block/cfq: replace cfq_rb_root leftmost caching
[linux-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
3565fce3 19#include <linux/percpu-refcount.h>
e9da73d6 20#include <linux/bit_spinlock.h>
b0d40c92 21#include <linux/shrinker.h>
9c599024 22#include <linux/resource.h>
e30825f1 23#include <linux/page_ext.h>
8025e5dd 24#include <linux/err.h>
fe896d18 25#include <linux/page_ref.h>
7b2d55d2 26#include <linux/memremap.h>
1da177e4
LT
27
28struct mempolicy;
29struct anon_vma;
bf181b9f 30struct anon_vma_chain;
4e950f6f 31struct file_ra_state;
e8edc6e0 32struct user_struct;
4e950f6f 33struct writeback_control;
682aa8e1 34struct bdi_writeback;
1da177e4 35
597b7305
MH
36void init_mm_internals(void);
37
fccc9987 38#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 39extern unsigned long max_mapnr;
fccc9987
JL
40
41static inline void set_max_mapnr(unsigned long limit)
42{
43 max_mapnr = limit;
44}
45#else
46static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
47#endif
48
4481374c 49extern unsigned long totalram_pages;
1da177e4 50extern void * high_memory;
1da177e4
LT
51extern int page_cluster;
52
53#ifdef CONFIG_SYSCTL
54extern int sysctl_legacy_va_layout;
55#else
56#define sysctl_legacy_va_layout 0
57#endif
58
d07e2259
DC
59#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
60extern const int mmap_rnd_bits_min;
61extern const int mmap_rnd_bits_max;
62extern int mmap_rnd_bits __read_mostly;
63#endif
64#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
65extern const int mmap_rnd_compat_bits_min;
66extern const int mmap_rnd_compat_bits_max;
67extern int mmap_rnd_compat_bits __read_mostly;
68#endif
69
1da177e4
LT
70#include <asm/page.h>
71#include <asm/pgtable.h>
72#include <asm/processor.h>
1da177e4 73
79442ed1
TC
74#ifndef __pa_symbol
75#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
76#endif
77
1dff8083
AB
78#ifndef page_to_virt
79#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
80#endif
81
568c5fe5
LA
82#ifndef lm_alias
83#define lm_alias(x) __va(__pa_symbol(x))
84#endif
85
593befa6
DD
86/*
87 * To prevent common memory management code establishing
88 * a zero page mapping on a read fault.
89 * This macro should be defined within <asm/pgtable.h>.
90 * s390 does this to prevent multiplexing of hardware bits
91 * related to the physical page in case of virtualization.
92 */
93#ifndef mm_forbids_zeropage
94#define mm_forbids_zeropage(X) (0)
95#endif
96
ea606cf5
AR
97/*
98 * Default maximum number of active map areas, this limits the number of vmas
99 * per mm struct. Users can overwrite this number by sysctl but there is a
100 * problem.
101 *
102 * When a program's coredump is generated as ELF format, a section is created
103 * per a vma. In ELF, the number of sections is represented in unsigned short.
104 * This means the number of sections should be smaller than 65535 at coredump.
105 * Because the kernel adds some informative sections to a image of program at
106 * generating coredump, we need some margin. The number of extra sections is
107 * 1-3 now and depends on arch. We use "5" as safe margin, here.
108 *
109 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
110 * not a hard limit any more. Although some userspace tools can be surprised by
111 * that.
112 */
113#define MAPCOUNT_ELF_CORE_MARGIN (5)
114#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
115
116extern int sysctl_max_map_count;
117
c9b1d098 118extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 119extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 120
49f0ce5f
JM
121extern int sysctl_overcommit_memory;
122extern int sysctl_overcommit_ratio;
123extern unsigned long sysctl_overcommit_kbytes;
124
125extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
126 size_t *, loff_t *);
127extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
128 size_t *, loff_t *);
129
1da177e4
LT
130#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
131
27ac792c
AR
132/* to align the pointer to the (next) page boundary */
133#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
134
0fa73b86 135/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 136#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 137
1da177e4
LT
138/*
139 * Linux kernel virtual memory manager primitives.
140 * The idea being to have a "virtual" mm in the same way
141 * we have a virtual fs - giving a cleaner interface to the
142 * mm details, and allowing different kinds of memory mappings
143 * (from shared memory to executable loading to arbitrary
144 * mmap() functions).
145 */
146
c43692e8
CL
147extern struct kmem_cache *vm_area_cachep;
148
1da177e4 149#ifndef CONFIG_MMU
8feae131
DH
150extern struct rb_root nommu_region_tree;
151extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
152
153extern unsigned int kobjsize(const void *objp);
154#endif
155
156/*
605d9288 157 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 158 * When changing, update also include/trace/events/mmflags.h
1da177e4 159 */
cc2383ec
KK
160#define VM_NONE 0x00000000
161
1da177e4
LT
162#define VM_READ 0x00000001 /* currently active flags */
163#define VM_WRITE 0x00000002
164#define VM_EXEC 0x00000004
165#define VM_SHARED 0x00000008
166
7e2cff42 167/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
168#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
169#define VM_MAYWRITE 0x00000020
170#define VM_MAYEXEC 0x00000040
171#define VM_MAYSHARE 0x00000080
172
173#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 174#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 175#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 176#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 177#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 178
1da177e4
LT
179#define VM_LOCKED 0x00002000
180#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
181
182 /* Used by sys_madvise() */
183#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
184#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
185
186#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
187#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 188#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 189#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 190#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 191#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 192#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 193#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 194#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 195
d9104d1c
CG
196#ifdef CONFIG_MEM_SOFT_DIRTY
197# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
198#else
199# define VM_SOFTDIRTY 0
200#endif
201
b379d790 202#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
203#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
204#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 205#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 206
63c17fb8
DH
207#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
208#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
209#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
210#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
211#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 212#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
213#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
214#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
215#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
216#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 217#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
218#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
219
cc2383ec
KK
220#if defined(CONFIG_X86)
221# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
8f62c883
DH
222#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
223# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
224# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
225# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
226# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
227# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
228#endif
cc2383ec
KK
229#elif defined(CONFIG_PPC)
230# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
231#elif defined(CONFIG_PARISC)
232# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
233#elif defined(CONFIG_METAG)
234# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
235#elif defined(CONFIG_IA64)
236# define VM_GROWSUP VM_ARCH_1
237#elif !defined(CONFIG_MMU)
238# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
239#endif
240
df3735c5 241#if defined(CONFIG_X86_INTEL_MPX)
4aae7e43 242/* MPX specific bounds table or bounds directory */
df3735c5
RR
243# define VM_MPX VM_HIGH_ARCH_BIT_4
244#else
245# define VM_MPX VM_NONE
4aae7e43
QR
246#endif
247
cc2383ec
KK
248#ifndef VM_GROWSUP
249# define VM_GROWSUP VM_NONE
250#endif
251
a8bef8ff
MG
252/* Bits set in the VMA until the stack is in its final location */
253#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
254
1da177e4
LT
255#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
256#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
257#endif
258
259#ifdef CONFIG_STACK_GROWSUP
30bdbb78 260#define VM_STACK VM_GROWSUP
1da177e4 261#else
30bdbb78 262#define VM_STACK VM_GROWSDOWN
1da177e4
LT
263#endif
264
30bdbb78
KK
265#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
266
b291f000 267/*
78f11a25
AA
268 * Special vmas that are non-mergable, non-mlock()able.
269 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 270 */
9050d7eb 271#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 272
a0715cc2
AT
273/* This mask defines which mm->def_flags a process can inherit its parent */
274#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
275
de60f5f1
EM
276/* This mask is used to clear all the VMA flags used by mlock */
277#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
278
1da177e4
LT
279/*
280 * mapping from the currently active vm_flags protection bits (the
281 * low four bits) to a page protection mask..
282 */
283extern pgprot_t protection_map[16];
284
d0217ac0 285#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
286#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
287#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
288#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
289#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
290#define FAULT_FLAG_TRIED 0x20 /* Second try */
291#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 292#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 293#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 294
282a8e03
RZ
295#define FAULT_FLAG_TRACE \
296 { FAULT_FLAG_WRITE, "WRITE" }, \
297 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
298 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
299 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
300 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
301 { FAULT_FLAG_TRIED, "TRIED" }, \
302 { FAULT_FLAG_USER, "USER" }, \
303 { FAULT_FLAG_REMOTE, "REMOTE" }, \
304 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
305
54cb8821 306/*
d0217ac0 307 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
308 * ->fault function. The vma's ->fault is responsible for returning a bitmask
309 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 310 *
c20cd45e
MH
311 * MM layer fills up gfp_mask for page allocations but fault handler might
312 * alter it if its implementation requires a different allocation context.
313 *
9b4bdd2f 314 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 315 */
d0217ac0 316struct vm_fault {
82b0f8c3 317 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 318 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 319 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 320 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 321 unsigned long address; /* Faulting virtual address */
82b0f8c3 322 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 323 * the 'address' */
a2d58167
DJ
324 pud_t *pud; /* Pointer to pud entry matching
325 * the 'address'
326 */
2994302b 327 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 328
3917048d
JK
329 struct page *cow_page; /* Page handler may use for COW fault */
330 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 331 struct page *page; /* ->fault handlers should return a
83c54070 332 * page here, unless VM_FAULT_NOPAGE
d0217ac0 333 * is set (which is also implied by
83c54070 334 * VM_FAULT_ERROR).
d0217ac0 335 */
82b0f8c3 336 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
337 pte_t *pte; /* Pointer to pte entry matching
338 * the 'address'. NULL if the page
339 * table hasn't been allocated.
340 */
341 spinlock_t *ptl; /* Page table lock.
342 * Protects pte page table if 'pte'
343 * is not NULL, otherwise pmd.
344 */
7267ec00
KS
345 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
346 * vm_ops->map_pages() calls
347 * alloc_set_pte() from atomic context.
348 * do_fault_around() pre-allocates
349 * page table to avoid allocation from
350 * atomic context.
351 */
54cb8821 352};
1da177e4 353
c791ace1
DJ
354/* page entry size for vm->huge_fault() */
355enum page_entry_size {
356 PE_SIZE_PTE = 0,
357 PE_SIZE_PMD,
358 PE_SIZE_PUD,
359};
360
1da177e4
LT
361/*
362 * These are the virtual MM functions - opening of an area, closing and
363 * unmapping it (needed to keep files on disk up-to-date etc), pointer
364 * to the functions called when a no-page or a wp-page exception occurs.
365 */
366struct vm_operations_struct {
367 void (*open)(struct vm_area_struct * area);
368 void (*close)(struct vm_area_struct * area);
5477e70a 369 int (*mremap)(struct vm_area_struct * area);
11bac800 370 int (*fault)(struct vm_fault *vmf);
c791ace1 371 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
82b0f8c3 372 void (*map_pages)(struct vm_fault *vmf,
bae473a4 373 pgoff_t start_pgoff, pgoff_t end_pgoff);
9637a5ef
DH
374
375 /* notification that a previously read-only page is about to become
376 * writable, if an error is returned it will cause a SIGBUS */
11bac800 377 int (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 378
dd906184 379 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
11bac800 380 int (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 381
28b2ee20
RR
382 /* called by access_process_vm when get_user_pages() fails, typically
383 * for use by special VMAs that can switch between memory and hardware
384 */
385 int (*access)(struct vm_area_struct *vma, unsigned long addr,
386 void *buf, int len, int write);
78d683e8
AL
387
388 /* Called by the /proc/PID/maps code to ask the vma whether it
389 * has a special name. Returning non-NULL will also cause this
390 * vma to be dumped unconditionally. */
391 const char *(*name)(struct vm_area_struct *vma);
392
1da177e4 393#ifdef CONFIG_NUMA
a6020ed7
LS
394 /*
395 * set_policy() op must add a reference to any non-NULL @new mempolicy
396 * to hold the policy upon return. Caller should pass NULL @new to
397 * remove a policy and fall back to surrounding context--i.e. do not
398 * install a MPOL_DEFAULT policy, nor the task or system default
399 * mempolicy.
400 */
1da177e4 401 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
402
403 /*
404 * get_policy() op must add reference [mpol_get()] to any policy at
405 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
406 * in mm/mempolicy.c will do this automatically.
407 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
408 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
409 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
410 * must return NULL--i.e., do not "fallback" to task or system default
411 * policy.
412 */
1da177e4
LT
413 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
414 unsigned long addr);
415#endif
667a0a06
DV
416 /*
417 * Called by vm_normal_page() for special PTEs to find the
418 * page for @addr. This is useful if the default behavior
419 * (using pte_page()) would not find the correct page.
420 */
421 struct page *(*find_special_page)(struct vm_area_struct *vma,
422 unsigned long addr);
1da177e4
LT
423};
424
425struct mmu_gather;
426struct inode;
427
349aef0b
AM
428#define page_private(page) ((page)->private)
429#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 430
5c7fb56e
DW
431#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
432static inline int pmd_devmap(pmd_t pmd)
433{
434 return 0;
435}
a00cc7d9
MW
436static inline int pud_devmap(pud_t pud)
437{
438 return 0;
439}
b59f65fa
KS
440static inline int pgd_devmap(pgd_t pgd)
441{
442 return 0;
443}
5c7fb56e
DW
444#endif
445
1da177e4
LT
446/*
447 * FIXME: take this include out, include page-flags.h in
448 * files which need it (119 of them)
449 */
450#include <linux/page-flags.h>
71e3aac0 451#include <linux/huge_mm.h>
1da177e4
LT
452
453/*
454 * Methods to modify the page usage count.
455 *
456 * What counts for a page usage:
457 * - cache mapping (page->mapping)
458 * - private data (page->private)
459 * - page mapped in a task's page tables, each mapping
460 * is counted separately
461 *
462 * Also, many kernel routines increase the page count before a critical
463 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
464 */
465
466/*
da6052f7 467 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 468 */
7c8ee9a8
NP
469static inline int put_page_testzero(struct page *page)
470{
fe896d18
JK
471 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
472 return page_ref_dec_and_test(page);
7c8ee9a8 473}
1da177e4
LT
474
475/*
7c8ee9a8
NP
476 * Try to grab a ref unless the page has a refcount of zero, return false if
477 * that is the case.
8e0861fa
AK
478 * This can be called when MMU is off so it must not access
479 * any of the virtual mappings.
1da177e4 480 */
7c8ee9a8
NP
481static inline int get_page_unless_zero(struct page *page)
482{
fe896d18 483 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 484}
1da177e4 485
53df8fdc 486extern int page_is_ram(unsigned long pfn);
124fe20d
DW
487
488enum {
489 REGION_INTERSECTS,
490 REGION_DISJOINT,
491 REGION_MIXED,
492};
493
1c29f25b
TK
494int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
495 unsigned long desc);
53df8fdc 496
48667e7a 497/* Support for virtually mapped pages */
b3bdda02
CL
498struct page *vmalloc_to_page(const void *addr);
499unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 500
0738c4bb
PM
501/*
502 * Determine if an address is within the vmalloc range
503 *
504 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
505 * is no special casing required.
506 */
bb00a789 507static inline bool is_vmalloc_addr(const void *x)
9e2779fa 508{
0738c4bb 509#ifdef CONFIG_MMU
9e2779fa
CL
510 unsigned long addr = (unsigned long)x;
511
512 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 513#else
bb00a789 514 return false;
8ca3ed87 515#endif
0738c4bb 516}
81ac3ad9
KH
517#ifdef CONFIG_MMU
518extern int is_vmalloc_or_module_addr(const void *x);
519#else
934831d0 520static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
521{
522 return 0;
523}
524#endif
9e2779fa 525
a7c3e901
MH
526extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
527static inline void *kvmalloc(size_t size, gfp_t flags)
528{
529 return kvmalloc_node(size, flags, NUMA_NO_NODE);
530}
531static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
532{
533 return kvmalloc_node(size, flags | __GFP_ZERO, node);
534}
535static inline void *kvzalloc(size_t size, gfp_t flags)
536{
537 return kvmalloc(size, flags | __GFP_ZERO);
538}
539
752ade68
MH
540static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
541{
542 if (size != 0 && n > SIZE_MAX / size)
543 return NULL;
544
545 return kvmalloc(n * size, flags);
546}
547
39f1f78d
AV
548extern void kvfree(const void *addr);
549
53f9263b
KS
550static inline atomic_t *compound_mapcount_ptr(struct page *page)
551{
552 return &page[1].compound_mapcount;
553}
554
555static inline int compound_mapcount(struct page *page)
556{
5f527c2b 557 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
558 page = compound_head(page);
559 return atomic_read(compound_mapcount_ptr(page)) + 1;
560}
561
70b50f94
AA
562/*
563 * The atomic page->_mapcount, starts from -1: so that transitions
564 * both from it and to it can be tracked, using atomic_inc_and_test
565 * and atomic_add_negative(-1).
566 */
22b751c3 567static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
568{
569 atomic_set(&(page)->_mapcount, -1);
570}
571
b20ce5e0
KS
572int __page_mapcount(struct page *page);
573
70b50f94
AA
574static inline int page_mapcount(struct page *page)
575{
1d148e21 576 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 577
b20ce5e0
KS
578 if (unlikely(PageCompound(page)))
579 return __page_mapcount(page);
580 return atomic_read(&page->_mapcount) + 1;
581}
582
583#ifdef CONFIG_TRANSPARENT_HUGEPAGE
584int total_mapcount(struct page *page);
6d0a07ed 585int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
586#else
587static inline int total_mapcount(struct page *page)
588{
589 return page_mapcount(page);
70b50f94 590}
6d0a07ed
AA
591static inline int page_trans_huge_mapcount(struct page *page,
592 int *total_mapcount)
593{
594 int mapcount = page_mapcount(page);
595 if (total_mapcount)
596 *total_mapcount = mapcount;
597 return mapcount;
598}
b20ce5e0 599#endif
70b50f94 600
b49af68f
CL
601static inline struct page *virt_to_head_page(const void *x)
602{
603 struct page *page = virt_to_page(x);
ccaafd7f 604
1d798ca3 605 return compound_head(page);
b49af68f
CL
606}
607
ddc58f27
KS
608void __put_page(struct page *page);
609
1d7ea732 610void put_pages_list(struct list_head *pages);
1da177e4 611
8dfcc9ba 612void split_page(struct page *page, unsigned int order);
8dfcc9ba 613
33f2ef89
AW
614/*
615 * Compound pages have a destructor function. Provide a
616 * prototype for that function and accessor functions.
f1e61557 617 * These are _only_ valid on the head of a compound page.
33f2ef89 618 */
f1e61557
KS
619typedef void compound_page_dtor(struct page *);
620
621/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
622enum compound_dtor_id {
623 NULL_COMPOUND_DTOR,
624 COMPOUND_PAGE_DTOR,
625#ifdef CONFIG_HUGETLB_PAGE
626 HUGETLB_PAGE_DTOR,
9a982250
KS
627#endif
628#ifdef CONFIG_TRANSPARENT_HUGEPAGE
629 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
630#endif
631 NR_COMPOUND_DTORS,
632};
633extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
634
635static inline void set_compound_page_dtor(struct page *page,
f1e61557 636 enum compound_dtor_id compound_dtor)
33f2ef89 637{
f1e61557
KS
638 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
639 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
640}
641
642static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
643{
f1e61557
KS
644 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
645 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
646}
647
d00181b9 648static inline unsigned int compound_order(struct page *page)
d85f3385 649{
6d777953 650 if (!PageHead(page))
d85f3385 651 return 0;
e4b294c2 652 return page[1].compound_order;
d85f3385
CL
653}
654
f1e61557 655static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 656{
e4b294c2 657 page[1].compound_order = order;
d85f3385
CL
658}
659
9a982250
KS
660void free_compound_page(struct page *page);
661
3dece370 662#ifdef CONFIG_MMU
14fd403f
AA
663/*
664 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
665 * servicing faults for write access. In the normal case, do always want
666 * pte_mkwrite. But get_user_pages can cause write faults for mappings
667 * that do not have writing enabled, when used by access_process_vm.
668 */
669static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
670{
671 if (likely(vma->vm_flags & VM_WRITE))
672 pte = pte_mkwrite(pte);
673 return pte;
674}
8c6e50b0 675
82b0f8c3 676int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 677 struct page *page);
9118c0cb 678int finish_fault(struct vm_fault *vmf);
66a6197c 679int finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 680#endif
14fd403f 681
1da177e4
LT
682/*
683 * Multiple processes may "see" the same page. E.g. for untouched
684 * mappings of /dev/null, all processes see the same page full of
685 * zeroes, and text pages of executables and shared libraries have
686 * only one copy in memory, at most, normally.
687 *
688 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
689 * page_count() == 0 means the page is free. page->lru is then used for
690 * freelist management in the buddy allocator.
da6052f7 691 * page_count() > 0 means the page has been allocated.
1da177e4 692 *
da6052f7
NP
693 * Pages are allocated by the slab allocator in order to provide memory
694 * to kmalloc and kmem_cache_alloc. In this case, the management of the
695 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
696 * unless a particular usage is carefully commented. (the responsibility of
697 * freeing the kmalloc memory is the caller's, of course).
1da177e4 698 *
da6052f7
NP
699 * A page may be used by anyone else who does a __get_free_page().
700 * In this case, page_count still tracks the references, and should only
701 * be used through the normal accessor functions. The top bits of page->flags
702 * and page->virtual store page management information, but all other fields
703 * are unused and could be used privately, carefully. The management of this
704 * page is the responsibility of the one who allocated it, and those who have
705 * subsequently been given references to it.
706 *
707 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
708 * managed by the Linux memory manager: I/O, buffers, swapping etc.
709 * The following discussion applies only to them.
710 *
da6052f7
NP
711 * A pagecache page contains an opaque `private' member, which belongs to the
712 * page's address_space. Usually, this is the address of a circular list of
713 * the page's disk buffers. PG_private must be set to tell the VM to call
714 * into the filesystem to release these pages.
1da177e4 715 *
da6052f7
NP
716 * A page may belong to an inode's memory mapping. In this case, page->mapping
717 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 718 * in units of PAGE_SIZE.
1da177e4 719 *
da6052f7
NP
720 * If pagecache pages are not associated with an inode, they are said to be
721 * anonymous pages. These may become associated with the swapcache, and in that
722 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 723 *
da6052f7
NP
724 * In either case (swapcache or inode backed), the pagecache itself holds one
725 * reference to the page. Setting PG_private should also increment the
726 * refcount. The each user mapping also has a reference to the page.
1da177e4 727 *
da6052f7
NP
728 * The pagecache pages are stored in a per-mapping radix tree, which is
729 * rooted at mapping->page_tree, and indexed by offset.
730 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
731 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 732 *
da6052f7 733 * All pagecache pages may be subject to I/O:
1da177e4
LT
734 * - inode pages may need to be read from disk,
735 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
736 * to be written back to the inode on disk,
737 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
738 * modified may need to be swapped out to swap space and (later) to be read
739 * back into memory.
1da177e4
LT
740 */
741
742/*
743 * The zone field is never updated after free_area_init_core()
744 * sets it, so none of the operations on it need to be atomic.
1da177e4 745 */
348f8b6c 746
90572890 747/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 748#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
749#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
750#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 751#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 752
348f8b6c 753/*
25985edc 754 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
755 * sections we define the shift as 0; that plus a 0 mask ensures
756 * the compiler will optimise away reference to them.
757 */
d41dee36
AW
758#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
759#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
760#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 761#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 762
bce54bbf
WD
763/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
764#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 765#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
766#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
767 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 768#else
89689ae7 769#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
770#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
771 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
772#endif
773
bd8029b6 774#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 775
9223b419
CL
776#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
777#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
778#endif
779
d41dee36
AW
780#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
781#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
782#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 783#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 784#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 785
33dd4e0e 786static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 787{
348f8b6c 788 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 789}
1da177e4 790
260ae3f7
DW
791#ifdef CONFIG_ZONE_DEVICE
792static inline bool is_zone_device_page(const struct page *page)
793{
794 return page_zonenum(page) == ZONE_DEVICE;
795}
796#else
797static inline bool is_zone_device_page(const struct page *page)
798{
799 return false;
800}
7b2d55d2 801#endif
5042db43 802
6b368cd4 803#if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
df6ad698 804void put_zone_device_private_or_public_page(struct page *page);
6b368cd4
JG
805DECLARE_STATIC_KEY_FALSE(device_private_key);
806#define IS_HMM_ENABLED static_branch_unlikely(&device_private_key)
807static inline bool is_device_private_page(const struct page *page);
808static inline bool is_device_public_page(const struct page *page);
809#else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
df6ad698 810static inline void put_zone_device_private_or_public_page(struct page *page)
5042db43 811{
5042db43 812}
6b368cd4
JG
813#define IS_HMM_ENABLED 0
814static inline bool is_device_private_page(const struct page *page)
815{
816 return false;
817}
818static inline bool is_device_public_page(const struct page *page)
819{
820 return false;
821}
df6ad698 822#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
260ae3f7 823
7b2d55d2 824
3565fce3
DW
825static inline void get_page(struct page *page)
826{
827 page = compound_head(page);
828 /*
829 * Getting a normal page or the head of a compound page
0139aa7b 830 * requires to already have an elevated page->_refcount.
3565fce3 831 */
fe896d18
JK
832 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
833 page_ref_inc(page);
3565fce3
DW
834}
835
836static inline void put_page(struct page *page)
837{
838 page = compound_head(page);
839
7b2d55d2
JG
840 /*
841 * For private device pages we need to catch refcount transition from
842 * 2 to 1, when refcount reach one it means the private device page is
843 * free and we need to inform the device driver through callback. See
844 * include/linux/memremap.h and HMM for details.
845 */
6b368cd4
JG
846 if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) ||
847 unlikely(is_device_public_page(page)))) {
df6ad698 848 put_zone_device_private_or_public_page(page);
7b2d55d2
JG
849 return;
850 }
851
3565fce3
DW
852 if (put_page_testzero(page))
853 __put_page(page);
3565fce3
DW
854}
855
9127ab4f
CS
856#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
857#define SECTION_IN_PAGE_FLAGS
858#endif
859
89689ae7 860/*
7a8010cd
VB
861 * The identification function is mainly used by the buddy allocator for
862 * determining if two pages could be buddies. We are not really identifying
863 * the zone since we could be using the section number id if we do not have
864 * node id available in page flags.
865 * We only guarantee that it will return the same value for two combinable
866 * pages in a zone.
89689ae7 867 */
cb2b95e1
AW
868static inline int page_zone_id(struct page *page)
869{
89689ae7 870 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
871}
872
25ba77c1 873static inline int zone_to_nid(struct zone *zone)
89fa3024 874{
d5f541ed
CL
875#ifdef CONFIG_NUMA
876 return zone->node;
877#else
878 return 0;
879#endif
89fa3024
CL
880}
881
89689ae7 882#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 883extern int page_to_nid(const struct page *page);
89689ae7 884#else
33dd4e0e 885static inline int page_to_nid(const struct page *page)
d41dee36 886{
89689ae7 887 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 888}
89689ae7
CL
889#endif
890
57e0a030 891#ifdef CONFIG_NUMA_BALANCING
90572890 892static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 893{
90572890 894 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
895}
896
90572890 897static inline int cpupid_to_pid(int cpupid)
57e0a030 898{
90572890 899 return cpupid & LAST__PID_MASK;
57e0a030 900}
b795854b 901
90572890 902static inline int cpupid_to_cpu(int cpupid)
b795854b 903{
90572890 904 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
905}
906
90572890 907static inline int cpupid_to_nid(int cpupid)
b795854b 908{
90572890 909 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
910}
911
90572890 912static inline bool cpupid_pid_unset(int cpupid)
57e0a030 913{
90572890 914 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
915}
916
90572890 917static inline bool cpupid_cpu_unset(int cpupid)
b795854b 918{
90572890 919 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
920}
921
8c8a743c
PZ
922static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
923{
924 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
925}
926
927#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
928#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
929static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 930{
1ae71d03 931 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 932}
90572890
PZ
933
934static inline int page_cpupid_last(struct page *page)
935{
936 return page->_last_cpupid;
937}
938static inline void page_cpupid_reset_last(struct page *page)
b795854b 939{
1ae71d03 940 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
941}
942#else
90572890 943static inline int page_cpupid_last(struct page *page)
75980e97 944{
90572890 945 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
946}
947
90572890 948extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 949
90572890 950static inline void page_cpupid_reset_last(struct page *page)
75980e97 951{
09940a4f 952 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 953}
90572890
PZ
954#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
955#else /* !CONFIG_NUMA_BALANCING */
956static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 957{
90572890 958 return page_to_nid(page); /* XXX */
57e0a030
MG
959}
960
90572890 961static inline int page_cpupid_last(struct page *page)
57e0a030 962{
90572890 963 return page_to_nid(page); /* XXX */
57e0a030
MG
964}
965
90572890 966static inline int cpupid_to_nid(int cpupid)
b795854b
MG
967{
968 return -1;
969}
970
90572890 971static inline int cpupid_to_pid(int cpupid)
b795854b
MG
972{
973 return -1;
974}
975
90572890 976static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
977{
978 return -1;
979}
980
90572890
PZ
981static inline int cpu_pid_to_cpupid(int nid, int pid)
982{
983 return -1;
984}
985
986static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
987{
988 return 1;
989}
990
90572890 991static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
992{
993}
8c8a743c
PZ
994
995static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
996{
997 return false;
998}
90572890 999#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1000
33dd4e0e 1001static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1002{
1003 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1004}
1005
75ef7184
MG
1006static inline pg_data_t *page_pgdat(const struct page *page)
1007{
1008 return NODE_DATA(page_to_nid(page));
1009}
1010
9127ab4f 1011#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1012static inline void set_page_section(struct page *page, unsigned long section)
1013{
1014 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1015 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1016}
1017
aa462abe 1018static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1019{
1020 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1021}
308c05e3 1022#endif
d41dee36 1023
2f1b6248 1024static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1025{
1026 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1027 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1028}
2f1b6248 1029
348f8b6c
DH
1030static inline void set_page_node(struct page *page, unsigned long node)
1031{
1032 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1033 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1034}
89689ae7 1035
2f1b6248 1036static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1037 unsigned long node, unsigned long pfn)
1da177e4 1038{
348f8b6c
DH
1039 set_page_zone(page, zone);
1040 set_page_node(page, node);
9127ab4f 1041#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1042 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1043#endif
1da177e4
LT
1044}
1045
0610c25d
GT
1046#ifdef CONFIG_MEMCG
1047static inline struct mem_cgroup *page_memcg(struct page *page)
1048{
1049 return page->mem_cgroup;
1050}
55779ec7
JW
1051static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1052{
1053 WARN_ON_ONCE(!rcu_read_lock_held());
1054 return READ_ONCE(page->mem_cgroup);
1055}
0610c25d
GT
1056#else
1057static inline struct mem_cgroup *page_memcg(struct page *page)
1058{
1059 return NULL;
1060}
55779ec7
JW
1061static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1062{
1063 WARN_ON_ONCE(!rcu_read_lock_held());
1064 return NULL;
1065}
0610c25d
GT
1066#endif
1067
f6ac2354
CL
1068/*
1069 * Some inline functions in vmstat.h depend on page_zone()
1070 */
1071#include <linux/vmstat.h>
1072
33dd4e0e 1073static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1074{
1dff8083 1075 return page_to_virt(page);
1da177e4
LT
1076}
1077
1078#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1079#define HASHED_PAGE_VIRTUAL
1080#endif
1081
1082#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1083static inline void *page_address(const struct page *page)
1084{
1085 return page->virtual;
1086}
1087static inline void set_page_address(struct page *page, void *address)
1088{
1089 page->virtual = address;
1090}
1da177e4
LT
1091#define page_address_init() do { } while(0)
1092#endif
1093
1094#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1095void *page_address(const struct page *page);
1da177e4
LT
1096void set_page_address(struct page *page, void *virtual);
1097void page_address_init(void);
1098#endif
1099
1100#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1101#define page_address(page) lowmem_page_address(page)
1102#define set_page_address(page, address) do { } while(0)
1103#define page_address_init() do { } while(0)
1104#endif
1105
e39155ea
KS
1106extern void *page_rmapping(struct page *page);
1107extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1108extern struct address_space *page_mapping(struct page *page);
1da177e4 1109
f981c595
MG
1110extern struct address_space *__page_file_mapping(struct page *);
1111
1112static inline
1113struct address_space *page_file_mapping(struct page *page)
1114{
1115 if (unlikely(PageSwapCache(page)))
1116 return __page_file_mapping(page);
1117
1118 return page->mapping;
1119}
1120
f6ab1f7f
HY
1121extern pgoff_t __page_file_index(struct page *page);
1122
1da177e4
LT
1123/*
1124 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1125 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1126 */
1127static inline pgoff_t page_index(struct page *page)
1128{
1129 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1130 return __page_file_index(page);
1da177e4
LT
1131 return page->index;
1132}
1133
1aa8aea5 1134bool page_mapped(struct page *page);
bda807d4 1135struct address_space *page_mapping(struct page *page);
1da177e4 1136
2f064f34
MH
1137/*
1138 * Return true only if the page has been allocated with
1139 * ALLOC_NO_WATERMARKS and the low watermark was not
1140 * met implying that the system is under some pressure.
1141 */
1142static inline bool page_is_pfmemalloc(struct page *page)
1143{
1144 /*
1145 * Page index cannot be this large so this must be
1146 * a pfmemalloc page.
1147 */
1148 return page->index == -1UL;
1149}
1150
1151/*
1152 * Only to be called by the page allocator on a freshly allocated
1153 * page.
1154 */
1155static inline void set_page_pfmemalloc(struct page *page)
1156{
1157 page->index = -1UL;
1158}
1159
1160static inline void clear_page_pfmemalloc(struct page *page)
1161{
1162 page->index = 0;
1163}
1164
1da177e4
LT
1165/*
1166 * Different kinds of faults, as returned by handle_mm_fault().
1167 * Used to decide whether a process gets delivered SIGBUS or
1168 * just gets major/minor fault counters bumped up.
1169 */
d0217ac0 1170
83c54070
NP
1171#define VM_FAULT_OOM 0x0001
1172#define VM_FAULT_SIGBUS 0x0002
1173#define VM_FAULT_MAJOR 0x0004
1174#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1175#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1176#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1177#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1178
83c54070
NP
1179#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1180#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1181#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1182#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
b1aa812b 1183#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1da177e4 1184
aa50d3a7
AK
1185#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1186
33692f27
LT
1187#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1188 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1189 VM_FAULT_FALLBACK)
aa50d3a7 1190
282a8e03
RZ
1191#define VM_FAULT_RESULT_TRACE \
1192 { VM_FAULT_OOM, "OOM" }, \
1193 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1194 { VM_FAULT_MAJOR, "MAJOR" }, \
1195 { VM_FAULT_WRITE, "WRITE" }, \
1196 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1197 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1198 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1199 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1200 { VM_FAULT_LOCKED, "LOCKED" }, \
1201 { VM_FAULT_RETRY, "RETRY" }, \
1202 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1203 { VM_FAULT_DONE_COW, "DONE_COW" }
1204
aa50d3a7
AK
1205/* Encode hstate index for a hwpoisoned large page */
1206#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1207#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1208
1c0fe6e3
NP
1209/*
1210 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1211 */
1212extern void pagefault_out_of_memory(void);
1213
1da177e4
LT
1214#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1215
ddd588b5 1216/*
7bf02ea2 1217 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1218 * various contexts.
1219 */
4b59e6c4 1220#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1221
9af744d7 1222extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1223
7f43add4 1224extern bool can_do_mlock(void);
1da177e4
LT
1225extern int user_shm_lock(size_t, struct user_struct *);
1226extern void user_shm_unlock(size_t, struct user_struct *);
1227
1228/*
1229 * Parameter block passed down to zap_pte_range in exceptional cases.
1230 */
1231struct zap_details {
1da177e4
LT
1232 struct address_space *check_mapping; /* Check page->mapping if set */
1233 pgoff_t first_index; /* Lowest page->index to unmap */
1234 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1235};
1236
df6ad698
JG
1237struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1238 pte_t pte, bool with_public_device);
1239#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1240
28093f9f
GS
1241struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1242 pmd_t pmd);
7e675137 1243
c627f9cc
JS
1244int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1245 unsigned long size);
14f5ff5d 1246void zap_page_range(struct vm_area_struct *vma, unsigned long address,
ecf1385d 1247 unsigned long size);
4f74d2c8
LT
1248void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1249 unsigned long start, unsigned long end);
e6473092
MM
1250
1251/**
1252 * mm_walk - callbacks for walk_page_range
a00cc7d9
MW
1253 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1254 * this handler should only handle pud_trans_huge() puds.
1255 * the pmd_entry or pte_entry callbacks will be used for
1256 * regular PUDs.
e6473092 1257 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1258 * this handler is required to be able to handle
1259 * pmd_trans_huge() pmds. They may simply choose to
1260 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1261 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1262 * @pte_hole: if set, called for each hole at all levels
5dc37642 1263 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426 1264 * @test_walk: caller specific callback function to determine whether
f7e2355f 1265 * we walk over the current vma or not. Returning 0
fafaa426
NH
1266 * value means "do page table walk over the current vma,"
1267 * and a negative one means "abort current page table walk
f7e2355f 1268 * right now." 1 means "skip the current vma."
fafaa426
NH
1269 * @mm: mm_struct representing the target process of page table walk
1270 * @vma: vma currently walked (NULL if walking outside vmas)
1271 * @private: private data for callbacks' usage
e6473092 1272 *
fafaa426 1273 * (see the comment on walk_page_range() for more details)
e6473092
MM
1274 */
1275struct mm_walk {
a00cc7d9
MW
1276 int (*pud_entry)(pud_t *pud, unsigned long addr,
1277 unsigned long next, struct mm_walk *walk);
0f157a5b
AM
1278 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1279 unsigned long next, struct mm_walk *walk);
1280 int (*pte_entry)(pte_t *pte, unsigned long addr,
1281 unsigned long next, struct mm_walk *walk);
1282 int (*pte_hole)(unsigned long addr, unsigned long next,
1283 struct mm_walk *walk);
1284 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1285 unsigned long addr, unsigned long next,
1286 struct mm_walk *walk);
fafaa426
NH
1287 int (*test_walk)(unsigned long addr, unsigned long next,
1288 struct mm_walk *walk);
2165009b 1289 struct mm_struct *mm;
fafaa426 1290 struct vm_area_struct *vma;
2165009b 1291 void *private;
e6473092
MM
1292};
1293
2165009b
DH
1294int walk_page_range(unsigned long addr, unsigned long end,
1295 struct mm_walk *walk);
900fc5f1 1296int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1297void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1298 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1299int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1300 struct vm_area_struct *vma);
1da177e4
LT
1301void unmap_mapping_range(struct address_space *mapping,
1302 loff_t const holebegin, loff_t const holelen, int even_cows);
09796395 1303int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885 1304 unsigned long *start, unsigned long *end,
09796395 1305 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1306int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1307 unsigned long *pfn);
d87fe660 1308int follow_phys(struct vm_area_struct *vma, unsigned long address,
1309 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1310int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1311 void *buf, int len, int write);
1da177e4
LT
1312
1313static inline void unmap_shared_mapping_range(struct address_space *mapping,
1314 loff_t const holebegin, loff_t const holelen)
1315{
1316 unmap_mapping_range(mapping, holebegin, holelen, 0);
1317}
1318
7caef267 1319extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1320extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1321void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1322void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1323int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1324int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1325int invalidate_inode_page(struct page *page);
1326
7ee1dd3f 1327#ifdef CONFIG_MMU
dcddffd4
KS
1328extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1329 unsigned int flags);
5c723ba5 1330extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1331 unsigned long address, unsigned int fault_flags,
1332 bool *unlocked);
7ee1dd3f 1333#else
dcddffd4
KS
1334static inline int handle_mm_fault(struct vm_area_struct *vma,
1335 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1336{
1337 /* should never happen if there's no MMU */
1338 BUG();
1339 return VM_FAULT_SIGBUS;
1340}
5c723ba5
PZ
1341static inline int fixup_user_fault(struct task_struct *tsk,
1342 struct mm_struct *mm, unsigned long address,
4a9e1cda 1343 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1344{
1345 /* should never happen if there's no MMU */
1346 BUG();
1347 return -EFAULT;
1348}
7ee1dd3f 1349#endif
f33ea7f4 1350
f307ab6d
LS
1351extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1352 unsigned int gup_flags);
5ddd36b9 1353extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1354 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1355extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1356 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1357
1e987790
DH
1358long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1359 unsigned long start, unsigned long nr_pages,
9beae1ea 1360 unsigned int gup_flags, struct page **pages,
5b56d49f 1361 struct vm_area_struct **vmas, int *locked);
c12d2da5 1362long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1363 unsigned int gup_flags, struct page **pages,
cde70140 1364 struct vm_area_struct **vmas);
c12d2da5 1365long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1366 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1367long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1368 struct page **pages, unsigned int gup_flags);
d2bf6be8
NP
1369int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1370 struct page **pages);
8025e5dd
JK
1371
1372/* Container for pinned pfns / pages */
1373struct frame_vector {
1374 unsigned int nr_allocated; /* Number of frames we have space for */
1375 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1376 bool got_ref; /* Did we pin pages by getting page ref? */
1377 bool is_pfns; /* Does array contain pages or pfns? */
1378 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1379 * pfns_vector_pages() or pfns_vector_pfns()
1380 * for access */
1381};
1382
1383struct frame_vector *frame_vector_create(unsigned int nr_frames);
1384void frame_vector_destroy(struct frame_vector *vec);
1385int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1386 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1387void put_vaddr_frames(struct frame_vector *vec);
1388int frame_vector_to_pages(struct frame_vector *vec);
1389void frame_vector_to_pfns(struct frame_vector *vec);
1390
1391static inline unsigned int frame_vector_count(struct frame_vector *vec)
1392{
1393 return vec->nr_frames;
1394}
1395
1396static inline struct page **frame_vector_pages(struct frame_vector *vec)
1397{
1398 if (vec->is_pfns) {
1399 int err = frame_vector_to_pages(vec);
1400
1401 if (err)
1402 return ERR_PTR(err);
1403 }
1404 return (struct page **)(vec->ptrs);
1405}
1406
1407static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1408{
1409 if (!vec->is_pfns)
1410 frame_vector_to_pfns(vec);
1411 return (unsigned long *)(vec->ptrs);
1412}
1413
18022c5d
MG
1414struct kvec;
1415int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1416 struct page **pages);
1417int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1418struct page *get_dump_page(unsigned long addr);
1da177e4 1419
cf9a2ae8 1420extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1421extern void do_invalidatepage(struct page *page, unsigned int offset,
1422 unsigned int length);
cf9a2ae8 1423
1da177e4 1424int __set_page_dirty_nobuffers(struct page *page);
76719325 1425int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1426int redirty_page_for_writepage(struct writeback_control *wbc,
1427 struct page *page);
62cccb8c 1428void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1429void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1430 struct bdi_writeback *wb);
b3c97528 1431int set_page_dirty(struct page *page);
1da177e4 1432int set_page_dirty_lock(struct page *page);
11f81bec 1433void cancel_dirty_page(struct page *page);
1da177e4 1434int clear_page_dirty_for_io(struct page *page);
b9ea2515 1435
a9090253 1436int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1437
b5330628
ON
1438static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1439{
1440 return !vma->vm_ops;
1441}
1442
b0506e48
MR
1443#ifdef CONFIG_SHMEM
1444/*
1445 * The vma_is_shmem is not inline because it is used only by slow
1446 * paths in userfault.
1447 */
1448bool vma_is_shmem(struct vm_area_struct *vma);
1449#else
1450static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1451#endif
1452
d17af505 1453int vma_is_stack_for_current(struct vm_area_struct *vma);
b7643757 1454
b6a2fea3
OW
1455extern unsigned long move_page_tables(struct vm_area_struct *vma,
1456 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1457 unsigned long new_addr, unsigned long len,
1458 bool need_rmap_locks);
7da4d641
PZ
1459extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1460 unsigned long end, pgprot_t newprot,
4b10e7d5 1461 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1462extern int mprotect_fixup(struct vm_area_struct *vma,
1463 struct vm_area_struct **pprev, unsigned long start,
1464 unsigned long end, unsigned long newflags);
1da177e4 1465
465a454f
PZ
1466/*
1467 * doesn't attempt to fault and will return short.
1468 */
1469int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1470 struct page **pages);
d559db08
KH
1471/*
1472 * per-process(per-mm_struct) statistics.
1473 */
d559db08
KH
1474static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1475{
69c97823
KK
1476 long val = atomic_long_read(&mm->rss_stat.count[member]);
1477
1478#ifdef SPLIT_RSS_COUNTING
1479 /*
1480 * counter is updated in asynchronous manner and may go to minus.
1481 * But it's never be expected number for users.
1482 */
1483 if (val < 0)
1484 val = 0;
172703b0 1485#endif
69c97823
KK
1486 return (unsigned long)val;
1487}
d559db08
KH
1488
1489static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1490{
172703b0 1491 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1492}
1493
1494static inline void inc_mm_counter(struct mm_struct *mm, int member)
1495{
172703b0 1496 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1497}
1498
1499static inline void dec_mm_counter(struct mm_struct *mm, int member)
1500{
172703b0 1501 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1502}
1503
eca56ff9
JM
1504/* Optimized variant when page is already known not to be PageAnon */
1505static inline int mm_counter_file(struct page *page)
1506{
1507 if (PageSwapBacked(page))
1508 return MM_SHMEMPAGES;
1509 return MM_FILEPAGES;
1510}
1511
1512static inline int mm_counter(struct page *page)
1513{
1514 if (PageAnon(page))
1515 return MM_ANONPAGES;
1516 return mm_counter_file(page);
1517}
1518
d559db08
KH
1519static inline unsigned long get_mm_rss(struct mm_struct *mm)
1520{
1521 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1522 get_mm_counter(mm, MM_ANONPAGES) +
1523 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1524}
1525
1526static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1527{
1528 return max(mm->hiwater_rss, get_mm_rss(mm));
1529}
1530
1531static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1532{
1533 return max(mm->hiwater_vm, mm->total_vm);
1534}
1535
1536static inline void update_hiwater_rss(struct mm_struct *mm)
1537{
1538 unsigned long _rss = get_mm_rss(mm);
1539
1540 if ((mm)->hiwater_rss < _rss)
1541 (mm)->hiwater_rss = _rss;
1542}
1543
1544static inline void update_hiwater_vm(struct mm_struct *mm)
1545{
1546 if (mm->hiwater_vm < mm->total_vm)
1547 mm->hiwater_vm = mm->total_vm;
1548}
1549
695f0559
PC
1550static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1551{
1552 mm->hiwater_rss = get_mm_rss(mm);
1553}
1554
d559db08
KH
1555static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1556 struct mm_struct *mm)
1557{
1558 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1559
1560 if (*maxrss < hiwater_rss)
1561 *maxrss = hiwater_rss;
1562}
1563
53bddb4e 1564#if defined(SPLIT_RSS_COUNTING)
05af2e10 1565void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1566#else
05af2e10 1567static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1568{
1569}
1570#endif
465a454f 1571
3565fce3
DW
1572#ifndef __HAVE_ARCH_PTE_DEVMAP
1573static inline int pte_devmap(pte_t pte)
1574{
1575 return 0;
1576}
1577#endif
1578
6d2329f8 1579int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1580
25ca1d6c
NK
1581extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1582 spinlock_t **ptl);
1583static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1584 spinlock_t **ptl)
1585{
1586 pte_t *ptep;
1587 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1588 return ptep;
1589}
c9cfcddf 1590
c2febafc
KS
1591#ifdef __PAGETABLE_P4D_FOLDED
1592static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1593 unsigned long address)
1594{
1595 return 0;
1596}
1597#else
1598int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1599#endif
1600
5f22df00 1601#ifdef __PAGETABLE_PUD_FOLDED
c2febafc 1602static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1603 unsigned long address)
1604{
1605 return 0;
1606}
1607#else
c2febafc 1608int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
5f22df00
NP
1609#endif
1610
2d2f5119 1611#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1612static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1613 unsigned long address)
1614{
1615 return 0;
1616}
dc6c9a35 1617
2d2f5119
KS
1618static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1619
dc6c9a35
KS
1620static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1621{
1622 return 0;
1623}
1624
1625static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1626static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1627
5f22df00 1628#else
1bb3630e 1629int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1630
2d2f5119
KS
1631static inline void mm_nr_pmds_init(struct mm_struct *mm)
1632{
1633 atomic_long_set(&mm->nr_pmds, 0);
1634}
1635
dc6c9a35
KS
1636static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1637{
1638 return atomic_long_read(&mm->nr_pmds);
1639}
1640
1641static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1642{
1643 atomic_long_inc(&mm->nr_pmds);
1644}
1645
1646static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1647{
1648 atomic_long_dec(&mm->nr_pmds);
1649}
5f22df00
NP
1650#endif
1651
3ed3a4f0 1652int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1bb3630e
HD
1653int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1654
1da177e4
LT
1655/*
1656 * The following ifdef needed to get the 4level-fixup.h header to work.
1657 * Remove it when 4level-fixup.h has been removed.
1658 */
1bb3630e 1659#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
505a60e2
KS
1660
1661#ifndef __ARCH_HAS_5LEVEL_HACK
c2febafc
KS
1662static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1663 unsigned long address)
1664{
1665 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1666 NULL : p4d_offset(pgd, address);
1667}
1668
1669static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1670 unsigned long address)
1da177e4 1671{
c2febafc
KS
1672 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1673 NULL : pud_offset(p4d, address);
1da177e4 1674}
505a60e2 1675#endif /* !__ARCH_HAS_5LEVEL_HACK */
1da177e4
LT
1676
1677static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1678{
1bb3630e
HD
1679 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1680 NULL: pmd_offset(pud, address);
1da177e4 1681}
1bb3630e
HD
1682#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1683
57c1ffce 1684#if USE_SPLIT_PTE_PTLOCKS
597d795a 1685#if ALLOC_SPLIT_PTLOCKS
b35f1819 1686void __init ptlock_cache_init(void);
539edb58
PZ
1687extern bool ptlock_alloc(struct page *page);
1688extern void ptlock_free(struct page *page);
1689
1690static inline spinlock_t *ptlock_ptr(struct page *page)
1691{
1692 return page->ptl;
1693}
597d795a 1694#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1695static inline void ptlock_cache_init(void)
1696{
1697}
1698
49076ec2
KS
1699static inline bool ptlock_alloc(struct page *page)
1700{
49076ec2
KS
1701 return true;
1702}
539edb58 1703
49076ec2
KS
1704static inline void ptlock_free(struct page *page)
1705{
49076ec2
KS
1706}
1707
1708static inline spinlock_t *ptlock_ptr(struct page *page)
1709{
539edb58 1710 return &page->ptl;
49076ec2 1711}
597d795a 1712#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1713
1714static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1715{
1716 return ptlock_ptr(pmd_page(*pmd));
1717}
1718
1719static inline bool ptlock_init(struct page *page)
1720{
1721 /*
1722 * prep_new_page() initialize page->private (and therefore page->ptl)
1723 * with 0. Make sure nobody took it in use in between.
1724 *
1725 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1726 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1727 */
309381fe 1728 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1729 if (!ptlock_alloc(page))
1730 return false;
1731 spin_lock_init(ptlock_ptr(page));
1732 return true;
1733}
1734
1735/* Reset page->mapping so free_pages_check won't complain. */
1736static inline void pte_lock_deinit(struct page *page)
1737{
1738 page->mapping = NULL;
1739 ptlock_free(page);
1740}
1741
57c1ffce 1742#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1743/*
1744 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1745 */
49076ec2
KS
1746static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1747{
1748 return &mm->page_table_lock;
1749}
b35f1819 1750static inline void ptlock_cache_init(void) {}
49076ec2
KS
1751static inline bool ptlock_init(struct page *page) { return true; }
1752static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1753#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1754
b35f1819
KS
1755static inline void pgtable_init(void)
1756{
1757 ptlock_cache_init();
1758 pgtable_cache_init();
1759}
1760
390f44e2 1761static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1762{
706874e9
VD
1763 if (!ptlock_init(page))
1764 return false;
2f569afd 1765 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1766 return true;
2f569afd
MS
1767}
1768
1769static inline void pgtable_page_dtor(struct page *page)
1770{
1771 pte_lock_deinit(page);
1772 dec_zone_page_state(page, NR_PAGETABLE);
1773}
1774
c74df32c
HD
1775#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1776({ \
4c21e2f2 1777 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1778 pte_t *__pte = pte_offset_map(pmd, address); \
1779 *(ptlp) = __ptl; \
1780 spin_lock(__ptl); \
1781 __pte; \
1782})
1783
1784#define pte_unmap_unlock(pte, ptl) do { \
1785 spin_unlock(ptl); \
1786 pte_unmap(pte); \
1787} while (0)
1788
3ed3a4f0
KS
1789#define pte_alloc(mm, pmd, address) \
1790 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1791
1792#define pte_alloc_map(mm, pmd, address) \
1793 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1bb3630e 1794
c74df32c 1795#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3ed3a4f0
KS
1796 (pte_alloc(mm, pmd, address) ? \
1797 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 1798
1bb3630e 1799#define pte_alloc_kernel(pmd, address) \
8ac1f832 1800 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1801 NULL: pte_offset_kernel(pmd, address))
1da177e4 1802
e009bb30
KS
1803#if USE_SPLIT_PMD_PTLOCKS
1804
634391ac
MS
1805static struct page *pmd_to_page(pmd_t *pmd)
1806{
1807 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1808 return virt_to_page((void *)((unsigned long) pmd & mask));
1809}
1810
e009bb30
KS
1811static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1812{
634391ac 1813 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1814}
1815
1816static inline bool pgtable_pmd_page_ctor(struct page *page)
1817{
e009bb30
KS
1818#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1819 page->pmd_huge_pte = NULL;
1820#endif
49076ec2 1821 return ptlock_init(page);
e009bb30
KS
1822}
1823
1824static inline void pgtable_pmd_page_dtor(struct page *page)
1825{
1826#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1827 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1828#endif
49076ec2 1829 ptlock_free(page);
e009bb30
KS
1830}
1831
634391ac 1832#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1833
1834#else
1835
9a86cb7b
KS
1836static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1837{
1838 return &mm->page_table_lock;
1839}
1840
e009bb30
KS
1841static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1842static inline void pgtable_pmd_page_dtor(struct page *page) {}
1843
c389a250 1844#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1845
e009bb30
KS
1846#endif
1847
9a86cb7b
KS
1848static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1849{
1850 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1851 spin_lock(ptl);
1852 return ptl;
1853}
1854
a00cc7d9
MW
1855/*
1856 * No scalability reason to split PUD locks yet, but follow the same pattern
1857 * as the PMD locks to make it easier if we decide to. The VM should not be
1858 * considered ready to switch to split PUD locks yet; there may be places
1859 * which need to be converted from page_table_lock.
1860 */
1861static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1862{
1863 return &mm->page_table_lock;
1864}
1865
1866static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1867{
1868 spinlock_t *ptl = pud_lockptr(mm, pud);
1869
1870 spin_lock(ptl);
1871 return ptl;
1872}
62906027 1873
a00cc7d9 1874extern void __init pagecache_init(void);
1da177e4 1875extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1876extern void free_area_init_node(int nid, unsigned long * zones_size,
1877 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1878extern void free_initmem(void);
1879
69afade7
JL
1880/*
1881 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1882 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1883 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1884 * Return pages freed into the buddy system.
1885 */
11199692 1886extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1887 int poison, char *s);
c3d5f5f0 1888
cfa11e08
JL
1889#ifdef CONFIG_HIGHMEM
1890/*
1891 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1892 * and totalram_pages.
1893 */
1894extern void free_highmem_page(struct page *page);
1895#endif
69afade7 1896
c3d5f5f0 1897extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1898extern void mem_init_print_info(const char *str);
69afade7 1899
4b50bcc7 1900extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 1901
69afade7
JL
1902/* Free the reserved page into the buddy system, so it gets managed. */
1903static inline void __free_reserved_page(struct page *page)
1904{
1905 ClearPageReserved(page);
1906 init_page_count(page);
1907 __free_page(page);
1908}
1909
1910static inline void free_reserved_page(struct page *page)
1911{
1912 __free_reserved_page(page);
1913 adjust_managed_page_count(page, 1);
1914}
1915
1916static inline void mark_page_reserved(struct page *page)
1917{
1918 SetPageReserved(page);
1919 adjust_managed_page_count(page, -1);
1920}
1921
1922/*
1923 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1924 * The freed pages will be poisoned with pattern "poison" if it's within
1925 * range [0, UCHAR_MAX].
1926 * Return pages freed into the buddy system.
69afade7
JL
1927 */
1928static inline unsigned long free_initmem_default(int poison)
1929{
1930 extern char __init_begin[], __init_end[];
1931
11199692 1932 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1933 poison, "unused kernel");
1934}
1935
7ee3d4e8
JL
1936static inline unsigned long get_num_physpages(void)
1937{
1938 int nid;
1939 unsigned long phys_pages = 0;
1940
1941 for_each_online_node(nid)
1942 phys_pages += node_present_pages(nid);
1943
1944 return phys_pages;
1945}
1946
0ee332c1 1947#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1948/*
0ee332c1 1949 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1950 * zones, allocate the backing mem_map and account for memory holes in a more
1951 * architecture independent manner. This is a substitute for creating the
1952 * zone_sizes[] and zholes_size[] arrays and passing them to
1953 * free_area_init_node()
1954 *
1955 * An architecture is expected to register range of page frames backed by
0ee332c1 1956 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1957 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1958 * usage, an architecture is expected to do something like
1959 *
1960 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1961 * max_highmem_pfn};
1962 * for_each_valid_physical_page_range()
0ee332c1 1963 * memblock_add_node(base, size, nid)
c713216d
MG
1964 * free_area_init_nodes(max_zone_pfns);
1965 *
0ee332c1
TH
1966 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1967 * registered physical page range. Similarly
1968 * sparse_memory_present_with_active_regions() calls memory_present() for
1969 * each range when SPARSEMEM is enabled.
c713216d
MG
1970 *
1971 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1972 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1973 */
1974extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1975unsigned long node_map_pfn_alignment(void);
32996250
YL
1976unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1977 unsigned long end_pfn);
c713216d
MG
1978extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1979 unsigned long end_pfn);
1980extern void get_pfn_range_for_nid(unsigned int nid,
1981 unsigned long *start_pfn, unsigned long *end_pfn);
1982extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1983extern void free_bootmem_with_active_regions(int nid,
1984 unsigned long max_low_pfn);
1985extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1986
0ee332c1 1987#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1988
0ee332c1 1989#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1990 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1991static inline int __early_pfn_to_nid(unsigned long pfn,
1992 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1993{
1994 return 0;
1995}
1996#else
1997/* please see mm/page_alloc.c */
1998extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1999/* there is a per-arch backend function. */
8a942fde
MG
2000extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2001 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
2002#endif
2003
0e0b864e 2004extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
2005extern void memmap_init_zone(unsigned long, int, unsigned long,
2006 unsigned long, enum memmap_context);
bc75d33f 2007extern void setup_per_zone_wmarks(void);
1b79acc9 2008extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2009extern void mem_init(void);
8feae131 2010extern void __init mmap_init(void);
9af744d7 2011extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2012extern long si_mem_available(void);
1da177e4
LT
2013extern void si_meminfo(struct sysinfo * val);
2014extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2015#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2016extern unsigned long arch_reserved_kernel_pages(void);
2017#endif
1da177e4 2018
a8e99259
MH
2019extern __printf(3, 4)
2020void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2021
e7c8d5c9 2022extern void setup_per_cpu_pageset(void);
e7c8d5c9 2023
112067f0 2024extern void zone_pcp_update(struct zone *zone);
340175b7 2025extern void zone_pcp_reset(struct zone *zone);
112067f0 2026
75f7ad8e
PS
2027/* page_alloc.c */
2028extern int min_free_kbytes;
795ae7a0 2029extern int watermark_scale_factor;
75f7ad8e 2030
8feae131 2031/* nommu.c */
33e5d769 2032extern atomic_long_t mmap_pages_allocated;
7e660872 2033extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2034
6b2dbba8 2035/* interval_tree.c */
6b2dbba8
ML
2036void vma_interval_tree_insert(struct vm_area_struct *node,
2037 struct rb_root *root);
9826a516
ML
2038void vma_interval_tree_insert_after(struct vm_area_struct *node,
2039 struct vm_area_struct *prev,
2040 struct rb_root *root);
6b2dbba8
ML
2041void vma_interval_tree_remove(struct vm_area_struct *node,
2042 struct rb_root *root);
2043struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
2044 unsigned long start, unsigned long last);
2045struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2046 unsigned long start, unsigned long last);
2047
2048#define vma_interval_tree_foreach(vma, root, start, last) \
2049 for (vma = vma_interval_tree_iter_first(root, start, last); \
2050 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2051
bf181b9f
ML
2052void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2053 struct rb_root *root);
2054void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2055 struct rb_root *root);
2056struct anon_vma_chain *anon_vma_interval_tree_iter_first(
2057 struct rb_root *root, unsigned long start, unsigned long last);
2058struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2059 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2060#ifdef CONFIG_DEBUG_VM_RB
2061void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2062#endif
bf181b9f
ML
2063
2064#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2065 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2066 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2067
1da177e4 2068/* mmap.c */
34b4e4aa 2069extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2070extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2071 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2072 struct vm_area_struct *expand);
2073static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2074 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2075{
2076 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2077}
1da177e4
LT
2078extern struct vm_area_struct *vma_merge(struct mm_struct *,
2079 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2080 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2081 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2082extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2083extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2084 unsigned long addr, int new_below);
2085extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2086 unsigned long addr, int new_below);
1da177e4
LT
2087extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2088extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2089 struct rb_node **, struct rb_node *);
a8fb5618 2090extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2091extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2092 unsigned long addr, unsigned long len, pgoff_t pgoff,
2093 bool *need_rmap_locks);
1da177e4 2094extern void exit_mmap(struct mm_struct *);
925d1c40 2095
9c599024
CG
2096static inline int check_data_rlimit(unsigned long rlim,
2097 unsigned long new,
2098 unsigned long start,
2099 unsigned long end_data,
2100 unsigned long start_data)
2101{
2102 if (rlim < RLIM_INFINITY) {
2103 if (((new - start) + (end_data - start_data)) > rlim)
2104 return -ENOSPC;
2105 }
2106
2107 return 0;
2108}
2109
7906d00c
AA
2110extern int mm_take_all_locks(struct mm_struct *mm);
2111extern void mm_drop_all_locks(struct mm_struct *mm);
2112
38646013
JS
2113extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2114extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2115extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2116
84638335
KK
2117extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2118extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2119
2eefd878
DS
2120extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2121 const struct vm_special_mapping *sm);
3935ed6a
SS
2122extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2123 unsigned long addr, unsigned long len,
a62c34bd
AL
2124 unsigned long flags,
2125 const struct vm_special_mapping *spec);
2126/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2127extern int install_special_mapping(struct mm_struct *mm,
2128 unsigned long addr, unsigned long len,
2129 unsigned long flags, struct page **pages);
1da177e4
LT
2130
2131extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2132
0165ab44 2133extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2134 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2135 struct list_head *uf);
1fcfd8db 2136extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2137 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2138 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2139 struct list_head *uf);
2140extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2141 struct list_head *uf);
1da177e4 2142
1fcfd8db
ON
2143static inline unsigned long
2144do_mmap_pgoff(struct file *file, unsigned long addr,
2145 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2146 unsigned long pgoff, unsigned long *populate,
2147 struct list_head *uf)
1fcfd8db 2148{
897ab3e0 2149 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2150}
2151
bebeb3d6
ML
2152#ifdef CONFIG_MMU
2153extern int __mm_populate(unsigned long addr, unsigned long len,
2154 int ignore_errors);
2155static inline void mm_populate(unsigned long addr, unsigned long len)
2156{
2157 /* Ignore errors */
2158 (void) __mm_populate(addr, len, 1);
2159}
2160#else
2161static inline void mm_populate(unsigned long addr, unsigned long len) {}
2162#endif
2163
e4eb1ff6 2164/* These take the mm semaphore themselves */
5d22fc25 2165extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2166extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2167extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2168extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2169 unsigned long, unsigned long,
2170 unsigned long, unsigned long);
1da177e4 2171
db4fbfb9
ML
2172struct vm_unmapped_area_info {
2173#define VM_UNMAPPED_AREA_TOPDOWN 1
2174 unsigned long flags;
2175 unsigned long length;
2176 unsigned long low_limit;
2177 unsigned long high_limit;
2178 unsigned long align_mask;
2179 unsigned long align_offset;
2180};
2181
2182extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2183extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2184
2185/*
2186 * Search for an unmapped address range.
2187 *
2188 * We are looking for a range that:
2189 * - does not intersect with any VMA;
2190 * - is contained within the [low_limit, high_limit) interval;
2191 * - is at least the desired size.
2192 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2193 */
2194static inline unsigned long
2195vm_unmapped_area(struct vm_unmapped_area_info *info)
2196{
cdd7875e 2197 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2198 return unmapped_area_topdown(info);
cdd7875e
BP
2199 else
2200 return unmapped_area(info);
db4fbfb9
ML
2201}
2202
85821aab 2203/* truncate.c */
1da177e4 2204extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2205extern void truncate_inode_pages_range(struct address_space *,
2206 loff_t lstart, loff_t lend);
91b0abe3 2207extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2208
2209/* generic vm_area_ops exported for stackable file systems */
11bac800 2210extern int filemap_fault(struct vm_fault *vmf);
82b0f8c3 2211extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2212 pgoff_t start_pgoff, pgoff_t end_pgoff);
11bac800 2213extern int filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2214
2215/* mm/page-writeback.c */
2b69c828 2216int __must_check write_one_page(struct page *page);
1cf6e7d8 2217void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2218
2219/* readahead.c */
2220#define VM_MAX_READAHEAD 128 /* kbytes */
2221#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2222
1da177e4 2223int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2224 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2225
2226void page_cache_sync_readahead(struct address_space *mapping,
2227 struct file_ra_state *ra,
2228 struct file *filp,
2229 pgoff_t offset,
2230 unsigned long size);
2231
2232void page_cache_async_readahead(struct address_space *mapping,
2233 struct file_ra_state *ra,
2234 struct file *filp,
2235 struct page *pg,
2236 pgoff_t offset,
2237 unsigned long size);
2238
1be7107f 2239extern unsigned long stack_guard_gap;
d05f3169 2240/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2241extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2242
2243/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2244extern int expand_downwards(struct vm_area_struct *vma,
2245 unsigned long address);
8ca3eb08 2246#if VM_GROWSUP
46dea3d0 2247extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2248#else
fee7e49d 2249 #define expand_upwards(vma, address) (0)
9ab88515 2250#endif
1da177e4
LT
2251
2252/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2253extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2254extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2255 struct vm_area_struct **pprev);
2256
2257/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2258 NULL if none. Assume start_addr < end_addr. */
2259static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2260{
2261 struct vm_area_struct * vma = find_vma(mm,start_addr);
2262
2263 if (vma && end_addr <= vma->vm_start)
2264 vma = NULL;
2265 return vma;
2266}
2267
1be7107f
HD
2268static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2269{
2270 unsigned long vm_start = vma->vm_start;
2271
2272 if (vma->vm_flags & VM_GROWSDOWN) {
2273 vm_start -= stack_guard_gap;
2274 if (vm_start > vma->vm_start)
2275 vm_start = 0;
2276 }
2277 return vm_start;
2278}
2279
2280static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2281{
2282 unsigned long vm_end = vma->vm_end;
2283
2284 if (vma->vm_flags & VM_GROWSUP) {
2285 vm_end += stack_guard_gap;
2286 if (vm_end < vma->vm_end)
2287 vm_end = -PAGE_SIZE;
2288 }
2289 return vm_end;
2290}
2291
1da177e4
LT
2292static inline unsigned long vma_pages(struct vm_area_struct *vma)
2293{
2294 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2295}
2296
640708a2
PE
2297/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2298static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2299 unsigned long vm_start, unsigned long vm_end)
2300{
2301 struct vm_area_struct *vma = find_vma(mm, vm_start);
2302
2303 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2304 vma = NULL;
2305
2306 return vma;
2307}
2308
bad849b3 2309#ifdef CONFIG_MMU
804af2cf 2310pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2311void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2312#else
2313static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2314{
2315 return __pgprot(0);
2316}
64e45507
PF
2317static inline void vma_set_page_prot(struct vm_area_struct *vma)
2318{
2319 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2320}
bad849b3
DH
2321#endif
2322
5877231f 2323#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2324unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2325 unsigned long start, unsigned long end);
2326#endif
2327
deceb6cd 2328struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2329int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2330 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2331int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2332int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2333 unsigned long pfn);
1745cbc5
AL
2334int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2335 unsigned long pfn, pgprot_t pgprot);
423bad60 2336int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2337 pfn_t pfn);
b2770da6
RZ
2338int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
2339 pfn_t pfn);
b4cbb197
LT
2340int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2341
deceb6cd 2342
240aadee
ML
2343struct page *follow_page_mask(struct vm_area_struct *vma,
2344 unsigned long address, unsigned int foll_flags,
2345 unsigned int *page_mask);
2346
2347static inline struct page *follow_page(struct vm_area_struct *vma,
2348 unsigned long address, unsigned int foll_flags)
2349{
2350 unsigned int unused_page_mask;
2351 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2352}
2353
deceb6cd
HD
2354#define FOLL_WRITE 0x01 /* check pte is writable */
2355#define FOLL_TOUCH 0x02 /* mark page accessed */
2356#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2357#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2358#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2359#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2360 * and return without waiting upon it */
84d33df2 2361#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2362#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2363#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2364#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2365#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2366#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2367#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2368#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2369#define FOLL_COW 0x4000 /* internal GUP flag */
1da177e4 2370
9a291a7c
JM
2371static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2372{
2373 if (vm_fault & VM_FAULT_OOM)
2374 return -ENOMEM;
2375 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2376 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2377 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2378 return -EFAULT;
2379 return 0;
2380}
2381
2f569afd 2382typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2383 void *data);
2384extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2385 unsigned long size, pte_fn_t fn, void *data);
2386
1da177e4 2387
8823b1db
LA
2388#ifdef CONFIG_PAGE_POISONING
2389extern bool page_poisoning_enabled(void);
2390extern void kernel_poison_pages(struct page *page, int numpages, int enable);
1414c7f4 2391extern bool page_is_poisoned(struct page *page);
8823b1db
LA
2392#else
2393static inline bool page_poisoning_enabled(void) { return false; }
2394static inline void kernel_poison_pages(struct page *page, int numpages,
2395 int enable) { }
1414c7f4 2396static inline bool page_is_poisoned(struct page *page) { return false; }
8823b1db
LA
2397#endif
2398
12d6f21e 2399#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2400extern bool _debug_pagealloc_enabled;
2401extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2402
2403static inline bool debug_pagealloc_enabled(void)
2404{
2405 return _debug_pagealloc_enabled;
2406}
2407
2408static inline void
2409kernel_map_pages(struct page *page, int numpages, int enable)
2410{
2411 if (!debug_pagealloc_enabled())
2412 return;
2413
2414 __kernel_map_pages(page, numpages, enable);
2415}
8a235efa
RW
2416#ifdef CONFIG_HIBERNATION
2417extern bool kernel_page_present(struct page *page);
40b44137
JK
2418#endif /* CONFIG_HIBERNATION */
2419#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2420static inline void
9858db50 2421kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2422#ifdef CONFIG_HIBERNATION
2423static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2424#endif /* CONFIG_HIBERNATION */
2425static inline bool debug_pagealloc_enabled(void)
2426{
2427 return false;
2428}
2429#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2430
a6c19dfe 2431#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2432extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2433extern int in_gate_area_no_mm(unsigned long addr);
2434extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2435#else
a6c19dfe
AL
2436static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2437{
2438 return NULL;
2439}
2440static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2441static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2442{
2443 return 0;
2444}
1da177e4
LT
2445#endif /* __HAVE_ARCH_GATE_AREA */
2446
44a70ade
MH
2447extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2448
146732ce
JT
2449#ifdef CONFIG_SYSCTL
2450extern int sysctl_drop_caches;
8d65af78 2451int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2452 void __user *, size_t *, loff_t *);
146732ce
JT
2453#endif
2454
cb731d6c
VD
2455void drop_slab(void);
2456void drop_slab_node(int nid);
9d0243bc 2457
7a9166e3
LY
2458#ifndef CONFIG_MMU
2459#define randomize_va_space 0
2460#else
a62eaf15 2461extern int randomize_va_space;
7a9166e3 2462#endif
a62eaf15 2463
045e72ac 2464const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2465void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2466
9bdac914
YL
2467void sparse_mem_maps_populate_node(struct page **map_map,
2468 unsigned long pnum_begin,
2469 unsigned long pnum_end,
2470 unsigned long map_count,
2471 int nodeid);
2472
98f3cfc1 2473struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111 2474pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2475p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2476pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
2477pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2478pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2479void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc
DW
2480struct vmem_altmap;
2481void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2482 struct vmem_altmap *altmap);
2483static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2484{
2485 return __vmemmap_alloc_block_buf(size, node, NULL);
2486}
2487
8f6aac41 2488void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2489int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2490 int node);
2491int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2492void vmemmap_populate_print_last(void);
0197518c 2493#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2494void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2495#endif
46723bfa
YI
2496void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2497 unsigned long size);
6a46079c 2498
82ba011b
AK
2499enum mf_flags {
2500 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2501 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2502 MF_MUST_KILL = 1 << 2,
cf870c70 2503 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2504};
cd42f4a3 2505extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2506extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2507extern int unpoison_memory(unsigned long pfn);
ead07f6a 2508extern int get_hwpoison_page(struct page *page);
4e41a30c 2509#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2510extern int sysctl_memory_failure_early_kill;
2511extern int sysctl_memory_failure_recovery;
facb6011 2512extern void shake_page(struct page *p, int access);
293c07e3 2513extern atomic_long_t num_poisoned_pages;
facb6011 2514extern int soft_offline_page(struct page *page, int flags);
6a46079c 2515
cc637b17
XX
2516
2517/*
2518 * Error handlers for various types of pages.
2519 */
cc3e2af4 2520enum mf_result {
cc637b17
XX
2521 MF_IGNORED, /* Error: cannot be handled */
2522 MF_FAILED, /* Error: handling failed */
2523 MF_DELAYED, /* Will be handled later */
2524 MF_RECOVERED, /* Successfully recovered */
2525};
2526
2527enum mf_action_page_type {
2528 MF_MSG_KERNEL,
2529 MF_MSG_KERNEL_HIGH_ORDER,
2530 MF_MSG_SLAB,
2531 MF_MSG_DIFFERENT_COMPOUND,
2532 MF_MSG_POISONED_HUGE,
2533 MF_MSG_HUGE,
2534 MF_MSG_FREE_HUGE,
2535 MF_MSG_UNMAP_FAILED,
2536 MF_MSG_DIRTY_SWAPCACHE,
2537 MF_MSG_CLEAN_SWAPCACHE,
2538 MF_MSG_DIRTY_MLOCKED_LRU,
2539 MF_MSG_CLEAN_MLOCKED_LRU,
2540 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2541 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2542 MF_MSG_DIRTY_LRU,
2543 MF_MSG_CLEAN_LRU,
2544 MF_MSG_TRUNCATED_LRU,
2545 MF_MSG_BUDDY,
2546 MF_MSG_BUDDY_2ND,
2547 MF_MSG_UNKNOWN,
2548};
2549
47ad8475
AA
2550#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2551extern void clear_huge_page(struct page *page,
c79b57e4 2552 unsigned long addr_hint,
47ad8475
AA
2553 unsigned int pages_per_huge_page);
2554extern void copy_user_huge_page(struct page *dst, struct page *src,
2555 unsigned long addr, struct vm_area_struct *vma,
2556 unsigned int pages_per_huge_page);
fa4d75c1
MK
2557extern long copy_huge_page_from_user(struct page *dst_page,
2558 const void __user *usr_src,
810a56b9
MK
2559 unsigned int pages_per_huge_page,
2560 bool allow_pagefault);
47ad8475
AA
2561#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2562
e30825f1 2563extern struct page_ext_operations debug_guardpage_ops;
e30825f1 2564
c0a32fc5
SG
2565#ifdef CONFIG_DEBUG_PAGEALLOC
2566extern unsigned int _debug_guardpage_minorder;
e30825f1 2567extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2568
2569static inline unsigned int debug_guardpage_minorder(void)
2570{
2571 return _debug_guardpage_minorder;
2572}
2573
e30825f1
JK
2574static inline bool debug_guardpage_enabled(void)
2575{
2576 return _debug_guardpage_enabled;
2577}
2578
c0a32fc5
SG
2579static inline bool page_is_guard(struct page *page)
2580{
e30825f1
JK
2581 struct page_ext *page_ext;
2582
2583 if (!debug_guardpage_enabled())
2584 return false;
2585
2586 page_ext = lookup_page_ext(page);
0bb2fd13
YS
2587 if (unlikely(!page_ext))
2588 return false;
2589
e30825f1 2590 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2591}
2592#else
2593static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2594static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2595static inline bool page_is_guard(struct page *page) { return false; }
2596#endif /* CONFIG_DEBUG_PAGEALLOC */
2597
f9872caf
CS
2598#if MAX_NUMNODES > 1
2599void __init setup_nr_node_ids(void);
2600#else
2601static inline void setup_nr_node_ids(void) {}
2602#endif
2603
1da177e4
LT
2604#endif /* __KERNEL__ */
2605#endif /* _LINUX_MM_H */