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
397 * in mm/mempolicy.c will do this automatically.
398 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
399 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
400 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
401 * must return NULL--i.e., do not "fallback" to task or system default
402 * policy.
403 */
1da177e4
LT
404 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
405 unsigned long addr);
406#endif
667a0a06
DV
407 /*
408 * Called by vm_normal_page() for special PTEs to find the
409 * page for @addr. This is useful if the default behavior
410 * (using pte_page()) would not find the correct page.
411 */
412 struct page *(*find_special_page)(struct vm_area_struct *vma,
413 unsigned long addr);
1da177e4
LT
414};
415
416struct mmu_gather;
417struct inode;
418
349aef0b
AM
419#define page_private(page) ((page)->private)
420#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 421
5c7fb56e
DW
422#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
423static inline int pmd_devmap(pmd_t pmd)
424{
425 return 0;
426}
a00cc7d9
MW
427static inline int pud_devmap(pud_t pud)
428{
429 return 0;
430}
5c7fb56e
DW
431#endif
432
1da177e4
LT
433/*
434 * FIXME: take this include out, include page-flags.h in
435 * files which need it (119 of them)
436 */
437#include <linux/page-flags.h>
71e3aac0 438#include <linux/huge_mm.h>
1da177e4
LT
439
440/*
441 * Methods to modify the page usage count.
442 *
443 * What counts for a page usage:
444 * - cache mapping (page->mapping)
445 * - private data (page->private)
446 * - page mapped in a task's page tables, each mapping
447 * is counted separately
448 *
449 * Also, many kernel routines increase the page count before a critical
450 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
451 */
452
453/*
da6052f7 454 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 455 */
7c8ee9a8
NP
456static inline int put_page_testzero(struct page *page)
457{
fe896d18
JK
458 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
459 return page_ref_dec_and_test(page);
7c8ee9a8 460}
1da177e4
LT
461
462/*
7c8ee9a8
NP
463 * Try to grab a ref unless the page has a refcount of zero, return false if
464 * that is the case.
8e0861fa
AK
465 * This can be called when MMU is off so it must not access
466 * any of the virtual mappings.
1da177e4 467 */
7c8ee9a8
NP
468static inline int get_page_unless_zero(struct page *page)
469{
fe896d18 470 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 471}
1da177e4 472
53df8fdc 473extern int page_is_ram(unsigned long pfn);
124fe20d
DW
474
475enum {
476 REGION_INTERSECTS,
477 REGION_DISJOINT,
478 REGION_MIXED,
479};
480
1c29f25b
TK
481int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
482 unsigned long desc);
53df8fdc 483
48667e7a 484/* Support for virtually mapped pages */
b3bdda02
CL
485struct page *vmalloc_to_page(const void *addr);
486unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 487
0738c4bb
PM
488/*
489 * Determine if an address is within the vmalloc range
490 *
491 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
492 * is no special casing required.
493 */
bb00a789 494static inline bool is_vmalloc_addr(const void *x)
9e2779fa 495{
0738c4bb 496#ifdef CONFIG_MMU
9e2779fa
CL
497 unsigned long addr = (unsigned long)x;
498
499 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 500#else
bb00a789 501 return false;
8ca3ed87 502#endif
0738c4bb 503}
81ac3ad9
KH
504#ifdef CONFIG_MMU
505extern int is_vmalloc_or_module_addr(const void *x);
506#else
934831d0 507static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
508{
509 return 0;
510}
511#endif
9e2779fa 512
39f1f78d
AV
513extern void kvfree(const void *addr);
514
53f9263b
KS
515static inline atomic_t *compound_mapcount_ptr(struct page *page)
516{
517 return &page[1].compound_mapcount;
518}
519
520static inline int compound_mapcount(struct page *page)
521{
5f527c2b 522 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
523 page = compound_head(page);
524 return atomic_read(compound_mapcount_ptr(page)) + 1;
525}
526
70b50f94
AA
527/*
528 * The atomic page->_mapcount, starts from -1: so that transitions
529 * both from it and to it can be tracked, using atomic_inc_and_test
530 * and atomic_add_negative(-1).
531 */
22b751c3 532static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
533{
534 atomic_set(&(page)->_mapcount, -1);
535}
536
b20ce5e0
KS
537int __page_mapcount(struct page *page);
538
70b50f94
AA
539static inline int page_mapcount(struct page *page)
540{
1d148e21 541 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 542
b20ce5e0
KS
543 if (unlikely(PageCompound(page)))
544 return __page_mapcount(page);
545 return atomic_read(&page->_mapcount) + 1;
546}
547
548#ifdef CONFIG_TRANSPARENT_HUGEPAGE
549int total_mapcount(struct page *page);
6d0a07ed 550int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
551#else
552static inline int total_mapcount(struct page *page)
553{
554 return page_mapcount(page);
70b50f94 555}
6d0a07ed
AA
556static inline int page_trans_huge_mapcount(struct page *page,
557 int *total_mapcount)
558{
559 int mapcount = page_mapcount(page);
560 if (total_mapcount)
561 *total_mapcount = mapcount;
562 return mapcount;
563}
b20ce5e0 564#endif
70b50f94 565
b49af68f
CL
566static inline struct page *virt_to_head_page(const void *x)
567{
568 struct page *page = virt_to_page(x);
ccaafd7f 569
1d798ca3 570 return compound_head(page);
b49af68f
CL
571}
572
ddc58f27
KS
573void __put_page(struct page *page);
574
1d7ea732 575void put_pages_list(struct list_head *pages);
1da177e4 576
8dfcc9ba 577void split_page(struct page *page, unsigned int order);
8dfcc9ba 578
33f2ef89
AW
579/*
580 * Compound pages have a destructor function. Provide a
581 * prototype for that function and accessor functions.
f1e61557 582 * These are _only_ valid on the head of a compound page.
33f2ef89 583 */
f1e61557
KS
584typedef void compound_page_dtor(struct page *);
585
586/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
587enum compound_dtor_id {
588 NULL_COMPOUND_DTOR,
589 COMPOUND_PAGE_DTOR,
590#ifdef CONFIG_HUGETLB_PAGE
591 HUGETLB_PAGE_DTOR,
9a982250
KS
592#endif
593#ifdef CONFIG_TRANSPARENT_HUGEPAGE
594 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
595#endif
596 NR_COMPOUND_DTORS,
597};
598extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
599
600static inline void set_compound_page_dtor(struct page *page,
f1e61557 601 enum compound_dtor_id compound_dtor)
33f2ef89 602{
f1e61557
KS
603 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
604 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
605}
606
607static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
608{
f1e61557
KS
609 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
610 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
611}
612
d00181b9 613static inline unsigned int compound_order(struct page *page)
d85f3385 614{
6d777953 615 if (!PageHead(page))
d85f3385 616 return 0;
e4b294c2 617 return page[1].compound_order;
d85f3385
CL
618}
619
f1e61557 620static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 621{
e4b294c2 622 page[1].compound_order = order;
d85f3385
CL
623}
624
9a982250
KS
625void free_compound_page(struct page *page);
626
3dece370 627#ifdef CONFIG_MMU
14fd403f
AA
628/*
629 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
630 * servicing faults for write access. In the normal case, do always want
631 * pte_mkwrite. But get_user_pages can cause write faults for mappings
632 * that do not have writing enabled, when used by access_process_vm.
633 */
634static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
635{
636 if (likely(vma->vm_flags & VM_WRITE))
637 pte = pte_mkwrite(pte);
638 return pte;
639}
8c6e50b0 640
82b0f8c3 641int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 642 struct page *page);
9118c0cb 643int finish_fault(struct vm_fault *vmf);
66a6197c 644int finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 645#endif
14fd403f 646
1da177e4
LT
647/*
648 * Multiple processes may "see" the same page. E.g. for untouched
649 * mappings of /dev/null, all processes see the same page full of
650 * zeroes, and text pages of executables and shared libraries have
651 * only one copy in memory, at most, normally.
652 *
653 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
654 * page_count() == 0 means the page is free. page->lru is then used for
655 * freelist management in the buddy allocator.
da6052f7 656 * page_count() > 0 means the page has been allocated.
1da177e4 657 *
da6052f7
NP
658 * Pages are allocated by the slab allocator in order to provide memory
659 * to kmalloc and kmem_cache_alloc. In this case, the management of the
660 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
661 * unless a particular usage is carefully commented. (the responsibility of
662 * freeing the kmalloc memory is the caller's, of course).
1da177e4 663 *
da6052f7
NP
664 * A page may be used by anyone else who does a __get_free_page().
665 * In this case, page_count still tracks the references, and should only
666 * be used through the normal accessor functions. The top bits of page->flags
667 * and page->virtual store page management information, but all other fields
668 * are unused and could be used privately, carefully. The management of this
669 * page is the responsibility of the one who allocated it, and those who have
670 * subsequently been given references to it.
671 *
672 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
673 * managed by the Linux memory manager: I/O, buffers, swapping etc.
674 * The following discussion applies only to them.
675 *
da6052f7
NP
676 * A pagecache page contains an opaque `private' member, which belongs to the
677 * page's address_space. Usually, this is the address of a circular list of
678 * the page's disk buffers. PG_private must be set to tell the VM to call
679 * into the filesystem to release these pages.
1da177e4 680 *
da6052f7
NP
681 * A page may belong to an inode's memory mapping. In this case, page->mapping
682 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 683 * in units of PAGE_SIZE.
1da177e4 684 *
da6052f7
NP
685 * If pagecache pages are not associated with an inode, they are said to be
686 * anonymous pages. These may become associated with the swapcache, and in that
687 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 688 *
da6052f7
NP
689 * In either case (swapcache or inode backed), the pagecache itself holds one
690 * reference to the page. Setting PG_private should also increment the
691 * refcount. The each user mapping also has a reference to the page.
1da177e4 692 *
da6052f7
NP
693 * The pagecache pages are stored in a per-mapping radix tree, which is
694 * rooted at mapping->page_tree, and indexed by offset.
695 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
696 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 697 *
da6052f7 698 * All pagecache pages may be subject to I/O:
1da177e4
LT
699 * - inode pages may need to be read from disk,
700 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
701 * to be written back to the inode on disk,
702 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
703 * modified may need to be swapped out to swap space and (later) to be read
704 * back into memory.
1da177e4
LT
705 */
706
707/*
708 * The zone field is never updated after free_area_init_core()
709 * sets it, so none of the operations on it need to be atomic.
1da177e4 710 */
348f8b6c 711
90572890 712/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 713#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
714#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
715#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 716#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 717
348f8b6c 718/*
25985edc 719 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
720 * sections we define the shift as 0; that plus a 0 mask ensures
721 * the compiler will optimise away reference to them.
722 */
d41dee36
AW
723#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
724#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
725#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 726#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 727
bce54bbf
WD
728/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
729#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 730#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
731#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
732 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 733#else
89689ae7 734#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
735#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
736 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
737#endif
738
bd8029b6 739#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 740
9223b419
CL
741#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
742#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
743#endif
744
d41dee36
AW
745#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
746#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
747#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 748#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 749#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 750
33dd4e0e 751static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 752{
348f8b6c 753 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 754}
1da177e4 755
260ae3f7 756#ifdef CONFIG_ZONE_DEVICE
3565fce3
DW
757void get_zone_device_page(struct page *page);
758void put_zone_device_page(struct page *page);
260ae3f7
DW
759static inline bool is_zone_device_page(const struct page *page)
760{
761 return page_zonenum(page) == ZONE_DEVICE;
762}
763#else
3565fce3
DW
764static inline void get_zone_device_page(struct page *page)
765{
766}
767static inline void put_zone_device_page(struct page *page)
768{
769}
260ae3f7
DW
770static inline bool is_zone_device_page(const struct page *page)
771{
772 return false;
773}
774#endif
775
3565fce3
DW
776static inline void get_page(struct page *page)
777{
778 page = compound_head(page);
779 /*
780 * Getting a normal page or the head of a compound page
0139aa7b 781 * requires to already have an elevated page->_refcount.
3565fce3 782 */
fe896d18
JK
783 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
784 page_ref_inc(page);
3565fce3
DW
785
786 if (unlikely(is_zone_device_page(page)))
787 get_zone_device_page(page);
788}
789
790static inline void put_page(struct page *page)
791{
792 page = compound_head(page);
793
794 if (put_page_testzero(page))
795 __put_page(page);
796
797 if (unlikely(is_zone_device_page(page)))
798 put_zone_device_page(page);
799}
800
9127ab4f
CS
801#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
802#define SECTION_IN_PAGE_FLAGS
803#endif
804
89689ae7 805/*
7a8010cd
VB
806 * The identification function is mainly used by the buddy allocator for
807 * determining if two pages could be buddies. We are not really identifying
808 * the zone since we could be using the section number id if we do not have
809 * node id available in page flags.
810 * We only guarantee that it will return the same value for two combinable
811 * pages in a zone.
89689ae7 812 */
cb2b95e1
AW
813static inline int page_zone_id(struct page *page)
814{
89689ae7 815 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
816}
817
25ba77c1 818static inline int zone_to_nid(struct zone *zone)
89fa3024 819{
d5f541ed
CL
820#ifdef CONFIG_NUMA
821 return zone->node;
822#else
823 return 0;
824#endif
89fa3024
CL
825}
826
89689ae7 827#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 828extern int page_to_nid(const struct page *page);
89689ae7 829#else
33dd4e0e 830static inline int page_to_nid(const struct page *page)
d41dee36 831{
89689ae7 832 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 833}
89689ae7
CL
834#endif
835
57e0a030 836#ifdef CONFIG_NUMA_BALANCING
90572890 837static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 838{
90572890 839 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
840}
841
90572890 842static inline int cpupid_to_pid(int cpupid)
57e0a030 843{
90572890 844 return cpupid & LAST__PID_MASK;
57e0a030 845}
b795854b 846
90572890 847static inline int cpupid_to_cpu(int cpupid)
b795854b 848{
90572890 849 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
850}
851
90572890 852static inline int cpupid_to_nid(int cpupid)
b795854b 853{
90572890 854 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
855}
856
90572890 857static inline bool cpupid_pid_unset(int cpupid)
57e0a030 858{
90572890 859 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
860}
861
90572890 862static inline bool cpupid_cpu_unset(int cpupid)
b795854b 863{
90572890 864 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
865}
866
8c8a743c
PZ
867static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
868{
869 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
870}
871
872#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
873#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
874static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 875{
1ae71d03 876 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 877}
90572890
PZ
878
879static inline int page_cpupid_last(struct page *page)
880{
881 return page->_last_cpupid;
882}
883static inline void page_cpupid_reset_last(struct page *page)
b795854b 884{
1ae71d03 885 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
886}
887#else
90572890 888static inline int page_cpupid_last(struct page *page)
75980e97 889{
90572890 890 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
891}
892
90572890 893extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 894
90572890 895static inline void page_cpupid_reset_last(struct page *page)
75980e97 896{
09940a4f 897 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 898}
90572890
PZ
899#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
900#else /* !CONFIG_NUMA_BALANCING */
901static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 902{
90572890 903 return page_to_nid(page); /* XXX */
57e0a030
MG
904}
905
90572890 906static inline int page_cpupid_last(struct page *page)
57e0a030 907{
90572890 908 return page_to_nid(page); /* XXX */
57e0a030
MG
909}
910
90572890 911static inline int cpupid_to_nid(int cpupid)
b795854b
MG
912{
913 return -1;
914}
915
90572890 916static inline int cpupid_to_pid(int cpupid)
b795854b
MG
917{
918 return -1;
919}
920
90572890 921static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
922{
923 return -1;
924}
925
90572890
PZ
926static inline int cpu_pid_to_cpupid(int nid, int pid)
927{
928 return -1;
929}
930
931static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
932{
933 return 1;
934}
935
90572890 936static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
937{
938}
8c8a743c
PZ
939
940static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
941{
942 return false;
943}
90572890 944#endif /* CONFIG_NUMA_BALANCING */
57e0a030 945
33dd4e0e 946static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
947{
948 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
949}
950
75ef7184
MG
951static inline pg_data_t *page_pgdat(const struct page *page)
952{
953 return NODE_DATA(page_to_nid(page));
954}
955
9127ab4f 956#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
957static inline void set_page_section(struct page *page, unsigned long section)
958{
959 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
960 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
961}
962
aa462abe 963static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
964{
965 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
966}
308c05e3 967#endif
d41dee36 968
2f1b6248 969static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
970{
971 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
972 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
973}
2f1b6248 974
348f8b6c
DH
975static inline void set_page_node(struct page *page, unsigned long node)
976{
977 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
978 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 979}
89689ae7 980
2f1b6248 981static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 982 unsigned long node, unsigned long pfn)
1da177e4 983{
348f8b6c
DH
984 set_page_zone(page, zone);
985 set_page_node(page, node);
9127ab4f 986#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 987 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 988#endif
1da177e4
LT
989}
990
0610c25d
GT
991#ifdef CONFIG_MEMCG
992static inline struct mem_cgroup *page_memcg(struct page *page)
993{
994 return page->mem_cgroup;
995}
55779ec7
JW
996static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
997{
998 WARN_ON_ONCE(!rcu_read_lock_held());
999 return READ_ONCE(page->mem_cgroup);
1000}
0610c25d
GT
1001#else
1002static inline struct mem_cgroup *page_memcg(struct page *page)
1003{
1004 return NULL;
1005}
55779ec7
JW
1006static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1007{
1008 WARN_ON_ONCE(!rcu_read_lock_held());
1009 return NULL;
1010}
0610c25d
GT
1011#endif
1012
f6ac2354
CL
1013/*
1014 * Some inline functions in vmstat.h depend on page_zone()
1015 */
1016#include <linux/vmstat.h>
1017
33dd4e0e 1018static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1019{
1dff8083 1020 return page_to_virt(page);
1da177e4
LT
1021}
1022
1023#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1024#define HASHED_PAGE_VIRTUAL
1025#endif
1026
1027#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1028static inline void *page_address(const struct page *page)
1029{
1030 return page->virtual;
1031}
1032static inline void set_page_address(struct page *page, void *address)
1033{
1034 page->virtual = address;
1035}
1da177e4
LT
1036#define page_address_init() do { } while(0)
1037#endif
1038
1039#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1040void *page_address(const struct page *page);
1da177e4
LT
1041void set_page_address(struct page *page, void *virtual);
1042void page_address_init(void);
1043#endif
1044
1045#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1046#define page_address(page) lowmem_page_address(page)
1047#define set_page_address(page, address) do { } while(0)
1048#define page_address_init() do { } while(0)
1049#endif
1050
e39155ea
KS
1051extern void *page_rmapping(struct page *page);
1052extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1053extern struct address_space *page_mapping(struct page *page);
1da177e4 1054
f981c595
MG
1055extern struct address_space *__page_file_mapping(struct page *);
1056
1057static inline
1058struct address_space *page_file_mapping(struct page *page)
1059{
1060 if (unlikely(PageSwapCache(page)))
1061 return __page_file_mapping(page);
1062
1063 return page->mapping;
1064}
1065
f6ab1f7f
HY
1066extern pgoff_t __page_file_index(struct page *page);
1067
1da177e4
LT
1068/*
1069 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1070 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1071 */
1072static inline pgoff_t page_index(struct page *page)
1073{
1074 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1075 return __page_file_index(page);
1da177e4
LT
1076 return page->index;
1077}
1078
1aa8aea5 1079bool page_mapped(struct page *page);
bda807d4 1080struct address_space *page_mapping(struct page *page);
1da177e4 1081
2f064f34
MH
1082/*
1083 * Return true only if the page has been allocated with
1084 * ALLOC_NO_WATERMARKS and the low watermark was not
1085 * met implying that the system is under some pressure.
1086 */
1087static inline bool page_is_pfmemalloc(struct page *page)
1088{
1089 /*
1090 * Page index cannot be this large so this must be
1091 * a pfmemalloc page.
1092 */
1093 return page->index == -1UL;
1094}
1095
1096/*
1097 * Only to be called by the page allocator on a freshly allocated
1098 * page.
1099 */
1100static inline void set_page_pfmemalloc(struct page *page)
1101{
1102 page->index = -1UL;
1103}
1104
1105static inline void clear_page_pfmemalloc(struct page *page)
1106{
1107 page->index = 0;
1108}
1109
1da177e4
LT
1110/*
1111 * Different kinds of faults, as returned by handle_mm_fault().
1112 * Used to decide whether a process gets delivered SIGBUS or
1113 * just gets major/minor fault counters bumped up.
1114 */
d0217ac0 1115
83c54070
NP
1116#define VM_FAULT_OOM 0x0001
1117#define VM_FAULT_SIGBUS 0x0002
1118#define VM_FAULT_MAJOR 0x0004
1119#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1120#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1121#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1122#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1123
83c54070
NP
1124#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1125#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1126#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1127#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
b1aa812b 1128#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1da177e4 1129
aa50d3a7
AK
1130#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1131
33692f27
LT
1132#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1133 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1134 VM_FAULT_FALLBACK)
aa50d3a7 1135
282a8e03
RZ
1136#define VM_FAULT_RESULT_TRACE \
1137 { VM_FAULT_OOM, "OOM" }, \
1138 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1139 { VM_FAULT_MAJOR, "MAJOR" }, \
1140 { VM_FAULT_WRITE, "WRITE" }, \
1141 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1142 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1143 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1144 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1145 { VM_FAULT_LOCKED, "LOCKED" }, \
1146 { VM_FAULT_RETRY, "RETRY" }, \
1147 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1148 { VM_FAULT_DONE_COW, "DONE_COW" }
1149
aa50d3a7
AK
1150/* Encode hstate index for a hwpoisoned large page */
1151#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1152#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1153
1c0fe6e3
NP
1154/*
1155 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1156 */
1157extern void pagefault_out_of_memory(void);
1158
1da177e4
LT
1159#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1160
ddd588b5 1161/*
7bf02ea2 1162 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1163 * various contexts.
1164 */
4b59e6c4 1165#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1166
9af744d7 1167extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1168
1da177e4 1169int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1170#ifdef CONFIG_SHMEM
1171bool shmem_mapping(struct address_space *mapping);
1172#else
1173static inline bool shmem_mapping(struct address_space *mapping)
1174{
1175 return false;
1176}
1177#endif
1da177e4 1178
7f43add4 1179extern bool can_do_mlock(void);
1da177e4
LT
1180extern int user_shm_lock(size_t, struct user_struct *);
1181extern void user_shm_unlock(size_t, struct user_struct *);
1182
1183/*
1184 * Parameter block passed down to zap_pte_range in exceptional cases.
1185 */
1186struct zap_details {
1da177e4
LT
1187 struct address_space *check_mapping; /* Check page->mapping if set */
1188 pgoff_t first_index; /* Lowest page->index to unmap */
1189 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1190};
1191
7e675137
NP
1192struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1193 pte_t pte);
28093f9f
GS
1194struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1195 pmd_t pmd);
7e675137 1196
c627f9cc
JS
1197int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1198 unsigned long size);
14f5ff5d 1199void zap_page_range(struct vm_area_struct *vma, unsigned long address,
ecf1385d 1200 unsigned long size);
4f74d2c8
LT
1201void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1202 unsigned long start, unsigned long end);
e6473092
MM
1203
1204/**
1205 * mm_walk - callbacks for walk_page_range
a00cc7d9
MW
1206 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1207 * this handler should only handle pud_trans_huge() puds.
1208 * the pmd_entry or pte_entry callbacks will be used for
1209 * regular PUDs.
e6473092 1210 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1211 * this handler is required to be able to handle
1212 * pmd_trans_huge() pmds. They may simply choose to
1213 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1214 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1215 * @pte_hole: if set, called for each hole at all levels
5dc37642 1216 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426 1217 * @test_walk: caller specific callback function to determine whether
f7e2355f 1218 * we walk over the current vma or not. Returning 0
fafaa426
NH
1219 * value means "do page table walk over the current vma,"
1220 * and a negative one means "abort current page table walk
f7e2355f 1221 * right now." 1 means "skip the current vma."
fafaa426
NH
1222 * @mm: mm_struct representing the target process of page table walk
1223 * @vma: vma currently walked (NULL if walking outside vmas)
1224 * @private: private data for callbacks' usage
e6473092 1225 *
fafaa426 1226 * (see the comment on walk_page_range() for more details)
e6473092
MM
1227 */
1228struct mm_walk {
a00cc7d9
MW
1229 int (*pud_entry)(pud_t *pud, unsigned long addr,
1230 unsigned long next, struct mm_walk *walk);
0f157a5b
AM
1231 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1232 unsigned long next, struct mm_walk *walk);
1233 int (*pte_entry)(pte_t *pte, unsigned long addr,
1234 unsigned long next, struct mm_walk *walk);
1235 int (*pte_hole)(unsigned long addr, unsigned long next,
1236 struct mm_walk *walk);
1237 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1238 unsigned long addr, unsigned long next,
1239 struct mm_walk *walk);
fafaa426
NH
1240 int (*test_walk)(unsigned long addr, unsigned long next,
1241 struct mm_walk *walk);
2165009b 1242 struct mm_struct *mm;
fafaa426 1243 struct vm_area_struct *vma;
2165009b 1244 void *private;
e6473092
MM
1245};
1246
2165009b
DH
1247int walk_page_range(unsigned long addr, unsigned long end,
1248 struct mm_walk *walk);
900fc5f1 1249int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1250void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1251 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1252int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1253 struct vm_area_struct *vma);
1da177e4
LT
1254void unmap_mapping_range(struct address_space *mapping,
1255 loff_t const holebegin, loff_t const holelen, int even_cows);
09796395
RZ
1256int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1257 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1258int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1259 unsigned long *pfn);
d87fe660 1260int follow_phys(struct vm_area_struct *vma, unsigned long address,
1261 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1262int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1263 void *buf, int len, int write);
1da177e4
LT
1264
1265static inline void unmap_shared_mapping_range(struct address_space *mapping,
1266 loff_t const holebegin, loff_t const holelen)
1267{
1268 unmap_mapping_range(mapping, holebegin, holelen, 0);
1269}
1270
7caef267 1271extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1272extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1273void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1274void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1275int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1276int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1277int invalidate_inode_page(struct page *page);
1278
7ee1dd3f 1279#ifdef CONFIG_MMU
dcddffd4
KS
1280extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1281 unsigned int flags);
5c723ba5 1282extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1283 unsigned long address, unsigned int fault_flags,
1284 bool *unlocked);
7ee1dd3f 1285#else
dcddffd4
KS
1286static inline int handle_mm_fault(struct vm_area_struct *vma,
1287 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1288{
1289 /* should never happen if there's no MMU */
1290 BUG();
1291 return VM_FAULT_SIGBUS;
1292}
5c723ba5
PZ
1293static inline int fixup_user_fault(struct task_struct *tsk,
1294 struct mm_struct *mm, unsigned long address,
4a9e1cda 1295 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1296{
1297 /* should never happen if there's no MMU */
1298 BUG();
1299 return -EFAULT;
1300}
7ee1dd3f 1301#endif
f33ea7f4 1302
f307ab6d
LS
1303extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1304 unsigned int gup_flags);
5ddd36b9 1305extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1306 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1307extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1308 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1309
1e987790
DH
1310long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1311 unsigned long start, unsigned long nr_pages,
9beae1ea 1312 unsigned int gup_flags, struct page **pages,
5b56d49f 1313 struct vm_area_struct **vmas, int *locked);
c12d2da5 1314long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1315 unsigned int gup_flags, struct page **pages,
cde70140 1316 struct vm_area_struct **vmas);
c12d2da5 1317long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1318 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1319long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1320 struct page **pages, unsigned int gup_flags);
d2bf6be8
NP
1321int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1322 struct page **pages);
8025e5dd
JK
1323
1324/* Container for pinned pfns / pages */
1325struct frame_vector {
1326 unsigned int nr_allocated; /* Number of frames we have space for */
1327 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1328 bool got_ref; /* Did we pin pages by getting page ref? */
1329 bool is_pfns; /* Does array contain pages or pfns? */
1330 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1331 * pfns_vector_pages() or pfns_vector_pfns()
1332 * for access */
1333};
1334
1335struct frame_vector *frame_vector_create(unsigned int nr_frames);
1336void frame_vector_destroy(struct frame_vector *vec);
1337int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1338 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1339void put_vaddr_frames(struct frame_vector *vec);
1340int frame_vector_to_pages(struct frame_vector *vec);
1341void frame_vector_to_pfns(struct frame_vector *vec);
1342
1343static inline unsigned int frame_vector_count(struct frame_vector *vec)
1344{
1345 return vec->nr_frames;
1346}
1347
1348static inline struct page **frame_vector_pages(struct frame_vector *vec)
1349{
1350 if (vec->is_pfns) {
1351 int err = frame_vector_to_pages(vec);
1352
1353 if (err)
1354 return ERR_PTR(err);
1355 }
1356 return (struct page **)(vec->ptrs);
1357}
1358
1359static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1360{
1361 if (!vec->is_pfns)
1362 frame_vector_to_pfns(vec);
1363 return (unsigned long *)(vec->ptrs);
1364}
1365
18022c5d
MG
1366struct kvec;
1367int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1368 struct page **pages);
1369int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1370struct page *get_dump_page(unsigned long addr);
1da177e4 1371
cf9a2ae8 1372extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1373extern void do_invalidatepage(struct page *page, unsigned int offset,
1374 unsigned int length);
cf9a2ae8 1375
1da177e4 1376int __set_page_dirty_nobuffers(struct page *page);
76719325 1377int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1378int redirty_page_for_writepage(struct writeback_control *wbc,
1379 struct page *page);
62cccb8c 1380void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1381void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1382 struct bdi_writeback *wb);
b3c97528 1383int set_page_dirty(struct page *page);
1da177e4 1384int set_page_dirty_lock(struct page *page);
11f81bec 1385void cancel_dirty_page(struct page *page);
1da177e4 1386int clear_page_dirty_for_io(struct page *page);
b9ea2515 1387
a9090253 1388int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1389
39aa3cb3 1390/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1391static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1392{
1393 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1394}
1395
b5330628
ON
1396static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1397{
1398 return !vma->vm_ops;
1399}
1400
b0506e48
MR
1401#ifdef CONFIG_SHMEM
1402/*
1403 * The vma_is_shmem is not inline because it is used only by slow
1404 * paths in userfault.
1405 */
1406bool vma_is_shmem(struct vm_area_struct *vma);
1407#else
1408static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1409#endif
1410
a09a79f6
MP
1411static inline int stack_guard_page_start(struct vm_area_struct *vma,
1412 unsigned long addr)
1413{
1414 return (vma->vm_flags & VM_GROWSDOWN) &&
1415 (vma->vm_start == addr) &&
1416 !vma_growsdown(vma->vm_prev, addr);
1417}
1418
1419/* Is the vma a continuation of the stack vma below it? */
1420static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1421{
1422 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1423}
1424
1425static inline int stack_guard_page_end(struct vm_area_struct *vma,
1426 unsigned long addr)
1427{
1428 return (vma->vm_flags & VM_GROWSUP) &&
1429 (vma->vm_end == addr) &&
1430 !vma_growsup(vma->vm_next, addr);
1431}
1432
d17af505 1433int vma_is_stack_for_current(struct vm_area_struct *vma);
b7643757 1434
b6a2fea3
OW
1435extern unsigned long move_page_tables(struct vm_area_struct *vma,
1436 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1437 unsigned long new_addr, unsigned long len,
1438 bool need_rmap_locks);
7da4d641
PZ
1439extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1440 unsigned long end, pgprot_t newprot,
4b10e7d5 1441 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1442extern int mprotect_fixup(struct vm_area_struct *vma,
1443 struct vm_area_struct **pprev, unsigned long start,
1444 unsigned long end, unsigned long newflags);
1da177e4 1445
465a454f
PZ
1446/*
1447 * doesn't attempt to fault and will return short.
1448 */
1449int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1450 struct page **pages);
d559db08
KH
1451/*
1452 * per-process(per-mm_struct) statistics.
1453 */
d559db08
KH
1454static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1455{
69c97823
KK
1456 long val = atomic_long_read(&mm->rss_stat.count[member]);
1457
1458#ifdef SPLIT_RSS_COUNTING
1459 /*
1460 * counter is updated in asynchronous manner and may go to minus.
1461 * But it's never be expected number for users.
1462 */
1463 if (val < 0)
1464 val = 0;
172703b0 1465#endif
69c97823
KK
1466 return (unsigned long)val;
1467}
d559db08
KH
1468
1469static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1470{
172703b0 1471 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1472}
1473
1474static inline void inc_mm_counter(struct mm_struct *mm, int member)
1475{
172703b0 1476 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1477}
1478
1479static inline void dec_mm_counter(struct mm_struct *mm, int member)
1480{
172703b0 1481 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1482}
1483
eca56ff9
JM
1484/* Optimized variant when page is already known not to be PageAnon */
1485static inline int mm_counter_file(struct page *page)
1486{
1487 if (PageSwapBacked(page))
1488 return MM_SHMEMPAGES;
1489 return MM_FILEPAGES;
1490}
1491
1492static inline int mm_counter(struct page *page)
1493{
1494 if (PageAnon(page))
1495 return MM_ANONPAGES;
1496 return mm_counter_file(page);
1497}
1498
d559db08
KH
1499static inline unsigned long get_mm_rss(struct mm_struct *mm)
1500{
1501 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1502 get_mm_counter(mm, MM_ANONPAGES) +
1503 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1504}
1505
1506static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1507{
1508 return max(mm->hiwater_rss, get_mm_rss(mm));
1509}
1510
1511static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1512{
1513 return max(mm->hiwater_vm, mm->total_vm);
1514}
1515
1516static inline void update_hiwater_rss(struct mm_struct *mm)
1517{
1518 unsigned long _rss = get_mm_rss(mm);
1519
1520 if ((mm)->hiwater_rss < _rss)
1521 (mm)->hiwater_rss = _rss;
1522}
1523
1524static inline void update_hiwater_vm(struct mm_struct *mm)
1525{
1526 if (mm->hiwater_vm < mm->total_vm)
1527 mm->hiwater_vm = mm->total_vm;
1528}
1529
695f0559
PC
1530static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1531{
1532 mm->hiwater_rss = get_mm_rss(mm);
1533}
1534
d559db08
KH
1535static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1536 struct mm_struct *mm)
1537{
1538 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1539
1540 if (*maxrss < hiwater_rss)
1541 *maxrss = hiwater_rss;
1542}
1543
53bddb4e 1544#if defined(SPLIT_RSS_COUNTING)
05af2e10 1545void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1546#else
05af2e10 1547static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1548{
1549}
1550#endif
465a454f 1551
3565fce3
DW
1552#ifndef __HAVE_ARCH_PTE_DEVMAP
1553static inline int pte_devmap(pte_t pte)
1554{
1555 return 0;
1556}
1557#endif
1558
6d2329f8 1559int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1560
25ca1d6c
NK
1561extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1562 spinlock_t **ptl);
1563static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1564 spinlock_t **ptl)
1565{
1566 pte_t *ptep;
1567 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1568 return ptep;
1569}
c9cfcddf 1570
5f22df00
NP
1571#ifdef __PAGETABLE_PUD_FOLDED
1572static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1573 unsigned long address)
1574{
1575 return 0;
1576}
1577#else
1bb3630e 1578int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1579#endif
1580
2d2f5119 1581#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1582static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1583 unsigned long address)
1584{
1585 return 0;
1586}
dc6c9a35 1587
2d2f5119
KS
1588static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1589
dc6c9a35
KS
1590static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1591{
1592 return 0;
1593}
1594
1595static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1596static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1597
5f22df00 1598#else
1bb3630e 1599int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1600
2d2f5119
KS
1601static inline void mm_nr_pmds_init(struct mm_struct *mm)
1602{
1603 atomic_long_set(&mm->nr_pmds, 0);
1604}
1605
dc6c9a35
KS
1606static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1607{
1608 return atomic_long_read(&mm->nr_pmds);
1609}
1610
1611static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1612{
1613 atomic_long_inc(&mm->nr_pmds);
1614}
1615
1616static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1617{
1618 atomic_long_dec(&mm->nr_pmds);
1619}
5f22df00
NP
1620#endif
1621
3ed3a4f0 1622int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1bb3630e
HD
1623int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1624
1da177e4
LT
1625/*
1626 * The following ifdef needed to get the 4level-fixup.h header to work.
1627 * Remove it when 4level-fixup.h has been removed.
1628 */
1bb3630e 1629#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1630static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1631{
1bb3630e
HD
1632 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1633 NULL: pud_offset(pgd, address);
1da177e4
LT
1634}
1635
1636static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1637{
1bb3630e
HD
1638 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1639 NULL: pmd_offset(pud, address);
1da177e4 1640}
1bb3630e
HD
1641#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1642
57c1ffce 1643#if USE_SPLIT_PTE_PTLOCKS
597d795a 1644#if ALLOC_SPLIT_PTLOCKS
b35f1819 1645void __init ptlock_cache_init(void);
539edb58
PZ
1646extern bool ptlock_alloc(struct page *page);
1647extern void ptlock_free(struct page *page);
1648
1649static inline spinlock_t *ptlock_ptr(struct page *page)
1650{
1651 return page->ptl;
1652}
597d795a 1653#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1654static inline void ptlock_cache_init(void)
1655{
1656}
1657
49076ec2
KS
1658static inline bool ptlock_alloc(struct page *page)
1659{
49076ec2
KS
1660 return true;
1661}
539edb58 1662
49076ec2
KS
1663static inline void ptlock_free(struct page *page)
1664{
49076ec2
KS
1665}
1666
1667static inline spinlock_t *ptlock_ptr(struct page *page)
1668{
539edb58 1669 return &page->ptl;
49076ec2 1670}
597d795a 1671#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1672
1673static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1674{
1675 return ptlock_ptr(pmd_page(*pmd));
1676}
1677
1678static inline bool ptlock_init(struct page *page)
1679{
1680 /*
1681 * prep_new_page() initialize page->private (and therefore page->ptl)
1682 * with 0. Make sure nobody took it in use in between.
1683 *
1684 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1685 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1686 */
309381fe 1687 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1688 if (!ptlock_alloc(page))
1689 return false;
1690 spin_lock_init(ptlock_ptr(page));
1691 return true;
1692}
1693
1694/* Reset page->mapping so free_pages_check won't complain. */
1695static inline void pte_lock_deinit(struct page *page)
1696{
1697 page->mapping = NULL;
1698 ptlock_free(page);
1699}
1700
57c1ffce 1701#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1702/*
1703 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1704 */
49076ec2
KS
1705static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1706{
1707 return &mm->page_table_lock;
1708}
b35f1819 1709static inline void ptlock_cache_init(void) {}
49076ec2
KS
1710static inline bool ptlock_init(struct page *page) { return true; }
1711static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1712#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1713
b35f1819
KS
1714static inline void pgtable_init(void)
1715{
1716 ptlock_cache_init();
1717 pgtable_cache_init();
1718}
1719
390f44e2 1720static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1721{
706874e9
VD
1722 if (!ptlock_init(page))
1723 return false;
2f569afd 1724 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1725 return true;
2f569afd
MS
1726}
1727
1728static inline void pgtable_page_dtor(struct page *page)
1729{
1730 pte_lock_deinit(page);
1731 dec_zone_page_state(page, NR_PAGETABLE);
1732}
1733
c74df32c
HD
1734#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1735({ \
4c21e2f2 1736 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1737 pte_t *__pte = pte_offset_map(pmd, address); \
1738 *(ptlp) = __ptl; \
1739 spin_lock(__ptl); \
1740 __pte; \
1741})
1742
1743#define pte_unmap_unlock(pte, ptl) do { \
1744 spin_unlock(ptl); \
1745 pte_unmap(pte); \
1746} while (0)
1747
3ed3a4f0
KS
1748#define pte_alloc(mm, pmd, address) \
1749 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1750
1751#define pte_alloc_map(mm, pmd, address) \
1752 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1bb3630e 1753
c74df32c 1754#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3ed3a4f0
KS
1755 (pte_alloc(mm, pmd, address) ? \
1756 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 1757
1bb3630e 1758#define pte_alloc_kernel(pmd, address) \
8ac1f832 1759 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1760 NULL: pte_offset_kernel(pmd, address))
1da177e4 1761
e009bb30
KS
1762#if USE_SPLIT_PMD_PTLOCKS
1763
634391ac
MS
1764static struct page *pmd_to_page(pmd_t *pmd)
1765{
1766 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1767 return virt_to_page((void *)((unsigned long) pmd & mask));
1768}
1769
e009bb30
KS
1770static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1771{
634391ac 1772 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1773}
1774
1775static inline bool pgtable_pmd_page_ctor(struct page *page)
1776{
e009bb30
KS
1777#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1778 page->pmd_huge_pte = NULL;
1779#endif
49076ec2 1780 return ptlock_init(page);
e009bb30
KS
1781}
1782
1783static inline void pgtable_pmd_page_dtor(struct page *page)
1784{
1785#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1786 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1787#endif
49076ec2 1788 ptlock_free(page);
e009bb30
KS
1789}
1790
634391ac 1791#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1792
1793#else
1794
9a86cb7b
KS
1795static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1796{
1797 return &mm->page_table_lock;
1798}
1799
e009bb30
KS
1800static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1801static inline void pgtable_pmd_page_dtor(struct page *page) {}
1802
c389a250 1803#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1804
e009bb30
KS
1805#endif
1806
9a86cb7b
KS
1807static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1808{
1809 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1810 spin_lock(ptl);
1811 return ptl;
1812}
1813
a00cc7d9
MW
1814/*
1815 * No scalability reason to split PUD locks yet, but follow the same pattern
1816 * as the PMD locks to make it easier if we decide to. The VM should not be
1817 * considered ready to switch to split PUD locks yet; there may be places
1818 * which need to be converted from page_table_lock.
1819 */
1820static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1821{
1822 return &mm->page_table_lock;
1823}
1824
1825static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1826{
1827 spinlock_t *ptl = pud_lockptr(mm, pud);
1828
1829 spin_lock(ptl);
1830 return ptl;
1831}
62906027 1832
a00cc7d9 1833extern void __init pagecache_init(void);
1da177e4 1834extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1835extern void free_area_init_node(int nid, unsigned long * zones_size,
1836 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1837extern void free_initmem(void);
1838
69afade7
JL
1839/*
1840 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1841 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1842 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1843 * Return pages freed into the buddy system.
1844 */
11199692 1845extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1846 int poison, char *s);
c3d5f5f0 1847
cfa11e08
JL
1848#ifdef CONFIG_HIGHMEM
1849/*
1850 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1851 * and totalram_pages.
1852 */
1853extern void free_highmem_page(struct page *page);
1854#endif
69afade7 1855
c3d5f5f0 1856extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1857extern void mem_init_print_info(const char *str);
69afade7 1858
4b50bcc7 1859extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 1860
69afade7
JL
1861/* Free the reserved page into the buddy system, so it gets managed. */
1862static inline void __free_reserved_page(struct page *page)
1863{
1864 ClearPageReserved(page);
1865 init_page_count(page);
1866 __free_page(page);
1867}
1868
1869static inline void free_reserved_page(struct page *page)
1870{
1871 __free_reserved_page(page);
1872 adjust_managed_page_count(page, 1);
1873}
1874
1875static inline void mark_page_reserved(struct page *page)
1876{
1877 SetPageReserved(page);
1878 adjust_managed_page_count(page, -1);
1879}
1880
1881/*
1882 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1883 * The freed pages will be poisoned with pattern "poison" if it's within
1884 * range [0, UCHAR_MAX].
1885 * Return pages freed into the buddy system.
69afade7
JL
1886 */
1887static inline unsigned long free_initmem_default(int poison)
1888{
1889 extern char __init_begin[], __init_end[];
1890
11199692 1891 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1892 poison, "unused kernel");
1893}
1894
7ee3d4e8
JL
1895static inline unsigned long get_num_physpages(void)
1896{
1897 int nid;
1898 unsigned long phys_pages = 0;
1899
1900 for_each_online_node(nid)
1901 phys_pages += node_present_pages(nid);
1902
1903 return phys_pages;
1904}
1905
0ee332c1 1906#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1907/*
0ee332c1 1908 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1909 * zones, allocate the backing mem_map and account for memory holes in a more
1910 * architecture independent manner. This is a substitute for creating the
1911 * zone_sizes[] and zholes_size[] arrays and passing them to
1912 * free_area_init_node()
1913 *
1914 * An architecture is expected to register range of page frames backed by
0ee332c1 1915 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1916 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1917 * usage, an architecture is expected to do something like
1918 *
1919 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1920 * max_highmem_pfn};
1921 * for_each_valid_physical_page_range()
0ee332c1 1922 * memblock_add_node(base, size, nid)
c713216d
MG
1923 * free_area_init_nodes(max_zone_pfns);
1924 *
0ee332c1
TH
1925 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1926 * registered physical page range. Similarly
1927 * sparse_memory_present_with_active_regions() calls memory_present() for
1928 * each range when SPARSEMEM is enabled.
c713216d
MG
1929 *
1930 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1931 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1932 */
1933extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1934unsigned long node_map_pfn_alignment(void);
32996250
YL
1935unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1936 unsigned long end_pfn);
c713216d
MG
1937extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1938 unsigned long end_pfn);
1939extern void get_pfn_range_for_nid(unsigned int nid,
1940 unsigned long *start_pfn, unsigned long *end_pfn);
1941extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1942extern void free_bootmem_with_active_regions(int nid,
1943 unsigned long max_low_pfn);
1944extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1945
0ee332c1 1946#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1947
0ee332c1 1948#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1949 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1950static inline int __early_pfn_to_nid(unsigned long pfn,
1951 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1952{
1953 return 0;
1954}
1955#else
1956/* please see mm/page_alloc.c */
1957extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1958/* there is a per-arch backend function. */
8a942fde
MG
1959extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1960 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1961#endif
1962
0e0b864e 1963extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1964extern void memmap_init_zone(unsigned long, int, unsigned long,
1965 unsigned long, enum memmap_context);
bc75d33f 1966extern void setup_per_zone_wmarks(void);
1b79acc9 1967extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1968extern void mem_init(void);
8feae131 1969extern void __init mmap_init(void);
9af744d7 1970extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 1971extern long si_mem_available(void);
1da177e4
LT
1972extern void si_meminfo(struct sysinfo * val);
1973extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
1974#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
1975extern unsigned long arch_reserved_kernel_pages(void);
1976#endif
1da177e4 1977
a8e99259
MH
1978extern __printf(3, 4)
1979void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 1980
e7c8d5c9 1981extern void setup_per_cpu_pageset(void);
e7c8d5c9 1982
112067f0 1983extern void zone_pcp_update(struct zone *zone);
340175b7 1984extern void zone_pcp_reset(struct zone *zone);
112067f0 1985
75f7ad8e
PS
1986/* page_alloc.c */
1987extern int min_free_kbytes;
795ae7a0 1988extern int watermark_scale_factor;
75f7ad8e 1989
8feae131 1990/* nommu.c */
33e5d769 1991extern atomic_long_t mmap_pages_allocated;
7e660872 1992extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1993
6b2dbba8 1994/* interval_tree.c */
6b2dbba8
ML
1995void vma_interval_tree_insert(struct vm_area_struct *node,
1996 struct rb_root *root);
9826a516
ML
1997void vma_interval_tree_insert_after(struct vm_area_struct *node,
1998 struct vm_area_struct *prev,
1999 struct rb_root *root);
6b2dbba8
ML
2000void vma_interval_tree_remove(struct vm_area_struct *node,
2001 struct rb_root *root);
2002struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
2003 unsigned long start, unsigned long last);
2004struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2005 unsigned long start, unsigned long last);
2006
2007#define vma_interval_tree_foreach(vma, root, start, last) \
2008 for (vma = vma_interval_tree_iter_first(root, start, last); \
2009 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2010
bf181b9f
ML
2011void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2012 struct rb_root *root);
2013void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2014 struct rb_root *root);
2015struct anon_vma_chain *anon_vma_interval_tree_iter_first(
2016 struct rb_root *root, unsigned long start, unsigned long last);
2017struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2018 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2019#ifdef CONFIG_DEBUG_VM_RB
2020void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2021#endif
bf181b9f
ML
2022
2023#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2024 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2025 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2026
1da177e4 2027/* mmap.c */
34b4e4aa 2028extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2029extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2030 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2031 struct vm_area_struct *expand);
2032static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2033 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2034{
2035 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2036}
1da177e4
LT
2037extern struct vm_area_struct *vma_merge(struct mm_struct *,
2038 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2039 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2040 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4
LT
2041extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2042extern int split_vma(struct mm_struct *,
2043 struct vm_area_struct *, unsigned long addr, int new_below);
2044extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2045extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2046 struct rb_node **, struct rb_node *);
a8fb5618 2047extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2048extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2049 unsigned long addr, unsigned long len, pgoff_t pgoff,
2050 bool *need_rmap_locks);
1da177e4 2051extern void exit_mmap(struct mm_struct *);
925d1c40 2052
9c599024
CG
2053static inline int check_data_rlimit(unsigned long rlim,
2054 unsigned long new,
2055 unsigned long start,
2056 unsigned long end_data,
2057 unsigned long start_data)
2058{
2059 if (rlim < RLIM_INFINITY) {
2060 if (((new - start) + (end_data - start_data)) > rlim)
2061 return -ENOSPC;
2062 }
2063
2064 return 0;
2065}
2066
7906d00c
AA
2067extern int mm_take_all_locks(struct mm_struct *mm);
2068extern void mm_drop_all_locks(struct mm_struct *mm);
2069
38646013
JS
2070extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2071extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2072extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2073
84638335
KK
2074extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2075extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2076
2eefd878
DS
2077extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2078 const struct vm_special_mapping *sm);
3935ed6a
SS
2079extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2080 unsigned long addr, unsigned long len,
a62c34bd
AL
2081 unsigned long flags,
2082 const struct vm_special_mapping *spec);
2083/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2084extern int install_special_mapping(struct mm_struct *mm,
2085 unsigned long addr, unsigned long len,
2086 unsigned long flags, struct page **pages);
1da177e4
LT
2087
2088extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2089
0165ab44 2090extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 2091 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1fcfd8db 2092extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2093 unsigned long len, unsigned long prot, unsigned long flags,
1fcfd8db 2094 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1da177e4
LT
2095extern int do_munmap(struct mm_struct *, unsigned long, size_t);
2096
1fcfd8db
ON
2097static inline unsigned long
2098do_mmap_pgoff(struct file *file, unsigned long addr,
2099 unsigned long len, unsigned long prot, unsigned long flags,
2100 unsigned long pgoff, unsigned long *populate)
2101{
2102 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
2103}
2104
bebeb3d6
ML
2105#ifdef CONFIG_MMU
2106extern int __mm_populate(unsigned long addr, unsigned long len,
2107 int ignore_errors);
2108static inline void mm_populate(unsigned long addr, unsigned long len)
2109{
2110 /* Ignore errors */
2111 (void) __mm_populate(addr, len, 1);
2112}
2113#else
2114static inline void mm_populate(unsigned long addr, unsigned long len) {}
2115#endif
2116
e4eb1ff6 2117/* These take the mm semaphore themselves */
5d22fc25 2118extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2119extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2120extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2121extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2122 unsigned long, unsigned long,
2123 unsigned long, unsigned long);
1da177e4 2124
db4fbfb9
ML
2125struct vm_unmapped_area_info {
2126#define VM_UNMAPPED_AREA_TOPDOWN 1
2127 unsigned long flags;
2128 unsigned long length;
2129 unsigned long low_limit;
2130 unsigned long high_limit;
2131 unsigned long align_mask;
2132 unsigned long align_offset;
2133};
2134
2135extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2136extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2137
2138/*
2139 * Search for an unmapped address range.
2140 *
2141 * We are looking for a range that:
2142 * - does not intersect with any VMA;
2143 * - is contained within the [low_limit, high_limit) interval;
2144 * - is at least the desired size.
2145 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2146 */
2147static inline unsigned long
2148vm_unmapped_area(struct vm_unmapped_area_info *info)
2149{
cdd7875e 2150 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2151 return unmapped_area_topdown(info);
cdd7875e
BP
2152 else
2153 return unmapped_area(info);
db4fbfb9
ML
2154}
2155
85821aab 2156/* truncate.c */
1da177e4 2157extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2158extern void truncate_inode_pages_range(struct address_space *,
2159 loff_t lstart, loff_t lend);
91b0abe3 2160extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2161
2162/* generic vm_area_ops exported for stackable file systems */
11bac800 2163extern int filemap_fault(struct vm_fault *vmf);
82b0f8c3 2164extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2165 pgoff_t start_pgoff, pgoff_t end_pgoff);
11bac800 2166extern int filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2167
2168/* mm/page-writeback.c */
2169int write_one_page(struct page *page, int wait);
1cf6e7d8 2170void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2171
2172/* readahead.c */
2173#define VM_MAX_READAHEAD 128 /* kbytes */
2174#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2175
1da177e4 2176int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2177 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2178
2179void page_cache_sync_readahead(struct address_space *mapping,
2180 struct file_ra_state *ra,
2181 struct file *filp,
2182 pgoff_t offset,
2183 unsigned long size);
2184
2185void page_cache_async_readahead(struct address_space *mapping,
2186 struct file_ra_state *ra,
2187 struct file *filp,
2188 struct page *pg,
2189 pgoff_t offset,
2190 unsigned long size);
2191
d05f3169 2192/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2193extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2194
2195/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2196extern int expand_downwards(struct vm_area_struct *vma,
2197 unsigned long address);
8ca3eb08 2198#if VM_GROWSUP
46dea3d0 2199extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2200#else
fee7e49d 2201 #define expand_upwards(vma, address) (0)
9ab88515 2202#endif
1da177e4
LT
2203
2204/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2205extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2206extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2207 struct vm_area_struct **pprev);
2208
2209/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2210 NULL if none. Assume start_addr < end_addr. */
2211static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2212{
2213 struct vm_area_struct * vma = find_vma(mm,start_addr);
2214
2215 if (vma && end_addr <= vma->vm_start)
2216 vma = NULL;
2217 return vma;
2218}
2219
2220static inline unsigned long vma_pages(struct vm_area_struct *vma)
2221{
2222 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2223}
2224
640708a2
PE
2225/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2226static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2227 unsigned long vm_start, unsigned long vm_end)
2228{
2229 struct vm_area_struct *vma = find_vma(mm, vm_start);
2230
2231 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2232 vma = NULL;
2233
2234 return vma;
2235}
2236
bad849b3 2237#ifdef CONFIG_MMU
804af2cf 2238pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2239void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2240#else
2241static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2242{
2243 return __pgprot(0);
2244}
64e45507
PF
2245static inline void vma_set_page_prot(struct vm_area_struct *vma)
2246{
2247 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2248}
bad849b3
DH
2249#endif
2250
5877231f 2251#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2252unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2253 unsigned long start, unsigned long end);
2254#endif
2255
deceb6cd 2256struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2257int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2258 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2259int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2260int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2261 unsigned long pfn);
1745cbc5
AL
2262int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2263 unsigned long pfn, pgprot_t pgprot);
423bad60 2264int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2265 pfn_t pfn);
b4cbb197
LT
2266int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2267
deceb6cd 2268
240aadee
ML
2269struct page *follow_page_mask(struct vm_area_struct *vma,
2270 unsigned long address, unsigned int foll_flags,
2271 unsigned int *page_mask);
2272
2273static inline struct page *follow_page(struct vm_area_struct *vma,
2274 unsigned long address, unsigned int foll_flags)
2275{
2276 unsigned int unused_page_mask;
2277 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2278}
2279
deceb6cd
HD
2280#define FOLL_WRITE 0x01 /* check pte is writable */
2281#define FOLL_TOUCH 0x02 /* mark page accessed */
2282#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2283#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2284#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2285#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2286 * and return without waiting upon it */
84d33df2 2287#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2288#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2289#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2290#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2291#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2292#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2293#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2294#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2295#define FOLL_COW 0x4000 /* internal GUP flag */
1da177e4 2296
2f569afd 2297typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2298 void *data);
2299extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2300 unsigned long size, pte_fn_t fn, void *data);
2301
1da177e4 2302
8823b1db
LA
2303#ifdef CONFIG_PAGE_POISONING
2304extern bool page_poisoning_enabled(void);
2305extern void kernel_poison_pages(struct page *page, int numpages, int enable);
1414c7f4 2306extern bool page_is_poisoned(struct page *page);
8823b1db
LA
2307#else
2308static inline bool page_poisoning_enabled(void) { return false; }
2309static inline void kernel_poison_pages(struct page *page, int numpages,
2310 int enable) { }
1414c7f4 2311static inline bool page_is_poisoned(struct page *page) { return false; }
8823b1db
LA
2312#endif
2313
12d6f21e 2314#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2315extern bool _debug_pagealloc_enabled;
2316extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2317
2318static inline bool debug_pagealloc_enabled(void)
2319{
2320 return _debug_pagealloc_enabled;
2321}
2322
2323static inline void
2324kernel_map_pages(struct page *page, int numpages, int enable)
2325{
2326 if (!debug_pagealloc_enabled())
2327 return;
2328
2329 __kernel_map_pages(page, numpages, enable);
2330}
8a235efa
RW
2331#ifdef CONFIG_HIBERNATION
2332extern bool kernel_page_present(struct page *page);
40b44137
JK
2333#endif /* CONFIG_HIBERNATION */
2334#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2335static inline void
9858db50 2336kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2337#ifdef CONFIG_HIBERNATION
2338static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2339#endif /* CONFIG_HIBERNATION */
2340static inline bool debug_pagealloc_enabled(void)
2341{
2342 return false;
2343}
2344#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2345
a6c19dfe 2346#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2347extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2348extern int in_gate_area_no_mm(unsigned long addr);
2349extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2350#else
a6c19dfe
AL
2351static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2352{
2353 return NULL;
2354}
2355static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2356static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2357{
2358 return 0;
2359}
1da177e4
LT
2360#endif /* __HAVE_ARCH_GATE_AREA */
2361
44a70ade
MH
2362extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2363
146732ce
JT
2364#ifdef CONFIG_SYSCTL
2365extern int sysctl_drop_caches;
8d65af78 2366int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2367 void __user *, size_t *, loff_t *);
146732ce
JT
2368#endif
2369
cb731d6c
VD
2370void drop_slab(void);
2371void drop_slab_node(int nid);
9d0243bc 2372
7a9166e3
LY
2373#ifndef CONFIG_MMU
2374#define randomize_va_space 0
2375#else
a62eaf15 2376extern int randomize_va_space;
7a9166e3 2377#endif
a62eaf15 2378
045e72ac 2379const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2380void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2381
9bdac914
YL
2382void sparse_mem_maps_populate_node(struct page **map_map,
2383 unsigned long pnum_begin,
2384 unsigned long pnum_end,
2385 unsigned long map_count,
2386 int nodeid);
2387
98f3cfc1 2388struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2389pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2390pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2391pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2392pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2393void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc
DW
2394struct vmem_altmap;
2395void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2396 struct vmem_altmap *altmap);
2397static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2398{
2399 return __vmemmap_alloc_block_buf(size, node, NULL);
2400}
2401
8f6aac41 2402void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2403int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2404 int node);
2405int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2406void vmemmap_populate_print_last(void);
0197518c 2407#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2408void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2409#endif
46723bfa
YI
2410void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2411 unsigned long size);
6a46079c 2412
82ba011b
AK
2413enum mf_flags {
2414 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2415 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2416 MF_MUST_KILL = 1 << 2,
cf870c70 2417 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2418};
cd42f4a3 2419extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2420extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2421extern int unpoison_memory(unsigned long pfn);
ead07f6a 2422extern int get_hwpoison_page(struct page *page);
4e41a30c 2423#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2424extern int sysctl_memory_failure_early_kill;
2425extern int sysctl_memory_failure_recovery;
facb6011 2426extern void shake_page(struct page *p, int access);
293c07e3 2427extern atomic_long_t num_poisoned_pages;
facb6011 2428extern int soft_offline_page(struct page *page, int flags);
6a46079c 2429
cc637b17
XX
2430
2431/*
2432 * Error handlers for various types of pages.
2433 */
cc3e2af4 2434enum mf_result {
cc637b17
XX
2435 MF_IGNORED, /* Error: cannot be handled */
2436 MF_FAILED, /* Error: handling failed */
2437 MF_DELAYED, /* Will be handled later */
2438 MF_RECOVERED, /* Successfully recovered */
2439};
2440
2441enum mf_action_page_type {
2442 MF_MSG_KERNEL,
2443 MF_MSG_KERNEL_HIGH_ORDER,
2444 MF_MSG_SLAB,
2445 MF_MSG_DIFFERENT_COMPOUND,
2446 MF_MSG_POISONED_HUGE,
2447 MF_MSG_HUGE,
2448 MF_MSG_FREE_HUGE,
2449 MF_MSG_UNMAP_FAILED,
2450 MF_MSG_DIRTY_SWAPCACHE,
2451 MF_MSG_CLEAN_SWAPCACHE,
2452 MF_MSG_DIRTY_MLOCKED_LRU,
2453 MF_MSG_CLEAN_MLOCKED_LRU,
2454 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2455 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2456 MF_MSG_DIRTY_LRU,
2457 MF_MSG_CLEAN_LRU,
2458 MF_MSG_TRUNCATED_LRU,
2459 MF_MSG_BUDDY,
2460 MF_MSG_BUDDY_2ND,
2461 MF_MSG_UNKNOWN,
2462};
2463
47ad8475
AA
2464#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2465extern void clear_huge_page(struct page *page,
2466 unsigned long addr,
2467 unsigned int pages_per_huge_page);
2468extern void copy_user_huge_page(struct page *dst, struct page *src,
2469 unsigned long addr, struct vm_area_struct *vma,
2470 unsigned int pages_per_huge_page);
fa4d75c1
MK
2471extern long copy_huge_page_from_user(struct page *dst_page,
2472 const void __user *usr_src,
810a56b9
MK
2473 unsigned int pages_per_huge_page,
2474 bool allow_pagefault);
47ad8475
AA
2475#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2476
e30825f1
JK
2477extern struct page_ext_operations debug_guardpage_ops;
2478extern struct page_ext_operations page_poisoning_ops;
2479
c0a32fc5
SG
2480#ifdef CONFIG_DEBUG_PAGEALLOC
2481extern unsigned int _debug_guardpage_minorder;
e30825f1 2482extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2483
2484static inline unsigned int debug_guardpage_minorder(void)
2485{
2486 return _debug_guardpage_minorder;
2487}
2488
e30825f1
JK
2489static inline bool debug_guardpage_enabled(void)
2490{
2491 return _debug_guardpage_enabled;
2492}
2493
c0a32fc5
SG
2494static inline bool page_is_guard(struct page *page)
2495{
e30825f1
JK
2496 struct page_ext *page_ext;
2497
2498 if (!debug_guardpage_enabled())
2499 return false;
2500
2501 page_ext = lookup_page_ext(page);
0bb2fd13
YS
2502 if (unlikely(!page_ext))
2503 return false;
2504
e30825f1 2505 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2506}
2507#else
2508static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2509static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2510static inline bool page_is_guard(struct page *page) { return false; }
2511#endif /* CONFIG_DEBUG_PAGEALLOC */
2512
f9872caf
CS
2513#if MAX_NUMNODES > 1
2514void __init setup_nr_node_ids(void);
2515#else
2516static inline void setup_nr_node_ids(void) {}
2517#endif
2518
1da177e4
LT
2519#endif /* __KERNEL__ */
2520#endif /* _LINUX_MM_H */