mm: allow full handling of COW faults in ->fault handlers
[linux-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
3565fce3 19#include <linux/percpu-refcount.h>
e9da73d6 20#include <linux/bit_spinlock.h>
b0d40c92 21#include <linux/shrinker.h>
9c599024 22#include <linux/resource.h>
e30825f1 23#include <linux/page_ext.h>
8025e5dd 24#include <linux/err.h>
fe896d18 25#include <linux/page_ref.h>
1da177e4
LT
26
27struct mempolicy;
28struct anon_vma;
bf181b9f 29struct anon_vma_chain;
4e950f6f 30struct file_ra_state;
e8edc6e0 31struct user_struct;
4e950f6f 32struct writeback_control;
682aa8e1 33struct bdi_writeback;
1da177e4 34
fccc9987 35#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 36extern unsigned long max_mapnr;
fccc9987
JL
37
38static inline void set_max_mapnr(unsigned long limit)
39{
40 max_mapnr = limit;
41}
42#else
43static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
44#endif
45
4481374c 46extern unsigned long totalram_pages;
1da177e4 47extern void * high_memory;
1da177e4
LT
48extern int page_cluster;
49
50#ifdef CONFIG_SYSCTL
51extern int sysctl_legacy_va_layout;
52#else
53#define sysctl_legacy_va_layout 0
54#endif
55
d07e2259
DC
56#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
57extern const int mmap_rnd_bits_min;
58extern const int mmap_rnd_bits_max;
59extern int mmap_rnd_bits __read_mostly;
60#endif
61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
62extern const int mmap_rnd_compat_bits_min;
63extern const int mmap_rnd_compat_bits_max;
64extern int mmap_rnd_compat_bits __read_mostly;
65#endif
66
1da177e4
LT
67#include <asm/page.h>
68#include <asm/pgtable.h>
69#include <asm/processor.h>
1da177e4 70
79442ed1
TC
71#ifndef __pa_symbol
72#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
73#endif
74
1dff8083
AB
75#ifndef page_to_virt
76#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
77#endif
78
593befa6
DD
79/*
80 * To prevent common memory management code establishing
81 * a zero page mapping on a read fault.
82 * This macro should be defined within <asm/pgtable.h>.
83 * s390 does this to prevent multiplexing of hardware bits
84 * related to the physical page in case of virtualization.
85 */
86#ifndef mm_forbids_zeropage
87#define mm_forbids_zeropage(X) (0)
88#endif
89
ea606cf5
AR
90/*
91 * Default maximum number of active map areas, this limits the number of vmas
92 * per mm struct. Users can overwrite this number by sysctl but there is a
93 * problem.
94 *
95 * When a program's coredump is generated as ELF format, a section is created
96 * per a vma. In ELF, the number of sections is represented in unsigned short.
97 * This means the number of sections should be smaller than 65535 at coredump.
98 * Because the kernel adds some informative sections to a image of program at
99 * generating coredump, we need some margin. The number of extra sections is
100 * 1-3 now and depends on arch. We use "5" as safe margin, here.
101 *
102 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
103 * not a hard limit any more. Although some userspace tools can be surprised by
104 * that.
105 */
106#define MAPCOUNT_ELF_CORE_MARGIN (5)
107#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
108
109extern int sysctl_max_map_count;
110
c9b1d098 111extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 112extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 113
49f0ce5f
JM
114extern int sysctl_overcommit_memory;
115extern int sysctl_overcommit_ratio;
116extern unsigned long sysctl_overcommit_kbytes;
117
118extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
119 size_t *, loff_t *);
120extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
121 size_t *, loff_t *);
122
1da177e4
LT
123#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
124
27ac792c
AR
125/* to align the pointer to the (next) page boundary */
126#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
127
0fa73b86 128/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 129#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 130
1da177e4
LT
131/*
132 * Linux kernel virtual memory manager primitives.
133 * The idea being to have a "virtual" mm in the same way
134 * we have a virtual fs - giving a cleaner interface to the
135 * mm details, and allowing different kinds of memory mappings
136 * (from shared memory to executable loading to arbitrary
137 * mmap() functions).
138 */
139
c43692e8
CL
140extern struct kmem_cache *vm_area_cachep;
141
1da177e4 142#ifndef CONFIG_MMU
8feae131
DH
143extern struct rb_root nommu_region_tree;
144extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
145
146extern unsigned int kobjsize(const void *objp);
147#endif
148
149/*
605d9288 150 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 151 * When changing, update also include/trace/events/mmflags.h
1da177e4 152 */
cc2383ec
KK
153#define VM_NONE 0x00000000
154
1da177e4
LT
155#define VM_READ 0x00000001 /* currently active flags */
156#define VM_WRITE 0x00000002
157#define VM_EXEC 0x00000004
158#define VM_SHARED 0x00000008
159
7e2cff42 160/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
161#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
162#define VM_MAYWRITE 0x00000020
163#define VM_MAYEXEC 0x00000040
164#define VM_MAYSHARE 0x00000080
165
166#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 167#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 168#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 169#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 170#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 171
1da177e4
LT
172#define VM_LOCKED 0x00002000
173#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
174
175 /* Used by sys_madvise() */
176#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
177#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
178
179#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
180#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 181#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 182#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 183#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 184#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 185#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 186#define VM_ARCH_2 0x02000000
0103bd16 187#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 188
d9104d1c
CG
189#ifdef CONFIG_MEM_SOFT_DIRTY
190# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
191#else
192# define VM_SOFTDIRTY 0
193#endif
194
b379d790 195#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
196#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
197#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 198#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 199
63c17fb8
DH
200#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
201#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
202#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
203#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
204#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
205#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
206#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
207#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
208#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
209#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
210
cc2383ec
KK
211#if defined(CONFIG_X86)
212# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
8f62c883
DH
213#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
214# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
215# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
216# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
217# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
218# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
219#endif
cc2383ec
KK
220#elif defined(CONFIG_PPC)
221# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
222#elif defined(CONFIG_PARISC)
223# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
224#elif defined(CONFIG_METAG)
225# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
226#elif defined(CONFIG_IA64)
227# define VM_GROWSUP VM_ARCH_1
228#elif !defined(CONFIG_MMU)
229# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
230#endif
231
4aae7e43
QR
232#if defined(CONFIG_X86)
233/* MPX specific bounds table or bounds directory */
234# define VM_MPX VM_ARCH_2
235#endif
236
cc2383ec
KK
237#ifndef VM_GROWSUP
238# define VM_GROWSUP VM_NONE
239#endif
240
a8bef8ff
MG
241/* Bits set in the VMA until the stack is in its final location */
242#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
243
1da177e4
LT
244#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
245#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
246#endif
247
248#ifdef CONFIG_STACK_GROWSUP
30bdbb78 249#define VM_STACK VM_GROWSUP
1da177e4 250#else
30bdbb78 251#define VM_STACK VM_GROWSDOWN
1da177e4
LT
252#endif
253
30bdbb78
KK
254#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
255
b291f000 256/*
78f11a25
AA
257 * Special vmas that are non-mergable, non-mlock()able.
258 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 259 */
9050d7eb 260#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 261
a0715cc2
AT
262/* This mask defines which mm->def_flags a process can inherit its parent */
263#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
264
de60f5f1
EM
265/* This mask is used to clear all the VMA flags used by mlock */
266#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
267
1da177e4
LT
268/*
269 * mapping from the currently active vm_flags protection bits (the
270 * low four bits) to a page protection mask..
271 */
272extern pgprot_t protection_map[16];
273
d0217ac0 274#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
275#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
276#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
277#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
278#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
279#define FAULT_FLAG_TRIED 0x20 /* Second try */
280#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 281#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 282#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 283
54cb8821 284/*
d0217ac0 285 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
286 * ->fault function. The vma's ->fault is responsible for returning a bitmask
287 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 288 *
c20cd45e
MH
289 * MM layer fills up gfp_mask for page allocations but fault handler might
290 * alter it if its implementation requires a different allocation context.
291 *
9b4bdd2f 292 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 293 */
d0217ac0 294struct vm_fault {
82b0f8c3 295 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 296 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 297 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 298 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 299 unsigned long address; /* Faulting virtual address */
82b0f8c3 300 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b
JK
301 * the 'address' */
302 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 303
3917048d
JK
304 struct page *cow_page; /* Page handler may use for COW fault */
305 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 306 struct page *page; /* ->fault handlers should return a
83c54070 307 * page here, unless VM_FAULT_NOPAGE
d0217ac0 308 * is set (which is also implied by
83c54070 309 * VM_FAULT_ERROR).
d0217ac0 310 */
bc2466e4
JK
311 void *entry; /* ->fault handler can alternatively
312 * return locked DAX entry. In that
313 * case handler should return
314 * VM_FAULT_DAX_LOCKED and fill in
315 * entry here.
316 */
82b0f8c3 317 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
318 pte_t *pte; /* Pointer to pte entry matching
319 * the 'address'. NULL if the page
320 * table hasn't been allocated.
321 */
322 spinlock_t *ptl; /* Page table lock.
323 * Protects pte page table if 'pte'
324 * is not NULL, otherwise pmd.
325 */
7267ec00
KS
326 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
327 * vm_ops->map_pages() calls
328 * alloc_set_pte() from atomic context.
329 * do_fault_around() pre-allocates
330 * page table to avoid allocation from
331 * atomic context.
332 */
54cb8821 333};
1da177e4
LT
334
335/*
336 * These are the virtual MM functions - opening of an area, closing and
337 * unmapping it (needed to keep files on disk up-to-date etc), pointer
338 * to the functions called when a no-page or a wp-page exception occurs.
339 */
340struct vm_operations_struct {
341 void (*open)(struct vm_area_struct * area);
342 void (*close)(struct vm_area_struct * area);
5477e70a 343 int (*mremap)(struct vm_area_struct * area);
d0217ac0 344 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
b96375f7
MW
345 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
346 pmd_t *, unsigned int flags);
82b0f8c3 347 void (*map_pages)(struct vm_fault *vmf,
bae473a4 348 pgoff_t start_pgoff, pgoff_t end_pgoff);
9637a5ef
DH
349
350 /* notification that a previously read-only page is about to become
351 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 352 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20 353
dd906184
BH
354 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
355 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
356
28b2ee20
RR
357 /* called by access_process_vm when get_user_pages() fails, typically
358 * for use by special VMAs that can switch between memory and hardware
359 */
360 int (*access)(struct vm_area_struct *vma, unsigned long addr,
361 void *buf, int len, int write);
78d683e8
AL
362
363 /* Called by the /proc/PID/maps code to ask the vma whether it
364 * has a special name. Returning non-NULL will also cause this
365 * vma to be dumped unconditionally. */
366 const char *(*name)(struct vm_area_struct *vma);
367
1da177e4 368#ifdef CONFIG_NUMA
a6020ed7
LS
369 /*
370 * set_policy() op must add a reference to any non-NULL @new mempolicy
371 * to hold the policy upon return. Caller should pass NULL @new to
372 * remove a policy and fall back to surrounding context--i.e. do not
373 * install a MPOL_DEFAULT policy, nor the task or system default
374 * mempolicy.
375 */
1da177e4 376 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
377
378 /*
379 * get_policy() op must add reference [mpol_get()] to any policy at
380 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
381 * in mm/mempolicy.c will do this automatically.
382 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
383 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
384 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
385 * must return NULL--i.e., do not "fallback" to task or system default
386 * policy.
387 */
1da177e4
LT
388 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
389 unsigned long addr);
390#endif
667a0a06
DV
391 /*
392 * Called by vm_normal_page() for special PTEs to find the
393 * page for @addr. This is useful if the default behavior
394 * (using pte_page()) would not find the correct page.
395 */
396 struct page *(*find_special_page)(struct vm_area_struct *vma,
397 unsigned long addr);
1da177e4
LT
398};
399
400struct mmu_gather;
401struct inode;
402
349aef0b
AM
403#define page_private(page) ((page)->private)
404#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 405
5c7fb56e
DW
406#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
407static inline int pmd_devmap(pmd_t pmd)
408{
409 return 0;
410}
411#endif
412
1da177e4
LT
413/*
414 * FIXME: take this include out, include page-flags.h in
415 * files which need it (119 of them)
416 */
417#include <linux/page-flags.h>
71e3aac0 418#include <linux/huge_mm.h>
1da177e4
LT
419
420/*
421 * Methods to modify the page usage count.
422 *
423 * What counts for a page usage:
424 * - cache mapping (page->mapping)
425 * - private data (page->private)
426 * - page mapped in a task's page tables, each mapping
427 * is counted separately
428 *
429 * Also, many kernel routines increase the page count before a critical
430 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
431 */
432
433/*
da6052f7 434 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 435 */
7c8ee9a8
NP
436static inline int put_page_testzero(struct page *page)
437{
fe896d18
JK
438 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
439 return page_ref_dec_and_test(page);
7c8ee9a8 440}
1da177e4
LT
441
442/*
7c8ee9a8
NP
443 * Try to grab a ref unless the page has a refcount of zero, return false if
444 * that is the case.
8e0861fa
AK
445 * This can be called when MMU is off so it must not access
446 * any of the virtual mappings.
1da177e4 447 */
7c8ee9a8
NP
448static inline int get_page_unless_zero(struct page *page)
449{
fe896d18 450 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 451}
1da177e4 452
53df8fdc 453extern int page_is_ram(unsigned long pfn);
124fe20d
DW
454
455enum {
456 REGION_INTERSECTS,
457 REGION_DISJOINT,
458 REGION_MIXED,
459};
460
1c29f25b
TK
461int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
462 unsigned long desc);
53df8fdc 463
48667e7a 464/* Support for virtually mapped pages */
b3bdda02
CL
465struct page *vmalloc_to_page(const void *addr);
466unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 467
0738c4bb
PM
468/*
469 * Determine if an address is within the vmalloc range
470 *
471 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
472 * is no special casing required.
473 */
bb00a789 474static inline bool is_vmalloc_addr(const void *x)
9e2779fa 475{
0738c4bb 476#ifdef CONFIG_MMU
9e2779fa
CL
477 unsigned long addr = (unsigned long)x;
478
479 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 480#else
bb00a789 481 return false;
8ca3ed87 482#endif
0738c4bb 483}
81ac3ad9
KH
484#ifdef CONFIG_MMU
485extern int is_vmalloc_or_module_addr(const void *x);
486#else
934831d0 487static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
488{
489 return 0;
490}
491#endif
9e2779fa 492
39f1f78d
AV
493extern void kvfree(const void *addr);
494
53f9263b
KS
495static inline atomic_t *compound_mapcount_ptr(struct page *page)
496{
497 return &page[1].compound_mapcount;
498}
499
500static inline int compound_mapcount(struct page *page)
501{
5f527c2b 502 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
503 page = compound_head(page);
504 return atomic_read(compound_mapcount_ptr(page)) + 1;
505}
506
70b50f94
AA
507/*
508 * The atomic page->_mapcount, starts from -1: so that transitions
509 * both from it and to it can be tracked, using atomic_inc_and_test
510 * and atomic_add_negative(-1).
511 */
22b751c3 512static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
513{
514 atomic_set(&(page)->_mapcount, -1);
515}
516
b20ce5e0
KS
517int __page_mapcount(struct page *page);
518
70b50f94
AA
519static inline int page_mapcount(struct page *page)
520{
1d148e21 521 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 522
b20ce5e0
KS
523 if (unlikely(PageCompound(page)))
524 return __page_mapcount(page);
525 return atomic_read(&page->_mapcount) + 1;
526}
527
528#ifdef CONFIG_TRANSPARENT_HUGEPAGE
529int total_mapcount(struct page *page);
6d0a07ed 530int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
531#else
532static inline int total_mapcount(struct page *page)
533{
534 return page_mapcount(page);
70b50f94 535}
6d0a07ed
AA
536static inline int page_trans_huge_mapcount(struct page *page,
537 int *total_mapcount)
538{
539 int mapcount = page_mapcount(page);
540 if (total_mapcount)
541 *total_mapcount = mapcount;
542 return mapcount;
543}
b20ce5e0 544#endif
70b50f94 545
b49af68f
CL
546static inline struct page *virt_to_head_page(const void *x)
547{
548 struct page *page = virt_to_page(x);
ccaafd7f 549
1d798ca3 550 return compound_head(page);
b49af68f
CL
551}
552
ddc58f27
KS
553void __put_page(struct page *page);
554
1d7ea732 555void put_pages_list(struct list_head *pages);
1da177e4 556
8dfcc9ba 557void split_page(struct page *page, unsigned int order);
8dfcc9ba 558
33f2ef89
AW
559/*
560 * Compound pages have a destructor function. Provide a
561 * prototype for that function and accessor functions.
f1e61557 562 * These are _only_ valid on the head of a compound page.
33f2ef89 563 */
f1e61557
KS
564typedef void compound_page_dtor(struct page *);
565
566/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
567enum compound_dtor_id {
568 NULL_COMPOUND_DTOR,
569 COMPOUND_PAGE_DTOR,
570#ifdef CONFIG_HUGETLB_PAGE
571 HUGETLB_PAGE_DTOR,
9a982250
KS
572#endif
573#ifdef CONFIG_TRANSPARENT_HUGEPAGE
574 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
575#endif
576 NR_COMPOUND_DTORS,
577};
578extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
579
580static inline void set_compound_page_dtor(struct page *page,
f1e61557 581 enum compound_dtor_id compound_dtor)
33f2ef89 582{
f1e61557
KS
583 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
584 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
585}
586
587static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
588{
f1e61557
KS
589 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
590 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
591}
592
d00181b9 593static inline unsigned int compound_order(struct page *page)
d85f3385 594{
6d777953 595 if (!PageHead(page))
d85f3385 596 return 0;
e4b294c2 597 return page[1].compound_order;
d85f3385
CL
598}
599
f1e61557 600static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 601{
e4b294c2 602 page[1].compound_order = order;
d85f3385
CL
603}
604
9a982250
KS
605void free_compound_page(struct page *page);
606
3dece370 607#ifdef CONFIG_MMU
14fd403f
AA
608/*
609 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
610 * servicing faults for write access. In the normal case, do always want
611 * pte_mkwrite. But get_user_pages can cause write faults for mappings
612 * that do not have writing enabled, when used by access_process_vm.
613 */
614static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
615{
616 if (likely(vma->vm_flags & VM_WRITE))
617 pte = pte_mkwrite(pte);
618 return pte;
619}
8c6e50b0 620
82b0f8c3 621int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 622 struct page *page);
3dece370 623#endif
14fd403f 624
1da177e4
LT
625/*
626 * Multiple processes may "see" the same page. E.g. for untouched
627 * mappings of /dev/null, all processes see the same page full of
628 * zeroes, and text pages of executables and shared libraries have
629 * only one copy in memory, at most, normally.
630 *
631 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
632 * page_count() == 0 means the page is free. page->lru is then used for
633 * freelist management in the buddy allocator.
da6052f7 634 * page_count() > 0 means the page has been allocated.
1da177e4 635 *
da6052f7
NP
636 * Pages are allocated by the slab allocator in order to provide memory
637 * to kmalloc and kmem_cache_alloc. In this case, the management of the
638 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
639 * unless a particular usage is carefully commented. (the responsibility of
640 * freeing the kmalloc memory is the caller's, of course).
1da177e4 641 *
da6052f7
NP
642 * A page may be used by anyone else who does a __get_free_page().
643 * In this case, page_count still tracks the references, and should only
644 * be used through the normal accessor functions. The top bits of page->flags
645 * and page->virtual store page management information, but all other fields
646 * are unused and could be used privately, carefully. The management of this
647 * page is the responsibility of the one who allocated it, and those who have
648 * subsequently been given references to it.
649 *
650 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
651 * managed by the Linux memory manager: I/O, buffers, swapping etc.
652 * The following discussion applies only to them.
653 *
da6052f7
NP
654 * A pagecache page contains an opaque `private' member, which belongs to the
655 * page's address_space. Usually, this is the address of a circular list of
656 * the page's disk buffers. PG_private must be set to tell the VM to call
657 * into the filesystem to release these pages.
1da177e4 658 *
da6052f7
NP
659 * A page may belong to an inode's memory mapping. In this case, page->mapping
660 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 661 * in units of PAGE_SIZE.
1da177e4 662 *
da6052f7
NP
663 * If pagecache pages are not associated with an inode, they are said to be
664 * anonymous pages. These may become associated with the swapcache, and in that
665 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 666 *
da6052f7
NP
667 * In either case (swapcache or inode backed), the pagecache itself holds one
668 * reference to the page. Setting PG_private should also increment the
669 * refcount. The each user mapping also has a reference to the page.
1da177e4 670 *
da6052f7
NP
671 * The pagecache pages are stored in a per-mapping radix tree, which is
672 * rooted at mapping->page_tree, and indexed by offset.
673 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
674 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 675 *
da6052f7 676 * All pagecache pages may be subject to I/O:
1da177e4
LT
677 * - inode pages may need to be read from disk,
678 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
679 * to be written back to the inode on disk,
680 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
681 * modified may need to be swapped out to swap space and (later) to be read
682 * back into memory.
1da177e4
LT
683 */
684
685/*
686 * The zone field is never updated after free_area_init_core()
687 * sets it, so none of the operations on it need to be atomic.
1da177e4 688 */
348f8b6c 689
90572890 690/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 691#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
692#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
693#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 694#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 695
348f8b6c 696/*
25985edc 697 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
698 * sections we define the shift as 0; that plus a 0 mask ensures
699 * the compiler will optimise away reference to them.
700 */
d41dee36
AW
701#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
702#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
703#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 704#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 705
bce54bbf
WD
706/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
707#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 708#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
709#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
710 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 711#else
89689ae7 712#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
713#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
714 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
715#endif
716
bd8029b6 717#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 718
9223b419
CL
719#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
720#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
721#endif
722
d41dee36
AW
723#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
724#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
725#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 726#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 727#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 728
33dd4e0e 729static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 730{
348f8b6c 731 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 732}
1da177e4 733
260ae3f7 734#ifdef CONFIG_ZONE_DEVICE
3565fce3
DW
735void get_zone_device_page(struct page *page);
736void put_zone_device_page(struct page *page);
260ae3f7
DW
737static inline bool is_zone_device_page(const struct page *page)
738{
739 return page_zonenum(page) == ZONE_DEVICE;
740}
741#else
3565fce3
DW
742static inline void get_zone_device_page(struct page *page)
743{
744}
745static inline void put_zone_device_page(struct page *page)
746{
747}
260ae3f7
DW
748static inline bool is_zone_device_page(const struct page *page)
749{
750 return false;
751}
752#endif
753
3565fce3
DW
754static inline void get_page(struct page *page)
755{
756 page = compound_head(page);
757 /*
758 * Getting a normal page or the head of a compound page
0139aa7b 759 * requires to already have an elevated page->_refcount.
3565fce3 760 */
fe896d18
JK
761 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
762 page_ref_inc(page);
3565fce3
DW
763
764 if (unlikely(is_zone_device_page(page)))
765 get_zone_device_page(page);
766}
767
768static inline void put_page(struct page *page)
769{
770 page = compound_head(page);
771
772 if (put_page_testzero(page))
773 __put_page(page);
774
775 if (unlikely(is_zone_device_page(page)))
776 put_zone_device_page(page);
777}
778
9127ab4f
CS
779#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
780#define SECTION_IN_PAGE_FLAGS
781#endif
782
89689ae7 783/*
7a8010cd
VB
784 * The identification function is mainly used by the buddy allocator for
785 * determining if two pages could be buddies. We are not really identifying
786 * the zone since we could be using the section number id if we do not have
787 * node id available in page flags.
788 * We only guarantee that it will return the same value for two combinable
789 * pages in a zone.
89689ae7 790 */
cb2b95e1
AW
791static inline int page_zone_id(struct page *page)
792{
89689ae7 793 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
794}
795
25ba77c1 796static inline int zone_to_nid(struct zone *zone)
89fa3024 797{
d5f541ed
CL
798#ifdef CONFIG_NUMA
799 return zone->node;
800#else
801 return 0;
802#endif
89fa3024
CL
803}
804
89689ae7 805#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 806extern int page_to_nid(const struct page *page);
89689ae7 807#else
33dd4e0e 808static inline int page_to_nid(const struct page *page)
d41dee36 809{
89689ae7 810 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 811}
89689ae7
CL
812#endif
813
57e0a030 814#ifdef CONFIG_NUMA_BALANCING
90572890 815static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 816{
90572890 817 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
818}
819
90572890 820static inline int cpupid_to_pid(int cpupid)
57e0a030 821{
90572890 822 return cpupid & LAST__PID_MASK;
57e0a030 823}
b795854b 824
90572890 825static inline int cpupid_to_cpu(int cpupid)
b795854b 826{
90572890 827 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
828}
829
90572890 830static inline int cpupid_to_nid(int cpupid)
b795854b 831{
90572890 832 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
833}
834
90572890 835static inline bool cpupid_pid_unset(int cpupid)
57e0a030 836{
90572890 837 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
838}
839
90572890 840static inline bool cpupid_cpu_unset(int cpupid)
b795854b 841{
90572890 842 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
843}
844
8c8a743c
PZ
845static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
846{
847 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
848}
849
850#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
851#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
852static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 853{
1ae71d03 854 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 855}
90572890
PZ
856
857static inline int page_cpupid_last(struct page *page)
858{
859 return page->_last_cpupid;
860}
861static inline void page_cpupid_reset_last(struct page *page)
b795854b 862{
1ae71d03 863 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
864}
865#else
90572890 866static inline int page_cpupid_last(struct page *page)
75980e97 867{
90572890 868 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
869}
870
90572890 871extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 872
90572890 873static inline void page_cpupid_reset_last(struct page *page)
75980e97 874{
09940a4f 875 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 876}
90572890
PZ
877#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
878#else /* !CONFIG_NUMA_BALANCING */
879static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 880{
90572890 881 return page_to_nid(page); /* XXX */
57e0a030
MG
882}
883
90572890 884static inline int page_cpupid_last(struct page *page)
57e0a030 885{
90572890 886 return page_to_nid(page); /* XXX */
57e0a030
MG
887}
888
90572890 889static inline int cpupid_to_nid(int cpupid)
b795854b
MG
890{
891 return -1;
892}
893
90572890 894static inline int cpupid_to_pid(int cpupid)
b795854b
MG
895{
896 return -1;
897}
898
90572890 899static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
900{
901 return -1;
902}
903
90572890
PZ
904static inline int cpu_pid_to_cpupid(int nid, int pid)
905{
906 return -1;
907}
908
909static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
910{
911 return 1;
912}
913
90572890 914static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
915{
916}
8c8a743c
PZ
917
918static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
919{
920 return false;
921}
90572890 922#endif /* CONFIG_NUMA_BALANCING */
57e0a030 923
33dd4e0e 924static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
925{
926 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
927}
928
75ef7184
MG
929static inline pg_data_t *page_pgdat(const struct page *page)
930{
931 return NODE_DATA(page_to_nid(page));
932}
933
9127ab4f 934#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
935static inline void set_page_section(struct page *page, unsigned long section)
936{
937 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
938 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
939}
940
aa462abe 941static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
942{
943 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
944}
308c05e3 945#endif
d41dee36 946
2f1b6248 947static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
948{
949 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
950 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
951}
2f1b6248 952
348f8b6c
DH
953static inline void set_page_node(struct page *page, unsigned long node)
954{
955 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
956 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 957}
89689ae7 958
2f1b6248 959static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 960 unsigned long node, unsigned long pfn)
1da177e4 961{
348f8b6c
DH
962 set_page_zone(page, zone);
963 set_page_node(page, node);
9127ab4f 964#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 965 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 966#endif
1da177e4
LT
967}
968
0610c25d
GT
969#ifdef CONFIG_MEMCG
970static inline struct mem_cgroup *page_memcg(struct page *page)
971{
972 return page->mem_cgroup;
973}
55779ec7
JW
974static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
975{
976 WARN_ON_ONCE(!rcu_read_lock_held());
977 return READ_ONCE(page->mem_cgroup);
978}
0610c25d
GT
979#else
980static inline struct mem_cgroup *page_memcg(struct page *page)
981{
982 return NULL;
983}
55779ec7
JW
984static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
985{
986 WARN_ON_ONCE(!rcu_read_lock_held());
987 return NULL;
988}
0610c25d
GT
989#endif
990
f6ac2354
CL
991/*
992 * Some inline functions in vmstat.h depend on page_zone()
993 */
994#include <linux/vmstat.h>
995
33dd4e0e 996static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 997{
1dff8083 998 return page_to_virt(page);
1da177e4
LT
999}
1000
1001#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1002#define HASHED_PAGE_VIRTUAL
1003#endif
1004
1005#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1006static inline void *page_address(const struct page *page)
1007{
1008 return page->virtual;
1009}
1010static inline void set_page_address(struct page *page, void *address)
1011{
1012 page->virtual = address;
1013}
1da177e4
LT
1014#define page_address_init() do { } while(0)
1015#endif
1016
1017#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1018void *page_address(const struct page *page);
1da177e4
LT
1019void set_page_address(struct page *page, void *virtual);
1020void page_address_init(void);
1021#endif
1022
1023#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1024#define page_address(page) lowmem_page_address(page)
1025#define set_page_address(page, address) do { } while(0)
1026#define page_address_init() do { } while(0)
1027#endif
1028
e39155ea
KS
1029extern void *page_rmapping(struct page *page);
1030extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1031extern struct address_space *page_mapping(struct page *page);
1da177e4 1032
f981c595
MG
1033extern struct address_space *__page_file_mapping(struct page *);
1034
1035static inline
1036struct address_space *page_file_mapping(struct page *page)
1037{
1038 if (unlikely(PageSwapCache(page)))
1039 return __page_file_mapping(page);
1040
1041 return page->mapping;
1042}
1043
f6ab1f7f
HY
1044extern pgoff_t __page_file_index(struct page *page);
1045
1da177e4
LT
1046/*
1047 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1048 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1049 */
1050static inline pgoff_t page_index(struct page *page)
1051{
1052 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1053 return __page_file_index(page);
1da177e4
LT
1054 return page->index;
1055}
1056
1aa8aea5 1057bool page_mapped(struct page *page);
bda807d4 1058struct address_space *page_mapping(struct page *page);
1da177e4 1059
2f064f34
MH
1060/*
1061 * Return true only if the page has been allocated with
1062 * ALLOC_NO_WATERMARKS and the low watermark was not
1063 * met implying that the system is under some pressure.
1064 */
1065static inline bool page_is_pfmemalloc(struct page *page)
1066{
1067 /*
1068 * Page index cannot be this large so this must be
1069 * a pfmemalloc page.
1070 */
1071 return page->index == -1UL;
1072}
1073
1074/*
1075 * Only to be called by the page allocator on a freshly allocated
1076 * page.
1077 */
1078static inline void set_page_pfmemalloc(struct page *page)
1079{
1080 page->index = -1UL;
1081}
1082
1083static inline void clear_page_pfmemalloc(struct page *page)
1084{
1085 page->index = 0;
1086}
1087
1da177e4
LT
1088/*
1089 * Different kinds of faults, as returned by handle_mm_fault().
1090 * Used to decide whether a process gets delivered SIGBUS or
1091 * just gets major/minor fault counters bumped up.
1092 */
d0217ac0 1093
83c54070
NP
1094#define VM_FAULT_OOM 0x0001
1095#define VM_FAULT_SIGBUS 0x0002
1096#define VM_FAULT_MAJOR 0x0004
1097#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1098#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1099#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1100#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1101
83c54070
NP
1102#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1103#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1104#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1105#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
bc2466e4 1106#define VM_FAULT_DAX_LOCKED 0x1000 /* ->fault has locked DAX entry */
3917048d 1107#define VM_FAULT_DONE_COW 0x2000 /* ->fault has fully handled COW */
1da177e4 1108
aa50d3a7
AK
1109#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1110
33692f27
LT
1111#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1112 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1113 VM_FAULT_FALLBACK)
aa50d3a7
AK
1114
1115/* Encode hstate index for a hwpoisoned large page */
1116#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1117#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1118
1c0fe6e3
NP
1119/*
1120 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1121 */
1122extern void pagefault_out_of_memory(void);
1123
1da177e4
LT
1124#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1125
ddd588b5 1126/*
7bf02ea2 1127 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1128 * various contexts.
1129 */
4b59e6c4 1130#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1131
7bf02ea2
DR
1132extern void show_free_areas(unsigned int flags);
1133extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1134
1da177e4 1135int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1136#ifdef CONFIG_SHMEM
1137bool shmem_mapping(struct address_space *mapping);
1138#else
1139static inline bool shmem_mapping(struct address_space *mapping)
1140{
1141 return false;
1142}
1143#endif
1da177e4 1144
7f43add4 1145extern bool can_do_mlock(void);
1da177e4
LT
1146extern int user_shm_lock(size_t, struct user_struct *);
1147extern void user_shm_unlock(size_t, struct user_struct *);
1148
1149/*
1150 * Parameter block passed down to zap_pte_range in exceptional cases.
1151 */
1152struct zap_details {
1da177e4
LT
1153 struct address_space *check_mapping; /* Check page->mapping if set */
1154 pgoff_t first_index; /* Lowest page->index to unmap */
1155 pgoff_t last_index; /* Highest page->index to unmap */
aac45363
MH
1156 bool ignore_dirty; /* Ignore dirty pages */
1157 bool check_swap_entries; /* Check also swap entries */
1da177e4
LT
1158};
1159
7e675137
NP
1160struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1161 pte_t pte);
28093f9f
GS
1162struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1163 pmd_t pmd);
7e675137 1164
c627f9cc
JS
1165int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1166 unsigned long size);
14f5ff5d 1167void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1168 unsigned long size, struct zap_details *);
4f74d2c8
LT
1169void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1170 unsigned long start, unsigned long end);
e6473092
MM
1171
1172/**
1173 * mm_walk - callbacks for walk_page_range
e6473092 1174 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1175 * this handler is required to be able to handle
1176 * pmd_trans_huge() pmds. They may simply choose to
1177 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1178 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1179 * @pte_hole: if set, called for each hole at all levels
5dc37642 1180 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426 1181 * @test_walk: caller specific callback function to determine whether
f7e2355f 1182 * we walk over the current vma or not. Returning 0
fafaa426
NH
1183 * value means "do page table walk over the current vma,"
1184 * and a negative one means "abort current page table walk
f7e2355f 1185 * right now." 1 means "skip the current vma."
fafaa426
NH
1186 * @mm: mm_struct representing the target process of page table walk
1187 * @vma: vma currently walked (NULL if walking outside vmas)
1188 * @private: private data for callbacks' usage
e6473092 1189 *
fafaa426 1190 * (see the comment on walk_page_range() for more details)
e6473092
MM
1191 */
1192struct mm_walk {
0f157a5b
AM
1193 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1194 unsigned long next, struct mm_walk *walk);
1195 int (*pte_entry)(pte_t *pte, unsigned long addr,
1196 unsigned long next, struct mm_walk *walk);
1197 int (*pte_hole)(unsigned long addr, unsigned long next,
1198 struct mm_walk *walk);
1199 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1200 unsigned long addr, unsigned long next,
1201 struct mm_walk *walk);
fafaa426
NH
1202 int (*test_walk)(unsigned long addr, unsigned long next,
1203 struct mm_walk *walk);
2165009b 1204 struct mm_struct *mm;
fafaa426 1205 struct vm_area_struct *vma;
2165009b 1206 void *private;
e6473092
MM
1207};
1208
2165009b
DH
1209int walk_page_range(unsigned long addr, unsigned long end,
1210 struct mm_walk *walk);
900fc5f1 1211int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1212void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1213 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1214int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1215 struct vm_area_struct *vma);
1da177e4
LT
1216void unmap_mapping_range(struct address_space *mapping,
1217 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1218int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1219 unsigned long *pfn);
d87fe660 1220int follow_phys(struct vm_area_struct *vma, unsigned long address,
1221 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1222int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1223 void *buf, int len, int write);
1da177e4
LT
1224
1225static inline void unmap_shared_mapping_range(struct address_space *mapping,
1226 loff_t const holebegin, loff_t const holelen)
1227{
1228 unmap_mapping_range(mapping, holebegin, holelen, 0);
1229}
1230
7caef267 1231extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1232extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1233void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1234void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1235int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1236int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1237int invalidate_inode_page(struct page *page);
1238
7ee1dd3f 1239#ifdef CONFIG_MMU
dcddffd4
KS
1240extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1241 unsigned int flags);
5c723ba5 1242extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1243 unsigned long address, unsigned int fault_flags,
1244 bool *unlocked);
7ee1dd3f 1245#else
dcddffd4
KS
1246static inline int handle_mm_fault(struct vm_area_struct *vma,
1247 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1248{
1249 /* should never happen if there's no MMU */
1250 BUG();
1251 return VM_FAULT_SIGBUS;
1252}
5c723ba5
PZ
1253static inline int fixup_user_fault(struct task_struct *tsk,
1254 struct mm_struct *mm, unsigned long address,
4a9e1cda 1255 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1256{
1257 /* should never happen if there's no MMU */
1258 BUG();
1259 return -EFAULT;
1260}
7ee1dd3f 1261#endif
f33ea7f4 1262
f307ab6d
LS
1263extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1264 unsigned int gup_flags);
5ddd36b9 1265extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1266 void *buf, int len, unsigned int gup_flags);
1da177e4 1267
1e987790
DH
1268long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1269 unsigned long start, unsigned long nr_pages,
9beae1ea 1270 unsigned int gup_flags, struct page **pages,
5b56d49f 1271 struct vm_area_struct **vmas, int *locked);
c12d2da5 1272long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1273 unsigned int gup_flags, struct page **pages,
cde70140 1274 struct vm_area_struct **vmas);
c12d2da5 1275long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1276 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1277long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1278 struct page **pages, unsigned int gup_flags);
d2bf6be8
NP
1279int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1280 struct page **pages);
8025e5dd
JK
1281
1282/* Container for pinned pfns / pages */
1283struct frame_vector {
1284 unsigned int nr_allocated; /* Number of frames we have space for */
1285 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1286 bool got_ref; /* Did we pin pages by getting page ref? */
1287 bool is_pfns; /* Does array contain pages or pfns? */
1288 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1289 * pfns_vector_pages() or pfns_vector_pfns()
1290 * for access */
1291};
1292
1293struct frame_vector *frame_vector_create(unsigned int nr_frames);
1294void frame_vector_destroy(struct frame_vector *vec);
1295int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1296 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1297void put_vaddr_frames(struct frame_vector *vec);
1298int frame_vector_to_pages(struct frame_vector *vec);
1299void frame_vector_to_pfns(struct frame_vector *vec);
1300
1301static inline unsigned int frame_vector_count(struct frame_vector *vec)
1302{
1303 return vec->nr_frames;
1304}
1305
1306static inline struct page **frame_vector_pages(struct frame_vector *vec)
1307{
1308 if (vec->is_pfns) {
1309 int err = frame_vector_to_pages(vec);
1310
1311 if (err)
1312 return ERR_PTR(err);
1313 }
1314 return (struct page **)(vec->ptrs);
1315}
1316
1317static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1318{
1319 if (!vec->is_pfns)
1320 frame_vector_to_pfns(vec);
1321 return (unsigned long *)(vec->ptrs);
1322}
1323
18022c5d
MG
1324struct kvec;
1325int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1326 struct page **pages);
1327int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1328struct page *get_dump_page(unsigned long addr);
1da177e4 1329
cf9a2ae8 1330extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1331extern void do_invalidatepage(struct page *page, unsigned int offset,
1332 unsigned int length);
cf9a2ae8 1333
1da177e4 1334int __set_page_dirty_nobuffers(struct page *page);
76719325 1335int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1336int redirty_page_for_writepage(struct writeback_control *wbc,
1337 struct page *page);
62cccb8c 1338void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1339void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1340 struct bdi_writeback *wb);
b3c97528 1341int set_page_dirty(struct page *page);
1da177e4 1342int set_page_dirty_lock(struct page *page);
11f81bec 1343void cancel_dirty_page(struct page *page);
1da177e4 1344int clear_page_dirty_for_io(struct page *page);
b9ea2515 1345
a9090253 1346int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1347
39aa3cb3 1348/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1349static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1350{
1351 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1352}
1353
b5330628
ON
1354static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1355{
1356 return !vma->vm_ops;
1357}
1358
a09a79f6
MP
1359static inline int stack_guard_page_start(struct vm_area_struct *vma,
1360 unsigned long addr)
1361{
1362 return (vma->vm_flags & VM_GROWSDOWN) &&
1363 (vma->vm_start == addr) &&
1364 !vma_growsdown(vma->vm_prev, addr);
1365}
1366
1367/* Is the vma a continuation of the stack vma below it? */
1368static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1369{
1370 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1371}
1372
1373static inline int stack_guard_page_end(struct vm_area_struct *vma,
1374 unsigned long addr)
1375{
1376 return (vma->vm_flags & VM_GROWSUP) &&
1377 (vma->vm_end == addr) &&
1378 !vma_growsup(vma->vm_next, addr);
1379}
1380
d17af505 1381int vma_is_stack_for_current(struct vm_area_struct *vma);
b7643757 1382
b6a2fea3
OW
1383extern unsigned long move_page_tables(struct vm_area_struct *vma,
1384 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1385 unsigned long new_addr, unsigned long len,
1386 bool need_rmap_locks);
7da4d641
PZ
1387extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1388 unsigned long end, pgprot_t newprot,
4b10e7d5 1389 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1390extern int mprotect_fixup(struct vm_area_struct *vma,
1391 struct vm_area_struct **pprev, unsigned long start,
1392 unsigned long end, unsigned long newflags);
1da177e4 1393
465a454f
PZ
1394/*
1395 * doesn't attempt to fault and will return short.
1396 */
1397int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1398 struct page **pages);
d559db08
KH
1399/*
1400 * per-process(per-mm_struct) statistics.
1401 */
d559db08
KH
1402static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1403{
69c97823
KK
1404 long val = atomic_long_read(&mm->rss_stat.count[member]);
1405
1406#ifdef SPLIT_RSS_COUNTING
1407 /*
1408 * counter is updated in asynchronous manner and may go to minus.
1409 * But it's never be expected number for users.
1410 */
1411 if (val < 0)
1412 val = 0;
172703b0 1413#endif
69c97823
KK
1414 return (unsigned long)val;
1415}
d559db08
KH
1416
1417static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1418{
172703b0 1419 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1420}
1421
1422static inline void inc_mm_counter(struct mm_struct *mm, int member)
1423{
172703b0 1424 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1425}
1426
1427static inline void dec_mm_counter(struct mm_struct *mm, int member)
1428{
172703b0 1429 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1430}
1431
eca56ff9
JM
1432/* Optimized variant when page is already known not to be PageAnon */
1433static inline int mm_counter_file(struct page *page)
1434{
1435 if (PageSwapBacked(page))
1436 return MM_SHMEMPAGES;
1437 return MM_FILEPAGES;
1438}
1439
1440static inline int mm_counter(struct page *page)
1441{
1442 if (PageAnon(page))
1443 return MM_ANONPAGES;
1444 return mm_counter_file(page);
1445}
1446
d559db08
KH
1447static inline unsigned long get_mm_rss(struct mm_struct *mm)
1448{
1449 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1450 get_mm_counter(mm, MM_ANONPAGES) +
1451 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1452}
1453
1454static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1455{
1456 return max(mm->hiwater_rss, get_mm_rss(mm));
1457}
1458
1459static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1460{
1461 return max(mm->hiwater_vm, mm->total_vm);
1462}
1463
1464static inline void update_hiwater_rss(struct mm_struct *mm)
1465{
1466 unsigned long _rss = get_mm_rss(mm);
1467
1468 if ((mm)->hiwater_rss < _rss)
1469 (mm)->hiwater_rss = _rss;
1470}
1471
1472static inline void update_hiwater_vm(struct mm_struct *mm)
1473{
1474 if (mm->hiwater_vm < mm->total_vm)
1475 mm->hiwater_vm = mm->total_vm;
1476}
1477
695f0559
PC
1478static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1479{
1480 mm->hiwater_rss = get_mm_rss(mm);
1481}
1482
d559db08
KH
1483static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1484 struct mm_struct *mm)
1485{
1486 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1487
1488 if (*maxrss < hiwater_rss)
1489 *maxrss = hiwater_rss;
1490}
1491
53bddb4e 1492#if defined(SPLIT_RSS_COUNTING)
05af2e10 1493void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1494#else
05af2e10 1495static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1496{
1497}
1498#endif
465a454f 1499
3565fce3
DW
1500#ifndef __HAVE_ARCH_PTE_DEVMAP
1501static inline int pte_devmap(pte_t pte)
1502{
1503 return 0;
1504}
1505#endif
1506
6d2329f8 1507int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1508
25ca1d6c
NK
1509extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1510 spinlock_t **ptl);
1511static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1512 spinlock_t **ptl)
1513{
1514 pte_t *ptep;
1515 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1516 return ptep;
1517}
c9cfcddf 1518
5f22df00
NP
1519#ifdef __PAGETABLE_PUD_FOLDED
1520static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1521 unsigned long address)
1522{
1523 return 0;
1524}
1525#else
1bb3630e 1526int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1527#endif
1528
2d2f5119 1529#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1530static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1531 unsigned long address)
1532{
1533 return 0;
1534}
dc6c9a35 1535
2d2f5119
KS
1536static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1537
dc6c9a35
KS
1538static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1539{
1540 return 0;
1541}
1542
1543static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1544static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1545
5f22df00 1546#else
1bb3630e 1547int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1548
2d2f5119
KS
1549static inline void mm_nr_pmds_init(struct mm_struct *mm)
1550{
1551 atomic_long_set(&mm->nr_pmds, 0);
1552}
1553
dc6c9a35
KS
1554static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1555{
1556 return atomic_long_read(&mm->nr_pmds);
1557}
1558
1559static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1560{
1561 atomic_long_inc(&mm->nr_pmds);
1562}
1563
1564static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1565{
1566 atomic_long_dec(&mm->nr_pmds);
1567}
5f22df00
NP
1568#endif
1569
3ed3a4f0 1570int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1bb3630e
HD
1571int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1572
1da177e4
LT
1573/*
1574 * The following ifdef needed to get the 4level-fixup.h header to work.
1575 * Remove it when 4level-fixup.h has been removed.
1576 */
1bb3630e 1577#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1578static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1579{
1bb3630e
HD
1580 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1581 NULL: pud_offset(pgd, address);
1da177e4
LT
1582}
1583
1584static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1585{
1bb3630e
HD
1586 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1587 NULL: pmd_offset(pud, address);
1da177e4 1588}
1bb3630e
HD
1589#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1590
57c1ffce 1591#if USE_SPLIT_PTE_PTLOCKS
597d795a 1592#if ALLOC_SPLIT_PTLOCKS
b35f1819 1593void __init ptlock_cache_init(void);
539edb58
PZ
1594extern bool ptlock_alloc(struct page *page);
1595extern void ptlock_free(struct page *page);
1596
1597static inline spinlock_t *ptlock_ptr(struct page *page)
1598{
1599 return page->ptl;
1600}
597d795a 1601#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1602static inline void ptlock_cache_init(void)
1603{
1604}
1605
49076ec2
KS
1606static inline bool ptlock_alloc(struct page *page)
1607{
49076ec2
KS
1608 return true;
1609}
539edb58 1610
49076ec2
KS
1611static inline void ptlock_free(struct page *page)
1612{
49076ec2
KS
1613}
1614
1615static inline spinlock_t *ptlock_ptr(struct page *page)
1616{
539edb58 1617 return &page->ptl;
49076ec2 1618}
597d795a 1619#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1620
1621static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1622{
1623 return ptlock_ptr(pmd_page(*pmd));
1624}
1625
1626static inline bool ptlock_init(struct page *page)
1627{
1628 /*
1629 * prep_new_page() initialize page->private (and therefore page->ptl)
1630 * with 0. Make sure nobody took it in use in between.
1631 *
1632 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1633 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1634 */
309381fe 1635 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1636 if (!ptlock_alloc(page))
1637 return false;
1638 spin_lock_init(ptlock_ptr(page));
1639 return true;
1640}
1641
1642/* Reset page->mapping so free_pages_check won't complain. */
1643static inline void pte_lock_deinit(struct page *page)
1644{
1645 page->mapping = NULL;
1646 ptlock_free(page);
1647}
1648
57c1ffce 1649#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1650/*
1651 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1652 */
49076ec2
KS
1653static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1654{
1655 return &mm->page_table_lock;
1656}
b35f1819 1657static inline void ptlock_cache_init(void) {}
49076ec2
KS
1658static inline bool ptlock_init(struct page *page) { return true; }
1659static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1660#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1661
b35f1819
KS
1662static inline void pgtable_init(void)
1663{
1664 ptlock_cache_init();
1665 pgtable_cache_init();
1666}
1667
390f44e2 1668static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1669{
706874e9
VD
1670 if (!ptlock_init(page))
1671 return false;
2f569afd 1672 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1673 return true;
2f569afd
MS
1674}
1675
1676static inline void pgtable_page_dtor(struct page *page)
1677{
1678 pte_lock_deinit(page);
1679 dec_zone_page_state(page, NR_PAGETABLE);
1680}
1681
c74df32c
HD
1682#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1683({ \
4c21e2f2 1684 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1685 pte_t *__pte = pte_offset_map(pmd, address); \
1686 *(ptlp) = __ptl; \
1687 spin_lock(__ptl); \
1688 __pte; \
1689})
1690
1691#define pte_unmap_unlock(pte, ptl) do { \
1692 spin_unlock(ptl); \
1693 pte_unmap(pte); \
1694} while (0)
1695
3ed3a4f0
KS
1696#define pte_alloc(mm, pmd, address) \
1697 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1698
1699#define pte_alloc_map(mm, pmd, address) \
1700 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1bb3630e 1701
c74df32c 1702#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3ed3a4f0
KS
1703 (pte_alloc(mm, pmd, address) ? \
1704 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 1705
1bb3630e 1706#define pte_alloc_kernel(pmd, address) \
8ac1f832 1707 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1708 NULL: pte_offset_kernel(pmd, address))
1da177e4 1709
e009bb30
KS
1710#if USE_SPLIT_PMD_PTLOCKS
1711
634391ac
MS
1712static struct page *pmd_to_page(pmd_t *pmd)
1713{
1714 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1715 return virt_to_page((void *)((unsigned long) pmd & mask));
1716}
1717
e009bb30
KS
1718static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1719{
634391ac 1720 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1721}
1722
1723static inline bool pgtable_pmd_page_ctor(struct page *page)
1724{
e009bb30
KS
1725#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1726 page->pmd_huge_pte = NULL;
1727#endif
49076ec2 1728 return ptlock_init(page);
e009bb30
KS
1729}
1730
1731static inline void pgtable_pmd_page_dtor(struct page *page)
1732{
1733#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1734 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1735#endif
49076ec2 1736 ptlock_free(page);
e009bb30
KS
1737}
1738
634391ac 1739#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1740
1741#else
1742
9a86cb7b
KS
1743static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1744{
1745 return &mm->page_table_lock;
1746}
1747
e009bb30
KS
1748static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1749static inline void pgtable_pmd_page_dtor(struct page *page) {}
1750
c389a250 1751#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1752
e009bb30
KS
1753#endif
1754
9a86cb7b
KS
1755static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1756{
1757 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1758 spin_lock(ptl);
1759 return ptl;
1760}
1761
1da177e4 1762extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1763extern void free_area_init_node(int nid, unsigned long * zones_size,
1764 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1765extern void free_initmem(void);
1766
69afade7
JL
1767/*
1768 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1769 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1770 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1771 * Return pages freed into the buddy system.
1772 */
11199692 1773extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1774 int poison, char *s);
c3d5f5f0 1775
cfa11e08
JL
1776#ifdef CONFIG_HIGHMEM
1777/*
1778 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1779 * and totalram_pages.
1780 */
1781extern void free_highmem_page(struct page *page);
1782#endif
69afade7 1783
c3d5f5f0 1784extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1785extern void mem_init_print_info(const char *str);
69afade7 1786
4b50bcc7 1787extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 1788
69afade7
JL
1789/* Free the reserved page into the buddy system, so it gets managed. */
1790static inline void __free_reserved_page(struct page *page)
1791{
1792 ClearPageReserved(page);
1793 init_page_count(page);
1794 __free_page(page);
1795}
1796
1797static inline void free_reserved_page(struct page *page)
1798{
1799 __free_reserved_page(page);
1800 adjust_managed_page_count(page, 1);
1801}
1802
1803static inline void mark_page_reserved(struct page *page)
1804{
1805 SetPageReserved(page);
1806 adjust_managed_page_count(page, -1);
1807}
1808
1809/*
1810 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1811 * The freed pages will be poisoned with pattern "poison" if it's within
1812 * range [0, UCHAR_MAX].
1813 * Return pages freed into the buddy system.
69afade7
JL
1814 */
1815static inline unsigned long free_initmem_default(int poison)
1816{
1817 extern char __init_begin[], __init_end[];
1818
11199692 1819 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1820 poison, "unused kernel");
1821}
1822
7ee3d4e8
JL
1823static inline unsigned long get_num_physpages(void)
1824{
1825 int nid;
1826 unsigned long phys_pages = 0;
1827
1828 for_each_online_node(nid)
1829 phys_pages += node_present_pages(nid);
1830
1831 return phys_pages;
1832}
1833
0ee332c1 1834#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1835/*
0ee332c1 1836 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1837 * zones, allocate the backing mem_map and account for memory holes in a more
1838 * architecture independent manner. This is a substitute for creating the
1839 * zone_sizes[] and zholes_size[] arrays and passing them to
1840 * free_area_init_node()
1841 *
1842 * An architecture is expected to register range of page frames backed by
0ee332c1 1843 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1844 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1845 * usage, an architecture is expected to do something like
1846 *
1847 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1848 * max_highmem_pfn};
1849 * for_each_valid_physical_page_range()
0ee332c1 1850 * memblock_add_node(base, size, nid)
c713216d
MG
1851 * free_area_init_nodes(max_zone_pfns);
1852 *
0ee332c1
TH
1853 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1854 * registered physical page range. Similarly
1855 * sparse_memory_present_with_active_regions() calls memory_present() for
1856 * each range when SPARSEMEM is enabled.
c713216d
MG
1857 *
1858 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1859 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1860 */
1861extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1862unsigned long node_map_pfn_alignment(void);
32996250
YL
1863unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1864 unsigned long end_pfn);
c713216d
MG
1865extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1866 unsigned long end_pfn);
1867extern void get_pfn_range_for_nid(unsigned int nid,
1868 unsigned long *start_pfn, unsigned long *end_pfn);
1869extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1870extern void free_bootmem_with_active_regions(int nid,
1871 unsigned long max_low_pfn);
1872extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1873
0ee332c1 1874#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1875
0ee332c1 1876#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1877 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1878static inline int __early_pfn_to_nid(unsigned long pfn,
1879 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1880{
1881 return 0;
1882}
1883#else
1884/* please see mm/page_alloc.c */
1885extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1886/* there is a per-arch backend function. */
8a942fde
MG
1887extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1888 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1889#endif
1890
0e0b864e 1891extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1892extern void memmap_init_zone(unsigned long, int, unsigned long,
1893 unsigned long, enum memmap_context);
bc75d33f 1894extern void setup_per_zone_wmarks(void);
1b79acc9 1895extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1896extern void mem_init(void);
8feae131 1897extern void __init mmap_init(void);
b2b755b5 1898extern void show_mem(unsigned int flags);
d02bd27b 1899extern long si_mem_available(void);
1da177e4
LT
1900extern void si_meminfo(struct sysinfo * val);
1901extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
1902#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
1903extern unsigned long arch_reserved_kernel_pages(void);
1904#endif
1da177e4 1905
7877cdcc
MH
1906extern __printf(2, 3)
1907void warn_alloc(gfp_t gfp_mask, const char *fmt, ...);
a238ab5b 1908
e7c8d5c9 1909extern void setup_per_cpu_pageset(void);
e7c8d5c9 1910
112067f0 1911extern void zone_pcp_update(struct zone *zone);
340175b7 1912extern void zone_pcp_reset(struct zone *zone);
112067f0 1913
75f7ad8e
PS
1914/* page_alloc.c */
1915extern int min_free_kbytes;
795ae7a0 1916extern int watermark_scale_factor;
75f7ad8e 1917
8feae131 1918/* nommu.c */
33e5d769 1919extern atomic_long_t mmap_pages_allocated;
7e660872 1920extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1921
6b2dbba8 1922/* interval_tree.c */
6b2dbba8
ML
1923void vma_interval_tree_insert(struct vm_area_struct *node,
1924 struct rb_root *root);
9826a516
ML
1925void vma_interval_tree_insert_after(struct vm_area_struct *node,
1926 struct vm_area_struct *prev,
1927 struct rb_root *root);
6b2dbba8
ML
1928void vma_interval_tree_remove(struct vm_area_struct *node,
1929 struct rb_root *root);
1930struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1931 unsigned long start, unsigned long last);
1932struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1933 unsigned long start, unsigned long last);
1934
1935#define vma_interval_tree_foreach(vma, root, start, last) \
1936 for (vma = vma_interval_tree_iter_first(root, start, last); \
1937 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 1938
bf181b9f
ML
1939void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1940 struct rb_root *root);
1941void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1942 struct rb_root *root);
1943struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1944 struct rb_root *root, unsigned long start, unsigned long last);
1945struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1946 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1947#ifdef CONFIG_DEBUG_VM_RB
1948void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1949#endif
bf181b9f
ML
1950
1951#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1952 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1953 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1954
1da177e4 1955/* mmap.c */
34b4e4aa 1956extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
1957extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
1958 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
1959 struct vm_area_struct *expand);
1960static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1961 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
1962{
1963 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
1964}
1da177e4
LT
1965extern struct vm_area_struct *vma_merge(struct mm_struct *,
1966 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1967 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 1968 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4
LT
1969extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1970extern int split_vma(struct mm_struct *,
1971 struct vm_area_struct *, unsigned long addr, int new_below);
1972extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1973extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1974 struct rb_node **, struct rb_node *);
a8fb5618 1975extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1976extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1977 unsigned long addr, unsigned long len, pgoff_t pgoff,
1978 bool *need_rmap_locks);
1da177e4 1979extern void exit_mmap(struct mm_struct *);
925d1c40 1980
9c599024
CG
1981static inline int check_data_rlimit(unsigned long rlim,
1982 unsigned long new,
1983 unsigned long start,
1984 unsigned long end_data,
1985 unsigned long start_data)
1986{
1987 if (rlim < RLIM_INFINITY) {
1988 if (((new - start) + (end_data - start_data)) > rlim)
1989 return -ENOSPC;
1990 }
1991
1992 return 0;
1993}
1994
7906d00c
AA
1995extern int mm_take_all_locks(struct mm_struct *mm);
1996extern void mm_drop_all_locks(struct mm_struct *mm);
1997
38646013
JS
1998extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1999extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2000extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2001
84638335
KK
2002extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2003extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2004
2eefd878
DS
2005extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2006 const struct vm_special_mapping *sm);
3935ed6a
SS
2007extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2008 unsigned long addr, unsigned long len,
a62c34bd
AL
2009 unsigned long flags,
2010 const struct vm_special_mapping *spec);
2011/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2012extern int install_special_mapping(struct mm_struct *mm,
2013 unsigned long addr, unsigned long len,
2014 unsigned long flags, struct page **pages);
1da177e4
LT
2015
2016extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2017
0165ab44 2018extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 2019 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1fcfd8db 2020extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2021 unsigned long len, unsigned long prot, unsigned long flags,
1fcfd8db 2022 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1da177e4
LT
2023extern int do_munmap(struct mm_struct *, unsigned long, size_t);
2024
1fcfd8db
ON
2025static inline unsigned long
2026do_mmap_pgoff(struct file *file, unsigned long addr,
2027 unsigned long len, unsigned long prot, unsigned long flags,
2028 unsigned long pgoff, unsigned long *populate)
2029{
2030 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
2031}
2032
bebeb3d6
ML
2033#ifdef CONFIG_MMU
2034extern int __mm_populate(unsigned long addr, unsigned long len,
2035 int ignore_errors);
2036static inline void mm_populate(unsigned long addr, unsigned long len)
2037{
2038 /* Ignore errors */
2039 (void) __mm_populate(addr, len, 1);
2040}
2041#else
2042static inline void mm_populate(unsigned long addr, unsigned long len) {}
2043#endif
2044
e4eb1ff6 2045/* These take the mm semaphore themselves */
5d22fc25 2046extern int __must_check vm_brk(unsigned long, unsigned long);
bfce281c 2047extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2048extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2049 unsigned long, unsigned long,
2050 unsigned long, unsigned long);
1da177e4 2051
db4fbfb9
ML
2052struct vm_unmapped_area_info {
2053#define VM_UNMAPPED_AREA_TOPDOWN 1
2054 unsigned long flags;
2055 unsigned long length;
2056 unsigned long low_limit;
2057 unsigned long high_limit;
2058 unsigned long align_mask;
2059 unsigned long align_offset;
2060};
2061
2062extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2063extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2064
2065/*
2066 * Search for an unmapped address range.
2067 *
2068 * We are looking for a range that:
2069 * - does not intersect with any VMA;
2070 * - is contained within the [low_limit, high_limit) interval;
2071 * - is at least the desired size.
2072 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2073 */
2074static inline unsigned long
2075vm_unmapped_area(struct vm_unmapped_area_info *info)
2076{
cdd7875e 2077 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2078 return unmapped_area_topdown(info);
cdd7875e
BP
2079 else
2080 return unmapped_area(info);
db4fbfb9
ML
2081}
2082
85821aab 2083/* truncate.c */
1da177e4 2084extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2085extern void truncate_inode_pages_range(struct address_space *,
2086 loff_t lstart, loff_t lend);
91b0abe3 2087extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2088
2089/* generic vm_area_ops exported for stackable file systems */
d0217ac0 2090extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
82b0f8c3 2091extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2092 pgoff_t start_pgoff, pgoff_t end_pgoff);
4fcf1c62 2093extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
2094
2095/* mm/page-writeback.c */
2096int write_one_page(struct page *page, int wait);
1cf6e7d8 2097void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2098
2099/* readahead.c */
2100#define VM_MAX_READAHEAD 128 /* kbytes */
2101#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2102
1da177e4 2103int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2104 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2105
2106void page_cache_sync_readahead(struct address_space *mapping,
2107 struct file_ra_state *ra,
2108 struct file *filp,
2109 pgoff_t offset,
2110 unsigned long size);
2111
2112void page_cache_async_readahead(struct address_space *mapping,
2113 struct file_ra_state *ra,
2114 struct file *filp,
2115 struct page *pg,
2116 pgoff_t offset,
2117 unsigned long size);
2118
d05f3169 2119/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2120extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2121
2122/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2123extern int expand_downwards(struct vm_area_struct *vma,
2124 unsigned long address);
8ca3eb08 2125#if VM_GROWSUP
46dea3d0 2126extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2127#else
fee7e49d 2128 #define expand_upwards(vma, address) (0)
9ab88515 2129#endif
1da177e4
LT
2130
2131/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2132extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2133extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2134 struct vm_area_struct **pprev);
2135
2136/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2137 NULL if none. Assume start_addr < end_addr. */
2138static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2139{
2140 struct vm_area_struct * vma = find_vma(mm,start_addr);
2141
2142 if (vma && end_addr <= vma->vm_start)
2143 vma = NULL;
2144 return vma;
2145}
2146
2147static inline unsigned long vma_pages(struct vm_area_struct *vma)
2148{
2149 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2150}
2151
640708a2
PE
2152/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2153static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2154 unsigned long vm_start, unsigned long vm_end)
2155{
2156 struct vm_area_struct *vma = find_vma(mm, vm_start);
2157
2158 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2159 vma = NULL;
2160
2161 return vma;
2162}
2163
bad849b3 2164#ifdef CONFIG_MMU
804af2cf 2165pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2166void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2167#else
2168static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2169{
2170 return __pgprot(0);
2171}
64e45507
PF
2172static inline void vma_set_page_prot(struct vm_area_struct *vma)
2173{
2174 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2175}
bad849b3
DH
2176#endif
2177
5877231f 2178#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2179unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2180 unsigned long start, unsigned long end);
2181#endif
2182
deceb6cd 2183struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2184int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2185 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2186int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2187int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2188 unsigned long pfn);
1745cbc5
AL
2189int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2190 unsigned long pfn, pgprot_t pgprot);
423bad60 2191int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2192 pfn_t pfn);
b4cbb197
LT
2193int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2194
deceb6cd 2195
240aadee
ML
2196struct page *follow_page_mask(struct vm_area_struct *vma,
2197 unsigned long address, unsigned int foll_flags,
2198 unsigned int *page_mask);
2199
2200static inline struct page *follow_page(struct vm_area_struct *vma,
2201 unsigned long address, unsigned int foll_flags)
2202{
2203 unsigned int unused_page_mask;
2204 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2205}
2206
deceb6cd
HD
2207#define FOLL_WRITE 0x01 /* check pte is writable */
2208#define FOLL_TOUCH 0x02 /* mark page accessed */
2209#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2210#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2211#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2212#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2213 * and return without waiting upon it */
84d33df2 2214#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2215#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2216#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2217#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2218#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2219#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2220#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2221#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2222#define FOLL_COW 0x4000 /* internal GUP flag */
1da177e4 2223
2f569afd 2224typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2225 void *data);
2226extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2227 unsigned long size, pte_fn_t fn, void *data);
2228
1da177e4 2229
8823b1db
LA
2230#ifdef CONFIG_PAGE_POISONING
2231extern bool page_poisoning_enabled(void);
2232extern void kernel_poison_pages(struct page *page, int numpages, int enable);
1414c7f4 2233extern bool page_is_poisoned(struct page *page);
8823b1db
LA
2234#else
2235static inline bool page_poisoning_enabled(void) { return false; }
2236static inline void kernel_poison_pages(struct page *page, int numpages,
2237 int enable) { }
1414c7f4 2238static inline bool page_is_poisoned(struct page *page) { return false; }
8823b1db
LA
2239#endif
2240
12d6f21e 2241#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2242extern bool _debug_pagealloc_enabled;
2243extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2244
2245static inline bool debug_pagealloc_enabled(void)
2246{
2247 return _debug_pagealloc_enabled;
2248}
2249
2250static inline void
2251kernel_map_pages(struct page *page, int numpages, int enable)
2252{
2253 if (!debug_pagealloc_enabled())
2254 return;
2255
2256 __kernel_map_pages(page, numpages, enable);
2257}
8a235efa
RW
2258#ifdef CONFIG_HIBERNATION
2259extern bool kernel_page_present(struct page *page);
40b44137
JK
2260#endif /* CONFIG_HIBERNATION */
2261#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2262static inline void
9858db50 2263kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2264#ifdef CONFIG_HIBERNATION
2265static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2266#endif /* CONFIG_HIBERNATION */
2267static inline bool debug_pagealloc_enabled(void)
2268{
2269 return false;
2270}
2271#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2272
a6c19dfe 2273#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2274extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2275extern int in_gate_area_no_mm(unsigned long addr);
2276extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2277#else
a6c19dfe
AL
2278static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2279{
2280 return NULL;
2281}
2282static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2283static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2284{
2285 return 0;
2286}
1da177e4
LT
2287#endif /* __HAVE_ARCH_GATE_AREA */
2288
44a70ade
MH
2289extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2290
146732ce
JT
2291#ifdef CONFIG_SYSCTL
2292extern int sysctl_drop_caches;
8d65af78 2293int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2294 void __user *, size_t *, loff_t *);
146732ce
JT
2295#endif
2296
cb731d6c
VD
2297void drop_slab(void);
2298void drop_slab_node(int nid);
9d0243bc 2299
7a9166e3
LY
2300#ifndef CONFIG_MMU
2301#define randomize_va_space 0
2302#else
a62eaf15 2303extern int randomize_va_space;
7a9166e3 2304#endif
a62eaf15 2305
045e72ac 2306const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2307void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2308
9bdac914
YL
2309void sparse_mem_maps_populate_node(struct page **map_map,
2310 unsigned long pnum_begin,
2311 unsigned long pnum_end,
2312 unsigned long map_count,
2313 int nodeid);
2314
98f3cfc1 2315struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2316pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2317pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2318pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2319pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2320void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc
DW
2321struct vmem_altmap;
2322void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2323 struct vmem_altmap *altmap);
2324static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2325{
2326 return __vmemmap_alloc_block_buf(size, node, NULL);
2327}
2328
8f6aac41 2329void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2330int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2331 int node);
2332int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2333void vmemmap_populate_print_last(void);
0197518c 2334#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2335void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2336#endif
46723bfa
YI
2337void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2338 unsigned long size);
6a46079c 2339
82ba011b
AK
2340enum mf_flags {
2341 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2342 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2343 MF_MUST_KILL = 1 << 2,
cf870c70 2344 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2345};
cd42f4a3 2346extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2347extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2348extern int unpoison_memory(unsigned long pfn);
ead07f6a 2349extern int get_hwpoison_page(struct page *page);
4e41a30c 2350#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2351extern int sysctl_memory_failure_early_kill;
2352extern int sysctl_memory_failure_recovery;
facb6011 2353extern void shake_page(struct page *p, int access);
293c07e3 2354extern atomic_long_t num_poisoned_pages;
facb6011 2355extern int soft_offline_page(struct page *page, int flags);
6a46079c 2356
cc637b17
XX
2357
2358/*
2359 * Error handlers for various types of pages.
2360 */
cc3e2af4 2361enum mf_result {
cc637b17
XX
2362 MF_IGNORED, /* Error: cannot be handled */
2363 MF_FAILED, /* Error: handling failed */
2364 MF_DELAYED, /* Will be handled later */
2365 MF_RECOVERED, /* Successfully recovered */
2366};
2367
2368enum mf_action_page_type {
2369 MF_MSG_KERNEL,
2370 MF_MSG_KERNEL_HIGH_ORDER,
2371 MF_MSG_SLAB,
2372 MF_MSG_DIFFERENT_COMPOUND,
2373 MF_MSG_POISONED_HUGE,
2374 MF_MSG_HUGE,
2375 MF_MSG_FREE_HUGE,
2376 MF_MSG_UNMAP_FAILED,
2377 MF_MSG_DIRTY_SWAPCACHE,
2378 MF_MSG_CLEAN_SWAPCACHE,
2379 MF_MSG_DIRTY_MLOCKED_LRU,
2380 MF_MSG_CLEAN_MLOCKED_LRU,
2381 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2382 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2383 MF_MSG_DIRTY_LRU,
2384 MF_MSG_CLEAN_LRU,
2385 MF_MSG_TRUNCATED_LRU,
2386 MF_MSG_BUDDY,
2387 MF_MSG_BUDDY_2ND,
2388 MF_MSG_UNKNOWN,
2389};
2390
47ad8475
AA
2391#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2392extern void clear_huge_page(struct page *page,
2393 unsigned long addr,
2394 unsigned int pages_per_huge_page);
2395extern void copy_user_huge_page(struct page *dst, struct page *src,
2396 unsigned long addr, struct vm_area_struct *vma,
2397 unsigned int pages_per_huge_page);
2398#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2399
e30825f1
JK
2400extern struct page_ext_operations debug_guardpage_ops;
2401extern struct page_ext_operations page_poisoning_ops;
2402
c0a32fc5
SG
2403#ifdef CONFIG_DEBUG_PAGEALLOC
2404extern unsigned int _debug_guardpage_minorder;
e30825f1 2405extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2406
2407static inline unsigned int debug_guardpage_minorder(void)
2408{
2409 return _debug_guardpage_minorder;
2410}
2411
e30825f1
JK
2412static inline bool debug_guardpage_enabled(void)
2413{
2414 return _debug_guardpage_enabled;
2415}
2416
c0a32fc5
SG
2417static inline bool page_is_guard(struct page *page)
2418{
e30825f1
JK
2419 struct page_ext *page_ext;
2420
2421 if (!debug_guardpage_enabled())
2422 return false;
2423
2424 page_ext = lookup_page_ext(page);
0bb2fd13
YS
2425 if (unlikely(!page_ext))
2426 return false;
2427
e30825f1 2428 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2429}
2430#else
2431static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2432static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2433static inline bool page_is_guard(struct page *page) { return false; }
2434#endif /* CONFIG_DEBUG_PAGEALLOC */
2435
f9872caf
CS
2436#if MAX_NUMNODES > 1
2437void __init setup_nr_node_ids(void);
2438#else
2439static inline void setup_nr_node_ids(void) {}
2440#endif
2441
1da177e4
LT
2442#endif /* __KERNEL__ */
2443#endif /* _LINUX_MM_H */