mm/page_poison.c: enable PAGE_POISONING as a separate option
[linux-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
3565fce3 19#include <linux/percpu-refcount.h>
e9da73d6 20#include <linux/bit_spinlock.h>
b0d40c92 21#include <linux/shrinker.h>
9c599024 22#include <linux/resource.h>
e30825f1 23#include <linux/page_ext.h>
8025e5dd 24#include <linux/err.h>
1da177e4
LT
25
26struct mempolicy;
27struct anon_vma;
bf181b9f 28struct anon_vma_chain;
4e950f6f 29struct file_ra_state;
e8edc6e0 30struct user_struct;
4e950f6f 31struct writeback_control;
682aa8e1 32struct bdi_writeback;
1da177e4 33
fccc9987 34#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 35extern unsigned long max_mapnr;
fccc9987
JL
36
37static inline void set_max_mapnr(unsigned long limit)
38{
39 max_mapnr = limit;
40}
41#else
42static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
43#endif
44
4481374c 45extern unsigned long totalram_pages;
1da177e4 46extern void * high_memory;
1da177e4
LT
47extern int page_cluster;
48
49#ifdef CONFIG_SYSCTL
50extern int sysctl_legacy_va_layout;
51#else
52#define sysctl_legacy_va_layout 0
53#endif
54
d07e2259
DC
55#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
56extern const int mmap_rnd_bits_min;
57extern const int mmap_rnd_bits_max;
58extern int mmap_rnd_bits __read_mostly;
59#endif
60#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
61extern const int mmap_rnd_compat_bits_min;
62extern const int mmap_rnd_compat_bits_max;
63extern int mmap_rnd_compat_bits __read_mostly;
64#endif
65
1da177e4
LT
66#include <asm/page.h>
67#include <asm/pgtable.h>
68#include <asm/processor.h>
1da177e4 69
79442ed1
TC
70#ifndef __pa_symbol
71#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
72#endif
73
593befa6
DD
74/*
75 * To prevent common memory management code establishing
76 * a zero page mapping on a read fault.
77 * This macro should be defined within <asm/pgtable.h>.
78 * s390 does this to prevent multiplexing of hardware bits
79 * related to the physical page in case of virtualization.
80 */
81#ifndef mm_forbids_zeropage
82#define mm_forbids_zeropage(X) (0)
83#endif
84
c9b1d098 85extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 86extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 87
49f0ce5f
JM
88extern int sysctl_overcommit_memory;
89extern int sysctl_overcommit_ratio;
90extern unsigned long sysctl_overcommit_kbytes;
91
92extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
93 size_t *, loff_t *);
94extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
95 size_t *, loff_t *);
96
1da177e4
LT
97#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
98
27ac792c
AR
99/* to align the pointer to the (next) page boundary */
100#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
101
0fa73b86
AM
102/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
103#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
104
1da177e4
LT
105/*
106 * Linux kernel virtual memory manager primitives.
107 * The idea being to have a "virtual" mm in the same way
108 * we have a virtual fs - giving a cleaner interface to the
109 * mm details, and allowing different kinds of memory mappings
110 * (from shared memory to executable loading to arbitrary
111 * mmap() functions).
112 */
113
c43692e8
CL
114extern struct kmem_cache *vm_area_cachep;
115
1da177e4 116#ifndef CONFIG_MMU
8feae131
DH
117extern struct rb_root nommu_region_tree;
118extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
119
120extern unsigned int kobjsize(const void *objp);
121#endif
122
123/*
605d9288 124 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 125 */
cc2383ec
KK
126#define VM_NONE 0x00000000
127
1da177e4
LT
128#define VM_READ 0x00000001 /* currently active flags */
129#define VM_WRITE 0x00000002
130#define VM_EXEC 0x00000004
131#define VM_SHARED 0x00000008
132
7e2cff42 133/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
134#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
135#define VM_MAYWRITE 0x00000020
136#define VM_MAYEXEC 0x00000040
137#define VM_MAYSHARE 0x00000080
138
139#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 140#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 141#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 142#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 143#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 144
1da177e4
LT
145#define VM_LOCKED 0x00002000
146#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
147
148 /* Used by sys_madvise() */
149#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
150#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
151
152#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
153#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 154#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 155#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 156#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 157#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 158#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 159#define VM_ARCH_2 0x02000000
0103bd16 160#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 161
d9104d1c
CG
162#ifdef CONFIG_MEM_SOFT_DIRTY
163# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
164#else
165# define VM_SOFTDIRTY 0
166#endif
167
b379d790 168#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
169#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
170#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 171#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 172
cc2383ec
KK
173#if defined(CONFIG_X86)
174# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
175#elif defined(CONFIG_PPC)
176# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
177#elif defined(CONFIG_PARISC)
178# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
179#elif defined(CONFIG_METAG)
180# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
181#elif defined(CONFIG_IA64)
182# define VM_GROWSUP VM_ARCH_1
183#elif !defined(CONFIG_MMU)
184# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
185#endif
186
4aae7e43
QR
187#if defined(CONFIG_X86)
188/* MPX specific bounds table or bounds directory */
189# define VM_MPX VM_ARCH_2
190#endif
191
cc2383ec
KK
192#ifndef VM_GROWSUP
193# define VM_GROWSUP VM_NONE
194#endif
195
a8bef8ff
MG
196/* Bits set in the VMA until the stack is in its final location */
197#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
198
1da177e4
LT
199#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
200#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
201#endif
202
203#ifdef CONFIG_STACK_GROWSUP
30bdbb78 204#define VM_STACK VM_GROWSUP
1da177e4 205#else
30bdbb78 206#define VM_STACK VM_GROWSDOWN
1da177e4
LT
207#endif
208
30bdbb78
KK
209#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
210
b291f000 211/*
78f11a25
AA
212 * Special vmas that are non-mergable, non-mlock()able.
213 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 214 */
9050d7eb 215#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 216
a0715cc2
AT
217/* This mask defines which mm->def_flags a process can inherit its parent */
218#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
219
de60f5f1
EM
220/* This mask is used to clear all the VMA flags used by mlock */
221#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
222
1da177e4
LT
223/*
224 * mapping from the currently active vm_flags protection bits (the
225 * low four bits) to a page protection mask..
226 */
227extern pgprot_t protection_map[16];
228
d0217ac0 229#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
230#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
231#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
232#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
233#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
234#define FAULT_FLAG_TRIED 0x20 /* Second try */
235#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
d0217ac0 236
54cb8821 237/*
d0217ac0 238 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
239 * ->fault function. The vma's ->fault is responsible for returning a bitmask
240 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 241 *
c20cd45e
MH
242 * MM layer fills up gfp_mask for page allocations but fault handler might
243 * alter it if its implementation requires a different allocation context.
244 *
9b4bdd2f 245 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 246 */
d0217ac0
NP
247struct vm_fault {
248 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 249 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0
NP
250 pgoff_t pgoff; /* Logical page offset based on vma */
251 void __user *virtual_address; /* Faulting virtual address */
252
2e4cdab0 253 struct page *cow_page; /* Handler may choose to COW */
d0217ac0 254 struct page *page; /* ->fault handlers should return a
83c54070 255 * page here, unless VM_FAULT_NOPAGE
d0217ac0 256 * is set (which is also implied by
83c54070 257 * VM_FAULT_ERROR).
d0217ac0 258 */
8c6e50b0
KS
259 /* for ->map_pages() only */
260 pgoff_t max_pgoff; /* map pages for offset from pgoff till
261 * max_pgoff inclusive */
262 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 263};
1da177e4
LT
264
265/*
266 * These are the virtual MM functions - opening of an area, closing and
267 * unmapping it (needed to keep files on disk up-to-date etc), pointer
268 * to the functions called when a no-page or a wp-page exception occurs.
269 */
270struct vm_operations_struct {
271 void (*open)(struct vm_area_struct * area);
272 void (*close)(struct vm_area_struct * area);
5477e70a 273 int (*mremap)(struct vm_area_struct * area);
d0217ac0 274 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
b96375f7
MW
275 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
276 pmd_t *, unsigned int flags);
8c6e50b0 277 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
278
279 /* notification that a previously read-only page is about to become
280 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 281 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20 282
dd906184
BH
283 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
284 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
285
28b2ee20
RR
286 /* called by access_process_vm when get_user_pages() fails, typically
287 * for use by special VMAs that can switch between memory and hardware
288 */
289 int (*access)(struct vm_area_struct *vma, unsigned long addr,
290 void *buf, int len, int write);
78d683e8
AL
291
292 /* Called by the /proc/PID/maps code to ask the vma whether it
293 * has a special name. Returning non-NULL will also cause this
294 * vma to be dumped unconditionally. */
295 const char *(*name)(struct vm_area_struct *vma);
296
1da177e4 297#ifdef CONFIG_NUMA
a6020ed7
LS
298 /*
299 * set_policy() op must add a reference to any non-NULL @new mempolicy
300 * to hold the policy upon return. Caller should pass NULL @new to
301 * remove a policy and fall back to surrounding context--i.e. do not
302 * install a MPOL_DEFAULT policy, nor the task or system default
303 * mempolicy.
304 */
1da177e4 305 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
306
307 /*
308 * get_policy() op must add reference [mpol_get()] to any policy at
309 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
310 * in mm/mempolicy.c will do this automatically.
311 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
312 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
313 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
314 * must return NULL--i.e., do not "fallback" to task or system default
315 * policy.
316 */
1da177e4
LT
317 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
318 unsigned long addr);
319#endif
667a0a06
DV
320 /*
321 * Called by vm_normal_page() for special PTEs to find the
322 * page for @addr. This is useful if the default behavior
323 * (using pte_page()) would not find the correct page.
324 */
325 struct page *(*find_special_page)(struct vm_area_struct *vma,
326 unsigned long addr);
1da177e4
LT
327};
328
329struct mmu_gather;
330struct inode;
331
349aef0b
AM
332#define page_private(page) ((page)->private)
333#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 334
5c7fb56e
DW
335#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
336static inline int pmd_devmap(pmd_t pmd)
337{
338 return 0;
339}
340#endif
341
1da177e4
LT
342/*
343 * FIXME: take this include out, include page-flags.h in
344 * files which need it (119 of them)
345 */
346#include <linux/page-flags.h>
71e3aac0 347#include <linux/huge_mm.h>
1da177e4
LT
348
349/*
350 * Methods to modify the page usage count.
351 *
352 * What counts for a page usage:
353 * - cache mapping (page->mapping)
354 * - private data (page->private)
355 * - page mapped in a task's page tables, each mapping
356 * is counted separately
357 *
358 * Also, many kernel routines increase the page count before a critical
359 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
360 */
361
362/*
da6052f7 363 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 364 */
7c8ee9a8
NP
365static inline int put_page_testzero(struct page *page)
366{
309381fe 367 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 368 return atomic_dec_and_test(&page->_count);
7c8ee9a8 369}
1da177e4
LT
370
371/*
7c8ee9a8
NP
372 * Try to grab a ref unless the page has a refcount of zero, return false if
373 * that is the case.
8e0861fa
AK
374 * This can be called when MMU is off so it must not access
375 * any of the virtual mappings.
1da177e4 376 */
7c8ee9a8
NP
377static inline int get_page_unless_zero(struct page *page)
378{
8dc04efb 379 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 380}
1da177e4 381
53df8fdc 382extern int page_is_ram(unsigned long pfn);
124fe20d
DW
383
384enum {
385 REGION_INTERSECTS,
386 REGION_DISJOINT,
387 REGION_MIXED,
388};
389
1c29f25b
TK
390int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
391 unsigned long desc);
53df8fdc 392
48667e7a 393/* Support for virtually mapped pages */
b3bdda02
CL
394struct page *vmalloc_to_page(const void *addr);
395unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 396
0738c4bb
PM
397/*
398 * Determine if an address is within the vmalloc range
399 *
400 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
401 * is no special casing required.
402 */
9e2779fa
CL
403static inline int is_vmalloc_addr(const void *x)
404{
0738c4bb 405#ifdef CONFIG_MMU
9e2779fa
CL
406 unsigned long addr = (unsigned long)x;
407
408 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
409#else
410 return 0;
8ca3ed87 411#endif
0738c4bb 412}
81ac3ad9
KH
413#ifdef CONFIG_MMU
414extern int is_vmalloc_or_module_addr(const void *x);
415#else
934831d0 416static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
417{
418 return 0;
419}
420#endif
9e2779fa 421
39f1f78d
AV
422extern void kvfree(const void *addr);
423
53f9263b
KS
424static inline atomic_t *compound_mapcount_ptr(struct page *page)
425{
426 return &page[1].compound_mapcount;
427}
428
429static inline int compound_mapcount(struct page *page)
430{
431 if (!PageCompound(page))
432 return 0;
433 page = compound_head(page);
434 return atomic_read(compound_mapcount_ptr(page)) + 1;
435}
436
70b50f94
AA
437/*
438 * The atomic page->_mapcount, starts from -1: so that transitions
439 * both from it and to it can be tracked, using atomic_inc_and_test
440 * and atomic_add_negative(-1).
441 */
22b751c3 442static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
443{
444 atomic_set(&(page)->_mapcount, -1);
445}
446
b20ce5e0
KS
447int __page_mapcount(struct page *page);
448
70b50f94
AA
449static inline int page_mapcount(struct page *page)
450{
1d148e21 451 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 452
b20ce5e0
KS
453 if (unlikely(PageCompound(page)))
454 return __page_mapcount(page);
455 return atomic_read(&page->_mapcount) + 1;
456}
457
458#ifdef CONFIG_TRANSPARENT_HUGEPAGE
459int total_mapcount(struct page *page);
460#else
461static inline int total_mapcount(struct page *page)
462{
463 return page_mapcount(page);
70b50f94 464}
b20ce5e0 465#endif
70b50f94 466
4c21e2f2 467static inline int page_count(struct page *page)
1da177e4 468{
d85f3385 469 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
470}
471
b49af68f
CL
472static inline struct page *virt_to_head_page(const void *x)
473{
474 struct page *page = virt_to_page(x);
ccaafd7f 475
1d798ca3 476 return compound_head(page);
b49af68f
CL
477}
478
7835e98b
NP
479/*
480 * Setup the page count before being freed into the page allocator for
481 * the first time (boot or memory hotplug)
482 */
483static inline void init_page_count(struct page *page)
484{
485 atomic_set(&page->_count, 1);
486}
487
ddc58f27
KS
488void __put_page(struct page *page);
489
1d7ea732 490void put_pages_list(struct list_head *pages);
1da177e4 491
8dfcc9ba 492void split_page(struct page *page, unsigned int order);
748446bb 493int split_free_page(struct page *page);
8dfcc9ba 494
33f2ef89
AW
495/*
496 * Compound pages have a destructor function. Provide a
497 * prototype for that function and accessor functions.
f1e61557 498 * These are _only_ valid on the head of a compound page.
33f2ef89 499 */
f1e61557
KS
500typedef void compound_page_dtor(struct page *);
501
502/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
503enum compound_dtor_id {
504 NULL_COMPOUND_DTOR,
505 COMPOUND_PAGE_DTOR,
506#ifdef CONFIG_HUGETLB_PAGE
507 HUGETLB_PAGE_DTOR,
9a982250
KS
508#endif
509#ifdef CONFIG_TRANSPARENT_HUGEPAGE
510 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
511#endif
512 NR_COMPOUND_DTORS,
513};
514extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
515
516static inline void set_compound_page_dtor(struct page *page,
f1e61557 517 enum compound_dtor_id compound_dtor)
33f2ef89 518{
f1e61557
KS
519 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
520 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
521}
522
523static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
524{
f1e61557
KS
525 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
526 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
527}
528
d00181b9 529static inline unsigned int compound_order(struct page *page)
d85f3385 530{
6d777953 531 if (!PageHead(page))
d85f3385 532 return 0;
e4b294c2 533 return page[1].compound_order;
d85f3385
CL
534}
535
f1e61557 536static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 537{
e4b294c2 538 page[1].compound_order = order;
d85f3385
CL
539}
540
9a982250
KS
541void free_compound_page(struct page *page);
542
3dece370 543#ifdef CONFIG_MMU
14fd403f
AA
544/*
545 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
546 * servicing faults for write access. In the normal case, do always want
547 * pte_mkwrite. But get_user_pages can cause write faults for mappings
548 * that do not have writing enabled, when used by access_process_vm.
549 */
550static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
551{
552 if (likely(vma->vm_flags & VM_WRITE))
553 pte = pte_mkwrite(pte);
554 return pte;
555}
8c6e50b0
KS
556
557void do_set_pte(struct vm_area_struct *vma, unsigned long address,
558 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 559#endif
14fd403f 560
1da177e4
LT
561/*
562 * Multiple processes may "see" the same page. E.g. for untouched
563 * mappings of /dev/null, all processes see the same page full of
564 * zeroes, and text pages of executables and shared libraries have
565 * only one copy in memory, at most, normally.
566 *
567 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
568 * page_count() == 0 means the page is free. page->lru is then used for
569 * freelist management in the buddy allocator.
da6052f7 570 * page_count() > 0 means the page has been allocated.
1da177e4 571 *
da6052f7
NP
572 * Pages are allocated by the slab allocator in order to provide memory
573 * to kmalloc and kmem_cache_alloc. In this case, the management of the
574 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
575 * unless a particular usage is carefully commented. (the responsibility of
576 * freeing the kmalloc memory is the caller's, of course).
1da177e4 577 *
da6052f7
NP
578 * A page may be used by anyone else who does a __get_free_page().
579 * In this case, page_count still tracks the references, and should only
580 * be used through the normal accessor functions. The top bits of page->flags
581 * and page->virtual store page management information, but all other fields
582 * are unused and could be used privately, carefully. The management of this
583 * page is the responsibility of the one who allocated it, and those who have
584 * subsequently been given references to it.
585 *
586 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
587 * managed by the Linux memory manager: I/O, buffers, swapping etc.
588 * The following discussion applies only to them.
589 *
da6052f7
NP
590 * A pagecache page contains an opaque `private' member, which belongs to the
591 * page's address_space. Usually, this is the address of a circular list of
592 * the page's disk buffers. PG_private must be set to tell the VM to call
593 * into the filesystem to release these pages.
1da177e4 594 *
da6052f7
NP
595 * A page may belong to an inode's memory mapping. In this case, page->mapping
596 * is the pointer to the inode, and page->index is the file offset of the page,
597 * in units of PAGE_CACHE_SIZE.
1da177e4 598 *
da6052f7
NP
599 * If pagecache pages are not associated with an inode, they are said to be
600 * anonymous pages. These may become associated with the swapcache, and in that
601 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 602 *
da6052f7
NP
603 * In either case (swapcache or inode backed), the pagecache itself holds one
604 * reference to the page. Setting PG_private should also increment the
605 * refcount. The each user mapping also has a reference to the page.
1da177e4 606 *
da6052f7
NP
607 * The pagecache pages are stored in a per-mapping radix tree, which is
608 * rooted at mapping->page_tree, and indexed by offset.
609 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
610 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 611 *
da6052f7 612 * All pagecache pages may be subject to I/O:
1da177e4
LT
613 * - inode pages may need to be read from disk,
614 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
615 * to be written back to the inode on disk,
616 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
617 * modified may need to be swapped out to swap space and (later) to be read
618 * back into memory.
1da177e4
LT
619 */
620
621/*
622 * The zone field is never updated after free_area_init_core()
623 * sets it, so none of the operations on it need to be atomic.
1da177e4 624 */
348f8b6c 625
90572890 626/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 627#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
628#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
629#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 630#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 631
348f8b6c 632/*
25985edc 633 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
634 * sections we define the shift as 0; that plus a 0 mask ensures
635 * the compiler will optimise away reference to them.
636 */
d41dee36
AW
637#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
638#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
639#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 640#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 641
bce54bbf
WD
642/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
643#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 644#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
645#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
646 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 647#else
89689ae7 648#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
649#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
650 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
651#endif
652
bd8029b6 653#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 654
9223b419
CL
655#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
656#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
657#endif
658
d41dee36
AW
659#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
660#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
661#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 662#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 663#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 664
33dd4e0e 665static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 666{
348f8b6c 667 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 668}
1da177e4 669
260ae3f7 670#ifdef CONFIG_ZONE_DEVICE
3565fce3
DW
671void get_zone_device_page(struct page *page);
672void put_zone_device_page(struct page *page);
260ae3f7
DW
673static inline bool is_zone_device_page(const struct page *page)
674{
675 return page_zonenum(page) == ZONE_DEVICE;
676}
677#else
3565fce3
DW
678static inline void get_zone_device_page(struct page *page)
679{
680}
681static inline void put_zone_device_page(struct page *page)
682{
683}
260ae3f7
DW
684static inline bool is_zone_device_page(const struct page *page)
685{
686 return false;
687}
688#endif
689
3565fce3
DW
690static inline void get_page(struct page *page)
691{
692 page = compound_head(page);
693 /*
694 * Getting a normal page or the head of a compound page
695 * requires to already have an elevated page->_count.
696 */
697 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
698 atomic_inc(&page->_count);
699
700 if (unlikely(is_zone_device_page(page)))
701 get_zone_device_page(page);
702}
703
704static inline void put_page(struct page *page)
705{
706 page = compound_head(page);
707
708 if (put_page_testzero(page))
709 __put_page(page);
710
711 if (unlikely(is_zone_device_page(page)))
712 put_zone_device_page(page);
713}
714
9127ab4f
CS
715#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
716#define SECTION_IN_PAGE_FLAGS
717#endif
718
89689ae7 719/*
7a8010cd
VB
720 * The identification function is mainly used by the buddy allocator for
721 * determining if two pages could be buddies. We are not really identifying
722 * the zone since we could be using the section number id if we do not have
723 * node id available in page flags.
724 * We only guarantee that it will return the same value for two combinable
725 * pages in a zone.
89689ae7 726 */
cb2b95e1
AW
727static inline int page_zone_id(struct page *page)
728{
89689ae7 729 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
730}
731
25ba77c1 732static inline int zone_to_nid(struct zone *zone)
89fa3024 733{
d5f541ed
CL
734#ifdef CONFIG_NUMA
735 return zone->node;
736#else
737 return 0;
738#endif
89fa3024
CL
739}
740
89689ae7 741#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 742extern int page_to_nid(const struct page *page);
89689ae7 743#else
33dd4e0e 744static inline int page_to_nid(const struct page *page)
d41dee36 745{
89689ae7 746 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 747}
89689ae7
CL
748#endif
749
57e0a030 750#ifdef CONFIG_NUMA_BALANCING
90572890 751static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 752{
90572890 753 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
754}
755
90572890 756static inline int cpupid_to_pid(int cpupid)
57e0a030 757{
90572890 758 return cpupid & LAST__PID_MASK;
57e0a030 759}
b795854b 760
90572890 761static inline int cpupid_to_cpu(int cpupid)
b795854b 762{
90572890 763 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
764}
765
90572890 766static inline int cpupid_to_nid(int cpupid)
b795854b 767{
90572890 768 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
769}
770
90572890 771static inline bool cpupid_pid_unset(int cpupid)
57e0a030 772{
90572890 773 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
774}
775
90572890 776static inline bool cpupid_cpu_unset(int cpupid)
b795854b 777{
90572890 778 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
779}
780
8c8a743c
PZ
781static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
782{
783 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
784}
785
786#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
787#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
788static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 789{
1ae71d03 790 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 791}
90572890
PZ
792
793static inline int page_cpupid_last(struct page *page)
794{
795 return page->_last_cpupid;
796}
797static inline void page_cpupid_reset_last(struct page *page)
b795854b 798{
1ae71d03 799 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
800}
801#else
90572890 802static inline int page_cpupid_last(struct page *page)
75980e97 803{
90572890 804 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
805}
806
90572890 807extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 808
90572890 809static inline void page_cpupid_reset_last(struct page *page)
75980e97 810{
90572890 811 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 812
90572890
PZ
813 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
814 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 815}
90572890
PZ
816#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
817#else /* !CONFIG_NUMA_BALANCING */
818static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 819{
90572890 820 return page_to_nid(page); /* XXX */
57e0a030
MG
821}
822
90572890 823static inline int page_cpupid_last(struct page *page)
57e0a030 824{
90572890 825 return page_to_nid(page); /* XXX */
57e0a030
MG
826}
827
90572890 828static inline int cpupid_to_nid(int cpupid)
b795854b
MG
829{
830 return -1;
831}
832
90572890 833static inline int cpupid_to_pid(int cpupid)
b795854b
MG
834{
835 return -1;
836}
837
90572890 838static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
839{
840 return -1;
841}
842
90572890
PZ
843static inline int cpu_pid_to_cpupid(int nid, int pid)
844{
845 return -1;
846}
847
848static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
849{
850 return 1;
851}
852
90572890 853static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
854{
855}
8c8a743c
PZ
856
857static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
858{
859 return false;
860}
90572890 861#endif /* CONFIG_NUMA_BALANCING */
57e0a030 862
33dd4e0e 863static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
864{
865 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
866}
867
9127ab4f 868#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
869static inline void set_page_section(struct page *page, unsigned long section)
870{
871 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
872 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
873}
874
aa462abe 875static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
876{
877 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
878}
308c05e3 879#endif
d41dee36 880
2f1b6248 881static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
882{
883 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
884 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
885}
2f1b6248 886
348f8b6c
DH
887static inline void set_page_node(struct page *page, unsigned long node)
888{
889 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
890 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 891}
89689ae7 892
2f1b6248 893static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 894 unsigned long node, unsigned long pfn)
1da177e4 895{
348f8b6c
DH
896 set_page_zone(page, zone);
897 set_page_node(page, node);
9127ab4f 898#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 899 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 900#endif
1da177e4
LT
901}
902
0610c25d
GT
903#ifdef CONFIG_MEMCG
904static inline struct mem_cgroup *page_memcg(struct page *page)
905{
906 return page->mem_cgroup;
907}
908
909static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
910{
911 page->mem_cgroup = memcg;
912}
913#else
914static inline struct mem_cgroup *page_memcg(struct page *page)
915{
916 return NULL;
917}
918
919static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
920{
921}
922#endif
923
f6ac2354
CL
924/*
925 * Some inline functions in vmstat.h depend on page_zone()
926 */
927#include <linux/vmstat.h>
928
33dd4e0e 929static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 930{
aa462abe 931 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
932}
933
934#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
935#define HASHED_PAGE_VIRTUAL
936#endif
937
938#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
939static inline void *page_address(const struct page *page)
940{
941 return page->virtual;
942}
943static inline void set_page_address(struct page *page, void *address)
944{
945 page->virtual = address;
946}
1da177e4
LT
947#define page_address_init() do { } while(0)
948#endif
949
950#if defined(HASHED_PAGE_VIRTUAL)
f9918794 951void *page_address(const struct page *page);
1da177e4
LT
952void set_page_address(struct page *page, void *virtual);
953void page_address_init(void);
954#endif
955
956#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
957#define page_address(page) lowmem_page_address(page)
958#define set_page_address(page, address) do { } while(0)
959#define page_address_init() do { } while(0)
960#endif
961
e39155ea
KS
962extern void *page_rmapping(struct page *page);
963extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 964extern struct address_space *page_mapping(struct page *page);
1da177e4 965
f981c595
MG
966extern struct address_space *__page_file_mapping(struct page *);
967
968static inline
969struct address_space *page_file_mapping(struct page *page)
970{
971 if (unlikely(PageSwapCache(page)))
972 return __page_file_mapping(page);
973
974 return page->mapping;
975}
976
1da177e4
LT
977/*
978 * Return the pagecache index of the passed page. Regular pagecache pages
979 * use ->index whereas swapcache pages use ->private
980 */
981static inline pgoff_t page_index(struct page *page)
982{
983 if (unlikely(PageSwapCache(page)))
4c21e2f2 984 return page_private(page);
1da177e4
LT
985 return page->index;
986}
987
f981c595
MG
988extern pgoff_t __page_file_index(struct page *page);
989
990/*
991 * Return the file index of the page. Regular pagecache pages use ->index
992 * whereas swapcache pages use swp_offset(->private)
993 */
994static inline pgoff_t page_file_index(struct page *page)
995{
996 if (unlikely(PageSwapCache(page)))
997 return __page_file_index(page);
998
999 return page->index;
1000}
1001
1da177e4
LT
1002/*
1003 * Return true if this page is mapped into pagetables.
e1534ae9 1004 * For compound page it returns true if any subpage of compound page is mapped.
1da177e4 1005 */
e1534ae9 1006static inline bool page_mapped(struct page *page)
1da177e4 1007{
e1534ae9
KS
1008 int i;
1009 if (likely(!PageCompound(page)))
1010 return atomic_read(&page->_mapcount) >= 0;
1011 page = compound_head(page);
1012 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
1013 return true;
1014 for (i = 0; i < hpage_nr_pages(page); i++) {
1015 if (atomic_read(&page[i]._mapcount) >= 0)
1016 return true;
1017 }
1018 return false;
1da177e4
LT
1019}
1020
2f064f34
MH
1021/*
1022 * Return true only if the page has been allocated with
1023 * ALLOC_NO_WATERMARKS and the low watermark was not
1024 * met implying that the system is under some pressure.
1025 */
1026static inline bool page_is_pfmemalloc(struct page *page)
1027{
1028 /*
1029 * Page index cannot be this large so this must be
1030 * a pfmemalloc page.
1031 */
1032 return page->index == -1UL;
1033}
1034
1035/*
1036 * Only to be called by the page allocator on a freshly allocated
1037 * page.
1038 */
1039static inline void set_page_pfmemalloc(struct page *page)
1040{
1041 page->index = -1UL;
1042}
1043
1044static inline void clear_page_pfmemalloc(struct page *page)
1045{
1046 page->index = 0;
1047}
1048
1da177e4
LT
1049/*
1050 * Different kinds of faults, as returned by handle_mm_fault().
1051 * Used to decide whether a process gets delivered SIGBUS or
1052 * just gets major/minor fault counters bumped up.
1053 */
d0217ac0 1054
83c54070 1055#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1056
83c54070
NP
1057#define VM_FAULT_OOM 0x0001
1058#define VM_FAULT_SIGBUS 0x0002
1059#define VM_FAULT_MAJOR 0x0004
1060#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1061#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1062#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1063#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1064
83c54070
NP
1065#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1066#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1067#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1068#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1069
aa50d3a7
AK
1070#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1071
33692f27
LT
1072#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1073 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1074 VM_FAULT_FALLBACK)
aa50d3a7
AK
1075
1076/* Encode hstate index for a hwpoisoned large page */
1077#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1078#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1079
1c0fe6e3
NP
1080/*
1081 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1082 */
1083extern void pagefault_out_of_memory(void);
1084
1da177e4
LT
1085#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1086
ddd588b5 1087/*
7bf02ea2 1088 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1089 * various contexts.
1090 */
4b59e6c4 1091#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1092
7bf02ea2
DR
1093extern void show_free_areas(unsigned int flags);
1094extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1095
1da177e4 1096int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1097#ifdef CONFIG_SHMEM
1098bool shmem_mapping(struct address_space *mapping);
1099#else
1100static inline bool shmem_mapping(struct address_space *mapping)
1101{
1102 return false;
1103}
1104#endif
1da177e4 1105
7f43add4 1106extern bool can_do_mlock(void);
1da177e4
LT
1107extern int user_shm_lock(size_t, struct user_struct *);
1108extern void user_shm_unlock(size_t, struct user_struct *);
1109
1110/*
1111 * Parameter block passed down to zap_pte_range in exceptional cases.
1112 */
1113struct zap_details {
1da177e4
LT
1114 struct address_space *check_mapping; /* Check page->mapping if set */
1115 pgoff_t first_index; /* Lowest page->index to unmap */
1116 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1117};
1118
7e675137
NP
1119struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1120 pte_t pte);
1121
c627f9cc
JS
1122int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1123 unsigned long size);
14f5ff5d 1124void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1125 unsigned long size, struct zap_details *);
4f74d2c8
LT
1126void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1127 unsigned long start, unsigned long end);
e6473092
MM
1128
1129/**
1130 * mm_walk - callbacks for walk_page_range
e6473092 1131 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1132 * this handler is required to be able to handle
1133 * pmd_trans_huge() pmds. They may simply choose to
1134 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1135 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1136 * @pte_hole: if set, called for each hole at all levels
5dc37642 1137 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426
NH
1138 * @test_walk: caller specific callback function to determine whether
1139 * we walk over the current vma or not. A positive returned
1140 * value means "do page table walk over the current vma,"
1141 * and a negative one means "abort current page table walk
1142 * right now." 0 means "skip the current vma."
1143 * @mm: mm_struct representing the target process of page table walk
1144 * @vma: vma currently walked (NULL if walking outside vmas)
1145 * @private: private data for callbacks' usage
e6473092 1146 *
fafaa426 1147 * (see the comment on walk_page_range() for more details)
e6473092
MM
1148 */
1149struct mm_walk {
0f157a5b
AM
1150 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1151 unsigned long next, struct mm_walk *walk);
1152 int (*pte_entry)(pte_t *pte, unsigned long addr,
1153 unsigned long next, struct mm_walk *walk);
1154 int (*pte_hole)(unsigned long addr, unsigned long next,
1155 struct mm_walk *walk);
1156 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1157 unsigned long addr, unsigned long next,
1158 struct mm_walk *walk);
fafaa426
NH
1159 int (*test_walk)(unsigned long addr, unsigned long next,
1160 struct mm_walk *walk);
2165009b 1161 struct mm_struct *mm;
fafaa426 1162 struct vm_area_struct *vma;
2165009b 1163 void *private;
e6473092
MM
1164};
1165
2165009b
DH
1166int walk_page_range(unsigned long addr, unsigned long end,
1167 struct mm_walk *walk);
900fc5f1 1168int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1169void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1170 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1171int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1172 struct vm_area_struct *vma);
1da177e4
LT
1173void unmap_mapping_range(struct address_space *mapping,
1174 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1175int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1176 unsigned long *pfn);
d87fe660 1177int follow_phys(struct vm_area_struct *vma, unsigned long address,
1178 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1179int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1180 void *buf, int len, int write);
1da177e4
LT
1181
1182static inline void unmap_shared_mapping_range(struct address_space *mapping,
1183 loff_t const holebegin, loff_t const holelen)
1184{
1185 unmap_mapping_range(mapping, holebegin, holelen, 0);
1186}
1187
7caef267 1188extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1189extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1190void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1191void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1192int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1193int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1194int invalidate_inode_page(struct page *page);
1195
7ee1dd3f 1196#ifdef CONFIG_MMU
83c54070 1197extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1198 unsigned long address, unsigned int flags);
5c723ba5 1199extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1200 unsigned long address, unsigned int fault_flags,
1201 bool *unlocked);
7ee1dd3f
DH
1202#else
1203static inline int handle_mm_fault(struct mm_struct *mm,
1204 struct vm_area_struct *vma, unsigned long address,
d06063cc 1205 unsigned int flags)
7ee1dd3f
DH
1206{
1207 /* should never happen if there's no MMU */
1208 BUG();
1209 return VM_FAULT_SIGBUS;
1210}
5c723ba5
PZ
1211static inline int fixup_user_fault(struct task_struct *tsk,
1212 struct mm_struct *mm, unsigned long address,
4a9e1cda 1213 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1214{
1215 /* should never happen if there's no MMU */
1216 BUG();
1217 return -EFAULT;
1218}
7ee1dd3f 1219#endif
f33ea7f4 1220
1da177e4 1221extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1222extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1223 void *buf, int len, int write);
1da177e4 1224
28a35716
ML
1225long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1226 unsigned long start, unsigned long nr_pages,
1227 unsigned int foll_flags, struct page **pages,
1228 struct vm_area_struct **vmas, int *nonblocking);
1229long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1230 unsigned long start, unsigned long nr_pages,
1231 int write, int force, struct page **pages,
1232 struct vm_area_struct **vmas);
f0818f47
AA
1233long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1234 unsigned long start, unsigned long nr_pages,
1235 int write, int force, struct page **pages,
1236 int *locked);
0fd71a56
AA
1237long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1238 unsigned long start, unsigned long nr_pages,
1239 int write, int force, struct page **pages,
1240 unsigned int gup_flags);
f0818f47
AA
1241long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1242 unsigned long start, unsigned long nr_pages,
1243 int write, int force, struct page **pages);
d2bf6be8
NP
1244int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1245 struct page **pages);
8025e5dd
JK
1246
1247/* Container for pinned pfns / pages */
1248struct frame_vector {
1249 unsigned int nr_allocated; /* Number of frames we have space for */
1250 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1251 bool got_ref; /* Did we pin pages by getting page ref? */
1252 bool is_pfns; /* Does array contain pages or pfns? */
1253 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1254 * pfns_vector_pages() or pfns_vector_pfns()
1255 * for access */
1256};
1257
1258struct frame_vector *frame_vector_create(unsigned int nr_frames);
1259void frame_vector_destroy(struct frame_vector *vec);
1260int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1261 bool write, bool force, struct frame_vector *vec);
1262void put_vaddr_frames(struct frame_vector *vec);
1263int frame_vector_to_pages(struct frame_vector *vec);
1264void frame_vector_to_pfns(struct frame_vector *vec);
1265
1266static inline unsigned int frame_vector_count(struct frame_vector *vec)
1267{
1268 return vec->nr_frames;
1269}
1270
1271static inline struct page **frame_vector_pages(struct frame_vector *vec)
1272{
1273 if (vec->is_pfns) {
1274 int err = frame_vector_to_pages(vec);
1275
1276 if (err)
1277 return ERR_PTR(err);
1278 }
1279 return (struct page **)(vec->ptrs);
1280}
1281
1282static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1283{
1284 if (!vec->is_pfns)
1285 frame_vector_to_pfns(vec);
1286 return (unsigned long *)(vec->ptrs);
1287}
1288
18022c5d
MG
1289struct kvec;
1290int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1291 struct page **pages);
1292int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1293struct page *get_dump_page(unsigned long addr);
1da177e4 1294
cf9a2ae8 1295extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1296extern void do_invalidatepage(struct page *page, unsigned int offset,
1297 unsigned int length);
cf9a2ae8 1298
1da177e4 1299int __set_page_dirty_nobuffers(struct page *page);
76719325 1300int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1301int redirty_page_for_writepage(struct writeback_control *wbc,
1302 struct page *page);
c4843a75
GT
1303void account_page_dirtied(struct page *page, struct address_space *mapping,
1304 struct mem_cgroup *memcg);
1305void account_page_cleaned(struct page *page, struct address_space *mapping,
682aa8e1 1306 struct mem_cgroup *memcg, struct bdi_writeback *wb);
b3c97528 1307int set_page_dirty(struct page *page);
1da177e4 1308int set_page_dirty_lock(struct page *page);
11f81bec 1309void cancel_dirty_page(struct page *page);
1da177e4 1310int clear_page_dirty_for_io(struct page *page);
b9ea2515 1311
a9090253 1312int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1313
39aa3cb3 1314/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1315static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1316{
1317 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1318}
1319
b5330628
ON
1320static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1321{
1322 return !vma->vm_ops;
1323}
1324
a09a79f6
MP
1325static inline int stack_guard_page_start(struct vm_area_struct *vma,
1326 unsigned long addr)
1327{
1328 return (vma->vm_flags & VM_GROWSDOWN) &&
1329 (vma->vm_start == addr) &&
1330 !vma_growsdown(vma->vm_prev, addr);
1331}
1332
1333/* Is the vma a continuation of the stack vma below it? */
1334static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1335{
1336 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1337}
1338
1339static inline int stack_guard_page_end(struct vm_area_struct *vma,
1340 unsigned long addr)
1341{
1342 return (vma->vm_flags & VM_GROWSUP) &&
1343 (vma->vm_end == addr) &&
1344 !vma_growsup(vma->vm_next, addr);
1345}
1346
65376df5 1347int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
b7643757 1348
b6a2fea3
OW
1349extern unsigned long move_page_tables(struct vm_area_struct *vma,
1350 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1351 unsigned long new_addr, unsigned long len,
1352 bool need_rmap_locks);
7da4d641
PZ
1353extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1354 unsigned long end, pgprot_t newprot,
4b10e7d5 1355 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1356extern int mprotect_fixup(struct vm_area_struct *vma,
1357 struct vm_area_struct **pprev, unsigned long start,
1358 unsigned long end, unsigned long newflags);
1da177e4 1359
465a454f
PZ
1360/*
1361 * doesn't attempt to fault and will return short.
1362 */
1363int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1364 struct page **pages);
d559db08
KH
1365/*
1366 * per-process(per-mm_struct) statistics.
1367 */
d559db08
KH
1368static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1369{
69c97823
KK
1370 long val = atomic_long_read(&mm->rss_stat.count[member]);
1371
1372#ifdef SPLIT_RSS_COUNTING
1373 /*
1374 * counter is updated in asynchronous manner and may go to minus.
1375 * But it's never be expected number for users.
1376 */
1377 if (val < 0)
1378 val = 0;
172703b0 1379#endif
69c97823
KK
1380 return (unsigned long)val;
1381}
d559db08
KH
1382
1383static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1384{
172703b0 1385 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1386}
1387
1388static inline void inc_mm_counter(struct mm_struct *mm, int member)
1389{
172703b0 1390 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1391}
1392
1393static inline void dec_mm_counter(struct mm_struct *mm, int member)
1394{
172703b0 1395 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1396}
1397
eca56ff9
JM
1398/* Optimized variant when page is already known not to be PageAnon */
1399static inline int mm_counter_file(struct page *page)
1400{
1401 if (PageSwapBacked(page))
1402 return MM_SHMEMPAGES;
1403 return MM_FILEPAGES;
1404}
1405
1406static inline int mm_counter(struct page *page)
1407{
1408 if (PageAnon(page))
1409 return MM_ANONPAGES;
1410 return mm_counter_file(page);
1411}
1412
d559db08
KH
1413static inline unsigned long get_mm_rss(struct mm_struct *mm)
1414{
1415 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1416 get_mm_counter(mm, MM_ANONPAGES) +
1417 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1418}
1419
1420static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1421{
1422 return max(mm->hiwater_rss, get_mm_rss(mm));
1423}
1424
1425static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1426{
1427 return max(mm->hiwater_vm, mm->total_vm);
1428}
1429
1430static inline void update_hiwater_rss(struct mm_struct *mm)
1431{
1432 unsigned long _rss = get_mm_rss(mm);
1433
1434 if ((mm)->hiwater_rss < _rss)
1435 (mm)->hiwater_rss = _rss;
1436}
1437
1438static inline void update_hiwater_vm(struct mm_struct *mm)
1439{
1440 if (mm->hiwater_vm < mm->total_vm)
1441 mm->hiwater_vm = mm->total_vm;
1442}
1443
695f0559
PC
1444static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1445{
1446 mm->hiwater_rss = get_mm_rss(mm);
1447}
1448
d559db08
KH
1449static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1450 struct mm_struct *mm)
1451{
1452 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1453
1454 if (*maxrss < hiwater_rss)
1455 *maxrss = hiwater_rss;
1456}
1457
53bddb4e 1458#if defined(SPLIT_RSS_COUNTING)
05af2e10 1459void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1460#else
05af2e10 1461static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1462{
1463}
1464#endif
465a454f 1465
3565fce3
DW
1466#ifndef __HAVE_ARCH_PTE_DEVMAP
1467static inline int pte_devmap(pte_t pte)
1468{
1469 return 0;
1470}
1471#endif
1472
4e950f6f 1473int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1474
25ca1d6c
NK
1475extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1476 spinlock_t **ptl);
1477static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1478 spinlock_t **ptl)
1479{
1480 pte_t *ptep;
1481 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1482 return ptep;
1483}
c9cfcddf 1484
5f22df00
NP
1485#ifdef __PAGETABLE_PUD_FOLDED
1486static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1487 unsigned long address)
1488{
1489 return 0;
1490}
1491#else
1bb3630e 1492int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1493#endif
1494
2d2f5119 1495#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1496static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1497 unsigned long address)
1498{
1499 return 0;
1500}
dc6c9a35 1501
2d2f5119
KS
1502static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1503
dc6c9a35
KS
1504static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1505{
1506 return 0;
1507}
1508
1509static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1510static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1511
5f22df00 1512#else
1bb3630e 1513int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1514
2d2f5119
KS
1515static inline void mm_nr_pmds_init(struct mm_struct *mm)
1516{
1517 atomic_long_set(&mm->nr_pmds, 0);
1518}
1519
dc6c9a35
KS
1520static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1521{
1522 return atomic_long_read(&mm->nr_pmds);
1523}
1524
1525static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1526{
1527 atomic_long_inc(&mm->nr_pmds);
1528}
1529
1530static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1531{
1532 atomic_long_dec(&mm->nr_pmds);
1533}
5f22df00
NP
1534#endif
1535
8ac1f832
AA
1536int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1537 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1538int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1539
1da177e4
LT
1540/*
1541 * The following ifdef needed to get the 4level-fixup.h header to work.
1542 * Remove it when 4level-fixup.h has been removed.
1543 */
1bb3630e 1544#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1545static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1546{
1bb3630e
HD
1547 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1548 NULL: pud_offset(pgd, address);
1da177e4
LT
1549}
1550
1551static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1552{
1bb3630e
HD
1553 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1554 NULL: pmd_offset(pud, address);
1da177e4 1555}
1bb3630e
HD
1556#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1557
57c1ffce 1558#if USE_SPLIT_PTE_PTLOCKS
597d795a 1559#if ALLOC_SPLIT_PTLOCKS
b35f1819 1560void __init ptlock_cache_init(void);
539edb58
PZ
1561extern bool ptlock_alloc(struct page *page);
1562extern void ptlock_free(struct page *page);
1563
1564static inline spinlock_t *ptlock_ptr(struct page *page)
1565{
1566 return page->ptl;
1567}
597d795a 1568#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1569static inline void ptlock_cache_init(void)
1570{
1571}
1572
49076ec2
KS
1573static inline bool ptlock_alloc(struct page *page)
1574{
49076ec2
KS
1575 return true;
1576}
539edb58 1577
49076ec2
KS
1578static inline void ptlock_free(struct page *page)
1579{
49076ec2
KS
1580}
1581
1582static inline spinlock_t *ptlock_ptr(struct page *page)
1583{
539edb58 1584 return &page->ptl;
49076ec2 1585}
597d795a 1586#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1587
1588static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1589{
1590 return ptlock_ptr(pmd_page(*pmd));
1591}
1592
1593static inline bool ptlock_init(struct page *page)
1594{
1595 /*
1596 * prep_new_page() initialize page->private (and therefore page->ptl)
1597 * with 0. Make sure nobody took it in use in between.
1598 *
1599 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1600 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1601 */
309381fe 1602 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1603 if (!ptlock_alloc(page))
1604 return false;
1605 spin_lock_init(ptlock_ptr(page));
1606 return true;
1607}
1608
1609/* Reset page->mapping so free_pages_check won't complain. */
1610static inline void pte_lock_deinit(struct page *page)
1611{
1612 page->mapping = NULL;
1613 ptlock_free(page);
1614}
1615
57c1ffce 1616#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1617/*
1618 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1619 */
49076ec2
KS
1620static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1621{
1622 return &mm->page_table_lock;
1623}
b35f1819 1624static inline void ptlock_cache_init(void) {}
49076ec2
KS
1625static inline bool ptlock_init(struct page *page) { return true; }
1626static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1627#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1628
b35f1819
KS
1629static inline void pgtable_init(void)
1630{
1631 ptlock_cache_init();
1632 pgtable_cache_init();
1633}
1634
390f44e2 1635static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1636{
706874e9
VD
1637 if (!ptlock_init(page))
1638 return false;
2f569afd 1639 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1640 return true;
2f569afd
MS
1641}
1642
1643static inline void pgtable_page_dtor(struct page *page)
1644{
1645 pte_lock_deinit(page);
1646 dec_zone_page_state(page, NR_PAGETABLE);
1647}
1648
c74df32c
HD
1649#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1650({ \
4c21e2f2 1651 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1652 pte_t *__pte = pte_offset_map(pmd, address); \
1653 *(ptlp) = __ptl; \
1654 spin_lock(__ptl); \
1655 __pte; \
1656})
1657
1658#define pte_unmap_unlock(pte, ptl) do { \
1659 spin_unlock(ptl); \
1660 pte_unmap(pte); \
1661} while (0)
1662
8ac1f832
AA
1663#define pte_alloc_map(mm, vma, pmd, address) \
1664 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1665 pmd, address))? \
1666 NULL: pte_offset_map(pmd, address))
1bb3630e 1667
c74df32c 1668#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1669 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1670 pmd, address))? \
c74df32c
HD
1671 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1672
1bb3630e 1673#define pte_alloc_kernel(pmd, address) \
8ac1f832 1674 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1675 NULL: pte_offset_kernel(pmd, address))
1da177e4 1676
e009bb30
KS
1677#if USE_SPLIT_PMD_PTLOCKS
1678
634391ac
MS
1679static struct page *pmd_to_page(pmd_t *pmd)
1680{
1681 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1682 return virt_to_page((void *)((unsigned long) pmd & mask));
1683}
1684
e009bb30
KS
1685static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1686{
634391ac 1687 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1688}
1689
1690static inline bool pgtable_pmd_page_ctor(struct page *page)
1691{
e009bb30
KS
1692#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1693 page->pmd_huge_pte = NULL;
1694#endif
49076ec2 1695 return ptlock_init(page);
e009bb30
KS
1696}
1697
1698static inline void pgtable_pmd_page_dtor(struct page *page)
1699{
1700#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1701 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1702#endif
49076ec2 1703 ptlock_free(page);
e009bb30
KS
1704}
1705
634391ac 1706#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1707
1708#else
1709
9a86cb7b
KS
1710static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1711{
1712 return &mm->page_table_lock;
1713}
1714
e009bb30
KS
1715static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1716static inline void pgtable_pmd_page_dtor(struct page *page) {}
1717
c389a250 1718#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1719
e009bb30
KS
1720#endif
1721
9a86cb7b
KS
1722static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1723{
1724 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1725 spin_lock(ptl);
1726 return ptl;
1727}
1728
1da177e4 1729extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1730extern void free_area_init_node(int nid, unsigned long * zones_size,
1731 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1732extern void free_initmem(void);
1733
69afade7
JL
1734/*
1735 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1736 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1737 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1738 * Return pages freed into the buddy system.
1739 */
11199692 1740extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1741 int poison, char *s);
c3d5f5f0 1742
cfa11e08
JL
1743#ifdef CONFIG_HIGHMEM
1744/*
1745 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1746 * and totalram_pages.
1747 */
1748extern void free_highmem_page(struct page *page);
1749#endif
69afade7 1750
c3d5f5f0 1751extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1752extern void mem_init_print_info(const char *str);
69afade7 1753
92923ca3
NZ
1754extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1755
69afade7
JL
1756/* Free the reserved page into the buddy system, so it gets managed. */
1757static inline void __free_reserved_page(struct page *page)
1758{
1759 ClearPageReserved(page);
1760 init_page_count(page);
1761 __free_page(page);
1762}
1763
1764static inline void free_reserved_page(struct page *page)
1765{
1766 __free_reserved_page(page);
1767 adjust_managed_page_count(page, 1);
1768}
1769
1770static inline void mark_page_reserved(struct page *page)
1771{
1772 SetPageReserved(page);
1773 adjust_managed_page_count(page, -1);
1774}
1775
1776/*
1777 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1778 * The freed pages will be poisoned with pattern "poison" if it's within
1779 * range [0, UCHAR_MAX].
1780 * Return pages freed into the buddy system.
69afade7
JL
1781 */
1782static inline unsigned long free_initmem_default(int poison)
1783{
1784 extern char __init_begin[], __init_end[];
1785
11199692 1786 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1787 poison, "unused kernel");
1788}
1789
7ee3d4e8
JL
1790static inline unsigned long get_num_physpages(void)
1791{
1792 int nid;
1793 unsigned long phys_pages = 0;
1794
1795 for_each_online_node(nid)
1796 phys_pages += node_present_pages(nid);
1797
1798 return phys_pages;
1799}
1800
0ee332c1 1801#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1802/*
0ee332c1 1803 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1804 * zones, allocate the backing mem_map and account for memory holes in a more
1805 * architecture independent manner. This is a substitute for creating the
1806 * zone_sizes[] and zholes_size[] arrays and passing them to
1807 * free_area_init_node()
1808 *
1809 * An architecture is expected to register range of page frames backed by
0ee332c1 1810 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1811 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1812 * usage, an architecture is expected to do something like
1813 *
1814 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1815 * max_highmem_pfn};
1816 * for_each_valid_physical_page_range()
0ee332c1 1817 * memblock_add_node(base, size, nid)
c713216d
MG
1818 * free_area_init_nodes(max_zone_pfns);
1819 *
0ee332c1
TH
1820 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1821 * registered physical page range. Similarly
1822 * sparse_memory_present_with_active_regions() calls memory_present() for
1823 * each range when SPARSEMEM is enabled.
c713216d
MG
1824 *
1825 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1826 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1827 */
1828extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1829unsigned long node_map_pfn_alignment(void);
32996250
YL
1830unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1831 unsigned long end_pfn);
c713216d
MG
1832extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1833 unsigned long end_pfn);
1834extern void get_pfn_range_for_nid(unsigned int nid,
1835 unsigned long *start_pfn, unsigned long *end_pfn);
1836extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1837extern void free_bootmem_with_active_regions(int nid,
1838 unsigned long max_low_pfn);
1839extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1840
0ee332c1 1841#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1842
0ee332c1 1843#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1844 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1845static inline int __early_pfn_to_nid(unsigned long pfn,
1846 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1847{
1848 return 0;
1849}
1850#else
1851/* please see mm/page_alloc.c */
1852extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1853/* there is a per-arch backend function. */
8a942fde
MG
1854extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1855 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1856#endif
1857
0e0b864e 1858extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1859extern void memmap_init_zone(unsigned long, int, unsigned long,
1860 unsigned long, enum memmap_context);
bc75d33f 1861extern void setup_per_zone_wmarks(void);
1b79acc9 1862extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1863extern void mem_init(void);
8feae131 1864extern void __init mmap_init(void);
b2b755b5 1865extern void show_mem(unsigned int flags);
1da177e4
LT
1866extern void si_meminfo(struct sysinfo * val);
1867extern void si_meminfo_node(struct sysinfo *val, int nid);
1868
3ee9a4f0 1869extern __printf(3, 4)
d00181b9
KS
1870void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1871 const char *fmt, ...);
a238ab5b 1872
e7c8d5c9 1873extern void setup_per_cpu_pageset(void);
e7c8d5c9 1874
112067f0 1875extern void zone_pcp_update(struct zone *zone);
340175b7 1876extern void zone_pcp_reset(struct zone *zone);
112067f0 1877
75f7ad8e
PS
1878/* page_alloc.c */
1879extern int min_free_kbytes;
1880
8feae131 1881/* nommu.c */
33e5d769 1882extern atomic_long_t mmap_pages_allocated;
7e660872 1883extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1884
6b2dbba8 1885/* interval_tree.c */
6b2dbba8
ML
1886void vma_interval_tree_insert(struct vm_area_struct *node,
1887 struct rb_root *root);
9826a516
ML
1888void vma_interval_tree_insert_after(struct vm_area_struct *node,
1889 struct vm_area_struct *prev,
1890 struct rb_root *root);
6b2dbba8
ML
1891void vma_interval_tree_remove(struct vm_area_struct *node,
1892 struct rb_root *root);
1893struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1894 unsigned long start, unsigned long last);
1895struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1896 unsigned long start, unsigned long last);
1897
1898#define vma_interval_tree_foreach(vma, root, start, last) \
1899 for (vma = vma_interval_tree_iter_first(root, start, last); \
1900 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 1901
bf181b9f
ML
1902void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1903 struct rb_root *root);
1904void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1905 struct rb_root *root);
1906struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1907 struct rb_root *root, unsigned long start, unsigned long last);
1908struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1909 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1910#ifdef CONFIG_DEBUG_VM_RB
1911void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1912#endif
bf181b9f
ML
1913
1914#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1915 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1916 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1917
1da177e4 1918/* mmap.c */
34b4e4aa 1919extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1920extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1921 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1922extern struct vm_area_struct *vma_merge(struct mm_struct *,
1923 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1924 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 1925 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4
LT
1926extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1927extern int split_vma(struct mm_struct *,
1928 struct vm_area_struct *, unsigned long addr, int new_below);
1929extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1930extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1931 struct rb_node **, struct rb_node *);
a8fb5618 1932extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1933extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1934 unsigned long addr, unsigned long len, pgoff_t pgoff,
1935 bool *need_rmap_locks);
1da177e4 1936extern void exit_mmap(struct mm_struct *);
925d1c40 1937
9c599024
CG
1938static inline int check_data_rlimit(unsigned long rlim,
1939 unsigned long new,
1940 unsigned long start,
1941 unsigned long end_data,
1942 unsigned long start_data)
1943{
1944 if (rlim < RLIM_INFINITY) {
1945 if (((new - start) + (end_data - start_data)) > rlim)
1946 return -ENOSPC;
1947 }
1948
1949 return 0;
1950}
1951
7906d00c
AA
1952extern int mm_take_all_locks(struct mm_struct *mm);
1953extern void mm_drop_all_locks(struct mm_struct *mm);
1954
38646013
JS
1955extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1956extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1957
84638335
KK
1958extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
1959extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
1960
3935ed6a
SS
1961extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1962 unsigned long addr, unsigned long len,
a62c34bd
AL
1963 unsigned long flags,
1964 const struct vm_special_mapping *spec);
1965/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
1966extern int install_special_mapping(struct mm_struct *mm,
1967 unsigned long addr, unsigned long len,
1968 unsigned long flags, struct page **pages);
1da177e4
LT
1969
1970extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1971
0165ab44 1972extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1973 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1fcfd8db 1974extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 1975 unsigned long len, unsigned long prot, unsigned long flags,
1fcfd8db 1976 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1977extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1978
1fcfd8db
ON
1979static inline unsigned long
1980do_mmap_pgoff(struct file *file, unsigned long addr,
1981 unsigned long len, unsigned long prot, unsigned long flags,
1982 unsigned long pgoff, unsigned long *populate)
1983{
1984 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1985}
1986
bebeb3d6
ML
1987#ifdef CONFIG_MMU
1988extern int __mm_populate(unsigned long addr, unsigned long len,
1989 int ignore_errors);
1990static inline void mm_populate(unsigned long addr, unsigned long len)
1991{
1992 /* Ignore errors */
1993 (void) __mm_populate(addr, len, 1);
1994}
1995#else
1996static inline void mm_populate(unsigned long addr, unsigned long len) {}
1997#endif
1998
e4eb1ff6
LT
1999/* These take the mm semaphore themselves */
2000extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 2001extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
2002extern unsigned long vm_mmap(struct file *, unsigned long,
2003 unsigned long, unsigned long,
2004 unsigned long, unsigned long);
1da177e4 2005
db4fbfb9
ML
2006struct vm_unmapped_area_info {
2007#define VM_UNMAPPED_AREA_TOPDOWN 1
2008 unsigned long flags;
2009 unsigned long length;
2010 unsigned long low_limit;
2011 unsigned long high_limit;
2012 unsigned long align_mask;
2013 unsigned long align_offset;
2014};
2015
2016extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2017extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2018
2019/*
2020 * Search for an unmapped address range.
2021 *
2022 * We are looking for a range that:
2023 * - does not intersect with any VMA;
2024 * - is contained within the [low_limit, high_limit) interval;
2025 * - is at least the desired size.
2026 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2027 */
2028static inline unsigned long
2029vm_unmapped_area(struct vm_unmapped_area_info *info)
2030{
cdd7875e 2031 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2032 return unmapped_area_topdown(info);
cdd7875e
BP
2033 else
2034 return unmapped_area(info);
db4fbfb9
ML
2035}
2036
85821aab 2037/* truncate.c */
1da177e4 2038extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2039extern void truncate_inode_pages_range(struct address_space *,
2040 loff_t lstart, loff_t lend);
91b0abe3 2041extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2042
2043/* generic vm_area_ops exported for stackable file systems */
d0217ac0 2044extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 2045extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 2046extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
2047
2048/* mm/page-writeback.c */
2049int write_one_page(struct page *page, int wait);
1cf6e7d8 2050void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2051
2052/* readahead.c */
2053#define VM_MAX_READAHEAD 128 /* kbytes */
2054#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2055
1da177e4 2056int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2057 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2058
2059void page_cache_sync_readahead(struct address_space *mapping,
2060 struct file_ra_state *ra,
2061 struct file *filp,
2062 pgoff_t offset,
2063 unsigned long size);
2064
2065void page_cache_async_readahead(struct address_space *mapping,
2066 struct file_ra_state *ra,
2067 struct file *filp,
2068 struct page *pg,
2069 pgoff_t offset,
2070 unsigned long size);
2071
d05f3169 2072/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2073extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2074
2075/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2076extern int expand_downwards(struct vm_area_struct *vma,
2077 unsigned long address);
8ca3eb08 2078#if VM_GROWSUP
46dea3d0 2079extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2080#else
fee7e49d 2081 #define expand_upwards(vma, address) (0)
9ab88515 2082#endif
1da177e4
LT
2083
2084/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2085extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2086extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2087 struct vm_area_struct **pprev);
2088
2089/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2090 NULL if none. Assume start_addr < end_addr. */
2091static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2092{
2093 struct vm_area_struct * vma = find_vma(mm,start_addr);
2094
2095 if (vma && end_addr <= vma->vm_start)
2096 vma = NULL;
2097 return vma;
2098}
2099
2100static inline unsigned long vma_pages(struct vm_area_struct *vma)
2101{
2102 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2103}
2104
640708a2
PE
2105/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2106static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2107 unsigned long vm_start, unsigned long vm_end)
2108{
2109 struct vm_area_struct *vma = find_vma(mm, vm_start);
2110
2111 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2112 vma = NULL;
2113
2114 return vma;
2115}
2116
bad849b3 2117#ifdef CONFIG_MMU
804af2cf 2118pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2119void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2120#else
2121static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2122{
2123 return __pgprot(0);
2124}
64e45507
PF
2125static inline void vma_set_page_prot(struct vm_area_struct *vma)
2126{
2127 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2128}
bad849b3
DH
2129#endif
2130
5877231f 2131#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2132unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2133 unsigned long start, unsigned long end);
2134#endif
2135
deceb6cd 2136struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2137int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2138 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2139int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2140int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2141 unsigned long pfn);
423bad60 2142int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2143 pfn_t pfn);
b4cbb197
LT
2144int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2145
deceb6cd 2146
240aadee
ML
2147struct page *follow_page_mask(struct vm_area_struct *vma,
2148 unsigned long address, unsigned int foll_flags,
2149 unsigned int *page_mask);
2150
2151static inline struct page *follow_page(struct vm_area_struct *vma,
2152 unsigned long address, unsigned int foll_flags)
2153{
2154 unsigned int unused_page_mask;
2155 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2156}
2157
deceb6cd
HD
2158#define FOLL_WRITE 0x01 /* check pte is writable */
2159#define FOLL_TOUCH 0x02 /* mark page accessed */
2160#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2161#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2162#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2163#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2164 * and return without waiting upon it */
84d33df2 2165#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2166#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2167#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2168#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2169#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2170#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2171#define FOLL_MLOCK 0x1000 /* lock present pages */
1da177e4 2172
2f569afd 2173typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2174 void *data);
2175extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2176 unsigned long size, pte_fn_t fn, void *data);
2177
1da177e4 2178
8823b1db
LA
2179#ifdef CONFIG_PAGE_POISONING
2180extern bool page_poisoning_enabled(void);
2181extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2182#else
2183static inline bool page_poisoning_enabled(void) { return false; }
2184static inline void kernel_poison_pages(struct page *page, int numpages,
2185 int enable) { }
2186#endif
2187
12d6f21e 2188#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2189extern bool _debug_pagealloc_enabled;
2190extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2191
2192static inline bool debug_pagealloc_enabled(void)
2193{
2194 return _debug_pagealloc_enabled;
2195}
2196
2197static inline void
2198kernel_map_pages(struct page *page, int numpages, int enable)
2199{
2200 if (!debug_pagealloc_enabled())
2201 return;
2202
2203 __kernel_map_pages(page, numpages, enable);
2204}
8a235efa
RW
2205#ifdef CONFIG_HIBERNATION
2206extern bool kernel_page_present(struct page *page);
40b44137
JK
2207#endif /* CONFIG_HIBERNATION */
2208#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2209static inline void
9858db50 2210kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2211#ifdef CONFIG_HIBERNATION
2212static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2213#endif /* CONFIG_HIBERNATION */
2214static inline bool debug_pagealloc_enabled(void)
2215{
2216 return false;
2217}
2218#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2219
a6c19dfe 2220#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2221extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2222extern int in_gate_area_no_mm(unsigned long addr);
2223extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2224#else
a6c19dfe
AL
2225static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2226{
2227 return NULL;
2228}
2229static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2230static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2231{
2232 return 0;
2233}
1da177e4
LT
2234#endif /* __HAVE_ARCH_GATE_AREA */
2235
146732ce
JT
2236#ifdef CONFIG_SYSCTL
2237extern int sysctl_drop_caches;
8d65af78 2238int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2239 void __user *, size_t *, loff_t *);
146732ce
JT
2240#endif
2241
cb731d6c
VD
2242void drop_slab(void);
2243void drop_slab_node(int nid);
9d0243bc 2244
7a9166e3
LY
2245#ifndef CONFIG_MMU
2246#define randomize_va_space 0
2247#else
a62eaf15 2248extern int randomize_va_space;
7a9166e3 2249#endif
a62eaf15 2250
045e72ac 2251const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2252void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2253
9bdac914
YL
2254void sparse_mem_maps_populate_node(struct page **map_map,
2255 unsigned long pnum_begin,
2256 unsigned long pnum_end,
2257 unsigned long map_count,
2258 int nodeid);
2259
98f3cfc1 2260struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2261pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2262pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2263pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2264pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2265void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc
DW
2266struct vmem_altmap;
2267void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2268 struct vmem_altmap *altmap);
2269static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2270{
2271 return __vmemmap_alloc_block_buf(size, node, NULL);
2272}
2273
8f6aac41 2274void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2275int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2276 int node);
2277int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2278void vmemmap_populate_print_last(void);
0197518c 2279#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2280void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2281#endif
46723bfa
YI
2282void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2283 unsigned long size);
6a46079c 2284
82ba011b
AK
2285enum mf_flags {
2286 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2287 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2288 MF_MUST_KILL = 1 << 2,
cf870c70 2289 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2290};
cd42f4a3 2291extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2292extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2293extern int unpoison_memory(unsigned long pfn);
ead07f6a 2294extern int get_hwpoison_page(struct page *page);
4e41a30c 2295#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2296extern int sysctl_memory_failure_early_kill;
2297extern int sysctl_memory_failure_recovery;
facb6011 2298extern void shake_page(struct page *p, int access);
293c07e3 2299extern atomic_long_t num_poisoned_pages;
facb6011 2300extern int soft_offline_page(struct page *page, int flags);
6a46079c 2301
cc637b17
XX
2302
2303/*
2304 * Error handlers for various types of pages.
2305 */
cc3e2af4 2306enum mf_result {
cc637b17
XX
2307 MF_IGNORED, /* Error: cannot be handled */
2308 MF_FAILED, /* Error: handling failed */
2309 MF_DELAYED, /* Will be handled later */
2310 MF_RECOVERED, /* Successfully recovered */
2311};
2312
2313enum mf_action_page_type {
2314 MF_MSG_KERNEL,
2315 MF_MSG_KERNEL_HIGH_ORDER,
2316 MF_MSG_SLAB,
2317 MF_MSG_DIFFERENT_COMPOUND,
2318 MF_MSG_POISONED_HUGE,
2319 MF_MSG_HUGE,
2320 MF_MSG_FREE_HUGE,
2321 MF_MSG_UNMAP_FAILED,
2322 MF_MSG_DIRTY_SWAPCACHE,
2323 MF_MSG_CLEAN_SWAPCACHE,
2324 MF_MSG_DIRTY_MLOCKED_LRU,
2325 MF_MSG_CLEAN_MLOCKED_LRU,
2326 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2327 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2328 MF_MSG_DIRTY_LRU,
2329 MF_MSG_CLEAN_LRU,
2330 MF_MSG_TRUNCATED_LRU,
2331 MF_MSG_BUDDY,
2332 MF_MSG_BUDDY_2ND,
2333 MF_MSG_UNKNOWN,
2334};
2335
47ad8475
AA
2336#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2337extern void clear_huge_page(struct page *page,
2338 unsigned long addr,
2339 unsigned int pages_per_huge_page);
2340extern void copy_user_huge_page(struct page *dst, struct page *src,
2341 unsigned long addr, struct vm_area_struct *vma,
2342 unsigned int pages_per_huge_page);
2343#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2344
e30825f1
JK
2345extern struct page_ext_operations debug_guardpage_ops;
2346extern struct page_ext_operations page_poisoning_ops;
2347
c0a32fc5
SG
2348#ifdef CONFIG_DEBUG_PAGEALLOC
2349extern unsigned int _debug_guardpage_minorder;
e30825f1 2350extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2351
2352static inline unsigned int debug_guardpage_minorder(void)
2353{
2354 return _debug_guardpage_minorder;
2355}
2356
e30825f1
JK
2357static inline bool debug_guardpage_enabled(void)
2358{
2359 return _debug_guardpage_enabled;
2360}
2361
c0a32fc5
SG
2362static inline bool page_is_guard(struct page *page)
2363{
e30825f1
JK
2364 struct page_ext *page_ext;
2365
2366 if (!debug_guardpage_enabled())
2367 return false;
2368
2369 page_ext = lookup_page_ext(page);
2370 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2371}
2372#else
2373static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2374static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2375static inline bool page_is_guard(struct page *page) { return false; }
2376#endif /* CONFIG_DEBUG_PAGEALLOC */
2377
f9872caf
CS
2378#if MAX_NUMNODES > 1
2379void __init setup_nr_node_ids(void);
2380#else
2381static inline void setup_nr_node_ids(void) {}
2382#endif
2383
1da177e4
LT
2384#endif /* __KERNEL__ */
2385#endif /* _LINUX_MM_H */