Merge branch 'upstream' of git://ftp.linux-mips.org/pub/scm/upstream-linus
[linux-2.6-block.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
ad5ebd2f 12#include <linux/jiffies.h>
1da177e4 13#include <linux/rbtree.h>
22e2c507 14#include <linux/ioprio.h>
7b679138 15#include <linux/blktrace_api.h>
25bc6b07 16#include "blk-cgroup.h"
1da177e4
LT
17
18/*
19 * tunables
20 */
fe094d98
JA
21/* max queue in one round of service */
22static const int cfq_quantum = 4;
64100099 23static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
24/* maximum backwards seek, in KiB */
25static const int cfq_back_max = 16 * 1024;
26/* penalty of a backwards seek */
27static const int cfq_back_penalty = 2;
64100099 28static const int cfq_slice_sync = HZ / 10;
3b18152c 29static int cfq_slice_async = HZ / 25;
64100099 30static const int cfq_slice_async_rq = 2;
caaa5f9f 31static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
32static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33static const int cfq_hist_divisor = 4;
22e2c507 34
d9e7620e 35/*
0871714e 36 * offset from end of service tree
d9e7620e 37 */
0871714e 38#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
39
40/*
41 * below this threshold, we consider thinktime immediate
42 */
43#define CFQ_MIN_TT (2)
44
e6c5bc73
JM
45/*
46 * Allow merged cfqqs to perform this amount of seeky I/O before
47 * deciding to break the queues up again.
48 */
49#define CFQQ_COOP_TOUT (HZ)
50
22e2c507 51#define CFQ_SLICE_SCALE (5)
45333d5a 52#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 53#define CFQ_SERVICE_SHIFT 12
22e2c507 54
fe094d98
JA
55#define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 57#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 58
e18b890b
CL
59static struct kmem_cache *cfq_pool;
60static struct kmem_cache *cfq_ioc_pool;
1da177e4 61
245b2e70 62static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 63static struct completion *ioc_gone;
9a11b4ed 64static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 65
22e2c507
JA
66#define CFQ_PRIO_LISTS IOPRIO_BE_NR
67#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
68#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69
206dc69b 70#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 71#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 72
cc09e299
JA
73/*
74 * Most of our rbtree usage is for sorting with min extraction, so
75 * if we cache the leftmost node we don't have to walk down the tree
76 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77 * move this into the elevator for the rq sorting as well.
78 */
79struct cfq_rb_root {
80 struct rb_root rb;
81 struct rb_node *left;
aa6f6a3d 82 unsigned count;
1fa8f6d6 83 u64 min_vdisktime;
25bc6b07 84 struct rb_node *active;
58ff82f3 85 unsigned total_weight;
cc09e299 86};
1fa8f6d6 87#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
cc09e299 88
6118b70b
JA
89/*
90 * Per process-grouping structure
91 */
92struct cfq_queue {
93 /* reference count */
94 atomic_t ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
117
dae739eb
VG
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
f75edf2d 120 unsigned int allocated_slice;
dae739eb
VG
121 /* time when first request from queue completed and slice started. */
122 unsigned long slice_start;
6118b70b
JA
123 unsigned long slice_end;
124 long slice_resid;
125 unsigned int slice_dispatch;
126
127 /* pending metadata requests */
128 int meta_pending;
129 /* number of requests that are on the dispatch list or inside driver */
130 int dispatched;
131
132 /* io prio of this group */
133 unsigned short ioprio, org_ioprio;
134 unsigned short ioprio_class, org_ioprio_class;
135
b2c18e1e
JM
136 unsigned int seek_samples;
137 u64 seek_total;
138 sector_t seek_mean;
139 sector_t last_request_pos;
e6c5bc73 140 unsigned long seeky_start;
b2c18e1e 141
6118b70b 142 pid_t pid;
df5fe3e8 143
aa6f6a3d 144 struct cfq_rb_root *service_tree;
df5fe3e8 145 struct cfq_queue *new_cfqq;
cdb16e8f 146 struct cfq_group *cfqg;
ae30c286 147 struct cfq_group *orig_cfqg;
22084190
VG
148 /* Sectors dispatched in current dispatch round */
149 unsigned long nr_sectors;
6118b70b
JA
150};
151
c0324a02 152/*
718eee05 153 * First index in the service_trees.
c0324a02
CZ
154 * IDLE is handled separately, so it has negative index
155 */
156enum wl_prio_t {
c0324a02 157 BE_WORKLOAD = 0,
615f0259
VG
158 RT_WORKLOAD = 1,
159 IDLE_WORKLOAD = 2,
c0324a02
CZ
160};
161
718eee05
CZ
162/*
163 * Second index in the service_trees.
164 */
165enum wl_type_t {
166 ASYNC_WORKLOAD = 0,
167 SYNC_NOIDLE_WORKLOAD = 1,
168 SYNC_WORKLOAD = 2
169};
170
cdb16e8f
VG
171/* This is per cgroup per device grouping structure */
172struct cfq_group {
1fa8f6d6
VG
173 /* group service_tree member */
174 struct rb_node rb_node;
175
176 /* group service_tree key */
177 u64 vdisktime;
25bc6b07 178 unsigned int weight;
1fa8f6d6
VG
179 bool on_st;
180
181 /* number of cfqq currently on this group */
182 int nr_cfqq;
183
58ff82f3
VG
184 /* Per group busy queus average. Useful for workload slice calc. */
185 unsigned int busy_queues_avg[2];
cdb16e8f
VG
186 /*
187 * rr lists of queues with requests, onle rr for each priority class.
188 * Counts are embedded in the cfq_rb_root
189 */
190 struct cfq_rb_root service_trees[2][3];
191 struct cfq_rb_root service_tree_idle;
dae739eb
VG
192
193 unsigned long saved_workload_slice;
194 enum wl_type_t saved_workload;
195 enum wl_prio_t saved_serving_prio;
25fb5169
VG
196 struct blkio_group blkg;
197#ifdef CONFIG_CFQ_GROUP_IOSCHED
198 struct hlist_node cfqd_node;
b1c35769 199 atomic_t ref;
25fb5169 200#endif
cdb16e8f 201};
718eee05 202
22e2c507
JA
203/*
204 * Per block device queue structure
205 */
1da177e4 206struct cfq_data {
165125e1 207 struct request_queue *queue;
1fa8f6d6
VG
208 /* Root service tree for cfq_groups */
209 struct cfq_rb_root grp_service_tree;
cdb16e8f 210 struct cfq_group root_group;
58ff82f3
VG
211 /* Number of active cfq groups on group service tree */
212 int nr_groups;
22e2c507 213
c0324a02
CZ
214 /*
215 * The priority currently being served
22e2c507 216 */
c0324a02 217 enum wl_prio_t serving_prio;
718eee05
CZ
218 enum wl_type_t serving_type;
219 unsigned long workload_expires;
cdb16e8f 220 struct cfq_group *serving_group;
8e550632 221 bool noidle_tree_requires_idle;
a36e71f9
JA
222
223 /*
224 * Each priority tree is sorted by next_request position. These
225 * trees are used when determining if two or more queues are
226 * interleaving requests (see cfq_close_cooperator).
227 */
228 struct rb_root prio_trees[CFQ_PRIO_LISTS];
229
22e2c507
JA
230 unsigned int busy_queues;
231
5ad531db 232 int rq_in_driver[2];
3ed9a296 233 int sync_flight;
45333d5a
AC
234
235 /*
236 * queue-depth detection
237 */
238 int rq_queued;
25776e35 239 int hw_tag;
e459dd08
CZ
240 /*
241 * hw_tag can be
242 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
243 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
244 * 0 => no NCQ
245 */
246 int hw_tag_est_depth;
247 unsigned int hw_tag_samples;
1da177e4 248
22e2c507
JA
249 /*
250 * idle window management
251 */
252 struct timer_list idle_slice_timer;
23e018a1 253 struct work_struct unplug_work;
1da177e4 254
22e2c507
JA
255 struct cfq_queue *active_queue;
256 struct cfq_io_context *active_cic;
22e2c507 257
c2dea2d1
VT
258 /*
259 * async queue for each priority case
260 */
261 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
262 struct cfq_queue *async_idle_cfqq;
15c31be4 263
6d048f53 264 sector_t last_position;
1da177e4 265
1da177e4
LT
266 /*
267 * tunables, see top of file
268 */
269 unsigned int cfq_quantum;
22e2c507 270 unsigned int cfq_fifo_expire[2];
1da177e4
LT
271 unsigned int cfq_back_penalty;
272 unsigned int cfq_back_max;
22e2c507
JA
273 unsigned int cfq_slice[2];
274 unsigned int cfq_slice_async_rq;
275 unsigned int cfq_slice_idle;
963b72fc 276 unsigned int cfq_latency;
ae30c286 277 unsigned int cfq_group_isolation;
d9ff4187
AV
278
279 struct list_head cic_list;
1da177e4 280
6118b70b
JA
281 /*
282 * Fallback dummy cfqq for extreme OOM conditions
283 */
284 struct cfq_queue oom_cfqq;
365722bb 285
573412b2 286 unsigned long last_delayed_sync;
25fb5169
VG
287
288 /* List of cfq groups being managed on this device*/
289 struct hlist_head cfqg_list;
bb729bc9 290 struct rcu_head rcu;
1da177e4
LT
291};
292
25fb5169
VG
293static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
294
cdb16e8f
VG
295static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
296 enum wl_prio_t prio,
718eee05 297 enum wl_type_t type,
c0324a02
CZ
298 struct cfq_data *cfqd)
299{
1fa8f6d6
VG
300 if (!cfqg)
301 return NULL;
302
c0324a02 303 if (prio == IDLE_WORKLOAD)
cdb16e8f 304 return &cfqg->service_tree_idle;
c0324a02 305
cdb16e8f 306 return &cfqg->service_trees[prio][type];
c0324a02
CZ
307}
308
3b18152c 309enum cfqq_state_flags {
b0b8d749
JA
310 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
311 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 312 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 313 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
314 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
315 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
316 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 317 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 318 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 319 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
76280aff 320 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 321 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
322};
323
324#define CFQ_CFQQ_FNS(name) \
325static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
326{ \
fe094d98 327 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
328} \
329static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
330{ \
fe094d98 331 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
332} \
333static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
334{ \
fe094d98 335 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
336}
337
338CFQ_CFQQ_FNS(on_rr);
339CFQ_CFQQ_FNS(wait_request);
b029195d 340CFQ_CFQQ_FNS(must_dispatch);
3b18152c 341CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
342CFQ_CFQQ_FNS(fifo_expire);
343CFQ_CFQQ_FNS(idle_window);
344CFQ_CFQQ_FNS(prio_changed);
44f7c160 345CFQ_CFQQ_FNS(slice_new);
91fac317 346CFQ_CFQQ_FNS(sync);
a36e71f9 347CFQ_CFQQ_FNS(coop);
76280aff 348CFQ_CFQQ_FNS(deep);
f75edf2d 349CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
350#undef CFQ_CFQQ_FNS
351
2868ef7b
VG
352#ifdef CONFIG_DEBUG_CFQ_IOSCHED
353#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
354 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
355 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
356 blkg_path(&(cfqq)->cfqg->blkg), ##args);
357
358#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
359 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
360 blkg_path(&(cfqg)->blkg), ##args); \
361
362#else
7b679138
JA
363#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
364 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
365#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
366#endif
7b679138
JA
367#define cfq_log(cfqd, fmt, args...) \
368 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
369
615f0259
VG
370/* Traverses through cfq group service trees */
371#define for_each_cfqg_st(cfqg, i, j, st) \
372 for (i = 0; i <= IDLE_WORKLOAD; i++) \
373 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
374 : &cfqg->service_tree_idle; \
375 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
376 (i == IDLE_WORKLOAD && j == 0); \
377 j++, st = i < IDLE_WORKLOAD ? \
378 &cfqg->service_trees[i][j]: NULL) \
379
380
c0324a02
CZ
381static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
382{
383 if (cfq_class_idle(cfqq))
384 return IDLE_WORKLOAD;
385 if (cfq_class_rt(cfqq))
386 return RT_WORKLOAD;
387 return BE_WORKLOAD;
388}
389
718eee05
CZ
390
391static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
392{
393 if (!cfq_cfqq_sync(cfqq))
394 return ASYNC_WORKLOAD;
395 if (!cfq_cfqq_idle_window(cfqq))
396 return SYNC_NOIDLE_WORKLOAD;
397 return SYNC_WORKLOAD;
398}
399
58ff82f3
VG
400static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
401 struct cfq_data *cfqd,
402 struct cfq_group *cfqg)
c0324a02
CZ
403{
404 if (wl == IDLE_WORKLOAD)
cdb16e8f 405 return cfqg->service_tree_idle.count;
c0324a02 406
cdb16e8f
VG
407 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
408 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
409 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
410}
411
f26bd1f0
VG
412static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
413 struct cfq_group *cfqg)
414{
415 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
416 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
417}
418
165125e1 419static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 420static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 421 struct io_context *, gfp_t);
4ac845a2 422static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
423 struct io_context *);
424
5ad531db
JA
425static inline int rq_in_driver(struct cfq_data *cfqd)
426{
427 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
428}
429
91fac317 430static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 431 bool is_sync)
91fac317 432{
a6151c3a 433 return cic->cfqq[is_sync];
91fac317
VT
434}
435
436static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 437 struct cfq_queue *cfqq, bool is_sync)
91fac317 438{
a6151c3a 439 cic->cfqq[is_sync] = cfqq;
91fac317
VT
440}
441
442/*
443 * We regard a request as SYNC, if it's either a read or has the SYNC bit
444 * set (in which case it could also be direct WRITE).
445 */
a6151c3a 446static inline bool cfq_bio_sync(struct bio *bio)
91fac317 447{
a6151c3a 448 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 449}
1da177e4 450
99f95e52
AM
451/*
452 * scheduler run of queue, if there are requests pending and no one in the
453 * driver that will restart queueing
454 */
23e018a1 455static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 456{
7b679138
JA
457 if (cfqd->busy_queues) {
458 cfq_log(cfqd, "schedule dispatch");
23e018a1 459 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 460 }
99f95e52
AM
461}
462
165125e1 463static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
464{
465 struct cfq_data *cfqd = q->elevator->elevator_data;
466
f04a6424 467 return !cfqd->rq_queued;
99f95e52
AM
468}
469
44f7c160
JA
470/*
471 * Scale schedule slice based on io priority. Use the sync time slice only
472 * if a queue is marked sync and has sync io queued. A sync queue with async
473 * io only, should not get full sync slice length.
474 */
a6151c3a 475static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 476 unsigned short prio)
44f7c160 477{
d9e7620e 478 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 479
d9e7620e
JA
480 WARN_ON(prio >= IOPRIO_BE_NR);
481
482 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
483}
44f7c160 484
d9e7620e
JA
485static inline int
486cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
487{
488 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
489}
490
25bc6b07
VG
491static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
492{
493 u64 d = delta << CFQ_SERVICE_SHIFT;
494
495 d = d * BLKIO_WEIGHT_DEFAULT;
496 do_div(d, cfqg->weight);
497 return d;
498}
499
500static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
501{
502 s64 delta = (s64)(vdisktime - min_vdisktime);
503 if (delta > 0)
504 min_vdisktime = vdisktime;
505
506 return min_vdisktime;
507}
508
509static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
510{
511 s64 delta = (s64)(vdisktime - min_vdisktime);
512 if (delta < 0)
513 min_vdisktime = vdisktime;
514
515 return min_vdisktime;
516}
517
518static void update_min_vdisktime(struct cfq_rb_root *st)
519{
520 u64 vdisktime = st->min_vdisktime;
521 struct cfq_group *cfqg;
522
523 if (st->active) {
524 cfqg = rb_entry_cfqg(st->active);
525 vdisktime = cfqg->vdisktime;
526 }
527
528 if (st->left) {
529 cfqg = rb_entry_cfqg(st->left);
530 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
531 }
532
533 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
534}
535
5db5d642
CZ
536/*
537 * get averaged number of queues of RT/BE priority.
538 * average is updated, with a formula that gives more weight to higher numbers,
539 * to quickly follows sudden increases and decrease slowly
540 */
541
58ff82f3
VG
542static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
543 struct cfq_group *cfqg, bool rt)
5869619c 544{
5db5d642
CZ
545 unsigned min_q, max_q;
546 unsigned mult = cfq_hist_divisor - 1;
547 unsigned round = cfq_hist_divisor / 2;
58ff82f3 548 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 549
58ff82f3
VG
550 min_q = min(cfqg->busy_queues_avg[rt], busy);
551 max_q = max(cfqg->busy_queues_avg[rt], busy);
552 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 553 cfq_hist_divisor;
58ff82f3
VG
554 return cfqg->busy_queues_avg[rt];
555}
556
557static inline unsigned
558cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
559{
560 struct cfq_rb_root *st = &cfqd->grp_service_tree;
561
562 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
563}
564
44f7c160
JA
565static inline void
566cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
567{
5db5d642
CZ
568 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
569 if (cfqd->cfq_latency) {
58ff82f3
VG
570 /*
571 * interested queues (we consider only the ones with the same
572 * priority class in the cfq group)
573 */
574 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
575 cfq_class_rt(cfqq));
5db5d642
CZ
576 unsigned sync_slice = cfqd->cfq_slice[1];
577 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
578 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
579
580 if (expect_latency > group_slice) {
5db5d642
CZ
581 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
582 /* scale low_slice according to IO priority
583 * and sync vs async */
584 unsigned low_slice =
585 min(slice, base_low_slice * slice / sync_slice);
586 /* the adapted slice value is scaled to fit all iqs
587 * into the target latency */
58ff82f3 588 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
589 low_slice);
590 }
591 }
dae739eb 592 cfqq->slice_start = jiffies;
5db5d642 593 cfqq->slice_end = jiffies + slice;
f75edf2d 594 cfqq->allocated_slice = slice;
7b679138 595 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
596}
597
598/*
599 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
600 * isn't valid until the first request from the dispatch is activated
601 * and the slice time set.
602 */
a6151c3a 603static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
604{
605 if (cfq_cfqq_slice_new(cfqq))
606 return 0;
607 if (time_before(jiffies, cfqq->slice_end))
608 return 0;
609
610 return 1;
611}
612
1da177e4 613/*
5e705374 614 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 615 * We choose the request that is closest to the head right now. Distance
e8a99053 616 * behind the head is penalized and only allowed to a certain extent.
1da177e4 617 */
5e705374 618static struct request *
cf7c25cf 619cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 620{
cf7c25cf 621 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 622 unsigned long back_max;
e8a99053
AM
623#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
624#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
625 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 626
5e705374
JA
627 if (rq1 == NULL || rq1 == rq2)
628 return rq2;
629 if (rq2 == NULL)
630 return rq1;
9c2c38a1 631
5e705374
JA
632 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
633 return rq1;
634 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
635 return rq2;
374f84ac
JA
636 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
637 return rq1;
638 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
639 return rq2;
1da177e4 640
83096ebf
TH
641 s1 = blk_rq_pos(rq1);
642 s2 = blk_rq_pos(rq2);
1da177e4 643
1da177e4
LT
644 /*
645 * by definition, 1KiB is 2 sectors
646 */
647 back_max = cfqd->cfq_back_max * 2;
648
649 /*
650 * Strict one way elevator _except_ in the case where we allow
651 * short backward seeks which are biased as twice the cost of a
652 * similar forward seek.
653 */
654 if (s1 >= last)
655 d1 = s1 - last;
656 else if (s1 + back_max >= last)
657 d1 = (last - s1) * cfqd->cfq_back_penalty;
658 else
e8a99053 659 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
660
661 if (s2 >= last)
662 d2 = s2 - last;
663 else if (s2 + back_max >= last)
664 d2 = (last - s2) * cfqd->cfq_back_penalty;
665 else
e8a99053 666 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
667
668 /* Found required data */
e8a99053
AM
669
670 /*
671 * By doing switch() on the bit mask "wrap" we avoid having to
672 * check two variables for all permutations: --> faster!
673 */
674 switch (wrap) {
5e705374 675 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 676 if (d1 < d2)
5e705374 677 return rq1;
e8a99053 678 else if (d2 < d1)
5e705374 679 return rq2;
e8a99053
AM
680 else {
681 if (s1 >= s2)
5e705374 682 return rq1;
e8a99053 683 else
5e705374 684 return rq2;
e8a99053 685 }
1da177e4 686
e8a99053 687 case CFQ_RQ2_WRAP:
5e705374 688 return rq1;
e8a99053 689 case CFQ_RQ1_WRAP:
5e705374
JA
690 return rq2;
691 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
692 default:
693 /*
694 * Since both rqs are wrapped,
695 * start with the one that's further behind head
696 * (--> only *one* back seek required),
697 * since back seek takes more time than forward.
698 */
699 if (s1 <= s2)
5e705374 700 return rq1;
1da177e4 701 else
5e705374 702 return rq2;
1da177e4
LT
703 }
704}
705
498d3aa2
JA
706/*
707 * The below is leftmost cache rbtree addon
708 */
0871714e 709static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 710{
615f0259
VG
711 /* Service tree is empty */
712 if (!root->count)
713 return NULL;
714
cc09e299
JA
715 if (!root->left)
716 root->left = rb_first(&root->rb);
717
0871714e
JA
718 if (root->left)
719 return rb_entry(root->left, struct cfq_queue, rb_node);
720
721 return NULL;
cc09e299
JA
722}
723
1fa8f6d6
VG
724static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
725{
726 if (!root->left)
727 root->left = rb_first(&root->rb);
728
729 if (root->left)
730 return rb_entry_cfqg(root->left);
731
732 return NULL;
733}
734
a36e71f9
JA
735static void rb_erase_init(struct rb_node *n, struct rb_root *root)
736{
737 rb_erase(n, root);
738 RB_CLEAR_NODE(n);
739}
740
cc09e299
JA
741static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
742{
743 if (root->left == n)
744 root->left = NULL;
a36e71f9 745 rb_erase_init(n, &root->rb);
aa6f6a3d 746 --root->count;
cc09e299
JA
747}
748
1da177e4
LT
749/*
750 * would be nice to take fifo expire time into account as well
751 */
5e705374
JA
752static struct request *
753cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
754 struct request *last)
1da177e4 755{
21183b07
JA
756 struct rb_node *rbnext = rb_next(&last->rb_node);
757 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 758 struct request *next = NULL, *prev = NULL;
1da177e4 759
21183b07 760 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
761
762 if (rbprev)
5e705374 763 prev = rb_entry_rq(rbprev);
1da177e4 764
21183b07 765 if (rbnext)
5e705374 766 next = rb_entry_rq(rbnext);
21183b07
JA
767 else {
768 rbnext = rb_first(&cfqq->sort_list);
769 if (rbnext && rbnext != &last->rb_node)
5e705374 770 next = rb_entry_rq(rbnext);
21183b07 771 }
1da177e4 772
cf7c25cf 773 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
774}
775
d9e7620e
JA
776static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
777 struct cfq_queue *cfqq)
1da177e4 778{
d9e7620e
JA
779 /*
780 * just an approximation, should be ok.
781 */
cdb16e8f 782 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 783 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
784}
785
1fa8f6d6
VG
786static inline s64
787cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
788{
789 return cfqg->vdisktime - st->min_vdisktime;
790}
791
792static void
793__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
794{
795 struct rb_node **node = &st->rb.rb_node;
796 struct rb_node *parent = NULL;
797 struct cfq_group *__cfqg;
798 s64 key = cfqg_key(st, cfqg);
799 int left = 1;
800
801 while (*node != NULL) {
802 parent = *node;
803 __cfqg = rb_entry_cfqg(parent);
804
805 if (key < cfqg_key(st, __cfqg))
806 node = &parent->rb_left;
807 else {
808 node = &parent->rb_right;
809 left = 0;
810 }
811 }
812
813 if (left)
814 st->left = &cfqg->rb_node;
815
816 rb_link_node(&cfqg->rb_node, parent, node);
817 rb_insert_color(&cfqg->rb_node, &st->rb);
818}
819
820static void
821cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
822{
823 struct cfq_rb_root *st = &cfqd->grp_service_tree;
824 struct cfq_group *__cfqg;
825 struct rb_node *n;
826
827 cfqg->nr_cfqq++;
828 if (cfqg->on_st)
829 return;
830
831 /*
832 * Currently put the group at the end. Later implement something
833 * so that groups get lesser vtime based on their weights, so that
834 * if group does not loose all if it was not continously backlogged.
835 */
836 n = rb_last(&st->rb);
837 if (n) {
838 __cfqg = rb_entry_cfqg(n);
839 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
840 } else
841 cfqg->vdisktime = st->min_vdisktime;
842
843 __cfq_group_service_tree_add(st, cfqg);
844 cfqg->on_st = true;
58ff82f3
VG
845 cfqd->nr_groups++;
846 st->total_weight += cfqg->weight;
1fa8f6d6
VG
847}
848
849static void
850cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
851{
852 struct cfq_rb_root *st = &cfqd->grp_service_tree;
853
25bc6b07
VG
854 if (st->active == &cfqg->rb_node)
855 st->active = NULL;
856
1fa8f6d6
VG
857 BUG_ON(cfqg->nr_cfqq < 1);
858 cfqg->nr_cfqq--;
25bc6b07 859
1fa8f6d6
VG
860 /* If there are other cfq queues under this group, don't delete it */
861 if (cfqg->nr_cfqq)
862 return;
863
2868ef7b 864 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1fa8f6d6 865 cfqg->on_st = false;
58ff82f3
VG
866 cfqd->nr_groups--;
867 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
868 if (!RB_EMPTY_NODE(&cfqg->rb_node))
869 cfq_rb_erase(&cfqg->rb_node, st);
dae739eb 870 cfqg->saved_workload_slice = 0;
22084190 871 blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
872}
873
874static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
875{
f75edf2d 876 unsigned int slice_used;
dae739eb
VG
877
878 /*
879 * Queue got expired before even a single request completed or
880 * got expired immediately after first request completion.
881 */
882 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
883 /*
884 * Also charge the seek time incurred to the group, otherwise
885 * if there are mutiple queues in the group, each can dispatch
886 * a single request on seeky media and cause lots of seek time
887 * and group will never know it.
888 */
889 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
890 1);
891 } else {
892 slice_used = jiffies - cfqq->slice_start;
f75edf2d
VG
893 if (slice_used > cfqq->allocated_slice)
894 slice_used = cfqq->allocated_slice;
dae739eb
VG
895 }
896
22084190
VG
897 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
898 cfqq->nr_sectors);
dae739eb
VG
899 return slice_used;
900}
901
902static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
903 struct cfq_queue *cfqq)
904{
905 struct cfq_rb_root *st = &cfqd->grp_service_tree;
f26bd1f0
VG
906 unsigned int used_sl, charge_sl;
907 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
908 - cfqg->service_tree_idle.count;
909
910 BUG_ON(nr_sync < 0);
911 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
dae739eb 912
f26bd1f0
VG
913 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
914 charge_sl = cfqq->allocated_slice;
dae739eb
VG
915
916 /* Can't update vdisktime while group is on service tree */
917 cfq_rb_erase(&cfqg->rb_node, st);
f26bd1f0 918 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
dae739eb
VG
919 __cfq_group_service_tree_add(st, cfqg);
920
921 /* This group is being expired. Save the context */
922 if (time_after(cfqd->workload_expires, jiffies)) {
923 cfqg->saved_workload_slice = cfqd->workload_expires
924 - jiffies;
925 cfqg->saved_workload = cfqd->serving_type;
926 cfqg->saved_serving_prio = cfqd->serving_prio;
927 } else
928 cfqg->saved_workload_slice = 0;
2868ef7b
VG
929
930 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
931 st->min_vdisktime);
22084190
VG
932 blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
933 cfqq->nr_sectors);
1fa8f6d6
VG
934}
935
25fb5169
VG
936#ifdef CONFIG_CFQ_GROUP_IOSCHED
937static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
938{
939 if (blkg)
940 return container_of(blkg, struct cfq_group, blkg);
941 return NULL;
942}
943
f8d461d6
VG
944void
945cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
946{
947 cfqg_of_blkg(blkg)->weight = weight;
948}
949
25fb5169
VG
950static struct cfq_group *
951cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
952{
953 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
954 struct cfq_group *cfqg = NULL;
955 void *key = cfqd;
956 int i, j;
957 struct cfq_rb_root *st;
22084190
VG
958 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
959 unsigned int major, minor;
25fb5169
VG
960
961 /* Do we need to take this reference */
9d6a986c 962 if (!blkiocg_css_tryget(blkcg))
25fb5169
VG
963 return NULL;;
964
965 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
966 if (cfqg || !create)
967 goto done;
968
969 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
970 if (!cfqg)
971 goto done;
972
973 cfqg->weight = blkcg->weight;
974 for_each_cfqg_st(cfqg, i, j, st)
975 *st = CFQ_RB_ROOT;
976 RB_CLEAR_NODE(&cfqg->rb_node);
977
b1c35769
VG
978 /*
979 * Take the initial reference that will be released on destroy
980 * This can be thought of a joint reference by cgroup and
981 * elevator which will be dropped by either elevator exit
982 * or cgroup deletion path depending on who is exiting first.
983 */
984 atomic_set(&cfqg->ref, 1);
985
25fb5169 986 /* Add group onto cgroup list */
22084190
VG
987 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
988 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
989 MKDEV(major, minor));
25fb5169
VG
990
991 /* Add group on cfqd list */
992 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
993
994done:
9d6a986c 995 blkiocg_css_put(blkcg);
25fb5169
VG
996 return cfqg;
997}
998
999/*
1000 * Search for the cfq group current task belongs to. If create = 1, then also
1001 * create the cfq group if it does not exist. request_queue lock must be held.
1002 */
1003static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1004{
1005 struct cgroup *cgroup;
1006 struct cfq_group *cfqg = NULL;
1007
1008 rcu_read_lock();
1009 cgroup = task_cgroup(current, blkio_subsys_id);
1010 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1011 if (!cfqg && create)
1012 cfqg = &cfqd->root_group;
1013 rcu_read_unlock();
1014 return cfqg;
1015}
1016
1017static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1018{
1019 /* Currently, all async queues are mapped to root group */
1020 if (!cfq_cfqq_sync(cfqq))
1021 cfqg = &cfqq->cfqd->root_group;
1022
1023 cfqq->cfqg = cfqg;
b1c35769
VG
1024 /* cfqq reference on cfqg */
1025 atomic_inc(&cfqq->cfqg->ref);
1026}
1027
1028static void cfq_put_cfqg(struct cfq_group *cfqg)
1029{
1030 struct cfq_rb_root *st;
1031 int i, j;
1032
1033 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1034 if (!atomic_dec_and_test(&cfqg->ref))
1035 return;
1036 for_each_cfqg_st(cfqg, i, j, st)
1037 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1038 kfree(cfqg);
1039}
1040
1041static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1042{
1043 /* Something wrong if we are trying to remove same group twice */
1044 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1045
1046 hlist_del_init(&cfqg->cfqd_node);
1047
1048 /*
1049 * Put the reference taken at the time of creation so that when all
1050 * queues are gone, group can be destroyed.
1051 */
1052 cfq_put_cfqg(cfqg);
1053}
1054
1055static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1056{
1057 struct hlist_node *pos, *n;
1058 struct cfq_group *cfqg;
1059
1060 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1061 /*
1062 * If cgroup removal path got to blk_group first and removed
1063 * it from cgroup list, then it will take care of destroying
1064 * cfqg also.
1065 */
1066 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1067 cfq_destroy_cfqg(cfqd, cfqg);
1068 }
25fb5169 1069}
b1c35769
VG
1070
1071/*
1072 * Blk cgroup controller notification saying that blkio_group object is being
1073 * delinked as associated cgroup object is going away. That also means that
1074 * no new IO will come in this group. So get rid of this group as soon as
1075 * any pending IO in the group is finished.
1076 *
1077 * This function is called under rcu_read_lock(). key is the rcu protected
1078 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1079 * read lock.
1080 *
1081 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1082 * it should not be NULL as even if elevator was exiting, cgroup deltion
1083 * path got to it first.
1084 */
1085void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1086{
1087 unsigned long flags;
1088 struct cfq_data *cfqd = key;
1089
1090 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1091 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1092 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1093}
1094
25fb5169
VG
1095#else /* GROUP_IOSCHED */
1096static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1097{
1098 return &cfqd->root_group;
1099}
1100static inline void
1101cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1102 cfqq->cfqg = cfqg;
1103}
1104
b1c35769
VG
1105static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1106static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1107
25fb5169
VG
1108#endif /* GROUP_IOSCHED */
1109
498d3aa2 1110/*
c0324a02 1111 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1112 * requests waiting to be processed. It is sorted in the order that
1113 * we will service the queues.
1114 */
a36e71f9 1115static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1116 bool add_front)
d9e7620e 1117{
0871714e
JA
1118 struct rb_node **p, *parent;
1119 struct cfq_queue *__cfqq;
d9e7620e 1120 unsigned long rb_key;
c0324a02 1121 struct cfq_rb_root *service_tree;
498d3aa2 1122 int left;
dae739eb 1123 int new_cfqq = 1;
ae30c286
VG
1124 int group_changed = 0;
1125
1126#ifdef CONFIG_CFQ_GROUP_IOSCHED
1127 if (!cfqd->cfq_group_isolation
1128 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1129 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1130 /* Move this cfq to root group */
1131 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1132 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1133 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1134 cfqq->orig_cfqg = cfqq->cfqg;
1135 cfqq->cfqg = &cfqd->root_group;
1136 atomic_inc(&cfqd->root_group.ref);
1137 group_changed = 1;
1138 } else if (!cfqd->cfq_group_isolation
1139 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1140 /* cfqq is sequential now needs to go to its original group */
1141 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1142 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1143 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1144 cfq_put_cfqg(cfqq->cfqg);
1145 cfqq->cfqg = cfqq->orig_cfqg;
1146 cfqq->orig_cfqg = NULL;
1147 group_changed = 1;
1148 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1149 }
1150#endif
d9e7620e 1151
cdb16e8f
VG
1152 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1153 cfqq_type(cfqq), cfqd);
0871714e
JA
1154 if (cfq_class_idle(cfqq)) {
1155 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1156 parent = rb_last(&service_tree->rb);
0871714e
JA
1157 if (parent && parent != &cfqq->rb_node) {
1158 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1159 rb_key += __cfqq->rb_key;
1160 } else
1161 rb_key += jiffies;
1162 } else if (!add_front) {
b9c8946b
JA
1163 /*
1164 * Get our rb key offset. Subtract any residual slice
1165 * value carried from last service. A negative resid
1166 * count indicates slice overrun, and this should position
1167 * the next service time further away in the tree.
1168 */
edd75ffd 1169 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1170 rb_key -= cfqq->slice_resid;
edd75ffd 1171 cfqq->slice_resid = 0;
48e025e6
CZ
1172 } else {
1173 rb_key = -HZ;
aa6f6a3d 1174 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1175 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1176 }
1da177e4 1177
d9e7620e 1178 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1179 new_cfqq = 0;
99f9628a 1180 /*
d9e7620e 1181 * same position, nothing more to do
99f9628a 1182 */
c0324a02
CZ
1183 if (rb_key == cfqq->rb_key &&
1184 cfqq->service_tree == service_tree)
d9e7620e 1185 return;
1da177e4 1186
aa6f6a3d
CZ
1187 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1188 cfqq->service_tree = NULL;
1da177e4 1189 }
d9e7620e 1190
498d3aa2 1191 left = 1;
0871714e 1192 parent = NULL;
aa6f6a3d
CZ
1193 cfqq->service_tree = service_tree;
1194 p = &service_tree->rb.rb_node;
d9e7620e 1195 while (*p) {
67060e37 1196 struct rb_node **n;
cc09e299 1197
d9e7620e
JA
1198 parent = *p;
1199 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1200
0c534e0a 1201 /*
c0324a02 1202 * sort by key, that represents service time.
0c534e0a 1203 */
c0324a02 1204 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1205 n = &(*p)->rb_left;
c0324a02 1206 else {
67060e37 1207 n = &(*p)->rb_right;
cc09e299 1208 left = 0;
c0324a02 1209 }
67060e37
JA
1210
1211 p = n;
d9e7620e
JA
1212 }
1213
cc09e299 1214 if (left)
aa6f6a3d 1215 service_tree->left = &cfqq->rb_node;
cc09e299 1216
d9e7620e
JA
1217 cfqq->rb_key = rb_key;
1218 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1219 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1220 service_tree->count++;
ae30c286 1221 if ((add_front || !new_cfqq) && !group_changed)
dae739eb 1222 return;
1fa8f6d6 1223 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
1224}
1225
a36e71f9 1226static struct cfq_queue *
f2d1f0ae
JA
1227cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1228 sector_t sector, struct rb_node **ret_parent,
1229 struct rb_node ***rb_link)
a36e71f9 1230{
a36e71f9
JA
1231 struct rb_node **p, *parent;
1232 struct cfq_queue *cfqq = NULL;
1233
1234 parent = NULL;
1235 p = &root->rb_node;
1236 while (*p) {
1237 struct rb_node **n;
1238
1239 parent = *p;
1240 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1241
1242 /*
1243 * Sort strictly based on sector. Smallest to the left,
1244 * largest to the right.
1245 */
2e46e8b2 1246 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1247 n = &(*p)->rb_right;
2e46e8b2 1248 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1249 n = &(*p)->rb_left;
1250 else
1251 break;
1252 p = n;
3ac6c9f8 1253 cfqq = NULL;
a36e71f9
JA
1254 }
1255
1256 *ret_parent = parent;
1257 if (rb_link)
1258 *rb_link = p;
3ac6c9f8 1259 return cfqq;
a36e71f9
JA
1260}
1261
1262static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1263{
a36e71f9
JA
1264 struct rb_node **p, *parent;
1265 struct cfq_queue *__cfqq;
1266
f2d1f0ae
JA
1267 if (cfqq->p_root) {
1268 rb_erase(&cfqq->p_node, cfqq->p_root);
1269 cfqq->p_root = NULL;
1270 }
a36e71f9
JA
1271
1272 if (cfq_class_idle(cfqq))
1273 return;
1274 if (!cfqq->next_rq)
1275 return;
1276
f2d1f0ae 1277 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1278 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1279 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1280 if (!__cfqq) {
1281 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1282 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1283 } else
1284 cfqq->p_root = NULL;
a36e71f9
JA
1285}
1286
498d3aa2
JA
1287/*
1288 * Update cfqq's position in the service tree.
1289 */
edd75ffd 1290static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1291{
6d048f53
JA
1292 /*
1293 * Resorting requires the cfqq to be on the RR list already.
1294 */
a36e71f9 1295 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1296 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1297 cfq_prio_tree_add(cfqd, cfqq);
1298 }
6d048f53
JA
1299}
1300
1da177e4
LT
1301/*
1302 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1303 * the pending list according to last request service
1da177e4 1304 */
febffd61 1305static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1306{
7b679138 1307 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1308 BUG_ON(cfq_cfqq_on_rr(cfqq));
1309 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
1310 cfqd->busy_queues++;
1311
edd75ffd 1312 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1313}
1314
498d3aa2
JA
1315/*
1316 * Called when the cfqq no longer has requests pending, remove it from
1317 * the service tree.
1318 */
febffd61 1319static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1320{
7b679138 1321 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1322 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1323 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1324
aa6f6a3d
CZ
1325 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1326 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1327 cfqq->service_tree = NULL;
1328 }
f2d1f0ae
JA
1329 if (cfqq->p_root) {
1330 rb_erase(&cfqq->p_node, cfqq->p_root);
1331 cfqq->p_root = NULL;
1332 }
d9e7620e 1333
1fa8f6d6 1334 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1335 BUG_ON(!cfqd->busy_queues);
1336 cfqd->busy_queues--;
1337}
1338
1339/*
1340 * rb tree support functions
1341 */
febffd61 1342static void cfq_del_rq_rb(struct request *rq)
1da177e4 1343{
5e705374 1344 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1345 const int sync = rq_is_sync(rq);
1da177e4 1346
b4878f24
JA
1347 BUG_ON(!cfqq->queued[sync]);
1348 cfqq->queued[sync]--;
1da177e4 1349
5e705374 1350 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1351
f04a6424
VG
1352 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1353 /*
1354 * Queue will be deleted from service tree when we actually
1355 * expire it later. Right now just remove it from prio tree
1356 * as it is empty.
1357 */
1358 if (cfqq->p_root) {
1359 rb_erase(&cfqq->p_node, cfqq->p_root);
1360 cfqq->p_root = NULL;
1361 }
1362 }
1da177e4
LT
1363}
1364
5e705374 1365static void cfq_add_rq_rb(struct request *rq)
1da177e4 1366{
5e705374 1367 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1368 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1369 struct request *__alias, *prev;
1da177e4 1370
5380a101 1371 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1372
1373 /*
1374 * looks a little odd, but the first insert might return an alias.
1375 * if that happens, put the alias on the dispatch list
1376 */
21183b07 1377 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1378 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1379
1380 if (!cfq_cfqq_on_rr(cfqq))
1381 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1382
1383 /*
1384 * check if this request is a better next-serve candidate
1385 */
a36e71f9 1386 prev = cfqq->next_rq;
cf7c25cf 1387 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1388
1389 /*
1390 * adjust priority tree position, if ->next_rq changes
1391 */
1392 if (prev != cfqq->next_rq)
1393 cfq_prio_tree_add(cfqd, cfqq);
1394
5044eed4 1395 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1396}
1397
febffd61 1398static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1399{
5380a101
JA
1400 elv_rb_del(&cfqq->sort_list, rq);
1401 cfqq->queued[rq_is_sync(rq)]--;
5e705374 1402 cfq_add_rq_rb(rq);
1da177e4
LT
1403}
1404
206dc69b
JA
1405static struct request *
1406cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1407{
206dc69b 1408 struct task_struct *tsk = current;
91fac317 1409 struct cfq_io_context *cic;
206dc69b 1410 struct cfq_queue *cfqq;
1da177e4 1411
4ac845a2 1412 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1413 if (!cic)
1414 return NULL;
1415
1416 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1417 if (cfqq) {
1418 sector_t sector = bio->bi_sector + bio_sectors(bio);
1419
21183b07 1420 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1421 }
1da177e4 1422
1da177e4
LT
1423 return NULL;
1424}
1425
165125e1 1426static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1427{
22e2c507 1428 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1429
5ad531db 1430 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 1431 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 1432 rq_in_driver(cfqd));
25776e35 1433
5b93629b 1434 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1435}
1436
165125e1 1437static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1438{
b4878f24 1439 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 1440 const int sync = rq_is_sync(rq);
b4878f24 1441
5ad531db
JA
1442 WARN_ON(!cfqd->rq_in_driver[sync]);
1443 cfqd->rq_in_driver[sync]--;
7b679138 1444 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 1445 rq_in_driver(cfqd));
1da177e4
LT
1446}
1447
b4878f24 1448static void cfq_remove_request(struct request *rq)
1da177e4 1449{
5e705374 1450 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1451
5e705374
JA
1452 if (cfqq->next_rq == rq)
1453 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1454
b4878f24 1455 list_del_init(&rq->queuelist);
5e705374 1456 cfq_del_rq_rb(rq);
374f84ac 1457
45333d5a 1458 cfqq->cfqd->rq_queued--;
374f84ac
JA
1459 if (rq_is_meta(rq)) {
1460 WARN_ON(!cfqq->meta_pending);
1461 cfqq->meta_pending--;
1462 }
1da177e4
LT
1463}
1464
165125e1
JA
1465static int cfq_merge(struct request_queue *q, struct request **req,
1466 struct bio *bio)
1da177e4
LT
1467{
1468 struct cfq_data *cfqd = q->elevator->elevator_data;
1469 struct request *__rq;
1da177e4 1470
206dc69b 1471 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1472 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1473 *req = __rq;
1474 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1475 }
1476
1477 return ELEVATOR_NO_MERGE;
1da177e4
LT
1478}
1479
165125e1 1480static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1481 int type)
1da177e4 1482{
21183b07 1483 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1484 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1485
5e705374 1486 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1487 }
1da177e4
LT
1488}
1489
1490static void
165125e1 1491cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1492 struct request *next)
1493{
cf7c25cf 1494 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1495 /*
1496 * reposition in fifo if next is older than rq
1497 */
1498 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1499 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1500 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1501 rq_set_fifo_time(rq, rq_fifo_time(next));
1502 }
22e2c507 1503
cf7c25cf
CZ
1504 if (cfqq->next_rq == next)
1505 cfqq->next_rq = rq;
b4878f24 1506 cfq_remove_request(next);
22e2c507
JA
1507}
1508
165125e1 1509static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1510 struct bio *bio)
1511{
1512 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1513 struct cfq_io_context *cic;
da775265 1514 struct cfq_queue *cfqq;
da775265 1515
8682e1f1
VG
1516 /* Deny merge if bio and rq don't belong to same cfq group */
1517 if ((RQ_CFQQ(rq))->cfqg != cfq_get_cfqg(cfqd, 0))
1518 return false;
da775265 1519 /*
ec8acb69 1520 * Disallow merge of a sync bio into an async request.
da775265 1521 */
91fac317 1522 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1523 return false;
da775265
JA
1524
1525 /*
719d3402
JA
1526 * Lookup the cfqq that this bio will be queued with. Allow
1527 * merge only if rq is queued there.
da775265 1528 */
4ac845a2 1529 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1530 if (!cic)
a6151c3a 1531 return false;
719d3402 1532
91fac317 1533 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1534 return cfqq == RQ_CFQQ(rq);
da775265
JA
1535}
1536
febffd61
JA
1537static void __cfq_set_active_queue(struct cfq_data *cfqd,
1538 struct cfq_queue *cfqq)
22e2c507
JA
1539{
1540 if (cfqq) {
7b679138 1541 cfq_log_cfqq(cfqd, cfqq, "set_active");
dae739eb
VG
1542 cfqq->slice_start = 0;
1543 cfqq->dispatch_start = jiffies;
f75edf2d 1544 cfqq->allocated_slice = 0;
22e2c507 1545 cfqq->slice_end = 0;
2f5cb738 1546 cfqq->slice_dispatch = 0;
22084190 1547 cfqq->nr_sectors = 0;
2f5cb738 1548
2f5cb738 1549 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1550 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1551 cfq_clear_cfqq_must_alloc_slice(cfqq);
1552 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1553 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
1554
1555 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
1556 }
1557
1558 cfqd->active_queue = cfqq;
1559}
1560
7b14e3b5
JA
1561/*
1562 * current cfqq expired its slice (or was too idle), select new one
1563 */
1564static void
1565__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1566 bool timed_out)
7b14e3b5 1567{
7b679138
JA
1568 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1569
7b14e3b5
JA
1570 if (cfq_cfqq_wait_request(cfqq))
1571 del_timer(&cfqd->idle_slice_timer);
1572
7b14e3b5 1573 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1574 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5
JA
1575
1576 /*
6084cdda 1577 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1578 */
7b679138 1579 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1580 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1581 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1582 }
7b14e3b5 1583
dae739eb
VG
1584 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1585
f04a6424
VG
1586 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1587 cfq_del_cfqq_rr(cfqd, cfqq);
1588
edd75ffd 1589 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1590
1591 if (cfqq == cfqd->active_queue)
1592 cfqd->active_queue = NULL;
1593
dae739eb
VG
1594 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1595 cfqd->grp_service_tree.active = NULL;
1596
7b14e3b5
JA
1597 if (cfqd->active_cic) {
1598 put_io_context(cfqd->active_cic->ioc);
1599 cfqd->active_cic = NULL;
1600 }
7b14e3b5
JA
1601}
1602
a6151c3a 1603static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1604{
1605 struct cfq_queue *cfqq = cfqd->active_queue;
1606
1607 if (cfqq)
6084cdda 1608 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1609}
1610
498d3aa2
JA
1611/*
1612 * Get next queue for service. Unless we have a queue preemption,
1613 * we'll simply select the first cfqq in the service tree.
1614 */
6d048f53 1615static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1616{
c0324a02 1617 struct cfq_rb_root *service_tree =
cdb16e8f
VG
1618 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1619 cfqd->serving_type, cfqd);
d9e7620e 1620
f04a6424
VG
1621 if (!cfqd->rq_queued)
1622 return NULL;
1623
1fa8f6d6
VG
1624 /* There is nothing to dispatch */
1625 if (!service_tree)
1626 return NULL;
c0324a02
CZ
1627 if (RB_EMPTY_ROOT(&service_tree->rb))
1628 return NULL;
1629 return cfq_rb_first(service_tree);
6d048f53
JA
1630}
1631
f04a6424
VG
1632static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1633{
25fb5169 1634 struct cfq_group *cfqg;
f04a6424
VG
1635 struct cfq_queue *cfqq;
1636 int i, j;
1637 struct cfq_rb_root *st;
1638
1639 if (!cfqd->rq_queued)
1640 return NULL;
1641
25fb5169
VG
1642 cfqg = cfq_get_next_cfqg(cfqd);
1643 if (!cfqg)
1644 return NULL;
1645
f04a6424
VG
1646 for_each_cfqg_st(cfqg, i, j, st)
1647 if ((cfqq = cfq_rb_first(st)) != NULL)
1648 return cfqq;
1649 return NULL;
1650}
1651
498d3aa2
JA
1652/*
1653 * Get and set a new active queue for service.
1654 */
a36e71f9
JA
1655static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1656 struct cfq_queue *cfqq)
6d048f53 1657{
e00ef799 1658 if (!cfqq)
a36e71f9 1659 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1660
22e2c507 1661 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1662 return cfqq;
22e2c507
JA
1663}
1664
d9e7620e
JA
1665static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1666 struct request *rq)
1667{
83096ebf
TH
1668 if (blk_rq_pos(rq) >= cfqd->last_position)
1669 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1670 else
83096ebf 1671 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1672}
1673
b2c18e1e
JM
1674#define CFQQ_SEEK_THR 8 * 1024
1675#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
04dc6e71 1676
b2c18e1e
JM
1677static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1678 struct request *rq)
6d048f53 1679{
b2c18e1e 1680 sector_t sdist = cfqq->seek_mean;
6d048f53 1681
b2c18e1e
JM
1682 if (!sample_valid(cfqq->seek_samples))
1683 sdist = CFQQ_SEEK_THR;
6d048f53 1684
04dc6e71 1685 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
1686}
1687
a36e71f9
JA
1688static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1689 struct cfq_queue *cur_cfqq)
1690{
f2d1f0ae 1691 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1692 struct rb_node *parent, *node;
1693 struct cfq_queue *__cfqq;
1694 sector_t sector = cfqd->last_position;
1695
1696 if (RB_EMPTY_ROOT(root))
1697 return NULL;
1698
1699 /*
1700 * First, if we find a request starting at the end of the last
1701 * request, choose it.
1702 */
f2d1f0ae 1703 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1704 if (__cfqq)
1705 return __cfqq;
1706
1707 /*
1708 * If the exact sector wasn't found, the parent of the NULL leaf
1709 * will contain the closest sector.
1710 */
1711 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
b2c18e1e 1712 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1713 return __cfqq;
1714
2e46e8b2 1715 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1716 node = rb_next(&__cfqq->p_node);
1717 else
1718 node = rb_prev(&__cfqq->p_node);
1719 if (!node)
1720 return NULL;
1721
1722 __cfqq = rb_entry(node, struct cfq_queue, p_node);
b2c18e1e 1723 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1724 return __cfqq;
1725
1726 return NULL;
1727}
1728
1729/*
1730 * cfqd - obvious
1731 * cur_cfqq - passed in so that we don't decide that the current queue is
1732 * closely cooperating with itself.
1733 *
1734 * So, basically we're assuming that that cur_cfqq has dispatched at least
1735 * one request, and that cfqd->last_position reflects a position on the disk
1736 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1737 * assumption.
1738 */
1739static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1740 struct cfq_queue *cur_cfqq)
6d048f53 1741{
a36e71f9
JA
1742 struct cfq_queue *cfqq;
1743
e6c5bc73
JM
1744 if (!cfq_cfqq_sync(cur_cfqq))
1745 return NULL;
1746 if (CFQQ_SEEKY(cur_cfqq))
1747 return NULL;
1748
b9d8f4c7
GJ
1749 /*
1750 * Don't search priority tree if it's the only queue in the group.
1751 */
1752 if (cur_cfqq->cfqg->nr_cfqq == 1)
1753 return NULL;
1754
6d048f53 1755 /*
d9e7620e
JA
1756 * We should notice if some of the queues are cooperating, eg
1757 * working closely on the same area of the disk. In that case,
1758 * we can group them together and don't waste time idling.
6d048f53 1759 */
a36e71f9
JA
1760 cfqq = cfqq_close(cfqd, cur_cfqq);
1761 if (!cfqq)
1762 return NULL;
1763
8682e1f1
VG
1764 /* If new queue belongs to different cfq_group, don't choose it */
1765 if (cur_cfqq->cfqg != cfqq->cfqg)
1766 return NULL;
1767
df5fe3e8
JM
1768 /*
1769 * It only makes sense to merge sync queues.
1770 */
1771 if (!cfq_cfqq_sync(cfqq))
1772 return NULL;
e6c5bc73
JM
1773 if (CFQQ_SEEKY(cfqq))
1774 return NULL;
df5fe3e8 1775
c0324a02
CZ
1776 /*
1777 * Do not merge queues of different priority classes
1778 */
1779 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1780 return NULL;
1781
a36e71f9 1782 return cfqq;
6d048f53
JA
1783}
1784
a6d44e98
CZ
1785/*
1786 * Determine whether we should enforce idle window for this queue.
1787 */
1788
1789static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1790{
1791 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1792 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1793
f04a6424
VG
1794 BUG_ON(!service_tree);
1795 BUG_ON(!service_tree->count);
1796
a6d44e98
CZ
1797 /* We never do for idle class queues. */
1798 if (prio == IDLE_WORKLOAD)
1799 return false;
1800
1801 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1802 if (cfq_cfqq_idle_window(cfqq) &&
1803 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1804 return true;
1805
1806 /*
1807 * Otherwise, we do only if they are the last ones
1808 * in their service tree.
1809 */
f04a6424 1810 return service_tree->count == 1;
a6d44e98
CZ
1811}
1812
6d048f53 1813static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1814{
1792669c 1815 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1816 struct cfq_io_context *cic;
7b14e3b5
JA
1817 unsigned long sl;
1818
a68bbddb 1819 /*
f7d7b7a7
JA
1820 * SSD device without seek penalty, disable idling. But only do so
1821 * for devices that support queuing, otherwise we still have a problem
1822 * with sync vs async workloads.
a68bbddb 1823 */
f7d7b7a7 1824 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1825 return;
1826
dd67d051 1827 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1828 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1829
1830 /*
1831 * idle is disabled, either manually or by past process history
1832 */
a6d44e98 1833 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1834 return;
1835
7b679138 1836 /*
8e550632 1837 * still active requests from this queue, don't idle
7b679138 1838 */
8e550632 1839 if (cfqq->dispatched)
7b679138
JA
1840 return;
1841
22e2c507
JA
1842 /*
1843 * task has exited, don't wait
1844 */
206dc69b 1845 cic = cfqd->active_cic;
66dac98e 1846 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1847 return;
1848
355b659c
CZ
1849 /*
1850 * If our average think time is larger than the remaining time
1851 * slice, then don't idle. This avoids overrunning the allotted
1852 * time slice.
1853 */
1854 if (sample_valid(cic->ttime_samples) &&
1855 (cfqq->slice_end - jiffies < cic->ttime_mean))
1856 return;
1857
3b18152c 1858 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1859
6d048f53 1860 sl = cfqd->cfq_slice_idle;
206dc69b 1861
7b14e3b5 1862 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1863 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1864}
1865
498d3aa2
JA
1866/*
1867 * Move request from internal lists to the request queue dispatch list.
1868 */
165125e1 1869static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1870{
3ed9a296 1871 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1872 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1873
7b679138
JA
1874 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1875
06d21886 1876 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1877 cfq_remove_request(rq);
6d048f53 1878 cfqq->dispatched++;
5380a101 1879 elv_dispatch_sort(q, rq);
3ed9a296
JA
1880
1881 if (cfq_cfqq_sync(cfqq))
1882 cfqd->sync_flight++;
22084190 1883 cfqq->nr_sectors += blk_rq_sectors(rq);
1da177e4
LT
1884}
1885
1886/*
1887 * return expired entry, or NULL to just start from scratch in rbtree
1888 */
febffd61 1889static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1890{
30996f40 1891 struct request *rq = NULL;
1da177e4 1892
3b18152c 1893 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1894 return NULL;
cb887411
JA
1895
1896 cfq_mark_cfqq_fifo_expire(cfqq);
1897
89850f7e
JA
1898 if (list_empty(&cfqq->fifo))
1899 return NULL;
1da177e4 1900
89850f7e 1901 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1902 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1903 rq = NULL;
1da177e4 1904
30996f40 1905 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1906 return rq;
1da177e4
LT
1907}
1908
22e2c507
JA
1909static inline int
1910cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1911{
1912 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1913
22e2c507 1914 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1915
22e2c507 1916 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1917}
1918
df5fe3e8
JM
1919/*
1920 * Must be called with the queue_lock held.
1921 */
1922static int cfqq_process_refs(struct cfq_queue *cfqq)
1923{
1924 int process_refs, io_refs;
1925
1926 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1927 process_refs = atomic_read(&cfqq->ref) - io_refs;
1928 BUG_ON(process_refs < 0);
1929 return process_refs;
1930}
1931
1932static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1933{
e6c5bc73 1934 int process_refs, new_process_refs;
df5fe3e8
JM
1935 struct cfq_queue *__cfqq;
1936
1937 /* Avoid a circular list and skip interim queue merges */
1938 while ((__cfqq = new_cfqq->new_cfqq)) {
1939 if (__cfqq == cfqq)
1940 return;
1941 new_cfqq = __cfqq;
1942 }
1943
1944 process_refs = cfqq_process_refs(cfqq);
1945 /*
1946 * If the process for the cfqq has gone away, there is no
1947 * sense in merging the queues.
1948 */
1949 if (process_refs == 0)
1950 return;
1951
e6c5bc73
JM
1952 /*
1953 * Merge in the direction of the lesser amount of work.
1954 */
1955 new_process_refs = cfqq_process_refs(new_cfqq);
1956 if (new_process_refs >= process_refs) {
1957 cfqq->new_cfqq = new_cfqq;
1958 atomic_add(process_refs, &new_cfqq->ref);
1959 } else {
1960 new_cfqq->new_cfqq = cfqq;
1961 atomic_add(new_process_refs, &cfqq->ref);
1962 }
df5fe3e8
JM
1963}
1964
cdb16e8f
VG
1965static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1966 struct cfq_group *cfqg, enum wl_prio_t prio,
1967 bool prio_changed)
718eee05
CZ
1968{
1969 struct cfq_queue *queue;
1970 int i;
1971 bool key_valid = false;
1972 unsigned long lowest_key = 0;
1973 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1974
1975 if (prio_changed) {
1976 /*
1977 * When priorities switched, we prefer starting
1978 * from SYNC_NOIDLE (first choice), or just SYNC
1979 * over ASYNC
1980 */
cdb16e8f 1981 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
718eee05
CZ
1982 return cur_best;
1983 cur_best = SYNC_WORKLOAD;
cdb16e8f 1984 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
718eee05
CZ
1985 return cur_best;
1986
1987 return ASYNC_WORKLOAD;
1988 }
1989
1990 for (i = 0; i < 3; ++i) {
1991 /* otherwise, select the one with lowest rb_key */
cdb16e8f 1992 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
718eee05
CZ
1993 if (queue &&
1994 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1995 lowest_key = queue->rb_key;
1996 cur_best = i;
1997 key_valid = true;
1998 }
1999 }
2000
2001 return cur_best;
2002}
2003
cdb16e8f 2004static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05
CZ
2005{
2006 enum wl_prio_t previous_prio = cfqd->serving_prio;
2007 bool prio_changed;
2008 unsigned slice;
2009 unsigned count;
cdb16e8f 2010 struct cfq_rb_root *st;
58ff82f3 2011 unsigned group_slice;
718eee05 2012
1fa8f6d6
VG
2013 if (!cfqg) {
2014 cfqd->serving_prio = IDLE_WORKLOAD;
2015 cfqd->workload_expires = jiffies + 1;
2016 return;
2017 }
2018
718eee05 2019 /* Choose next priority. RT > BE > IDLE */
58ff82f3 2020 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 2021 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2022 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2023 cfqd->serving_prio = BE_WORKLOAD;
2024 else {
2025 cfqd->serving_prio = IDLE_WORKLOAD;
2026 cfqd->workload_expires = jiffies + 1;
2027 return;
2028 }
2029
2030 /*
2031 * For RT and BE, we have to choose also the type
2032 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2033 * expiration time
2034 */
2035 prio_changed = (cfqd->serving_prio != previous_prio);
cdb16e8f
VG
2036 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2037 cfqd);
2038 count = st->count;
718eee05
CZ
2039
2040 /*
2041 * If priority didn't change, check workload expiration,
2042 * and that we still have other queues ready
2043 */
2044 if (!prio_changed && count &&
2045 !time_after(jiffies, cfqd->workload_expires))
2046 return;
2047
2048 /* otherwise select new workload type */
2049 cfqd->serving_type =
cdb16e8f
VG
2050 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
2051 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2052 cfqd);
2053 count = st->count;
718eee05
CZ
2054
2055 /*
2056 * the workload slice is computed as a fraction of target latency
2057 * proportional to the number of queues in that workload, over
2058 * all the queues in the same priority class
2059 */
58ff82f3
VG
2060 group_slice = cfq_group_slice(cfqd, cfqg);
2061
2062 slice = group_slice * count /
2063 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2064 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2065
f26bd1f0
VG
2066 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2067 unsigned int tmp;
2068
2069 /*
2070 * Async queues are currently system wide. Just taking
2071 * proportion of queues with-in same group will lead to higher
2072 * async ratio system wide as generally root group is going
2073 * to have higher weight. A more accurate thing would be to
2074 * calculate system wide asnc/sync ratio.
2075 */
2076 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2077 tmp = tmp/cfqd->busy_queues;
2078 slice = min_t(unsigned, slice, tmp);
2079
718eee05
CZ
2080 /* async workload slice is scaled down according to
2081 * the sync/async slice ratio. */
2082 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2083 } else
718eee05
CZ
2084 /* sync workload slice is at least 2 * cfq_slice_idle */
2085 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2086
2087 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2088 cfqd->workload_expires = jiffies + slice;
8e550632 2089 cfqd->noidle_tree_requires_idle = false;
718eee05
CZ
2090}
2091
1fa8f6d6
VG
2092static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2093{
2094 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2095 struct cfq_group *cfqg;
1fa8f6d6
VG
2096
2097 if (RB_EMPTY_ROOT(&st->rb))
2098 return NULL;
25bc6b07
VG
2099 cfqg = cfq_rb_first_group(st);
2100 st->active = &cfqg->rb_node;
2101 update_min_vdisktime(st);
2102 return cfqg;
1fa8f6d6
VG
2103}
2104
cdb16e8f
VG
2105static void cfq_choose_cfqg(struct cfq_data *cfqd)
2106{
1fa8f6d6
VG
2107 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2108
2109 cfqd->serving_group = cfqg;
dae739eb
VG
2110
2111 /* Restore the workload type data */
2112 if (cfqg->saved_workload_slice) {
2113 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2114 cfqd->serving_type = cfqg->saved_workload;
2115 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2116 } else
2117 cfqd->workload_expires = jiffies - 1;
2118
1fa8f6d6 2119 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2120}
2121
22e2c507 2122/*
498d3aa2
JA
2123 * Select a queue for service. If we have a current active queue,
2124 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2125 */
1b5ed5e1 2126static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2127{
a36e71f9 2128 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2129
22e2c507
JA
2130 cfqq = cfqd->active_queue;
2131 if (!cfqq)
2132 goto new_queue;
1da177e4 2133
f04a6424
VG
2134 if (!cfqd->rq_queued)
2135 return NULL;
c244bb50
VG
2136
2137 /*
2138 * We were waiting for group to get backlogged. Expire the queue
2139 */
2140 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2141 goto expire;
2142
22e2c507 2143 /*
6d048f53 2144 * The active queue has run out of time, expire it and select new.
22e2c507 2145 */
7667aa06
VG
2146 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2147 /*
2148 * If slice had not expired at the completion of last request
2149 * we might not have turned on wait_busy flag. Don't expire
2150 * the queue yet. Allow the group to get backlogged.
2151 *
2152 * The very fact that we have used the slice, that means we
2153 * have been idling all along on this queue and it should be
2154 * ok to wait for this request to complete.
2155 */
82bbbf28
VG
2156 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2157 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2158 cfqq = NULL;
7667aa06 2159 goto keep_queue;
82bbbf28 2160 } else
7667aa06
VG
2161 goto expire;
2162 }
1da177e4 2163
22e2c507 2164 /*
6d048f53
JA
2165 * The active queue has requests and isn't expired, allow it to
2166 * dispatch.
22e2c507 2167 */
dd67d051 2168 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2169 goto keep_queue;
6d048f53 2170
a36e71f9
JA
2171 /*
2172 * If another queue has a request waiting within our mean seek
2173 * distance, let it run. The expire code will check for close
2174 * cooperators and put the close queue at the front of the service
df5fe3e8 2175 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2176 */
b3b6d040 2177 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2178 if (new_cfqq) {
2179 if (!cfqq->new_cfqq)
2180 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2181 goto expire;
df5fe3e8 2182 }
a36e71f9 2183
6d048f53
JA
2184 /*
2185 * No requests pending. If the active queue still has requests in
2186 * flight or is idling for a new request, allow either of these
2187 * conditions to happen (or time out) before selecting a new queue.
2188 */
cc197479 2189 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 2190 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
2191 cfqq = NULL;
2192 goto keep_queue;
22e2c507
JA
2193 }
2194
3b18152c 2195expire:
6084cdda 2196 cfq_slice_expired(cfqd, 0);
3b18152c 2197new_queue:
718eee05
CZ
2198 /*
2199 * Current queue expired. Check if we have to switch to a new
2200 * service tree
2201 */
2202 if (!new_cfqq)
cdb16e8f 2203 cfq_choose_cfqg(cfqd);
718eee05 2204
a36e71f9 2205 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2206keep_queue:
3b18152c 2207 return cfqq;
22e2c507
JA
2208}
2209
febffd61 2210static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2211{
2212 int dispatched = 0;
2213
2214 while (cfqq->next_rq) {
2215 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2216 dispatched++;
2217 }
2218
2219 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2220
2221 /* By default cfqq is not expired if it is empty. Do it explicitly */
2222 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2223 return dispatched;
2224}
2225
498d3aa2
JA
2226/*
2227 * Drain our current requests. Used for barriers and when switching
2228 * io schedulers on-the-fly.
2229 */
d9e7620e 2230static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2231{
0871714e 2232 struct cfq_queue *cfqq;
d9e7620e 2233 int dispatched = 0;
cdb16e8f 2234
f04a6424
VG
2235 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2236 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 2237
6084cdda 2238 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
2239 BUG_ON(cfqd->busy_queues);
2240
6923715a 2241 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2242 return dispatched;
2243}
2244
0b182d61 2245static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2246{
2f5cb738 2247 unsigned int max_dispatch;
22e2c507 2248
5ad531db
JA
2249 /*
2250 * Drain async requests before we start sync IO
2251 */
a6d44e98 2252 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
0b182d61 2253 return false;
5ad531db 2254
2f5cb738
JA
2255 /*
2256 * If this is an async queue and we have sync IO in flight, let it wait
2257 */
2258 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
0b182d61 2259 return false;
2f5cb738
JA
2260
2261 max_dispatch = cfqd->cfq_quantum;
2262 if (cfq_class_idle(cfqq))
2263 max_dispatch = 1;
b4878f24 2264
2f5cb738
JA
2265 /*
2266 * Does this cfqq already have too much IO in flight?
2267 */
2268 if (cfqq->dispatched >= max_dispatch) {
2269 /*
2270 * idle queue must always only have a single IO in flight
2271 */
3ed9a296 2272 if (cfq_class_idle(cfqq))
0b182d61 2273 return false;
3ed9a296 2274
2f5cb738
JA
2275 /*
2276 * We have other queues, don't allow more IO from this one
2277 */
2278 if (cfqd->busy_queues > 1)
0b182d61 2279 return false;
9ede209e 2280
365722bb 2281 /*
474b18cc 2282 * Sole queue user, no limit
365722bb 2283 */
474b18cc 2284 max_dispatch = -1;
8e296755
JA
2285 }
2286
2287 /*
2288 * Async queues must wait a bit before being allowed dispatch.
2289 * We also ramp up the dispatch depth gradually for async IO,
2290 * based on the last sync IO we serviced
2291 */
963b72fc 2292 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2293 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2294 unsigned int depth;
365722bb 2295
61f0c1dc 2296 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2297 if (!depth && !cfqq->dispatched)
2298 depth = 1;
8e296755
JA
2299 if (depth < max_dispatch)
2300 max_dispatch = depth;
2f5cb738 2301 }
3ed9a296 2302
0b182d61
JA
2303 /*
2304 * If we're below the current max, allow a dispatch
2305 */
2306 return cfqq->dispatched < max_dispatch;
2307}
2308
2309/*
2310 * Dispatch a request from cfqq, moving them to the request queue
2311 * dispatch list.
2312 */
2313static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2314{
2315 struct request *rq;
2316
2317 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2318
2319 if (!cfq_may_dispatch(cfqd, cfqq))
2320 return false;
2321
2322 /*
2323 * follow expired path, else get first next available
2324 */
2325 rq = cfq_check_fifo(cfqq);
2326 if (!rq)
2327 rq = cfqq->next_rq;
2328
2329 /*
2330 * insert request into driver dispatch list
2331 */
2332 cfq_dispatch_insert(cfqd->queue, rq);
2333
2334 if (!cfqd->active_cic) {
2335 struct cfq_io_context *cic = RQ_CIC(rq);
2336
2337 atomic_long_inc(&cic->ioc->refcount);
2338 cfqd->active_cic = cic;
2339 }
2340
2341 return true;
2342}
2343
2344/*
2345 * Find the cfqq that we need to service and move a request from that to the
2346 * dispatch list
2347 */
2348static int cfq_dispatch_requests(struct request_queue *q, int force)
2349{
2350 struct cfq_data *cfqd = q->elevator->elevator_data;
2351 struct cfq_queue *cfqq;
2352
2353 if (!cfqd->busy_queues)
2354 return 0;
2355
2356 if (unlikely(force))
2357 return cfq_forced_dispatch(cfqd);
2358
2359 cfqq = cfq_select_queue(cfqd);
2360 if (!cfqq)
8e296755
JA
2361 return 0;
2362
2f5cb738 2363 /*
0b182d61 2364 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2365 */
0b182d61
JA
2366 if (!cfq_dispatch_request(cfqd, cfqq))
2367 return 0;
2368
2f5cb738 2369 cfqq->slice_dispatch++;
b029195d 2370 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2371
2f5cb738
JA
2372 /*
2373 * expire an async queue immediately if it has used up its slice. idle
2374 * queue always expire after 1 dispatch round.
2375 */
2376 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2377 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2378 cfq_class_idle(cfqq))) {
2379 cfqq->slice_end = jiffies + 1;
2380 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2381 }
2382
b217a903 2383 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2384 return 1;
1da177e4
LT
2385}
2386
1da177e4 2387/*
5e705374
JA
2388 * task holds one reference to the queue, dropped when task exits. each rq
2389 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2390 *
b1c35769 2391 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2392 * queue lock must be held here.
2393 */
2394static void cfq_put_queue(struct cfq_queue *cfqq)
2395{
22e2c507 2396 struct cfq_data *cfqd = cfqq->cfqd;
878eaddd 2397 struct cfq_group *cfqg, *orig_cfqg;
22e2c507
JA
2398
2399 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
2400
2401 if (!atomic_dec_and_test(&cfqq->ref))
2402 return;
2403
7b679138 2404 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2405 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2406 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2407 cfqg = cfqq->cfqg;
878eaddd 2408 orig_cfqg = cfqq->orig_cfqg;
1da177e4 2409
28f95cbc 2410 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 2411 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2412 cfq_schedule_dispatch(cfqd);
28f95cbc 2413 }
22e2c507 2414
f04a6424 2415 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2416 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2417 cfq_put_cfqg(cfqg);
878eaddd
VG
2418 if (orig_cfqg)
2419 cfq_put_cfqg(orig_cfqg);
1da177e4
LT
2420}
2421
d6de8be7
JA
2422/*
2423 * Must always be called with the rcu_read_lock() held
2424 */
07416d29
JA
2425static void
2426__call_for_each_cic(struct io_context *ioc,
2427 void (*func)(struct io_context *, struct cfq_io_context *))
2428{
2429 struct cfq_io_context *cic;
2430 struct hlist_node *n;
2431
2432 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2433 func(ioc, cic);
2434}
2435
4ac845a2 2436/*
34e6bbf2 2437 * Call func for each cic attached to this ioc.
4ac845a2 2438 */
34e6bbf2 2439static void
4ac845a2
JA
2440call_for_each_cic(struct io_context *ioc,
2441 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2442{
4ac845a2 2443 rcu_read_lock();
07416d29 2444 __call_for_each_cic(ioc, func);
4ac845a2 2445 rcu_read_unlock();
34e6bbf2
FC
2446}
2447
2448static void cfq_cic_free_rcu(struct rcu_head *head)
2449{
2450 struct cfq_io_context *cic;
2451
2452 cic = container_of(head, struct cfq_io_context, rcu_head);
2453
2454 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2455 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2456
9a11b4ed
JA
2457 if (ioc_gone) {
2458 /*
2459 * CFQ scheduler is exiting, grab exit lock and check
2460 * the pending io context count. If it hits zero,
2461 * complete ioc_gone and set it back to NULL
2462 */
2463 spin_lock(&ioc_gone_lock);
245b2e70 2464 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2465 complete(ioc_gone);
2466 ioc_gone = NULL;
2467 }
2468 spin_unlock(&ioc_gone_lock);
2469 }
34e6bbf2 2470}
4ac845a2 2471
34e6bbf2
FC
2472static void cfq_cic_free(struct cfq_io_context *cic)
2473{
2474 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2475}
2476
2477static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2478{
2479 unsigned long flags;
2480
2481 BUG_ON(!cic->dead_key);
2482
2483 spin_lock_irqsave(&ioc->lock, flags);
2484 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 2485 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2486 spin_unlock_irqrestore(&ioc->lock, flags);
2487
34e6bbf2 2488 cfq_cic_free(cic);
4ac845a2
JA
2489}
2490
d6de8be7
JA
2491/*
2492 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2493 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2494 * and ->trim() which is called with the task lock held
2495 */
4ac845a2
JA
2496static void cfq_free_io_context(struct io_context *ioc)
2497{
4ac845a2 2498 /*
34e6bbf2
FC
2499 * ioc->refcount is zero here, or we are called from elv_unregister(),
2500 * so no more cic's are allowed to be linked into this ioc. So it
2501 * should be ok to iterate over the known list, we will see all cic's
2502 * since no new ones are added.
4ac845a2 2503 */
07416d29 2504 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2505}
2506
89850f7e 2507static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 2508{
df5fe3e8
JM
2509 struct cfq_queue *__cfqq, *next;
2510
28f95cbc 2511 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 2512 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2513 cfq_schedule_dispatch(cfqd);
28f95cbc 2514 }
22e2c507 2515
df5fe3e8
JM
2516 /*
2517 * If this queue was scheduled to merge with another queue, be
2518 * sure to drop the reference taken on that queue (and others in
2519 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2520 */
2521 __cfqq = cfqq->new_cfqq;
2522 while (__cfqq) {
2523 if (__cfqq == cfqq) {
2524 WARN(1, "cfqq->new_cfqq loop detected\n");
2525 break;
2526 }
2527 next = __cfqq->new_cfqq;
2528 cfq_put_queue(__cfqq);
2529 __cfqq = next;
2530 }
2531
89850f7e
JA
2532 cfq_put_queue(cfqq);
2533}
22e2c507 2534
89850f7e
JA
2535static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2536 struct cfq_io_context *cic)
2537{
4faa3c81
FC
2538 struct io_context *ioc = cic->ioc;
2539
fc46379d 2540 list_del_init(&cic->queue_list);
4ac845a2
JA
2541
2542 /*
2543 * Make sure key == NULL is seen for dead queues
2544 */
fc46379d 2545 smp_wmb();
4ac845a2 2546 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
2547 cic->key = NULL;
2548
4faa3c81
FC
2549 if (ioc->ioc_data == cic)
2550 rcu_assign_pointer(ioc->ioc_data, NULL);
2551
ff6657c6
JA
2552 if (cic->cfqq[BLK_RW_ASYNC]) {
2553 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2554 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2555 }
2556
ff6657c6
JA
2557 if (cic->cfqq[BLK_RW_SYNC]) {
2558 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2559 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2560 }
89850f7e
JA
2561}
2562
4ac845a2
JA
2563static void cfq_exit_single_io_context(struct io_context *ioc,
2564 struct cfq_io_context *cic)
89850f7e
JA
2565{
2566 struct cfq_data *cfqd = cic->key;
2567
89850f7e 2568 if (cfqd) {
165125e1 2569 struct request_queue *q = cfqd->queue;
4ac845a2 2570 unsigned long flags;
89850f7e 2571
4ac845a2 2572 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2573
2574 /*
2575 * Ensure we get a fresh copy of the ->key to prevent
2576 * race between exiting task and queue
2577 */
2578 smp_read_barrier_depends();
2579 if (cic->key)
2580 __cfq_exit_single_io_context(cfqd, cic);
2581
4ac845a2 2582 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2583 }
1da177e4
LT
2584}
2585
498d3aa2
JA
2586/*
2587 * The process that ioc belongs to has exited, we need to clean up
2588 * and put the internal structures we have that belongs to that process.
2589 */
e2d74ac0 2590static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2591{
4ac845a2 2592 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2593}
2594
22e2c507 2595static struct cfq_io_context *
8267e268 2596cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2597{
b5deef90 2598 struct cfq_io_context *cic;
1da177e4 2599
94f6030c
CL
2600 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2601 cfqd->queue->node);
1da177e4 2602 if (cic) {
22e2c507 2603 cic->last_end_request = jiffies;
553698f9 2604 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2605 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2606 cic->dtor = cfq_free_io_context;
2607 cic->exit = cfq_exit_io_context;
245b2e70 2608 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2609 }
2610
2611 return cic;
2612}
2613
fd0928df 2614static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2615{
2616 struct task_struct *tsk = current;
2617 int ioprio_class;
2618
3b18152c 2619 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2620 return;
2621
fd0928df 2622 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2623 switch (ioprio_class) {
fe094d98
JA
2624 default:
2625 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2626 case IOPRIO_CLASS_NONE:
2627 /*
6d63c275 2628 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2629 */
2630 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2631 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2632 break;
2633 case IOPRIO_CLASS_RT:
2634 cfqq->ioprio = task_ioprio(ioc);
2635 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2636 break;
2637 case IOPRIO_CLASS_BE:
2638 cfqq->ioprio = task_ioprio(ioc);
2639 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2640 break;
2641 case IOPRIO_CLASS_IDLE:
2642 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2643 cfqq->ioprio = 7;
2644 cfq_clear_cfqq_idle_window(cfqq);
2645 break;
22e2c507
JA
2646 }
2647
2648 /*
2649 * keep track of original prio settings in case we have to temporarily
2650 * elevate the priority of this queue
2651 */
2652 cfqq->org_ioprio = cfqq->ioprio;
2653 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2654 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2655}
2656
febffd61 2657static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2658{
478a82b0
AV
2659 struct cfq_data *cfqd = cic->key;
2660 struct cfq_queue *cfqq;
c1b707d2 2661 unsigned long flags;
35e6077c 2662
caaa5f9f
JA
2663 if (unlikely(!cfqd))
2664 return;
2665
c1b707d2 2666 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2667
ff6657c6 2668 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2669 if (cfqq) {
2670 struct cfq_queue *new_cfqq;
ff6657c6
JA
2671 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2672 GFP_ATOMIC);
caaa5f9f 2673 if (new_cfqq) {
ff6657c6 2674 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2675 cfq_put_queue(cfqq);
2676 }
22e2c507 2677 }
caaa5f9f 2678
ff6657c6 2679 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2680 if (cfqq)
2681 cfq_mark_cfqq_prio_changed(cfqq);
2682
c1b707d2 2683 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2684}
2685
fc46379d 2686static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2687{
4ac845a2 2688 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2689 ioc->ioprio_changed = 0;
22e2c507
JA
2690}
2691
d5036d77 2692static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2693 pid_t pid, bool is_sync)
d5036d77
JA
2694{
2695 RB_CLEAR_NODE(&cfqq->rb_node);
2696 RB_CLEAR_NODE(&cfqq->p_node);
2697 INIT_LIST_HEAD(&cfqq->fifo);
2698
2699 atomic_set(&cfqq->ref, 0);
2700 cfqq->cfqd = cfqd;
2701
2702 cfq_mark_cfqq_prio_changed(cfqq);
2703
2704 if (is_sync) {
2705 if (!cfq_class_idle(cfqq))
2706 cfq_mark_cfqq_idle_window(cfqq);
2707 cfq_mark_cfqq_sync(cfqq);
2708 }
2709 cfqq->pid = pid;
2710}
2711
24610333
VG
2712#ifdef CONFIG_CFQ_GROUP_IOSCHED
2713static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2714{
2715 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2716 struct cfq_data *cfqd = cic->key;
2717 unsigned long flags;
2718 struct request_queue *q;
2719
2720 if (unlikely(!cfqd))
2721 return;
2722
2723 q = cfqd->queue;
2724
2725 spin_lock_irqsave(q->queue_lock, flags);
2726
2727 if (sync_cfqq) {
2728 /*
2729 * Drop reference to sync queue. A new sync queue will be
2730 * assigned in new group upon arrival of a fresh request.
2731 */
2732 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2733 cic_set_cfqq(cic, NULL, 1);
2734 cfq_put_queue(sync_cfqq);
2735 }
2736
2737 spin_unlock_irqrestore(q->queue_lock, flags);
2738}
2739
2740static void cfq_ioc_set_cgroup(struct io_context *ioc)
2741{
2742 call_for_each_cic(ioc, changed_cgroup);
2743 ioc->cgroup_changed = 0;
2744}
2745#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2746
22e2c507 2747static struct cfq_queue *
a6151c3a 2748cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2749 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2750{
22e2c507 2751 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2752 struct cfq_io_context *cic;
cdb16e8f 2753 struct cfq_group *cfqg;
22e2c507
JA
2754
2755retry:
cdb16e8f 2756 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2757 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2758 /* cic always exists here */
2759 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2760
6118b70b
JA
2761 /*
2762 * Always try a new alloc if we fell back to the OOM cfqq
2763 * originally, since it should just be a temporary situation.
2764 */
2765 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2766 cfqq = NULL;
22e2c507
JA
2767 if (new_cfqq) {
2768 cfqq = new_cfqq;
2769 new_cfqq = NULL;
2770 } else if (gfp_mask & __GFP_WAIT) {
2771 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2772 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2773 gfp_mask | __GFP_ZERO,
94f6030c 2774 cfqd->queue->node);
22e2c507 2775 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2776 if (new_cfqq)
2777 goto retry;
22e2c507 2778 } else {
94f6030c
CL
2779 cfqq = kmem_cache_alloc_node(cfq_pool,
2780 gfp_mask | __GFP_ZERO,
2781 cfqd->queue->node);
22e2c507
JA
2782 }
2783
6118b70b
JA
2784 if (cfqq) {
2785 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2786 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2787 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2788 cfq_log_cfqq(cfqd, cfqq, "alloced");
2789 } else
2790 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2791 }
2792
2793 if (new_cfqq)
2794 kmem_cache_free(cfq_pool, new_cfqq);
2795
22e2c507
JA
2796 return cfqq;
2797}
2798
c2dea2d1
VT
2799static struct cfq_queue **
2800cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2801{
fe094d98 2802 switch (ioprio_class) {
c2dea2d1
VT
2803 case IOPRIO_CLASS_RT:
2804 return &cfqd->async_cfqq[0][ioprio];
2805 case IOPRIO_CLASS_BE:
2806 return &cfqd->async_cfqq[1][ioprio];
2807 case IOPRIO_CLASS_IDLE:
2808 return &cfqd->async_idle_cfqq;
2809 default:
2810 BUG();
2811 }
2812}
2813
15c31be4 2814static struct cfq_queue *
a6151c3a 2815cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2816 gfp_t gfp_mask)
2817{
fd0928df
JA
2818 const int ioprio = task_ioprio(ioc);
2819 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2820 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2821 struct cfq_queue *cfqq = NULL;
2822
c2dea2d1
VT
2823 if (!is_sync) {
2824 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2825 cfqq = *async_cfqq;
2826 }
2827
6118b70b 2828 if (!cfqq)
fd0928df 2829 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2830
2831 /*
2832 * pin the queue now that it's allocated, scheduler exit will prune it
2833 */
c2dea2d1 2834 if (!is_sync && !(*async_cfqq)) {
15c31be4 2835 atomic_inc(&cfqq->ref);
c2dea2d1 2836 *async_cfqq = cfqq;
15c31be4
JA
2837 }
2838
2839 atomic_inc(&cfqq->ref);
2840 return cfqq;
2841}
2842
498d3aa2
JA
2843/*
2844 * We drop cfq io contexts lazily, so we may find a dead one.
2845 */
dbecf3ab 2846static void
4ac845a2
JA
2847cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2848 struct cfq_io_context *cic)
dbecf3ab 2849{
4ac845a2
JA
2850 unsigned long flags;
2851
fc46379d 2852 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2853
4ac845a2
JA
2854 spin_lock_irqsave(&ioc->lock, flags);
2855
4faa3c81 2856 BUG_ON(ioc->ioc_data == cic);
597bc485 2857
4ac845a2 2858 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2859 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2860 spin_unlock_irqrestore(&ioc->lock, flags);
2861
2862 cfq_cic_free(cic);
dbecf3ab
OH
2863}
2864
e2d74ac0 2865static struct cfq_io_context *
4ac845a2 2866cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2867{
e2d74ac0 2868 struct cfq_io_context *cic;
d6de8be7 2869 unsigned long flags;
4ac845a2 2870 void *k;
e2d74ac0 2871
91fac317
VT
2872 if (unlikely(!ioc))
2873 return NULL;
2874
d6de8be7
JA
2875 rcu_read_lock();
2876
597bc485
JA
2877 /*
2878 * we maintain a last-hit cache, to avoid browsing over the tree
2879 */
4ac845a2 2880 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2881 if (cic && cic->key == cfqd) {
2882 rcu_read_unlock();
597bc485 2883 return cic;
d6de8be7 2884 }
597bc485 2885
4ac845a2 2886 do {
4ac845a2
JA
2887 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2888 rcu_read_unlock();
2889 if (!cic)
2890 break;
be3b0753
OH
2891 /* ->key must be copied to avoid race with cfq_exit_queue() */
2892 k = cic->key;
2893 if (unlikely(!k)) {
4ac845a2 2894 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2895 rcu_read_lock();
4ac845a2 2896 continue;
dbecf3ab 2897 }
e2d74ac0 2898
d6de8be7 2899 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2900 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2901 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2902 break;
2903 } while (1);
e2d74ac0 2904
4ac845a2 2905 return cic;
e2d74ac0
JA
2906}
2907
4ac845a2
JA
2908/*
2909 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2910 * the process specific cfq io context when entered from the block layer.
2911 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2912 */
febffd61
JA
2913static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2914 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2915{
0261d688 2916 unsigned long flags;
4ac845a2 2917 int ret;
e2d74ac0 2918
4ac845a2
JA
2919 ret = radix_tree_preload(gfp_mask);
2920 if (!ret) {
2921 cic->ioc = ioc;
2922 cic->key = cfqd;
e2d74ac0 2923
4ac845a2
JA
2924 spin_lock_irqsave(&ioc->lock, flags);
2925 ret = radix_tree_insert(&ioc->radix_root,
2926 (unsigned long) cfqd, cic);
ffc4e759
JA
2927 if (!ret)
2928 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2929 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2930
4ac845a2
JA
2931 radix_tree_preload_end();
2932
2933 if (!ret) {
2934 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2935 list_add(&cic->queue_list, &cfqd->cic_list);
2936 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2937 }
e2d74ac0
JA
2938 }
2939
4ac845a2
JA
2940 if (ret)
2941 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2942
4ac845a2 2943 return ret;
e2d74ac0
JA
2944}
2945
1da177e4
LT
2946/*
2947 * Setup general io context and cfq io context. There can be several cfq
2948 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2949 * than one device managed by cfq.
1da177e4
LT
2950 */
2951static struct cfq_io_context *
e2d74ac0 2952cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2953{
22e2c507 2954 struct io_context *ioc = NULL;
1da177e4 2955 struct cfq_io_context *cic;
1da177e4 2956
22e2c507 2957 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2958
b5deef90 2959 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2960 if (!ioc)
2961 return NULL;
2962
4ac845a2 2963 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2964 if (cic)
2965 goto out;
1da177e4 2966
e2d74ac0
JA
2967 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2968 if (cic == NULL)
2969 goto err;
1da177e4 2970
4ac845a2
JA
2971 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2972 goto err_free;
2973
1da177e4 2974out:
fc46379d
JA
2975 smp_read_barrier_depends();
2976 if (unlikely(ioc->ioprio_changed))
2977 cfq_ioc_set_ioprio(ioc);
2978
24610333
VG
2979#ifdef CONFIG_CFQ_GROUP_IOSCHED
2980 if (unlikely(ioc->cgroup_changed))
2981 cfq_ioc_set_cgroup(ioc);
2982#endif
1da177e4 2983 return cic;
4ac845a2
JA
2984err_free:
2985 cfq_cic_free(cic);
1da177e4
LT
2986err:
2987 put_io_context(ioc);
2988 return NULL;
2989}
2990
22e2c507
JA
2991static void
2992cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2993{
aaf1228d
JA
2994 unsigned long elapsed = jiffies - cic->last_end_request;
2995 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2996
22e2c507
JA
2997 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2998 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2999 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3000}
1da177e4 3001
206dc69b 3002static void
b2c18e1e 3003cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 3004 struct request *rq)
206dc69b
JA
3005{
3006 sector_t sdist;
3007 u64 total;
3008
b2c18e1e 3009 if (!cfqq->last_request_pos)
4d00aa47 3010 sdist = 0;
b2c18e1e
JM
3011 else if (cfqq->last_request_pos < blk_rq_pos(rq))
3012 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
206dc69b 3013 else
b2c18e1e 3014 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
3015
3016 /*
3017 * Don't allow the seek distance to get too large from the
3018 * odd fragment, pagein, etc
3019 */
b2c18e1e
JM
3020 if (cfqq->seek_samples <= 60) /* second&third seek */
3021 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
206dc69b 3022 else
b2c18e1e 3023 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
206dc69b 3024
b2c18e1e
JM
3025 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
3026 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
3027 total = cfqq->seek_total + (cfqq->seek_samples/2);
3028 do_div(total, cfqq->seek_samples);
3029 cfqq->seek_mean = (sector_t)total;
e6c5bc73
JM
3030
3031 /*
3032 * If this cfqq is shared between multiple processes, check to
3033 * make sure that those processes are still issuing I/Os within
3034 * the mean seek distance. If not, it may be time to break the
3035 * queues apart again.
3036 */
3037 if (cfq_cfqq_coop(cfqq)) {
3038 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
3039 cfqq->seeky_start = jiffies;
3040 else if (!CFQQ_SEEKY(cfqq))
3041 cfqq->seeky_start = 0;
3042 }
206dc69b 3043}
1da177e4 3044
22e2c507
JA
3045/*
3046 * Disable idle window if the process thinks too long or seeks so much that
3047 * it doesn't matter
3048 */
3049static void
3050cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3051 struct cfq_io_context *cic)
3052{
7b679138 3053 int old_idle, enable_idle;
1be92f2f 3054
0871714e
JA
3055 /*
3056 * Don't idle for async or idle io prio class
3057 */
3058 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3059 return;
3060
c265a7f4 3061 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3062
76280aff
CZ
3063 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3064 cfq_mark_cfqq_deep(cfqq);
3065
66dac98e 3066 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
76280aff
CZ
3067 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
3068 && CFQQ_SEEKY(cfqq)))
22e2c507
JA
3069 enable_idle = 0;
3070 else if (sample_valid(cic->ttime_samples)) {
718eee05 3071 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3072 enable_idle = 0;
3073 else
3074 enable_idle = 1;
1da177e4
LT
3075 }
3076
7b679138
JA
3077 if (old_idle != enable_idle) {
3078 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3079 if (enable_idle)
3080 cfq_mark_cfqq_idle_window(cfqq);
3081 else
3082 cfq_clear_cfqq_idle_window(cfqq);
3083 }
22e2c507 3084}
1da177e4 3085
22e2c507
JA
3086/*
3087 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3088 * no or if we aren't sure, a 1 will cause a preempt.
3089 */
a6151c3a 3090static bool
22e2c507 3091cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3092 struct request *rq)
22e2c507 3093{
6d048f53 3094 struct cfq_queue *cfqq;
22e2c507 3095
6d048f53
JA
3096 cfqq = cfqd->active_queue;
3097 if (!cfqq)
a6151c3a 3098 return false;
22e2c507 3099
6d048f53 3100 if (cfq_class_idle(new_cfqq))
a6151c3a 3101 return false;
22e2c507
JA
3102
3103 if (cfq_class_idle(cfqq))
a6151c3a 3104 return true;
1e3335de 3105
374f84ac
JA
3106 /*
3107 * if the new request is sync, but the currently running queue is
3108 * not, let the sync request have priority.
3109 */
5e705374 3110 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3111 return true;
1e3335de 3112
8682e1f1
VG
3113 if (new_cfqq->cfqg != cfqq->cfqg)
3114 return false;
3115
3116 if (cfq_slice_used(cfqq))
3117 return true;
3118
3119 /* Allow preemption only if we are idling on sync-noidle tree */
3120 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3121 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3122 new_cfqq->service_tree->count == 2 &&
3123 RB_EMPTY_ROOT(&cfqq->sort_list))
3124 return true;
3125
374f84ac
JA
3126 /*
3127 * So both queues are sync. Let the new request get disk time if
3128 * it's a metadata request and the current queue is doing regular IO.
3129 */
3130 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 3131 return true;
22e2c507 3132
3a9a3f6c
DS
3133 /*
3134 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3135 */
3136 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3137 return true;
3a9a3f6c 3138
1e3335de 3139 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3140 return false;
1e3335de
JA
3141
3142 /*
3143 * if this request is as-good as one we would expect from the
3144 * current cfqq, let it preempt
3145 */
e00ef799 3146 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3147 return true;
1e3335de 3148
a6151c3a 3149 return false;
22e2c507
JA
3150}
3151
3152/*
3153 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3154 * let it have half of its nominal slice.
3155 */
3156static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3157{
7b679138 3158 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 3159 cfq_slice_expired(cfqd, 1);
22e2c507 3160
bf572256
JA
3161 /*
3162 * Put the new queue at the front of the of the current list,
3163 * so we know that it will be selected next.
3164 */
3165 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3166
3167 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 3168
44f7c160
JA
3169 cfqq->slice_end = 0;
3170 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3171}
3172
22e2c507 3173/*
5e705374 3174 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3175 * something we should do about it
3176 */
3177static void
5e705374
JA
3178cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3179 struct request *rq)
22e2c507 3180{
5e705374 3181 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3182
45333d5a 3183 cfqd->rq_queued++;
374f84ac
JA
3184 if (rq_is_meta(rq))
3185 cfqq->meta_pending++;
3186
9c2c38a1 3187 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3188 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3189 cfq_update_idle_window(cfqd, cfqq, cic);
3190
b2c18e1e 3191 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3192
3193 if (cfqq == cfqd->active_queue) {
3194 /*
b029195d
JA
3195 * Remember that we saw a request from this process, but
3196 * don't start queuing just yet. Otherwise we risk seeing lots
3197 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3198 * and merging. If the request is already larger than a single
3199 * page, let it rip immediately. For that case we assume that
2d870722
JA
3200 * merging is already done. Ditto for a busy system that
3201 * has other work pending, don't risk delaying until the
3202 * idle timer unplug to continue working.
22e2c507 3203 */
d6ceb25e 3204 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3205 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3206 cfqd->busy_queues > 1) {
d6ceb25e 3207 del_timer(&cfqd->idle_slice_timer);
554554f6 3208 cfq_clear_cfqq_wait_request(cfqq);
bf791937
VG
3209 __blk_run_queue(cfqd->queue);
3210 } else
3211 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 3212 }
5e705374 3213 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3214 /*
3215 * not the active queue - expire current slice if it is
3216 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3217 * has some old slice time left and is of higher priority or
3218 * this new queue is RT and the current one is BE
22e2c507
JA
3219 */
3220 cfq_preempt_queue(cfqd, cfqq);
a7f55792 3221 __blk_run_queue(cfqd->queue);
22e2c507 3222 }
1da177e4
LT
3223}
3224
165125e1 3225static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3226{
b4878f24 3227 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3228 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3229
7b679138 3230 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3231 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3232
30996f40 3233 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3234 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3235 cfq_add_rq_rb(rq);
22e2c507 3236
5e705374 3237 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3238}
3239
45333d5a
AC
3240/*
3241 * Update hw_tag based on peak queue depth over 50 samples under
3242 * sufficient load.
3243 */
3244static void cfq_update_hw_tag(struct cfq_data *cfqd)
3245{
1a1238a7
SL
3246 struct cfq_queue *cfqq = cfqd->active_queue;
3247
e459dd08
CZ
3248 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3249 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3250
3251 if (cfqd->hw_tag == 1)
3252 return;
45333d5a
AC
3253
3254 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 3255 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3256 return;
3257
1a1238a7
SL
3258 /*
3259 * If active queue hasn't enough requests and can idle, cfq might not
3260 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3261 * case
3262 */
3263 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3264 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3265 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3266 return;
3267
45333d5a
AC
3268 if (cfqd->hw_tag_samples++ < 50)
3269 return;
3270
e459dd08 3271 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3272 cfqd->hw_tag = 1;
3273 else
3274 cfqd->hw_tag = 0;
45333d5a
AC
3275}
3276
7667aa06
VG
3277static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3278{
3279 struct cfq_io_context *cic = cfqd->active_cic;
3280
3281 /* If there are other queues in the group, don't wait */
3282 if (cfqq->cfqg->nr_cfqq > 1)
3283 return false;
3284
3285 if (cfq_slice_used(cfqq))
3286 return true;
3287
3288 /* if slice left is less than think time, wait busy */
3289 if (cic && sample_valid(cic->ttime_samples)
3290 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3291 return true;
3292
3293 /*
3294 * If think times is less than a jiffy than ttime_mean=0 and above
3295 * will not be true. It might happen that slice has not expired yet
3296 * but will expire soon (4-5 ns) during select_queue(). To cover the
3297 * case where think time is less than a jiffy, mark the queue wait
3298 * busy if only 1 jiffy is left in the slice.
3299 */
3300 if (cfqq->slice_end - jiffies == 1)
3301 return true;
3302
3303 return false;
3304}
3305
165125e1 3306static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3307{
5e705374 3308 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3309 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3310 const int sync = rq_is_sync(rq);
b4878f24 3311 unsigned long now;
1da177e4 3312
b4878f24 3313 now = jiffies;
2868ef7b 3314 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
1da177e4 3315
45333d5a
AC
3316 cfq_update_hw_tag(cfqd);
3317
5ad531db 3318 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 3319 WARN_ON(!cfqq->dispatched);
5ad531db 3320 cfqd->rq_in_driver[sync]--;
6d048f53 3321 cfqq->dispatched--;
1da177e4 3322
3ed9a296
JA
3323 if (cfq_cfqq_sync(cfqq))
3324 cfqd->sync_flight--;
3325
365722bb 3326 if (sync) {
5e705374 3327 RQ_CIC(rq)->last_end_request = now;
573412b2
CZ
3328 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3329 cfqd->last_delayed_sync = now;
365722bb 3330 }
caaa5f9f
JA
3331
3332 /*
3333 * If this is the active queue, check if it needs to be expired,
3334 * or if we want to idle in case it has no pending requests.
3335 */
3336 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3337 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3338
44f7c160
JA
3339 if (cfq_cfqq_slice_new(cfqq)) {
3340 cfq_set_prio_slice(cfqd, cfqq);
3341 cfq_clear_cfqq_slice_new(cfqq);
3342 }
f75edf2d
VG
3343
3344 /*
7667aa06
VG
3345 * Should we wait for next request to come in before we expire
3346 * the queue.
f75edf2d 3347 */
7667aa06 3348 if (cfq_should_wait_busy(cfqd, cfqq)) {
f75edf2d
VG
3349 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3350 cfq_mark_cfqq_wait_busy(cfqq);
3351 }
3352
a36e71f9 3353 /*
8e550632
CZ
3354 * Idling is not enabled on:
3355 * - expired queues
3356 * - idle-priority queues
3357 * - async queues
3358 * - queues with still some requests queued
3359 * - when there is a close cooperator
a36e71f9 3360 */
0871714e 3361 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 3362 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3363 else if (sync && cfqq_empty &&
3364 !cfq_close_cooperator(cfqd, cfqq)) {
3365 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3366 /*
3367 * Idling is enabled for SYNC_WORKLOAD.
3368 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3369 * only if we processed at least one !rq_noidle request
3370 */
3371 if (cfqd->serving_type == SYNC_WORKLOAD
c04645e5
VG
3372 || cfqd->noidle_tree_requires_idle
3373 || cfqq->cfqg->nr_cfqq == 1)
8e550632
CZ
3374 cfq_arm_slice_timer(cfqd);
3375 }
caaa5f9f 3376 }
6d048f53 3377
5ad531db 3378 if (!rq_in_driver(cfqd))
23e018a1 3379 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3380}
3381
22e2c507
JA
3382/*
3383 * we temporarily boost lower priority queues if they are holding fs exclusive
3384 * resources. they are boosted to normal prio (CLASS_BE/4)
3385 */
3386static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3387{
22e2c507
JA
3388 if (has_fs_excl()) {
3389 /*
3390 * boost idle prio on transactions that would lock out other
3391 * users of the filesystem
3392 */
3393 if (cfq_class_idle(cfqq))
3394 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3395 if (cfqq->ioprio > IOPRIO_NORM)
3396 cfqq->ioprio = IOPRIO_NORM;
3397 } else {
3398 /*
dddb7451 3399 * unboost the queue (if needed)
22e2c507 3400 */
dddb7451
CZ
3401 cfqq->ioprio_class = cfqq->org_ioprio_class;
3402 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3403 }
22e2c507 3404}
1da177e4 3405
89850f7e 3406static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3407{
1b379d8d 3408 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3409 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3410 return ELV_MQUEUE_MUST;
3b18152c 3411 }
1da177e4 3412
22e2c507 3413 return ELV_MQUEUE_MAY;
22e2c507
JA
3414}
3415
165125e1 3416static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3417{
3418 struct cfq_data *cfqd = q->elevator->elevator_data;
3419 struct task_struct *tsk = current;
91fac317 3420 struct cfq_io_context *cic;
22e2c507
JA
3421 struct cfq_queue *cfqq;
3422
3423 /*
3424 * don't force setup of a queue from here, as a call to may_queue
3425 * does not necessarily imply that a request actually will be queued.
3426 * so just lookup a possibly existing queue, or return 'may queue'
3427 * if that fails
3428 */
4ac845a2 3429 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3430 if (!cic)
3431 return ELV_MQUEUE_MAY;
3432
b0b78f81 3433 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3434 if (cfqq) {
fd0928df 3435 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3436 cfq_prio_boost(cfqq);
3437
89850f7e 3438 return __cfq_may_queue(cfqq);
22e2c507
JA
3439 }
3440
3441 return ELV_MQUEUE_MAY;
1da177e4
LT
3442}
3443
1da177e4
LT
3444/*
3445 * queue lock held here
3446 */
bb37b94c 3447static void cfq_put_request(struct request *rq)
1da177e4 3448{
5e705374 3449 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3450
5e705374 3451 if (cfqq) {
22e2c507 3452 const int rw = rq_data_dir(rq);
1da177e4 3453
22e2c507
JA
3454 BUG_ON(!cfqq->allocated[rw]);
3455 cfqq->allocated[rw]--;
1da177e4 3456
5e705374 3457 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3458
1da177e4 3459 rq->elevator_private = NULL;
5e705374 3460 rq->elevator_private2 = NULL;
1da177e4 3461
1da177e4
LT
3462 cfq_put_queue(cfqq);
3463 }
3464}
3465
df5fe3e8
JM
3466static struct cfq_queue *
3467cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3468 struct cfq_queue *cfqq)
3469{
3470 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3471 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3472 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3473 cfq_put_queue(cfqq);
3474 return cic_to_cfqq(cic, 1);
3475}
3476
e6c5bc73
JM
3477static int should_split_cfqq(struct cfq_queue *cfqq)
3478{
3479 if (cfqq->seeky_start &&
3480 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3481 return 1;
3482 return 0;
3483}
3484
3485/*
3486 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3487 * was the last process referring to said cfqq.
3488 */
3489static struct cfq_queue *
3490split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3491{
3492 if (cfqq_process_refs(cfqq) == 1) {
3493 cfqq->seeky_start = 0;
3494 cfqq->pid = current->pid;
3495 cfq_clear_cfqq_coop(cfqq);
3496 return cfqq;
3497 }
3498
3499 cic_set_cfqq(cic, NULL, 1);
3500 cfq_put_queue(cfqq);
3501 return NULL;
3502}
1da177e4 3503/*
22e2c507 3504 * Allocate cfq data structures associated with this request.
1da177e4 3505 */
22e2c507 3506static int
165125e1 3507cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3508{
3509 struct cfq_data *cfqd = q->elevator->elevator_data;
3510 struct cfq_io_context *cic;
3511 const int rw = rq_data_dir(rq);
a6151c3a 3512 const bool is_sync = rq_is_sync(rq);
22e2c507 3513 struct cfq_queue *cfqq;
1da177e4
LT
3514 unsigned long flags;
3515
3516 might_sleep_if(gfp_mask & __GFP_WAIT);
3517
e2d74ac0 3518 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3519
1da177e4
LT
3520 spin_lock_irqsave(q->queue_lock, flags);
3521
22e2c507
JA
3522 if (!cic)
3523 goto queue_fail;
3524
e6c5bc73 3525new_queue:
91fac317 3526 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3527 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3528 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3529 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3530 } else {
e6c5bc73
JM
3531 /*
3532 * If the queue was seeky for too long, break it apart.
3533 */
3534 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3535 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3536 cfqq = split_cfqq(cic, cfqq);
3537 if (!cfqq)
3538 goto new_queue;
3539 }
3540
df5fe3e8
JM
3541 /*
3542 * Check to see if this queue is scheduled to merge with
3543 * another, closely cooperating queue. The merging of
3544 * queues happens here as it must be done in process context.
3545 * The reference on new_cfqq was taken in merge_cfqqs.
3546 */
3547 if (cfqq->new_cfqq)
3548 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3549 }
1da177e4
LT
3550
3551 cfqq->allocated[rw]++;
22e2c507 3552 atomic_inc(&cfqq->ref);
1da177e4 3553
5e705374 3554 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 3555
5e705374
JA
3556 rq->elevator_private = cic;
3557 rq->elevator_private2 = cfqq;
3558 return 0;
1da177e4 3559
22e2c507
JA
3560queue_fail:
3561 if (cic)
3562 put_io_context(cic->ioc);
89850f7e 3563
23e018a1 3564 cfq_schedule_dispatch(cfqd);
1da177e4 3565 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3566 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3567 return 1;
3568}
3569
65f27f38 3570static void cfq_kick_queue(struct work_struct *work)
22e2c507 3571{
65f27f38 3572 struct cfq_data *cfqd =
23e018a1 3573 container_of(work, struct cfq_data, unplug_work);
165125e1 3574 struct request_queue *q = cfqd->queue;
22e2c507 3575
40bb54d1 3576 spin_lock_irq(q->queue_lock);
a7f55792 3577 __blk_run_queue(cfqd->queue);
40bb54d1 3578 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3579}
3580
3581/*
3582 * Timer running if the active_queue is currently idling inside its time slice
3583 */
3584static void cfq_idle_slice_timer(unsigned long data)
3585{
3586 struct cfq_data *cfqd = (struct cfq_data *) data;
3587 struct cfq_queue *cfqq;
3588 unsigned long flags;
3c6bd2f8 3589 int timed_out = 1;
22e2c507 3590
7b679138
JA
3591 cfq_log(cfqd, "idle timer fired");
3592
22e2c507
JA
3593 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3594
fe094d98
JA
3595 cfqq = cfqd->active_queue;
3596 if (cfqq) {
3c6bd2f8
JA
3597 timed_out = 0;
3598
b029195d
JA
3599 /*
3600 * We saw a request before the queue expired, let it through
3601 */
3602 if (cfq_cfqq_must_dispatch(cfqq))
3603 goto out_kick;
3604
22e2c507
JA
3605 /*
3606 * expired
3607 */
44f7c160 3608 if (cfq_slice_used(cfqq))
22e2c507
JA
3609 goto expire;
3610
3611 /*
3612 * only expire and reinvoke request handler, if there are
3613 * other queues with pending requests
3614 */
caaa5f9f 3615 if (!cfqd->busy_queues)
22e2c507 3616 goto out_cont;
22e2c507
JA
3617
3618 /*
3619 * not expired and it has a request pending, let it dispatch
3620 */
75e50984 3621 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3622 goto out_kick;
76280aff
CZ
3623
3624 /*
3625 * Queue depth flag is reset only when the idle didn't succeed
3626 */
3627 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3628 }
3629expire:
6084cdda 3630 cfq_slice_expired(cfqd, timed_out);
22e2c507 3631out_kick:
23e018a1 3632 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3633out_cont:
3634 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3635}
3636
3b18152c
JA
3637static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3638{
3639 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3640 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3641}
22e2c507 3642
c2dea2d1
VT
3643static void cfq_put_async_queues(struct cfq_data *cfqd)
3644{
3645 int i;
3646
3647 for (i = 0; i < IOPRIO_BE_NR; i++) {
3648 if (cfqd->async_cfqq[0][i])
3649 cfq_put_queue(cfqd->async_cfqq[0][i]);
3650 if (cfqd->async_cfqq[1][i])
3651 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3652 }
2389d1ef
ON
3653
3654 if (cfqd->async_idle_cfqq)
3655 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3656}
3657
bb729bc9
JA
3658static void cfq_cfqd_free(struct rcu_head *head)
3659{
3660 kfree(container_of(head, struct cfq_data, rcu));
3661}
3662
b374d18a 3663static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3664{
22e2c507 3665 struct cfq_data *cfqd = e->elevator_data;
165125e1 3666 struct request_queue *q = cfqd->queue;
22e2c507 3667
3b18152c 3668 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3669
d9ff4187 3670 spin_lock_irq(q->queue_lock);
e2d74ac0 3671
d9ff4187 3672 if (cfqd->active_queue)
6084cdda 3673 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3674
3675 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3676 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3677 struct cfq_io_context,
3678 queue_list);
89850f7e
JA
3679
3680 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3681 }
e2d74ac0 3682
c2dea2d1 3683 cfq_put_async_queues(cfqd);
b1c35769
VG
3684 cfq_release_cfq_groups(cfqd);
3685 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
15c31be4 3686
d9ff4187 3687 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3688
3689 cfq_shutdown_timer_wq(cfqd);
3690
b1c35769 3691 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
bb729bc9 3692 call_rcu(&cfqd->rcu, cfq_cfqd_free);
1da177e4
LT
3693}
3694
165125e1 3695static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3696{
3697 struct cfq_data *cfqd;
718eee05 3698 int i, j;
cdb16e8f 3699 struct cfq_group *cfqg;
615f0259 3700 struct cfq_rb_root *st;
1da177e4 3701
94f6030c 3702 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3703 if (!cfqd)
bc1c1169 3704 return NULL;
1da177e4 3705
1fa8f6d6
VG
3706 /* Init root service tree */
3707 cfqd->grp_service_tree = CFQ_RB_ROOT;
3708
cdb16e8f
VG
3709 /* Init root group */
3710 cfqg = &cfqd->root_group;
615f0259
VG
3711 for_each_cfqg_st(cfqg, i, j, st)
3712 *st = CFQ_RB_ROOT;
1fa8f6d6 3713 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3714
25bc6b07
VG
3715 /* Give preference to root group over other groups */
3716 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3717
25fb5169 3718#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769
VG
3719 /*
3720 * Take a reference to root group which we never drop. This is just
3721 * to make sure that cfq_put_cfqg() does not try to kfree root group
3722 */
3723 atomic_set(&cfqg->ref, 1);
22084190
VG
3724 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3725 0);
25fb5169 3726#endif
26a2ac00
JA
3727 /*
3728 * Not strictly needed (since RB_ROOT just clears the node and we
3729 * zeroed cfqd on alloc), but better be safe in case someone decides
3730 * to add magic to the rb code
3731 */
3732 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3733 cfqd->prio_trees[i] = RB_ROOT;
3734
6118b70b
JA
3735 /*
3736 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3737 * Grab a permanent reference to it, so that the normal code flow
3738 * will not attempt to free it.
3739 */
3740 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3741 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3742 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3743
d9ff4187 3744 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3745
1da177e4 3746 cfqd->queue = q;
1da177e4 3747
22e2c507
JA
3748 init_timer(&cfqd->idle_slice_timer);
3749 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3750 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3751
23e018a1 3752 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3753
1da177e4 3754 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3755 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3756 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3757 cfqd->cfq_back_max = cfq_back_max;
3758 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3759 cfqd->cfq_slice[0] = cfq_slice_async;
3760 cfqd->cfq_slice[1] = cfq_slice_sync;
3761 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3762 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 3763 cfqd->cfq_latency = 1;
ae30c286 3764 cfqd->cfq_group_isolation = 0;
e459dd08 3765 cfqd->hw_tag = -1;
edc71131
CZ
3766 /*
3767 * we optimistically start assuming sync ops weren't delayed in last
3768 * second, in order to have larger depth for async operations.
3769 */
573412b2 3770 cfqd->last_delayed_sync = jiffies - HZ;
bb729bc9 3771 INIT_RCU_HEAD(&cfqd->rcu);
bc1c1169 3772 return cfqd;
1da177e4
LT
3773}
3774
3775static void cfq_slab_kill(void)
3776{
d6de8be7
JA
3777 /*
3778 * Caller already ensured that pending RCU callbacks are completed,
3779 * so we should have no busy allocations at this point.
3780 */
1da177e4
LT
3781 if (cfq_pool)
3782 kmem_cache_destroy(cfq_pool);
3783 if (cfq_ioc_pool)
3784 kmem_cache_destroy(cfq_ioc_pool);
3785}
3786
3787static int __init cfq_slab_setup(void)
3788{
0a31bd5f 3789 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3790 if (!cfq_pool)
3791 goto fail;
3792
34e6bbf2 3793 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3794 if (!cfq_ioc_pool)
3795 goto fail;
3796
3797 return 0;
3798fail:
3799 cfq_slab_kill();
3800 return -ENOMEM;
3801}
3802
1da177e4
LT
3803/*
3804 * sysfs parts below -->
3805 */
1da177e4
LT
3806static ssize_t
3807cfq_var_show(unsigned int var, char *page)
3808{
3809 return sprintf(page, "%d\n", var);
3810}
3811
3812static ssize_t
3813cfq_var_store(unsigned int *var, const char *page, size_t count)
3814{
3815 char *p = (char *) page;
3816
3817 *var = simple_strtoul(p, &p, 10);
3818 return count;
3819}
3820
1da177e4 3821#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3822static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3823{ \
3d1ab40f 3824 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3825 unsigned int __data = __VAR; \
3826 if (__CONV) \
3827 __data = jiffies_to_msecs(__data); \
3828 return cfq_var_show(__data, (page)); \
3829}
3830SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3831SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3832SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3833SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3834SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3835SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3836SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3837SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3838SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3839SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
ae30c286 3840SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
1da177e4
LT
3841#undef SHOW_FUNCTION
3842
3843#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3844static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3845{ \
3d1ab40f 3846 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3847 unsigned int __data; \
3848 int ret = cfq_var_store(&__data, (page), count); \
3849 if (__data < (MIN)) \
3850 __data = (MIN); \
3851 else if (__data > (MAX)) \
3852 __data = (MAX); \
3853 if (__CONV) \
3854 *(__PTR) = msecs_to_jiffies(__data); \
3855 else \
3856 *(__PTR) = __data; \
3857 return ret; \
3858}
3859STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3860STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3861 UINT_MAX, 1);
3862STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3863 UINT_MAX, 1);
e572ec7e 3864STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3865STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3866 UINT_MAX, 0);
22e2c507
JA
3867STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3868STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3869STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3870STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3871 UINT_MAX, 0);
963b72fc 3872STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
ae30c286 3873STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
1da177e4
LT
3874#undef STORE_FUNCTION
3875
e572ec7e
AV
3876#define CFQ_ATTR(name) \
3877 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3878
3879static struct elv_fs_entry cfq_attrs[] = {
3880 CFQ_ATTR(quantum),
e572ec7e
AV
3881 CFQ_ATTR(fifo_expire_sync),
3882 CFQ_ATTR(fifo_expire_async),
3883 CFQ_ATTR(back_seek_max),
3884 CFQ_ATTR(back_seek_penalty),
3885 CFQ_ATTR(slice_sync),
3886 CFQ_ATTR(slice_async),
3887 CFQ_ATTR(slice_async_rq),
3888 CFQ_ATTR(slice_idle),
963b72fc 3889 CFQ_ATTR(low_latency),
ae30c286 3890 CFQ_ATTR(group_isolation),
e572ec7e 3891 __ATTR_NULL
1da177e4
LT
3892};
3893
1da177e4
LT
3894static struct elevator_type iosched_cfq = {
3895 .ops = {
3896 .elevator_merge_fn = cfq_merge,
3897 .elevator_merged_fn = cfq_merged_request,
3898 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3899 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 3900 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3901 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3902 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3903 .elevator_deactivate_req_fn = cfq_deactivate_request,
3904 .elevator_queue_empty_fn = cfq_queue_empty,
3905 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3906 .elevator_former_req_fn = elv_rb_former_request,
3907 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3908 .elevator_set_req_fn = cfq_set_request,
3909 .elevator_put_req_fn = cfq_put_request,
3910 .elevator_may_queue_fn = cfq_may_queue,
3911 .elevator_init_fn = cfq_init_queue,
3912 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3913 .trim = cfq_free_io_context,
1da177e4 3914 },
3d1ab40f 3915 .elevator_attrs = cfq_attrs,
1da177e4
LT
3916 .elevator_name = "cfq",
3917 .elevator_owner = THIS_MODULE,
3918};
3919
3e252066
VG
3920#ifdef CONFIG_CFQ_GROUP_IOSCHED
3921static struct blkio_policy_type blkio_policy_cfq = {
3922 .ops = {
3923 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3924 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3925 },
3926};
3927#else
3928static struct blkio_policy_type blkio_policy_cfq;
3929#endif
3930
1da177e4
LT
3931static int __init cfq_init(void)
3932{
22e2c507
JA
3933 /*
3934 * could be 0 on HZ < 1000 setups
3935 */
3936 if (!cfq_slice_async)
3937 cfq_slice_async = 1;
3938 if (!cfq_slice_idle)
3939 cfq_slice_idle = 1;
3940
1da177e4
LT
3941 if (cfq_slab_setup())
3942 return -ENOMEM;
3943
2fdd82bd 3944 elv_register(&iosched_cfq);
3e252066 3945 blkio_policy_register(&blkio_policy_cfq);
1da177e4 3946
2fdd82bd 3947 return 0;
1da177e4
LT
3948}
3949
3950static void __exit cfq_exit(void)
3951{
6e9a4738 3952 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 3953 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 3954 elv_unregister(&iosched_cfq);
334e94de 3955 ioc_gone = &all_gone;
fba82272
OH
3956 /* ioc_gone's update must be visible before reading ioc_count */
3957 smp_wmb();
d6de8be7
JA
3958
3959 /*
3960 * this also protects us from entering cfq_slab_kill() with
3961 * pending RCU callbacks
3962 */
245b2e70 3963 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3964 wait_for_completion(&all_gone);
83521d3e 3965 cfq_slab_kill();
1da177e4
LT
3966}
3967
3968module_init(cfq_init);
3969module_exit(cfq_exit);
3970
3971MODULE_AUTHOR("Jens Axboe");
3972MODULE_LICENSE("GPL");
3973MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");