mm: cleanup *pte_alloc* interfaces
[linux-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
3565fce3 19#include <linux/percpu-refcount.h>
e9da73d6 20#include <linux/bit_spinlock.h>
b0d40c92 21#include <linux/shrinker.h>
9c599024 22#include <linux/resource.h>
e30825f1 23#include <linux/page_ext.h>
8025e5dd 24#include <linux/err.h>
1da177e4
LT
25
26struct mempolicy;
27struct anon_vma;
bf181b9f 28struct anon_vma_chain;
4e950f6f 29struct file_ra_state;
e8edc6e0 30struct user_struct;
4e950f6f 31struct writeback_control;
682aa8e1 32struct bdi_writeback;
1da177e4 33
fccc9987 34#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 35extern unsigned long max_mapnr;
fccc9987
JL
36
37static inline void set_max_mapnr(unsigned long limit)
38{
39 max_mapnr = limit;
40}
41#else
42static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
43#endif
44
4481374c 45extern unsigned long totalram_pages;
1da177e4 46extern void * high_memory;
1da177e4
LT
47extern int page_cluster;
48
49#ifdef CONFIG_SYSCTL
50extern int sysctl_legacy_va_layout;
51#else
52#define sysctl_legacy_va_layout 0
53#endif
54
d07e2259
DC
55#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
56extern const int mmap_rnd_bits_min;
57extern const int mmap_rnd_bits_max;
58extern int mmap_rnd_bits __read_mostly;
59#endif
60#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
61extern const int mmap_rnd_compat_bits_min;
62extern const int mmap_rnd_compat_bits_max;
63extern int mmap_rnd_compat_bits __read_mostly;
64#endif
65
1da177e4
LT
66#include <asm/page.h>
67#include <asm/pgtable.h>
68#include <asm/processor.h>
1da177e4 69
79442ed1
TC
70#ifndef __pa_symbol
71#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
72#endif
73
593befa6
DD
74/*
75 * To prevent common memory management code establishing
76 * a zero page mapping on a read fault.
77 * This macro should be defined within <asm/pgtable.h>.
78 * s390 does this to prevent multiplexing of hardware bits
79 * related to the physical page in case of virtualization.
80 */
81#ifndef mm_forbids_zeropage
82#define mm_forbids_zeropage(X) (0)
83#endif
84
ea606cf5
AR
85/*
86 * Default maximum number of active map areas, this limits the number of vmas
87 * per mm struct. Users can overwrite this number by sysctl but there is a
88 * problem.
89 *
90 * When a program's coredump is generated as ELF format, a section is created
91 * per a vma. In ELF, the number of sections is represented in unsigned short.
92 * This means the number of sections should be smaller than 65535 at coredump.
93 * Because the kernel adds some informative sections to a image of program at
94 * generating coredump, we need some margin. The number of extra sections is
95 * 1-3 now and depends on arch. We use "5" as safe margin, here.
96 *
97 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
98 * not a hard limit any more. Although some userspace tools can be surprised by
99 * that.
100 */
101#define MAPCOUNT_ELF_CORE_MARGIN (5)
102#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
103
104extern int sysctl_max_map_count;
105
c9b1d098 106extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 107extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 108
49f0ce5f
JM
109extern int sysctl_overcommit_memory;
110extern int sysctl_overcommit_ratio;
111extern unsigned long sysctl_overcommit_kbytes;
112
113extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
114 size_t *, loff_t *);
115extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
116 size_t *, loff_t *);
117
1da177e4
LT
118#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
119
27ac792c
AR
120/* to align the pointer to the (next) page boundary */
121#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
122
0fa73b86
AM
123/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
124#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
125
1da177e4
LT
126/*
127 * Linux kernel virtual memory manager primitives.
128 * The idea being to have a "virtual" mm in the same way
129 * we have a virtual fs - giving a cleaner interface to the
130 * mm details, and allowing different kinds of memory mappings
131 * (from shared memory to executable loading to arbitrary
132 * mmap() functions).
133 */
134
c43692e8
CL
135extern struct kmem_cache *vm_area_cachep;
136
1da177e4 137#ifndef CONFIG_MMU
8feae131
DH
138extern struct rb_root nommu_region_tree;
139extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
140
141extern unsigned int kobjsize(const void *objp);
142#endif
143
144/*
605d9288 145 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 146 * When changing, update also include/trace/events/mmflags.h
1da177e4 147 */
cc2383ec
KK
148#define VM_NONE 0x00000000
149
1da177e4
LT
150#define VM_READ 0x00000001 /* currently active flags */
151#define VM_WRITE 0x00000002
152#define VM_EXEC 0x00000004
153#define VM_SHARED 0x00000008
154
7e2cff42 155/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
156#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
157#define VM_MAYWRITE 0x00000020
158#define VM_MAYEXEC 0x00000040
159#define VM_MAYSHARE 0x00000080
160
161#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 162#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 163#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 164#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 165#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 166
1da177e4
LT
167#define VM_LOCKED 0x00002000
168#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
169
170 /* Used by sys_madvise() */
171#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
172#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
173
174#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
175#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 176#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 177#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 178#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 179#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 180#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 181#define VM_ARCH_2 0x02000000
0103bd16 182#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 183
d9104d1c
CG
184#ifdef CONFIG_MEM_SOFT_DIRTY
185# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
186#else
187# define VM_SOFTDIRTY 0
188#endif
189
b379d790 190#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
191#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
192#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 193#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 194
cc2383ec
KK
195#if defined(CONFIG_X86)
196# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
197#elif defined(CONFIG_PPC)
198# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
199#elif defined(CONFIG_PARISC)
200# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
201#elif defined(CONFIG_METAG)
202# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
203#elif defined(CONFIG_IA64)
204# define VM_GROWSUP VM_ARCH_1
205#elif !defined(CONFIG_MMU)
206# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
207#endif
208
4aae7e43
QR
209#if defined(CONFIG_X86)
210/* MPX specific bounds table or bounds directory */
211# define VM_MPX VM_ARCH_2
212#endif
213
cc2383ec
KK
214#ifndef VM_GROWSUP
215# define VM_GROWSUP VM_NONE
216#endif
217
a8bef8ff
MG
218/* Bits set in the VMA until the stack is in its final location */
219#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
220
1da177e4
LT
221#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
222#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
223#endif
224
225#ifdef CONFIG_STACK_GROWSUP
30bdbb78 226#define VM_STACK VM_GROWSUP
1da177e4 227#else
30bdbb78 228#define VM_STACK VM_GROWSDOWN
1da177e4
LT
229#endif
230
30bdbb78
KK
231#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
232
b291f000 233/*
78f11a25
AA
234 * Special vmas that are non-mergable, non-mlock()able.
235 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 236 */
9050d7eb 237#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 238
a0715cc2
AT
239/* This mask defines which mm->def_flags a process can inherit its parent */
240#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
241
de60f5f1
EM
242/* This mask is used to clear all the VMA flags used by mlock */
243#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
244
1da177e4
LT
245/*
246 * mapping from the currently active vm_flags protection bits (the
247 * low four bits) to a page protection mask..
248 */
249extern pgprot_t protection_map[16];
250
d0217ac0 251#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
252#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
253#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
254#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
255#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
256#define FAULT_FLAG_TRIED 0x20 /* Second try */
257#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
d0217ac0 258
54cb8821 259/*
d0217ac0 260 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
261 * ->fault function. The vma's ->fault is responsible for returning a bitmask
262 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 263 *
c20cd45e
MH
264 * MM layer fills up gfp_mask for page allocations but fault handler might
265 * alter it if its implementation requires a different allocation context.
266 *
9b4bdd2f 267 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 268 */
d0217ac0
NP
269struct vm_fault {
270 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 271 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0
NP
272 pgoff_t pgoff; /* Logical page offset based on vma */
273 void __user *virtual_address; /* Faulting virtual address */
274
2e4cdab0 275 struct page *cow_page; /* Handler may choose to COW */
d0217ac0 276 struct page *page; /* ->fault handlers should return a
83c54070 277 * page here, unless VM_FAULT_NOPAGE
d0217ac0 278 * is set (which is also implied by
83c54070 279 * VM_FAULT_ERROR).
d0217ac0 280 */
8c6e50b0
KS
281 /* for ->map_pages() only */
282 pgoff_t max_pgoff; /* map pages for offset from pgoff till
283 * max_pgoff inclusive */
284 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 285};
1da177e4
LT
286
287/*
288 * These are the virtual MM functions - opening of an area, closing and
289 * unmapping it (needed to keep files on disk up-to-date etc), pointer
290 * to the functions called when a no-page or a wp-page exception occurs.
291 */
292struct vm_operations_struct {
293 void (*open)(struct vm_area_struct * area);
294 void (*close)(struct vm_area_struct * area);
5477e70a 295 int (*mremap)(struct vm_area_struct * area);
d0217ac0 296 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
b96375f7
MW
297 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
298 pmd_t *, unsigned int flags);
8c6e50b0 299 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
300
301 /* notification that a previously read-only page is about to become
302 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 303 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20 304
dd906184
BH
305 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
306 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
307
28b2ee20
RR
308 /* called by access_process_vm when get_user_pages() fails, typically
309 * for use by special VMAs that can switch between memory and hardware
310 */
311 int (*access)(struct vm_area_struct *vma, unsigned long addr,
312 void *buf, int len, int write);
78d683e8
AL
313
314 /* Called by the /proc/PID/maps code to ask the vma whether it
315 * has a special name. Returning non-NULL will also cause this
316 * vma to be dumped unconditionally. */
317 const char *(*name)(struct vm_area_struct *vma);
318
1da177e4 319#ifdef CONFIG_NUMA
a6020ed7
LS
320 /*
321 * set_policy() op must add a reference to any non-NULL @new mempolicy
322 * to hold the policy upon return. Caller should pass NULL @new to
323 * remove a policy and fall back to surrounding context--i.e. do not
324 * install a MPOL_DEFAULT policy, nor the task or system default
325 * mempolicy.
326 */
1da177e4 327 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
328
329 /*
330 * get_policy() op must add reference [mpol_get()] to any policy at
331 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
332 * in mm/mempolicy.c will do this automatically.
333 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
334 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
335 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
336 * must return NULL--i.e., do not "fallback" to task or system default
337 * policy.
338 */
1da177e4
LT
339 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
340 unsigned long addr);
341#endif
667a0a06
DV
342 /*
343 * Called by vm_normal_page() for special PTEs to find the
344 * page for @addr. This is useful if the default behavior
345 * (using pte_page()) would not find the correct page.
346 */
347 struct page *(*find_special_page)(struct vm_area_struct *vma,
348 unsigned long addr);
1da177e4
LT
349};
350
351struct mmu_gather;
352struct inode;
353
349aef0b
AM
354#define page_private(page) ((page)->private)
355#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 356
5c7fb56e
DW
357#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
358static inline int pmd_devmap(pmd_t pmd)
359{
360 return 0;
361}
362#endif
363
1da177e4
LT
364/*
365 * FIXME: take this include out, include page-flags.h in
366 * files which need it (119 of them)
367 */
368#include <linux/page-flags.h>
71e3aac0 369#include <linux/huge_mm.h>
1da177e4
LT
370
371/*
372 * Methods to modify the page usage count.
373 *
374 * What counts for a page usage:
375 * - cache mapping (page->mapping)
376 * - private data (page->private)
377 * - page mapped in a task's page tables, each mapping
378 * is counted separately
379 *
380 * Also, many kernel routines increase the page count before a critical
381 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
382 */
383
384/*
da6052f7 385 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 386 */
7c8ee9a8
NP
387static inline int put_page_testzero(struct page *page)
388{
309381fe 389 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 390 return atomic_dec_and_test(&page->_count);
7c8ee9a8 391}
1da177e4
LT
392
393/*
7c8ee9a8
NP
394 * Try to grab a ref unless the page has a refcount of zero, return false if
395 * that is the case.
8e0861fa
AK
396 * This can be called when MMU is off so it must not access
397 * any of the virtual mappings.
1da177e4 398 */
7c8ee9a8
NP
399static inline int get_page_unless_zero(struct page *page)
400{
8dc04efb 401 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 402}
1da177e4 403
53df8fdc 404extern int page_is_ram(unsigned long pfn);
124fe20d
DW
405
406enum {
407 REGION_INTERSECTS,
408 REGION_DISJOINT,
409 REGION_MIXED,
410};
411
1c29f25b
TK
412int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
413 unsigned long desc);
53df8fdc 414
48667e7a 415/* Support for virtually mapped pages */
b3bdda02
CL
416struct page *vmalloc_to_page(const void *addr);
417unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 418
0738c4bb
PM
419/*
420 * Determine if an address is within the vmalloc range
421 *
422 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
423 * is no special casing required.
424 */
9e2779fa
CL
425static inline int is_vmalloc_addr(const void *x)
426{
0738c4bb 427#ifdef CONFIG_MMU
9e2779fa
CL
428 unsigned long addr = (unsigned long)x;
429
430 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
431#else
432 return 0;
8ca3ed87 433#endif
0738c4bb 434}
81ac3ad9
KH
435#ifdef CONFIG_MMU
436extern int is_vmalloc_or_module_addr(const void *x);
437#else
934831d0 438static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
439{
440 return 0;
441}
442#endif
9e2779fa 443
39f1f78d
AV
444extern void kvfree(const void *addr);
445
53f9263b
KS
446static inline atomic_t *compound_mapcount_ptr(struct page *page)
447{
448 return &page[1].compound_mapcount;
449}
450
451static inline int compound_mapcount(struct page *page)
452{
453 if (!PageCompound(page))
454 return 0;
455 page = compound_head(page);
456 return atomic_read(compound_mapcount_ptr(page)) + 1;
457}
458
70b50f94
AA
459/*
460 * The atomic page->_mapcount, starts from -1: so that transitions
461 * both from it and to it can be tracked, using atomic_inc_and_test
462 * and atomic_add_negative(-1).
463 */
22b751c3 464static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
465{
466 atomic_set(&(page)->_mapcount, -1);
467}
468
b20ce5e0
KS
469int __page_mapcount(struct page *page);
470
70b50f94
AA
471static inline int page_mapcount(struct page *page)
472{
1d148e21 473 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 474
b20ce5e0
KS
475 if (unlikely(PageCompound(page)))
476 return __page_mapcount(page);
477 return atomic_read(&page->_mapcount) + 1;
478}
479
480#ifdef CONFIG_TRANSPARENT_HUGEPAGE
481int total_mapcount(struct page *page);
482#else
483static inline int total_mapcount(struct page *page)
484{
485 return page_mapcount(page);
70b50f94 486}
b20ce5e0 487#endif
70b50f94 488
4c21e2f2 489static inline int page_count(struct page *page)
1da177e4 490{
d85f3385 491 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
492}
493
b49af68f
CL
494static inline struct page *virt_to_head_page(const void *x)
495{
496 struct page *page = virt_to_page(x);
ccaafd7f 497
1d798ca3 498 return compound_head(page);
b49af68f
CL
499}
500
7835e98b
NP
501/*
502 * Setup the page count before being freed into the page allocator for
503 * the first time (boot or memory hotplug)
504 */
505static inline void init_page_count(struct page *page)
506{
507 atomic_set(&page->_count, 1);
508}
509
ddc58f27
KS
510void __put_page(struct page *page);
511
1d7ea732 512void put_pages_list(struct list_head *pages);
1da177e4 513
8dfcc9ba 514void split_page(struct page *page, unsigned int order);
748446bb 515int split_free_page(struct page *page);
8dfcc9ba 516
33f2ef89
AW
517/*
518 * Compound pages have a destructor function. Provide a
519 * prototype for that function and accessor functions.
f1e61557 520 * These are _only_ valid on the head of a compound page.
33f2ef89 521 */
f1e61557
KS
522typedef void compound_page_dtor(struct page *);
523
524/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
525enum compound_dtor_id {
526 NULL_COMPOUND_DTOR,
527 COMPOUND_PAGE_DTOR,
528#ifdef CONFIG_HUGETLB_PAGE
529 HUGETLB_PAGE_DTOR,
9a982250
KS
530#endif
531#ifdef CONFIG_TRANSPARENT_HUGEPAGE
532 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
533#endif
534 NR_COMPOUND_DTORS,
535};
536extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
537
538static inline void set_compound_page_dtor(struct page *page,
f1e61557 539 enum compound_dtor_id compound_dtor)
33f2ef89 540{
f1e61557
KS
541 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
542 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
543}
544
545static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
546{
f1e61557
KS
547 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
548 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
549}
550
d00181b9 551static inline unsigned int compound_order(struct page *page)
d85f3385 552{
6d777953 553 if (!PageHead(page))
d85f3385 554 return 0;
e4b294c2 555 return page[1].compound_order;
d85f3385
CL
556}
557
f1e61557 558static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 559{
e4b294c2 560 page[1].compound_order = order;
d85f3385
CL
561}
562
9a982250
KS
563void free_compound_page(struct page *page);
564
3dece370 565#ifdef CONFIG_MMU
14fd403f
AA
566/*
567 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
568 * servicing faults for write access. In the normal case, do always want
569 * pte_mkwrite. But get_user_pages can cause write faults for mappings
570 * that do not have writing enabled, when used by access_process_vm.
571 */
572static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
573{
574 if (likely(vma->vm_flags & VM_WRITE))
575 pte = pte_mkwrite(pte);
576 return pte;
577}
8c6e50b0
KS
578
579void do_set_pte(struct vm_area_struct *vma, unsigned long address,
580 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 581#endif
14fd403f 582
1da177e4
LT
583/*
584 * Multiple processes may "see" the same page. E.g. for untouched
585 * mappings of /dev/null, all processes see the same page full of
586 * zeroes, and text pages of executables and shared libraries have
587 * only one copy in memory, at most, normally.
588 *
589 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
590 * page_count() == 0 means the page is free. page->lru is then used for
591 * freelist management in the buddy allocator.
da6052f7 592 * page_count() > 0 means the page has been allocated.
1da177e4 593 *
da6052f7
NP
594 * Pages are allocated by the slab allocator in order to provide memory
595 * to kmalloc and kmem_cache_alloc. In this case, the management of the
596 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
597 * unless a particular usage is carefully commented. (the responsibility of
598 * freeing the kmalloc memory is the caller's, of course).
1da177e4 599 *
da6052f7
NP
600 * A page may be used by anyone else who does a __get_free_page().
601 * In this case, page_count still tracks the references, and should only
602 * be used through the normal accessor functions. The top bits of page->flags
603 * and page->virtual store page management information, but all other fields
604 * are unused and could be used privately, carefully. The management of this
605 * page is the responsibility of the one who allocated it, and those who have
606 * subsequently been given references to it.
607 *
608 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
609 * managed by the Linux memory manager: I/O, buffers, swapping etc.
610 * The following discussion applies only to them.
611 *
da6052f7
NP
612 * A pagecache page contains an opaque `private' member, which belongs to the
613 * page's address_space. Usually, this is the address of a circular list of
614 * the page's disk buffers. PG_private must be set to tell the VM to call
615 * into the filesystem to release these pages.
1da177e4 616 *
da6052f7
NP
617 * A page may belong to an inode's memory mapping. In this case, page->mapping
618 * is the pointer to the inode, and page->index is the file offset of the page,
619 * in units of PAGE_CACHE_SIZE.
1da177e4 620 *
da6052f7
NP
621 * If pagecache pages are not associated with an inode, they are said to be
622 * anonymous pages. These may become associated with the swapcache, and in that
623 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 624 *
da6052f7
NP
625 * In either case (swapcache or inode backed), the pagecache itself holds one
626 * reference to the page. Setting PG_private should also increment the
627 * refcount. The each user mapping also has a reference to the page.
1da177e4 628 *
da6052f7
NP
629 * The pagecache pages are stored in a per-mapping radix tree, which is
630 * rooted at mapping->page_tree, and indexed by offset.
631 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
632 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 633 *
da6052f7 634 * All pagecache pages may be subject to I/O:
1da177e4
LT
635 * - inode pages may need to be read from disk,
636 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
637 * to be written back to the inode on disk,
638 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
639 * modified may need to be swapped out to swap space and (later) to be read
640 * back into memory.
1da177e4
LT
641 */
642
643/*
644 * The zone field is never updated after free_area_init_core()
645 * sets it, so none of the operations on it need to be atomic.
1da177e4 646 */
348f8b6c 647
90572890 648/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 649#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
650#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
651#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 652#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 653
348f8b6c 654/*
25985edc 655 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
656 * sections we define the shift as 0; that plus a 0 mask ensures
657 * the compiler will optimise away reference to them.
658 */
d41dee36
AW
659#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
660#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
661#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 662#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 663
bce54bbf
WD
664/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
665#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 666#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
667#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
668 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 669#else
89689ae7 670#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
671#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
672 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
673#endif
674
bd8029b6 675#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 676
9223b419
CL
677#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
678#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
679#endif
680
d41dee36
AW
681#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
682#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
683#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 684#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 685#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 686
33dd4e0e 687static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 688{
348f8b6c 689 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 690}
1da177e4 691
260ae3f7 692#ifdef CONFIG_ZONE_DEVICE
3565fce3
DW
693void get_zone_device_page(struct page *page);
694void put_zone_device_page(struct page *page);
260ae3f7
DW
695static inline bool is_zone_device_page(const struct page *page)
696{
697 return page_zonenum(page) == ZONE_DEVICE;
698}
699#else
3565fce3
DW
700static inline void get_zone_device_page(struct page *page)
701{
702}
703static inline void put_zone_device_page(struct page *page)
704{
705}
260ae3f7
DW
706static inline bool is_zone_device_page(const struct page *page)
707{
708 return false;
709}
710#endif
711
3565fce3
DW
712static inline void get_page(struct page *page)
713{
714 page = compound_head(page);
715 /*
716 * Getting a normal page or the head of a compound page
717 * requires to already have an elevated page->_count.
718 */
719 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
720 atomic_inc(&page->_count);
721
722 if (unlikely(is_zone_device_page(page)))
723 get_zone_device_page(page);
724}
725
726static inline void put_page(struct page *page)
727{
728 page = compound_head(page);
729
730 if (put_page_testzero(page))
731 __put_page(page);
732
733 if (unlikely(is_zone_device_page(page)))
734 put_zone_device_page(page);
735}
736
9127ab4f
CS
737#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
738#define SECTION_IN_PAGE_FLAGS
739#endif
740
89689ae7 741/*
7a8010cd
VB
742 * The identification function is mainly used by the buddy allocator for
743 * determining if two pages could be buddies. We are not really identifying
744 * the zone since we could be using the section number id if we do not have
745 * node id available in page flags.
746 * We only guarantee that it will return the same value for two combinable
747 * pages in a zone.
89689ae7 748 */
cb2b95e1
AW
749static inline int page_zone_id(struct page *page)
750{
89689ae7 751 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
752}
753
25ba77c1 754static inline int zone_to_nid(struct zone *zone)
89fa3024 755{
d5f541ed
CL
756#ifdef CONFIG_NUMA
757 return zone->node;
758#else
759 return 0;
760#endif
89fa3024
CL
761}
762
89689ae7 763#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 764extern int page_to_nid(const struct page *page);
89689ae7 765#else
33dd4e0e 766static inline int page_to_nid(const struct page *page)
d41dee36 767{
89689ae7 768 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 769}
89689ae7
CL
770#endif
771
57e0a030 772#ifdef CONFIG_NUMA_BALANCING
90572890 773static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 774{
90572890 775 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
776}
777
90572890 778static inline int cpupid_to_pid(int cpupid)
57e0a030 779{
90572890 780 return cpupid & LAST__PID_MASK;
57e0a030 781}
b795854b 782
90572890 783static inline int cpupid_to_cpu(int cpupid)
b795854b 784{
90572890 785 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
786}
787
90572890 788static inline int cpupid_to_nid(int cpupid)
b795854b 789{
90572890 790 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
791}
792
90572890 793static inline bool cpupid_pid_unset(int cpupid)
57e0a030 794{
90572890 795 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
796}
797
90572890 798static inline bool cpupid_cpu_unset(int cpupid)
b795854b 799{
90572890 800 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
801}
802
8c8a743c
PZ
803static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
804{
805 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
806}
807
808#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
809#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
810static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 811{
1ae71d03 812 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 813}
90572890
PZ
814
815static inline int page_cpupid_last(struct page *page)
816{
817 return page->_last_cpupid;
818}
819static inline void page_cpupid_reset_last(struct page *page)
b795854b 820{
1ae71d03 821 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
822}
823#else
90572890 824static inline int page_cpupid_last(struct page *page)
75980e97 825{
90572890 826 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
827}
828
90572890 829extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 830
90572890 831static inline void page_cpupid_reset_last(struct page *page)
75980e97 832{
90572890 833 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 834
90572890
PZ
835 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
836 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 837}
90572890
PZ
838#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
839#else /* !CONFIG_NUMA_BALANCING */
840static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 841{
90572890 842 return page_to_nid(page); /* XXX */
57e0a030
MG
843}
844
90572890 845static inline int page_cpupid_last(struct page *page)
57e0a030 846{
90572890 847 return page_to_nid(page); /* XXX */
57e0a030
MG
848}
849
90572890 850static inline int cpupid_to_nid(int cpupid)
b795854b
MG
851{
852 return -1;
853}
854
90572890 855static inline int cpupid_to_pid(int cpupid)
b795854b
MG
856{
857 return -1;
858}
859
90572890 860static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
861{
862 return -1;
863}
864
90572890
PZ
865static inline int cpu_pid_to_cpupid(int nid, int pid)
866{
867 return -1;
868}
869
870static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
871{
872 return 1;
873}
874
90572890 875static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
876{
877}
8c8a743c
PZ
878
879static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
880{
881 return false;
882}
90572890 883#endif /* CONFIG_NUMA_BALANCING */
57e0a030 884
33dd4e0e 885static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
886{
887 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
888}
889
9127ab4f 890#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
891static inline void set_page_section(struct page *page, unsigned long section)
892{
893 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
894 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
895}
896
aa462abe 897static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
898{
899 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
900}
308c05e3 901#endif
d41dee36 902
2f1b6248 903static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
904{
905 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
906 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
907}
2f1b6248 908
348f8b6c
DH
909static inline void set_page_node(struct page *page, unsigned long node)
910{
911 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
912 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 913}
89689ae7 914
2f1b6248 915static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 916 unsigned long node, unsigned long pfn)
1da177e4 917{
348f8b6c
DH
918 set_page_zone(page, zone);
919 set_page_node(page, node);
9127ab4f 920#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 921 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 922#endif
1da177e4
LT
923}
924
0610c25d
GT
925#ifdef CONFIG_MEMCG
926static inline struct mem_cgroup *page_memcg(struct page *page)
927{
928 return page->mem_cgroup;
929}
0610c25d
GT
930#else
931static inline struct mem_cgroup *page_memcg(struct page *page)
932{
933 return NULL;
934}
0610c25d
GT
935#endif
936
f6ac2354
CL
937/*
938 * Some inline functions in vmstat.h depend on page_zone()
939 */
940#include <linux/vmstat.h>
941
33dd4e0e 942static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 943{
aa462abe 944 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
945}
946
947#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
948#define HASHED_PAGE_VIRTUAL
949#endif
950
951#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
952static inline void *page_address(const struct page *page)
953{
954 return page->virtual;
955}
956static inline void set_page_address(struct page *page, void *address)
957{
958 page->virtual = address;
959}
1da177e4
LT
960#define page_address_init() do { } while(0)
961#endif
962
963#if defined(HASHED_PAGE_VIRTUAL)
f9918794 964void *page_address(const struct page *page);
1da177e4
LT
965void set_page_address(struct page *page, void *virtual);
966void page_address_init(void);
967#endif
968
969#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
970#define page_address(page) lowmem_page_address(page)
971#define set_page_address(page, address) do { } while(0)
972#define page_address_init() do { } while(0)
973#endif
974
e39155ea
KS
975extern void *page_rmapping(struct page *page);
976extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 977extern struct address_space *page_mapping(struct page *page);
1da177e4 978
f981c595
MG
979extern struct address_space *__page_file_mapping(struct page *);
980
981static inline
982struct address_space *page_file_mapping(struct page *page)
983{
984 if (unlikely(PageSwapCache(page)))
985 return __page_file_mapping(page);
986
987 return page->mapping;
988}
989
1da177e4
LT
990/*
991 * Return the pagecache index of the passed page. Regular pagecache pages
992 * use ->index whereas swapcache pages use ->private
993 */
994static inline pgoff_t page_index(struct page *page)
995{
996 if (unlikely(PageSwapCache(page)))
4c21e2f2 997 return page_private(page);
1da177e4
LT
998 return page->index;
999}
1000
f981c595
MG
1001extern pgoff_t __page_file_index(struct page *page);
1002
1003/*
1004 * Return the file index of the page. Regular pagecache pages use ->index
1005 * whereas swapcache pages use swp_offset(->private)
1006 */
1007static inline pgoff_t page_file_index(struct page *page)
1008{
1009 if (unlikely(PageSwapCache(page)))
1010 return __page_file_index(page);
1011
1012 return page->index;
1013}
1014
1da177e4
LT
1015/*
1016 * Return true if this page is mapped into pagetables.
e1534ae9 1017 * For compound page it returns true if any subpage of compound page is mapped.
1da177e4 1018 */
e1534ae9 1019static inline bool page_mapped(struct page *page)
1da177e4 1020{
e1534ae9
KS
1021 int i;
1022 if (likely(!PageCompound(page)))
1023 return atomic_read(&page->_mapcount) >= 0;
1024 page = compound_head(page);
1025 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
1026 return true;
1027 for (i = 0; i < hpage_nr_pages(page); i++) {
1028 if (atomic_read(&page[i]._mapcount) >= 0)
1029 return true;
1030 }
1031 return false;
1da177e4
LT
1032}
1033
2f064f34
MH
1034/*
1035 * Return true only if the page has been allocated with
1036 * ALLOC_NO_WATERMARKS and the low watermark was not
1037 * met implying that the system is under some pressure.
1038 */
1039static inline bool page_is_pfmemalloc(struct page *page)
1040{
1041 /*
1042 * Page index cannot be this large so this must be
1043 * a pfmemalloc page.
1044 */
1045 return page->index == -1UL;
1046}
1047
1048/*
1049 * Only to be called by the page allocator on a freshly allocated
1050 * page.
1051 */
1052static inline void set_page_pfmemalloc(struct page *page)
1053{
1054 page->index = -1UL;
1055}
1056
1057static inline void clear_page_pfmemalloc(struct page *page)
1058{
1059 page->index = 0;
1060}
1061
1da177e4
LT
1062/*
1063 * Different kinds of faults, as returned by handle_mm_fault().
1064 * Used to decide whether a process gets delivered SIGBUS or
1065 * just gets major/minor fault counters bumped up.
1066 */
d0217ac0 1067
83c54070 1068#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1069
83c54070
NP
1070#define VM_FAULT_OOM 0x0001
1071#define VM_FAULT_SIGBUS 0x0002
1072#define VM_FAULT_MAJOR 0x0004
1073#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1074#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1075#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1076#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1077
83c54070
NP
1078#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1079#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1080#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1081#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1082
aa50d3a7
AK
1083#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1084
33692f27
LT
1085#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1086 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1087 VM_FAULT_FALLBACK)
aa50d3a7
AK
1088
1089/* Encode hstate index for a hwpoisoned large page */
1090#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1091#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1092
1c0fe6e3
NP
1093/*
1094 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1095 */
1096extern void pagefault_out_of_memory(void);
1097
1da177e4
LT
1098#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1099
ddd588b5 1100/*
7bf02ea2 1101 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1102 * various contexts.
1103 */
4b59e6c4 1104#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1105
7bf02ea2
DR
1106extern void show_free_areas(unsigned int flags);
1107extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1108
1da177e4 1109int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1110#ifdef CONFIG_SHMEM
1111bool shmem_mapping(struct address_space *mapping);
1112#else
1113static inline bool shmem_mapping(struct address_space *mapping)
1114{
1115 return false;
1116}
1117#endif
1da177e4 1118
7f43add4 1119extern bool can_do_mlock(void);
1da177e4
LT
1120extern int user_shm_lock(size_t, struct user_struct *);
1121extern void user_shm_unlock(size_t, struct user_struct *);
1122
1123/*
1124 * Parameter block passed down to zap_pte_range in exceptional cases.
1125 */
1126struct zap_details {
1da177e4
LT
1127 struct address_space *check_mapping; /* Check page->mapping if set */
1128 pgoff_t first_index; /* Lowest page->index to unmap */
1129 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1130};
1131
7e675137
NP
1132struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1133 pte_t pte);
1134
c627f9cc
JS
1135int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1136 unsigned long size);
14f5ff5d 1137void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1138 unsigned long size, struct zap_details *);
4f74d2c8
LT
1139void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1140 unsigned long start, unsigned long end);
e6473092
MM
1141
1142/**
1143 * mm_walk - callbacks for walk_page_range
e6473092 1144 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1145 * this handler is required to be able to handle
1146 * pmd_trans_huge() pmds. They may simply choose to
1147 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1148 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1149 * @pte_hole: if set, called for each hole at all levels
5dc37642 1150 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426
NH
1151 * @test_walk: caller specific callback function to determine whether
1152 * we walk over the current vma or not. A positive returned
1153 * value means "do page table walk over the current vma,"
1154 * and a negative one means "abort current page table walk
1155 * right now." 0 means "skip the current vma."
1156 * @mm: mm_struct representing the target process of page table walk
1157 * @vma: vma currently walked (NULL if walking outside vmas)
1158 * @private: private data for callbacks' usage
e6473092 1159 *
fafaa426 1160 * (see the comment on walk_page_range() for more details)
e6473092
MM
1161 */
1162struct mm_walk {
0f157a5b
AM
1163 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1164 unsigned long next, struct mm_walk *walk);
1165 int (*pte_entry)(pte_t *pte, unsigned long addr,
1166 unsigned long next, struct mm_walk *walk);
1167 int (*pte_hole)(unsigned long addr, unsigned long next,
1168 struct mm_walk *walk);
1169 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1170 unsigned long addr, unsigned long next,
1171 struct mm_walk *walk);
fafaa426
NH
1172 int (*test_walk)(unsigned long addr, unsigned long next,
1173 struct mm_walk *walk);
2165009b 1174 struct mm_struct *mm;
fafaa426 1175 struct vm_area_struct *vma;
2165009b 1176 void *private;
e6473092
MM
1177};
1178
2165009b
DH
1179int walk_page_range(unsigned long addr, unsigned long end,
1180 struct mm_walk *walk);
900fc5f1 1181int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1182void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1183 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1184int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1185 struct vm_area_struct *vma);
1da177e4
LT
1186void unmap_mapping_range(struct address_space *mapping,
1187 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1188int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1189 unsigned long *pfn);
d87fe660 1190int follow_phys(struct vm_area_struct *vma, unsigned long address,
1191 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1192int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1193 void *buf, int len, int write);
1da177e4
LT
1194
1195static inline void unmap_shared_mapping_range(struct address_space *mapping,
1196 loff_t const holebegin, loff_t const holelen)
1197{
1198 unmap_mapping_range(mapping, holebegin, holelen, 0);
1199}
1200
7caef267 1201extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1202extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1203void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1204void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1205int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1206int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1207int invalidate_inode_page(struct page *page);
1208
7ee1dd3f 1209#ifdef CONFIG_MMU
83c54070 1210extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1211 unsigned long address, unsigned int flags);
5c723ba5 1212extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1213 unsigned long address, unsigned int fault_flags,
1214 bool *unlocked);
7ee1dd3f
DH
1215#else
1216static inline int handle_mm_fault(struct mm_struct *mm,
1217 struct vm_area_struct *vma, unsigned long address,
d06063cc 1218 unsigned int flags)
7ee1dd3f
DH
1219{
1220 /* should never happen if there's no MMU */
1221 BUG();
1222 return VM_FAULT_SIGBUS;
1223}
5c723ba5
PZ
1224static inline int fixup_user_fault(struct task_struct *tsk,
1225 struct mm_struct *mm, unsigned long address,
4a9e1cda 1226 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1227{
1228 /* should never happen if there's no MMU */
1229 BUG();
1230 return -EFAULT;
1231}
7ee1dd3f 1232#endif
f33ea7f4 1233
1da177e4 1234extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1235extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1236 void *buf, int len, int write);
1da177e4 1237
28a35716
ML
1238long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1239 unsigned long start, unsigned long nr_pages,
1240 unsigned int foll_flags, struct page **pages,
1241 struct vm_area_struct **vmas, int *nonblocking);
1242long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1243 unsigned long start, unsigned long nr_pages,
1244 int write, int force, struct page **pages,
1245 struct vm_area_struct **vmas);
f0818f47
AA
1246long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1247 unsigned long start, unsigned long nr_pages,
1248 int write, int force, struct page **pages,
1249 int *locked);
0fd71a56
AA
1250long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1251 unsigned long start, unsigned long nr_pages,
1252 int write, int force, struct page **pages,
1253 unsigned int gup_flags);
f0818f47
AA
1254long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1255 unsigned long start, unsigned long nr_pages,
1256 int write, int force, struct page **pages);
d2bf6be8
NP
1257int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1258 struct page **pages);
8025e5dd
JK
1259
1260/* Container for pinned pfns / pages */
1261struct frame_vector {
1262 unsigned int nr_allocated; /* Number of frames we have space for */
1263 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1264 bool got_ref; /* Did we pin pages by getting page ref? */
1265 bool is_pfns; /* Does array contain pages or pfns? */
1266 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1267 * pfns_vector_pages() or pfns_vector_pfns()
1268 * for access */
1269};
1270
1271struct frame_vector *frame_vector_create(unsigned int nr_frames);
1272void frame_vector_destroy(struct frame_vector *vec);
1273int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1274 bool write, bool force, struct frame_vector *vec);
1275void put_vaddr_frames(struct frame_vector *vec);
1276int frame_vector_to_pages(struct frame_vector *vec);
1277void frame_vector_to_pfns(struct frame_vector *vec);
1278
1279static inline unsigned int frame_vector_count(struct frame_vector *vec)
1280{
1281 return vec->nr_frames;
1282}
1283
1284static inline struct page **frame_vector_pages(struct frame_vector *vec)
1285{
1286 if (vec->is_pfns) {
1287 int err = frame_vector_to_pages(vec);
1288
1289 if (err)
1290 return ERR_PTR(err);
1291 }
1292 return (struct page **)(vec->ptrs);
1293}
1294
1295static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1296{
1297 if (!vec->is_pfns)
1298 frame_vector_to_pfns(vec);
1299 return (unsigned long *)(vec->ptrs);
1300}
1301
18022c5d
MG
1302struct kvec;
1303int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1304 struct page **pages);
1305int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1306struct page *get_dump_page(unsigned long addr);
1da177e4 1307
cf9a2ae8 1308extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1309extern void do_invalidatepage(struct page *page, unsigned int offset,
1310 unsigned int length);
cf9a2ae8 1311
1da177e4 1312int __set_page_dirty_nobuffers(struct page *page);
76719325 1313int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1314int redirty_page_for_writepage(struct writeback_control *wbc,
1315 struct page *page);
62cccb8c 1316void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1317void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1318 struct bdi_writeback *wb);
b3c97528 1319int set_page_dirty(struct page *page);
1da177e4 1320int set_page_dirty_lock(struct page *page);
11f81bec 1321void cancel_dirty_page(struct page *page);
1da177e4 1322int clear_page_dirty_for_io(struct page *page);
b9ea2515 1323
a9090253 1324int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1325
39aa3cb3 1326/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1327static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1328{
1329 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1330}
1331
b5330628
ON
1332static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1333{
1334 return !vma->vm_ops;
1335}
1336
a09a79f6
MP
1337static inline int stack_guard_page_start(struct vm_area_struct *vma,
1338 unsigned long addr)
1339{
1340 return (vma->vm_flags & VM_GROWSDOWN) &&
1341 (vma->vm_start == addr) &&
1342 !vma_growsdown(vma->vm_prev, addr);
1343}
1344
1345/* Is the vma a continuation of the stack vma below it? */
1346static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1347{
1348 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1349}
1350
1351static inline int stack_guard_page_end(struct vm_area_struct *vma,
1352 unsigned long addr)
1353{
1354 return (vma->vm_flags & VM_GROWSUP) &&
1355 (vma->vm_end == addr) &&
1356 !vma_growsup(vma->vm_next, addr);
1357}
1358
65376df5 1359int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
b7643757 1360
b6a2fea3
OW
1361extern unsigned long move_page_tables(struct vm_area_struct *vma,
1362 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1363 unsigned long new_addr, unsigned long len,
1364 bool need_rmap_locks);
7da4d641
PZ
1365extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1366 unsigned long end, pgprot_t newprot,
4b10e7d5 1367 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1368extern int mprotect_fixup(struct vm_area_struct *vma,
1369 struct vm_area_struct **pprev, unsigned long start,
1370 unsigned long end, unsigned long newflags);
1da177e4 1371
465a454f
PZ
1372/*
1373 * doesn't attempt to fault and will return short.
1374 */
1375int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1376 struct page **pages);
d559db08
KH
1377/*
1378 * per-process(per-mm_struct) statistics.
1379 */
d559db08
KH
1380static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1381{
69c97823
KK
1382 long val = atomic_long_read(&mm->rss_stat.count[member]);
1383
1384#ifdef SPLIT_RSS_COUNTING
1385 /*
1386 * counter is updated in asynchronous manner and may go to minus.
1387 * But it's never be expected number for users.
1388 */
1389 if (val < 0)
1390 val = 0;
172703b0 1391#endif
69c97823
KK
1392 return (unsigned long)val;
1393}
d559db08
KH
1394
1395static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1396{
172703b0 1397 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1398}
1399
1400static inline void inc_mm_counter(struct mm_struct *mm, int member)
1401{
172703b0 1402 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1403}
1404
1405static inline void dec_mm_counter(struct mm_struct *mm, int member)
1406{
172703b0 1407 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1408}
1409
eca56ff9
JM
1410/* Optimized variant when page is already known not to be PageAnon */
1411static inline int mm_counter_file(struct page *page)
1412{
1413 if (PageSwapBacked(page))
1414 return MM_SHMEMPAGES;
1415 return MM_FILEPAGES;
1416}
1417
1418static inline int mm_counter(struct page *page)
1419{
1420 if (PageAnon(page))
1421 return MM_ANONPAGES;
1422 return mm_counter_file(page);
1423}
1424
d559db08
KH
1425static inline unsigned long get_mm_rss(struct mm_struct *mm)
1426{
1427 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1428 get_mm_counter(mm, MM_ANONPAGES) +
1429 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1430}
1431
1432static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1433{
1434 return max(mm->hiwater_rss, get_mm_rss(mm));
1435}
1436
1437static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1438{
1439 return max(mm->hiwater_vm, mm->total_vm);
1440}
1441
1442static inline void update_hiwater_rss(struct mm_struct *mm)
1443{
1444 unsigned long _rss = get_mm_rss(mm);
1445
1446 if ((mm)->hiwater_rss < _rss)
1447 (mm)->hiwater_rss = _rss;
1448}
1449
1450static inline void update_hiwater_vm(struct mm_struct *mm)
1451{
1452 if (mm->hiwater_vm < mm->total_vm)
1453 mm->hiwater_vm = mm->total_vm;
1454}
1455
695f0559
PC
1456static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1457{
1458 mm->hiwater_rss = get_mm_rss(mm);
1459}
1460
d559db08
KH
1461static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1462 struct mm_struct *mm)
1463{
1464 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1465
1466 if (*maxrss < hiwater_rss)
1467 *maxrss = hiwater_rss;
1468}
1469
53bddb4e 1470#if defined(SPLIT_RSS_COUNTING)
05af2e10 1471void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1472#else
05af2e10 1473static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1474{
1475}
1476#endif
465a454f 1477
3565fce3
DW
1478#ifndef __HAVE_ARCH_PTE_DEVMAP
1479static inline int pte_devmap(pte_t pte)
1480{
1481 return 0;
1482}
1483#endif
1484
4e950f6f 1485int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1486
25ca1d6c
NK
1487extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1488 spinlock_t **ptl);
1489static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1490 spinlock_t **ptl)
1491{
1492 pte_t *ptep;
1493 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1494 return ptep;
1495}
c9cfcddf 1496
5f22df00
NP
1497#ifdef __PAGETABLE_PUD_FOLDED
1498static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1499 unsigned long address)
1500{
1501 return 0;
1502}
1503#else
1bb3630e 1504int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1505#endif
1506
2d2f5119 1507#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1508static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1509 unsigned long address)
1510{
1511 return 0;
1512}
dc6c9a35 1513
2d2f5119
KS
1514static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1515
dc6c9a35
KS
1516static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1517{
1518 return 0;
1519}
1520
1521static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1522static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1523
5f22df00 1524#else
1bb3630e 1525int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1526
2d2f5119
KS
1527static inline void mm_nr_pmds_init(struct mm_struct *mm)
1528{
1529 atomic_long_set(&mm->nr_pmds, 0);
1530}
1531
dc6c9a35
KS
1532static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1533{
1534 return atomic_long_read(&mm->nr_pmds);
1535}
1536
1537static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1538{
1539 atomic_long_inc(&mm->nr_pmds);
1540}
1541
1542static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1543{
1544 atomic_long_dec(&mm->nr_pmds);
1545}
5f22df00
NP
1546#endif
1547
3ed3a4f0 1548int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1bb3630e
HD
1549int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1550
1da177e4
LT
1551/*
1552 * The following ifdef needed to get the 4level-fixup.h header to work.
1553 * Remove it when 4level-fixup.h has been removed.
1554 */
1bb3630e 1555#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1556static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1557{
1bb3630e
HD
1558 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1559 NULL: pud_offset(pgd, address);
1da177e4
LT
1560}
1561
1562static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1563{
1bb3630e
HD
1564 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1565 NULL: pmd_offset(pud, address);
1da177e4 1566}
1bb3630e
HD
1567#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1568
57c1ffce 1569#if USE_SPLIT_PTE_PTLOCKS
597d795a 1570#if ALLOC_SPLIT_PTLOCKS
b35f1819 1571void __init ptlock_cache_init(void);
539edb58
PZ
1572extern bool ptlock_alloc(struct page *page);
1573extern void ptlock_free(struct page *page);
1574
1575static inline spinlock_t *ptlock_ptr(struct page *page)
1576{
1577 return page->ptl;
1578}
597d795a 1579#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1580static inline void ptlock_cache_init(void)
1581{
1582}
1583
49076ec2
KS
1584static inline bool ptlock_alloc(struct page *page)
1585{
49076ec2
KS
1586 return true;
1587}
539edb58 1588
49076ec2
KS
1589static inline void ptlock_free(struct page *page)
1590{
49076ec2
KS
1591}
1592
1593static inline spinlock_t *ptlock_ptr(struct page *page)
1594{
539edb58 1595 return &page->ptl;
49076ec2 1596}
597d795a 1597#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1598
1599static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1600{
1601 return ptlock_ptr(pmd_page(*pmd));
1602}
1603
1604static inline bool ptlock_init(struct page *page)
1605{
1606 /*
1607 * prep_new_page() initialize page->private (and therefore page->ptl)
1608 * with 0. Make sure nobody took it in use in between.
1609 *
1610 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1611 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1612 */
309381fe 1613 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1614 if (!ptlock_alloc(page))
1615 return false;
1616 spin_lock_init(ptlock_ptr(page));
1617 return true;
1618}
1619
1620/* Reset page->mapping so free_pages_check won't complain. */
1621static inline void pte_lock_deinit(struct page *page)
1622{
1623 page->mapping = NULL;
1624 ptlock_free(page);
1625}
1626
57c1ffce 1627#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1628/*
1629 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1630 */
49076ec2
KS
1631static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1632{
1633 return &mm->page_table_lock;
1634}
b35f1819 1635static inline void ptlock_cache_init(void) {}
49076ec2
KS
1636static inline bool ptlock_init(struct page *page) { return true; }
1637static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1638#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1639
b35f1819
KS
1640static inline void pgtable_init(void)
1641{
1642 ptlock_cache_init();
1643 pgtable_cache_init();
1644}
1645
390f44e2 1646static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1647{
706874e9
VD
1648 if (!ptlock_init(page))
1649 return false;
2f569afd 1650 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1651 return true;
2f569afd
MS
1652}
1653
1654static inline void pgtable_page_dtor(struct page *page)
1655{
1656 pte_lock_deinit(page);
1657 dec_zone_page_state(page, NR_PAGETABLE);
1658}
1659
c74df32c
HD
1660#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1661({ \
4c21e2f2 1662 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1663 pte_t *__pte = pte_offset_map(pmd, address); \
1664 *(ptlp) = __ptl; \
1665 spin_lock(__ptl); \
1666 __pte; \
1667})
1668
1669#define pte_unmap_unlock(pte, ptl) do { \
1670 spin_unlock(ptl); \
1671 pte_unmap(pte); \
1672} while (0)
1673
3ed3a4f0
KS
1674#define pte_alloc(mm, pmd, address) \
1675 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1676
1677#define pte_alloc_map(mm, pmd, address) \
1678 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1bb3630e 1679
c74df32c 1680#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3ed3a4f0
KS
1681 (pte_alloc(mm, pmd, address) ? \
1682 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 1683
1bb3630e 1684#define pte_alloc_kernel(pmd, address) \
8ac1f832 1685 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1686 NULL: pte_offset_kernel(pmd, address))
1da177e4 1687
e009bb30
KS
1688#if USE_SPLIT_PMD_PTLOCKS
1689
634391ac
MS
1690static struct page *pmd_to_page(pmd_t *pmd)
1691{
1692 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1693 return virt_to_page((void *)((unsigned long) pmd & mask));
1694}
1695
e009bb30
KS
1696static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1697{
634391ac 1698 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1699}
1700
1701static inline bool pgtable_pmd_page_ctor(struct page *page)
1702{
e009bb30
KS
1703#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1704 page->pmd_huge_pte = NULL;
1705#endif
49076ec2 1706 return ptlock_init(page);
e009bb30
KS
1707}
1708
1709static inline void pgtable_pmd_page_dtor(struct page *page)
1710{
1711#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1712 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1713#endif
49076ec2 1714 ptlock_free(page);
e009bb30
KS
1715}
1716
634391ac 1717#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1718
1719#else
1720
9a86cb7b
KS
1721static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1722{
1723 return &mm->page_table_lock;
1724}
1725
e009bb30
KS
1726static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1727static inline void pgtable_pmd_page_dtor(struct page *page) {}
1728
c389a250 1729#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1730
e009bb30
KS
1731#endif
1732
9a86cb7b
KS
1733static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1734{
1735 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1736 spin_lock(ptl);
1737 return ptl;
1738}
1739
1da177e4 1740extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1741extern void free_area_init_node(int nid, unsigned long * zones_size,
1742 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1743extern void free_initmem(void);
1744
69afade7
JL
1745/*
1746 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1747 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1748 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1749 * Return pages freed into the buddy system.
1750 */
11199692 1751extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1752 int poison, char *s);
c3d5f5f0 1753
cfa11e08
JL
1754#ifdef CONFIG_HIGHMEM
1755/*
1756 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1757 * and totalram_pages.
1758 */
1759extern void free_highmem_page(struct page *page);
1760#endif
69afade7 1761
c3d5f5f0 1762extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1763extern void mem_init_print_info(const char *str);
69afade7 1764
92923ca3
NZ
1765extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1766
69afade7
JL
1767/* Free the reserved page into the buddy system, so it gets managed. */
1768static inline void __free_reserved_page(struct page *page)
1769{
1770 ClearPageReserved(page);
1771 init_page_count(page);
1772 __free_page(page);
1773}
1774
1775static inline void free_reserved_page(struct page *page)
1776{
1777 __free_reserved_page(page);
1778 adjust_managed_page_count(page, 1);
1779}
1780
1781static inline void mark_page_reserved(struct page *page)
1782{
1783 SetPageReserved(page);
1784 adjust_managed_page_count(page, -1);
1785}
1786
1787/*
1788 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1789 * The freed pages will be poisoned with pattern "poison" if it's within
1790 * range [0, UCHAR_MAX].
1791 * Return pages freed into the buddy system.
69afade7
JL
1792 */
1793static inline unsigned long free_initmem_default(int poison)
1794{
1795 extern char __init_begin[], __init_end[];
1796
11199692 1797 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1798 poison, "unused kernel");
1799}
1800
7ee3d4e8
JL
1801static inline unsigned long get_num_physpages(void)
1802{
1803 int nid;
1804 unsigned long phys_pages = 0;
1805
1806 for_each_online_node(nid)
1807 phys_pages += node_present_pages(nid);
1808
1809 return phys_pages;
1810}
1811
0ee332c1 1812#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1813/*
0ee332c1 1814 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1815 * zones, allocate the backing mem_map and account for memory holes in a more
1816 * architecture independent manner. This is a substitute for creating the
1817 * zone_sizes[] and zholes_size[] arrays and passing them to
1818 * free_area_init_node()
1819 *
1820 * An architecture is expected to register range of page frames backed by
0ee332c1 1821 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1822 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1823 * usage, an architecture is expected to do something like
1824 *
1825 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1826 * max_highmem_pfn};
1827 * for_each_valid_physical_page_range()
0ee332c1 1828 * memblock_add_node(base, size, nid)
c713216d
MG
1829 * free_area_init_nodes(max_zone_pfns);
1830 *
0ee332c1
TH
1831 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1832 * registered physical page range. Similarly
1833 * sparse_memory_present_with_active_regions() calls memory_present() for
1834 * each range when SPARSEMEM is enabled.
c713216d
MG
1835 *
1836 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1837 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1838 */
1839extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1840unsigned long node_map_pfn_alignment(void);
32996250
YL
1841unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1842 unsigned long end_pfn);
c713216d
MG
1843extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1844 unsigned long end_pfn);
1845extern void get_pfn_range_for_nid(unsigned int nid,
1846 unsigned long *start_pfn, unsigned long *end_pfn);
1847extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1848extern void free_bootmem_with_active_regions(int nid,
1849 unsigned long max_low_pfn);
1850extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1851
0ee332c1 1852#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1853
0ee332c1 1854#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1855 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1856static inline int __early_pfn_to_nid(unsigned long pfn,
1857 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1858{
1859 return 0;
1860}
1861#else
1862/* please see mm/page_alloc.c */
1863extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1864/* there is a per-arch backend function. */
8a942fde
MG
1865extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1866 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1867#endif
1868
0e0b864e 1869extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1870extern void memmap_init_zone(unsigned long, int, unsigned long,
1871 unsigned long, enum memmap_context);
bc75d33f 1872extern void setup_per_zone_wmarks(void);
1b79acc9 1873extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1874extern void mem_init(void);
8feae131 1875extern void __init mmap_init(void);
b2b755b5 1876extern void show_mem(unsigned int flags);
d02bd27b 1877extern long si_mem_available(void);
1da177e4
LT
1878extern void si_meminfo(struct sysinfo * val);
1879extern void si_meminfo_node(struct sysinfo *val, int nid);
1880
3ee9a4f0 1881extern __printf(3, 4)
d00181b9
KS
1882void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1883 const char *fmt, ...);
a238ab5b 1884
e7c8d5c9 1885extern void setup_per_cpu_pageset(void);
e7c8d5c9 1886
112067f0 1887extern void zone_pcp_update(struct zone *zone);
340175b7 1888extern void zone_pcp_reset(struct zone *zone);
112067f0 1889
75f7ad8e
PS
1890/* page_alloc.c */
1891extern int min_free_kbytes;
1892
8feae131 1893/* nommu.c */
33e5d769 1894extern atomic_long_t mmap_pages_allocated;
7e660872 1895extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1896
6b2dbba8 1897/* interval_tree.c */
6b2dbba8
ML
1898void vma_interval_tree_insert(struct vm_area_struct *node,
1899 struct rb_root *root);
9826a516
ML
1900void vma_interval_tree_insert_after(struct vm_area_struct *node,
1901 struct vm_area_struct *prev,
1902 struct rb_root *root);
6b2dbba8
ML
1903void vma_interval_tree_remove(struct vm_area_struct *node,
1904 struct rb_root *root);
1905struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1906 unsigned long start, unsigned long last);
1907struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1908 unsigned long start, unsigned long last);
1909
1910#define vma_interval_tree_foreach(vma, root, start, last) \
1911 for (vma = vma_interval_tree_iter_first(root, start, last); \
1912 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 1913
bf181b9f
ML
1914void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1915 struct rb_root *root);
1916void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1917 struct rb_root *root);
1918struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1919 struct rb_root *root, unsigned long start, unsigned long last);
1920struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1921 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1922#ifdef CONFIG_DEBUG_VM_RB
1923void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1924#endif
bf181b9f
ML
1925
1926#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1927 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1928 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1929
1da177e4 1930/* mmap.c */
34b4e4aa 1931extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1932extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1933 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1934extern struct vm_area_struct *vma_merge(struct mm_struct *,
1935 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1936 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 1937 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4
LT
1938extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1939extern int split_vma(struct mm_struct *,
1940 struct vm_area_struct *, unsigned long addr, int new_below);
1941extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1942extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1943 struct rb_node **, struct rb_node *);
a8fb5618 1944extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1945extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1946 unsigned long addr, unsigned long len, pgoff_t pgoff,
1947 bool *need_rmap_locks);
1da177e4 1948extern void exit_mmap(struct mm_struct *);
925d1c40 1949
9c599024
CG
1950static inline int check_data_rlimit(unsigned long rlim,
1951 unsigned long new,
1952 unsigned long start,
1953 unsigned long end_data,
1954 unsigned long start_data)
1955{
1956 if (rlim < RLIM_INFINITY) {
1957 if (((new - start) + (end_data - start_data)) > rlim)
1958 return -ENOSPC;
1959 }
1960
1961 return 0;
1962}
1963
7906d00c
AA
1964extern int mm_take_all_locks(struct mm_struct *mm);
1965extern void mm_drop_all_locks(struct mm_struct *mm);
1966
38646013
JS
1967extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1968extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1969
84638335
KK
1970extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
1971extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
1972
3935ed6a
SS
1973extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1974 unsigned long addr, unsigned long len,
a62c34bd
AL
1975 unsigned long flags,
1976 const struct vm_special_mapping *spec);
1977/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
1978extern int install_special_mapping(struct mm_struct *mm,
1979 unsigned long addr, unsigned long len,
1980 unsigned long flags, struct page **pages);
1da177e4
LT
1981
1982extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1983
0165ab44 1984extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1985 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1fcfd8db 1986extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 1987 unsigned long len, unsigned long prot, unsigned long flags,
1fcfd8db 1988 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1989extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1990
1fcfd8db
ON
1991static inline unsigned long
1992do_mmap_pgoff(struct file *file, unsigned long addr,
1993 unsigned long len, unsigned long prot, unsigned long flags,
1994 unsigned long pgoff, unsigned long *populate)
1995{
1996 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1997}
1998
bebeb3d6
ML
1999#ifdef CONFIG_MMU
2000extern int __mm_populate(unsigned long addr, unsigned long len,
2001 int ignore_errors);
2002static inline void mm_populate(unsigned long addr, unsigned long len)
2003{
2004 /* Ignore errors */
2005 (void) __mm_populate(addr, len, 1);
2006}
2007#else
2008static inline void mm_populate(unsigned long addr, unsigned long len) {}
2009#endif
2010
e4eb1ff6
LT
2011/* These take the mm semaphore themselves */
2012extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 2013extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
2014extern unsigned long vm_mmap(struct file *, unsigned long,
2015 unsigned long, unsigned long,
2016 unsigned long, unsigned long);
1da177e4 2017
db4fbfb9
ML
2018struct vm_unmapped_area_info {
2019#define VM_UNMAPPED_AREA_TOPDOWN 1
2020 unsigned long flags;
2021 unsigned long length;
2022 unsigned long low_limit;
2023 unsigned long high_limit;
2024 unsigned long align_mask;
2025 unsigned long align_offset;
2026};
2027
2028extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2029extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2030
2031/*
2032 * Search for an unmapped address range.
2033 *
2034 * We are looking for a range that:
2035 * - does not intersect with any VMA;
2036 * - is contained within the [low_limit, high_limit) interval;
2037 * - is at least the desired size.
2038 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2039 */
2040static inline unsigned long
2041vm_unmapped_area(struct vm_unmapped_area_info *info)
2042{
cdd7875e 2043 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2044 return unmapped_area_topdown(info);
cdd7875e
BP
2045 else
2046 return unmapped_area(info);
db4fbfb9
ML
2047}
2048
85821aab 2049/* truncate.c */
1da177e4 2050extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2051extern void truncate_inode_pages_range(struct address_space *,
2052 loff_t lstart, loff_t lend);
91b0abe3 2053extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2054
2055/* generic vm_area_ops exported for stackable file systems */
d0217ac0 2056extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 2057extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 2058extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
2059
2060/* mm/page-writeback.c */
2061int write_one_page(struct page *page, int wait);
1cf6e7d8 2062void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2063
2064/* readahead.c */
2065#define VM_MAX_READAHEAD 128 /* kbytes */
2066#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2067
1da177e4 2068int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2069 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2070
2071void page_cache_sync_readahead(struct address_space *mapping,
2072 struct file_ra_state *ra,
2073 struct file *filp,
2074 pgoff_t offset,
2075 unsigned long size);
2076
2077void page_cache_async_readahead(struct address_space *mapping,
2078 struct file_ra_state *ra,
2079 struct file *filp,
2080 struct page *pg,
2081 pgoff_t offset,
2082 unsigned long size);
2083
d05f3169 2084/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2085extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2086
2087/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2088extern int expand_downwards(struct vm_area_struct *vma,
2089 unsigned long address);
8ca3eb08 2090#if VM_GROWSUP
46dea3d0 2091extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2092#else
fee7e49d 2093 #define expand_upwards(vma, address) (0)
9ab88515 2094#endif
1da177e4
LT
2095
2096/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2097extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2098extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2099 struct vm_area_struct **pprev);
2100
2101/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2102 NULL if none. Assume start_addr < end_addr. */
2103static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2104{
2105 struct vm_area_struct * vma = find_vma(mm,start_addr);
2106
2107 if (vma && end_addr <= vma->vm_start)
2108 vma = NULL;
2109 return vma;
2110}
2111
2112static inline unsigned long vma_pages(struct vm_area_struct *vma)
2113{
2114 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2115}
2116
640708a2
PE
2117/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2118static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2119 unsigned long vm_start, unsigned long vm_end)
2120{
2121 struct vm_area_struct *vma = find_vma(mm, vm_start);
2122
2123 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2124 vma = NULL;
2125
2126 return vma;
2127}
2128
bad849b3 2129#ifdef CONFIG_MMU
804af2cf 2130pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2131void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2132#else
2133static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2134{
2135 return __pgprot(0);
2136}
64e45507
PF
2137static inline void vma_set_page_prot(struct vm_area_struct *vma)
2138{
2139 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2140}
bad849b3
DH
2141#endif
2142
5877231f 2143#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2144unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2145 unsigned long start, unsigned long end);
2146#endif
2147
deceb6cd 2148struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2149int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2150 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2151int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2152int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2153 unsigned long pfn);
1745cbc5
AL
2154int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2155 unsigned long pfn, pgprot_t pgprot);
423bad60 2156int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2157 pfn_t pfn);
b4cbb197
LT
2158int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2159
deceb6cd 2160
240aadee
ML
2161struct page *follow_page_mask(struct vm_area_struct *vma,
2162 unsigned long address, unsigned int foll_flags,
2163 unsigned int *page_mask);
2164
2165static inline struct page *follow_page(struct vm_area_struct *vma,
2166 unsigned long address, unsigned int foll_flags)
2167{
2168 unsigned int unused_page_mask;
2169 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2170}
2171
deceb6cd
HD
2172#define FOLL_WRITE 0x01 /* check pte is writable */
2173#define FOLL_TOUCH 0x02 /* mark page accessed */
2174#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2175#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2176#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2177#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2178 * and return without waiting upon it */
84d33df2 2179#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2180#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2181#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2182#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2183#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2184#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2185#define FOLL_MLOCK 0x1000 /* lock present pages */
1da177e4 2186
2f569afd 2187typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2188 void *data);
2189extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2190 unsigned long size, pte_fn_t fn, void *data);
2191
1da177e4 2192
8823b1db
LA
2193#ifdef CONFIG_PAGE_POISONING
2194extern bool page_poisoning_enabled(void);
2195extern void kernel_poison_pages(struct page *page, int numpages, int enable);
1414c7f4 2196extern bool page_is_poisoned(struct page *page);
8823b1db
LA
2197#else
2198static inline bool page_poisoning_enabled(void) { return false; }
2199static inline void kernel_poison_pages(struct page *page, int numpages,
2200 int enable) { }
1414c7f4 2201static inline bool page_is_poisoned(struct page *page) { return false; }
8823b1db
LA
2202#endif
2203
12d6f21e 2204#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2205extern bool _debug_pagealloc_enabled;
2206extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2207
2208static inline bool debug_pagealloc_enabled(void)
2209{
2210 return _debug_pagealloc_enabled;
2211}
2212
2213static inline void
2214kernel_map_pages(struct page *page, int numpages, int enable)
2215{
2216 if (!debug_pagealloc_enabled())
2217 return;
2218
2219 __kernel_map_pages(page, numpages, enable);
2220}
8a235efa
RW
2221#ifdef CONFIG_HIBERNATION
2222extern bool kernel_page_present(struct page *page);
40b44137
JK
2223#endif /* CONFIG_HIBERNATION */
2224#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2225static inline void
9858db50 2226kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2227#ifdef CONFIG_HIBERNATION
2228static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2229#endif /* CONFIG_HIBERNATION */
2230static inline bool debug_pagealloc_enabled(void)
2231{
2232 return false;
2233}
2234#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2235
a6c19dfe 2236#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2237extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2238extern int in_gate_area_no_mm(unsigned long addr);
2239extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2240#else
a6c19dfe
AL
2241static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2242{
2243 return NULL;
2244}
2245static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2246static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2247{
2248 return 0;
2249}
1da177e4
LT
2250#endif /* __HAVE_ARCH_GATE_AREA */
2251
146732ce
JT
2252#ifdef CONFIG_SYSCTL
2253extern int sysctl_drop_caches;
8d65af78 2254int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2255 void __user *, size_t *, loff_t *);
146732ce
JT
2256#endif
2257
cb731d6c
VD
2258void drop_slab(void);
2259void drop_slab_node(int nid);
9d0243bc 2260
7a9166e3
LY
2261#ifndef CONFIG_MMU
2262#define randomize_va_space 0
2263#else
a62eaf15 2264extern int randomize_va_space;
7a9166e3 2265#endif
a62eaf15 2266
045e72ac 2267const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2268void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2269
9bdac914
YL
2270void sparse_mem_maps_populate_node(struct page **map_map,
2271 unsigned long pnum_begin,
2272 unsigned long pnum_end,
2273 unsigned long map_count,
2274 int nodeid);
2275
98f3cfc1 2276struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2277pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2278pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2279pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2280pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2281void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc
DW
2282struct vmem_altmap;
2283void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2284 struct vmem_altmap *altmap);
2285static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2286{
2287 return __vmemmap_alloc_block_buf(size, node, NULL);
2288}
2289
8f6aac41 2290void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2291int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2292 int node);
2293int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2294void vmemmap_populate_print_last(void);
0197518c 2295#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2296void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2297#endif
46723bfa
YI
2298void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2299 unsigned long size);
6a46079c 2300
82ba011b
AK
2301enum mf_flags {
2302 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2303 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2304 MF_MUST_KILL = 1 << 2,
cf870c70 2305 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2306};
cd42f4a3 2307extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2308extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2309extern int unpoison_memory(unsigned long pfn);
ead07f6a 2310extern int get_hwpoison_page(struct page *page);
4e41a30c 2311#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2312extern int sysctl_memory_failure_early_kill;
2313extern int sysctl_memory_failure_recovery;
facb6011 2314extern void shake_page(struct page *p, int access);
293c07e3 2315extern atomic_long_t num_poisoned_pages;
facb6011 2316extern int soft_offline_page(struct page *page, int flags);
6a46079c 2317
cc637b17
XX
2318
2319/*
2320 * Error handlers for various types of pages.
2321 */
cc3e2af4 2322enum mf_result {
cc637b17
XX
2323 MF_IGNORED, /* Error: cannot be handled */
2324 MF_FAILED, /* Error: handling failed */
2325 MF_DELAYED, /* Will be handled later */
2326 MF_RECOVERED, /* Successfully recovered */
2327};
2328
2329enum mf_action_page_type {
2330 MF_MSG_KERNEL,
2331 MF_MSG_KERNEL_HIGH_ORDER,
2332 MF_MSG_SLAB,
2333 MF_MSG_DIFFERENT_COMPOUND,
2334 MF_MSG_POISONED_HUGE,
2335 MF_MSG_HUGE,
2336 MF_MSG_FREE_HUGE,
2337 MF_MSG_UNMAP_FAILED,
2338 MF_MSG_DIRTY_SWAPCACHE,
2339 MF_MSG_CLEAN_SWAPCACHE,
2340 MF_MSG_DIRTY_MLOCKED_LRU,
2341 MF_MSG_CLEAN_MLOCKED_LRU,
2342 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2343 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2344 MF_MSG_DIRTY_LRU,
2345 MF_MSG_CLEAN_LRU,
2346 MF_MSG_TRUNCATED_LRU,
2347 MF_MSG_BUDDY,
2348 MF_MSG_BUDDY_2ND,
2349 MF_MSG_UNKNOWN,
2350};
2351
47ad8475
AA
2352#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2353extern void clear_huge_page(struct page *page,
2354 unsigned long addr,
2355 unsigned int pages_per_huge_page);
2356extern void copy_user_huge_page(struct page *dst, struct page *src,
2357 unsigned long addr, struct vm_area_struct *vma,
2358 unsigned int pages_per_huge_page);
2359#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2360
e30825f1
JK
2361extern struct page_ext_operations debug_guardpage_ops;
2362extern struct page_ext_operations page_poisoning_ops;
2363
c0a32fc5
SG
2364#ifdef CONFIG_DEBUG_PAGEALLOC
2365extern unsigned int _debug_guardpage_minorder;
e30825f1 2366extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2367
2368static inline unsigned int debug_guardpage_minorder(void)
2369{
2370 return _debug_guardpage_minorder;
2371}
2372
e30825f1
JK
2373static inline bool debug_guardpage_enabled(void)
2374{
2375 return _debug_guardpage_enabled;
2376}
2377
c0a32fc5
SG
2378static inline bool page_is_guard(struct page *page)
2379{
e30825f1
JK
2380 struct page_ext *page_ext;
2381
2382 if (!debug_guardpage_enabled())
2383 return false;
2384
2385 page_ext = lookup_page_ext(page);
2386 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2387}
2388#else
2389static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2390static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2391static inline bool page_is_guard(struct page *page) { return false; }
2392#endif /* CONFIG_DEBUG_PAGEALLOC */
2393
f9872caf
CS
2394#if MAX_NUMNODES > 1
2395void __init setup_nr_node_ids(void);
2396#else
2397static inline void setup_nr_node_ids(void) {}
2398#endif
2399
1da177e4
LT
2400#endif /* __KERNEL__ */
2401#endif /* _LINUX_MM_H */