mm/ZONE_DEVICE: new type of ZONE_DEVICE for unaddressable memory
[linux-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
3565fce3 19#include <linux/percpu-refcount.h>
e9da73d6 20#include <linux/bit_spinlock.h>
b0d40c92 21#include <linux/shrinker.h>
9c599024 22#include <linux/resource.h>
e30825f1 23#include <linux/page_ext.h>
8025e5dd 24#include <linux/err.h>
fe896d18 25#include <linux/page_ref.h>
1da177e4
LT
26
27struct mempolicy;
28struct anon_vma;
bf181b9f 29struct anon_vma_chain;
4e950f6f 30struct file_ra_state;
e8edc6e0 31struct user_struct;
4e950f6f 32struct writeback_control;
682aa8e1 33struct bdi_writeback;
1da177e4 34
597b7305
MH
35void init_mm_internals(void);
36
fccc9987 37#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 38extern unsigned long max_mapnr;
fccc9987
JL
39
40static inline void set_max_mapnr(unsigned long limit)
41{
42 max_mapnr = limit;
43}
44#else
45static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
46#endif
47
4481374c 48extern unsigned long totalram_pages;
1da177e4 49extern void * high_memory;
1da177e4
LT
50extern int page_cluster;
51
52#ifdef CONFIG_SYSCTL
53extern int sysctl_legacy_va_layout;
54#else
55#define sysctl_legacy_va_layout 0
56#endif
57
d07e2259
DC
58#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
59extern const int mmap_rnd_bits_min;
60extern const int mmap_rnd_bits_max;
61extern int mmap_rnd_bits __read_mostly;
62#endif
63#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
64extern const int mmap_rnd_compat_bits_min;
65extern const int mmap_rnd_compat_bits_max;
66extern int mmap_rnd_compat_bits __read_mostly;
67#endif
68
1da177e4
LT
69#include <asm/page.h>
70#include <asm/pgtable.h>
71#include <asm/processor.h>
1da177e4 72
79442ed1
TC
73#ifndef __pa_symbol
74#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
75#endif
76
1dff8083
AB
77#ifndef page_to_virt
78#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
79#endif
80
568c5fe5
LA
81#ifndef lm_alias
82#define lm_alias(x) __va(__pa_symbol(x))
83#endif
84
593befa6
DD
85/*
86 * To prevent common memory management code establishing
87 * a zero page mapping on a read fault.
88 * This macro should be defined within <asm/pgtable.h>.
89 * s390 does this to prevent multiplexing of hardware bits
90 * related to the physical page in case of virtualization.
91 */
92#ifndef mm_forbids_zeropage
93#define mm_forbids_zeropage(X) (0)
94#endif
95
ea606cf5
AR
96/*
97 * Default maximum number of active map areas, this limits the number of vmas
98 * per mm struct. Users can overwrite this number by sysctl but there is a
99 * problem.
100 *
101 * When a program's coredump is generated as ELF format, a section is created
102 * per a vma. In ELF, the number of sections is represented in unsigned short.
103 * This means the number of sections should be smaller than 65535 at coredump.
104 * Because the kernel adds some informative sections to a image of program at
105 * generating coredump, we need some margin. The number of extra sections is
106 * 1-3 now and depends on arch. We use "5" as safe margin, here.
107 *
108 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
109 * not a hard limit any more. Although some userspace tools can be surprised by
110 * that.
111 */
112#define MAPCOUNT_ELF_CORE_MARGIN (5)
113#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
114
115extern int sysctl_max_map_count;
116
c9b1d098 117extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 118extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 119
49f0ce5f
JM
120extern int sysctl_overcommit_memory;
121extern int sysctl_overcommit_ratio;
122extern unsigned long sysctl_overcommit_kbytes;
123
124extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
125 size_t *, loff_t *);
126extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
127 size_t *, loff_t *);
128
1da177e4
LT
129#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
130
27ac792c
AR
131/* to align the pointer to the (next) page boundary */
132#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
133
0fa73b86 134/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 135#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 136
1da177e4
LT
137/*
138 * Linux kernel virtual memory manager primitives.
139 * The idea being to have a "virtual" mm in the same way
140 * we have a virtual fs - giving a cleaner interface to the
141 * mm details, and allowing different kinds of memory mappings
142 * (from shared memory to executable loading to arbitrary
143 * mmap() functions).
144 */
145
c43692e8
CL
146extern struct kmem_cache *vm_area_cachep;
147
1da177e4 148#ifndef CONFIG_MMU
8feae131
DH
149extern struct rb_root nommu_region_tree;
150extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
151
152extern unsigned int kobjsize(const void *objp);
153#endif
154
155/*
605d9288 156 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 157 * When changing, update also include/trace/events/mmflags.h
1da177e4 158 */
cc2383ec
KK
159#define VM_NONE 0x00000000
160
1da177e4
LT
161#define VM_READ 0x00000001 /* currently active flags */
162#define VM_WRITE 0x00000002
163#define VM_EXEC 0x00000004
164#define VM_SHARED 0x00000008
165
7e2cff42 166/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
167#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
168#define VM_MAYWRITE 0x00000020
169#define VM_MAYEXEC 0x00000040
170#define VM_MAYSHARE 0x00000080
171
172#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 173#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 174#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 175#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 176#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 177
1da177e4
LT
178#define VM_LOCKED 0x00002000
179#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
180
181 /* Used by sys_madvise() */
182#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
183#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
184
185#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
186#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 187#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 188#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 189#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 190#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 191#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 192#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 193#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 194
d9104d1c
CG
195#ifdef CONFIG_MEM_SOFT_DIRTY
196# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
197#else
198# define VM_SOFTDIRTY 0
199#endif
200
b379d790 201#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
202#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
203#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 204#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 205
63c17fb8
DH
206#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
207#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
208#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
209#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
210#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 211#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
212#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
213#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
214#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
215#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 216#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
217#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
218
cc2383ec
KK
219#if defined(CONFIG_X86)
220# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
8f62c883
DH
221#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
222# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
223# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
224# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
225# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
226# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
227#endif
cc2383ec
KK
228#elif defined(CONFIG_PPC)
229# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
230#elif defined(CONFIG_PARISC)
231# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
232#elif defined(CONFIG_METAG)
233# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
234#elif defined(CONFIG_IA64)
235# define VM_GROWSUP VM_ARCH_1
236#elif !defined(CONFIG_MMU)
237# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
238#endif
239
df3735c5 240#if defined(CONFIG_X86_INTEL_MPX)
4aae7e43 241/* MPX specific bounds table or bounds directory */
df3735c5
RR
242# define VM_MPX VM_HIGH_ARCH_BIT_4
243#else
244# define VM_MPX VM_NONE
4aae7e43
QR
245#endif
246
cc2383ec
KK
247#ifndef VM_GROWSUP
248# define VM_GROWSUP VM_NONE
249#endif
250
a8bef8ff
MG
251/* Bits set in the VMA until the stack is in its final location */
252#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
253
1da177e4
LT
254#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
255#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
256#endif
257
258#ifdef CONFIG_STACK_GROWSUP
30bdbb78 259#define VM_STACK VM_GROWSUP
1da177e4 260#else
30bdbb78 261#define VM_STACK VM_GROWSDOWN
1da177e4
LT
262#endif
263
30bdbb78
KK
264#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
265
b291f000 266/*
78f11a25
AA
267 * Special vmas that are non-mergable, non-mlock()able.
268 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 269 */
9050d7eb 270#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 271
a0715cc2
AT
272/* This mask defines which mm->def_flags a process can inherit its parent */
273#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
274
de60f5f1
EM
275/* This mask is used to clear all the VMA flags used by mlock */
276#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
277
1da177e4
LT
278/*
279 * mapping from the currently active vm_flags protection bits (the
280 * low four bits) to a page protection mask..
281 */
282extern pgprot_t protection_map[16];
283
d0217ac0 284#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
285#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
286#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
287#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
288#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
289#define FAULT_FLAG_TRIED 0x20 /* Second try */
290#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 291#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 292#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 293
282a8e03
RZ
294#define FAULT_FLAG_TRACE \
295 { FAULT_FLAG_WRITE, "WRITE" }, \
296 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
297 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
298 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
299 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
300 { FAULT_FLAG_TRIED, "TRIED" }, \
301 { FAULT_FLAG_USER, "USER" }, \
302 { FAULT_FLAG_REMOTE, "REMOTE" }, \
303 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
304
54cb8821 305/*
d0217ac0 306 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
307 * ->fault function. The vma's ->fault is responsible for returning a bitmask
308 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 309 *
c20cd45e
MH
310 * MM layer fills up gfp_mask for page allocations but fault handler might
311 * alter it if its implementation requires a different allocation context.
312 *
9b4bdd2f 313 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 314 */
d0217ac0 315struct vm_fault {
82b0f8c3 316 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 317 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 318 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 319 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 320 unsigned long address; /* Faulting virtual address */
82b0f8c3 321 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 322 * the 'address' */
a2d58167
DJ
323 pud_t *pud; /* Pointer to pud entry matching
324 * the 'address'
325 */
2994302b 326 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 327
3917048d
JK
328 struct page *cow_page; /* Page handler may use for COW fault */
329 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 330 struct page *page; /* ->fault handlers should return a
83c54070 331 * page here, unless VM_FAULT_NOPAGE
d0217ac0 332 * is set (which is also implied by
83c54070 333 * VM_FAULT_ERROR).
d0217ac0 334 */
82b0f8c3 335 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
336 pte_t *pte; /* Pointer to pte entry matching
337 * the 'address'. NULL if the page
338 * table hasn't been allocated.
339 */
340 spinlock_t *ptl; /* Page table lock.
341 * Protects pte page table if 'pte'
342 * is not NULL, otherwise pmd.
343 */
7267ec00
KS
344 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
345 * vm_ops->map_pages() calls
346 * alloc_set_pte() from atomic context.
347 * do_fault_around() pre-allocates
348 * page table to avoid allocation from
349 * atomic context.
350 */
54cb8821 351};
1da177e4 352
c791ace1
DJ
353/* page entry size for vm->huge_fault() */
354enum page_entry_size {
355 PE_SIZE_PTE = 0,
356 PE_SIZE_PMD,
357 PE_SIZE_PUD,
358};
359
1da177e4
LT
360/*
361 * These are the virtual MM functions - opening of an area, closing and
362 * unmapping it (needed to keep files on disk up-to-date etc), pointer
363 * to the functions called when a no-page or a wp-page exception occurs.
364 */
365struct vm_operations_struct {
366 void (*open)(struct vm_area_struct * area);
367 void (*close)(struct vm_area_struct * area);
5477e70a 368 int (*mremap)(struct vm_area_struct * area);
11bac800 369 int (*fault)(struct vm_fault *vmf);
c791ace1 370 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
82b0f8c3 371 void (*map_pages)(struct vm_fault *vmf,
bae473a4 372 pgoff_t start_pgoff, pgoff_t end_pgoff);
9637a5ef
DH
373
374 /* notification that a previously read-only page is about to become
375 * writable, if an error is returned it will cause a SIGBUS */
11bac800 376 int (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 377
dd906184 378 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
11bac800 379 int (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 380
28b2ee20
RR
381 /* called by access_process_vm when get_user_pages() fails, typically
382 * for use by special VMAs that can switch between memory and hardware
383 */
384 int (*access)(struct vm_area_struct *vma, unsigned long addr,
385 void *buf, int len, int write);
78d683e8
AL
386
387 /* Called by the /proc/PID/maps code to ask the vma whether it
388 * has a special name. Returning non-NULL will also cause this
389 * vma to be dumped unconditionally. */
390 const char *(*name)(struct vm_area_struct *vma);
391
1da177e4 392#ifdef CONFIG_NUMA
a6020ed7
LS
393 /*
394 * set_policy() op must add a reference to any non-NULL @new mempolicy
395 * to hold the policy upon return. Caller should pass NULL @new to
396 * remove a policy and fall back to surrounding context--i.e. do not
397 * install a MPOL_DEFAULT policy, nor the task or system default
398 * mempolicy.
399 */
1da177e4 400 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
401
402 /*
403 * get_policy() op must add reference [mpol_get()] to any policy at
404 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
405 * in mm/mempolicy.c will do this automatically.
406 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
407 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
408 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
409 * must return NULL--i.e., do not "fallback" to task or system default
410 * policy.
411 */
1da177e4
LT
412 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
413 unsigned long addr);
414#endif
667a0a06
DV
415 /*
416 * Called by vm_normal_page() for special PTEs to find the
417 * page for @addr. This is useful if the default behavior
418 * (using pte_page()) would not find the correct page.
419 */
420 struct page *(*find_special_page)(struct vm_area_struct *vma,
421 unsigned long addr);
1da177e4
LT
422};
423
424struct mmu_gather;
425struct inode;
426
349aef0b
AM
427#define page_private(page) ((page)->private)
428#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 429
5c7fb56e
DW
430#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
431static inline int pmd_devmap(pmd_t pmd)
432{
433 return 0;
434}
a00cc7d9
MW
435static inline int pud_devmap(pud_t pud)
436{
437 return 0;
438}
b59f65fa
KS
439static inline int pgd_devmap(pgd_t pgd)
440{
441 return 0;
442}
5c7fb56e
DW
443#endif
444
1da177e4
LT
445/*
446 * FIXME: take this include out, include page-flags.h in
447 * files which need it (119 of them)
448 */
449#include <linux/page-flags.h>
71e3aac0 450#include <linux/huge_mm.h>
1da177e4
LT
451
452/*
453 * Methods to modify the page usage count.
454 *
455 * What counts for a page usage:
456 * - cache mapping (page->mapping)
457 * - private data (page->private)
458 * - page mapped in a task's page tables, each mapping
459 * is counted separately
460 *
461 * Also, many kernel routines increase the page count before a critical
462 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
463 */
464
465/*
da6052f7 466 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 467 */
7c8ee9a8
NP
468static inline int put_page_testzero(struct page *page)
469{
fe896d18
JK
470 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
471 return page_ref_dec_and_test(page);
7c8ee9a8 472}
1da177e4
LT
473
474/*
7c8ee9a8
NP
475 * Try to grab a ref unless the page has a refcount of zero, return false if
476 * that is the case.
8e0861fa
AK
477 * This can be called when MMU is off so it must not access
478 * any of the virtual mappings.
1da177e4 479 */
7c8ee9a8
NP
480static inline int get_page_unless_zero(struct page *page)
481{
fe896d18 482 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 483}
1da177e4 484
53df8fdc 485extern int page_is_ram(unsigned long pfn);
124fe20d
DW
486
487enum {
488 REGION_INTERSECTS,
489 REGION_DISJOINT,
490 REGION_MIXED,
491};
492
1c29f25b
TK
493int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
494 unsigned long desc);
53df8fdc 495
48667e7a 496/* Support for virtually mapped pages */
b3bdda02
CL
497struct page *vmalloc_to_page(const void *addr);
498unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 499
0738c4bb
PM
500/*
501 * Determine if an address is within the vmalloc range
502 *
503 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
504 * is no special casing required.
505 */
bb00a789 506static inline bool is_vmalloc_addr(const void *x)
9e2779fa 507{
0738c4bb 508#ifdef CONFIG_MMU
9e2779fa
CL
509 unsigned long addr = (unsigned long)x;
510
511 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 512#else
bb00a789 513 return false;
8ca3ed87 514#endif
0738c4bb 515}
81ac3ad9
KH
516#ifdef CONFIG_MMU
517extern int is_vmalloc_or_module_addr(const void *x);
518#else
934831d0 519static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
520{
521 return 0;
522}
523#endif
9e2779fa 524
a7c3e901
MH
525extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
526static inline void *kvmalloc(size_t size, gfp_t flags)
527{
528 return kvmalloc_node(size, flags, NUMA_NO_NODE);
529}
530static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
531{
532 return kvmalloc_node(size, flags | __GFP_ZERO, node);
533}
534static inline void *kvzalloc(size_t size, gfp_t flags)
535{
536 return kvmalloc(size, flags | __GFP_ZERO);
537}
538
752ade68
MH
539static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
540{
541 if (size != 0 && n > SIZE_MAX / size)
542 return NULL;
543
544 return kvmalloc(n * size, flags);
545}
546
39f1f78d
AV
547extern void kvfree(const void *addr);
548
53f9263b
KS
549static inline atomic_t *compound_mapcount_ptr(struct page *page)
550{
551 return &page[1].compound_mapcount;
552}
553
554static inline int compound_mapcount(struct page *page)
555{
5f527c2b 556 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
557 page = compound_head(page);
558 return atomic_read(compound_mapcount_ptr(page)) + 1;
559}
560
70b50f94
AA
561/*
562 * The atomic page->_mapcount, starts from -1: so that transitions
563 * both from it and to it can be tracked, using atomic_inc_and_test
564 * and atomic_add_negative(-1).
565 */
22b751c3 566static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
567{
568 atomic_set(&(page)->_mapcount, -1);
569}
570
b20ce5e0
KS
571int __page_mapcount(struct page *page);
572
70b50f94
AA
573static inline int page_mapcount(struct page *page)
574{
1d148e21 575 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 576
b20ce5e0
KS
577 if (unlikely(PageCompound(page)))
578 return __page_mapcount(page);
579 return atomic_read(&page->_mapcount) + 1;
580}
581
582#ifdef CONFIG_TRANSPARENT_HUGEPAGE
583int total_mapcount(struct page *page);
6d0a07ed 584int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
585#else
586static inline int total_mapcount(struct page *page)
587{
588 return page_mapcount(page);
70b50f94 589}
6d0a07ed
AA
590static inline int page_trans_huge_mapcount(struct page *page,
591 int *total_mapcount)
592{
593 int mapcount = page_mapcount(page);
594 if (total_mapcount)
595 *total_mapcount = mapcount;
596 return mapcount;
597}
b20ce5e0 598#endif
70b50f94 599
b49af68f
CL
600static inline struct page *virt_to_head_page(const void *x)
601{
602 struct page *page = virt_to_page(x);
ccaafd7f 603
1d798ca3 604 return compound_head(page);
b49af68f
CL
605}
606
ddc58f27
KS
607void __put_page(struct page *page);
608
1d7ea732 609void put_pages_list(struct list_head *pages);
1da177e4 610
8dfcc9ba 611void split_page(struct page *page, unsigned int order);
8dfcc9ba 612
33f2ef89
AW
613/*
614 * Compound pages have a destructor function. Provide a
615 * prototype for that function and accessor functions.
f1e61557 616 * These are _only_ valid on the head of a compound page.
33f2ef89 617 */
f1e61557
KS
618typedef void compound_page_dtor(struct page *);
619
620/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
621enum compound_dtor_id {
622 NULL_COMPOUND_DTOR,
623 COMPOUND_PAGE_DTOR,
624#ifdef CONFIG_HUGETLB_PAGE
625 HUGETLB_PAGE_DTOR,
9a982250
KS
626#endif
627#ifdef CONFIG_TRANSPARENT_HUGEPAGE
628 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
629#endif
630 NR_COMPOUND_DTORS,
631};
632extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
633
634static inline void set_compound_page_dtor(struct page *page,
f1e61557 635 enum compound_dtor_id compound_dtor)
33f2ef89 636{
f1e61557
KS
637 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
638 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
639}
640
641static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
642{
f1e61557
KS
643 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
644 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
645}
646
d00181b9 647static inline unsigned int compound_order(struct page *page)
d85f3385 648{
6d777953 649 if (!PageHead(page))
d85f3385 650 return 0;
e4b294c2 651 return page[1].compound_order;
d85f3385
CL
652}
653
f1e61557 654static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 655{
e4b294c2 656 page[1].compound_order = order;
d85f3385
CL
657}
658
9a982250
KS
659void free_compound_page(struct page *page);
660
3dece370 661#ifdef CONFIG_MMU
14fd403f
AA
662/*
663 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
664 * servicing faults for write access. In the normal case, do always want
665 * pte_mkwrite. But get_user_pages can cause write faults for mappings
666 * that do not have writing enabled, when used by access_process_vm.
667 */
668static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
669{
670 if (likely(vma->vm_flags & VM_WRITE))
671 pte = pte_mkwrite(pte);
672 return pte;
673}
8c6e50b0 674
82b0f8c3 675int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 676 struct page *page);
9118c0cb 677int finish_fault(struct vm_fault *vmf);
66a6197c 678int finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 679#endif
14fd403f 680
1da177e4
LT
681/*
682 * Multiple processes may "see" the same page. E.g. for untouched
683 * mappings of /dev/null, all processes see the same page full of
684 * zeroes, and text pages of executables and shared libraries have
685 * only one copy in memory, at most, normally.
686 *
687 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
688 * page_count() == 0 means the page is free. page->lru is then used for
689 * freelist management in the buddy allocator.
da6052f7 690 * page_count() > 0 means the page has been allocated.
1da177e4 691 *
da6052f7
NP
692 * Pages are allocated by the slab allocator in order to provide memory
693 * to kmalloc and kmem_cache_alloc. In this case, the management of the
694 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
695 * unless a particular usage is carefully commented. (the responsibility of
696 * freeing the kmalloc memory is the caller's, of course).
1da177e4 697 *
da6052f7
NP
698 * A page may be used by anyone else who does a __get_free_page().
699 * In this case, page_count still tracks the references, and should only
700 * be used through the normal accessor functions. The top bits of page->flags
701 * and page->virtual store page management information, but all other fields
702 * are unused and could be used privately, carefully. The management of this
703 * page is the responsibility of the one who allocated it, and those who have
704 * subsequently been given references to it.
705 *
706 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
707 * managed by the Linux memory manager: I/O, buffers, swapping etc.
708 * The following discussion applies only to them.
709 *
da6052f7
NP
710 * A pagecache page contains an opaque `private' member, which belongs to the
711 * page's address_space. Usually, this is the address of a circular list of
712 * the page's disk buffers. PG_private must be set to tell the VM to call
713 * into the filesystem to release these pages.
1da177e4 714 *
da6052f7
NP
715 * A page may belong to an inode's memory mapping. In this case, page->mapping
716 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 717 * in units of PAGE_SIZE.
1da177e4 718 *
da6052f7
NP
719 * If pagecache pages are not associated with an inode, they are said to be
720 * anonymous pages. These may become associated with the swapcache, and in that
721 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 722 *
da6052f7
NP
723 * In either case (swapcache or inode backed), the pagecache itself holds one
724 * reference to the page. Setting PG_private should also increment the
725 * refcount. The each user mapping also has a reference to the page.
1da177e4 726 *
da6052f7
NP
727 * The pagecache pages are stored in a per-mapping radix tree, which is
728 * rooted at mapping->page_tree, and indexed by offset.
729 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
730 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 731 *
da6052f7 732 * All pagecache pages may be subject to I/O:
1da177e4
LT
733 * - inode pages may need to be read from disk,
734 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
735 * to be written back to the inode on disk,
736 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
737 * modified may need to be swapped out to swap space and (later) to be read
738 * back into memory.
1da177e4
LT
739 */
740
741/*
742 * The zone field is never updated after free_area_init_core()
743 * sets it, so none of the operations on it need to be atomic.
1da177e4 744 */
348f8b6c 745
90572890 746/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 747#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
748#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
749#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 750#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 751
348f8b6c 752/*
25985edc 753 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
754 * sections we define the shift as 0; that plus a 0 mask ensures
755 * the compiler will optimise away reference to them.
756 */
d41dee36
AW
757#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
758#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
759#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 760#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 761
bce54bbf
WD
762/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
763#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 764#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
765#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
766 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 767#else
89689ae7 768#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
769#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
770 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
771#endif
772
bd8029b6 773#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 774
9223b419
CL
775#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
776#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
777#endif
778
d41dee36
AW
779#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
780#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
781#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 782#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 783#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 784
33dd4e0e 785static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 786{
348f8b6c 787 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 788}
1da177e4 789
260ae3f7
DW
790#ifdef CONFIG_ZONE_DEVICE
791static inline bool is_zone_device_page(const struct page *page)
792{
793 return page_zonenum(page) == ZONE_DEVICE;
794}
5042db43
JG
795
796static inline bool is_device_private_page(const struct page *page)
797{
798 /* See MEMORY_DEVICE_PRIVATE in include/linux/memory_hotplug.h */
799 return ((page_zonenum(page) == ZONE_DEVICE) &&
800 (page->pgmap->type == MEMORY_DEVICE_PRIVATE));
801}
260ae3f7
DW
802#else
803static inline bool is_zone_device_page(const struct page *page)
804{
805 return false;
806}
5042db43
JG
807
808static inline bool is_device_private_page(const struct page *page)
809{
810 return false;
811}
260ae3f7
DW
812#endif
813
3565fce3
DW
814static inline void get_page(struct page *page)
815{
816 page = compound_head(page);
817 /*
818 * Getting a normal page or the head of a compound page
0139aa7b 819 * requires to already have an elevated page->_refcount.
3565fce3 820 */
fe896d18
JK
821 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
822 page_ref_inc(page);
3565fce3
DW
823}
824
825static inline void put_page(struct page *page)
826{
827 page = compound_head(page);
828
829 if (put_page_testzero(page))
830 __put_page(page);
3565fce3
DW
831}
832
9127ab4f
CS
833#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
834#define SECTION_IN_PAGE_FLAGS
835#endif
836
89689ae7 837/*
7a8010cd
VB
838 * The identification function is mainly used by the buddy allocator for
839 * determining if two pages could be buddies. We are not really identifying
840 * the zone since we could be using the section number id if we do not have
841 * node id available in page flags.
842 * We only guarantee that it will return the same value for two combinable
843 * pages in a zone.
89689ae7 844 */
cb2b95e1
AW
845static inline int page_zone_id(struct page *page)
846{
89689ae7 847 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
848}
849
25ba77c1 850static inline int zone_to_nid(struct zone *zone)
89fa3024 851{
d5f541ed
CL
852#ifdef CONFIG_NUMA
853 return zone->node;
854#else
855 return 0;
856#endif
89fa3024
CL
857}
858
89689ae7 859#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 860extern int page_to_nid(const struct page *page);
89689ae7 861#else
33dd4e0e 862static inline int page_to_nid(const struct page *page)
d41dee36 863{
89689ae7 864 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 865}
89689ae7
CL
866#endif
867
57e0a030 868#ifdef CONFIG_NUMA_BALANCING
90572890 869static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 870{
90572890 871 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
872}
873
90572890 874static inline int cpupid_to_pid(int cpupid)
57e0a030 875{
90572890 876 return cpupid & LAST__PID_MASK;
57e0a030 877}
b795854b 878
90572890 879static inline int cpupid_to_cpu(int cpupid)
b795854b 880{
90572890 881 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
882}
883
90572890 884static inline int cpupid_to_nid(int cpupid)
b795854b 885{
90572890 886 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
887}
888
90572890 889static inline bool cpupid_pid_unset(int cpupid)
57e0a030 890{
90572890 891 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
892}
893
90572890 894static inline bool cpupid_cpu_unset(int cpupid)
b795854b 895{
90572890 896 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
897}
898
8c8a743c
PZ
899static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
900{
901 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
902}
903
904#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
905#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
906static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 907{
1ae71d03 908 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 909}
90572890
PZ
910
911static inline int page_cpupid_last(struct page *page)
912{
913 return page->_last_cpupid;
914}
915static inline void page_cpupid_reset_last(struct page *page)
b795854b 916{
1ae71d03 917 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
918}
919#else
90572890 920static inline int page_cpupid_last(struct page *page)
75980e97 921{
90572890 922 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
923}
924
90572890 925extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 926
90572890 927static inline void page_cpupid_reset_last(struct page *page)
75980e97 928{
09940a4f 929 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 930}
90572890
PZ
931#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
932#else /* !CONFIG_NUMA_BALANCING */
933static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 934{
90572890 935 return page_to_nid(page); /* XXX */
57e0a030
MG
936}
937
90572890 938static inline int page_cpupid_last(struct page *page)
57e0a030 939{
90572890 940 return page_to_nid(page); /* XXX */
57e0a030
MG
941}
942
90572890 943static inline int cpupid_to_nid(int cpupid)
b795854b
MG
944{
945 return -1;
946}
947
90572890 948static inline int cpupid_to_pid(int cpupid)
b795854b
MG
949{
950 return -1;
951}
952
90572890 953static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
954{
955 return -1;
956}
957
90572890
PZ
958static inline int cpu_pid_to_cpupid(int nid, int pid)
959{
960 return -1;
961}
962
963static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
964{
965 return 1;
966}
967
90572890 968static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
969{
970}
8c8a743c
PZ
971
972static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
973{
974 return false;
975}
90572890 976#endif /* CONFIG_NUMA_BALANCING */
57e0a030 977
33dd4e0e 978static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
979{
980 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
981}
982
75ef7184
MG
983static inline pg_data_t *page_pgdat(const struct page *page)
984{
985 return NODE_DATA(page_to_nid(page));
986}
987
9127ab4f 988#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
989static inline void set_page_section(struct page *page, unsigned long section)
990{
991 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
992 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
993}
994
aa462abe 995static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
996{
997 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
998}
308c05e3 999#endif
d41dee36 1000
2f1b6248 1001static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1002{
1003 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1004 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1005}
2f1b6248 1006
348f8b6c
DH
1007static inline void set_page_node(struct page *page, unsigned long node)
1008{
1009 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1010 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1011}
89689ae7 1012
2f1b6248 1013static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1014 unsigned long node, unsigned long pfn)
1da177e4 1015{
348f8b6c
DH
1016 set_page_zone(page, zone);
1017 set_page_node(page, node);
9127ab4f 1018#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1019 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1020#endif
1da177e4
LT
1021}
1022
0610c25d
GT
1023#ifdef CONFIG_MEMCG
1024static inline struct mem_cgroup *page_memcg(struct page *page)
1025{
1026 return page->mem_cgroup;
1027}
55779ec7
JW
1028static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1029{
1030 WARN_ON_ONCE(!rcu_read_lock_held());
1031 return READ_ONCE(page->mem_cgroup);
1032}
0610c25d
GT
1033#else
1034static inline struct mem_cgroup *page_memcg(struct page *page)
1035{
1036 return NULL;
1037}
55779ec7
JW
1038static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1039{
1040 WARN_ON_ONCE(!rcu_read_lock_held());
1041 return NULL;
1042}
0610c25d
GT
1043#endif
1044
f6ac2354
CL
1045/*
1046 * Some inline functions in vmstat.h depend on page_zone()
1047 */
1048#include <linux/vmstat.h>
1049
33dd4e0e 1050static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1051{
1dff8083 1052 return page_to_virt(page);
1da177e4
LT
1053}
1054
1055#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1056#define HASHED_PAGE_VIRTUAL
1057#endif
1058
1059#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1060static inline void *page_address(const struct page *page)
1061{
1062 return page->virtual;
1063}
1064static inline void set_page_address(struct page *page, void *address)
1065{
1066 page->virtual = address;
1067}
1da177e4
LT
1068#define page_address_init() do { } while(0)
1069#endif
1070
1071#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1072void *page_address(const struct page *page);
1da177e4
LT
1073void set_page_address(struct page *page, void *virtual);
1074void page_address_init(void);
1075#endif
1076
1077#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1078#define page_address(page) lowmem_page_address(page)
1079#define set_page_address(page, address) do { } while(0)
1080#define page_address_init() do { } while(0)
1081#endif
1082
e39155ea
KS
1083extern void *page_rmapping(struct page *page);
1084extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1085extern struct address_space *page_mapping(struct page *page);
1da177e4 1086
f981c595
MG
1087extern struct address_space *__page_file_mapping(struct page *);
1088
1089static inline
1090struct address_space *page_file_mapping(struct page *page)
1091{
1092 if (unlikely(PageSwapCache(page)))
1093 return __page_file_mapping(page);
1094
1095 return page->mapping;
1096}
1097
f6ab1f7f
HY
1098extern pgoff_t __page_file_index(struct page *page);
1099
1da177e4
LT
1100/*
1101 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1102 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1103 */
1104static inline pgoff_t page_index(struct page *page)
1105{
1106 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1107 return __page_file_index(page);
1da177e4
LT
1108 return page->index;
1109}
1110
1aa8aea5 1111bool page_mapped(struct page *page);
bda807d4 1112struct address_space *page_mapping(struct page *page);
1da177e4 1113
2f064f34
MH
1114/*
1115 * Return true only if the page has been allocated with
1116 * ALLOC_NO_WATERMARKS and the low watermark was not
1117 * met implying that the system is under some pressure.
1118 */
1119static inline bool page_is_pfmemalloc(struct page *page)
1120{
1121 /*
1122 * Page index cannot be this large so this must be
1123 * a pfmemalloc page.
1124 */
1125 return page->index == -1UL;
1126}
1127
1128/*
1129 * Only to be called by the page allocator on a freshly allocated
1130 * page.
1131 */
1132static inline void set_page_pfmemalloc(struct page *page)
1133{
1134 page->index = -1UL;
1135}
1136
1137static inline void clear_page_pfmemalloc(struct page *page)
1138{
1139 page->index = 0;
1140}
1141
1da177e4
LT
1142/*
1143 * Different kinds of faults, as returned by handle_mm_fault().
1144 * Used to decide whether a process gets delivered SIGBUS or
1145 * just gets major/minor fault counters bumped up.
1146 */
d0217ac0 1147
83c54070
NP
1148#define VM_FAULT_OOM 0x0001
1149#define VM_FAULT_SIGBUS 0x0002
1150#define VM_FAULT_MAJOR 0x0004
1151#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1152#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1153#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1154#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1155
83c54070
NP
1156#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1157#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1158#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1159#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
b1aa812b 1160#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1da177e4 1161
aa50d3a7
AK
1162#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1163
33692f27
LT
1164#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1165 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1166 VM_FAULT_FALLBACK)
aa50d3a7 1167
282a8e03
RZ
1168#define VM_FAULT_RESULT_TRACE \
1169 { VM_FAULT_OOM, "OOM" }, \
1170 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1171 { VM_FAULT_MAJOR, "MAJOR" }, \
1172 { VM_FAULT_WRITE, "WRITE" }, \
1173 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1174 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1175 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1176 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1177 { VM_FAULT_LOCKED, "LOCKED" }, \
1178 { VM_FAULT_RETRY, "RETRY" }, \
1179 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1180 { VM_FAULT_DONE_COW, "DONE_COW" }
1181
aa50d3a7
AK
1182/* Encode hstate index for a hwpoisoned large page */
1183#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1184#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1185
1c0fe6e3
NP
1186/*
1187 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1188 */
1189extern void pagefault_out_of_memory(void);
1190
1da177e4
LT
1191#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1192
ddd588b5 1193/*
7bf02ea2 1194 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1195 * various contexts.
1196 */
4b59e6c4 1197#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1198
9af744d7 1199extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1200
7f43add4 1201extern bool can_do_mlock(void);
1da177e4
LT
1202extern int user_shm_lock(size_t, struct user_struct *);
1203extern void user_shm_unlock(size_t, struct user_struct *);
1204
1205/*
1206 * Parameter block passed down to zap_pte_range in exceptional cases.
1207 */
1208struct zap_details {
1da177e4
LT
1209 struct address_space *check_mapping; /* Check page->mapping if set */
1210 pgoff_t first_index; /* Lowest page->index to unmap */
1211 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1212};
1213
7e675137
NP
1214struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1215 pte_t pte);
28093f9f
GS
1216struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1217 pmd_t pmd);
7e675137 1218
c627f9cc
JS
1219int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1220 unsigned long size);
14f5ff5d 1221void zap_page_range(struct vm_area_struct *vma, unsigned long address,
ecf1385d 1222 unsigned long size);
4f74d2c8
LT
1223void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1224 unsigned long start, unsigned long end);
e6473092
MM
1225
1226/**
1227 * mm_walk - callbacks for walk_page_range
a00cc7d9
MW
1228 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1229 * this handler should only handle pud_trans_huge() puds.
1230 * the pmd_entry or pte_entry callbacks will be used for
1231 * regular PUDs.
e6473092 1232 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1233 * this handler is required to be able to handle
1234 * pmd_trans_huge() pmds. They may simply choose to
1235 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1236 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1237 * @pte_hole: if set, called for each hole at all levels
5dc37642 1238 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426 1239 * @test_walk: caller specific callback function to determine whether
f7e2355f 1240 * we walk over the current vma or not. Returning 0
fafaa426
NH
1241 * value means "do page table walk over the current vma,"
1242 * and a negative one means "abort current page table walk
f7e2355f 1243 * right now." 1 means "skip the current vma."
fafaa426
NH
1244 * @mm: mm_struct representing the target process of page table walk
1245 * @vma: vma currently walked (NULL if walking outside vmas)
1246 * @private: private data for callbacks' usage
e6473092 1247 *
fafaa426 1248 * (see the comment on walk_page_range() for more details)
e6473092
MM
1249 */
1250struct mm_walk {
a00cc7d9
MW
1251 int (*pud_entry)(pud_t *pud, unsigned long addr,
1252 unsigned long next, struct mm_walk *walk);
0f157a5b
AM
1253 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1254 unsigned long next, struct mm_walk *walk);
1255 int (*pte_entry)(pte_t *pte, unsigned long addr,
1256 unsigned long next, struct mm_walk *walk);
1257 int (*pte_hole)(unsigned long addr, unsigned long next,
1258 struct mm_walk *walk);
1259 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1260 unsigned long addr, unsigned long next,
1261 struct mm_walk *walk);
fafaa426
NH
1262 int (*test_walk)(unsigned long addr, unsigned long next,
1263 struct mm_walk *walk);
2165009b 1264 struct mm_struct *mm;
fafaa426 1265 struct vm_area_struct *vma;
2165009b 1266 void *private;
e6473092
MM
1267};
1268
2165009b
DH
1269int walk_page_range(unsigned long addr, unsigned long end,
1270 struct mm_walk *walk);
900fc5f1 1271int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1272void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1273 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1274int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1275 struct vm_area_struct *vma);
1da177e4
LT
1276void unmap_mapping_range(struct address_space *mapping,
1277 loff_t const holebegin, loff_t const holelen, int even_cows);
09796395 1278int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885 1279 unsigned long *start, unsigned long *end,
09796395 1280 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1281int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1282 unsigned long *pfn);
d87fe660 1283int follow_phys(struct vm_area_struct *vma, unsigned long address,
1284 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1285int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1286 void *buf, int len, int write);
1da177e4
LT
1287
1288static inline void unmap_shared_mapping_range(struct address_space *mapping,
1289 loff_t const holebegin, loff_t const holelen)
1290{
1291 unmap_mapping_range(mapping, holebegin, holelen, 0);
1292}
1293
7caef267 1294extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1295extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1296void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1297void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1298int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1299int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1300int invalidate_inode_page(struct page *page);
1301
7ee1dd3f 1302#ifdef CONFIG_MMU
dcddffd4
KS
1303extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1304 unsigned int flags);
5c723ba5 1305extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1306 unsigned long address, unsigned int fault_flags,
1307 bool *unlocked);
7ee1dd3f 1308#else
dcddffd4
KS
1309static inline int handle_mm_fault(struct vm_area_struct *vma,
1310 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1311{
1312 /* should never happen if there's no MMU */
1313 BUG();
1314 return VM_FAULT_SIGBUS;
1315}
5c723ba5
PZ
1316static inline int fixup_user_fault(struct task_struct *tsk,
1317 struct mm_struct *mm, unsigned long address,
4a9e1cda 1318 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1319{
1320 /* should never happen if there's no MMU */
1321 BUG();
1322 return -EFAULT;
1323}
7ee1dd3f 1324#endif
f33ea7f4 1325
f307ab6d
LS
1326extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1327 unsigned int gup_flags);
5ddd36b9 1328extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1329 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1330extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1331 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1332
1e987790
DH
1333long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1334 unsigned long start, unsigned long nr_pages,
9beae1ea 1335 unsigned int gup_flags, struct page **pages,
5b56d49f 1336 struct vm_area_struct **vmas, int *locked);
c12d2da5 1337long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1338 unsigned int gup_flags, struct page **pages,
cde70140 1339 struct vm_area_struct **vmas);
c12d2da5 1340long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1341 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1342long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1343 struct page **pages, unsigned int gup_flags);
d2bf6be8
NP
1344int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1345 struct page **pages);
8025e5dd
JK
1346
1347/* Container for pinned pfns / pages */
1348struct frame_vector {
1349 unsigned int nr_allocated; /* Number of frames we have space for */
1350 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1351 bool got_ref; /* Did we pin pages by getting page ref? */
1352 bool is_pfns; /* Does array contain pages or pfns? */
1353 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1354 * pfns_vector_pages() or pfns_vector_pfns()
1355 * for access */
1356};
1357
1358struct frame_vector *frame_vector_create(unsigned int nr_frames);
1359void frame_vector_destroy(struct frame_vector *vec);
1360int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1361 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1362void put_vaddr_frames(struct frame_vector *vec);
1363int frame_vector_to_pages(struct frame_vector *vec);
1364void frame_vector_to_pfns(struct frame_vector *vec);
1365
1366static inline unsigned int frame_vector_count(struct frame_vector *vec)
1367{
1368 return vec->nr_frames;
1369}
1370
1371static inline struct page **frame_vector_pages(struct frame_vector *vec)
1372{
1373 if (vec->is_pfns) {
1374 int err = frame_vector_to_pages(vec);
1375
1376 if (err)
1377 return ERR_PTR(err);
1378 }
1379 return (struct page **)(vec->ptrs);
1380}
1381
1382static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1383{
1384 if (!vec->is_pfns)
1385 frame_vector_to_pfns(vec);
1386 return (unsigned long *)(vec->ptrs);
1387}
1388
18022c5d
MG
1389struct kvec;
1390int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1391 struct page **pages);
1392int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1393struct page *get_dump_page(unsigned long addr);
1da177e4 1394
cf9a2ae8 1395extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1396extern void do_invalidatepage(struct page *page, unsigned int offset,
1397 unsigned int length);
cf9a2ae8 1398
1da177e4 1399int __set_page_dirty_nobuffers(struct page *page);
76719325 1400int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1401int redirty_page_for_writepage(struct writeback_control *wbc,
1402 struct page *page);
62cccb8c 1403void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1404void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1405 struct bdi_writeback *wb);
b3c97528 1406int set_page_dirty(struct page *page);
1da177e4 1407int set_page_dirty_lock(struct page *page);
11f81bec 1408void cancel_dirty_page(struct page *page);
1da177e4 1409int clear_page_dirty_for_io(struct page *page);
b9ea2515 1410
a9090253 1411int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1412
b5330628
ON
1413static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1414{
1415 return !vma->vm_ops;
1416}
1417
b0506e48
MR
1418#ifdef CONFIG_SHMEM
1419/*
1420 * The vma_is_shmem is not inline because it is used only by slow
1421 * paths in userfault.
1422 */
1423bool vma_is_shmem(struct vm_area_struct *vma);
1424#else
1425static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1426#endif
1427
d17af505 1428int vma_is_stack_for_current(struct vm_area_struct *vma);
b7643757 1429
b6a2fea3
OW
1430extern unsigned long move_page_tables(struct vm_area_struct *vma,
1431 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1432 unsigned long new_addr, unsigned long len,
1433 bool need_rmap_locks);
7da4d641
PZ
1434extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1435 unsigned long end, pgprot_t newprot,
4b10e7d5 1436 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1437extern int mprotect_fixup(struct vm_area_struct *vma,
1438 struct vm_area_struct **pprev, unsigned long start,
1439 unsigned long end, unsigned long newflags);
1da177e4 1440
465a454f
PZ
1441/*
1442 * doesn't attempt to fault and will return short.
1443 */
1444int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1445 struct page **pages);
d559db08
KH
1446/*
1447 * per-process(per-mm_struct) statistics.
1448 */
d559db08
KH
1449static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1450{
69c97823
KK
1451 long val = atomic_long_read(&mm->rss_stat.count[member]);
1452
1453#ifdef SPLIT_RSS_COUNTING
1454 /*
1455 * counter is updated in asynchronous manner and may go to minus.
1456 * But it's never be expected number for users.
1457 */
1458 if (val < 0)
1459 val = 0;
172703b0 1460#endif
69c97823
KK
1461 return (unsigned long)val;
1462}
d559db08
KH
1463
1464static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1465{
172703b0 1466 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1467}
1468
1469static inline void inc_mm_counter(struct mm_struct *mm, int member)
1470{
172703b0 1471 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1472}
1473
1474static inline void dec_mm_counter(struct mm_struct *mm, int member)
1475{
172703b0 1476 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1477}
1478
eca56ff9
JM
1479/* Optimized variant when page is already known not to be PageAnon */
1480static inline int mm_counter_file(struct page *page)
1481{
1482 if (PageSwapBacked(page))
1483 return MM_SHMEMPAGES;
1484 return MM_FILEPAGES;
1485}
1486
1487static inline int mm_counter(struct page *page)
1488{
1489 if (PageAnon(page))
1490 return MM_ANONPAGES;
1491 return mm_counter_file(page);
1492}
1493
d559db08
KH
1494static inline unsigned long get_mm_rss(struct mm_struct *mm)
1495{
1496 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1497 get_mm_counter(mm, MM_ANONPAGES) +
1498 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1499}
1500
1501static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1502{
1503 return max(mm->hiwater_rss, get_mm_rss(mm));
1504}
1505
1506static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1507{
1508 return max(mm->hiwater_vm, mm->total_vm);
1509}
1510
1511static inline void update_hiwater_rss(struct mm_struct *mm)
1512{
1513 unsigned long _rss = get_mm_rss(mm);
1514
1515 if ((mm)->hiwater_rss < _rss)
1516 (mm)->hiwater_rss = _rss;
1517}
1518
1519static inline void update_hiwater_vm(struct mm_struct *mm)
1520{
1521 if (mm->hiwater_vm < mm->total_vm)
1522 mm->hiwater_vm = mm->total_vm;
1523}
1524
695f0559
PC
1525static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1526{
1527 mm->hiwater_rss = get_mm_rss(mm);
1528}
1529
d559db08
KH
1530static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1531 struct mm_struct *mm)
1532{
1533 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1534
1535 if (*maxrss < hiwater_rss)
1536 *maxrss = hiwater_rss;
1537}
1538
53bddb4e 1539#if defined(SPLIT_RSS_COUNTING)
05af2e10 1540void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1541#else
05af2e10 1542static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1543{
1544}
1545#endif
465a454f 1546
3565fce3
DW
1547#ifndef __HAVE_ARCH_PTE_DEVMAP
1548static inline int pte_devmap(pte_t pte)
1549{
1550 return 0;
1551}
1552#endif
1553
6d2329f8 1554int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1555
25ca1d6c
NK
1556extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1557 spinlock_t **ptl);
1558static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1559 spinlock_t **ptl)
1560{
1561 pte_t *ptep;
1562 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1563 return ptep;
1564}
c9cfcddf 1565
c2febafc
KS
1566#ifdef __PAGETABLE_P4D_FOLDED
1567static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1568 unsigned long address)
1569{
1570 return 0;
1571}
1572#else
1573int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1574#endif
1575
5f22df00 1576#ifdef __PAGETABLE_PUD_FOLDED
c2febafc 1577static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1578 unsigned long address)
1579{
1580 return 0;
1581}
1582#else
c2febafc 1583int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
5f22df00
NP
1584#endif
1585
2d2f5119 1586#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1587static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1588 unsigned long address)
1589{
1590 return 0;
1591}
dc6c9a35 1592
2d2f5119
KS
1593static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1594
dc6c9a35
KS
1595static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1596{
1597 return 0;
1598}
1599
1600static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1601static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1602
5f22df00 1603#else
1bb3630e 1604int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1605
2d2f5119
KS
1606static inline void mm_nr_pmds_init(struct mm_struct *mm)
1607{
1608 atomic_long_set(&mm->nr_pmds, 0);
1609}
1610
dc6c9a35
KS
1611static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1612{
1613 return atomic_long_read(&mm->nr_pmds);
1614}
1615
1616static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1617{
1618 atomic_long_inc(&mm->nr_pmds);
1619}
1620
1621static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1622{
1623 atomic_long_dec(&mm->nr_pmds);
1624}
5f22df00
NP
1625#endif
1626
3ed3a4f0 1627int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1bb3630e
HD
1628int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1629
1da177e4
LT
1630/*
1631 * The following ifdef needed to get the 4level-fixup.h header to work.
1632 * Remove it when 4level-fixup.h has been removed.
1633 */
1bb3630e 1634#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
505a60e2
KS
1635
1636#ifndef __ARCH_HAS_5LEVEL_HACK
c2febafc
KS
1637static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1638 unsigned long address)
1639{
1640 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1641 NULL : p4d_offset(pgd, address);
1642}
1643
1644static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1645 unsigned long address)
1da177e4 1646{
c2febafc
KS
1647 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1648 NULL : pud_offset(p4d, address);
1da177e4 1649}
505a60e2 1650#endif /* !__ARCH_HAS_5LEVEL_HACK */
1da177e4
LT
1651
1652static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1653{
1bb3630e
HD
1654 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1655 NULL: pmd_offset(pud, address);
1da177e4 1656}
1bb3630e
HD
1657#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1658
57c1ffce 1659#if USE_SPLIT_PTE_PTLOCKS
597d795a 1660#if ALLOC_SPLIT_PTLOCKS
b35f1819 1661void __init ptlock_cache_init(void);
539edb58
PZ
1662extern bool ptlock_alloc(struct page *page);
1663extern void ptlock_free(struct page *page);
1664
1665static inline spinlock_t *ptlock_ptr(struct page *page)
1666{
1667 return page->ptl;
1668}
597d795a 1669#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1670static inline void ptlock_cache_init(void)
1671{
1672}
1673
49076ec2
KS
1674static inline bool ptlock_alloc(struct page *page)
1675{
49076ec2
KS
1676 return true;
1677}
539edb58 1678
49076ec2
KS
1679static inline void ptlock_free(struct page *page)
1680{
49076ec2
KS
1681}
1682
1683static inline spinlock_t *ptlock_ptr(struct page *page)
1684{
539edb58 1685 return &page->ptl;
49076ec2 1686}
597d795a 1687#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1688
1689static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1690{
1691 return ptlock_ptr(pmd_page(*pmd));
1692}
1693
1694static inline bool ptlock_init(struct page *page)
1695{
1696 /*
1697 * prep_new_page() initialize page->private (and therefore page->ptl)
1698 * with 0. Make sure nobody took it in use in between.
1699 *
1700 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1701 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1702 */
309381fe 1703 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1704 if (!ptlock_alloc(page))
1705 return false;
1706 spin_lock_init(ptlock_ptr(page));
1707 return true;
1708}
1709
1710/* Reset page->mapping so free_pages_check won't complain. */
1711static inline void pte_lock_deinit(struct page *page)
1712{
1713 page->mapping = NULL;
1714 ptlock_free(page);
1715}
1716
57c1ffce 1717#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1718/*
1719 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1720 */
49076ec2
KS
1721static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1722{
1723 return &mm->page_table_lock;
1724}
b35f1819 1725static inline void ptlock_cache_init(void) {}
49076ec2
KS
1726static inline bool ptlock_init(struct page *page) { return true; }
1727static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1728#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1729
b35f1819
KS
1730static inline void pgtable_init(void)
1731{
1732 ptlock_cache_init();
1733 pgtable_cache_init();
1734}
1735
390f44e2 1736static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1737{
706874e9
VD
1738 if (!ptlock_init(page))
1739 return false;
2f569afd 1740 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1741 return true;
2f569afd
MS
1742}
1743
1744static inline void pgtable_page_dtor(struct page *page)
1745{
1746 pte_lock_deinit(page);
1747 dec_zone_page_state(page, NR_PAGETABLE);
1748}
1749
c74df32c
HD
1750#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1751({ \
4c21e2f2 1752 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1753 pte_t *__pte = pte_offset_map(pmd, address); \
1754 *(ptlp) = __ptl; \
1755 spin_lock(__ptl); \
1756 __pte; \
1757})
1758
1759#define pte_unmap_unlock(pte, ptl) do { \
1760 spin_unlock(ptl); \
1761 pte_unmap(pte); \
1762} while (0)
1763
3ed3a4f0
KS
1764#define pte_alloc(mm, pmd, address) \
1765 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1766
1767#define pte_alloc_map(mm, pmd, address) \
1768 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1bb3630e 1769
c74df32c 1770#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3ed3a4f0
KS
1771 (pte_alloc(mm, pmd, address) ? \
1772 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 1773
1bb3630e 1774#define pte_alloc_kernel(pmd, address) \
8ac1f832 1775 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1776 NULL: pte_offset_kernel(pmd, address))
1da177e4 1777
e009bb30
KS
1778#if USE_SPLIT_PMD_PTLOCKS
1779
634391ac
MS
1780static struct page *pmd_to_page(pmd_t *pmd)
1781{
1782 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1783 return virt_to_page((void *)((unsigned long) pmd & mask));
1784}
1785
e009bb30
KS
1786static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1787{
634391ac 1788 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1789}
1790
1791static inline bool pgtable_pmd_page_ctor(struct page *page)
1792{
e009bb30
KS
1793#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1794 page->pmd_huge_pte = NULL;
1795#endif
49076ec2 1796 return ptlock_init(page);
e009bb30
KS
1797}
1798
1799static inline void pgtable_pmd_page_dtor(struct page *page)
1800{
1801#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1802 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1803#endif
49076ec2 1804 ptlock_free(page);
e009bb30
KS
1805}
1806
634391ac 1807#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1808
1809#else
1810
9a86cb7b
KS
1811static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1812{
1813 return &mm->page_table_lock;
1814}
1815
e009bb30
KS
1816static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1817static inline void pgtable_pmd_page_dtor(struct page *page) {}
1818
c389a250 1819#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1820
e009bb30
KS
1821#endif
1822
9a86cb7b
KS
1823static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1824{
1825 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1826 spin_lock(ptl);
1827 return ptl;
1828}
1829
a00cc7d9
MW
1830/*
1831 * No scalability reason to split PUD locks yet, but follow the same pattern
1832 * as the PMD locks to make it easier if we decide to. The VM should not be
1833 * considered ready to switch to split PUD locks yet; there may be places
1834 * which need to be converted from page_table_lock.
1835 */
1836static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1837{
1838 return &mm->page_table_lock;
1839}
1840
1841static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1842{
1843 spinlock_t *ptl = pud_lockptr(mm, pud);
1844
1845 spin_lock(ptl);
1846 return ptl;
1847}
62906027 1848
a00cc7d9 1849extern void __init pagecache_init(void);
1da177e4 1850extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1851extern void free_area_init_node(int nid, unsigned long * zones_size,
1852 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1853extern void free_initmem(void);
1854
69afade7
JL
1855/*
1856 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1857 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1858 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1859 * Return pages freed into the buddy system.
1860 */
11199692 1861extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1862 int poison, char *s);
c3d5f5f0 1863
cfa11e08
JL
1864#ifdef CONFIG_HIGHMEM
1865/*
1866 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1867 * and totalram_pages.
1868 */
1869extern void free_highmem_page(struct page *page);
1870#endif
69afade7 1871
c3d5f5f0 1872extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1873extern void mem_init_print_info(const char *str);
69afade7 1874
4b50bcc7 1875extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 1876
69afade7
JL
1877/* Free the reserved page into the buddy system, so it gets managed. */
1878static inline void __free_reserved_page(struct page *page)
1879{
1880 ClearPageReserved(page);
1881 init_page_count(page);
1882 __free_page(page);
1883}
1884
1885static inline void free_reserved_page(struct page *page)
1886{
1887 __free_reserved_page(page);
1888 adjust_managed_page_count(page, 1);
1889}
1890
1891static inline void mark_page_reserved(struct page *page)
1892{
1893 SetPageReserved(page);
1894 adjust_managed_page_count(page, -1);
1895}
1896
1897/*
1898 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1899 * The freed pages will be poisoned with pattern "poison" if it's within
1900 * range [0, UCHAR_MAX].
1901 * Return pages freed into the buddy system.
69afade7
JL
1902 */
1903static inline unsigned long free_initmem_default(int poison)
1904{
1905 extern char __init_begin[], __init_end[];
1906
11199692 1907 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1908 poison, "unused kernel");
1909}
1910
7ee3d4e8
JL
1911static inline unsigned long get_num_physpages(void)
1912{
1913 int nid;
1914 unsigned long phys_pages = 0;
1915
1916 for_each_online_node(nid)
1917 phys_pages += node_present_pages(nid);
1918
1919 return phys_pages;
1920}
1921
0ee332c1 1922#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1923/*
0ee332c1 1924 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1925 * zones, allocate the backing mem_map and account for memory holes in a more
1926 * architecture independent manner. This is a substitute for creating the
1927 * zone_sizes[] and zholes_size[] arrays and passing them to
1928 * free_area_init_node()
1929 *
1930 * An architecture is expected to register range of page frames backed by
0ee332c1 1931 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1932 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1933 * usage, an architecture is expected to do something like
1934 *
1935 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1936 * max_highmem_pfn};
1937 * for_each_valid_physical_page_range()
0ee332c1 1938 * memblock_add_node(base, size, nid)
c713216d
MG
1939 * free_area_init_nodes(max_zone_pfns);
1940 *
0ee332c1
TH
1941 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1942 * registered physical page range. Similarly
1943 * sparse_memory_present_with_active_regions() calls memory_present() for
1944 * each range when SPARSEMEM is enabled.
c713216d
MG
1945 *
1946 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1947 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1948 */
1949extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1950unsigned long node_map_pfn_alignment(void);
32996250
YL
1951unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1952 unsigned long end_pfn);
c713216d
MG
1953extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1954 unsigned long end_pfn);
1955extern void get_pfn_range_for_nid(unsigned int nid,
1956 unsigned long *start_pfn, unsigned long *end_pfn);
1957extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1958extern void free_bootmem_with_active_regions(int nid,
1959 unsigned long max_low_pfn);
1960extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1961
0ee332c1 1962#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1963
0ee332c1 1964#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1965 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1966static inline int __early_pfn_to_nid(unsigned long pfn,
1967 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1968{
1969 return 0;
1970}
1971#else
1972/* please see mm/page_alloc.c */
1973extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1974/* there is a per-arch backend function. */
8a942fde
MG
1975extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1976 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1977#endif
1978
0e0b864e 1979extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1980extern void memmap_init_zone(unsigned long, int, unsigned long,
1981 unsigned long, enum memmap_context);
bc75d33f 1982extern void setup_per_zone_wmarks(void);
1b79acc9 1983extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1984extern void mem_init(void);
8feae131 1985extern void __init mmap_init(void);
9af744d7 1986extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 1987extern long si_mem_available(void);
1da177e4
LT
1988extern void si_meminfo(struct sysinfo * val);
1989extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
1990#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
1991extern unsigned long arch_reserved_kernel_pages(void);
1992#endif
1da177e4 1993
a8e99259
MH
1994extern __printf(3, 4)
1995void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 1996
e7c8d5c9 1997extern void setup_per_cpu_pageset(void);
e7c8d5c9 1998
112067f0 1999extern void zone_pcp_update(struct zone *zone);
340175b7 2000extern void zone_pcp_reset(struct zone *zone);
112067f0 2001
75f7ad8e
PS
2002/* page_alloc.c */
2003extern int min_free_kbytes;
795ae7a0 2004extern int watermark_scale_factor;
75f7ad8e 2005
8feae131 2006/* nommu.c */
33e5d769 2007extern atomic_long_t mmap_pages_allocated;
7e660872 2008extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2009
6b2dbba8 2010/* interval_tree.c */
6b2dbba8
ML
2011void vma_interval_tree_insert(struct vm_area_struct *node,
2012 struct rb_root *root);
9826a516
ML
2013void vma_interval_tree_insert_after(struct vm_area_struct *node,
2014 struct vm_area_struct *prev,
2015 struct rb_root *root);
6b2dbba8
ML
2016void vma_interval_tree_remove(struct vm_area_struct *node,
2017 struct rb_root *root);
2018struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
2019 unsigned long start, unsigned long last);
2020struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2021 unsigned long start, unsigned long last);
2022
2023#define vma_interval_tree_foreach(vma, root, start, last) \
2024 for (vma = vma_interval_tree_iter_first(root, start, last); \
2025 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2026
bf181b9f
ML
2027void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2028 struct rb_root *root);
2029void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2030 struct rb_root *root);
2031struct anon_vma_chain *anon_vma_interval_tree_iter_first(
2032 struct rb_root *root, unsigned long start, unsigned long last);
2033struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2034 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2035#ifdef CONFIG_DEBUG_VM_RB
2036void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2037#endif
bf181b9f
ML
2038
2039#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2040 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2041 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2042
1da177e4 2043/* mmap.c */
34b4e4aa 2044extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2045extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2046 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2047 struct vm_area_struct *expand);
2048static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2049 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2050{
2051 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2052}
1da177e4
LT
2053extern struct vm_area_struct *vma_merge(struct mm_struct *,
2054 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2055 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2056 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2057extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2058extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2059 unsigned long addr, int new_below);
2060extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2061 unsigned long addr, int new_below);
1da177e4
LT
2062extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2063extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2064 struct rb_node **, struct rb_node *);
a8fb5618 2065extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2066extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2067 unsigned long addr, unsigned long len, pgoff_t pgoff,
2068 bool *need_rmap_locks);
1da177e4 2069extern void exit_mmap(struct mm_struct *);
925d1c40 2070
9c599024
CG
2071static inline int check_data_rlimit(unsigned long rlim,
2072 unsigned long new,
2073 unsigned long start,
2074 unsigned long end_data,
2075 unsigned long start_data)
2076{
2077 if (rlim < RLIM_INFINITY) {
2078 if (((new - start) + (end_data - start_data)) > rlim)
2079 return -ENOSPC;
2080 }
2081
2082 return 0;
2083}
2084
7906d00c
AA
2085extern int mm_take_all_locks(struct mm_struct *mm);
2086extern void mm_drop_all_locks(struct mm_struct *mm);
2087
38646013
JS
2088extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2089extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2090extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2091
84638335
KK
2092extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2093extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2094
2eefd878
DS
2095extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2096 const struct vm_special_mapping *sm);
3935ed6a
SS
2097extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2098 unsigned long addr, unsigned long len,
a62c34bd
AL
2099 unsigned long flags,
2100 const struct vm_special_mapping *spec);
2101/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2102extern int install_special_mapping(struct mm_struct *mm,
2103 unsigned long addr, unsigned long len,
2104 unsigned long flags, struct page **pages);
1da177e4
LT
2105
2106extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2107
0165ab44 2108extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2109 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2110 struct list_head *uf);
1fcfd8db 2111extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2112 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2113 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2114 struct list_head *uf);
2115extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2116 struct list_head *uf);
1da177e4 2117
1fcfd8db
ON
2118static inline unsigned long
2119do_mmap_pgoff(struct file *file, unsigned long addr,
2120 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2121 unsigned long pgoff, unsigned long *populate,
2122 struct list_head *uf)
1fcfd8db 2123{
897ab3e0 2124 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2125}
2126
bebeb3d6
ML
2127#ifdef CONFIG_MMU
2128extern int __mm_populate(unsigned long addr, unsigned long len,
2129 int ignore_errors);
2130static inline void mm_populate(unsigned long addr, unsigned long len)
2131{
2132 /* Ignore errors */
2133 (void) __mm_populate(addr, len, 1);
2134}
2135#else
2136static inline void mm_populate(unsigned long addr, unsigned long len) {}
2137#endif
2138
e4eb1ff6 2139/* These take the mm semaphore themselves */
5d22fc25 2140extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2141extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2142extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2143extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2144 unsigned long, unsigned long,
2145 unsigned long, unsigned long);
1da177e4 2146
db4fbfb9
ML
2147struct vm_unmapped_area_info {
2148#define VM_UNMAPPED_AREA_TOPDOWN 1
2149 unsigned long flags;
2150 unsigned long length;
2151 unsigned long low_limit;
2152 unsigned long high_limit;
2153 unsigned long align_mask;
2154 unsigned long align_offset;
2155};
2156
2157extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2158extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2159
2160/*
2161 * Search for an unmapped address range.
2162 *
2163 * We are looking for a range that:
2164 * - does not intersect with any VMA;
2165 * - is contained within the [low_limit, high_limit) interval;
2166 * - is at least the desired size.
2167 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2168 */
2169static inline unsigned long
2170vm_unmapped_area(struct vm_unmapped_area_info *info)
2171{
cdd7875e 2172 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2173 return unmapped_area_topdown(info);
cdd7875e
BP
2174 else
2175 return unmapped_area(info);
db4fbfb9
ML
2176}
2177
85821aab 2178/* truncate.c */
1da177e4 2179extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2180extern void truncate_inode_pages_range(struct address_space *,
2181 loff_t lstart, loff_t lend);
91b0abe3 2182extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2183
2184/* generic vm_area_ops exported for stackable file systems */
11bac800 2185extern int filemap_fault(struct vm_fault *vmf);
82b0f8c3 2186extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2187 pgoff_t start_pgoff, pgoff_t end_pgoff);
11bac800 2188extern int filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2189
2190/* mm/page-writeback.c */
2b69c828 2191int __must_check write_one_page(struct page *page);
1cf6e7d8 2192void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2193
2194/* readahead.c */
2195#define VM_MAX_READAHEAD 128 /* kbytes */
2196#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2197
1da177e4 2198int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2199 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2200
2201void page_cache_sync_readahead(struct address_space *mapping,
2202 struct file_ra_state *ra,
2203 struct file *filp,
2204 pgoff_t offset,
2205 unsigned long size);
2206
2207void page_cache_async_readahead(struct address_space *mapping,
2208 struct file_ra_state *ra,
2209 struct file *filp,
2210 struct page *pg,
2211 pgoff_t offset,
2212 unsigned long size);
2213
1be7107f 2214extern unsigned long stack_guard_gap;
d05f3169 2215/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2216extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2217
2218/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2219extern int expand_downwards(struct vm_area_struct *vma,
2220 unsigned long address);
8ca3eb08 2221#if VM_GROWSUP
46dea3d0 2222extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2223#else
fee7e49d 2224 #define expand_upwards(vma, address) (0)
9ab88515 2225#endif
1da177e4
LT
2226
2227/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2228extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2229extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2230 struct vm_area_struct **pprev);
2231
2232/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2233 NULL if none. Assume start_addr < end_addr. */
2234static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2235{
2236 struct vm_area_struct * vma = find_vma(mm,start_addr);
2237
2238 if (vma && end_addr <= vma->vm_start)
2239 vma = NULL;
2240 return vma;
2241}
2242
1be7107f
HD
2243static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2244{
2245 unsigned long vm_start = vma->vm_start;
2246
2247 if (vma->vm_flags & VM_GROWSDOWN) {
2248 vm_start -= stack_guard_gap;
2249 if (vm_start > vma->vm_start)
2250 vm_start = 0;
2251 }
2252 return vm_start;
2253}
2254
2255static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2256{
2257 unsigned long vm_end = vma->vm_end;
2258
2259 if (vma->vm_flags & VM_GROWSUP) {
2260 vm_end += stack_guard_gap;
2261 if (vm_end < vma->vm_end)
2262 vm_end = -PAGE_SIZE;
2263 }
2264 return vm_end;
2265}
2266
1da177e4
LT
2267static inline unsigned long vma_pages(struct vm_area_struct *vma)
2268{
2269 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2270}
2271
640708a2
PE
2272/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2273static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2274 unsigned long vm_start, unsigned long vm_end)
2275{
2276 struct vm_area_struct *vma = find_vma(mm, vm_start);
2277
2278 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2279 vma = NULL;
2280
2281 return vma;
2282}
2283
bad849b3 2284#ifdef CONFIG_MMU
804af2cf 2285pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2286void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2287#else
2288static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2289{
2290 return __pgprot(0);
2291}
64e45507
PF
2292static inline void vma_set_page_prot(struct vm_area_struct *vma)
2293{
2294 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2295}
bad849b3
DH
2296#endif
2297
5877231f 2298#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2299unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2300 unsigned long start, unsigned long end);
2301#endif
2302
deceb6cd 2303struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2304int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2305 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2306int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2307int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2308 unsigned long pfn);
1745cbc5
AL
2309int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2310 unsigned long pfn, pgprot_t pgprot);
423bad60 2311int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2312 pfn_t pfn);
b2770da6
RZ
2313int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
2314 pfn_t pfn);
b4cbb197
LT
2315int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2316
deceb6cd 2317
240aadee
ML
2318struct page *follow_page_mask(struct vm_area_struct *vma,
2319 unsigned long address, unsigned int foll_flags,
2320 unsigned int *page_mask);
2321
2322static inline struct page *follow_page(struct vm_area_struct *vma,
2323 unsigned long address, unsigned int foll_flags)
2324{
2325 unsigned int unused_page_mask;
2326 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2327}
2328
deceb6cd
HD
2329#define FOLL_WRITE 0x01 /* check pte is writable */
2330#define FOLL_TOUCH 0x02 /* mark page accessed */
2331#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2332#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2333#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2334#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2335 * and return without waiting upon it */
84d33df2 2336#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2337#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2338#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2339#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2340#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2341#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2342#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2343#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2344#define FOLL_COW 0x4000 /* internal GUP flag */
1da177e4 2345
9a291a7c
JM
2346static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2347{
2348 if (vm_fault & VM_FAULT_OOM)
2349 return -ENOMEM;
2350 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2351 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2352 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2353 return -EFAULT;
2354 return 0;
2355}
2356
2f569afd 2357typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2358 void *data);
2359extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2360 unsigned long size, pte_fn_t fn, void *data);
2361
1da177e4 2362
8823b1db
LA
2363#ifdef CONFIG_PAGE_POISONING
2364extern bool page_poisoning_enabled(void);
2365extern void kernel_poison_pages(struct page *page, int numpages, int enable);
1414c7f4 2366extern bool page_is_poisoned(struct page *page);
8823b1db
LA
2367#else
2368static inline bool page_poisoning_enabled(void) { return false; }
2369static inline void kernel_poison_pages(struct page *page, int numpages,
2370 int enable) { }
1414c7f4 2371static inline bool page_is_poisoned(struct page *page) { return false; }
8823b1db
LA
2372#endif
2373
12d6f21e 2374#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2375extern bool _debug_pagealloc_enabled;
2376extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2377
2378static inline bool debug_pagealloc_enabled(void)
2379{
2380 return _debug_pagealloc_enabled;
2381}
2382
2383static inline void
2384kernel_map_pages(struct page *page, int numpages, int enable)
2385{
2386 if (!debug_pagealloc_enabled())
2387 return;
2388
2389 __kernel_map_pages(page, numpages, enable);
2390}
8a235efa
RW
2391#ifdef CONFIG_HIBERNATION
2392extern bool kernel_page_present(struct page *page);
40b44137
JK
2393#endif /* CONFIG_HIBERNATION */
2394#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2395static inline void
9858db50 2396kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2397#ifdef CONFIG_HIBERNATION
2398static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2399#endif /* CONFIG_HIBERNATION */
2400static inline bool debug_pagealloc_enabled(void)
2401{
2402 return false;
2403}
2404#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2405
a6c19dfe 2406#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2407extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2408extern int in_gate_area_no_mm(unsigned long addr);
2409extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2410#else
a6c19dfe
AL
2411static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2412{
2413 return NULL;
2414}
2415static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2416static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2417{
2418 return 0;
2419}
1da177e4
LT
2420#endif /* __HAVE_ARCH_GATE_AREA */
2421
44a70ade
MH
2422extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2423
146732ce
JT
2424#ifdef CONFIG_SYSCTL
2425extern int sysctl_drop_caches;
8d65af78 2426int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2427 void __user *, size_t *, loff_t *);
146732ce
JT
2428#endif
2429
cb731d6c
VD
2430void drop_slab(void);
2431void drop_slab_node(int nid);
9d0243bc 2432
7a9166e3
LY
2433#ifndef CONFIG_MMU
2434#define randomize_va_space 0
2435#else
a62eaf15 2436extern int randomize_va_space;
7a9166e3 2437#endif
a62eaf15 2438
045e72ac 2439const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2440void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2441
9bdac914
YL
2442void sparse_mem_maps_populate_node(struct page **map_map,
2443 unsigned long pnum_begin,
2444 unsigned long pnum_end,
2445 unsigned long map_count,
2446 int nodeid);
2447
98f3cfc1 2448struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111 2449pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2450p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2451pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
2452pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2453pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2454void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc
DW
2455struct vmem_altmap;
2456void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2457 struct vmem_altmap *altmap);
2458static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2459{
2460 return __vmemmap_alloc_block_buf(size, node, NULL);
2461}
2462
8f6aac41 2463void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2464int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2465 int node);
2466int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2467void vmemmap_populate_print_last(void);
0197518c 2468#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2469void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2470#endif
46723bfa
YI
2471void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2472 unsigned long size);
6a46079c 2473
82ba011b
AK
2474enum mf_flags {
2475 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2476 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2477 MF_MUST_KILL = 1 << 2,
cf870c70 2478 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2479};
cd42f4a3 2480extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2481extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2482extern int unpoison_memory(unsigned long pfn);
ead07f6a 2483extern int get_hwpoison_page(struct page *page);
4e41a30c 2484#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2485extern int sysctl_memory_failure_early_kill;
2486extern int sysctl_memory_failure_recovery;
facb6011 2487extern void shake_page(struct page *p, int access);
293c07e3 2488extern atomic_long_t num_poisoned_pages;
facb6011 2489extern int soft_offline_page(struct page *page, int flags);
6a46079c 2490
cc637b17
XX
2491
2492/*
2493 * Error handlers for various types of pages.
2494 */
cc3e2af4 2495enum mf_result {
cc637b17
XX
2496 MF_IGNORED, /* Error: cannot be handled */
2497 MF_FAILED, /* Error: handling failed */
2498 MF_DELAYED, /* Will be handled later */
2499 MF_RECOVERED, /* Successfully recovered */
2500};
2501
2502enum mf_action_page_type {
2503 MF_MSG_KERNEL,
2504 MF_MSG_KERNEL_HIGH_ORDER,
2505 MF_MSG_SLAB,
2506 MF_MSG_DIFFERENT_COMPOUND,
2507 MF_MSG_POISONED_HUGE,
2508 MF_MSG_HUGE,
2509 MF_MSG_FREE_HUGE,
2510 MF_MSG_UNMAP_FAILED,
2511 MF_MSG_DIRTY_SWAPCACHE,
2512 MF_MSG_CLEAN_SWAPCACHE,
2513 MF_MSG_DIRTY_MLOCKED_LRU,
2514 MF_MSG_CLEAN_MLOCKED_LRU,
2515 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2516 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2517 MF_MSG_DIRTY_LRU,
2518 MF_MSG_CLEAN_LRU,
2519 MF_MSG_TRUNCATED_LRU,
2520 MF_MSG_BUDDY,
2521 MF_MSG_BUDDY_2ND,
2522 MF_MSG_UNKNOWN,
2523};
2524
47ad8475
AA
2525#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2526extern void clear_huge_page(struct page *page,
c79b57e4 2527 unsigned long addr_hint,
47ad8475
AA
2528 unsigned int pages_per_huge_page);
2529extern void copy_user_huge_page(struct page *dst, struct page *src,
2530 unsigned long addr, struct vm_area_struct *vma,
2531 unsigned int pages_per_huge_page);
fa4d75c1
MK
2532extern long copy_huge_page_from_user(struct page *dst_page,
2533 const void __user *usr_src,
810a56b9
MK
2534 unsigned int pages_per_huge_page,
2535 bool allow_pagefault);
47ad8475
AA
2536#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2537
e30825f1 2538extern struct page_ext_operations debug_guardpage_ops;
e30825f1 2539
c0a32fc5
SG
2540#ifdef CONFIG_DEBUG_PAGEALLOC
2541extern unsigned int _debug_guardpage_minorder;
e30825f1 2542extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2543
2544static inline unsigned int debug_guardpage_minorder(void)
2545{
2546 return _debug_guardpage_minorder;
2547}
2548
e30825f1
JK
2549static inline bool debug_guardpage_enabled(void)
2550{
2551 return _debug_guardpage_enabled;
2552}
2553
c0a32fc5
SG
2554static inline bool page_is_guard(struct page *page)
2555{
e30825f1
JK
2556 struct page_ext *page_ext;
2557
2558 if (!debug_guardpage_enabled())
2559 return false;
2560
2561 page_ext = lookup_page_ext(page);
0bb2fd13
YS
2562 if (unlikely(!page_ext))
2563 return false;
2564
e30825f1 2565 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2566}
2567#else
2568static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2569static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2570static inline bool page_is_guard(struct page *page) { return false; }
2571#endif /* CONFIG_DEBUG_PAGEALLOC */
2572
f9872caf
CS
2573#if MAX_NUMNODES > 1
2574void __init setup_nr_node_ids(void);
2575#else
2576static inline void setup_nr_node_ids(void) {}
2577#endif
2578
1da177e4
LT
2579#endif /* __KERNEL__ */
2580#endif /* _LINUX_MM_H */