mm: Use owner_priv bit for PageSwapCache, valid when PageSwapBacked
[linux-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
3565fce3 19#include <linux/percpu-refcount.h>
e9da73d6 20#include <linux/bit_spinlock.h>
b0d40c92 21#include <linux/shrinker.h>
9c599024 22#include <linux/resource.h>
e30825f1 23#include <linux/page_ext.h>
8025e5dd 24#include <linux/err.h>
fe896d18 25#include <linux/page_ref.h>
1da177e4
LT
26
27struct mempolicy;
28struct anon_vma;
bf181b9f 29struct anon_vma_chain;
4e950f6f 30struct file_ra_state;
e8edc6e0 31struct user_struct;
4e950f6f 32struct writeback_control;
682aa8e1 33struct bdi_writeback;
1da177e4 34
fccc9987 35#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 36extern unsigned long max_mapnr;
fccc9987
JL
37
38static inline void set_max_mapnr(unsigned long limit)
39{
40 max_mapnr = limit;
41}
42#else
43static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
44#endif
45
4481374c 46extern unsigned long totalram_pages;
1da177e4 47extern void * high_memory;
1da177e4
LT
48extern int page_cluster;
49
50#ifdef CONFIG_SYSCTL
51extern int sysctl_legacy_va_layout;
52#else
53#define sysctl_legacy_va_layout 0
54#endif
55
d07e2259
DC
56#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
57extern const int mmap_rnd_bits_min;
58extern const int mmap_rnd_bits_max;
59extern int mmap_rnd_bits __read_mostly;
60#endif
61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
62extern const int mmap_rnd_compat_bits_min;
63extern const int mmap_rnd_compat_bits_max;
64extern int mmap_rnd_compat_bits __read_mostly;
65#endif
66
1da177e4
LT
67#include <asm/page.h>
68#include <asm/pgtable.h>
69#include <asm/processor.h>
1da177e4 70
79442ed1
TC
71#ifndef __pa_symbol
72#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
73#endif
74
1dff8083
AB
75#ifndef page_to_virt
76#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
77#endif
78
593befa6
DD
79/*
80 * To prevent common memory management code establishing
81 * a zero page mapping on a read fault.
82 * This macro should be defined within <asm/pgtable.h>.
83 * s390 does this to prevent multiplexing of hardware bits
84 * related to the physical page in case of virtualization.
85 */
86#ifndef mm_forbids_zeropage
87#define mm_forbids_zeropage(X) (0)
88#endif
89
ea606cf5
AR
90/*
91 * Default maximum number of active map areas, this limits the number of vmas
92 * per mm struct. Users can overwrite this number by sysctl but there is a
93 * problem.
94 *
95 * When a program's coredump is generated as ELF format, a section is created
96 * per a vma. In ELF, the number of sections is represented in unsigned short.
97 * This means the number of sections should be smaller than 65535 at coredump.
98 * Because the kernel adds some informative sections to a image of program at
99 * generating coredump, we need some margin. The number of extra sections is
100 * 1-3 now and depends on arch. We use "5" as safe margin, here.
101 *
102 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
103 * not a hard limit any more. Although some userspace tools can be surprised by
104 * that.
105 */
106#define MAPCOUNT_ELF_CORE_MARGIN (5)
107#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
108
109extern int sysctl_max_map_count;
110
c9b1d098 111extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 112extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 113
49f0ce5f
JM
114extern int sysctl_overcommit_memory;
115extern int sysctl_overcommit_ratio;
116extern unsigned long sysctl_overcommit_kbytes;
117
118extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
119 size_t *, loff_t *);
120extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
121 size_t *, loff_t *);
122
1da177e4
LT
123#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
124
27ac792c
AR
125/* to align the pointer to the (next) page boundary */
126#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
127
0fa73b86 128/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 129#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 130
1da177e4
LT
131/*
132 * Linux kernel virtual memory manager primitives.
133 * The idea being to have a "virtual" mm in the same way
134 * we have a virtual fs - giving a cleaner interface to the
135 * mm details, and allowing different kinds of memory mappings
136 * (from shared memory to executable loading to arbitrary
137 * mmap() functions).
138 */
139
c43692e8
CL
140extern struct kmem_cache *vm_area_cachep;
141
1da177e4 142#ifndef CONFIG_MMU
8feae131
DH
143extern struct rb_root nommu_region_tree;
144extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
145
146extern unsigned int kobjsize(const void *objp);
147#endif
148
149/*
605d9288 150 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 151 * When changing, update also include/trace/events/mmflags.h
1da177e4 152 */
cc2383ec
KK
153#define VM_NONE 0x00000000
154
1da177e4
LT
155#define VM_READ 0x00000001 /* currently active flags */
156#define VM_WRITE 0x00000002
157#define VM_EXEC 0x00000004
158#define VM_SHARED 0x00000008
159
7e2cff42 160/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
161#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
162#define VM_MAYWRITE 0x00000020
163#define VM_MAYEXEC 0x00000040
164#define VM_MAYSHARE 0x00000080
165
166#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 167#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 168#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 169#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 170#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 171
1da177e4
LT
172#define VM_LOCKED 0x00002000
173#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
174
175 /* Used by sys_madvise() */
176#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
177#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
178
179#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
180#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 181#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 182#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 183#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 184#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 185#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 186#define VM_ARCH_2 0x02000000
0103bd16 187#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 188
d9104d1c
CG
189#ifdef CONFIG_MEM_SOFT_DIRTY
190# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
191#else
192# define VM_SOFTDIRTY 0
193#endif
194
b379d790 195#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
196#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
197#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 198#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 199
63c17fb8
DH
200#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
201#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
202#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
203#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
204#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
205#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
206#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
207#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
208#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
209#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
210
cc2383ec
KK
211#if defined(CONFIG_X86)
212# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
8f62c883
DH
213#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
214# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
215# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
216# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
217# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
218# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
219#endif
cc2383ec
KK
220#elif defined(CONFIG_PPC)
221# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
222#elif defined(CONFIG_PARISC)
223# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
224#elif defined(CONFIG_METAG)
225# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
226#elif defined(CONFIG_IA64)
227# define VM_GROWSUP VM_ARCH_1
228#elif !defined(CONFIG_MMU)
229# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
230#endif
231
4aae7e43
QR
232#if defined(CONFIG_X86)
233/* MPX specific bounds table or bounds directory */
234# define VM_MPX VM_ARCH_2
235#endif
236
cc2383ec
KK
237#ifndef VM_GROWSUP
238# define VM_GROWSUP VM_NONE
239#endif
240
a8bef8ff
MG
241/* Bits set in the VMA until the stack is in its final location */
242#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
243
1da177e4
LT
244#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
245#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
246#endif
247
248#ifdef CONFIG_STACK_GROWSUP
30bdbb78 249#define VM_STACK VM_GROWSUP
1da177e4 250#else
30bdbb78 251#define VM_STACK VM_GROWSDOWN
1da177e4
LT
252#endif
253
30bdbb78
KK
254#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
255
b291f000 256/*
78f11a25
AA
257 * Special vmas that are non-mergable, non-mlock()able.
258 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 259 */
9050d7eb 260#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 261
a0715cc2
AT
262/* This mask defines which mm->def_flags a process can inherit its parent */
263#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
264
de60f5f1
EM
265/* This mask is used to clear all the VMA flags used by mlock */
266#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
267
1da177e4
LT
268/*
269 * mapping from the currently active vm_flags protection bits (the
270 * low four bits) to a page protection mask..
271 */
272extern pgprot_t protection_map[16];
273
d0217ac0 274#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
275#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
276#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
277#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
278#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
279#define FAULT_FLAG_TRIED 0x20 /* Second try */
280#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 281#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 282#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 283
54cb8821 284/*
d0217ac0 285 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
286 * ->fault function. The vma's ->fault is responsible for returning a bitmask
287 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 288 *
c20cd45e
MH
289 * MM layer fills up gfp_mask for page allocations but fault handler might
290 * alter it if its implementation requires a different allocation context.
291 *
9b4bdd2f 292 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 293 */
d0217ac0 294struct vm_fault {
82b0f8c3 295 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 296 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 297 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 298 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 299 unsigned long address; /* Faulting virtual address */
82b0f8c3 300 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b
JK
301 * the 'address' */
302 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 303
3917048d
JK
304 struct page *cow_page; /* Page handler may use for COW fault */
305 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 306 struct page *page; /* ->fault handlers should return a
83c54070 307 * page here, unless VM_FAULT_NOPAGE
d0217ac0 308 * is set (which is also implied by
83c54070 309 * VM_FAULT_ERROR).
d0217ac0 310 */
82b0f8c3 311 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
312 pte_t *pte; /* Pointer to pte entry matching
313 * the 'address'. NULL if the page
314 * table hasn't been allocated.
315 */
316 spinlock_t *ptl; /* Page table lock.
317 * Protects pte page table if 'pte'
318 * is not NULL, otherwise pmd.
319 */
7267ec00
KS
320 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
321 * vm_ops->map_pages() calls
322 * alloc_set_pte() from atomic context.
323 * do_fault_around() pre-allocates
324 * page table to avoid allocation from
325 * atomic context.
326 */
54cb8821 327};
1da177e4
LT
328
329/*
330 * These are the virtual MM functions - opening of an area, closing and
331 * unmapping it (needed to keep files on disk up-to-date etc), pointer
332 * to the functions called when a no-page or a wp-page exception occurs.
333 */
334struct vm_operations_struct {
335 void (*open)(struct vm_area_struct * area);
336 void (*close)(struct vm_area_struct * area);
5477e70a 337 int (*mremap)(struct vm_area_struct * area);
d0217ac0 338 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
b96375f7
MW
339 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
340 pmd_t *, unsigned int flags);
82b0f8c3 341 void (*map_pages)(struct vm_fault *vmf,
bae473a4 342 pgoff_t start_pgoff, pgoff_t end_pgoff);
9637a5ef
DH
343
344 /* notification that a previously read-only page is about to become
345 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 346 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20 347
dd906184
BH
348 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
349 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
350
28b2ee20
RR
351 /* called by access_process_vm when get_user_pages() fails, typically
352 * for use by special VMAs that can switch between memory and hardware
353 */
354 int (*access)(struct vm_area_struct *vma, unsigned long addr,
355 void *buf, int len, int write);
78d683e8
AL
356
357 /* Called by the /proc/PID/maps code to ask the vma whether it
358 * has a special name. Returning non-NULL will also cause this
359 * vma to be dumped unconditionally. */
360 const char *(*name)(struct vm_area_struct *vma);
361
1da177e4 362#ifdef CONFIG_NUMA
a6020ed7
LS
363 /*
364 * set_policy() op must add a reference to any non-NULL @new mempolicy
365 * to hold the policy upon return. Caller should pass NULL @new to
366 * remove a policy and fall back to surrounding context--i.e. do not
367 * install a MPOL_DEFAULT policy, nor the task or system default
368 * mempolicy.
369 */
1da177e4 370 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
371
372 /*
373 * get_policy() op must add reference [mpol_get()] to any policy at
374 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
375 * in mm/mempolicy.c will do this automatically.
376 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
377 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
378 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
379 * must return NULL--i.e., do not "fallback" to task or system default
380 * policy.
381 */
1da177e4
LT
382 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
383 unsigned long addr);
384#endif
667a0a06
DV
385 /*
386 * Called by vm_normal_page() for special PTEs to find the
387 * page for @addr. This is useful if the default behavior
388 * (using pte_page()) would not find the correct page.
389 */
390 struct page *(*find_special_page)(struct vm_area_struct *vma,
391 unsigned long addr);
1da177e4
LT
392};
393
394struct mmu_gather;
395struct inode;
396
349aef0b
AM
397#define page_private(page) ((page)->private)
398#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 399
5c7fb56e
DW
400#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
401static inline int pmd_devmap(pmd_t pmd)
402{
403 return 0;
404}
405#endif
406
1da177e4
LT
407/*
408 * FIXME: take this include out, include page-flags.h in
409 * files which need it (119 of them)
410 */
411#include <linux/page-flags.h>
71e3aac0 412#include <linux/huge_mm.h>
1da177e4
LT
413
414/*
415 * Methods to modify the page usage count.
416 *
417 * What counts for a page usage:
418 * - cache mapping (page->mapping)
419 * - private data (page->private)
420 * - page mapped in a task's page tables, each mapping
421 * is counted separately
422 *
423 * Also, many kernel routines increase the page count before a critical
424 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
425 */
426
427/*
da6052f7 428 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 429 */
7c8ee9a8
NP
430static inline int put_page_testzero(struct page *page)
431{
fe896d18
JK
432 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
433 return page_ref_dec_and_test(page);
7c8ee9a8 434}
1da177e4
LT
435
436/*
7c8ee9a8
NP
437 * Try to grab a ref unless the page has a refcount of zero, return false if
438 * that is the case.
8e0861fa
AK
439 * This can be called when MMU is off so it must not access
440 * any of the virtual mappings.
1da177e4 441 */
7c8ee9a8
NP
442static inline int get_page_unless_zero(struct page *page)
443{
fe896d18 444 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 445}
1da177e4 446
53df8fdc 447extern int page_is_ram(unsigned long pfn);
124fe20d
DW
448
449enum {
450 REGION_INTERSECTS,
451 REGION_DISJOINT,
452 REGION_MIXED,
453};
454
1c29f25b
TK
455int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
456 unsigned long desc);
53df8fdc 457
48667e7a 458/* Support for virtually mapped pages */
b3bdda02
CL
459struct page *vmalloc_to_page(const void *addr);
460unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 461
0738c4bb
PM
462/*
463 * Determine if an address is within the vmalloc range
464 *
465 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
466 * is no special casing required.
467 */
bb00a789 468static inline bool is_vmalloc_addr(const void *x)
9e2779fa 469{
0738c4bb 470#ifdef CONFIG_MMU
9e2779fa
CL
471 unsigned long addr = (unsigned long)x;
472
473 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 474#else
bb00a789 475 return false;
8ca3ed87 476#endif
0738c4bb 477}
81ac3ad9
KH
478#ifdef CONFIG_MMU
479extern int is_vmalloc_or_module_addr(const void *x);
480#else
934831d0 481static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
482{
483 return 0;
484}
485#endif
9e2779fa 486
39f1f78d
AV
487extern void kvfree(const void *addr);
488
53f9263b
KS
489static inline atomic_t *compound_mapcount_ptr(struct page *page)
490{
491 return &page[1].compound_mapcount;
492}
493
494static inline int compound_mapcount(struct page *page)
495{
5f527c2b 496 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
497 page = compound_head(page);
498 return atomic_read(compound_mapcount_ptr(page)) + 1;
499}
500
70b50f94
AA
501/*
502 * The atomic page->_mapcount, starts from -1: so that transitions
503 * both from it and to it can be tracked, using atomic_inc_and_test
504 * and atomic_add_negative(-1).
505 */
22b751c3 506static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
507{
508 atomic_set(&(page)->_mapcount, -1);
509}
510
b20ce5e0
KS
511int __page_mapcount(struct page *page);
512
70b50f94
AA
513static inline int page_mapcount(struct page *page)
514{
1d148e21 515 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 516
b20ce5e0
KS
517 if (unlikely(PageCompound(page)))
518 return __page_mapcount(page);
519 return atomic_read(&page->_mapcount) + 1;
520}
521
522#ifdef CONFIG_TRANSPARENT_HUGEPAGE
523int total_mapcount(struct page *page);
6d0a07ed 524int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
525#else
526static inline int total_mapcount(struct page *page)
527{
528 return page_mapcount(page);
70b50f94 529}
6d0a07ed
AA
530static inline int page_trans_huge_mapcount(struct page *page,
531 int *total_mapcount)
532{
533 int mapcount = page_mapcount(page);
534 if (total_mapcount)
535 *total_mapcount = mapcount;
536 return mapcount;
537}
b20ce5e0 538#endif
70b50f94 539
b49af68f
CL
540static inline struct page *virt_to_head_page(const void *x)
541{
542 struct page *page = virt_to_page(x);
ccaafd7f 543
1d798ca3 544 return compound_head(page);
b49af68f
CL
545}
546
ddc58f27
KS
547void __put_page(struct page *page);
548
1d7ea732 549void put_pages_list(struct list_head *pages);
1da177e4 550
8dfcc9ba 551void split_page(struct page *page, unsigned int order);
8dfcc9ba 552
33f2ef89
AW
553/*
554 * Compound pages have a destructor function. Provide a
555 * prototype for that function and accessor functions.
f1e61557 556 * These are _only_ valid on the head of a compound page.
33f2ef89 557 */
f1e61557
KS
558typedef void compound_page_dtor(struct page *);
559
560/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
561enum compound_dtor_id {
562 NULL_COMPOUND_DTOR,
563 COMPOUND_PAGE_DTOR,
564#ifdef CONFIG_HUGETLB_PAGE
565 HUGETLB_PAGE_DTOR,
9a982250
KS
566#endif
567#ifdef CONFIG_TRANSPARENT_HUGEPAGE
568 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
569#endif
570 NR_COMPOUND_DTORS,
571};
572extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
573
574static inline void set_compound_page_dtor(struct page *page,
f1e61557 575 enum compound_dtor_id compound_dtor)
33f2ef89 576{
f1e61557
KS
577 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
578 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
579}
580
581static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
582{
f1e61557
KS
583 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
584 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
585}
586
d00181b9 587static inline unsigned int compound_order(struct page *page)
d85f3385 588{
6d777953 589 if (!PageHead(page))
d85f3385 590 return 0;
e4b294c2 591 return page[1].compound_order;
d85f3385
CL
592}
593
f1e61557 594static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 595{
e4b294c2 596 page[1].compound_order = order;
d85f3385
CL
597}
598
9a982250
KS
599void free_compound_page(struct page *page);
600
3dece370 601#ifdef CONFIG_MMU
14fd403f
AA
602/*
603 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
604 * servicing faults for write access. In the normal case, do always want
605 * pte_mkwrite. But get_user_pages can cause write faults for mappings
606 * that do not have writing enabled, when used by access_process_vm.
607 */
608static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
609{
610 if (likely(vma->vm_flags & VM_WRITE))
611 pte = pte_mkwrite(pte);
612 return pte;
613}
8c6e50b0 614
82b0f8c3 615int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 616 struct page *page);
9118c0cb 617int finish_fault(struct vm_fault *vmf);
66a6197c 618int finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 619#endif
14fd403f 620
1da177e4
LT
621/*
622 * Multiple processes may "see" the same page. E.g. for untouched
623 * mappings of /dev/null, all processes see the same page full of
624 * zeroes, and text pages of executables and shared libraries have
625 * only one copy in memory, at most, normally.
626 *
627 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
628 * page_count() == 0 means the page is free. page->lru is then used for
629 * freelist management in the buddy allocator.
da6052f7 630 * page_count() > 0 means the page has been allocated.
1da177e4 631 *
da6052f7
NP
632 * Pages are allocated by the slab allocator in order to provide memory
633 * to kmalloc and kmem_cache_alloc. In this case, the management of the
634 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
635 * unless a particular usage is carefully commented. (the responsibility of
636 * freeing the kmalloc memory is the caller's, of course).
1da177e4 637 *
da6052f7
NP
638 * A page may be used by anyone else who does a __get_free_page().
639 * In this case, page_count still tracks the references, and should only
640 * be used through the normal accessor functions. The top bits of page->flags
641 * and page->virtual store page management information, but all other fields
642 * are unused and could be used privately, carefully. The management of this
643 * page is the responsibility of the one who allocated it, and those who have
644 * subsequently been given references to it.
645 *
646 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
647 * managed by the Linux memory manager: I/O, buffers, swapping etc.
648 * The following discussion applies only to them.
649 *
da6052f7
NP
650 * A pagecache page contains an opaque `private' member, which belongs to the
651 * page's address_space. Usually, this is the address of a circular list of
652 * the page's disk buffers. PG_private must be set to tell the VM to call
653 * into the filesystem to release these pages.
1da177e4 654 *
da6052f7
NP
655 * A page may belong to an inode's memory mapping. In this case, page->mapping
656 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 657 * in units of PAGE_SIZE.
1da177e4 658 *
da6052f7
NP
659 * If pagecache pages are not associated with an inode, they are said to be
660 * anonymous pages. These may become associated with the swapcache, and in that
661 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 662 *
da6052f7
NP
663 * In either case (swapcache or inode backed), the pagecache itself holds one
664 * reference to the page. Setting PG_private should also increment the
665 * refcount. The each user mapping also has a reference to the page.
1da177e4 666 *
da6052f7
NP
667 * The pagecache pages are stored in a per-mapping radix tree, which is
668 * rooted at mapping->page_tree, and indexed by offset.
669 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
670 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 671 *
da6052f7 672 * All pagecache pages may be subject to I/O:
1da177e4
LT
673 * - inode pages may need to be read from disk,
674 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
675 * to be written back to the inode on disk,
676 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
677 * modified may need to be swapped out to swap space and (later) to be read
678 * back into memory.
1da177e4
LT
679 */
680
681/*
682 * The zone field is never updated after free_area_init_core()
683 * sets it, so none of the operations on it need to be atomic.
1da177e4 684 */
348f8b6c 685
90572890 686/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 687#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
688#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
689#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 690#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 691
348f8b6c 692/*
25985edc 693 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
694 * sections we define the shift as 0; that plus a 0 mask ensures
695 * the compiler will optimise away reference to them.
696 */
d41dee36
AW
697#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
698#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
699#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 700#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 701
bce54bbf
WD
702/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
703#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 704#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
705#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
706 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 707#else
89689ae7 708#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
709#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
710 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
711#endif
712
bd8029b6 713#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 714
9223b419
CL
715#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
716#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
717#endif
718
d41dee36
AW
719#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
720#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
721#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 722#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 723#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 724
33dd4e0e 725static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 726{
348f8b6c 727 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 728}
1da177e4 729
260ae3f7 730#ifdef CONFIG_ZONE_DEVICE
3565fce3
DW
731void get_zone_device_page(struct page *page);
732void put_zone_device_page(struct page *page);
260ae3f7
DW
733static inline bool is_zone_device_page(const struct page *page)
734{
735 return page_zonenum(page) == ZONE_DEVICE;
736}
737#else
3565fce3
DW
738static inline void get_zone_device_page(struct page *page)
739{
740}
741static inline void put_zone_device_page(struct page *page)
742{
743}
260ae3f7
DW
744static inline bool is_zone_device_page(const struct page *page)
745{
746 return false;
747}
748#endif
749
3565fce3
DW
750static inline void get_page(struct page *page)
751{
752 page = compound_head(page);
753 /*
754 * Getting a normal page or the head of a compound page
0139aa7b 755 * requires to already have an elevated page->_refcount.
3565fce3 756 */
fe896d18
JK
757 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
758 page_ref_inc(page);
3565fce3
DW
759
760 if (unlikely(is_zone_device_page(page)))
761 get_zone_device_page(page);
762}
763
764static inline void put_page(struct page *page)
765{
766 page = compound_head(page);
767
768 if (put_page_testzero(page))
769 __put_page(page);
770
771 if (unlikely(is_zone_device_page(page)))
772 put_zone_device_page(page);
773}
774
9127ab4f
CS
775#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
776#define SECTION_IN_PAGE_FLAGS
777#endif
778
89689ae7 779/*
7a8010cd
VB
780 * The identification function is mainly used by the buddy allocator for
781 * determining if two pages could be buddies. We are not really identifying
782 * the zone since we could be using the section number id if we do not have
783 * node id available in page flags.
784 * We only guarantee that it will return the same value for two combinable
785 * pages in a zone.
89689ae7 786 */
cb2b95e1
AW
787static inline int page_zone_id(struct page *page)
788{
89689ae7 789 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
790}
791
25ba77c1 792static inline int zone_to_nid(struct zone *zone)
89fa3024 793{
d5f541ed
CL
794#ifdef CONFIG_NUMA
795 return zone->node;
796#else
797 return 0;
798#endif
89fa3024
CL
799}
800
89689ae7 801#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 802extern int page_to_nid(const struct page *page);
89689ae7 803#else
33dd4e0e 804static inline int page_to_nid(const struct page *page)
d41dee36 805{
89689ae7 806 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 807}
89689ae7
CL
808#endif
809
57e0a030 810#ifdef CONFIG_NUMA_BALANCING
90572890 811static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 812{
90572890 813 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
814}
815
90572890 816static inline int cpupid_to_pid(int cpupid)
57e0a030 817{
90572890 818 return cpupid & LAST__PID_MASK;
57e0a030 819}
b795854b 820
90572890 821static inline int cpupid_to_cpu(int cpupid)
b795854b 822{
90572890 823 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
824}
825
90572890 826static inline int cpupid_to_nid(int cpupid)
b795854b 827{
90572890 828 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
829}
830
90572890 831static inline bool cpupid_pid_unset(int cpupid)
57e0a030 832{
90572890 833 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
834}
835
90572890 836static inline bool cpupid_cpu_unset(int cpupid)
b795854b 837{
90572890 838 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
839}
840
8c8a743c
PZ
841static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
842{
843 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
844}
845
846#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
847#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
848static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 849{
1ae71d03 850 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 851}
90572890
PZ
852
853static inline int page_cpupid_last(struct page *page)
854{
855 return page->_last_cpupid;
856}
857static inline void page_cpupid_reset_last(struct page *page)
b795854b 858{
1ae71d03 859 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
860}
861#else
90572890 862static inline int page_cpupid_last(struct page *page)
75980e97 863{
90572890 864 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
865}
866
90572890 867extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 868
90572890 869static inline void page_cpupid_reset_last(struct page *page)
75980e97 870{
09940a4f 871 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 872}
90572890
PZ
873#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
874#else /* !CONFIG_NUMA_BALANCING */
875static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 876{
90572890 877 return page_to_nid(page); /* XXX */
57e0a030
MG
878}
879
90572890 880static inline int page_cpupid_last(struct page *page)
57e0a030 881{
90572890 882 return page_to_nid(page); /* XXX */
57e0a030
MG
883}
884
90572890 885static inline int cpupid_to_nid(int cpupid)
b795854b
MG
886{
887 return -1;
888}
889
90572890 890static inline int cpupid_to_pid(int cpupid)
b795854b
MG
891{
892 return -1;
893}
894
90572890 895static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
896{
897 return -1;
898}
899
90572890
PZ
900static inline int cpu_pid_to_cpupid(int nid, int pid)
901{
902 return -1;
903}
904
905static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
906{
907 return 1;
908}
909
90572890 910static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
911{
912}
8c8a743c
PZ
913
914static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
915{
916 return false;
917}
90572890 918#endif /* CONFIG_NUMA_BALANCING */
57e0a030 919
33dd4e0e 920static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
921{
922 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
923}
924
75ef7184
MG
925static inline pg_data_t *page_pgdat(const struct page *page)
926{
927 return NODE_DATA(page_to_nid(page));
928}
929
9127ab4f 930#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
931static inline void set_page_section(struct page *page, unsigned long section)
932{
933 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
934 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
935}
936
aa462abe 937static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
938{
939 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
940}
308c05e3 941#endif
d41dee36 942
2f1b6248 943static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
944{
945 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
946 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
947}
2f1b6248 948
348f8b6c
DH
949static inline void set_page_node(struct page *page, unsigned long node)
950{
951 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
952 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 953}
89689ae7 954
2f1b6248 955static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 956 unsigned long node, unsigned long pfn)
1da177e4 957{
348f8b6c
DH
958 set_page_zone(page, zone);
959 set_page_node(page, node);
9127ab4f 960#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 961 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 962#endif
1da177e4
LT
963}
964
0610c25d
GT
965#ifdef CONFIG_MEMCG
966static inline struct mem_cgroup *page_memcg(struct page *page)
967{
968 return page->mem_cgroup;
969}
55779ec7
JW
970static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
971{
972 WARN_ON_ONCE(!rcu_read_lock_held());
973 return READ_ONCE(page->mem_cgroup);
974}
0610c25d
GT
975#else
976static inline struct mem_cgroup *page_memcg(struct page *page)
977{
978 return NULL;
979}
55779ec7
JW
980static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
981{
982 WARN_ON_ONCE(!rcu_read_lock_held());
983 return NULL;
984}
0610c25d
GT
985#endif
986
f6ac2354
CL
987/*
988 * Some inline functions in vmstat.h depend on page_zone()
989 */
990#include <linux/vmstat.h>
991
33dd4e0e 992static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 993{
1dff8083 994 return page_to_virt(page);
1da177e4
LT
995}
996
997#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
998#define HASHED_PAGE_VIRTUAL
999#endif
1000
1001#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1002static inline void *page_address(const struct page *page)
1003{
1004 return page->virtual;
1005}
1006static inline void set_page_address(struct page *page, void *address)
1007{
1008 page->virtual = address;
1009}
1da177e4
LT
1010#define page_address_init() do { } while(0)
1011#endif
1012
1013#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1014void *page_address(const struct page *page);
1da177e4
LT
1015void set_page_address(struct page *page, void *virtual);
1016void page_address_init(void);
1017#endif
1018
1019#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1020#define page_address(page) lowmem_page_address(page)
1021#define set_page_address(page, address) do { } while(0)
1022#define page_address_init() do { } while(0)
1023#endif
1024
e39155ea
KS
1025extern void *page_rmapping(struct page *page);
1026extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1027extern struct address_space *page_mapping(struct page *page);
1da177e4 1028
f981c595
MG
1029extern struct address_space *__page_file_mapping(struct page *);
1030
1031static inline
1032struct address_space *page_file_mapping(struct page *page)
1033{
1034 if (unlikely(PageSwapCache(page)))
1035 return __page_file_mapping(page);
1036
1037 return page->mapping;
1038}
1039
f6ab1f7f
HY
1040extern pgoff_t __page_file_index(struct page *page);
1041
1da177e4
LT
1042/*
1043 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1044 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1045 */
1046static inline pgoff_t page_index(struct page *page)
1047{
1048 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1049 return __page_file_index(page);
1da177e4
LT
1050 return page->index;
1051}
1052
1aa8aea5 1053bool page_mapped(struct page *page);
bda807d4 1054struct address_space *page_mapping(struct page *page);
1da177e4 1055
2f064f34
MH
1056/*
1057 * Return true only if the page has been allocated with
1058 * ALLOC_NO_WATERMARKS and the low watermark was not
1059 * met implying that the system is under some pressure.
1060 */
1061static inline bool page_is_pfmemalloc(struct page *page)
1062{
1063 /*
1064 * Page index cannot be this large so this must be
1065 * a pfmemalloc page.
1066 */
1067 return page->index == -1UL;
1068}
1069
1070/*
1071 * Only to be called by the page allocator on a freshly allocated
1072 * page.
1073 */
1074static inline void set_page_pfmemalloc(struct page *page)
1075{
1076 page->index = -1UL;
1077}
1078
1079static inline void clear_page_pfmemalloc(struct page *page)
1080{
1081 page->index = 0;
1082}
1083
1da177e4
LT
1084/*
1085 * Different kinds of faults, as returned by handle_mm_fault().
1086 * Used to decide whether a process gets delivered SIGBUS or
1087 * just gets major/minor fault counters bumped up.
1088 */
d0217ac0 1089
83c54070
NP
1090#define VM_FAULT_OOM 0x0001
1091#define VM_FAULT_SIGBUS 0x0002
1092#define VM_FAULT_MAJOR 0x0004
1093#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1094#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1095#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1096#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1097
83c54070
NP
1098#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1099#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1100#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1101#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
b1aa812b 1102#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1da177e4 1103
aa50d3a7
AK
1104#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1105
33692f27
LT
1106#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1107 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1108 VM_FAULT_FALLBACK)
aa50d3a7
AK
1109
1110/* Encode hstate index for a hwpoisoned large page */
1111#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1112#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1113
1c0fe6e3
NP
1114/*
1115 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1116 */
1117extern void pagefault_out_of_memory(void);
1118
1da177e4
LT
1119#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1120
ddd588b5 1121/*
7bf02ea2 1122 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1123 * various contexts.
1124 */
4b59e6c4 1125#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1126
7bf02ea2
DR
1127extern void show_free_areas(unsigned int flags);
1128extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1129
1da177e4 1130int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1131#ifdef CONFIG_SHMEM
1132bool shmem_mapping(struct address_space *mapping);
1133#else
1134static inline bool shmem_mapping(struct address_space *mapping)
1135{
1136 return false;
1137}
1138#endif
1da177e4 1139
7f43add4 1140extern bool can_do_mlock(void);
1da177e4
LT
1141extern int user_shm_lock(size_t, struct user_struct *);
1142extern void user_shm_unlock(size_t, struct user_struct *);
1143
1144/*
1145 * Parameter block passed down to zap_pte_range in exceptional cases.
1146 */
1147struct zap_details {
1da177e4
LT
1148 struct address_space *check_mapping; /* Check page->mapping if set */
1149 pgoff_t first_index; /* Lowest page->index to unmap */
1150 pgoff_t last_index; /* Highest page->index to unmap */
aac45363
MH
1151 bool ignore_dirty; /* Ignore dirty pages */
1152 bool check_swap_entries; /* Check also swap entries */
1da177e4
LT
1153};
1154
7e675137
NP
1155struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1156 pte_t pte);
28093f9f
GS
1157struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1158 pmd_t pmd);
7e675137 1159
c627f9cc
JS
1160int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1161 unsigned long size);
14f5ff5d 1162void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1163 unsigned long size, struct zap_details *);
4f74d2c8
LT
1164void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1165 unsigned long start, unsigned long end);
e6473092
MM
1166
1167/**
1168 * mm_walk - callbacks for walk_page_range
e6473092 1169 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1170 * this handler is required to be able to handle
1171 * pmd_trans_huge() pmds. They may simply choose to
1172 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1173 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1174 * @pte_hole: if set, called for each hole at all levels
5dc37642 1175 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426 1176 * @test_walk: caller specific callback function to determine whether
f7e2355f 1177 * we walk over the current vma or not. Returning 0
fafaa426
NH
1178 * value means "do page table walk over the current vma,"
1179 * and a negative one means "abort current page table walk
f7e2355f 1180 * right now." 1 means "skip the current vma."
fafaa426
NH
1181 * @mm: mm_struct representing the target process of page table walk
1182 * @vma: vma currently walked (NULL if walking outside vmas)
1183 * @private: private data for callbacks' usage
e6473092 1184 *
fafaa426 1185 * (see the comment on walk_page_range() for more details)
e6473092
MM
1186 */
1187struct mm_walk {
0f157a5b
AM
1188 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1189 unsigned long next, struct mm_walk *walk);
1190 int (*pte_entry)(pte_t *pte, unsigned long addr,
1191 unsigned long next, struct mm_walk *walk);
1192 int (*pte_hole)(unsigned long addr, unsigned long next,
1193 struct mm_walk *walk);
1194 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1195 unsigned long addr, unsigned long next,
1196 struct mm_walk *walk);
fafaa426
NH
1197 int (*test_walk)(unsigned long addr, unsigned long next,
1198 struct mm_walk *walk);
2165009b 1199 struct mm_struct *mm;
fafaa426 1200 struct vm_area_struct *vma;
2165009b 1201 void *private;
e6473092
MM
1202};
1203
2165009b
DH
1204int walk_page_range(unsigned long addr, unsigned long end,
1205 struct mm_walk *walk);
900fc5f1 1206int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1207void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1208 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1209int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1210 struct vm_area_struct *vma);
1da177e4
LT
1211void unmap_mapping_range(struct address_space *mapping,
1212 loff_t const holebegin, loff_t const holelen, int even_cows);
cae12402
JK
1213int follow_pte(struct mm_struct *mm, unsigned long address, pte_t **ptepp,
1214 spinlock_t **ptlp);
3b6748e2
JW
1215int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1216 unsigned long *pfn);
d87fe660 1217int follow_phys(struct vm_area_struct *vma, unsigned long address,
1218 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1219int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1220 void *buf, int len, int write);
1da177e4
LT
1221
1222static inline void unmap_shared_mapping_range(struct address_space *mapping,
1223 loff_t const holebegin, loff_t const holelen)
1224{
1225 unmap_mapping_range(mapping, holebegin, holelen, 0);
1226}
1227
7caef267 1228extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1229extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1230void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1231void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1232int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1233int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1234int invalidate_inode_page(struct page *page);
1235
7ee1dd3f 1236#ifdef CONFIG_MMU
dcddffd4
KS
1237extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1238 unsigned int flags);
5c723ba5 1239extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1240 unsigned long address, unsigned int fault_flags,
1241 bool *unlocked);
7ee1dd3f 1242#else
dcddffd4
KS
1243static inline int handle_mm_fault(struct vm_area_struct *vma,
1244 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1245{
1246 /* should never happen if there's no MMU */
1247 BUG();
1248 return VM_FAULT_SIGBUS;
1249}
5c723ba5
PZ
1250static inline int fixup_user_fault(struct task_struct *tsk,
1251 struct mm_struct *mm, unsigned long address,
4a9e1cda 1252 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1253{
1254 /* should never happen if there's no MMU */
1255 BUG();
1256 return -EFAULT;
1257}
7ee1dd3f 1258#endif
f33ea7f4 1259
f307ab6d
LS
1260extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1261 unsigned int gup_flags);
5ddd36b9 1262extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1263 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1264extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1265 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1266
1e987790
DH
1267long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1268 unsigned long start, unsigned long nr_pages,
9beae1ea 1269 unsigned int gup_flags, struct page **pages,
5b56d49f 1270 struct vm_area_struct **vmas, int *locked);
c12d2da5 1271long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1272 unsigned int gup_flags, struct page **pages,
cde70140 1273 struct vm_area_struct **vmas);
c12d2da5 1274long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1275 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1276long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1277 struct page **pages, unsigned int gup_flags);
d2bf6be8
NP
1278int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1279 struct page **pages);
8025e5dd
JK
1280
1281/* Container for pinned pfns / pages */
1282struct frame_vector {
1283 unsigned int nr_allocated; /* Number of frames we have space for */
1284 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1285 bool got_ref; /* Did we pin pages by getting page ref? */
1286 bool is_pfns; /* Does array contain pages or pfns? */
1287 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1288 * pfns_vector_pages() or pfns_vector_pfns()
1289 * for access */
1290};
1291
1292struct frame_vector *frame_vector_create(unsigned int nr_frames);
1293void frame_vector_destroy(struct frame_vector *vec);
1294int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1295 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1296void put_vaddr_frames(struct frame_vector *vec);
1297int frame_vector_to_pages(struct frame_vector *vec);
1298void frame_vector_to_pfns(struct frame_vector *vec);
1299
1300static inline unsigned int frame_vector_count(struct frame_vector *vec)
1301{
1302 return vec->nr_frames;
1303}
1304
1305static inline struct page **frame_vector_pages(struct frame_vector *vec)
1306{
1307 if (vec->is_pfns) {
1308 int err = frame_vector_to_pages(vec);
1309
1310 if (err)
1311 return ERR_PTR(err);
1312 }
1313 return (struct page **)(vec->ptrs);
1314}
1315
1316static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1317{
1318 if (!vec->is_pfns)
1319 frame_vector_to_pfns(vec);
1320 return (unsigned long *)(vec->ptrs);
1321}
1322
18022c5d
MG
1323struct kvec;
1324int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1325 struct page **pages);
1326int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1327struct page *get_dump_page(unsigned long addr);
1da177e4 1328
cf9a2ae8 1329extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1330extern void do_invalidatepage(struct page *page, unsigned int offset,
1331 unsigned int length);
cf9a2ae8 1332
1da177e4 1333int __set_page_dirty_nobuffers(struct page *page);
76719325 1334int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1335int redirty_page_for_writepage(struct writeback_control *wbc,
1336 struct page *page);
62cccb8c 1337void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1338void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1339 struct bdi_writeback *wb);
b3c97528 1340int set_page_dirty(struct page *page);
1da177e4 1341int set_page_dirty_lock(struct page *page);
11f81bec 1342void cancel_dirty_page(struct page *page);
1da177e4 1343int clear_page_dirty_for_io(struct page *page);
b9ea2515 1344
a9090253 1345int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1346
39aa3cb3 1347/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1348static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1349{
1350 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1351}
1352
b5330628
ON
1353static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1354{
1355 return !vma->vm_ops;
1356}
1357
a09a79f6
MP
1358static inline int stack_guard_page_start(struct vm_area_struct *vma,
1359 unsigned long addr)
1360{
1361 return (vma->vm_flags & VM_GROWSDOWN) &&
1362 (vma->vm_start == addr) &&
1363 !vma_growsdown(vma->vm_prev, addr);
1364}
1365
1366/* Is the vma a continuation of the stack vma below it? */
1367static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1368{
1369 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1370}
1371
1372static inline int stack_guard_page_end(struct vm_area_struct *vma,
1373 unsigned long addr)
1374{
1375 return (vma->vm_flags & VM_GROWSUP) &&
1376 (vma->vm_end == addr) &&
1377 !vma_growsup(vma->vm_next, addr);
1378}
1379
d17af505 1380int vma_is_stack_for_current(struct vm_area_struct *vma);
b7643757 1381
b6a2fea3
OW
1382extern unsigned long move_page_tables(struct vm_area_struct *vma,
1383 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1384 unsigned long new_addr, unsigned long len,
1385 bool need_rmap_locks);
7da4d641
PZ
1386extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1387 unsigned long end, pgprot_t newprot,
4b10e7d5 1388 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1389extern int mprotect_fixup(struct vm_area_struct *vma,
1390 struct vm_area_struct **pprev, unsigned long start,
1391 unsigned long end, unsigned long newflags);
1da177e4 1392
465a454f
PZ
1393/*
1394 * doesn't attempt to fault and will return short.
1395 */
1396int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1397 struct page **pages);
d559db08
KH
1398/*
1399 * per-process(per-mm_struct) statistics.
1400 */
d559db08
KH
1401static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1402{
69c97823
KK
1403 long val = atomic_long_read(&mm->rss_stat.count[member]);
1404
1405#ifdef SPLIT_RSS_COUNTING
1406 /*
1407 * counter is updated in asynchronous manner and may go to minus.
1408 * But it's never be expected number for users.
1409 */
1410 if (val < 0)
1411 val = 0;
172703b0 1412#endif
69c97823
KK
1413 return (unsigned long)val;
1414}
d559db08
KH
1415
1416static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1417{
172703b0 1418 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1419}
1420
1421static inline void inc_mm_counter(struct mm_struct *mm, int member)
1422{
172703b0 1423 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1424}
1425
1426static inline void dec_mm_counter(struct mm_struct *mm, int member)
1427{
172703b0 1428 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1429}
1430
eca56ff9
JM
1431/* Optimized variant when page is already known not to be PageAnon */
1432static inline int mm_counter_file(struct page *page)
1433{
1434 if (PageSwapBacked(page))
1435 return MM_SHMEMPAGES;
1436 return MM_FILEPAGES;
1437}
1438
1439static inline int mm_counter(struct page *page)
1440{
1441 if (PageAnon(page))
1442 return MM_ANONPAGES;
1443 return mm_counter_file(page);
1444}
1445
d559db08
KH
1446static inline unsigned long get_mm_rss(struct mm_struct *mm)
1447{
1448 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1449 get_mm_counter(mm, MM_ANONPAGES) +
1450 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1451}
1452
1453static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1454{
1455 return max(mm->hiwater_rss, get_mm_rss(mm));
1456}
1457
1458static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1459{
1460 return max(mm->hiwater_vm, mm->total_vm);
1461}
1462
1463static inline void update_hiwater_rss(struct mm_struct *mm)
1464{
1465 unsigned long _rss = get_mm_rss(mm);
1466
1467 if ((mm)->hiwater_rss < _rss)
1468 (mm)->hiwater_rss = _rss;
1469}
1470
1471static inline void update_hiwater_vm(struct mm_struct *mm)
1472{
1473 if (mm->hiwater_vm < mm->total_vm)
1474 mm->hiwater_vm = mm->total_vm;
1475}
1476
695f0559
PC
1477static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1478{
1479 mm->hiwater_rss = get_mm_rss(mm);
1480}
1481
d559db08
KH
1482static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1483 struct mm_struct *mm)
1484{
1485 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1486
1487 if (*maxrss < hiwater_rss)
1488 *maxrss = hiwater_rss;
1489}
1490
53bddb4e 1491#if defined(SPLIT_RSS_COUNTING)
05af2e10 1492void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1493#else
05af2e10 1494static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1495{
1496}
1497#endif
465a454f 1498
3565fce3
DW
1499#ifndef __HAVE_ARCH_PTE_DEVMAP
1500static inline int pte_devmap(pte_t pte)
1501{
1502 return 0;
1503}
1504#endif
1505
6d2329f8 1506int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1507
25ca1d6c
NK
1508extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1509 spinlock_t **ptl);
1510static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1511 spinlock_t **ptl)
1512{
1513 pte_t *ptep;
1514 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1515 return ptep;
1516}
c9cfcddf 1517
5f22df00
NP
1518#ifdef __PAGETABLE_PUD_FOLDED
1519static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1520 unsigned long address)
1521{
1522 return 0;
1523}
1524#else
1bb3630e 1525int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1526#endif
1527
2d2f5119 1528#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1529static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1530 unsigned long address)
1531{
1532 return 0;
1533}
dc6c9a35 1534
2d2f5119
KS
1535static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1536
dc6c9a35
KS
1537static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1538{
1539 return 0;
1540}
1541
1542static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1543static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1544
5f22df00 1545#else
1bb3630e 1546int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1547
2d2f5119
KS
1548static inline void mm_nr_pmds_init(struct mm_struct *mm)
1549{
1550 atomic_long_set(&mm->nr_pmds, 0);
1551}
1552
dc6c9a35
KS
1553static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1554{
1555 return atomic_long_read(&mm->nr_pmds);
1556}
1557
1558static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1559{
1560 atomic_long_inc(&mm->nr_pmds);
1561}
1562
1563static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1564{
1565 atomic_long_dec(&mm->nr_pmds);
1566}
5f22df00
NP
1567#endif
1568
3ed3a4f0 1569int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1bb3630e
HD
1570int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1571
1da177e4
LT
1572/*
1573 * The following ifdef needed to get the 4level-fixup.h header to work.
1574 * Remove it when 4level-fixup.h has been removed.
1575 */
1bb3630e 1576#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1577static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1578{
1bb3630e
HD
1579 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1580 NULL: pud_offset(pgd, address);
1da177e4
LT
1581}
1582
1583static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1584{
1bb3630e
HD
1585 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1586 NULL: pmd_offset(pud, address);
1da177e4 1587}
1bb3630e
HD
1588#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1589
57c1ffce 1590#if USE_SPLIT_PTE_PTLOCKS
597d795a 1591#if ALLOC_SPLIT_PTLOCKS
b35f1819 1592void __init ptlock_cache_init(void);
539edb58
PZ
1593extern bool ptlock_alloc(struct page *page);
1594extern void ptlock_free(struct page *page);
1595
1596static inline spinlock_t *ptlock_ptr(struct page *page)
1597{
1598 return page->ptl;
1599}
597d795a 1600#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1601static inline void ptlock_cache_init(void)
1602{
1603}
1604
49076ec2
KS
1605static inline bool ptlock_alloc(struct page *page)
1606{
49076ec2
KS
1607 return true;
1608}
539edb58 1609
49076ec2
KS
1610static inline void ptlock_free(struct page *page)
1611{
49076ec2
KS
1612}
1613
1614static inline spinlock_t *ptlock_ptr(struct page *page)
1615{
539edb58 1616 return &page->ptl;
49076ec2 1617}
597d795a 1618#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1619
1620static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1621{
1622 return ptlock_ptr(pmd_page(*pmd));
1623}
1624
1625static inline bool ptlock_init(struct page *page)
1626{
1627 /*
1628 * prep_new_page() initialize page->private (and therefore page->ptl)
1629 * with 0. Make sure nobody took it in use in between.
1630 *
1631 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1632 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1633 */
309381fe 1634 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1635 if (!ptlock_alloc(page))
1636 return false;
1637 spin_lock_init(ptlock_ptr(page));
1638 return true;
1639}
1640
1641/* Reset page->mapping so free_pages_check won't complain. */
1642static inline void pte_lock_deinit(struct page *page)
1643{
1644 page->mapping = NULL;
1645 ptlock_free(page);
1646}
1647
57c1ffce 1648#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1649/*
1650 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1651 */
49076ec2
KS
1652static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1653{
1654 return &mm->page_table_lock;
1655}
b35f1819 1656static inline void ptlock_cache_init(void) {}
49076ec2
KS
1657static inline bool ptlock_init(struct page *page) { return true; }
1658static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1659#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1660
b35f1819
KS
1661static inline void pgtable_init(void)
1662{
1663 ptlock_cache_init();
1664 pgtable_cache_init();
1665}
1666
390f44e2 1667static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1668{
706874e9
VD
1669 if (!ptlock_init(page))
1670 return false;
2f569afd 1671 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1672 return true;
2f569afd
MS
1673}
1674
1675static inline void pgtable_page_dtor(struct page *page)
1676{
1677 pte_lock_deinit(page);
1678 dec_zone_page_state(page, NR_PAGETABLE);
1679}
1680
c74df32c
HD
1681#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1682({ \
4c21e2f2 1683 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1684 pte_t *__pte = pte_offset_map(pmd, address); \
1685 *(ptlp) = __ptl; \
1686 spin_lock(__ptl); \
1687 __pte; \
1688})
1689
1690#define pte_unmap_unlock(pte, ptl) do { \
1691 spin_unlock(ptl); \
1692 pte_unmap(pte); \
1693} while (0)
1694
3ed3a4f0
KS
1695#define pte_alloc(mm, pmd, address) \
1696 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1697
1698#define pte_alloc_map(mm, pmd, address) \
1699 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1bb3630e 1700
c74df32c 1701#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3ed3a4f0
KS
1702 (pte_alloc(mm, pmd, address) ? \
1703 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 1704
1bb3630e 1705#define pte_alloc_kernel(pmd, address) \
8ac1f832 1706 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1707 NULL: pte_offset_kernel(pmd, address))
1da177e4 1708
e009bb30
KS
1709#if USE_SPLIT_PMD_PTLOCKS
1710
634391ac
MS
1711static struct page *pmd_to_page(pmd_t *pmd)
1712{
1713 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1714 return virt_to_page((void *)((unsigned long) pmd & mask));
1715}
1716
e009bb30
KS
1717static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1718{
634391ac 1719 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1720}
1721
1722static inline bool pgtable_pmd_page_ctor(struct page *page)
1723{
e009bb30
KS
1724#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1725 page->pmd_huge_pte = NULL;
1726#endif
49076ec2 1727 return ptlock_init(page);
e009bb30
KS
1728}
1729
1730static inline void pgtable_pmd_page_dtor(struct page *page)
1731{
1732#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1733 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1734#endif
49076ec2 1735 ptlock_free(page);
e009bb30
KS
1736}
1737
634391ac 1738#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1739
1740#else
1741
9a86cb7b
KS
1742static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1743{
1744 return &mm->page_table_lock;
1745}
1746
e009bb30
KS
1747static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1748static inline void pgtable_pmd_page_dtor(struct page *page) {}
1749
c389a250 1750#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1751
e009bb30
KS
1752#endif
1753
9a86cb7b
KS
1754static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1755{
1756 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1757 spin_lock(ptl);
1758 return ptl;
1759}
1760
1da177e4 1761extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1762extern void free_area_init_node(int nid, unsigned long * zones_size,
1763 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1764extern void free_initmem(void);
1765
69afade7
JL
1766/*
1767 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1768 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1769 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1770 * Return pages freed into the buddy system.
1771 */
11199692 1772extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1773 int poison, char *s);
c3d5f5f0 1774
cfa11e08
JL
1775#ifdef CONFIG_HIGHMEM
1776/*
1777 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1778 * and totalram_pages.
1779 */
1780extern void free_highmem_page(struct page *page);
1781#endif
69afade7 1782
c3d5f5f0 1783extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1784extern void mem_init_print_info(const char *str);
69afade7 1785
4b50bcc7 1786extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 1787
69afade7
JL
1788/* Free the reserved page into the buddy system, so it gets managed. */
1789static inline void __free_reserved_page(struct page *page)
1790{
1791 ClearPageReserved(page);
1792 init_page_count(page);
1793 __free_page(page);
1794}
1795
1796static inline void free_reserved_page(struct page *page)
1797{
1798 __free_reserved_page(page);
1799 adjust_managed_page_count(page, 1);
1800}
1801
1802static inline void mark_page_reserved(struct page *page)
1803{
1804 SetPageReserved(page);
1805 adjust_managed_page_count(page, -1);
1806}
1807
1808/*
1809 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1810 * The freed pages will be poisoned with pattern "poison" if it's within
1811 * range [0, UCHAR_MAX].
1812 * Return pages freed into the buddy system.
69afade7
JL
1813 */
1814static inline unsigned long free_initmem_default(int poison)
1815{
1816 extern char __init_begin[], __init_end[];
1817
11199692 1818 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1819 poison, "unused kernel");
1820}
1821
7ee3d4e8
JL
1822static inline unsigned long get_num_physpages(void)
1823{
1824 int nid;
1825 unsigned long phys_pages = 0;
1826
1827 for_each_online_node(nid)
1828 phys_pages += node_present_pages(nid);
1829
1830 return phys_pages;
1831}
1832
0ee332c1 1833#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1834/*
0ee332c1 1835 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1836 * zones, allocate the backing mem_map and account for memory holes in a more
1837 * architecture independent manner. This is a substitute for creating the
1838 * zone_sizes[] and zholes_size[] arrays and passing them to
1839 * free_area_init_node()
1840 *
1841 * An architecture is expected to register range of page frames backed by
0ee332c1 1842 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1843 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1844 * usage, an architecture is expected to do something like
1845 *
1846 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1847 * max_highmem_pfn};
1848 * for_each_valid_physical_page_range()
0ee332c1 1849 * memblock_add_node(base, size, nid)
c713216d
MG
1850 * free_area_init_nodes(max_zone_pfns);
1851 *
0ee332c1
TH
1852 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1853 * registered physical page range. Similarly
1854 * sparse_memory_present_with_active_regions() calls memory_present() for
1855 * each range when SPARSEMEM is enabled.
c713216d
MG
1856 *
1857 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1858 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1859 */
1860extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1861unsigned long node_map_pfn_alignment(void);
32996250
YL
1862unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1863 unsigned long end_pfn);
c713216d
MG
1864extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1865 unsigned long end_pfn);
1866extern void get_pfn_range_for_nid(unsigned int nid,
1867 unsigned long *start_pfn, unsigned long *end_pfn);
1868extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1869extern void free_bootmem_with_active_regions(int nid,
1870 unsigned long max_low_pfn);
1871extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1872
0ee332c1 1873#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1874
0ee332c1 1875#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1876 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1877static inline int __early_pfn_to_nid(unsigned long pfn,
1878 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1879{
1880 return 0;
1881}
1882#else
1883/* please see mm/page_alloc.c */
1884extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1885/* there is a per-arch backend function. */
8a942fde
MG
1886extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1887 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1888#endif
1889
0e0b864e 1890extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1891extern void memmap_init_zone(unsigned long, int, unsigned long,
1892 unsigned long, enum memmap_context);
bc75d33f 1893extern void setup_per_zone_wmarks(void);
1b79acc9 1894extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1895extern void mem_init(void);
8feae131 1896extern void __init mmap_init(void);
b2b755b5 1897extern void show_mem(unsigned int flags);
d02bd27b 1898extern long si_mem_available(void);
1da177e4
LT
1899extern void si_meminfo(struct sysinfo * val);
1900extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
1901#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
1902extern unsigned long arch_reserved_kernel_pages(void);
1903#endif
1da177e4 1904
7877cdcc
MH
1905extern __printf(2, 3)
1906void warn_alloc(gfp_t gfp_mask, const char *fmt, ...);
a238ab5b 1907
e7c8d5c9 1908extern void setup_per_cpu_pageset(void);
e7c8d5c9 1909
112067f0 1910extern void zone_pcp_update(struct zone *zone);
340175b7 1911extern void zone_pcp_reset(struct zone *zone);
112067f0 1912
75f7ad8e
PS
1913/* page_alloc.c */
1914extern int min_free_kbytes;
795ae7a0 1915extern int watermark_scale_factor;
75f7ad8e 1916
8feae131 1917/* nommu.c */
33e5d769 1918extern atomic_long_t mmap_pages_allocated;
7e660872 1919extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1920
6b2dbba8 1921/* interval_tree.c */
6b2dbba8
ML
1922void vma_interval_tree_insert(struct vm_area_struct *node,
1923 struct rb_root *root);
9826a516
ML
1924void vma_interval_tree_insert_after(struct vm_area_struct *node,
1925 struct vm_area_struct *prev,
1926 struct rb_root *root);
6b2dbba8
ML
1927void vma_interval_tree_remove(struct vm_area_struct *node,
1928 struct rb_root *root);
1929struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1930 unsigned long start, unsigned long last);
1931struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1932 unsigned long start, unsigned long last);
1933
1934#define vma_interval_tree_foreach(vma, root, start, last) \
1935 for (vma = vma_interval_tree_iter_first(root, start, last); \
1936 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 1937
bf181b9f
ML
1938void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1939 struct rb_root *root);
1940void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1941 struct rb_root *root);
1942struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1943 struct rb_root *root, unsigned long start, unsigned long last);
1944struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1945 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1946#ifdef CONFIG_DEBUG_VM_RB
1947void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1948#endif
bf181b9f
ML
1949
1950#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1951 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1952 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1953
1da177e4 1954/* mmap.c */
34b4e4aa 1955extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
1956extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
1957 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
1958 struct vm_area_struct *expand);
1959static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1960 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
1961{
1962 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
1963}
1da177e4
LT
1964extern struct vm_area_struct *vma_merge(struct mm_struct *,
1965 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1966 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 1967 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4
LT
1968extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1969extern int split_vma(struct mm_struct *,
1970 struct vm_area_struct *, unsigned long addr, int new_below);
1971extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1972extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1973 struct rb_node **, struct rb_node *);
a8fb5618 1974extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1975extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1976 unsigned long addr, unsigned long len, pgoff_t pgoff,
1977 bool *need_rmap_locks);
1da177e4 1978extern void exit_mmap(struct mm_struct *);
925d1c40 1979
9c599024
CG
1980static inline int check_data_rlimit(unsigned long rlim,
1981 unsigned long new,
1982 unsigned long start,
1983 unsigned long end_data,
1984 unsigned long start_data)
1985{
1986 if (rlim < RLIM_INFINITY) {
1987 if (((new - start) + (end_data - start_data)) > rlim)
1988 return -ENOSPC;
1989 }
1990
1991 return 0;
1992}
1993
7906d00c
AA
1994extern int mm_take_all_locks(struct mm_struct *mm);
1995extern void mm_drop_all_locks(struct mm_struct *mm);
1996
38646013
JS
1997extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1998extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 1999extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2000
84638335
KK
2001extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2002extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2003
2eefd878
DS
2004extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2005 const struct vm_special_mapping *sm);
3935ed6a
SS
2006extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2007 unsigned long addr, unsigned long len,
a62c34bd
AL
2008 unsigned long flags,
2009 const struct vm_special_mapping *spec);
2010/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2011extern int install_special_mapping(struct mm_struct *mm,
2012 unsigned long addr, unsigned long len,
2013 unsigned long flags, struct page **pages);
1da177e4
LT
2014
2015extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2016
0165ab44 2017extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 2018 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1fcfd8db 2019extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2020 unsigned long len, unsigned long prot, unsigned long flags,
1fcfd8db 2021 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1da177e4
LT
2022extern int do_munmap(struct mm_struct *, unsigned long, size_t);
2023
1fcfd8db
ON
2024static inline unsigned long
2025do_mmap_pgoff(struct file *file, unsigned long addr,
2026 unsigned long len, unsigned long prot, unsigned long flags,
2027 unsigned long pgoff, unsigned long *populate)
2028{
2029 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
2030}
2031
bebeb3d6
ML
2032#ifdef CONFIG_MMU
2033extern int __mm_populate(unsigned long addr, unsigned long len,
2034 int ignore_errors);
2035static inline void mm_populate(unsigned long addr, unsigned long len)
2036{
2037 /* Ignore errors */
2038 (void) __mm_populate(addr, len, 1);
2039}
2040#else
2041static inline void mm_populate(unsigned long addr, unsigned long len) {}
2042#endif
2043
e4eb1ff6 2044/* These take the mm semaphore themselves */
5d22fc25 2045extern int __must_check vm_brk(unsigned long, unsigned long);
bfce281c 2046extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2047extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2048 unsigned long, unsigned long,
2049 unsigned long, unsigned long);
1da177e4 2050
db4fbfb9
ML
2051struct vm_unmapped_area_info {
2052#define VM_UNMAPPED_AREA_TOPDOWN 1
2053 unsigned long flags;
2054 unsigned long length;
2055 unsigned long low_limit;
2056 unsigned long high_limit;
2057 unsigned long align_mask;
2058 unsigned long align_offset;
2059};
2060
2061extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2062extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2063
2064/*
2065 * Search for an unmapped address range.
2066 *
2067 * We are looking for a range that:
2068 * - does not intersect with any VMA;
2069 * - is contained within the [low_limit, high_limit) interval;
2070 * - is at least the desired size.
2071 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2072 */
2073static inline unsigned long
2074vm_unmapped_area(struct vm_unmapped_area_info *info)
2075{
cdd7875e 2076 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2077 return unmapped_area_topdown(info);
cdd7875e
BP
2078 else
2079 return unmapped_area(info);
db4fbfb9
ML
2080}
2081
85821aab 2082/* truncate.c */
1da177e4 2083extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2084extern void truncate_inode_pages_range(struct address_space *,
2085 loff_t lstart, loff_t lend);
91b0abe3 2086extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2087
2088/* generic vm_area_ops exported for stackable file systems */
d0217ac0 2089extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
82b0f8c3 2090extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2091 pgoff_t start_pgoff, pgoff_t end_pgoff);
4fcf1c62 2092extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
2093
2094/* mm/page-writeback.c */
2095int write_one_page(struct page *page, int wait);
1cf6e7d8 2096void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2097
2098/* readahead.c */
2099#define VM_MAX_READAHEAD 128 /* kbytes */
2100#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2101
1da177e4 2102int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2103 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2104
2105void page_cache_sync_readahead(struct address_space *mapping,
2106 struct file_ra_state *ra,
2107 struct file *filp,
2108 pgoff_t offset,
2109 unsigned long size);
2110
2111void page_cache_async_readahead(struct address_space *mapping,
2112 struct file_ra_state *ra,
2113 struct file *filp,
2114 struct page *pg,
2115 pgoff_t offset,
2116 unsigned long size);
2117
d05f3169 2118/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2119extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2120
2121/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2122extern int expand_downwards(struct vm_area_struct *vma,
2123 unsigned long address);
8ca3eb08 2124#if VM_GROWSUP
46dea3d0 2125extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2126#else
fee7e49d 2127 #define expand_upwards(vma, address) (0)
9ab88515 2128#endif
1da177e4
LT
2129
2130/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2131extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2132extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2133 struct vm_area_struct **pprev);
2134
2135/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2136 NULL if none. Assume start_addr < end_addr. */
2137static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2138{
2139 struct vm_area_struct * vma = find_vma(mm,start_addr);
2140
2141 if (vma && end_addr <= vma->vm_start)
2142 vma = NULL;
2143 return vma;
2144}
2145
2146static inline unsigned long vma_pages(struct vm_area_struct *vma)
2147{
2148 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2149}
2150
640708a2
PE
2151/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2152static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2153 unsigned long vm_start, unsigned long vm_end)
2154{
2155 struct vm_area_struct *vma = find_vma(mm, vm_start);
2156
2157 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2158 vma = NULL;
2159
2160 return vma;
2161}
2162
bad849b3 2163#ifdef CONFIG_MMU
804af2cf 2164pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2165void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2166#else
2167static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2168{
2169 return __pgprot(0);
2170}
64e45507
PF
2171static inline void vma_set_page_prot(struct vm_area_struct *vma)
2172{
2173 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2174}
bad849b3
DH
2175#endif
2176
5877231f 2177#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2178unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2179 unsigned long start, unsigned long end);
2180#endif
2181
deceb6cd 2182struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2183int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2184 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2185int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2186int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2187 unsigned long pfn);
1745cbc5
AL
2188int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2189 unsigned long pfn, pgprot_t pgprot);
423bad60 2190int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2191 pfn_t pfn);
b4cbb197
LT
2192int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2193
deceb6cd 2194
240aadee
ML
2195struct page *follow_page_mask(struct vm_area_struct *vma,
2196 unsigned long address, unsigned int foll_flags,
2197 unsigned int *page_mask);
2198
2199static inline struct page *follow_page(struct vm_area_struct *vma,
2200 unsigned long address, unsigned int foll_flags)
2201{
2202 unsigned int unused_page_mask;
2203 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2204}
2205
deceb6cd
HD
2206#define FOLL_WRITE 0x01 /* check pte is writable */
2207#define FOLL_TOUCH 0x02 /* mark page accessed */
2208#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2209#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2210#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2211#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2212 * and return without waiting upon it */
84d33df2 2213#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2214#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2215#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2216#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2217#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2218#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2219#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2220#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2221#define FOLL_COW 0x4000 /* internal GUP flag */
1da177e4 2222
2f569afd 2223typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2224 void *data);
2225extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2226 unsigned long size, pte_fn_t fn, void *data);
2227
1da177e4 2228
8823b1db
LA
2229#ifdef CONFIG_PAGE_POISONING
2230extern bool page_poisoning_enabled(void);
2231extern void kernel_poison_pages(struct page *page, int numpages, int enable);
1414c7f4 2232extern bool page_is_poisoned(struct page *page);
8823b1db
LA
2233#else
2234static inline bool page_poisoning_enabled(void) { return false; }
2235static inline void kernel_poison_pages(struct page *page, int numpages,
2236 int enable) { }
1414c7f4 2237static inline bool page_is_poisoned(struct page *page) { return false; }
8823b1db
LA
2238#endif
2239
12d6f21e 2240#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2241extern bool _debug_pagealloc_enabled;
2242extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2243
2244static inline bool debug_pagealloc_enabled(void)
2245{
2246 return _debug_pagealloc_enabled;
2247}
2248
2249static inline void
2250kernel_map_pages(struct page *page, int numpages, int enable)
2251{
2252 if (!debug_pagealloc_enabled())
2253 return;
2254
2255 __kernel_map_pages(page, numpages, enable);
2256}
8a235efa
RW
2257#ifdef CONFIG_HIBERNATION
2258extern bool kernel_page_present(struct page *page);
40b44137
JK
2259#endif /* CONFIG_HIBERNATION */
2260#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2261static inline void
9858db50 2262kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2263#ifdef CONFIG_HIBERNATION
2264static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2265#endif /* CONFIG_HIBERNATION */
2266static inline bool debug_pagealloc_enabled(void)
2267{
2268 return false;
2269}
2270#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2271
a6c19dfe 2272#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2273extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2274extern int in_gate_area_no_mm(unsigned long addr);
2275extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2276#else
a6c19dfe
AL
2277static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2278{
2279 return NULL;
2280}
2281static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2282static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2283{
2284 return 0;
2285}
1da177e4
LT
2286#endif /* __HAVE_ARCH_GATE_AREA */
2287
44a70ade
MH
2288extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2289
146732ce
JT
2290#ifdef CONFIG_SYSCTL
2291extern int sysctl_drop_caches;
8d65af78 2292int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2293 void __user *, size_t *, loff_t *);
146732ce
JT
2294#endif
2295
cb731d6c
VD
2296void drop_slab(void);
2297void drop_slab_node(int nid);
9d0243bc 2298
7a9166e3
LY
2299#ifndef CONFIG_MMU
2300#define randomize_va_space 0
2301#else
a62eaf15 2302extern int randomize_va_space;
7a9166e3 2303#endif
a62eaf15 2304
045e72ac 2305const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2306void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2307
9bdac914
YL
2308void sparse_mem_maps_populate_node(struct page **map_map,
2309 unsigned long pnum_begin,
2310 unsigned long pnum_end,
2311 unsigned long map_count,
2312 int nodeid);
2313
98f3cfc1 2314struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2315pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2316pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2317pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2318pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2319void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc
DW
2320struct vmem_altmap;
2321void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2322 struct vmem_altmap *altmap);
2323static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2324{
2325 return __vmemmap_alloc_block_buf(size, node, NULL);
2326}
2327
8f6aac41 2328void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2329int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2330 int node);
2331int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2332void vmemmap_populate_print_last(void);
0197518c 2333#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2334void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2335#endif
46723bfa
YI
2336void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2337 unsigned long size);
6a46079c 2338
82ba011b
AK
2339enum mf_flags {
2340 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2341 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2342 MF_MUST_KILL = 1 << 2,
cf870c70 2343 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2344};
cd42f4a3 2345extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2346extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2347extern int unpoison_memory(unsigned long pfn);
ead07f6a 2348extern int get_hwpoison_page(struct page *page);
4e41a30c 2349#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2350extern int sysctl_memory_failure_early_kill;
2351extern int sysctl_memory_failure_recovery;
facb6011 2352extern void shake_page(struct page *p, int access);
293c07e3 2353extern atomic_long_t num_poisoned_pages;
facb6011 2354extern int soft_offline_page(struct page *page, int flags);
6a46079c 2355
cc637b17
XX
2356
2357/*
2358 * Error handlers for various types of pages.
2359 */
cc3e2af4 2360enum mf_result {
cc637b17
XX
2361 MF_IGNORED, /* Error: cannot be handled */
2362 MF_FAILED, /* Error: handling failed */
2363 MF_DELAYED, /* Will be handled later */
2364 MF_RECOVERED, /* Successfully recovered */
2365};
2366
2367enum mf_action_page_type {
2368 MF_MSG_KERNEL,
2369 MF_MSG_KERNEL_HIGH_ORDER,
2370 MF_MSG_SLAB,
2371 MF_MSG_DIFFERENT_COMPOUND,
2372 MF_MSG_POISONED_HUGE,
2373 MF_MSG_HUGE,
2374 MF_MSG_FREE_HUGE,
2375 MF_MSG_UNMAP_FAILED,
2376 MF_MSG_DIRTY_SWAPCACHE,
2377 MF_MSG_CLEAN_SWAPCACHE,
2378 MF_MSG_DIRTY_MLOCKED_LRU,
2379 MF_MSG_CLEAN_MLOCKED_LRU,
2380 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2381 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2382 MF_MSG_DIRTY_LRU,
2383 MF_MSG_CLEAN_LRU,
2384 MF_MSG_TRUNCATED_LRU,
2385 MF_MSG_BUDDY,
2386 MF_MSG_BUDDY_2ND,
2387 MF_MSG_UNKNOWN,
2388};
2389
47ad8475
AA
2390#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2391extern void clear_huge_page(struct page *page,
2392 unsigned long addr,
2393 unsigned int pages_per_huge_page);
2394extern void copy_user_huge_page(struct page *dst, struct page *src,
2395 unsigned long addr, struct vm_area_struct *vma,
2396 unsigned int pages_per_huge_page);
2397#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2398
e30825f1
JK
2399extern struct page_ext_operations debug_guardpage_ops;
2400extern struct page_ext_operations page_poisoning_ops;
2401
c0a32fc5
SG
2402#ifdef CONFIG_DEBUG_PAGEALLOC
2403extern unsigned int _debug_guardpage_minorder;
e30825f1 2404extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2405
2406static inline unsigned int debug_guardpage_minorder(void)
2407{
2408 return _debug_guardpage_minorder;
2409}
2410
e30825f1
JK
2411static inline bool debug_guardpage_enabled(void)
2412{
2413 return _debug_guardpage_enabled;
2414}
2415
c0a32fc5
SG
2416static inline bool page_is_guard(struct page *page)
2417{
e30825f1
JK
2418 struct page_ext *page_ext;
2419
2420 if (!debug_guardpage_enabled())
2421 return false;
2422
2423 page_ext = lookup_page_ext(page);
0bb2fd13
YS
2424 if (unlikely(!page_ext))
2425 return false;
2426
e30825f1 2427 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2428}
2429#else
2430static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2431static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2432static inline bool page_is_guard(struct page *page) { return false; }
2433#endif /* CONFIG_DEBUG_PAGEALLOC */
2434
f9872caf
CS
2435#if MAX_NUMNODES > 1
2436void __init setup_nr_node_ids(void);
2437#else
2438static inline void setup_nr_node_ids(void) {}
2439#endif
2440
1da177e4
LT
2441#endif /* __KERNEL__ */
2442#endif /* _LINUX_MM_H */