mm: larger stack guard gap, between vmas
[linux-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
3565fce3 19#include <linux/percpu-refcount.h>
e9da73d6 20#include <linux/bit_spinlock.h>
b0d40c92 21#include <linux/shrinker.h>
9c599024 22#include <linux/resource.h>
e30825f1 23#include <linux/page_ext.h>
8025e5dd 24#include <linux/err.h>
fe896d18 25#include <linux/page_ref.h>
1da177e4
LT
26
27struct mempolicy;
28struct anon_vma;
bf181b9f 29struct anon_vma_chain;
4e950f6f 30struct file_ra_state;
e8edc6e0 31struct user_struct;
4e950f6f 32struct writeback_control;
682aa8e1 33struct bdi_writeback;
1da177e4 34
597b7305
MH
35void init_mm_internals(void);
36
fccc9987 37#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 38extern unsigned long max_mapnr;
fccc9987
JL
39
40static inline void set_max_mapnr(unsigned long limit)
41{
42 max_mapnr = limit;
43}
44#else
45static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
46#endif
47
4481374c 48extern unsigned long totalram_pages;
1da177e4 49extern void * high_memory;
1da177e4
LT
50extern int page_cluster;
51
52#ifdef CONFIG_SYSCTL
53extern int sysctl_legacy_va_layout;
54#else
55#define sysctl_legacy_va_layout 0
56#endif
57
d07e2259
DC
58#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
59extern const int mmap_rnd_bits_min;
60extern const int mmap_rnd_bits_max;
61extern int mmap_rnd_bits __read_mostly;
62#endif
63#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
64extern const int mmap_rnd_compat_bits_min;
65extern const int mmap_rnd_compat_bits_max;
66extern int mmap_rnd_compat_bits __read_mostly;
67#endif
68
1da177e4
LT
69#include <asm/page.h>
70#include <asm/pgtable.h>
71#include <asm/processor.h>
1da177e4 72
79442ed1
TC
73#ifndef __pa_symbol
74#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
75#endif
76
1dff8083
AB
77#ifndef page_to_virt
78#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
79#endif
80
568c5fe5
LA
81#ifndef lm_alias
82#define lm_alias(x) __va(__pa_symbol(x))
83#endif
84
593befa6
DD
85/*
86 * To prevent common memory management code establishing
87 * a zero page mapping on a read fault.
88 * This macro should be defined within <asm/pgtable.h>.
89 * s390 does this to prevent multiplexing of hardware bits
90 * related to the physical page in case of virtualization.
91 */
92#ifndef mm_forbids_zeropage
93#define mm_forbids_zeropage(X) (0)
94#endif
95
ea606cf5
AR
96/*
97 * Default maximum number of active map areas, this limits the number of vmas
98 * per mm struct. Users can overwrite this number by sysctl but there is a
99 * problem.
100 *
101 * When a program's coredump is generated as ELF format, a section is created
102 * per a vma. In ELF, the number of sections is represented in unsigned short.
103 * This means the number of sections should be smaller than 65535 at coredump.
104 * Because the kernel adds some informative sections to a image of program at
105 * generating coredump, we need some margin. The number of extra sections is
106 * 1-3 now and depends on arch. We use "5" as safe margin, here.
107 *
108 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
109 * not a hard limit any more. Although some userspace tools can be surprised by
110 * that.
111 */
112#define MAPCOUNT_ELF_CORE_MARGIN (5)
113#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
114
115extern int sysctl_max_map_count;
116
c9b1d098 117extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 118extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 119
49f0ce5f
JM
120extern int sysctl_overcommit_memory;
121extern int sysctl_overcommit_ratio;
122extern unsigned long sysctl_overcommit_kbytes;
123
124extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
125 size_t *, loff_t *);
126extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
127 size_t *, loff_t *);
128
1da177e4
LT
129#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
130
27ac792c
AR
131/* to align the pointer to the (next) page boundary */
132#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
133
0fa73b86 134/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 135#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 136
1da177e4
LT
137/*
138 * Linux kernel virtual memory manager primitives.
139 * The idea being to have a "virtual" mm in the same way
140 * we have a virtual fs - giving a cleaner interface to the
141 * mm details, and allowing different kinds of memory mappings
142 * (from shared memory to executable loading to arbitrary
143 * mmap() functions).
144 */
145
c43692e8
CL
146extern struct kmem_cache *vm_area_cachep;
147
1da177e4 148#ifndef CONFIG_MMU
8feae131
DH
149extern struct rb_root nommu_region_tree;
150extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
151
152extern unsigned int kobjsize(const void *objp);
153#endif
154
155/*
605d9288 156 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 157 * When changing, update also include/trace/events/mmflags.h
1da177e4 158 */
cc2383ec
KK
159#define VM_NONE 0x00000000
160
1da177e4
LT
161#define VM_READ 0x00000001 /* currently active flags */
162#define VM_WRITE 0x00000002
163#define VM_EXEC 0x00000004
164#define VM_SHARED 0x00000008
165
7e2cff42 166/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
167#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
168#define VM_MAYWRITE 0x00000020
169#define VM_MAYEXEC 0x00000040
170#define VM_MAYSHARE 0x00000080
171
172#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 173#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 174#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 175#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 176#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 177
1da177e4
LT
178#define VM_LOCKED 0x00002000
179#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
180
181 /* Used by sys_madvise() */
182#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
183#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
184
185#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
186#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 187#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 188#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 189#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 190#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 191#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 192#define VM_ARCH_2 0x02000000
0103bd16 193#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 194
d9104d1c
CG
195#ifdef CONFIG_MEM_SOFT_DIRTY
196# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
197#else
198# define VM_SOFTDIRTY 0
199#endif
200
b379d790 201#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
202#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
203#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 204#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 205
63c17fb8
DH
206#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
207#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
208#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
209#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
210#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
211#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
212#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
213#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
214#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
215#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
216
cc2383ec
KK
217#if defined(CONFIG_X86)
218# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
8f62c883
DH
219#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
220# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
221# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
222# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
223# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
224# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
225#endif
cc2383ec
KK
226#elif defined(CONFIG_PPC)
227# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
228#elif defined(CONFIG_PARISC)
229# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
230#elif defined(CONFIG_METAG)
231# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
232#elif defined(CONFIG_IA64)
233# define VM_GROWSUP VM_ARCH_1
234#elif !defined(CONFIG_MMU)
235# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
236#endif
237
4aae7e43
QR
238#if defined(CONFIG_X86)
239/* MPX specific bounds table or bounds directory */
240# define VM_MPX VM_ARCH_2
241#endif
242
cc2383ec
KK
243#ifndef VM_GROWSUP
244# define VM_GROWSUP VM_NONE
245#endif
246
a8bef8ff
MG
247/* Bits set in the VMA until the stack is in its final location */
248#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
249
1da177e4
LT
250#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
251#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
252#endif
253
254#ifdef CONFIG_STACK_GROWSUP
30bdbb78 255#define VM_STACK VM_GROWSUP
1da177e4 256#else
30bdbb78 257#define VM_STACK VM_GROWSDOWN
1da177e4
LT
258#endif
259
30bdbb78
KK
260#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
261
b291f000 262/*
78f11a25
AA
263 * Special vmas that are non-mergable, non-mlock()able.
264 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 265 */
9050d7eb 266#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 267
a0715cc2
AT
268/* This mask defines which mm->def_flags a process can inherit its parent */
269#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
270
de60f5f1
EM
271/* This mask is used to clear all the VMA flags used by mlock */
272#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
273
1da177e4
LT
274/*
275 * mapping from the currently active vm_flags protection bits (the
276 * low four bits) to a page protection mask..
277 */
278extern pgprot_t protection_map[16];
279
d0217ac0 280#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
281#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
282#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
283#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
284#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
285#define FAULT_FLAG_TRIED 0x20 /* Second try */
286#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 287#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 288#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 289
282a8e03
RZ
290#define FAULT_FLAG_TRACE \
291 { FAULT_FLAG_WRITE, "WRITE" }, \
292 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
293 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
294 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
295 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
296 { FAULT_FLAG_TRIED, "TRIED" }, \
297 { FAULT_FLAG_USER, "USER" }, \
298 { FAULT_FLAG_REMOTE, "REMOTE" }, \
299 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
300
54cb8821 301/*
d0217ac0 302 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
303 * ->fault function. The vma's ->fault is responsible for returning a bitmask
304 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 305 *
c20cd45e
MH
306 * MM layer fills up gfp_mask for page allocations but fault handler might
307 * alter it if its implementation requires a different allocation context.
308 *
9b4bdd2f 309 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 310 */
d0217ac0 311struct vm_fault {
82b0f8c3 312 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 313 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 314 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 315 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 316 unsigned long address; /* Faulting virtual address */
82b0f8c3 317 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 318 * the 'address' */
a2d58167
DJ
319 pud_t *pud; /* Pointer to pud entry matching
320 * the 'address'
321 */
2994302b 322 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 323
3917048d
JK
324 struct page *cow_page; /* Page handler may use for COW fault */
325 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 326 struct page *page; /* ->fault handlers should return a
83c54070 327 * page here, unless VM_FAULT_NOPAGE
d0217ac0 328 * is set (which is also implied by
83c54070 329 * VM_FAULT_ERROR).
d0217ac0 330 */
82b0f8c3 331 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
332 pte_t *pte; /* Pointer to pte entry matching
333 * the 'address'. NULL if the page
334 * table hasn't been allocated.
335 */
336 spinlock_t *ptl; /* Page table lock.
337 * Protects pte page table if 'pte'
338 * is not NULL, otherwise pmd.
339 */
7267ec00
KS
340 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
341 * vm_ops->map_pages() calls
342 * alloc_set_pte() from atomic context.
343 * do_fault_around() pre-allocates
344 * page table to avoid allocation from
345 * atomic context.
346 */
54cb8821 347};
1da177e4 348
c791ace1
DJ
349/* page entry size for vm->huge_fault() */
350enum page_entry_size {
351 PE_SIZE_PTE = 0,
352 PE_SIZE_PMD,
353 PE_SIZE_PUD,
354};
355
1da177e4
LT
356/*
357 * These are the virtual MM functions - opening of an area, closing and
358 * unmapping it (needed to keep files on disk up-to-date etc), pointer
359 * to the functions called when a no-page or a wp-page exception occurs.
360 */
361struct vm_operations_struct {
362 void (*open)(struct vm_area_struct * area);
363 void (*close)(struct vm_area_struct * area);
5477e70a 364 int (*mremap)(struct vm_area_struct * area);
11bac800 365 int (*fault)(struct vm_fault *vmf);
c791ace1 366 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
82b0f8c3 367 void (*map_pages)(struct vm_fault *vmf,
bae473a4 368 pgoff_t start_pgoff, pgoff_t end_pgoff);
9637a5ef
DH
369
370 /* notification that a previously read-only page is about to become
371 * writable, if an error is returned it will cause a SIGBUS */
11bac800 372 int (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 373
dd906184 374 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
11bac800 375 int (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 376
28b2ee20
RR
377 /* called by access_process_vm when get_user_pages() fails, typically
378 * for use by special VMAs that can switch between memory and hardware
379 */
380 int (*access)(struct vm_area_struct *vma, unsigned long addr,
381 void *buf, int len, int write);
78d683e8
AL
382
383 /* Called by the /proc/PID/maps code to ask the vma whether it
384 * has a special name. Returning non-NULL will also cause this
385 * vma to be dumped unconditionally. */
386 const char *(*name)(struct vm_area_struct *vma);
387
1da177e4 388#ifdef CONFIG_NUMA
a6020ed7
LS
389 /*
390 * set_policy() op must add a reference to any non-NULL @new mempolicy
391 * to hold the policy upon return. Caller should pass NULL @new to
392 * remove a policy and fall back to surrounding context--i.e. do not
393 * install a MPOL_DEFAULT policy, nor the task or system default
394 * mempolicy.
395 */
1da177e4 396 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
397
398 /*
399 * get_policy() op must add reference [mpol_get()] to any policy at
400 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
401 * in mm/mempolicy.c will do this automatically.
402 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
403 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
404 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
405 * must return NULL--i.e., do not "fallback" to task or system default
406 * policy.
407 */
1da177e4
LT
408 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
409 unsigned long addr);
410#endif
667a0a06
DV
411 /*
412 * Called by vm_normal_page() for special PTEs to find the
413 * page for @addr. This is useful if the default behavior
414 * (using pte_page()) would not find the correct page.
415 */
416 struct page *(*find_special_page)(struct vm_area_struct *vma,
417 unsigned long addr);
1da177e4
LT
418};
419
420struct mmu_gather;
421struct inode;
422
349aef0b
AM
423#define page_private(page) ((page)->private)
424#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 425
5c7fb56e
DW
426#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
427static inline int pmd_devmap(pmd_t pmd)
428{
429 return 0;
430}
a00cc7d9
MW
431static inline int pud_devmap(pud_t pud)
432{
433 return 0;
434}
b59f65fa
KS
435static inline int pgd_devmap(pgd_t pgd)
436{
437 return 0;
438}
5c7fb56e
DW
439#endif
440
1da177e4
LT
441/*
442 * FIXME: take this include out, include page-flags.h in
443 * files which need it (119 of them)
444 */
445#include <linux/page-flags.h>
71e3aac0 446#include <linux/huge_mm.h>
1da177e4
LT
447
448/*
449 * Methods to modify the page usage count.
450 *
451 * What counts for a page usage:
452 * - cache mapping (page->mapping)
453 * - private data (page->private)
454 * - page mapped in a task's page tables, each mapping
455 * is counted separately
456 *
457 * Also, many kernel routines increase the page count before a critical
458 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
459 */
460
461/*
da6052f7 462 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 463 */
7c8ee9a8
NP
464static inline int put_page_testzero(struct page *page)
465{
fe896d18
JK
466 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
467 return page_ref_dec_and_test(page);
7c8ee9a8 468}
1da177e4
LT
469
470/*
7c8ee9a8
NP
471 * Try to grab a ref unless the page has a refcount of zero, return false if
472 * that is the case.
8e0861fa
AK
473 * This can be called when MMU is off so it must not access
474 * any of the virtual mappings.
1da177e4 475 */
7c8ee9a8
NP
476static inline int get_page_unless_zero(struct page *page)
477{
fe896d18 478 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 479}
1da177e4 480
53df8fdc 481extern int page_is_ram(unsigned long pfn);
124fe20d
DW
482
483enum {
484 REGION_INTERSECTS,
485 REGION_DISJOINT,
486 REGION_MIXED,
487};
488
1c29f25b
TK
489int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
490 unsigned long desc);
53df8fdc 491
48667e7a 492/* Support for virtually mapped pages */
b3bdda02
CL
493struct page *vmalloc_to_page(const void *addr);
494unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 495
0738c4bb
PM
496/*
497 * Determine if an address is within the vmalloc range
498 *
499 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
500 * is no special casing required.
501 */
bb00a789 502static inline bool is_vmalloc_addr(const void *x)
9e2779fa 503{
0738c4bb 504#ifdef CONFIG_MMU
9e2779fa
CL
505 unsigned long addr = (unsigned long)x;
506
507 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 508#else
bb00a789 509 return false;
8ca3ed87 510#endif
0738c4bb 511}
81ac3ad9
KH
512#ifdef CONFIG_MMU
513extern int is_vmalloc_or_module_addr(const void *x);
514#else
934831d0 515static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
516{
517 return 0;
518}
519#endif
9e2779fa 520
a7c3e901
MH
521extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
522static inline void *kvmalloc(size_t size, gfp_t flags)
523{
524 return kvmalloc_node(size, flags, NUMA_NO_NODE);
525}
526static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
527{
528 return kvmalloc_node(size, flags | __GFP_ZERO, node);
529}
530static inline void *kvzalloc(size_t size, gfp_t flags)
531{
532 return kvmalloc(size, flags | __GFP_ZERO);
533}
534
752ade68
MH
535static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
536{
537 if (size != 0 && n > SIZE_MAX / size)
538 return NULL;
539
540 return kvmalloc(n * size, flags);
541}
542
39f1f78d
AV
543extern void kvfree(const void *addr);
544
53f9263b
KS
545static inline atomic_t *compound_mapcount_ptr(struct page *page)
546{
547 return &page[1].compound_mapcount;
548}
549
550static inline int compound_mapcount(struct page *page)
551{
5f527c2b 552 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
553 page = compound_head(page);
554 return atomic_read(compound_mapcount_ptr(page)) + 1;
555}
556
70b50f94
AA
557/*
558 * The atomic page->_mapcount, starts from -1: so that transitions
559 * both from it and to it can be tracked, using atomic_inc_and_test
560 * and atomic_add_negative(-1).
561 */
22b751c3 562static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
563{
564 atomic_set(&(page)->_mapcount, -1);
565}
566
b20ce5e0
KS
567int __page_mapcount(struct page *page);
568
70b50f94
AA
569static inline int page_mapcount(struct page *page)
570{
1d148e21 571 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 572
b20ce5e0
KS
573 if (unlikely(PageCompound(page)))
574 return __page_mapcount(page);
575 return atomic_read(&page->_mapcount) + 1;
576}
577
578#ifdef CONFIG_TRANSPARENT_HUGEPAGE
579int total_mapcount(struct page *page);
6d0a07ed 580int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
581#else
582static inline int total_mapcount(struct page *page)
583{
584 return page_mapcount(page);
70b50f94 585}
6d0a07ed
AA
586static inline int page_trans_huge_mapcount(struct page *page,
587 int *total_mapcount)
588{
589 int mapcount = page_mapcount(page);
590 if (total_mapcount)
591 *total_mapcount = mapcount;
592 return mapcount;
593}
b20ce5e0 594#endif
70b50f94 595
b49af68f
CL
596static inline struct page *virt_to_head_page(const void *x)
597{
598 struct page *page = virt_to_page(x);
ccaafd7f 599
1d798ca3 600 return compound_head(page);
b49af68f
CL
601}
602
ddc58f27
KS
603void __put_page(struct page *page);
604
1d7ea732 605void put_pages_list(struct list_head *pages);
1da177e4 606
8dfcc9ba 607void split_page(struct page *page, unsigned int order);
8dfcc9ba 608
33f2ef89
AW
609/*
610 * Compound pages have a destructor function. Provide a
611 * prototype for that function and accessor functions.
f1e61557 612 * These are _only_ valid on the head of a compound page.
33f2ef89 613 */
f1e61557
KS
614typedef void compound_page_dtor(struct page *);
615
616/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
617enum compound_dtor_id {
618 NULL_COMPOUND_DTOR,
619 COMPOUND_PAGE_DTOR,
620#ifdef CONFIG_HUGETLB_PAGE
621 HUGETLB_PAGE_DTOR,
9a982250
KS
622#endif
623#ifdef CONFIG_TRANSPARENT_HUGEPAGE
624 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
625#endif
626 NR_COMPOUND_DTORS,
627};
628extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
629
630static inline void set_compound_page_dtor(struct page *page,
f1e61557 631 enum compound_dtor_id compound_dtor)
33f2ef89 632{
f1e61557
KS
633 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
634 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
635}
636
637static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
638{
f1e61557
KS
639 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
640 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
641}
642
d00181b9 643static inline unsigned int compound_order(struct page *page)
d85f3385 644{
6d777953 645 if (!PageHead(page))
d85f3385 646 return 0;
e4b294c2 647 return page[1].compound_order;
d85f3385
CL
648}
649
f1e61557 650static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 651{
e4b294c2 652 page[1].compound_order = order;
d85f3385
CL
653}
654
9a982250
KS
655void free_compound_page(struct page *page);
656
3dece370 657#ifdef CONFIG_MMU
14fd403f
AA
658/*
659 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
660 * servicing faults for write access. In the normal case, do always want
661 * pte_mkwrite. But get_user_pages can cause write faults for mappings
662 * that do not have writing enabled, when used by access_process_vm.
663 */
664static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
665{
666 if (likely(vma->vm_flags & VM_WRITE))
667 pte = pte_mkwrite(pte);
668 return pte;
669}
8c6e50b0 670
82b0f8c3 671int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 672 struct page *page);
9118c0cb 673int finish_fault(struct vm_fault *vmf);
66a6197c 674int finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 675#endif
14fd403f 676
1da177e4
LT
677/*
678 * Multiple processes may "see" the same page. E.g. for untouched
679 * mappings of /dev/null, all processes see the same page full of
680 * zeroes, and text pages of executables and shared libraries have
681 * only one copy in memory, at most, normally.
682 *
683 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
684 * page_count() == 0 means the page is free. page->lru is then used for
685 * freelist management in the buddy allocator.
da6052f7 686 * page_count() > 0 means the page has been allocated.
1da177e4 687 *
da6052f7
NP
688 * Pages are allocated by the slab allocator in order to provide memory
689 * to kmalloc and kmem_cache_alloc. In this case, the management of the
690 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
691 * unless a particular usage is carefully commented. (the responsibility of
692 * freeing the kmalloc memory is the caller's, of course).
1da177e4 693 *
da6052f7
NP
694 * A page may be used by anyone else who does a __get_free_page().
695 * In this case, page_count still tracks the references, and should only
696 * be used through the normal accessor functions. The top bits of page->flags
697 * and page->virtual store page management information, but all other fields
698 * are unused and could be used privately, carefully. The management of this
699 * page is the responsibility of the one who allocated it, and those who have
700 * subsequently been given references to it.
701 *
702 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
703 * managed by the Linux memory manager: I/O, buffers, swapping etc.
704 * The following discussion applies only to them.
705 *
da6052f7
NP
706 * A pagecache page contains an opaque `private' member, which belongs to the
707 * page's address_space. Usually, this is the address of a circular list of
708 * the page's disk buffers. PG_private must be set to tell the VM to call
709 * into the filesystem to release these pages.
1da177e4 710 *
da6052f7
NP
711 * A page may belong to an inode's memory mapping. In this case, page->mapping
712 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 713 * in units of PAGE_SIZE.
1da177e4 714 *
da6052f7
NP
715 * If pagecache pages are not associated with an inode, they are said to be
716 * anonymous pages. These may become associated with the swapcache, and in that
717 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 718 *
da6052f7
NP
719 * In either case (swapcache or inode backed), the pagecache itself holds one
720 * reference to the page. Setting PG_private should also increment the
721 * refcount. The each user mapping also has a reference to the page.
1da177e4 722 *
da6052f7
NP
723 * The pagecache pages are stored in a per-mapping radix tree, which is
724 * rooted at mapping->page_tree, and indexed by offset.
725 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
726 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 727 *
da6052f7 728 * All pagecache pages may be subject to I/O:
1da177e4
LT
729 * - inode pages may need to be read from disk,
730 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
731 * to be written back to the inode on disk,
732 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
733 * modified may need to be swapped out to swap space and (later) to be read
734 * back into memory.
1da177e4
LT
735 */
736
737/*
738 * The zone field is never updated after free_area_init_core()
739 * sets it, so none of the operations on it need to be atomic.
1da177e4 740 */
348f8b6c 741
90572890 742/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 743#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
744#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
745#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 746#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 747
348f8b6c 748/*
25985edc 749 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
750 * sections we define the shift as 0; that plus a 0 mask ensures
751 * the compiler will optimise away reference to them.
752 */
d41dee36
AW
753#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
754#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
755#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 756#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 757
bce54bbf
WD
758/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
759#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 760#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
761#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
762 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 763#else
89689ae7 764#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
765#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
766 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
767#endif
768
bd8029b6 769#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 770
9223b419
CL
771#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
772#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
773#endif
774
d41dee36
AW
775#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
776#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
777#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 778#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 779#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 780
33dd4e0e 781static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 782{
348f8b6c 783 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 784}
1da177e4 785
260ae3f7
DW
786#ifdef CONFIG_ZONE_DEVICE
787static inline bool is_zone_device_page(const struct page *page)
788{
789 return page_zonenum(page) == ZONE_DEVICE;
790}
791#else
792static inline bool is_zone_device_page(const struct page *page)
793{
794 return false;
795}
796#endif
797
3565fce3
DW
798static inline void get_page(struct page *page)
799{
800 page = compound_head(page);
801 /*
802 * Getting a normal page or the head of a compound page
0139aa7b 803 * requires to already have an elevated page->_refcount.
3565fce3 804 */
fe896d18
JK
805 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
806 page_ref_inc(page);
3565fce3
DW
807}
808
809static inline void put_page(struct page *page)
810{
811 page = compound_head(page);
812
813 if (put_page_testzero(page))
814 __put_page(page);
3565fce3
DW
815}
816
9127ab4f
CS
817#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
818#define SECTION_IN_PAGE_FLAGS
819#endif
820
89689ae7 821/*
7a8010cd
VB
822 * The identification function is mainly used by the buddy allocator for
823 * determining if two pages could be buddies. We are not really identifying
824 * the zone since we could be using the section number id if we do not have
825 * node id available in page flags.
826 * We only guarantee that it will return the same value for two combinable
827 * pages in a zone.
89689ae7 828 */
cb2b95e1
AW
829static inline int page_zone_id(struct page *page)
830{
89689ae7 831 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
832}
833
25ba77c1 834static inline int zone_to_nid(struct zone *zone)
89fa3024 835{
d5f541ed
CL
836#ifdef CONFIG_NUMA
837 return zone->node;
838#else
839 return 0;
840#endif
89fa3024
CL
841}
842
89689ae7 843#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 844extern int page_to_nid(const struct page *page);
89689ae7 845#else
33dd4e0e 846static inline int page_to_nid(const struct page *page)
d41dee36 847{
89689ae7 848 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 849}
89689ae7
CL
850#endif
851
57e0a030 852#ifdef CONFIG_NUMA_BALANCING
90572890 853static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 854{
90572890 855 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
856}
857
90572890 858static inline int cpupid_to_pid(int cpupid)
57e0a030 859{
90572890 860 return cpupid & LAST__PID_MASK;
57e0a030 861}
b795854b 862
90572890 863static inline int cpupid_to_cpu(int cpupid)
b795854b 864{
90572890 865 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
866}
867
90572890 868static inline int cpupid_to_nid(int cpupid)
b795854b 869{
90572890 870 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
871}
872
90572890 873static inline bool cpupid_pid_unset(int cpupid)
57e0a030 874{
90572890 875 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
876}
877
90572890 878static inline bool cpupid_cpu_unset(int cpupid)
b795854b 879{
90572890 880 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
881}
882
8c8a743c
PZ
883static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
884{
885 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
886}
887
888#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
889#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
890static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 891{
1ae71d03 892 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 893}
90572890
PZ
894
895static inline int page_cpupid_last(struct page *page)
896{
897 return page->_last_cpupid;
898}
899static inline void page_cpupid_reset_last(struct page *page)
b795854b 900{
1ae71d03 901 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
902}
903#else
90572890 904static inline int page_cpupid_last(struct page *page)
75980e97 905{
90572890 906 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
907}
908
90572890 909extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 910
90572890 911static inline void page_cpupid_reset_last(struct page *page)
75980e97 912{
09940a4f 913 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 914}
90572890
PZ
915#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
916#else /* !CONFIG_NUMA_BALANCING */
917static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 918{
90572890 919 return page_to_nid(page); /* XXX */
57e0a030
MG
920}
921
90572890 922static inline int page_cpupid_last(struct page *page)
57e0a030 923{
90572890 924 return page_to_nid(page); /* XXX */
57e0a030
MG
925}
926
90572890 927static inline int cpupid_to_nid(int cpupid)
b795854b
MG
928{
929 return -1;
930}
931
90572890 932static inline int cpupid_to_pid(int cpupid)
b795854b
MG
933{
934 return -1;
935}
936
90572890 937static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
938{
939 return -1;
940}
941
90572890
PZ
942static inline int cpu_pid_to_cpupid(int nid, int pid)
943{
944 return -1;
945}
946
947static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
948{
949 return 1;
950}
951
90572890 952static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
953{
954}
8c8a743c
PZ
955
956static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
957{
958 return false;
959}
90572890 960#endif /* CONFIG_NUMA_BALANCING */
57e0a030 961
33dd4e0e 962static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
963{
964 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
965}
966
75ef7184
MG
967static inline pg_data_t *page_pgdat(const struct page *page)
968{
969 return NODE_DATA(page_to_nid(page));
970}
971
9127ab4f 972#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
973static inline void set_page_section(struct page *page, unsigned long section)
974{
975 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
976 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
977}
978
aa462abe 979static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
980{
981 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
982}
308c05e3 983#endif
d41dee36 984
2f1b6248 985static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
986{
987 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
988 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
989}
2f1b6248 990
348f8b6c
DH
991static inline void set_page_node(struct page *page, unsigned long node)
992{
993 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
994 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 995}
89689ae7 996
2f1b6248 997static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 998 unsigned long node, unsigned long pfn)
1da177e4 999{
348f8b6c
DH
1000 set_page_zone(page, zone);
1001 set_page_node(page, node);
9127ab4f 1002#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1003 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1004#endif
1da177e4
LT
1005}
1006
0610c25d
GT
1007#ifdef CONFIG_MEMCG
1008static inline struct mem_cgroup *page_memcg(struct page *page)
1009{
1010 return page->mem_cgroup;
1011}
55779ec7
JW
1012static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1013{
1014 WARN_ON_ONCE(!rcu_read_lock_held());
1015 return READ_ONCE(page->mem_cgroup);
1016}
0610c25d
GT
1017#else
1018static inline struct mem_cgroup *page_memcg(struct page *page)
1019{
1020 return NULL;
1021}
55779ec7
JW
1022static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1023{
1024 WARN_ON_ONCE(!rcu_read_lock_held());
1025 return NULL;
1026}
0610c25d
GT
1027#endif
1028
f6ac2354
CL
1029/*
1030 * Some inline functions in vmstat.h depend on page_zone()
1031 */
1032#include <linux/vmstat.h>
1033
33dd4e0e 1034static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1035{
1dff8083 1036 return page_to_virt(page);
1da177e4
LT
1037}
1038
1039#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1040#define HASHED_PAGE_VIRTUAL
1041#endif
1042
1043#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1044static inline void *page_address(const struct page *page)
1045{
1046 return page->virtual;
1047}
1048static inline void set_page_address(struct page *page, void *address)
1049{
1050 page->virtual = address;
1051}
1da177e4
LT
1052#define page_address_init() do { } while(0)
1053#endif
1054
1055#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1056void *page_address(const struct page *page);
1da177e4
LT
1057void set_page_address(struct page *page, void *virtual);
1058void page_address_init(void);
1059#endif
1060
1061#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1062#define page_address(page) lowmem_page_address(page)
1063#define set_page_address(page, address) do { } while(0)
1064#define page_address_init() do { } while(0)
1065#endif
1066
e39155ea
KS
1067extern void *page_rmapping(struct page *page);
1068extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1069extern struct address_space *page_mapping(struct page *page);
1da177e4 1070
f981c595
MG
1071extern struct address_space *__page_file_mapping(struct page *);
1072
1073static inline
1074struct address_space *page_file_mapping(struct page *page)
1075{
1076 if (unlikely(PageSwapCache(page)))
1077 return __page_file_mapping(page);
1078
1079 return page->mapping;
1080}
1081
f6ab1f7f
HY
1082extern pgoff_t __page_file_index(struct page *page);
1083
1da177e4
LT
1084/*
1085 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1086 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1087 */
1088static inline pgoff_t page_index(struct page *page)
1089{
1090 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1091 return __page_file_index(page);
1da177e4
LT
1092 return page->index;
1093}
1094
1aa8aea5 1095bool page_mapped(struct page *page);
bda807d4 1096struct address_space *page_mapping(struct page *page);
1da177e4 1097
2f064f34
MH
1098/*
1099 * Return true only if the page has been allocated with
1100 * ALLOC_NO_WATERMARKS and the low watermark was not
1101 * met implying that the system is under some pressure.
1102 */
1103static inline bool page_is_pfmemalloc(struct page *page)
1104{
1105 /*
1106 * Page index cannot be this large so this must be
1107 * a pfmemalloc page.
1108 */
1109 return page->index == -1UL;
1110}
1111
1112/*
1113 * Only to be called by the page allocator on a freshly allocated
1114 * page.
1115 */
1116static inline void set_page_pfmemalloc(struct page *page)
1117{
1118 page->index = -1UL;
1119}
1120
1121static inline void clear_page_pfmemalloc(struct page *page)
1122{
1123 page->index = 0;
1124}
1125
1da177e4
LT
1126/*
1127 * Different kinds of faults, as returned by handle_mm_fault().
1128 * Used to decide whether a process gets delivered SIGBUS or
1129 * just gets major/minor fault counters bumped up.
1130 */
d0217ac0 1131
83c54070
NP
1132#define VM_FAULT_OOM 0x0001
1133#define VM_FAULT_SIGBUS 0x0002
1134#define VM_FAULT_MAJOR 0x0004
1135#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1136#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1137#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1138#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1139
83c54070
NP
1140#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1141#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1142#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1143#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
b1aa812b 1144#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1da177e4 1145
aa50d3a7
AK
1146#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1147
33692f27
LT
1148#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1149 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1150 VM_FAULT_FALLBACK)
aa50d3a7 1151
282a8e03
RZ
1152#define VM_FAULT_RESULT_TRACE \
1153 { VM_FAULT_OOM, "OOM" }, \
1154 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1155 { VM_FAULT_MAJOR, "MAJOR" }, \
1156 { VM_FAULT_WRITE, "WRITE" }, \
1157 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1158 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1159 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1160 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1161 { VM_FAULT_LOCKED, "LOCKED" }, \
1162 { VM_FAULT_RETRY, "RETRY" }, \
1163 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1164 { VM_FAULT_DONE_COW, "DONE_COW" }
1165
aa50d3a7
AK
1166/* Encode hstate index for a hwpoisoned large page */
1167#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1168#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1169
1c0fe6e3
NP
1170/*
1171 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1172 */
1173extern void pagefault_out_of_memory(void);
1174
1da177e4
LT
1175#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1176
ddd588b5 1177/*
7bf02ea2 1178 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1179 * various contexts.
1180 */
4b59e6c4 1181#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1182
9af744d7 1183extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1184
7f43add4 1185extern bool can_do_mlock(void);
1da177e4
LT
1186extern int user_shm_lock(size_t, struct user_struct *);
1187extern void user_shm_unlock(size_t, struct user_struct *);
1188
1189/*
1190 * Parameter block passed down to zap_pte_range in exceptional cases.
1191 */
1192struct zap_details {
1da177e4
LT
1193 struct address_space *check_mapping; /* Check page->mapping if set */
1194 pgoff_t first_index; /* Lowest page->index to unmap */
1195 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1196};
1197
7e675137
NP
1198struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1199 pte_t pte);
28093f9f
GS
1200struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1201 pmd_t pmd);
7e675137 1202
c627f9cc
JS
1203int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1204 unsigned long size);
14f5ff5d 1205void zap_page_range(struct vm_area_struct *vma, unsigned long address,
ecf1385d 1206 unsigned long size);
4f74d2c8
LT
1207void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1208 unsigned long start, unsigned long end);
e6473092
MM
1209
1210/**
1211 * mm_walk - callbacks for walk_page_range
a00cc7d9
MW
1212 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1213 * this handler should only handle pud_trans_huge() puds.
1214 * the pmd_entry or pte_entry callbacks will be used for
1215 * regular PUDs.
e6473092 1216 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1217 * this handler is required to be able to handle
1218 * pmd_trans_huge() pmds. They may simply choose to
1219 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1220 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1221 * @pte_hole: if set, called for each hole at all levels
5dc37642 1222 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426 1223 * @test_walk: caller specific callback function to determine whether
f7e2355f 1224 * we walk over the current vma or not. Returning 0
fafaa426
NH
1225 * value means "do page table walk over the current vma,"
1226 * and a negative one means "abort current page table walk
f7e2355f 1227 * right now." 1 means "skip the current vma."
fafaa426
NH
1228 * @mm: mm_struct representing the target process of page table walk
1229 * @vma: vma currently walked (NULL if walking outside vmas)
1230 * @private: private data for callbacks' usage
e6473092 1231 *
fafaa426 1232 * (see the comment on walk_page_range() for more details)
e6473092
MM
1233 */
1234struct mm_walk {
a00cc7d9
MW
1235 int (*pud_entry)(pud_t *pud, unsigned long addr,
1236 unsigned long next, struct mm_walk *walk);
0f157a5b
AM
1237 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1238 unsigned long next, struct mm_walk *walk);
1239 int (*pte_entry)(pte_t *pte, unsigned long addr,
1240 unsigned long next, struct mm_walk *walk);
1241 int (*pte_hole)(unsigned long addr, unsigned long next,
1242 struct mm_walk *walk);
1243 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1244 unsigned long addr, unsigned long next,
1245 struct mm_walk *walk);
fafaa426
NH
1246 int (*test_walk)(unsigned long addr, unsigned long next,
1247 struct mm_walk *walk);
2165009b 1248 struct mm_struct *mm;
fafaa426 1249 struct vm_area_struct *vma;
2165009b 1250 void *private;
e6473092
MM
1251};
1252
2165009b
DH
1253int walk_page_range(unsigned long addr, unsigned long end,
1254 struct mm_walk *walk);
900fc5f1 1255int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1256void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1257 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1258int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1259 struct vm_area_struct *vma);
1da177e4
LT
1260void unmap_mapping_range(struct address_space *mapping,
1261 loff_t const holebegin, loff_t const holelen, int even_cows);
09796395
RZ
1262int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1263 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1264int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1265 unsigned long *pfn);
d87fe660 1266int follow_phys(struct vm_area_struct *vma, unsigned long address,
1267 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1268int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1269 void *buf, int len, int write);
1da177e4
LT
1270
1271static inline void unmap_shared_mapping_range(struct address_space *mapping,
1272 loff_t const holebegin, loff_t const holelen)
1273{
1274 unmap_mapping_range(mapping, holebegin, holelen, 0);
1275}
1276
7caef267 1277extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1278extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1279void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1280void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1281int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1282int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1283int invalidate_inode_page(struct page *page);
1284
7ee1dd3f 1285#ifdef CONFIG_MMU
dcddffd4
KS
1286extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1287 unsigned int flags);
5c723ba5 1288extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1289 unsigned long address, unsigned int fault_flags,
1290 bool *unlocked);
7ee1dd3f 1291#else
dcddffd4
KS
1292static inline int handle_mm_fault(struct vm_area_struct *vma,
1293 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1294{
1295 /* should never happen if there's no MMU */
1296 BUG();
1297 return VM_FAULT_SIGBUS;
1298}
5c723ba5
PZ
1299static inline int fixup_user_fault(struct task_struct *tsk,
1300 struct mm_struct *mm, unsigned long address,
4a9e1cda 1301 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1302{
1303 /* should never happen if there's no MMU */
1304 BUG();
1305 return -EFAULT;
1306}
7ee1dd3f 1307#endif
f33ea7f4 1308
f307ab6d
LS
1309extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1310 unsigned int gup_flags);
5ddd36b9 1311extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1312 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1313extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1314 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1315
1e987790
DH
1316long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1317 unsigned long start, unsigned long nr_pages,
9beae1ea 1318 unsigned int gup_flags, struct page **pages,
5b56d49f 1319 struct vm_area_struct **vmas, int *locked);
c12d2da5 1320long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1321 unsigned int gup_flags, struct page **pages,
cde70140 1322 struct vm_area_struct **vmas);
c12d2da5 1323long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1324 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1325long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1326 struct page **pages, unsigned int gup_flags);
d2bf6be8
NP
1327int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1328 struct page **pages);
8025e5dd
JK
1329
1330/* Container for pinned pfns / pages */
1331struct frame_vector {
1332 unsigned int nr_allocated; /* Number of frames we have space for */
1333 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1334 bool got_ref; /* Did we pin pages by getting page ref? */
1335 bool is_pfns; /* Does array contain pages or pfns? */
1336 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1337 * pfns_vector_pages() or pfns_vector_pfns()
1338 * for access */
1339};
1340
1341struct frame_vector *frame_vector_create(unsigned int nr_frames);
1342void frame_vector_destroy(struct frame_vector *vec);
1343int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1344 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1345void put_vaddr_frames(struct frame_vector *vec);
1346int frame_vector_to_pages(struct frame_vector *vec);
1347void frame_vector_to_pfns(struct frame_vector *vec);
1348
1349static inline unsigned int frame_vector_count(struct frame_vector *vec)
1350{
1351 return vec->nr_frames;
1352}
1353
1354static inline struct page **frame_vector_pages(struct frame_vector *vec)
1355{
1356 if (vec->is_pfns) {
1357 int err = frame_vector_to_pages(vec);
1358
1359 if (err)
1360 return ERR_PTR(err);
1361 }
1362 return (struct page **)(vec->ptrs);
1363}
1364
1365static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1366{
1367 if (!vec->is_pfns)
1368 frame_vector_to_pfns(vec);
1369 return (unsigned long *)(vec->ptrs);
1370}
1371
18022c5d
MG
1372struct kvec;
1373int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1374 struct page **pages);
1375int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1376struct page *get_dump_page(unsigned long addr);
1da177e4 1377
cf9a2ae8 1378extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1379extern void do_invalidatepage(struct page *page, unsigned int offset,
1380 unsigned int length);
cf9a2ae8 1381
1da177e4 1382int __set_page_dirty_nobuffers(struct page *page);
76719325 1383int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1384int redirty_page_for_writepage(struct writeback_control *wbc,
1385 struct page *page);
62cccb8c 1386void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1387void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1388 struct bdi_writeback *wb);
b3c97528 1389int set_page_dirty(struct page *page);
1da177e4 1390int set_page_dirty_lock(struct page *page);
11f81bec 1391void cancel_dirty_page(struct page *page);
1da177e4 1392int clear_page_dirty_for_io(struct page *page);
b9ea2515 1393
a9090253 1394int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1395
b5330628
ON
1396static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1397{
1398 return !vma->vm_ops;
1399}
1400
b0506e48
MR
1401#ifdef CONFIG_SHMEM
1402/*
1403 * The vma_is_shmem is not inline because it is used only by slow
1404 * paths in userfault.
1405 */
1406bool vma_is_shmem(struct vm_area_struct *vma);
1407#else
1408static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1409#endif
1410
d17af505 1411int vma_is_stack_for_current(struct vm_area_struct *vma);
b7643757 1412
b6a2fea3
OW
1413extern unsigned long move_page_tables(struct vm_area_struct *vma,
1414 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1415 unsigned long new_addr, unsigned long len,
1416 bool need_rmap_locks);
7da4d641
PZ
1417extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1418 unsigned long end, pgprot_t newprot,
4b10e7d5 1419 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1420extern int mprotect_fixup(struct vm_area_struct *vma,
1421 struct vm_area_struct **pprev, unsigned long start,
1422 unsigned long end, unsigned long newflags);
1da177e4 1423
465a454f
PZ
1424/*
1425 * doesn't attempt to fault and will return short.
1426 */
1427int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1428 struct page **pages);
d559db08
KH
1429/*
1430 * per-process(per-mm_struct) statistics.
1431 */
d559db08
KH
1432static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1433{
69c97823
KK
1434 long val = atomic_long_read(&mm->rss_stat.count[member]);
1435
1436#ifdef SPLIT_RSS_COUNTING
1437 /*
1438 * counter is updated in asynchronous manner and may go to minus.
1439 * But it's never be expected number for users.
1440 */
1441 if (val < 0)
1442 val = 0;
172703b0 1443#endif
69c97823
KK
1444 return (unsigned long)val;
1445}
d559db08
KH
1446
1447static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1448{
172703b0 1449 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1450}
1451
1452static inline void inc_mm_counter(struct mm_struct *mm, int member)
1453{
172703b0 1454 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1455}
1456
1457static inline void dec_mm_counter(struct mm_struct *mm, int member)
1458{
172703b0 1459 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1460}
1461
eca56ff9
JM
1462/* Optimized variant when page is already known not to be PageAnon */
1463static inline int mm_counter_file(struct page *page)
1464{
1465 if (PageSwapBacked(page))
1466 return MM_SHMEMPAGES;
1467 return MM_FILEPAGES;
1468}
1469
1470static inline int mm_counter(struct page *page)
1471{
1472 if (PageAnon(page))
1473 return MM_ANONPAGES;
1474 return mm_counter_file(page);
1475}
1476
d559db08
KH
1477static inline unsigned long get_mm_rss(struct mm_struct *mm)
1478{
1479 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1480 get_mm_counter(mm, MM_ANONPAGES) +
1481 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1482}
1483
1484static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1485{
1486 return max(mm->hiwater_rss, get_mm_rss(mm));
1487}
1488
1489static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1490{
1491 return max(mm->hiwater_vm, mm->total_vm);
1492}
1493
1494static inline void update_hiwater_rss(struct mm_struct *mm)
1495{
1496 unsigned long _rss = get_mm_rss(mm);
1497
1498 if ((mm)->hiwater_rss < _rss)
1499 (mm)->hiwater_rss = _rss;
1500}
1501
1502static inline void update_hiwater_vm(struct mm_struct *mm)
1503{
1504 if (mm->hiwater_vm < mm->total_vm)
1505 mm->hiwater_vm = mm->total_vm;
1506}
1507
695f0559
PC
1508static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1509{
1510 mm->hiwater_rss = get_mm_rss(mm);
1511}
1512
d559db08
KH
1513static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1514 struct mm_struct *mm)
1515{
1516 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1517
1518 if (*maxrss < hiwater_rss)
1519 *maxrss = hiwater_rss;
1520}
1521
53bddb4e 1522#if defined(SPLIT_RSS_COUNTING)
05af2e10 1523void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1524#else
05af2e10 1525static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1526{
1527}
1528#endif
465a454f 1529
3565fce3
DW
1530#ifndef __HAVE_ARCH_PTE_DEVMAP
1531static inline int pte_devmap(pte_t pte)
1532{
1533 return 0;
1534}
1535#endif
1536
6d2329f8 1537int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1538
25ca1d6c
NK
1539extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1540 spinlock_t **ptl);
1541static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1542 spinlock_t **ptl)
1543{
1544 pte_t *ptep;
1545 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1546 return ptep;
1547}
c9cfcddf 1548
c2febafc
KS
1549#ifdef __PAGETABLE_P4D_FOLDED
1550static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1551 unsigned long address)
1552{
1553 return 0;
1554}
1555#else
1556int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1557#endif
1558
5f22df00 1559#ifdef __PAGETABLE_PUD_FOLDED
c2febafc 1560static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1561 unsigned long address)
1562{
1563 return 0;
1564}
1565#else
c2febafc 1566int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
5f22df00
NP
1567#endif
1568
2d2f5119 1569#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1570static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1571 unsigned long address)
1572{
1573 return 0;
1574}
dc6c9a35 1575
2d2f5119
KS
1576static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1577
dc6c9a35
KS
1578static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1579{
1580 return 0;
1581}
1582
1583static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1584static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1585
5f22df00 1586#else
1bb3630e 1587int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1588
2d2f5119
KS
1589static inline void mm_nr_pmds_init(struct mm_struct *mm)
1590{
1591 atomic_long_set(&mm->nr_pmds, 0);
1592}
1593
dc6c9a35
KS
1594static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1595{
1596 return atomic_long_read(&mm->nr_pmds);
1597}
1598
1599static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1600{
1601 atomic_long_inc(&mm->nr_pmds);
1602}
1603
1604static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1605{
1606 atomic_long_dec(&mm->nr_pmds);
1607}
5f22df00
NP
1608#endif
1609
3ed3a4f0 1610int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1bb3630e
HD
1611int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1612
1da177e4
LT
1613/*
1614 * The following ifdef needed to get the 4level-fixup.h header to work.
1615 * Remove it when 4level-fixup.h has been removed.
1616 */
1bb3630e 1617#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
505a60e2
KS
1618
1619#ifndef __ARCH_HAS_5LEVEL_HACK
c2febafc
KS
1620static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1621 unsigned long address)
1622{
1623 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1624 NULL : p4d_offset(pgd, address);
1625}
1626
1627static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1628 unsigned long address)
1da177e4 1629{
c2febafc
KS
1630 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1631 NULL : pud_offset(p4d, address);
1da177e4 1632}
505a60e2 1633#endif /* !__ARCH_HAS_5LEVEL_HACK */
1da177e4
LT
1634
1635static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1636{
1bb3630e
HD
1637 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1638 NULL: pmd_offset(pud, address);
1da177e4 1639}
1bb3630e
HD
1640#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1641
57c1ffce 1642#if USE_SPLIT_PTE_PTLOCKS
597d795a 1643#if ALLOC_SPLIT_PTLOCKS
b35f1819 1644void __init ptlock_cache_init(void);
539edb58
PZ
1645extern bool ptlock_alloc(struct page *page);
1646extern void ptlock_free(struct page *page);
1647
1648static inline spinlock_t *ptlock_ptr(struct page *page)
1649{
1650 return page->ptl;
1651}
597d795a 1652#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1653static inline void ptlock_cache_init(void)
1654{
1655}
1656
49076ec2
KS
1657static inline bool ptlock_alloc(struct page *page)
1658{
49076ec2
KS
1659 return true;
1660}
539edb58 1661
49076ec2
KS
1662static inline void ptlock_free(struct page *page)
1663{
49076ec2
KS
1664}
1665
1666static inline spinlock_t *ptlock_ptr(struct page *page)
1667{
539edb58 1668 return &page->ptl;
49076ec2 1669}
597d795a 1670#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1671
1672static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1673{
1674 return ptlock_ptr(pmd_page(*pmd));
1675}
1676
1677static inline bool ptlock_init(struct page *page)
1678{
1679 /*
1680 * prep_new_page() initialize page->private (and therefore page->ptl)
1681 * with 0. Make sure nobody took it in use in between.
1682 *
1683 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1684 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1685 */
309381fe 1686 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1687 if (!ptlock_alloc(page))
1688 return false;
1689 spin_lock_init(ptlock_ptr(page));
1690 return true;
1691}
1692
1693/* Reset page->mapping so free_pages_check won't complain. */
1694static inline void pte_lock_deinit(struct page *page)
1695{
1696 page->mapping = NULL;
1697 ptlock_free(page);
1698}
1699
57c1ffce 1700#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1701/*
1702 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1703 */
49076ec2
KS
1704static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1705{
1706 return &mm->page_table_lock;
1707}
b35f1819 1708static inline void ptlock_cache_init(void) {}
49076ec2
KS
1709static inline bool ptlock_init(struct page *page) { return true; }
1710static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1711#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1712
b35f1819
KS
1713static inline void pgtable_init(void)
1714{
1715 ptlock_cache_init();
1716 pgtable_cache_init();
1717}
1718
390f44e2 1719static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1720{
706874e9
VD
1721 if (!ptlock_init(page))
1722 return false;
2f569afd 1723 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1724 return true;
2f569afd
MS
1725}
1726
1727static inline void pgtable_page_dtor(struct page *page)
1728{
1729 pte_lock_deinit(page);
1730 dec_zone_page_state(page, NR_PAGETABLE);
1731}
1732
c74df32c
HD
1733#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1734({ \
4c21e2f2 1735 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1736 pte_t *__pte = pte_offset_map(pmd, address); \
1737 *(ptlp) = __ptl; \
1738 spin_lock(__ptl); \
1739 __pte; \
1740})
1741
1742#define pte_unmap_unlock(pte, ptl) do { \
1743 spin_unlock(ptl); \
1744 pte_unmap(pte); \
1745} while (0)
1746
3ed3a4f0
KS
1747#define pte_alloc(mm, pmd, address) \
1748 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1749
1750#define pte_alloc_map(mm, pmd, address) \
1751 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1bb3630e 1752
c74df32c 1753#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3ed3a4f0
KS
1754 (pte_alloc(mm, pmd, address) ? \
1755 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 1756
1bb3630e 1757#define pte_alloc_kernel(pmd, address) \
8ac1f832 1758 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1759 NULL: pte_offset_kernel(pmd, address))
1da177e4 1760
e009bb30
KS
1761#if USE_SPLIT_PMD_PTLOCKS
1762
634391ac
MS
1763static struct page *pmd_to_page(pmd_t *pmd)
1764{
1765 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1766 return virt_to_page((void *)((unsigned long) pmd & mask));
1767}
1768
e009bb30
KS
1769static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1770{
634391ac 1771 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1772}
1773
1774static inline bool pgtable_pmd_page_ctor(struct page *page)
1775{
e009bb30
KS
1776#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1777 page->pmd_huge_pte = NULL;
1778#endif
49076ec2 1779 return ptlock_init(page);
e009bb30
KS
1780}
1781
1782static inline void pgtable_pmd_page_dtor(struct page *page)
1783{
1784#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1785 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1786#endif
49076ec2 1787 ptlock_free(page);
e009bb30
KS
1788}
1789
634391ac 1790#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1791
1792#else
1793
9a86cb7b
KS
1794static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1795{
1796 return &mm->page_table_lock;
1797}
1798
e009bb30
KS
1799static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1800static inline void pgtable_pmd_page_dtor(struct page *page) {}
1801
c389a250 1802#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1803
e009bb30
KS
1804#endif
1805
9a86cb7b
KS
1806static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1807{
1808 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1809 spin_lock(ptl);
1810 return ptl;
1811}
1812
a00cc7d9
MW
1813/*
1814 * No scalability reason to split PUD locks yet, but follow the same pattern
1815 * as the PMD locks to make it easier if we decide to. The VM should not be
1816 * considered ready to switch to split PUD locks yet; there may be places
1817 * which need to be converted from page_table_lock.
1818 */
1819static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1820{
1821 return &mm->page_table_lock;
1822}
1823
1824static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1825{
1826 spinlock_t *ptl = pud_lockptr(mm, pud);
1827
1828 spin_lock(ptl);
1829 return ptl;
1830}
62906027 1831
a00cc7d9 1832extern void __init pagecache_init(void);
1da177e4 1833extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1834extern void free_area_init_node(int nid, unsigned long * zones_size,
1835 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1836extern void free_initmem(void);
1837
69afade7
JL
1838/*
1839 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1840 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1841 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1842 * Return pages freed into the buddy system.
1843 */
11199692 1844extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1845 int poison, char *s);
c3d5f5f0 1846
cfa11e08
JL
1847#ifdef CONFIG_HIGHMEM
1848/*
1849 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1850 * and totalram_pages.
1851 */
1852extern void free_highmem_page(struct page *page);
1853#endif
69afade7 1854
c3d5f5f0 1855extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1856extern void mem_init_print_info(const char *str);
69afade7 1857
4b50bcc7 1858extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 1859
69afade7
JL
1860/* Free the reserved page into the buddy system, so it gets managed. */
1861static inline void __free_reserved_page(struct page *page)
1862{
1863 ClearPageReserved(page);
1864 init_page_count(page);
1865 __free_page(page);
1866}
1867
1868static inline void free_reserved_page(struct page *page)
1869{
1870 __free_reserved_page(page);
1871 adjust_managed_page_count(page, 1);
1872}
1873
1874static inline void mark_page_reserved(struct page *page)
1875{
1876 SetPageReserved(page);
1877 adjust_managed_page_count(page, -1);
1878}
1879
1880/*
1881 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1882 * The freed pages will be poisoned with pattern "poison" if it's within
1883 * range [0, UCHAR_MAX].
1884 * Return pages freed into the buddy system.
69afade7
JL
1885 */
1886static inline unsigned long free_initmem_default(int poison)
1887{
1888 extern char __init_begin[], __init_end[];
1889
11199692 1890 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1891 poison, "unused kernel");
1892}
1893
7ee3d4e8
JL
1894static inline unsigned long get_num_physpages(void)
1895{
1896 int nid;
1897 unsigned long phys_pages = 0;
1898
1899 for_each_online_node(nid)
1900 phys_pages += node_present_pages(nid);
1901
1902 return phys_pages;
1903}
1904
0ee332c1 1905#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1906/*
0ee332c1 1907 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1908 * zones, allocate the backing mem_map and account for memory holes in a more
1909 * architecture independent manner. This is a substitute for creating the
1910 * zone_sizes[] and zholes_size[] arrays and passing them to
1911 * free_area_init_node()
1912 *
1913 * An architecture is expected to register range of page frames backed by
0ee332c1 1914 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1915 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1916 * usage, an architecture is expected to do something like
1917 *
1918 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1919 * max_highmem_pfn};
1920 * for_each_valid_physical_page_range()
0ee332c1 1921 * memblock_add_node(base, size, nid)
c713216d
MG
1922 * free_area_init_nodes(max_zone_pfns);
1923 *
0ee332c1
TH
1924 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1925 * registered physical page range. Similarly
1926 * sparse_memory_present_with_active_regions() calls memory_present() for
1927 * each range when SPARSEMEM is enabled.
c713216d
MG
1928 *
1929 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1930 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1931 */
1932extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1933unsigned long node_map_pfn_alignment(void);
32996250
YL
1934unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1935 unsigned long end_pfn);
c713216d
MG
1936extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1937 unsigned long end_pfn);
1938extern void get_pfn_range_for_nid(unsigned int nid,
1939 unsigned long *start_pfn, unsigned long *end_pfn);
1940extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1941extern void free_bootmem_with_active_regions(int nid,
1942 unsigned long max_low_pfn);
1943extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1944
0ee332c1 1945#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1946
0ee332c1 1947#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1948 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1949static inline int __early_pfn_to_nid(unsigned long pfn,
1950 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1951{
1952 return 0;
1953}
1954#else
1955/* please see mm/page_alloc.c */
1956extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1957/* there is a per-arch backend function. */
8a942fde
MG
1958extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1959 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1960#endif
1961
0e0b864e 1962extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1963extern void memmap_init_zone(unsigned long, int, unsigned long,
1964 unsigned long, enum memmap_context);
bc75d33f 1965extern void setup_per_zone_wmarks(void);
1b79acc9 1966extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1967extern void mem_init(void);
8feae131 1968extern void __init mmap_init(void);
9af744d7 1969extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 1970extern long si_mem_available(void);
1da177e4
LT
1971extern void si_meminfo(struct sysinfo * val);
1972extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
1973#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
1974extern unsigned long arch_reserved_kernel_pages(void);
1975#endif
1da177e4 1976
a8e99259
MH
1977extern __printf(3, 4)
1978void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 1979
e7c8d5c9 1980extern void setup_per_cpu_pageset(void);
e7c8d5c9 1981
112067f0 1982extern void zone_pcp_update(struct zone *zone);
340175b7 1983extern void zone_pcp_reset(struct zone *zone);
112067f0 1984
75f7ad8e
PS
1985/* page_alloc.c */
1986extern int min_free_kbytes;
795ae7a0 1987extern int watermark_scale_factor;
75f7ad8e 1988
8feae131 1989/* nommu.c */
33e5d769 1990extern atomic_long_t mmap_pages_allocated;
7e660872 1991extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1992
6b2dbba8 1993/* interval_tree.c */
6b2dbba8
ML
1994void vma_interval_tree_insert(struct vm_area_struct *node,
1995 struct rb_root *root);
9826a516
ML
1996void vma_interval_tree_insert_after(struct vm_area_struct *node,
1997 struct vm_area_struct *prev,
1998 struct rb_root *root);
6b2dbba8
ML
1999void vma_interval_tree_remove(struct vm_area_struct *node,
2000 struct rb_root *root);
2001struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
2002 unsigned long start, unsigned long last);
2003struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2004 unsigned long start, unsigned long last);
2005
2006#define vma_interval_tree_foreach(vma, root, start, last) \
2007 for (vma = vma_interval_tree_iter_first(root, start, last); \
2008 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2009
bf181b9f
ML
2010void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2011 struct rb_root *root);
2012void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2013 struct rb_root *root);
2014struct anon_vma_chain *anon_vma_interval_tree_iter_first(
2015 struct rb_root *root, unsigned long start, unsigned long last);
2016struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2017 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2018#ifdef CONFIG_DEBUG_VM_RB
2019void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2020#endif
bf181b9f
ML
2021
2022#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2023 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2024 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2025
1da177e4 2026/* mmap.c */
34b4e4aa 2027extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2028extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2029 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2030 struct vm_area_struct *expand);
2031static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2032 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2033{
2034 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2035}
1da177e4
LT
2036extern struct vm_area_struct *vma_merge(struct mm_struct *,
2037 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2038 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2039 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2040extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2041extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2042 unsigned long addr, int new_below);
2043extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2044 unsigned long addr, int new_below);
1da177e4
LT
2045extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2046extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2047 struct rb_node **, struct rb_node *);
a8fb5618 2048extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2049extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2050 unsigned long addr, unsigned long len, pgoff_t pgoff,
2051 bool *need_rmap_locks);
1da177e4 2052extern void exit_mmap(struct mm_struct *);
925d1c40 2053
9c599024
CG
2054static inline int check_data_rlimit(unsigned long rlim,
2055 unsigned long new,
2056 unsigned long start,
2057 unsigned long end_data,
2058 unsigned long start_data)
2059{
2060 if (rlim < RLIM_INFINITY) {
2061 if (((new - start) + (end_data - start_data)) > rlim)
2062 return -ENOSPC;
2063 }
2064
2065 return 0;
2066}
2067
7906d00c
AA
2068extern int mm_take_all_locks(struct mm_struct *mm);
2069extern void mm_drop_all_locks(struct mm_struct *mm);
2070
38646013
JS
2071extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2072extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2073extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2074
84638335
KK
2075extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2076extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2077
2eefd878
DS
2078extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2079 const struct vm_special_mapping *sm);
3935ed6a
SS
2080extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2081 unsigned long addr, unsigned long len,
a62c34bd
AL
2082 unsigned long flags,
2083 const struct vm_special_mapping *spec);
2084/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2085extern int install_special_mapping(struct mm_struct *mm,
2086 unsigned long addr, unsigned long len,
2087 unsigned long flags, struct page **pages);
1da177e4
LT
2088
2089extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2090
0165ab44 2091extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2092 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2093 struct list_head *uf);
1fcfd8db 2094extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2095 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2096 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2097 struct list_head *uf);
2098extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2099 struct list_head *uf);
1da177e4 2100
1fcfd8db
ON
2101static inline unsigned long
2102do_mmap_pgoff(struct file *file, unsigned long addr,
2103 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2104 unsigned long pgoff, unsigned long *populate,
2105 struct list_head *uf)
1fcfd8db 2106{
897ab3e0 2107 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2108}
2109
bebeb3d6
ML
2110#ifdef CONFIG_MMU
2111extern int __mm_populate(unsigned long addr, unsigned long len,
2112 int ignore_errors);
2113static inline void mm_populate(unsigned long addr, unsigned long len)
2114{
2115 /* Ignore errors */
2116 (void) __mm_populate(addr, len, 1);
2117}
2118#else
2119static inline void mm_populate(unsigned long addr, unsigned long len) {}
2120#endif
2121
e4eb1ff6 2122/* These take the mm semaphore themselves */
5d22fc25 2123extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2124extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2125extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2126extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2127 unsigned long, unsigned long,
2128 unsigned long, unsigned long);
1da177e4 2129
db4fbfb9
ML
2130struct vm_unmapped_area_info {
2131#define VM_UNMAPPED_AREA_TOPDOWN 1
2132 unsigned long flags;
2133 unsigned long length;
2134 unsigned long low_limit;
2135 unsigned long high_limit;
2136 unsigned long align_mask;
2137 unsigned long align_offset;
2138};
2139
2140extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2141extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2142
2143/*
2144 * Search for an unmapped address range.
2145 *
2146 * We are looking for a range that:
2147 * - does not intersect with any VMA;
2148 * - is contained within the [low_limit, high_limit) interval;
2149 * - is at least the desired size.
2150 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2151 */
2152static inline unsigned long
2153vm_unmapped_area(struct vm_unmapped_area_info *info)
2154{
cdd7875e 2155 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2156 return unmapped_area_topdown(info);
cdd7875e
BP
2157 else
2158 return unmapped_area(info);
db4fbfb9
ML
2159}
2160
85821aab 2161/* truncate.c */
1da177e4 2162extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2163extern void truncate_inode_pages_range(struct address_space *,
2164 loff_t lstart, loff_t lend);
91b0abe3 2165extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2166
2167/* generic vm_area_ops exported for stackable file systems */
11bac800 2168extern int filemap_fault(struct vm_fault *vmf);
82b0f8c3 2169extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2170 pgoff_t start_pgoff, pgoff_t end_pgoff);
11bac800 2171extern int filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2172
2173/* mm/page-writeback.c */
2174int write_one_page(struct page *page, int wait);
1cf6e7d8 2175void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2176
2177/* readahead.c */
2178#define VM_MAX_READAHEAD 128 /* kbytes */
2179#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2180
1da177e4 2181int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2182 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2183
2184void page_cache_sync_readahead(struct address_space *mapping,
2185 struct file_ra_state *ra,
2186 struct file *filp,
2187 pgoff_t offset,
2188 unsigned long size);
2189
2190void page_cache_async_readahead(struct address_space *mapping,
2191 struct file_ra_state *ra,
2192 struct file *filp,
2193 struct page *pg,
2194 pgoff_t offset,
2195 unsigned long size);
2196
1be7107f 2197extern unsigned long stack_guard_gap;
d05f3169 2198/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2199extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2200
2201/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2202extern int expand_downwards(struct vm_area_struct *vma,
2203 unsigned long address);
8ca3eb08 2204#if VM_GROWSUP
46dea3d0 2205extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2206#else
fee7e49d 2207 #define expand_upwards(vma, address) (0)
9ab88515 2208#endif
1da177e4
LT
2209
2210/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2211extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2212extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2213 struct vm_area_struct **pprev);
2214
2215/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2216 NULL if none. Assume start_addr < end_addr. */
2217static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2218{
2219 struct vm_area_struct * vma = find_vma(mm,start_addr);
2220
2221 if (vma && end_addr <= vma->vm_start)
2222 vma = NULL;
2223 return vma;
2224}
2225
1be7107f
HD
2226static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2227{
2228 unsigned long vm_start = vma->vm_start;
2229
2230 if (vma->vm_flags & VM_GROWSDOWN) {
2231 vm_start -= stack_guard_gap;
2232 if (vm_start > vma->vm_start)
2233 vm_start = 0;
2234 }
2235 return vm_start;
2236}
2237
2238static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2239{
2240 unsigned long vm_end = vma->vm_end;
2241
2242 if (vma->vm_flags & VM_GROWSUP) {
2243 vm_end += stack_guard_gap;
2244 if (vm_end < vma->vm_end)
2245 vm_end = -PAGE_SIZE;
2246 }
2247 return vm_end;
2248}
2249
1da177e4
LT
2250static inline unsigned long vma_pages(struct vm_area_struct *vma)
2251{
2252 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2253}
2254
640708a2
PE
2255/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2256static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2257 unsigned long vm_start, unsigned long vm_end)
2258{
2259 struct vm_area_struct *vma = find_vma(mm, vm_start);
2260
2261 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2262 vma = NULL;
2263
2264 return vma;
2265}
2266
bad849b3 2267#ifdef CONFIG_MMU
804af2cf 2268pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2269void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2270#else
2271static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2272{
2273 return __pgprot(0);
2274}
64e45507
PF
2275static inline void vma_set_page_prot(struct vm_area_struct *vma)
2276{
2277 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2278}
bad849b3
DH
2279#endif
2280
5877231f 2281#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2282unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2283 unsigned long start, unsigned long end);
2284#endif
2285
deceb6cd 2286struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2287int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2288 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2289int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2290int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2291 unsigned long pfn);
1745cbc5
AL
2292int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2293 unsigned long pfn, pgprot_t pgprot);
423bad60 2294int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2295 pfn_t pfn);
b4cbb197
LT
2296int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2297
deceb6cd 2298
240aadee
ML
2299struct page *follow_page_mask(struct vm_area_struct *vma,
2300 unsigned long address, unsigned int foll_flags,
2301 unsigned int *page_mask);
2302
2303static inline struct page *follow_page(struct vm_area_struct *vma,
2304 unsigned long address, unsigned int foll_flags)
2305{
2306 unsigned int unused_page_mask;
2307 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2308}
2309
deceb6cd
HD
2310#define FOLL_WRITE 0x01 /* check pte is writable */
2311#define FOLL_TOUCH 0x02 /* mark page accessed */
2312#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2313#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2314#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2315#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2316 * and return without waiting upon it */
84d33df2 2317#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2318#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2319#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2320#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2321#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2322#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2323#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2324#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2325#define FOLL_COW 0x4000 /* internal GUP flag */
1da177e4 2326
9a291a7c
JM
2327static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2328{
2329 if (vm_fault & VM_FAULT_OOM)
2330 return -ENOMEM;
2331 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2332 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2333 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2334 return -EFAULT;
2335 return 0;
2336}
2337
2f569afd 2338typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2339 void *data);
2340extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2341 unsigned long size, pte_fn_t fn, void *data);
2342
1da177e4 2343
8823b1db
LA
2344#ifdef CONFIG_PAGE_POISONING
2345extern bool page_poisoning_enabled(void);
2346extern void kernel_poison_pages(struct page *page, int numpages, int enable);
1414c7f4 2347extern bool page_is_poisoned(struct page *page);
8823b1db
LA
2348#else
2349static inline bool page_poisoning_enabled(void) { return false; }
2350static inline void kernel_poison_pages(struct page *page, int numpages,
2351 int enable) { }
1414c7f4 2352static inline bool page_is_poisoned(struct page *page) { return false; }
8823b1db
LA
2353#endif
2354
12d6f21e 2355#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2356extern bool _debug_pagealloc_enabled;
2357extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2358
2359static inline bool debug_pagealloc_enabled(void)
2360{
2361 return _debug_pagealloc_enabled;
2362}
2363
2364static inline void
2365kernel_map_pages(struct page *page, int numpages, int enable)
2366{
2367 if (!debug_pagealloc_enabled())
2368 return;
2369
2370 __kernel_map_pages(page, numpages, enable);
2371}
8a235efa
RW
2372#ifdef CONFIG_HIBERNATION
2373extern bool kernel_page_present(struct page *page);
40b44137
JK
2374#endif /* CONFIG_HIBERNATION */
2375#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2376static inline void
9858db50 2377kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2378#ifdef CONFIG_HIBERNATION
2379static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2380#endif /* CONFIG_HIBERNATION */
2381static inline bool debug_pagealloc_enabled(void)
2382{
2383 return false;
2384}
2385#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2386
a6c19dfe 2387#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2388extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2389extern int in_gate_area_no_mm(unsigned long addr);
2390extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2391#else
a6c19dfe
AL
2392static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2393{
2394 return NULL;
2395}
2396static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2397static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2398{
2399 return 0;
2400}
1da177e4
LT
2401#endif /* __HAVE_ARCH_GATE_AREA */
2402
44a70ade
MH
2403extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2404
146732ce
JT
2405#ifdef CONFIG_SYSCTL
2406extern int sysctl_drop_caches;
8d65af78 2407int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2408 void __user *, size_t *, loff_t *);
146732ce
JT
2409#endif
2410
cb731d6c
VD
2411void drop_slab(void);
2412void drop_slab_node(int nid);
9d0243bc 2413
7a9166e3
LY
2414#ifndef CONFIG_MMU
2415#define randomize_va_space 0
2416#else
a62eaf15 2417extern int randomize_va_space;
7a9166e3 2418#endif
a62eaf15 2419
045e72ac 2420const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2421void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2422
9bdac914
YL
2423void sparse_mem_maps_populate_node(struct page **map_map,
2424 unsigned long pnum_begin,
2425 unsigned long pnum_end,
2426 unsigned long map_count,
2427 int nodeid);
2428
98f3cfc1 2429struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111 2430pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2431p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2432pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
2433pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2434pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2435void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc
DW
2436struct vmem_altmap;
2437void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2438 struct vmem_altmap *altmap);
2439static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2440{
2441 return __vmemmap_alloc_block_buf(size, node, NULL);
2442}
2443
8f6aac41 2444void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2445int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2446 int node);
2447int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2448void vmemmap_populate_print_last(void);
0197518c 2449#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2450void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2451#endif
46723bfa
YI
2452void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2453 unsigned long size);
6a46079c 2454
82ba011b
AK
2455enum mf_flags {
2456 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2457 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2458 MF_MUST_KILL = 1 << 2,
cf870c70 2459 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2460};
cd42f4a3 2461extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2462extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2463extern int unpoison_memory(unsigned long pfn);
ead07f6a 2464extern int get_hwpoison_page(struct page *page);
4e41a30c 2465#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2466extern int sysctl_memory_failure_early_kill;
2467extern int sysctl_memory_failure_recovery;
facb6011 2468extern void shake_page(struct page *p, int access);
293c07e3 2469extern atomic_long_t num_poisoned_pages;
facb6011 2470extern int soft_offline_page(struct page *page, int flags);
6a46079c 2471
cc637b17
XX
2472
2473/*
2474 * Error handlers for various types of pages.
2475 */
cc3e2af4 2476enum mf_result {
cc637b17
XX
2477 MF_IGNORED, /* Error: cannot be handled */
2478 MF_FAILED, /* Error: handling failed */
2479 MF_DELAYED, /* Will be handled later */
2480 MF_RECOVERED, /* Successfully recovered */
2481};
2482
2483enum mf_action_page_type {
2484 MF_MSG_KERNEL,
2485 MF_MSG_KERNEL_HIGH_ORDER,
2486 MF_MSG_SLAB,
2487 MF_MSG_DIFFERENT_COMPOUND,
2488 MF_MSG_POISONED_HUGE,
2489 MF_MSG_HUGE,
2490 MF_MSG_FREE_HUGE,
2491 MF_MSG_UNMAP_FAILED,
2492 MF_MSG_DIRTY_SWAPCACHE,
2493 MF_MSG_CLEAN_SWAPCACHE,
2494 MF_MSG_DIRTY_MLOCKED_LRU,
2495 MF_MSG_CLEAN_MLOCKED_LRU,
2496 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2497 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2498 MF_MSG_DIRTY_LRU,
2499 MF_MSG_CLEAN_LRU,
2500 MF_MSG_TRUNCATED_LRU,
2501 MF_MSG_BUDDY,
2502 MF_MSG_BUDDY_2ND,
2503 MF_MSG_UNKNOWN,
2504};
2505
47ad8475
AA
2506#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2507extern void clear_huge_page(struct page *page,
2508 unsigned long addr,
2509 unsigned int pages_per_huge_page);
2510extern void copy_user_huge_page(struct page *dst, struct page *src,
2511 unsigned long addr, struct vm_area_struct *vma,
2512 unsigned int pages_per_huge_page);
fa4d75c1
MK
2513extern long copy_huge_page_from_user(struct page *dst_page,
2514 const void __user *usr_src,
810a56b9
MK
2515 unsigned int pages_per_huge_page,
2516 bool allow_pagefault);
47ad8475
AA
2517#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2518
e30825f1 2519extern struct page_ext_operations debug_guardpage_ops;
e30825f1 2520
c0a32fc5
SG
2521#ifdef CONFIG_DEBUG_PAGEALLOC
2522extern unsigned int _debug_guardpage_minorder;
e30825f1 2523extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2524
2525static inline unsigned int debug_guardpage_minorder(void)
2526{
2527 return _debug_guardpage_minorder;
2528}
2529
e30825f1
JK
2530static inline bool debug_guardpage_enabled(void)
2531{
2532 return _debug_guardpage_enabled;
2533}
2534
c0a32fc5
SG
2535static inline bool page_is_guard(struct page *page)
2536{
e30825f1
JK
2537 struct page_ext *page_ext;
2538
2539 if (!debug_guardpage_enabled())
2540 return false;
2541
2542 page_ext = lookup_page_ext(page);
0bb2fd13
YS
2543 if (unlikely(!page_ext))
2544 return false;
2545
e30825f1 2546 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2547}
2548#else
2549static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2550static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2551static inline bool page_is_guard(struct page *page) { return false; }
2552#endif /* CONFIG_DEBUG_PAGEALLOC */
2553
f9872caf
CS
2554#if MAX_NUMNODES > 1
2555void __init setup_nr_node_ids(void);
2556#else
2557static inline void setup_nr_node_ids(void) {}
2558#endif
2559
1da177e4
LT
2560#endif /* __KERNEL__ */
2561#endif /* _LINUX_MM_H */