x86/mm/memory_hotplug: determine block size based on the end of boot memory
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
08677214 18#include <linux/range.h>
c6f6b596 19#include <linux/pfn.h>
3565fce3 20#include <linux/percpu-refcount.h>
e9da73d6 21#include <linux/bit_spinlock.h>
b0d40c92 22#include <linux/shrinker.h>
9c599024 23#include <linux/resource.h>
e30825f1 24#include <linux/page_ext.h>
8025e5dd 25#include <linux/err.h>
fe896d18 26#include <linux/page_ref.h>
7b2d55d2 27#include <linux/memremap.h>
1da177e4
LT
28
29struct mempolicy;
30struct anon_vma;
bf181b9f 31struct anon_vma_chain;
4e950f6f 32struct file_ra_state;
e8edc6e0 33struct user_struct;
4e950f6f 34struct writeback_control;
682aa8e1 35struct bdi_writeback;
1da177e4 36
597b7305
MH
37void init_mm_internals(void);
38
fccc9987 39#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 40extern unsigned long max_mapnr;
fccc9987
JL
41
42static inline void set_max_mapnr(unsigned long limit)
43{
44 max_mapnr = limit;
45}
46#else
47static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
48#endif
49
4481374c 50extern unsigned long totalram_pages;
1da177e4 51extern void * high_memory;
1da177e4
LT
52extern int page_cluster;
53
54#ifdef CONFIG_SYSCTL
55extern int sysctl_legacy_va_layout;
56#else
57#define sysctl_legacy_va_layout 0
58#endif
59
d07e2259
DC
60#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61extern const int mmap_rnd_bits_min;
62extern const int mmap_rnd_bits_max;
63extern int mmap_rnd_bits __read_mostly;
64#endif
65#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66extern const int mmap_rnd_compat_bits_min;
67extern const int mmap_rnd_compat_bits_max;
68extern int mmap_rnd_compat_bits __read_mostly;
69#endif
70
1da177e4
LT
71#include <asm/page.h>
72#include <asm/pgtable.h>
73#include <asm/processor.h>
1da177e4 74
79442ed1
TC
75#ifndef __pa_symbol
76#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
77#endif
78
1dff8083
AB
79#ifndef page_to_virt
80#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
81#endif
82
568c5fe5
LA
83#ifndef lm_alias
84#define lm_alias(x) __va(__pa_symbol(x))
85#endif
86
593befa6
DD
87/*
88 * To prevent common memory management code establishing
89 * a zero page mapping on a read fault.
90 * This macro should be defined within <asm/pgtable.h>.
91 * s390 does this to prevent multiplexing of hardware bits
92 * related to the physical page in case of virtualization.
93 */
94#ifndef mm_forbids_zeropage
95#define mm_forbids_zeropage(X) (0)
96#endif
97
a4a3ede2
PT
98/*
99 * On some architectures it is expensive to call memset() for small sizes.
100 * Those architectures should provide their own implementation of "struct page"
101 * zeroing by defining this macro in <asm/pgtable.h>.
102 */
103#ifndef mm_zero_struct_page
104#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
105#endif
106
ea606cf5
AR
107/*
108 * Default maximum number of active map areas, this limits the number of vmas
109 * per mm struct. Users can overwrite this number by sysctl but there is a
110 * problem.
111 *
112 * When a program's coredump is generated as ELF format, a section is created
113 * per a vma. In ELF, the number of sections is represented in unsigned short.
114 * This means the number of sections should be smaller than 65535 at coredump.
115 * Because the kernel adds some informative sections to a image of program at
116 * generating coredump, we need some margin. The number of extra sections is
117 * 1-3 now and depends on arch. We use "5" as safe margin, here.
118 *
119 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
120 * not a hard limit any more. Although some userspace tools can be surprised by
121 * that.
122 */
123#define MAPCOUNT_ELF_CORE_MARGIN (5)
124#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
125
126extern int sysctl_max_map_count;
127
c9b1d098 128extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 129extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 130
49f0ce5f
JM
131extern int sysctl_overcommit_memory;
132extern int sysctl_overcommit_ratio;
133extern unsigned long sysctl_overcommit_kbytes;
134
135extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
136 size_t *, loff_t *);
137extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
138 size_t *, loff_t *);
139
1da177e4
LT
140#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
141
27ac792c
AR
142/* to align the pointer to the (next) page boundary */
143#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
144
0fa73b86 145/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 146#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 147
1da177e4
LT
148/*
149 * Linux kernel virtual memory manager primitives.
150 * The idea being to have a "virtual" mm in the same way
151 * we have a virtual fs - giving a cleaner interface to the
152 * mm details, and allowing different kinds of memory mappings
153 * (from shared memory to executable loading to arbitrary
154 * mmap() functions).
155 */
156
c43692e8
CL
157extern struct kmem_cache *vm_area_cachep;
158
1da177e4 159#ifndef CONFIG_MMU
8feae131
DH
160extern struct rb_root nommu_region_tree;
161extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
162
163extern unsigned int kobjsize(const void *objp);
164#endif
165
166/*
605d9288 167 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 168 * When changing, update also include/trace/events/mmflags.h
1da177e4 169 */
cc2383ec
KK
170#define VM_NONE 0x00000000
171
1da177e4
LT
172#define VM_READ 0x00000001 /* currently active flags */
173#define VM_WRITE 0x00000002
174#define VM_EXEC 0x00000004
175#define VM_SHARED 0x00000008
176
7e2cff42 177/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
178#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
179#define VM_MAYWRITE 0x00000020
180#define VM_MAYEXEC 0x00000040
181#define VM_MAYSHARE 0x00000080
182
183#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 184#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 185#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 186#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 187#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 188
1da177e4
LT
189#define VM_LOCKED 0x00002000
190#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
191
192 /* Used by sys_madvise() */
193#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
194#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
195
196#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
197#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 198#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 199#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 200#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 201#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 202#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 203#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 204#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 205#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 206
d9104d1c
CG
207#ifdef CONFIG_MEM_SOFT_DIRTY
208# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
209#else
210# define VM_SOFTDIRTY 0
211#endif
212
b379d790 213#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
214#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
215#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 216#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 217
63c17fb8
DH
218#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
219#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
220#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
221#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
222#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 223#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
224#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
225#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
226#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
227#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 228#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
229#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
230
cc2383ec
KK
231#if defined(CONFIG_X86)
232# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
8f62c883
DH
233#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
234# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
235# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
236# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
237# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
238# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
239#endif
cc2383ec
KK
240#elif defined(CONFIG_PPC)
241# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
242#elif defined(CONFIG_PARISC)
243# define VM_GROWSUP VM_ARCH_1
244#elif defined(CONFIG_IA64)
245# define VM_GROWSUP VM_ARCH_1
74a04967
KA
246#elif defined(CONFIG_SPARC64)
247# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
248# define VM_ARCH_CLEAR VM_SPARC_ADI
cc2383ec
KK
249#elif !defined(CONFIG_MMU)
250# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
251#endif
252
df3735c5 253#if defined(CONFIG_X86_INTEL_MPX)
4aae7e43 254/* MPX specific bounds table or bounds directory */
fa87b91c 255# define VM_MPX VM_HIGH_ARCH_4
df3735c5
RR
256#else
257# define VM_MPX VM_NONE
4aae7e43
QR
258#endif
259
cc2383ec
KK
260#ifndef VM_GROWSUP
261# define VM_GROWSUP VM_NONE
262#endif
263
a8bef8ff
MG
264/* Bits set in the VMA until the stack is in its final location */
265#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
266
1da177e4
LT
267#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
268#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
269#endif
270
271#ifdef CONFIG_STACK_GROWSUP
30bdbb78 272#define VM_STACK VM_GROWSUP
1da177e4 273#else
30bdbb78 274#define VM_STACK VM_GROWSDOWN
1da177e4
LT
275#endif
276
30bdbb78
KK
277#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
278
b291f000 279/*
78f11a25
AA
280 * Special vmas that are non-mergable, non-mlock()able.
281 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 282 */
9050d7eb 283#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 284
a0715cc2
AT
285/* This mask defines which mm->def_flags a process can inherit its parent */
286#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
287
de60f5f1
EM
288/* This mask is used to clear all the VMA flags used by mlock */
289#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
290
2c2d57b5
KA
291/* Arch-specific flags to clear when updating VM flags on protection change */
292#ifndef VM_ARCH_CLEAR
293# define VM_ARCH_CLEAR VM_NONE
294#endif
295#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
296
1da177e4
LT
297/*
298 * mapping from the currently active vm_flags protection bits (the
299 * low four bits) to a page protection mask..
300 */
301extern pgprot_t protection_map[16];
302
d0217ac0 303#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
304#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
305#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
306#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
307#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
308#define FAULT_FLAG_TRIED 0x20 /* Second try */
309#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 310#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 311#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 312
282a8e03
RZ
313#define FAULT_FLAG_TRACE \
314 { FAULT_FLAG_WRITE, "WRITE" }, \
315 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
316 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
317 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
318 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
319 { FAULT_FLAG_TRIED, "TRIED" }, \
320 { FAULT_FLAG_USER, "USER" }, \
321 { FAULT_FLAG_REMOTE, "REMOTE" }, \
322 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
323
54cb8821 324/*
d0217ac0 325 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
326 * ->fault function. The vma's ->fault is responsible for returning a bitmask
327 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 328 *
c20cd45e
MH
329 * MM layer fills up gfp_mask for page allocations but fault handler might
330 * alter it if its implementation requires a different allocation context.
331 *
9b4bdd2f 332 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 333 */
d0217ac0 334struct vm_fault {
82b0f8c3 335 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 336 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 337 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 338 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 339 unsigned long address; /* Faulting virtual address */
82b0f8c3 340 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 341 * the 'address' */
a2d58167
DJ
342 pud_t *pud; /* Pointer to pud entry matching
343 * the 'address'
344 */
2994302b 345 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 346
3917048d
JK
347 struct page *cow_page; /* Page handler may use for COW fault */
348 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 349 struct page *page; /* ->fault handlers should return a
83c54070 350 * page here, unless VM_FAULT_NOPAGE
d0217ac0 351 * is set (which is also implied by
83c54070 352 * VM_FAULT_ERROR).
d0217ac0 353 */
82b0f8c3 354 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
355 pte_t *pte; /* Pointer to pte entry matching
356 * the 'address'. NULL if the page
357 * table hasn't been allocated.
358 */
359 spinlock_t *ptl; /* Page table lock.
360 * Protects pte page table if 'pte'
361 * is not NULL, otherwise pmd.
362 */
7267ec00
KS
363 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
364 * vm_ops->map_pages() calls
365 * alloc_set_pte() from atomic context.
366 * do_fault_around() pre-allocates
367 * page table to avoid allocation from
368 * atomic context.
369 */
54cb8821 370};
1da177e4 371
c791ace1
DJ
372/* page entry size for vm->huge_fault() */
373enum page_entry_size {
374 PE_SIZE_PTE = 0,
375 PE_SIZE_PMD,
376 PE_SIZE_PUD,
377};
378
1da177e4
LT
379/*
380 * These are the virtual MM functions - opening of an area, closing and
381 * unmapping it (needed to keep files on disk up-to-date etc), pointer
382 * to the functions called when a no-page or a wp-page exception occurs.
383 */
384struct vm_operations_struct {
385 void (*open)(struct vm_area_struct * area);
386 void (*close)(struct vm_area_struct * area);
31383c68 387 int (*split)(struct vm_area_struct * area, unsigned long addr);
5477e70a 388 int (*mremap)(struct vm_area_struct * area);
11bac800 389 int (*fault)(struct vm_fault *vmf);
c791ace1 390 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
82b0f8c3 391 void (*map_pages)(struct vm_fault *vmf,
bae473a4 392 pgoff_t start_pgoff, pgoff_t end_pgoff);
9637a5ef
DH
393
394 /* notification that a previously read-only page is about to become
395 * writable, if an error is returned it will cause a SIGBUS */
11bac800 396 int (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 397
dd906184 398 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
11bac800 399 int (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 400
28b2ee20
RR
401 /* called by access_process_vm when get_user_pages() fails, typically
402 * for use by special VMAs that can switch between memory and hardware
403 */
404 int (*access)(struct vm_area_struct *vma, unsigned long addr,
405 void *buf, int len, int write);
78d683e8
AL
406
407 /* Called by the /proc/PID/maps code to ask the vma whether it
408 * has a special name. Returning non-NULL will also cause this
409 * vma to be dumped unconditionally. */
410 const char *(*name)(struct vm_area_struct *vma);
411
1da177e4 412#ifdef CONFIG_NUMA
a6020ed7
LS
413 /*
414 * set_policy() op must add a reference to any non-NULL @new mempolicy
415 * to hold the policy upon return. Caller should pass NULL @new to
416 * remove a policy and fall back to surrounding context--i.e. do not
417 * install a MPOL_DEFAULT policy, nor the task or system default
418 * mempolicy.
419 */
1da177e4 420 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
421
422 /*
423 * get_policy() op must add reference [mpol_get()] to any policy at
424 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
425 * in mm/mempolicy.c will do this automatically.
426 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
427 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
428 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
429 * must return NULL--i.e., do not "fallback" to task or system default
430 * policy.
431 */
1da177e4
LT
432 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
433 unsigned long addr);
434#endif
667a0a06
DV
435 /*
436 * Called by vm_normal_page() for special PTEs to find the
437 * page for @addr. This is useful if the default behavior
438 * (using pte_page()) would not find the correct page.
439 */
440 struct page *(*find_special_page)(struct vm_area_struct *vma,
441 unsigned long addr);
1da177e4
LT
442};
443
444struct mmu_gather;
445struct inode;
446
349aef0b
AM
447#define page_private(page) ((page)->private)
448#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 449
5c7fb56e
DW
450#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
451static inline int pmd_devmap(pmd_t pmd)
452{
453 return 0;
454}
a00cc7d9
MW
455static inline int pud_devmap(pud_t pud)
456{
457 return 0;
458}
b59f65fa
KS
459static inline int pgd_devmap(pgd_t pgd)
460{
461 return 0;
462}
5c7fb56e
DW
463#endif
464
1da177e4
LT
465/*
466 * FIXME: take this include out, include page-flags.h in
467 * files which need it (119 of them)
468 */
469#include <linux/page-flags.h>
71e3aac0 470#include <linux/huge_mm.h>
1da177e4
LT
471
472/*
473 * Methods to modify the page usage count.
474 *
475 * What counts for a page usage:
476 * - cache mapping (page->mapping)
477 * - private data (page->private)
478 * - page mapped in a task's page tables, each mapping
479 * is counted separately
480 *
481 * Also, many kernel routines increase the page count before a critical
482 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
483 */
484
485/*
da6052f7 486 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 487 */
7c8ee9a8
NP
488static inline int put_page_testzero(struct page *page)
489{
fe896d18
JK
490 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
491 return page_ref_dec_and_test(page);
7c8ee9a8 492}
1da177e4
LT
493
494/*
7c8ee9a8
NP
495 * Try to grab a ref unless the page has a refcount of zero, return false if
496 * that is the case.
8e0861fa
AK
497 * This can be called when MMU is off so it must not access
498 * any of the virtual mappings.
1da177e4 499 */
7c8ee9a8
NP
500static inline int get_page_unless_zero(struct page *page)
501{
fe896d18 502 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 503}
1da177e4 504
53df8fdc 505extern int page_is_ram(unsigned long pfn);
124fe20d
DW
506
507enum {
508 REGION_INTERSECTS,
509 REGION_DISJOINT,
510 REGION_MIXED,
511};
512
1c29f25b
TK
513int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
514 unsigned long desc);
53df8fdc 515
48667e7a 516/* Support for virtually mapped pages */
b3bdda02
CL
517struct page *vmalloc_to_page(const void *addr);
518unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 519
0738c4bb
PM
520/*
521 * Determine if an address is within the vmalloc range
522 *
523 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
524 * is no special casing required.
525 */
bb00a789 526static inline bool is_vmalloc_addr(const void *x)
9e2779fa 527{
0738c4bb 528#ifdef CONFIG_MMU
9e2779fa
CL
529 unsigned long addr = (unsigned long)x;
530
531 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 532#else
bb00a789 533 return false;
8ca3ed87 534#endif
0738c4bb 535}
81ac3ad9
KH
536#ifdef CONFIG_MMU
537extern int is_vmalloc_or_module_addr(const void *x);
538#else
934831d0 539static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
540{
541 return 0;
542}
543#endif
9e2779fa 544
a7c3e901
MH
545extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
546static inline void *kvmalloc(size_t size, gfp_t flags)
547{
548 return kvmalloc_node(size, flags, NUMA_NO_NODE);
549}
550static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
551{
552 return kvmalloc_node(size, flags | __GFP_ZERO, node);
553}
554static inline void *kvzalloc(size_t size, gfp_t flags)
555{
556 return kvmalloc(size, flags | __GFP_ZERO);
557}
558
752ade68
MH
559static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
560{
561 if (size != 0 && n > SIZE_MAX / size)
562 return NULL;
563
564 return kvmalloc(n * size, flags);
565}
566
39f1f78d
AV
567extern void kvfree(const void *addr);
568
53f9263b
KS
569static inline atomic_t *compound_mapcount_ptr(struct page *page)
570{
571 return &page[1].compound_mapcount;
572}
573
574static inline int compound_mapcount(struct page *page)
575{
5f527c2b 576 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
577 page = compound_head(page);
578 return atomic_read(compound_mapcount_ptr(page)) + 1;
579}
580
70b50f94
AA
581/*
582 * The atomic page->_mapcount, starts from -1: so that transitions
583 * both from it and to it can be tracked, using atomic_inc_and_test
584 * and atomic_add_negative(-1).
585 */
22b751c3 586static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
587{
588 atomic_set(&(page)->_mapcount, -1);
589}
590
b20ce5e0
KS
591int __page_mapcount(struct page *page);
592
70b50f94
AA
593static inline int page_mapcount(struct page *page)
594{
1d148e21 595 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 596
b20ce5e0
KS
597 if (unlikely(PageCompound(page)))
598 return __page_mapcount(page);
599 return atomic_read(&page->_mapcount) + 1;
600}
601
602#ifdef CONFIG_TRANSPARENT_HUGEPAGE
603int total_mapcount(struct page *page);
6d0a07ed 604int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
605#else
606static inline int total_mapcount(struct page *page)
607{
608 return page_mapcount(page);
70b50f94 609}
6d0a07ed
AA
610static inline int page_trans_huge_mapcount(struct page *page,
611 int *total_mapcount)
612{
613 int mapcount = page_mapcount(page);
614 if (total_mapcount)
615 *total_mapcount = mapcount;
616 return mapcount;
617}
b20ce5e0 618#endif
70b50f94 619
b49af68f
CL
620static inline struct page *virt_to_head_page(const void *x)
621{
622 struct page *page = virt_to_page(x);
ccaafd7f 623
1d798ca3 624 return compound_head(page);
b49af68f
CL
625}
626
ddc58f27
KS
627void __put_page(struct page *page);
628
1d7ea732 629void put_pages_list(struct list_head *pages);
1da177e4 630
8dfcc9ba 631void split_page(struct page *page, unsigned int order);
8dfcc9ba 632
33f2ef89
AW
633/*
634 * Compound pages have a destructor function. Provide a
635 * prototype for that function and accessor functions.
f1e61557 636 * These are _only_ valid on the head of a compound page.
33f2ef89 637 */
f1e61557
KS
638typedef void compound_page_dtor(struct page *);
639
640/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
641enum compound_dtor_id {
642 NULL_COMPOUND_DTOR,
643 COMPOUND_PAGE_DTOR,
644#ifdef CONFIG_HUGETLB_PAGE
645 HUGETLB_PAGE_DTOR,
9a982250
KS
646#endif
647#ifdef CONFIG_TRANSPARENT_HUGEPAGE
648 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
649#endif
650 NR_COMPOUND_DTORS,
651};
652extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
653
654static inline void set_compound_page_dtor(struct page *page,
f1e61557 655 enum compound_dtor_id compound_dtor)
33f2ef89 656{
f1e61557
KS
657 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
658 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
659}
660
661static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
662{
f1e61557
KS
663 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
664 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
665}
666
d00181b9 667static inline unsigned int compound_order(struct page *page)
d85f3385 668{
6d777953 669 if (!PageHead(page))
d85f3385 670 return 0;
e4b294c2 671 return page[1].compound_order;
d85f3385
CL
672}
673
f1e61557 674static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 675{
e4b294c2 676 page[1].compound_order = order;
d85f3385
CL
677}
678
9a982250
KS
679void free_compound_page(struct page *page);
680
3dece370 681#ifdef CONFIG_MMU
14fd403f
AA
682/*
683 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
684 * servicing faults for write access. In the normal case, do always want
685 * pte_mkwrite. But get_user_pages can cause write faults for mappings
686 * that do not have writing enabled, when used by access_process_vm.
687 */
688static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
689{
690 if (likely(vma->vm_flags & VM_WRITE))
691 pte = pte_mkwrite(pte);
692 return pte;
693}
8c6e50b0 694
82b0f8c3 695int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 696 struct page *page);
9118c0cb 697int finish_fault(struct vm_fault *vmf);
66a6197c 698int finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 699#endif
14fd403f 700
1da177e4
LT
701/*
702 * Multiple processes may "see" the same page. E.g. for untouched
703 * mappings of /dev/null, all processes see the same page full of
704 * zeroes, and text pages of executables and shared libraries have
705 * only one copy in memory, at most, normally.
706 *
707 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
708 * page_count() == 0 means the page is free. page->lru is then used for
709 * freelist management in the buddy allocator.
da6052f7 710 * page_count() > 0 means the page has been allocated.
1da177e4 711 *
da6052f7
NP
712 * Pages are allocated by the slab allocator in order to provide memory
713 * to kmalloc and kmem_cache_alloc. In this case, the management of the
714 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
715 * unless a particular usage is carefully commented. (the responsibility of
716 * freeing the kmalloc memory is the caller's, of course).
1da177e4 717 *
da6052f7
NP
718 * A page may be used by anyone else who does a __get_free_page().
719 * In this case, page_count still tracks the references, and should only
720 * be used through the normal accessor functions. The top bits of page->flags
721 * and page->virtual store page management information, but all other fields
722 * are unused and could be used privately, carefully. The management of this
723 * page is the responsibility of the one who allocated it, and those who have
724 * subsequently been given references to it.
725 *
726 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
727 * managed by the Linux memory manager: I/O, buffers, swapping etc.
728 * The following discussion applies only to them.
729 *
da6052f7
NP
730 * A pagecache page contains an opaque `private' member, which belongs to the
731 * page's address_space. Usually, this is the address of a circular list of
732 * the page's disk buffers. PG_private must be set to tell the VM to call
733 * into the filesystem to release these pages.
1da177e4 734 *
da6052f7
NP
735 * A page may belong to an inode's memory mapping. In this case, page->mapping
736 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 737 * in units of PAGE_SIZE.
1da177e4 738 *
da6052f7
NP
739 * If pagecache pages are not associated with an inode, they are said to be
740 * anonymous pages. These may become associated with the swapcache, and in that
741 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 742 *
da6052f7
NP
743 * In either case (swapcache or inode backed), the pagecache itself holds one
744 * reference to the page. Setting PG_private should also increment the
745 * refcount. The each user mapping also has a reference to the page.
1da177e4 746 *
da6052f7
NP
747 * The pagecache pages are stored in a per-mapping radix tree, which is
748 * rooted at mapping->page_tree, and indexed by offset.
749 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
750 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 751 *
da6052f7 752 * All pagecache pages may be subject to I/O:
1da177e4
LT
753 * - inode pages may need to be read from disk,
754 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
755 * to be written back to the inode on disk,
756 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
757 * modified may need to be swapped out to swap space and (later) to be read
758 * back into memory.
1da177e4
LT
759 */
760
761/*
762 * The zone field is never updated after free_area_init_core()
763 * sets it, so none of the operations on it need to be atomic.
1da177e4 764 */
348f8b6c 765
90572890 766/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 767#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
768#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
769#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 770#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 771
348f8b6c 772/*
25985edc 773 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
774 * sections we define the shift as 0; that plus a 0 mask ensures
775 * the compiler will optimise away reference to them.
776 */
d41dee36
AW
777#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
778#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
779#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 780#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 781
bce54bbf
WD
782/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
783#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 784#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
785#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
786 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 787#else
89689ae7 788#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
789#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
790 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
791#endif
792
bd8029b6 793#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 794
9223b419
CL
795#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
796#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
797#endif
798
d41dee36
AW
799#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
800#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
801#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 802#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 803#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 804
33dd4e0e 805static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 806{
348f8b6c 807 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 808}
1da177e4 809
260ae3f7
DW
810#ifdef CONFIG_ZONE_DEVICE
811static inline bool is_zone_device_page(const struct page *page)
812{
813 return page_zonenum(page) == ZONE_DEVICE;
814}
815#else
816static inline bool is_zone_device_page(const struct page *page)
817{
818 return false;
819}
7b2d55d2 820#endif
5042db43 821
6b368cd4 822#if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
df6ad698 823void put_zone_device_private_or_public_page(struct page *page);
6b368cd4
JG
824DECLARE_STATIC_KEY_FALSE(device_private_key);
825#define IS_HMM_ENABLED static_branch_unlikely(&device_private_key)
826static inline bool is_device_private_page(const struct page *page);
827static inline bool is_device_public_page(const struct page *page);
828#else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
df6ad698 829static inline void put_zone_device_private_or_public_page(struct page *page)
5042db43 830{
5042db43 831}
6b368cd4
JG
832#define IS_HMM_ENABLED 0
833static inline bool is_device_private_page(const struct page *page)
834{
835 return false;
836}
837static inline bool is_device_public_page(const struct page *page)
838{
839 return false;
840}
df6ad698 841#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
260ae3f7 842
7b2d55d2 843
3565fce3
DW
844static inline void get_page(struct page *page)
845{
846 page = compound_head(page);
847 /*
848 * Getting a normal page or the head of a compound page
0139aa7b 849 * requires to already have an elevated page->_refcount.
3565fce3 850 */
fe896d18
JK
851 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
852 page_ref_inc(page);
3565fce3
DW
853}
854
855static inline void put_page(struct page *page)
856{
857 page = compound_head(page);
858
7b2d55d2
JG
859 /*
860 * For private device pages we need to catch refcount transition from
861 * 2 to 1, when refcount reach one it means the private device page is
862 * free and we need to inform the device driver through callback. See
863 * include/linux/memremap.h and HMM for details.
864 */
6b368cd4
JG
865 if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) ||
866 unlikely(is_device_public_page(page)))) {
df6ad698 867 put_zone_device_private_or_public_page(page);
7b2d55d2
JG
868 return;
869 }
870
3565fce3
DW
871 if (put_page_testzero(page))
872 __put_page(page);
3565fce3
DW
873}
874
9127ab4f
CS
875#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
876#define SECTION_IN_PAGE_FLAGS
877#endif
878
89689ae7 879/*
7a8010cd
VB
880 * The identification function is mainly used by the buddy allocator for
881 * determining if two pages could be buddies. We are not really identifying
882 * the zone since we could be using the section number id if we do not have
883 * node id available in page flags.
884 * We only guarantee that it will return the same value for two combinable
885 * pages in a zone.
89689ae7 886 */
cb2b95e1
AW
887static inline int page_zone_id(struct page *page)
888{
89689ae7 889 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
890}
891
25ba77c1 892static inline int zone_to_nid(struct zone *zone)
89fa3024 893{
d5f541ed
CL
894#ifdef CONFIG_NUMA
895 return zone->node;
896#else
897 return 0;
898#endif
89fa3024
CL
899}
900
89689ae7 901#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 902extern int page_to_nid(const struct page *page);
89689ae7 903#else
33dd4e0e 904static inline int page_to_nid(const struct page *page)
d41dee36 905{
89689ae7 906 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 907}
89689ae7
CL
908#endif
909
57e0a030 910#ifdef CONFIG_NUMA_BALANCING
90572890 911static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 912{
90572890 913 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
914}
915
90572890 916static inline int cpupid_to_pid(int cpupid)
57e0a030 917{
90572890 918 return cpupid & LAST__PID_MASK;
57e0a030 919}
b795854b 920
90572890 921static inline int cpupid_to_cpu(int cpupid)
b795854b 922{
90572890 923 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
924}
925
90572890 926static inline int cpupid_to_nid(int cpupid)
b795854b 927{
90572890 928 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
929}
930
90572890 931static inline bool cpupid_pid_unset(int cpupid)
57e0a030 932{
90572890 933 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
934}
935
90572890 936static inline bool cpupid_cpu_unset(int cpupid)
b795854b 937{
90572890 938 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
939}
940
8c8a743c
PZ
941static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
942{
943 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
944}
945
946#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
947#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
948static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 949{
1ae71d03 950 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 951}
90572890
PZ
952
953static inline int page_cpupid_last(struct page *page)
954{
955 return page->_last_cpupid;
956}
957static inline void page_cpupid_reset_last(struct page *page)
b795854b 958{
1ae71d03 959 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
960}
961#else
90572890 962static inline int page_cpupid_last(struct page *page)
75980e97 963{
90572890 964 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
965}
966
90572890 967extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 968
90572890 969static inline void page_cpupid_reset_last(struct page *page)
75980e97 970{
09940a4f 971 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 972}
90572890
PZ
973#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
974#else /* !CONFIG_NUMA_BALANCING */
975static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 976{
90572890 977 return page_to_nid(page); /* XXX */
57e0a030
MG
978}
979
90572890 980static inline int page_cpupid_last(struct page *page)
57e0a030 981{
90572890 982 return page_to_nid(page); /* XXX */
57e0a030
MG
983}
984
90572890 985static inline int cpupid_to_nid(int cpupid)
b795854b
MG
986{
987 return -1;
988}
989
90572890 990static inline int cpupid_to_pid(int cpupid)
b795854b
MG
991{
992 return -1;
993}
994
90572890 995static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
996{
997 return -1;
998}
999
90572890
PZ
1000static inline int cpu_pid_to_cpupid(int nid, int pid)
1001{
1002 return -1;
1003}
1004
1005static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
1006{
1007 return 1;
1008}
1009
90572890 1010static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1011{
1012}
8c8a743c
PZ
1013
1014static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1015{
1016 return false;
1017}
90572890 1018#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1019
33dd4e0e 1020static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1021{
1022 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1023}
1024
75ef7184
MG
1025static inline pg_data_t *page_pgdat(const struct page *page)
1026{
1027 return NODE_DATA(page_to_nid(page));
1028}
1029
9127ab4f 1030#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1031static inline void set_page_section(struct page *page, unsigned long section)
1032{
1033 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1034 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1035}
1036
aa462abe 1037static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1038{
1039 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1040}
308c05e3 1041#endif
d41dee36 1042
2f1b6248 1043static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1044{
1045 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1046 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1047}
2f1b6248 1048
348f8b6c
DH
1049static inline void set_page_node(struct page *page, unsigned long node)
1050{
1051 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1052 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1053}
89689ae7 1054
2f1b6248 1055static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1056 unsigned long node, unsigned long pfn)
1da177e4 1057{
348f8b6c
DH
1058 set_page_zone(page, zone);
1059 set_page_node(page, node);
9127ab4f 1060#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1061 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1062#endif
1da177e4
LT
1063}
1064
0610c25d
GT
1065#ifdef CONFIG_MEMCG
1066static inline struct mem_cgroup *page_memcg(struct page *page)
1067{
1068 return page->mem_cgroup;
1069}
55779ec7
JW
1070static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1071{
1072 WARN_ON_ONCE(!rcu_read_lock_held());
1073 return READ_ONCE(page->mem_cgroup);
1074}
0610c25d
GT
1075#else
1076static inline struct mem_cgroup *page_memcg(struct page *page)
1077{
1078 return NULL;
1079}
55779ec7
JW
1080static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1081{
1082 WARN_ON_ONCE(!rcu_read_lock_held());
1083 return NULL;
1084}
0610c25d
GT
1085#endif
1086
f6ac2354
CL
1087/*
1088 * Some inline functions in vmstat.h depend on page_zone()
1089 */
1090#include <linux/vmstat.h>
1091
33dd4e0e 1092static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1093{
1dff8083 1094 return page_to_virt(page);
1da177e4
LT
1095}
1096
1097#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1098#define HASHED_PAGE_VIRTUAL
1099#endif
1100
1101#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1102static inline void *page_address(const struct page *page)
1103{
1104 return page->virtual;
1105}
1106static inline void set_page_address(struct page *page, void *address)
1107{
1108 page->virtual = address;
1109}
1da177e4
LT
1110#define page_address_init() do { } while(0)
1111#endif
1112
1113#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1114void *page_address(const struct page *page);
1da177e4
LT
1115void set_page_address(struct page *page, void *virtual);
1116void page_address_init(void);
1117#endif
1118
1119#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1120#define page_address(page) lowmem_page_address(page)
1121#define set_page_address(page, address) do { } while(0)
1122#define page_address_init() do { } while(0)
1123#endif
1124
e39155ea
KS
1125extern void *page_rmapping(struct page *page);
1126extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1127extern struct address_space *page_mapping(struct page *page);
1da177e4 1128
f981c595
MG
1129extern struct address_space *__page_file_mapping(struct page *);
1130
1131static inline
1132struct address_space *page_file_mapping(struct page *page)
1133{
1134 if (unlikely(PageSwapCache(page)))
1135 return __page_file_mapping(page);
1136
1137 return page->mapping;
1138}
1139
f6ab1f7f
HY
1140extern pgoff_t __page_file_index(struct page *page);
1141
1da177e4
LT
1142/*
1143 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1144 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1145 */
1146static inline pgoff_t page_index(struct page *page)
1147{
1148 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1149 return __page_file_index(page);
1da177e4
LT
1150 return page->index;
1151}
1152
1aa8aea5 1153bool page_mapped(struct page *page);
bda807d4 1154struct address_space *page_mapping(struct page *page);
1da177e4 1155
2f064f34
MH
1156/*
1157 * Return true only if the page has been allocated with
1158 * ALLOC_NO_WATERMARKS and the low watermark was not
1159 * met implying that the system is under some pressure.
1160 */
1161static inline bool page_is_pfmemalloc(struct page *page)
1162{
1163 /*
1164 * Page index cannot be this large so this must be
1165 * a pfmemalloc page.
1166 */
1167 return page->index == -1UL;
1168}
1169
1170/*
1171 * Only to be called by the page allocator on a freshly allocated
1172 * page.
1173 */
1174static inline void set_page_pfmemalloc(struct page *page)
1175{
1176 page->index = -1UL;
1177}
1178
1179static inline void clear_page_pfmemalloc(struct page *page)
1180{
1181 page->index = 0;
1182}
1183
1da177e4
LT
1184/*
1185 * Different kinds of faults, as returned by handle_mm_fault().
1186 * Used to decide whether a process gets delivered SIGBUS or
1187 * just gets major/minor fault counters bumped up.
1188 */
d0217ac0 1189
83c54070
NP
1190#define VM_FAULT_OOM 0x0001
1191#define VM_FAULT_SIGBUS 0x0002
1192#define VM_FAULT_MAJOR 0x0004
1193#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1194#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1195#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1196#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1197
83c54070
NP
1198#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1199#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1200#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1201#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
b1aa812b 1202#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
caa51d26
JK
1203#define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
1204 * and needs fsync() to complete (for
1205 * synchronous page faults in DAX) */
aa50d3a7 1206
33692f27
LT
1207#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1208 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1209 VM_FAULT_FALLBACK)
aa50d3a7 1210
282a8e03
RZ
1211#define VM_FAULT_RESULT_TRACE \
1212 { VM_FAULT_OOM, "OOM" }, \
1213 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1214 { VM_FAULT_MAJOR, "MAJOR" }, \
1215 { VM_FAULT_WRITE, "WRITE" }, \
1216 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1217 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1218 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1219 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1220 { VM_FAULT_LOCKED, "LOCKED" }, \
1221 { VM_FAULT_RETRY, "RETRY" }, \
1222 { VM_FAULT_FALLBACK, "FALLBACK" }, \
caa51d26
JK
1223 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1224 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
282a8e03 1225
aa50d3a7
AK
1226/* Encode hstate index for a hwpoisoned large page */
1227#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1228#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1229
1c0fe6e3
NP
1230/*
1231 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1232 */
1233extern void pagefault_out_of_memory(void);
1234
1da177e4
LT
1235#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1236
ddd588b5 1237/*
7bf02ea2 1238 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1239 * various contexts.
1240 */
4b59e6c4 1241#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1242
9af744d7 1243extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1244
7f43add4 1245extern bool can_do_mlock(void);
1da177e4
LT
1246extern int user_shm_lock(size_t, struct user_struct *);
1247extern void user_shm_unlock(size_t, struct user_struct *);
1248
1249/*
1250 * Parameter block passed down to zap_pte_range in exceptional cases.
1251 */
1252struct zap_details {
1da177e4
LT
1253 struct address_space *check_mapping; /* Check page->mapping if set */
1254 pgoff_t first_index; /* Lowest page->index to unmap */
1255 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1256};
1257
df6ad698
JG
1258struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1259 pte_t pte, bool with_public_device);
1260#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1261
28093f9f
GS
1262struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1263 pmd_t pmd);
7e675137 1264
c627f9cc
JS
1265int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1266 unsigned long size);
14f5ff5d 1267void zap_page_range(struct vm_area_struct *vma, unsigned long address,
ecf1385d 1268 unsigned long size);
4f74d2c8
LT
1269void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1270 unsigned long start, unsigned long end);
e6473092
MM
1271
1272/**
1273 * mm_walk - callbacks for walk_page_range
a00cc7d9
MW
1274 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1275 * this handler should only handle pud_trans_huge() puds.
1276 * the pmd_entry or pte_entry callbacks will be used for
1277 * regular PUDs.
e6473092 1278 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1279 * this handler is required to be able to handle
1280 * pmd_trans_huge() pmds. They may simply choose to
1281 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1282 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1283 * @pte_hole: if set, called for each hole at all levels
5dc37642 1284 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426 1285 * @test_walk: caller specific callback function to determine whether
f7e2355f 1286 * we walk over the current vma or not. Returning 0
fafaa426
NH
1287 * value means "do page table walk over the current vma,"
1288 * and a negative one means "abort current page table walk
f7e2355f 1289 * right now." 1 means "skip the current vma."
fafaa426
NH
1290 * @mm: mm_struct representing the target process of page table walk
1291 * @vma: vma currently walked (NULL if walking outside vmas)
1292 * @private: private data for callbacks' usage
e6473092 1293 *
fafaa426 1294 * (see the comment on walk_page_range() for more details)
e6473092
MM
1295 */
1296struct mm_walk {
a00cc7d9
MW
1297 int (*pud_entry)(pud_t *pud, unsigned long addr,
1298 unsigned long next, struct mm_walk *walk);
0f157a5b
AM
1299 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1300 unsigned long next, struct mm_walk *walk);
1301 int (*pte_entry)(pte_t *pte, unsigned long addr,
1302 unsigned long next, struct mm_walk *walk);
1303 int (*pte_hole)(unsigned long addr, unsigned long next,
1304 struct mm_walk *walk);
1305 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1306 unsigned long addr, unsigned long next,
1307 struct mm_walk *walk);
fafaa426
NH
1308 int (*test_walk)(unsigned long addr, unsigned long next,
1309 struct mm_walk *walk);
2165009b 1310 struct mm_struct *mm;
fafaa426 1311 struct vm_area_struct *vma;
2165009b 1312 void *private;
e6473092
MM
1313};
1314
2165009b
DH
1315int walk_page_range(unsigned long addr, unsigned long end,
1316 struct mm_walk *walk);
900fc5f1 1317int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1318void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1319 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1320int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1321 struct vm_area_struct *vma);
09796395 1322int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885 1323 unsigned long *start, unsigned long *end,
09796395 1324 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1325int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1326 unsigned long *pfn);
d87fe660 1327int follow_phys(struct vm_area_struct *vma, unsigned long address,
1328 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1329int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1330 void *buf, int len, int write);
1da177e4 1331
7caef267 1332extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1333extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1334void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1335void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1336int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1337int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1338int invalidate_inode_page(struct page *page);
1339
7ee1dd3f 1340#ifdef CONFIG_MMU
dcddffd4
KS
1341extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1342 unsigned int flags);
5c723ba5 1343extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1344 unsigned long address, unsigned int fault_flags,
1345 bool *unlocked);
977fbdcd
MW
1346void unmap_mapping_pages(struct address_space *mapping,
1347 pgoff_t start, pgoff_t nr, bool even_cows);
1348void unmap_mapping_range(struct address_space *mapping,
1349 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1350#else
dcddffd4
KS
1351static inline int handle_mm_fault(struct vm_area_struct *vma,
1352 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1353{
1354 /* should never happen if there's no MMU */
1355 BUG();
1356 return VM_FAULT_SIGBUS;
1357}
5c723ba5
PZ
1358static inline int fixup_user_fault(struct task_struct *tsk,
1359 struct mm_struct *mm, unsigned long address,
4a9e1cda 1360 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1361{
1362 /* should never happen if there's no MMU */
1363 BUG();
1364 return -EFAULT;
1365}
977fbdcd
MW
1366static inline void unmap_mapping_pages(struct address_space *mapping,
1367 pgoff_t start, pgoff_t nr, bool even_cows) { }
1368static inline void unmap_mapping_range(struct address_space *mapping,
1369 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1370#endif
f33ea7f4 1371
977fbdcd
MW
1372static inline void unmap_shared_mapping_range(struct address_space *mapping,
1373 loff_t const holebegin, loff_t const holelen)
1374{
1375 unmap_mapping_range(mapping, holebegin, holelen, 0);
1376}
1377
1378extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1379 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1380extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1381 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1382extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1383 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1384
1e987790
DH
1385long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1386 unsigned long start, unsigned long nr_pages,
9beae1ea 1387 unsigned int gup_flags, struct page **pages,
5b56d49f 1388 struct vm_area_struct **vmas, int *locked);
c12d2da5 1389long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1390 unsigned int gup_flags, struct page **pages,
cde70140 1391 struct vm_area_struct **vmas);
c12d2da5 1392long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1393 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1394long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1395 struct page **pages, unsigned int gup_flags);
2bb6d283
DW
1396#ifdef CONFIG_FS_DAX
1397long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1398 unsigned int gup_flags, struct page **pages,
1399 struct vm_area_struct **vmas);
1400#else
1401static inline long get_user_pages_longterm(unsigned long start,
1402 unsigned long nr_pages, unsigned int gup_flags,
1403 struct page **pages, struct vm_area_struct **vmas)
1404{
1405 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1406}
1407#endif /* CONFIG_FS_DAX */
1408
d2bf6be8
NP
1409int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1410 struct page **pages);
8025e5dd
JK
1411
1412/* Container for pinned pfns / pages */
1413struct frame_vector {
1414 unsigned int nr_allocated; /* Number of frames we have space for */
1415 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1416 bool got_ref; /* Did we pin pages by getting page ref? */
1417 bool is_pfns; /* Does array contain pages or pfns? */
1418 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1419 * pfns_vector_pages() or pfns_vector_pfns()
1420 * for access */
1421};
1422
1423struct frame_vector *frame_vector_create(unsigned int nr_frames);
1424void frame_vector_destroy(struct frame_vector *vec);
1425int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1426 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1427void put_vaddr_frames(struct frame_vector *vec);
1428int frame_vector_to_pages(struct frame_vector *vec);
1429void frame_vector_to_pfns(struct frame_vector *vec);
1430
1431static inline unsigned int frame_vector_count(struct frame_vector *vec)
1432{
1433 return vec->nr_frames;
1434}
1435
1436static inline struct page **frame_vector_pages(struct frame_vector *vec)
1437{
1438 if (vec->is_pfns) {
1439 int err = frame_vector_to_pages(vec);
1440
1441 if (err)
1442 return ERR_PTR(err);
1443 }
1444 return (struct page **)(vec->ptrs);
1445}
1446
1447static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1448{
1449 if (!vec->is_pfns)
1450 frame_vector_to_pfns(vec);
1451 return (unsigned long *)(vec->ptrs);
1452}
1453
18022c5d
MG
1454struct kvec;
1455int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1456 struct page **pages);
1457int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1458struct page *get_dump_page(unsigned long addr);
1da177e4 1459
cf9a2ae8 1460extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1461extern void do_invalidatepage(struct page *page, unsigned int offset,
1462 unsigned int length);
cf9a2ae8 1463
1da177e4 1464int __set_page_dirty_nobuffers(struct page *page);
76719325 1465int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1466int redirty_page_for_writepage(struct writeback_control *wbc,
1467 struct page *page);
62cccb8c 1468void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1469void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1470 struct bdi_writeback *wb);
b3c97528 1471int set_page_dirty(struct page *page);
1da177e4 1472int set_page_dirty_lock(struct page *page);
736304f3
JK
1473void __cancel_dirty_page(struct page *page);
1474static inline void cancel_dirty_page(struct page *page)
1475{
1476 /* Avoid atomic ops, locking, etc. when not actually needed. */
1477 if (PageDirty(page))
1478 __cancel_dirty_page(page);
1479}
1da177e4 1480int clear_page_dirty_for_io(struct page *page);
b9ea2515 1481
a9090253 1482int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1483
b5330628
ON
1484static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1485{
1486 return !vma->vm_ops;
1487}
1488
b0506e48
MR
1489#ifdef CONFIG_SHMEM
1490/*
1491 * The vma_is_shmem is not inline because it is used only by slow
1492 * paths in userfault.
1493 */
1494bool vma_is_shmem(struct vm_area_struct *vma);
1495#else
1496static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1497#endif
1498
d17af505 1499int vma_is_stack_for_current(struct vm_area_struct *vma);
b7643757 1500
b6a2fea3
OW
1501extern unsigned long move_page_tables(struct vm_area_struct *vma,
1502 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1503 unsigned long new_addr, unsigned long len,
1504 bool need_rmap_locks);
7da4d641
PZ
1505extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1506 unsigned long end, pgprot_t newprot,
4b10e7d5 1507 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1508extern int mprotect_fixup(struct vm_area_struct *vma,
1509 struct vm_area_struct **pprev, unsigned long start,
1510 unsigned long end, unsigned long newflags);
1da177e4 1511
465a454f
PZ
1512/*
1513 * doesn't attempt to fault and will return short.
1514 */
1515int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1516 struct page **pages);
d559db08
KH
1517/*
1518 * per-process(per-mm_struct) statistics.
1519 */
d559db08
KH
1520static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1521{
69c97823
KK
1522 long val = atomic_long_read(&mm->rss_stat.count[member]);
1523
1524#ifdef SPLIT_RSS_COUNTING
1525 /*
1526 * counter is updated in asynchronous manner and may go to minus.
1527 * But it's never be expected number for users.
1528 */
1529 if (val < 0)
1530 val = 0;
172703b0 1531#endif
69c97823
KK
1532 return (unsigned long)val;
1533}
d559db08
KH
1534
1535static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1536{
172703b0 1537 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1538}
1539
1540static inline void inc_mm_counter(struct mm_struct *mm, int member)
1541{
172703b0 1542 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1543}
1544
1545static inline void dec_mm_counter(struct mm_struct *mm, int member)
1546{
172703b0 1547 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1548}
1549
eca56ff9
JM
1550/* Optimized variant when page is already known not to be PageAnon */
1551static inline int mm_counter_file(struct page *page)
1552{
1553 if (PageSwapBacked(page))
1554 return MM_SHMEMPAGES;
1555 return MM_FILEPAGES;
1556}
1557
1558static inline int mm_counter(struct page *page)
1559{
1560 if (PageAnon(page))
1561 return MM_ANONPAGES;
1562 return mm_counter_file(page);
1563}
1564
d559db08
KH
1565static inline unsigned long get_mm_rss(struct mm_struct *mm)
1566{
1567 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1568 get_mm_counter(mm, MM_ANONPAGES) +
1569 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1570}
1571
1572static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1573{
1574 return max(mm->hiwater_rss, get_mm_rss(mm));
1575}
1576
1577static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1578{
1579 return max(mm->hiwater_vm, mm->total_vm);
1580}
1581
1582static inline void update_hiwater_rss(struct mm_struct *mm)
1583{
1584 unsigned long _rss = get_mm_rss(mm);
1585
1586 if ((mm)->hiwater_rss < _rss)
1587 (mm)->hiwater_rss = _rss;
1588}
1589
1590static inline void update_hiwater_vm(struct mm_struct *mm)
1591{
1592 if (mm->hiwater_vm < mm->total_vm)
1593 mm->hiwater_vm = mm->total_vm;
1594}
1595
695f0559
PC
1596static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1597{
1598 mm->hiwater_rss = get_mm_rss(mm);
1599}
1600
d559db08
KH
1601static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1602 struct mm_struct *mm)
1603{
1604 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1605
1606 if (*maxrss < hiwater_rss)
1607 *maxrss = hiwater_rss;
1608}
1609
53bddb4e 1610#if defined(SPLIT_RSS_COUNTING)
05af2e10 1611void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1612#else
05af2e10 1613static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1614{
1615}
1616#endif
465a454f 1617
3565fce3
DW
1618#ifndef __HAVE_ARCH_PTE_DEVMAP
1619static inline int pte_devmap(pte_t pte)
1620{
1621 return 0;
1622}
1623#endif
1624
6d2329f8 1625int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1626
25ca1d6c
NK
1627extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1628 spinlock_t **ptl);
1629static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1630 spinlock_t **ptl)
1631{
1632 pte_t *ptep;
1633 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1634 return ptep;
1635}
c9cfcddf 1636
c2febafc
KS
1637#ifdef __PAGETABLE_P4D_FOLDED
1638static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1639 unsigned long address)
1640{
1641 return 0;
1642}
1643#else
1644int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1645#endif
1646
b4e98d9a 1647#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 1648static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1649 unsigned long address)
1650{
1651 return 0;
1652}
b4e98d9a
KS
1653static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1654static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1655
5f22df00 1656#else
c2febafc 1657int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 1658
b4e98d9a
KS
1659static inline void mm_inc_nr_puds(struct mm_struct *mm)
1660{
af5b0f6a 1661 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
1662}
1663
1664static inline void mm_dec_nr_puds(struct mm_struct *mm)
1665{
af5b0f6a 1666 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 1667}
5f22df00
NP
1668#endif
1669
2d2f5119 1670#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1671static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1672 unsigned long address)
1673{
1674 return 0;
1675}
dc6c9a35 1676
dc6c9a35
KS
1677static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1678static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1679
5f22df00 1680#else
1bb3630e 1681int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1682
dc6c9a35
KS
1683static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1684{
af5b0f6a 1685 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
1686}
1687
1688static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1689{
af5b0f6a 1690 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 1691}
5f22df00
NP
1692#endif
1693
c4812909 1694#ifdef CONFIG_MMU
af5b0f6a 1695static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 1696{
af5b0f6a 1697 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
1698}
1699
af5b0f6a 1700static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 1701{
af5b0f6a 1702 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
1703}
1704
1705static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1706{
af5b0f6a 1707 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1708}
1709
1710static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1711{
af5b0f6a 1712 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1713}
1714#else
c4812909 1715
af5b0f6a
KS
1716static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1717static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
1718{
1719 return 0;
1720}
1721
1722static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1723static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1724#endif
1725
3ed3a4f0 1726int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1bb3630e
HD
1727int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1728
1da177e4
LT
1729/*
1730 * The following ifdef needed to get the 4level-fixup.h header to work.
1731 * Remove it when 4level-fixup.h has been removed.
1732 */
1bb3630e 1733#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
505a60e2
KS
1734
1735#ifndef __ARCH_HAS_5LEVEL_HACK
c2febafc
KS
1736static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1737 unsigned long address)
1738{
1739 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1740 NULL : p4d_offset(pgd, address);
1741}
1742
1743static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1744 unsigned long address)
1da177e4 1745{
c2febafc
KS
1746 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1747 NULL : pud_offset(p4d, address);
1da177e4 1748}
505a60e2 1749#endif /* !__ARCH_HAS_5LEVEL_HACK */
1da177e4
LT
1750
1751static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1752{
1bb3630e
HD
1753 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1754 NULL: pmd_offset(pud, address);
1da177e4 1755}
1bb3630e
HD
1756#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1757
57c1ffce 1758#if USE_SPLIT_PTE_PTLOCKS
597d795a 1759#if ALLOC_SPLIT_PTLOCKS
b35f1819 1760void __init ptlock_cache_init(void);
539edb58
PZ
1761extern bool ptlock_alloc(struct page *page);
1762extern void ptlock_free(struct page *page);
1763
1764static inline spinlock_t *ptlock_ptr(struct page *page)
1765{
1766 return page->ptl;
1767}
597d795a 1768#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1769static inline void ptlock_cache_init(void)
1770{
1771}
1772
49076ec2
KS
1773static inline bool ptlock_alloc(struct page *page)
1774{
49076ec2
KS
1775 return true;
1776}
539edb58 1777
49076ec2
KS
1778static inline void ptlock_free(struct page *page)
1779{
49076ec2
KS
1780}
1781
1782static inline spinlock_t *ptlock_ptr(struct page *page)
1783{
539edb58 1784 return &page->ptl;
49076ec2 1785}
597d795a 1786#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1787
1788static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1789{
1790 return ptlock_ptr(pmd_page(*pmd));
1791}
1792
1793static inline bool ptlock_init(struct page *page)
1794{
1795 /*
1796 * prep_new_page() initialize page->private (and therefore page->ptl)
1797 * with 0. Make sure nobody took it in use in between.
1798 *
1799 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1800 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1801 */
309381fe 1802 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1803 if (!ptlock_alloc(page))
1804 return false;
1805 spin_lock_init(ptlock_ptr(page));
1806 return true;
1807}
1808
1809/* Reset page->mapping so free_pages_check won't complain. */
1810static inline void pte_lock_deinit(struct page *page)
1811{
1812 page->mapping = NULL;
1813 ptlock_free(page);
1814}
1815
57c1ffce 1816#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1817/*
1818 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1819 */
49076ec2
KS
1820static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1821{
1822 return &mm->page_table_lock;
1823}
b35f1819 1824static inline void ptlock_cache_init(void) {}
49076ec2
KS
1825static inline bool ptlock_init(struct page *page) { return true; }
1826static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1827#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1828
b35f1819
KS
1829static inline void pgtable_init(void)
1830{
1831 ptlock_cache_init();
1832 pgtable_cache_init();
1833}
1834
390f44e2 1835static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1836{
706874e9
VD
1837 if (!ptlock_init(page))
1838 return false;
2f569afd 1839 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1840 return true;
2f569afd
MS
1841}
1842
1843static inline void pgtable_page_dtor(struct page *page)
1844{
1845 pte_lock_deinit(page);
1846 dec_zone_page_state(page, NR_PAGETABLE);
1847}
1848
c74df32c
HD
1849#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1850({ \
4c21e2f2 1851 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1852 pte_t *__pte = pte_offset_map(pmd, address); \
1853 *(ptlp) = __ptl; \
1854 spin_lock(__ptl); \
1855 __pte; \
1856})
1857
1858#define pte_unmap_unlock(pte, ptl) do { \
1859 spin_unlock(ptl); \
1860 pte_unmap(pte); \
1861} while (0)
1862
3ed3a4f0
KS
1863#define pte_alloc(mm, pmd, address) \
1864 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1865
1866#define pte_alloc_map(mm, pmd, address) \
1867 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1bb3630e 1868
c74df32c 1869#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3ed3a4f0
KS
1870 (pte_alloc(mm, pmd, address) ? \
1871 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 1872
1bb3630e 1873#define pte_alloc_kernel(pmd, address) \
8ac1f832 1874 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1875 NULL: pte_offset_kernel(pmd, address))
1da177e4 1876
e009bb30
KS
1877#if USE_SPLIT_PMD_PTLOCKS
1878
634391ac
MS
1879static struct page *pmd_to_page(pmd_t *pmd)
1880{
1881 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1882 return virt_to_page((void *)((unsigned long) pmd & mask));
1883}
1884
e009bb30
KS
1885static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1886{
634391ac 1887 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1888}
1889
1890static inline bool pgtable_pmd_page_ctor(struct page *page)
1891{
e009bb30
KS
1892#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1893 page->pmd_huge_pte = NULL;
1894#endif
49076ec2 1895 return ptlock_init(page);
e009bb30
KS
1896}
1897
1898static inline void pgtable_pmd_page_dtor(struct page *page)
1899{
1900#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1901 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1902#endif
49076ec2 1903 ptlock_free(page);
e009bb30
KS
1904}
1905
634391ac 1906#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1907
1908#else
1909
9a86cb7b
KS
1910static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1911{
1912 return &mm->page_table_lock;
1913}
1914
e009bb30
KS
1915static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1916static inline void pgtable_pmd_page_dtor(struct page *page) {}
1917
c389a250 1918#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1919
e009bb30
KS
1920#endif
1921
9a86cb7b
KS
1922static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1923{
1924 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1925 spin_lock(ptl);
1926 return ptl;
1927}
1928
a00cc7d9
MW
1929/*
1930 * No scalability reason to split PUD locks yet, but follow the same pattern
1931 * as the PMD locks to make it easier if we decide to. The VM should not be
1932 * considered ready to switch to split PUD locks yet; there may be places
1933 * which need to be converted from page_table_lock.
1934 */
1935static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1936{
1937 return &mm->page_table_lock;
1938}
1939
1940static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1941{
1942 spinlock_t *ptl = pud_lockptr(mm, pud);
1943
1944 spin_lock(ptl);
1945 return ptl;
1946}
62906027 1947
a00cc7d9 1948extern void __init pagecache_init(void);
1da177e4 1949extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1950extern void free_area_init_node(int nid, unsigned long * zones_size,
1951 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1952extern void free_initmem(void);
1953
69afade7
JL
1954/*
1955 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1956 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1957 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1958 * Return pages freed into the buddy system.
1959 */
11199692 1960extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1961 int poison, char *s);
c3d5f5f0 1962
cfa11e08
JL
1963#ifdef CONFIG_HIGHMEM
1964/*
1965 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1966 * and totalram_pages.
1967 */
1968extern void free_highmem_page(struct page *page);
1969#endif
69afade7 1970
c3d5f5f0 1971extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1972extern void mem_init_print_info(const char *str);
69afade7 1973
4b50bcc7 1974extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 1975
69afade7
JL
1976/* Free the reserved page into the buddy system, so it gets managed. */
1977static inline void __free_reserved_page(struct page *page)
1978{
1979 ClearPageReserved(page);
1980 init_page_count(page);
1981 __free_page(page);
1982}
1983
1984static inline void free_reserved_page(struct page *page)
1985{
1986 __free_reserved_page(page);
1987 adjust_managed_page_count(page, 1);
1988}
1989
1990static inline void mark_page_reserved(struct page *page)
1991{
1992 SetPageReserved(page);
1993 adjust_managed_page_count(page, -1);
1994}
1995
1996/*
1997 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1998 * The freed pages will be poisoned with pattern "poison" if it's within
1999 * range [0, UCHAR_MAX].
2000 * Return pages freed into the buddy system.
69afade7
JL
2001 */
2002static inline unsigned long free_initmem_default(int poison)
2003{
2004 extern char __init_begin[], __init_end[];
2005
11199692 2006 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2007 poison, "unused kernel");
2008}
2009
7ee3d4e8
JL
2010static inline unsigned long get_num_physpages(void)
2011{
2012 int nid;
2013 unsigned long phys_pages = 0;
2014
2015 for_each_online_node(nid)
2016 phys_pages += node_present_pages(nid);
2017
2018 return phys_pages;
2019}
2020
0ee332c1 2021#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 2022/*
0ee332c1 2023 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
2024 * zones, allocate the backing mem_map and account for memory holes in a more
2025 * architecture independent manner. This is a substitute for creating the
2026 * zone_sizes[] and zholes_size[] arrays and passing them to
2027 * free_area_init_node()
2028 *
2029 * An architecture is expected to register range of page frames backed by
0ee332c1 2030 * physical memory with memblock_add[_node]() before calling
c713216d
MG
2031 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2032 * usage, an architecture is expected to do something like
2033 *
2034 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2035 * max_highmem_pfn};
2036 * for_each_valid_physical_page_range()
0ee332c1 2037 * memblock_add_node(base, size, nid)
c713216d
MG
2038 * free_area_init_nodes(max_zone_pfns);
2039 *
0ee332c1
TH
2040 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2041 * registered physical page range. Similarly
2042 * sparse_memory_present_with_active_regions() calls memory_present() for
2043 * each range when SPARSEMEM is enabled.
c713216d
MG
2044 *
2045 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 2046 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
2047 */
2048extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 2049unsigned long node_map_pfn_alignment(void);
32996250
YL
2050unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2051 unsigned long end_pfn);
c713216d
MG
2052extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2053 unsigned long end_pfn);
2054extern void get_pfn_range_for_nid(unsigned int nid,
2055 unsigned long *start_pfn, unsigned long *end_pfn);
2056extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
2057extern void free_bootmem_with_active_regions(int nid,
2058 unsigned long max_low_pfn);
2059extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 2060
0ee332c1 2061#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 2062
0ee332c1 2063#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 2064 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
2065static inline int __early_pfn_to_nid(unsigned long pfn,
2066 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
2067{
2068 return 0;
2069}
2070#else
2071/* please see mm/page_alloc.c */
2072extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 2073/* there is a per-arch backend function. */
8a942fde
MG
2074extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2075 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
2076#endif
2077
a4a3ede2
PT
2078#ifdef CONFIG_HAVE_MEMBLOCK
2079void zero_resv_unavail(void);
2080#else
2081static inline void zero_resv_unavail(void) {}
2082#endif
2083
0e0b864e 2084extern void set_dma_reserve(unsigned long new_dma_reserve);
a99583e7
CH
2085extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2086 enum memmap_context, struct vmem_altmap *);
bc75d33f 2087extern void setup_per_zone_wmarks(void);
1b79acc9 2088extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2089extern void mem_init(void);
8feae131 2090extern void __init mmap_init(void);
9af744d7 2091extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2092extern long si_mem_available(void);
1da177e4
LT
2093extern void si_meminfo(struct sysinfo * val);
2094extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2095#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2096extern unsigned long arch_reserved_kernel_pages(void);
2097#endif
1da177e4 2098
a8e99259
MH
2099extern __printf(3, 4)
2100void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2101
e7c8d5c9 2102extern void setup_per_cpu_pageset(void);
e7c8d5c9 2103
112067f0 2104extern void zone_pcp_update(struct zone *zone);
340175b7 2105extern void zone_pcp_reset(struct zone *zone);
112067f0 2106
75f7ad8e
PS
2107/* page_alloc.c */
2108extern int min_free_kbytes;
795ae7a0 2109extern int watermark_scale_factor;
75f7ad8e 2110
8feae131 2111/* nommu.c */
33e5d769 2112extern atomic_long_t mmap_pages_allocated;
7e660872 2113extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2114
6b2dbba8 2115/* interval_tree.c */
6b2dbba8 2116void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2117 struct rb_root_cached *root);
9826a516
ML
2118void vma_interval_tree_insert_after(struct vm_area_struct *node,
2119 struct vm_area_struct *prev,
f808c13f 2120 struct rb_root_cached *root);
6b2dbba8 2121void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2122 struct rb_root_cached *root);
2123struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2124 unsigned long start, unsigned long last);
2125struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2126 unsigned long start, unsigned long last);
2127
2128#define vma_interval_tree_foreach(vma, root, start, last) \
2129 for (vma = vma_interval_tree_iter_first(root, start, last); \
2130 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2131
bf181b9f 2132void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2133 struct rb_root_cached *root);
bf181b9f 2134void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2135 struct rb_root_cached *root);
2136struct anon_vma_chain *
2137anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2138 unsigned long start, unsigned long last);
bf181b9f
ML
2139struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2140 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2141#ifdef CONFIG_DEBUG_VM_RB
2142void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2143#endif
bf181b9f
ML
2144
2145#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2146 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2147 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2148
1da177e4 2149/* mmap.c */
34b4e4aa 2150extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2151extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2152 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2153 struct vm_area_struct *expand);
2154static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2155 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2156{
2157 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2158}
1da177e4
LT
2159extern struct vm_area_struct *vma_merge(struct mm_struct *,
2160 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2161 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2162 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2163extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2164extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2165 unsigned long addr, int new_below);
2166extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2167 unsigned long addr, int new_below);
1da177e4
LT
2168extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2169extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2170 struct rb_node **, struct rb_node *);
a8fb5618 2171extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2172extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2173 unsigned long addr, unsigned long len, pgoff_t pgoff,
2174 bool *need_rmap_locks);
1da177e4 2175extern void exit_mmap(struct mm_struct *);
925d1c40 2176
9c599024
CG
2177static inline int check_data_rlimit(unsigned long rlim,
2178 unsigned long new,
2179 unsigned long start,
2180 unsigned long end_data,
2181 unsigned long start_data)
2182{
2183 if (rlim < RLIM_INFINITY) {
2184 if (((new - start) + (end_data - start_data)) > rlim)
2185 return -ENOSPC;
2186 }
2187
2188 return 0;
2189}
2190
7906d00c
AA
2191extern int mm_take_all_locks(struct mm_struct *mm);
2192extern void mm_drop_all_locks(struct mm_struct *mm);
2193
38646013
JS
2194extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2195extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2196extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2197
84638335
KK
2198extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2199extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2200
2eefd878
DS
2201extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2202 const struct vm_special_mapping *sm);
3935ed6a
SS
2203extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2204 unsigned long addr, unsigned long len,
a62c34bd
AL
2205 unsigned long flags,
2206 const struct vm_special_mapping *spec);
2207/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2208extern int install_special_mapping(struct mm_struct *mm,
2209 unsigned long addr, unsigned long len,
2210 unsigned long flags, struct page **pages);
1da177e4
LT
2211
2212extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2213
0165ab44 2214extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2215 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2216 struct list_head *uf);
1fcfd8db 2217extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2218 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2219 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2220 struct list_head *uf);
2221extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2222 struct list_head *uf);
1da177e4 2223
1fcfd8db
ON
2224static inline unsigned long
2225do_mmap_pgoff(struct file *file, unsigned long addr,
2226 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2227 unsigned long pgoff, unsigned long *populate,
2228 struct list_head *uf)
1fcfd8db 2229{
897ab3e0 2230 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2231}
2232
bebeb3d6
ML
2233#ifdef CONFIG_MMU
2234extern int __mm_populate(unsigned long addr, unsigned long len,
2235 int ignore_errors);
2236static inline void mm_populate(unsigned long addr, unsigned long len)
2237{
2238 /* Ignore errors */
2239 (void) __mm_populate(addr, len, 1);
2240}
2241#else
2242static inline void mm_populate(unsigned long addr, unsigned long len) {}
2243#endif
2244
e4eb1ff6 2245/* These take the mm semaphore themselves */
5d22fc25 2246extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2247extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2248extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2249extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2250 unsigned long, unsigned long,
2251 unsigned long, unsigned long);
1da177e4 2252
db4fbfb9
ML
2253struct vm_unmapped_area_info {
2254#define VM_UNMAPPED_AREA_TOPDOWN 1
2255 unsigned long flags;
2256 unsigned long length;
2257 unsigned long low_limit;
2258 unsigned long high_limit;
2259 unsigned long align_mask;
2260 unsigned long align_offset;
2261};
2262
2263extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2264extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2265
2266/*
2267 * Search for an unmapped address range.
2268 *
2269 * We are looking for a range that:
2270 * - does not intersect with any VMA;
2271 * - is contained within the [low_limit, high_limit) interval;
2272 * - is at least the desired size.
2273 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2274 */
2275static inline unsigned long
2276vm_unmapped_area(struct vm_unmapped_area_info *info)
2277{
cdd7875e 2278 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2279 return unmapped_area_topdown(info);
cdd7875e
BP
2280 else
2281 return unmapped_area(info);
db4fbfb9
ML
2282}
2283
85821aab 2284/* truncate.c */
1da177e4 2285extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2286extern void truncate_inode_pages_range(struct address_space *,
2287 loff_t lstart, loff_t lend);
91b0abe3 2288extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2289
2290/* generic vm_area_ops exported for stackable file systems */
11bac800 2291extern int filemap_fault(struct vm_fault *vmf);
82b0f8c3 2292extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2293 pgoff_t start_pgoff, pgoff_t end_pgoff);
11bac800 2294extern int filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2295
2296/* mm/page-writeback.c */
2b69c828 2297int __must_check write_one_page(struct page *page);
1cf6e7d8 2298void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2299
2300/* readahead.c */
2301#define VM_MAX_READAHEAD 128 /* kbytes */
2302#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2303
1da177e4 2304int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2305 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2306
2307void page_cache_sync_readahead(struct address_space *mapping,
2308 struct file_ra_state *ra,
2309 struct file *filp,
2310 pgoff_t offset,
2311 unsigned long size);
2312
2313void page_cache_async_readahead(struct address_space *mapping,
2314 struct file_ra_state *ra,
2315 struct file *filp,
2316 struct page *pg,
2317 pgoff_t offset,
2318 unsigned long size);
2319
1be7107f 2320extern unsigned long stack_guard_gap;
d05f3169 2321/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2322extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2323
2324/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2325extern int expand_downwards(struct vm_area_struct *vma,
2326 unsigned long address);
8ca3eb08 2327#if VM_GROWSUP
46dea3d0 2328extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2329#else
fee7e49d 2330 #define expand_upwards(vma, address) (0)
9ab88515 2331#endif
1da177e4
LT
2332
2333/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2334extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2335extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2336 struct vm_area_struct **pprev);
2337
2338/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2339 NULL if none. Assume start_addr < end_addr. */
2340static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2341{
2342 struct vm_area_struct * vma = find_vma(mm,start_addr);
2343
2344 if (vma && end_addr <= vma->vm_start)
2345 vma = NULL;
2346 return vma;
2347}
2348
1be7107f
HD
2349static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2350{
2351 unsigned long vm_start = vma->vm_start;
2352
2353 if (vma->vm_flags & VM_GROWSDOWN) {
2354 vm_start -= stack_guard_gap;
2355 if (vm_start > vma->vm_start)
2356 vm_start = 0;
2357 }
2358 return vm_start;
2359}
2360
2361static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2362{
2363 unsigned long vm_end = vma->vm_end;
2364
2365 if (vma->vm_flags & VM_GROWSUP) {
2366 vm_end += stack_guard_gap;
2367 if (vm_end < vma->vm_end)
2368 vm_end = -PAGE_SIZE;
2369 }
2370 return vm_end;
2371}
2372
1da177e4
LT
2373static inline unsigned long vma_pages(struct vm_area_struct *vma)
2374{
2375 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2376}
2377
640708a2
PE
2378/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2379static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2380 unsigned long vm_start, unsigned long vm_end)
2381{
2382 struct vm_area_struct *vma = find_vma(mm, vm_start);
2383
2384 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2385 vma = NULL;
2386
2387 return vma;
2388}
2389
bad849b3 2390#ifdef CONFIG_MMU
804af2cf 2391pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2392void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2393#else
2394static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2395{
2396 return __pgprot(0);
2397}
64e45507
PF
2398static inline void vma_set_page_prot(struct vm_area_struct *vma)
2399{
2400 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2401}
bad849b3
DH
2402#endif
2403
5877231f 2404#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2405unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2406 unsigned long start, unsigned long end);
2407#endif
2408
deceb6cd 2409struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2410int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2411 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2412int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2413int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2414 unsigned long pfn);
1745cbc5
AL
2415int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2416 unsigned long pfn, pgprot_t pgprot);
423bad60 2417int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2418 pfn_t pfn);
b2770da6
RZ
2419int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
2420 pfn_t pfn);
b4cbb197
LT
2421int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2422
deceb6cd 2423
240aadee
ML
2424struct page *follow_page_mask(struct vm_area_struct *vma,
2425 unsigned long address, unsigned int foll_flags,
2426 unsigned int *page_mask);
2427
2428static inline struct page *follow_page(struct vm_area_struct *vma,
2429 unsigned long address, unsigned int foll_flags)
2430{
2431 unsigned int unused_page_mask;
2432 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2433}
2434
deceb6cd
HD
2435#define FOLL_WRITE 0x01 /* check pte is writable */
2436#define FOLL_TOUCH 0x02 /* mark page accessed */
2437#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2438#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2439#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2440#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2441 * and return without waiting upon it */
84d33df2 2442#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2443#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2444#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2445#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2446#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2447#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2448#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2449#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2450#define FOLL_COW 0x4000 /* internal GUP flag */
1da177e4 2451
9a291a7c
JM
2452static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2453{
2454 if (vm_fault & VM_FAULT_OOM)
2455 return -ENOMEM;
2456 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2457 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2458 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2459 return -EFAULT;
2460 return 0;
2461}
2462
2f569afd 2463typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2464 void *data);
2465extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2466 unsigned long size, pte_fn_t fn, void *data);
2467
1da177e4 2468
8823b1db
LA
2469#ifdef CONFIG_PAGE_POISONING
2470extern bool page_poisoning_enabled(void);
2471extern void kernel_poison_pages(struct page *page, int numpages, int enable);
1414c7f4 2472extern bool page_is_poisoned(struct page *page);
8823b1db
LA
2473#else
2474static inline bool page_poisoning_enabled(void) { return false; }
2475static inline void kernel_poison_pages(struct page *page, int numpages,
2476 int enable) { }
1414c7f4 2477static inline bool page_is_poisoned(struct page *page) { return false; }
8823b1db
LA
2478#endif
2479
12d6f21e 2480#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2481extern bool _debug_pagealloc_enabled;
2482extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2483
2484static inline bool debug_pagealloc_enabled(void)
2485{
2486 return _debug_pagealloc_enabled;
2487}
2488
2489static inline void
2490kernel_map_pages(struct page *page, int numpages, int enable)
2491{
2492 if (!debug_pagealloc_enabled())
2493 return;
2494
2495 __kernel_map_pages(page, numpages, enable);
2496}
8a235efa
RW
2497#ifdef CONFIG_HIBERNATION
2498extern bool kernel_page_present(struct page *page);
40b44137
JK
2499#endif /* CONFIG_HIBERNATION */
2500#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2501static inline void
9858db50 2502kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2503#ifdef CONFIG_HIBERNATION
2504static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2505#endif /* CONFIG_HIBERNATION */
2506static inline bool debug_pagealloc_enabled(void)
2507{
2508 return false;
2509}
2510#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2511
a6c19dfe 2512#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2513extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2514extern int in_gate_area_no_mm(unsigned long addr);
2515extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2516#else
a6c19dfe
AL
2517static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2518{
2519 return NULL;
2520}
2521static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2522static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2523{
2524 return 0;
2525}
1da177e4
LT
2526#endif /* __HAVE_ARCH_GATE_AREA */
2527
44a70ade
MH
2528extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2529
146732ce
JT
2530#ifdef CONFIG_SYSCTL
2531extern int sysctl_drop_caches;
8d65af78 2532int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2533 void __user *, size_t *, loff_t *);
146732ce
JT
2534#endif
2535
cb731d6c
VD
2536void drop_slab(void);
2537void drop_slab_node(int nid);
9d0243bc 2538
7a9166e3
LY
2539#ifndef CONFIG_MMU
2540#define randomize_va_space 0
2541#else
a62eaf15 2542extern int randomize_va_space;
7a9166e3 2543#endif
a62eaf15 2544
045e72ac 2545const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2546void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2547
9bdac914
YL
2548void sparse_mem_maps_populate_node(struct page **map_map,
2549 unsigned long pnum_begin,
2550 unsigned long pnum_end,
2551 unsigned long map_count,
2552 int nodeid);
2553
7b73d978
CH
2554struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2555 struct vmem_altmap *altmap);
29c71111 2556pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2557p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2558pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
2559pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2560pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2561void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 2562struct vmem_altmap;
a8fc357b
CH
2563void *vmemmap_alloc_block_buf(unsigned long size, int node);
2564void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
8f6aac41 2565void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2566int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2567 int node);
7b73d978
CH
2568int vmemmap_populate(unsigned long start, unsigned long end, int node,
2569 struct vmem_altmap *altmap);
c2b91e2e 2570void vmemmap_populate_print_last(void);
0197518c 2571#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
2572void vmemmap_free(unsigned long start, unsigned long end,
2573 struct vmem_altmap *altmap);
0197518c 2574#endif
46723bfa 2575void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 2576 unsigned long nr_pages);
6a46079c 2577
82ba011b
AK
2578enum mf_flags {
2579 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2580 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2581 MF_MUST_KILL = 1 << 2,
cf870c70 2582 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2583};
83b57531
EB
2584extern int memory_failure(unsigned long pfn, int flags);
2585extern void memory_failure_queue(unsigned long pfn, int flags);
847ce401 2586extern int unpoison_memory(unsigned long pfn);
ead07f6a 2587extern int get_hwpoison_page(struct page *page);
4e41a30c 2588#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2589extern int sysctl_memory_failure_early_kill;
2590extern int sysctl_memory_failure_recovery;
facb6011 2591extern void shake_page(struct page *p, int access);
293c07e3 2592extern atomic_long_t num_poisoned_pages;
facb6011 2593extern int soft_offline_page(struct page *page, int flags);
6a46079c 2594
cc637b17
XX
2595
2596/*
2597 * Error handlers for various types of pages.
2598 */
cc3e2af4 2599enum mf_result {
cc637b17
XX
2600 MF_IGNORED, /* Error: cannot be handled */
2601 MF_FAILED, /* Error: handling failed */
2602 MF_DELAYED, /* Will be handled later */
2603 MF_RECOVERED, /* Successfully recovered */
2604};
2605
2606enum mf_action_page_type {
2607 MF_MSG_KERNEL,
2608 MF_MSG_KERNEL_HIGH_ORDER,
2609 MF_MSG_SLAB,
2610 MF_MSG_DIFFERENT_COMPOUND,
2611 MF_MSG_POISONED_HUGE,
2612 MF_MSG_HUGE,
2613 MF_MSG_FREE_HUGE,
2614 MF_MSG_UNMAP_FAILED,
2615 MF_MSG_DIRTY_SWAPCACHE,
2616 MF_MSG_CLEAN_SWAPCACHE,
2617 MF_MSG_DIRTY_MLOCKED_LRU,
2618 MF_MSG_CLEAN_MLOCKED_LRU,
2619 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2620 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2621 MF_MSG_DIRTY_LRU,
2622 MF_MSG_CLEAN_LRU,
2623 MF_MSG_TRUNCATED_LRU,
2624 MF_MSG_BUDDY,
2625 MF_MSG_BUDDY_2ND,
2626 MF_MSG_UNKNOWN,
2627};
2628
47ad8475
AA
2629#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2630extern void clear_huge_page(struct page *page,
c79b57e4 2631 unsigned long addr_hint,
47ad8475
AA
2632 unsigned int pages_per_huge_page);
2633extern void copy_user_huge_page(struct page *dst, struct page *src,
2634 unsigned long addr, struct vm_area_struct *vma,
2635 unsigned int pages_per_huge_page);
fa4d75c1
MK
2636extern long copy_huge_page_from_user(struct page *dst_page,
2637 const void __user *usr_src,
810a56b9
MK
2638 unsigned int pages_per_huge_page,
2639 bool allow_pagefault);
47ad8475
AA
2640#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2641
e30825f1 2642extern struct page_ext_operations debug_guardpage_ops;
e30825f1 2643
c0a32fc5
SG
2644#ifdef CONFIG_DEBUG_PAGEALLOC
2645extern unsigned int _debug_guardpage_minorder;
e30825f1 2646extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2647
2648static inline unsigned int debug_guardpage_minorder(void)
2649{
2650 return _debug_guardpage_minorder;
2651}
2652
e30825f1
JK
2653static inline bool debug_guardpage_enabled(void)
2654{
2655 return _debug_guardpage_enabled;
2656}
2657
c0a32fc5
SG
2658static inline bool page_is_guard(struct page *page)
2659{
e30825f1
JK
2660 struct page_ext *page_ext;
2661
2662 if (!debug_guardpage_enabled())
2663 return false;
2664
2665 page_ext = lookup_page_ext(page);
0bb2fd13
YS
2666 if (unlikely(!page_ext))
2667 return false;
2668
e30825f1 2669 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2670}
2671#else
2672static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2673static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2674static inline bool page_is_guard(struct page *page) { return false; }
2675#endif /* CONFIG_DEBUG_PAGEALLOC */
2676
f9872caf
CS
2677#if MAX_NUMNODES > 1
2678void __init setup_nr_node_ids(void);
2679#else
2680static inline void setup_nr_node_ids(void) {}
2681#endif
2682
1da177e4
LT
2683#endif /* __KERNEL__ */
2684#endif /* _LINUX_MM_H */