cfq: Optimization for close cooperating queue searching
[linux-2.6-block.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
ad5ebd2f 12#include <linux/jiffies.h>
1da177e4 13#include <linux/rbtree.h>
22e2c507 14#include <linux/ioprio.h>
7b679138 15#include <linux/blktrace_api.h>
25bc6b07 16#include "blk-cgroup.h"
1da177e4
LT
17
18/*
19 * tunables
20 */
fe094d98
JA
21/* max queue in one round of service */
22static const int cfq_quantum = 4;
64100099 23static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
24/* maximum backwards seek, in KiB */
25static const int cfq_back_max = 16 * 1024;
26/* penalty of a backwards seek */
27static const int cfq_back_penalty = 2;
64100099 28static const int cfq_slice_sync = HZ / 10;
3b18152c 29static int cfq_slice_async = HZ / 25;
64100099 30static const int cfq_slice_async_rq = 2;
caaa5f9f 31static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
32static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33static const int cfq_hist_divisor = 4;
22e2c507 34
d9e7620e 35/*
0871714e 36 * offset from end of service tree
d9e7620e 37 */
0871714e 38#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
39
40/*
41 * below this threshold, we consider thinktime immediate
42 */
43#define CFQ_MIN_TT (2)
44
e6c5bc73
JM
45/*
46 * Allow merged cfqqs to perform this amount of seeky I/O before
47 * deciding to break the queues up again.
48 */
49#define CFQQ_COOP_TOUT (HZ)
50
22e2c507 51#define CFQ_SLICE_SCALE (5)
45333d5a 52#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 53#define CFQ_SERVICE_SHIFT 12
22e2c507 54
fe094d98
JA
55#define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 57#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 58
e18b890b
CL
59static struct kmem_cache *cfq_pool;
60static struct kmem_cache *cfq_ioc_pool;
1da177e4 61
245b2e70 62static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 63static struct completion *ioc_gone;
9a11b4ed 64static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 65
22e2c507
JA
66#define CFQ_PRIO_LISTS IOPRIO_BE_NR
67#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
68#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69
206dc69b 70#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 71#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 72
cc09e299
JA
73/*
74 * Most of our rbtree usage is for sorting with min extraction, so
75 * if we cache the leftmost node we don't have to walk down the tree
76 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77 * move this into the elevator for the rq sorting as well.
78 */
79struct cfq_rb_root {
80 struct rb_root rb;
81 struct rb_node *left;
aa6f6a3d 82 unsigned count;
1fa8f6d6 83 u64 min_vdisktime;
25bc6b07 84 struct rb_node *active;
58ff82f3 85 unsigned total_weight;
cc09e299 86};
1fa8f6d6 87#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
cc09e299 88
6118b70b
JA
89/*
90 * Per process-grouping structure
91 */
92struct cfq_queue {
93 /* reference count */
94 atomic_t ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
117
dae739eb
VG
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
f75edf2d 120 unsigned int allocated_slice;
dae739eb
VG
121 /* time when first request from queue completed and slice started. */
122 unsigned long slice_start;
6118b70b
JA
123 unsigned long slice_end;
124 long slice_resid;
125 unsigned int slice_dispatch;
126
127 /* pending metadata requests */
128 int meta_pending;
129 /* number of requests that are on the dispatch list or inside driver */
130 int dispatched;
131
132 /* io prio of this group */
133 unsigned short ioprio, org_ioprio;
134 unsigned short ioprio_class, org_ioprio_class;
135
b2c18e1e
JM
136 unsigned int seek_samples;
137 u64 seek_total;
138 sector_t seek_mean;
139 sector_t last_request_pos;
e6c5bc73 140 unsigned long seeky_start;
b2c18e1e 141
6118b70b 142 pid_t pid;
df5fe3e8 143
aa6f6a3d 144 struct cfq_rb_root *service_tree;
df5fe3e8 145 struct cfq_queue *new_cfqq;
cdb16e8f 146 struct cfq_group *cfqg;
ae30c286 147 struct cfq_group *orig_cfqg;
22084190
VG
148 /* Sectors dispatched in current dispatch round */
149 unsigned long nr_sectors;
6118b70b
JA
150};
151
c0324a02 152/*
718eee05 153 * First index in the service_trees.
c0324a02
CZ
154 * IDLE is handled separately, so it has negative index
155 */
156enum wl_prio_t {
c0324a02 157 BE_WORKLOAD = 0,
615f0259
VG
158 RT_WORKLOAD = 1,
159 IDLE_WORKLOAD = 2,
c0324a02
CZ
160};
161
718eee05
CZ
162/*
163 * Second index in the service_trees.
164 */
165enum wl_type_t {
166 ASYNC_WORKLOAD = 0,
167 SYNC_NOIDLE_WORKLOAD = 1,
168 SYNC_WORKLOAD = 2
169};
170
cdb16e8f
VG
171/* This is per cgroup per device grouping structure */
172struct cfq_group {
1fa8f6d6
VG
173 /* group service_tree member */
174 struct rb_node rb_node;
175
176 /* group service_tree key */
177 u64 vdisktime;
25bc6b07 178 unsigned int weight;
1fa8f6d6
VG
179 bool on_st;
180
181 /* number of cfqq currently on this group */
182 int nr_cfqq;
183
58ff82f3
VG
184 /* Per group busy queus average. Useful for workload slice calc. */
185 unsigned int busy_queues_avg[2];
cdb16e8f
VG
186 /*
187 * rr lists of queues with requests, onle rr for each priority class.
188 * Counts are embedded in the cfq_rb_root
189 */
190 struct cfq_rb_root service_trees[2][3];
191 struct cfq_rb_root service_tree_idle;
dae739eb
VG
192
193 unsigned long saved_workload_slice;
194 enum wl_type_t saved_workload;
195 enum wl_prio_t saved_serving_prio;
25fb5169
VG
196 struct blkio_group blkg;
197#ifdef CONFIG_CFQ_GROUP_IOSCHED
198 struct hlist_node cfqd_node;
b1c35769 199 atomic_t ref;
25fb5169 200#endif
cdb16e8f 201};
718eee05 202
22e2c507
JA
203/*
204 * Per block device queue structure
205 */
1da177e4 206struct cfq_data {
165125e1 207 struct request_queue *queue;
1fa8f6d6
VG
208 /* Root service tree for cfq_groups */
209 struct cfq_rb_root grp_service_tree;
cdb16e8f 210 struct cfq_group root_group;
58ff82f3
VG
211 /* Number of active cfq groups on group service tree */
212 int nr_groups;
22e2c507 213
c0324a02
CZ
214 /*
215 * The priority currently being served
22e2c507 216 */
c0324a02 217 enum wl_prio_t serving_prio;
718eee05
CZ
218 enum wl_type_t serving_type;
219 unsigned long workload_expires;
cdb16e8f 220 struct cfq_group *serving_group;
8e550632 221 bool noidle_tree_requires_idle;
a36e71f9
JA
222
223 /*
224 * Each priority tree is sorted by next_request position. These
225 * trees are used when determining if two or more queues are
226 * interleaving requests (see cfq_close_cooperator).
227 */
228 struct rb_root prio_trees[CFQ_PRIO_LISTS];
229
22e2c507
JA
230 unsigned int busy_queues;
231
5ad531db 232 int rq_in_driver[2];
3ed9a296 233 int sync_flight;
45333d5a
AC
234
235 /*
236 * queue-depth detection
237 */
238 int rq_queued;
25776e35 239 int hw_tag;
e459dd08
CZ
240 /*
241 * hw_tag can be
242 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
243 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
244 * 0 => no NCQ
245 */
246 int hw_tag_est_depth;
247 unsigned int hw_tag_samples;
1da177e4 248
22e2c507
JA
249 /*
250 * idle window management
251 */
252 struct timer_list idle_slice_timer;
23e018a1 253 struct work_struct unplug_work;
1da177e4 254
22e2c507
JA
255 struct cfq_queue *active_queue;
256 struct cfq_io_context *active_cic;
22e2c507 257
c2dea2d1
VT
258 /*
259 * async queue for each priority case
260 */
261 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
262 struct cfq_queue *async_idle_cfqq;
15c31be4 263
6d048f53 264 sector_t last_position;
1da177e4 265
1da177e4
LT
266 /*
267 * tunables, see top of file
268 */
269 unsigned int cfq_quantum;
22e2c507 270 unsigned int cfq_fifo_expire[2];
1da177e4
LT
271 unsigned int cfq_back_penalty;
272 unsigned int cfq_back_max;
22e2c507
JA
273 unsigned int cfq_slice[2];
274 unsigned int cfq_slice_async_rq;
275 unsigned int cfq_slice_idle;
963b72fc 276 unsigned int cfq_latency;
ae30c286 277 unsigned int cfq_group_isolation;
d9ff4187
AV
278
279 struct list_head cic_list;
1da177e4 280
6118b70b
JA
281 /*
282 * Fallback dummy cfqq for extreme OOM conditions
283 */
284 struct cfq_queue oom_cfqq;
365722bb 285
573412b2 286 unsigned long last_delayed_sync;
25fb5169
VG
287
288 /* List of cfq groups being managed on this device*/
289 struct hlist_head cfqg_list;
bb729bc9 290 struct rcu_head rcu;
1da177e4
LT
291};
292
25fb5169
VG
293static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
294
cdb16e8f
VG
295static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
296 enum wl_prio_t prio,
718eee05 297 enum wl_type_t type,
c0324a02
CZ
298 struct cfq_data *cfqd)
299{
1fa8f6d6
VG
300 if (!cfqg)
301 return NULL;
302
c0324a02 303 if (prio == IDLE_WORKLOAD)
cdb16e8f 304 return &cfqg->service_tree_idle;
c0324a02 305
cdb16e8f 306 return &cfqg->service_trees[prio][type];
c0324a02
CZ
307}
308
3b18152c 309enum cfqq_state_flags {
b0b8d749
JA
310 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
311 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 312 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 313 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
314 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
315 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
316 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 317 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 318 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 319 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
76280aff 320 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d
VG
321 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
322 CFQ_CFQQ_FLAG_wait_busy_done, /* Got new request. Expire the queue */
3b18152c
JA
323};
324
325#define CFQ_CFQQ_FNS(name) \
326static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
327{ \
fe094d98 328 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
329} \
330static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
331{ \
fe094d98 332 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
333} \
334static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
335{ \
fe094d98 336 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
337}
338
339CFQ_CFQQ_FNS(on_rr);
340CFQ_CFQQ_FNS(wait_request);
b029195d 341CFQ_CFQQ_FNS(must_dispatch);
3b18152c 342CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
343CFQ_CFQQ_FNS(fifo_expire);
344CFQ_CFQQ_FNS(idle_window);
345CFQ_CFQQ_FNS(prio_changed);
44f7c160 346CFQ_CFQQ_FNS(slice_new);
91fac317 347CFQ_CFQQ_FNS(sync);
a36e71f9 348CFQ_CFQQ_FNS(coop);
76280aff 349CFQ_CFQQ_FNS(deep);
f75edf2d
VG
350CFQ_CFQQ_FNS(wait_busy);
351CFQ_CFQQ_FNS(wait_busy_done);
3b18152c
JA
352#undef CFQ_CFQQ_FNS
353
2868ef7b
VG
354#ifdef CONFIG_DEBUG_CFQ_IOSCHED
355#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
356 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
357 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
358 blkg_path(&(cfqq)->cfqg->blkg), ##args);
359
360#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
361 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
362 blkg_path(&(cfqg)->blkg), ##args); \
363
364#else
7b679138
JA
365#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
366 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
367#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
368#endif
7b679138
JA
369#define cfq_log(cfqd, fmt, args...) \
370 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
371
615f0259
VG
372/* Traverses through cfq group service trees */
373#define for_each_cfqg_st(cfqg, i, j, st) \
374 for (i = 0; i <= IDLE_WORKLOAD; i++) \
375 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
376 : &cfqg->service_tree_idle; \
377 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
378 (i == IDLE_WORKLOAD && j == 0); \
379 j++, st = i < IDLE_WORKLOAD ? \
380 &cfqg->service_trees[i][j]: NULL) \
381
382
c0324a02
CZ
383static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
384{
385 if (cfq_class_idle(cfqq))
386 return IDLE_WORKLOAD;
387 if (cfq_class_rt(cfqq))
388 return RT_WORKLOAD;
389 return BE_WORKLOAD;
390}
391
718eee05
CZ
392
393static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
394{
395 if (!cfq_cfqq_sync(cfqq))
396 return ASYNC_WORKLOAD;
397 if (!cfq_cfqq_idle_window(cfqq))
398 return SYNC_NOIDLE_WORKLOAD;
399 return SYNC_WORKLOAD;
400}
401
58ff82f3
VG
402static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
403 struct cfq_data *cfqd,
404 struct cfq_group *cfqg)
c0324a02
CZ
405{
406 if (wl == IDLE_WORKLOAD)
cdb16e8f 407 return cfqg->service_tree_idle.count;
c0324a02 408
cdb16e8f
VG
409 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
410 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
411 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
412}
413
f26bd1f0
VG
414static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
415 struct cfq_group *cfqg)
416{
417 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
418 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
419}
420
165125e1 421static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 422static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 423 struct io_context *, gfp_t);
4ac845a2 424static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
425 struct io_context *);
426
5ad531db
JA
427static inline int rq_in_driver(struct cfq_data *cfqd)
428{
429 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
430}
431
91fac317 432static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 433 bool is_sync)
91fac317 434{
a6151c3a 435 return cic->cfqq[is_sync];
91fac317
VT
436}
437
438static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 439 struct cfq_queue *cfqq, bool is_sync)
91fac317 440{
a6151c3a 441 cic->cfqq[is_sync] = cfqq;
91fac317
VT
442}
443
444/*
445 * We regard a request as SYNC, if it's either a read or has the SYNC bit
446 * set (in which case it could also be direct WRITE).
447 */
a6151c3a 448static inline bool cfq_bio_sync(struct bio *bio)
91fac317 449{
a6151c3a 450 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 451}
1da177e4 452
99f95e52
AM
453/*
454 * scheduler run of queue, if there are requests pending and no one in the
455 * driver that will restart queueing
456 */
23e018a1 457static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 458{
7b679138
JA
459 if (cfqd->busy_queues) {
460 cfq_log(cfqd, "schedule dispatch");
23e018a1 461 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 462 }
99f95e52
AM
463}
464
165125e1 465static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
466{
467 struct cfq_data *cfqd = q->elevator->elevator_data;
468
f04a6424 469 return !cfqd->rq_queued;
99f95e52
AM
470}
471
44f7c160
JA
472/*
473 * Scale schedule slice based on io priority. Use the sync time slice only
474 * if a queue is marked sync and has sync io queued. A sync queue with async
475 * io only, should not get full sync slice length.
476 */
a6151c3a 477static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 478 unsigned short prio)
44f7c160 479{
d9e7620e 480 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 481
d9e7620e
JA
482 WARN_ON(prio >= IOPRIO_BE_NR);
483
484 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
485}
44f7c160 486
d9e7620e
JA
487static inline int
488cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
489{
490 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
491}
492
25bc6b07
VG
493static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
494{
495 u64 d = delta << CFQ_SERVICE_SHIFT;
496
497 d = d * BLKIO_WEIGHT_DEFAULT;
498 do_div(d, cfqg->weight);
499 return d;
500}
501
502static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
503{
504 s64 delta = (s64)(vdisktime - min_vdisktime);
505 if (delta > 0)
506 min_vdisktime = vdisktime;
507
508 return min_vdisktime;
509}
510
511static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
512{
513 s64 delta = (s64)(vdisktime - min_vdisktime);
514 if (delta < 0)
515 min_vdisktime = vdisktime;
516
517 return min_vdisktime;
518}
519
520static void update_min_vdisktime(struct cfq_rb_root *st)
521{
522 u64 vdisktime = st->min_vdisktime;
523 struct cfq_group *cfqg;
524
525 if (st->active) {
526 cfqg = rb_entry_cfqg(st->active);
527 vdisktime = cfqg->vdisktime;
528 }
529
530 if (st->left) {
531 cfqg = rb_entry_cfqg(st->left);
532 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
533 }
534
535 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
536}
537
5db5d642
CZ
538/*
539 * get averaged number of queues of RT/BE priority.
540 * average is updated, with a formula that gives more weight to higher numbers,
541 * to quickly follows sudden increases and decrease slowly
542 */
543
58ff82f3
VG
544static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
545 struct cfq_group *cfqg, bool rt)
5869619c 546{
5db5d642
CZ
547 unsigned min_q, max_q;
548 unsigned mult = cfq_hist_divisor - 1;
549 unsigned round = cfq_hist_divisor / 2;
58ff82f3 550 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 551
58ff82f3
VG
552 min_q = min(cfqg->busy_queues_avg[rt], busy);
553 max_q = max(cfqg->busy_queues_avg[rt], busy);
554 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 555 cfq_hist_divisor;
58ff82f3
VG
556 return cfqg->busy_queues_avg[rt];
557}
558
559static inline unsigned
560cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
561{
562 struct cfq_rb_root *st = &cfqd->grp_service_tree;
563
564 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
565}
566
44f7c160
JA
567static inline void
568cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
569{
5db5d642
CZ
570 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
571 if (cfqd->cfq_latency) {
58ff82f3
VG
572 /*
573 * interested queues (we consider only the ones with the same
574 * priority class in the cfq group)
575 */
576 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
577 cfq_class_rt(cfqq));
5db5d642
CZ
578 unsigned sync_slice = cfqd->cfq_slice[1];
579 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
580 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
581
582 if (expect_latency > group_slice) {
5db5d642
CZ
583 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
584 /* scale low_slice according to IO priority
585 * and sync vs async */
586 unsigned low_slice =
587 min(slice, base_low_slice * slice / sync_slice);
588 /* the adapted slice value is scaled to fit all iqs
589 * into the target latency */
58ff82f3 590 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
591 low_slice);
592 }
593 }
dae739eb 594 cfqq->slice_start = jiffies;
5db5d642 595 cfqq->slice_end = jiffies + slice;
f75edf2d 596 cfqq->allocated_slice = slice;
7b679138 597 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
598}
599
600/*
601 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
602 * isn't valid until the first request from the dispatch is activated
603 * and the slice time set.
604 */
a6151c3a 605static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
606{
607 if (cfq_cfqq_slice_new(cfqq))
608 return 0;
609 if (time_before(jiffies, cfqq->slice_end))
610 return 0;
611
612 return 1;
613}
614
1da177e4 615/*
5e705374 616 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 617 * We choose the request that is closest to the head right now. Distance
e8a99053 618 * behind the head is penalized and only allowed to a certain extent.
1da177e4 619 */
5e705374 620static struct request *
cf7c25cf 621cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 622{
cf7c25cf 623 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 624 unsigned long back_max;
e8a99053
AM
625#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
626#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
627 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 628
5e705374
JA
629 if (rq1 == NULL || rq1 == rq2)
630 return rq2;
631 if (rq2 == NULL)
632 return rq1;
9c2c38a1 633
5e705374
JA
634 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
635 return rq1;
636 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
637 return rq2;
374f84ac
JA
638 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
639 return rq1;
640 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
641 return rq2;
1da177e4 642
83096ebf
TH
643 s1 = blk_rq_pos(rq1);
644 s2 = blk_rq_pos(rq2);
1da177e4 645
1da177e4
LT
646 /*
647 * by definition, 1KiB is 2 sectors
648 */
649 back_max = cfqd->cfq_back_max * 2;
650
651 /*
652 * Strict one way elevator _except_ in the case where we allow
653 * short backward seeks which are biased as twice the cost of a
654 * similar forward seek.
655 */
656 if (s1 >= last)
657 d1 = s1 - last;
658 else if (s1 + back_max >= last)
659 d1 = (last - s1) * cfqd->cfq_back_penalty;
660 else
e8a99053 661 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
662
663 if (s2 >= last)
664 d2 = s2 - last;
665 else if (s2 + back_max >= last)
666 d2 = (last - s2) * cfqd->cfq_back_penalty;
667 else
e8a99053 668 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
669
670 /* Found required data */
e8a99053
AM
671
672 /*
673 * By doing switch() on the bit mask "wrap" we avoid having to
674 * check two variables for all permutations: --> faster!
675 */
676 switch (wrap) {
5e705374 677 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 678 if (d1 < d2)
5e705374 679 return rq1;
e8a99053 680 else if (d2 < d1)
5e705374 681 return rq2;
e8a99053
AM
682 else {
683 if (s1 >= s2)
5e705374 684 return rq1;
e8a99053 685 else
5e705374 686 return rq2;
e8a99053 687 }
1da177e4 688
e8a99053 689 case CFQ_RQ2_WRAP:
5e705374 690 return rq1;
e8a99053 691 case CFQ_RQ1_WRAP:
5e705374
JA
692 return rq2;
693 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
694 default:
695 /*
696 * Since both rqs are wrapped,
697 * start with the one that's further behind head
698 * (--> only *one* back seek required),
699 * since back seek takes more time than forward.
700 */
701 if (s1 <= s2)
5e705374 702 return rq1;
1da177e4 703 else
5e705374 704 return rq2;
1da177e4
LT
705 }
706}
707
498d3aa2
JA
708/*
709 * The below is leftmost cache rbtree addon
710 */
0871714e 711static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 712{
615f0259
VG
713 /* Service tree is empty */
714 if (!root->count)
715 return NULL;
716
cc09e299
JA
717 if (!root->left)
718 root->left = rb_first(&root->rb);
719
0871714e
JA
720 if (root->left)
721 return rb_entry(root->left, struct cfq_queue, rb_node);
722
723 return NULL;
cc09e299
JA
724}
725
1fa8f6d6
VG
726static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
727{
728 if (!root->left)
729 root->left = rb_first(&root->rb);
730
731 if (root->left)
732 return rb_entry_cfqg(root->left);
733
734 return NULL;
735}
736
a36e71f9
JA
737static void rb_erase_init(struct rb_node *n, struct rb_root *root)
738{
739 rb_erase(n, root);
740 RB_CLEAR_NODE(n);
741}
742
cc09e299
JA
743static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
744{
745 if (root->left == n)
746 root->left = NULL;
a36e71f9 747 rb_erase_init(n, &root->rb);
aa6f6a3d 748 --root->count;
cc09e299
JA
749}
750
1da177e4
LT
751/*
752 * would be nice to take fifo expire time into account as well
753 */
5e705374
JA
754static struct request *
755cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
756 struct request *last)
1da177e4 757{
21183b07
JA
758 struct rb_node *rbnext = rb_next(&last->rb_node);
759 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 760 struct request *next = NULL, *prev = NULL;
1da177e4 761
21183b07 762 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
763
764 if (rbprev)
5e705374 765 prev = rb_entry_rq(rbprev);
1da177e4 766
21183b07 767 if (rbnext)
5e705374 768 next = rb_entry_rq(rbnext);
21183b07
JA
769 else {
770 rbnext = rb_first(&cfqq->sort_list);
771 if (rbnext && rbnext != &last->rb_node)
5e705374 772 next = rb_entry_rq(rbnext);
21183b07 773 }
1da177e4 774
cf7c25cf 775 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
776}
777
d9e7620e
JA
778static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
779 struct cfq_queue *cfqq)
1da177e4 780{
d9e7620e
JA
781 /*
782 * just an approximation, should be ok.
783 */
cdb16e8f 784 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 785 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
786}
787
1fa8f6d6
VG
788static inline s64
789cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
790{
791 return cfqg->vdisktime - st->min_vdisktime;
792}
793
794static void
795__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
796{
797 struct rb_node **node = &st->rb.rb_node;
798 struct rb_node *parent = NULL;
799 struct cfq_group *__cfqg;
800 s64 key = cfqg_key(st, cfqg);
801 int left = 1;
802
803 while (*node != NULL) {
804 parent = *node;
805 __cfqg = rb_entry_cfqg(parent);
806
807 if (key < cfqg_key(st, __cfqg))
808 node = &parent->rb_left;
809 else {
810 node = &parent->rb_right;
811 left = 0;
812 }
813 }
814
815 if (left)
816 st->left = &cfqg->rb_node;
817
818 rb_link_node(&cfqg->rb_node, parent, node);
819 rb_insert_color(&cfqg->rb_node, &st->rb);
820}
821
822static void
823cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
824{
825 struct cfq_rb_root *st = &cfqd->grp_service_tree;
826 struct cfq_group *__cfqg;
827 struct rb_node *n;
828
829 cfqg->nr_cfqq++;
830 if (cfqg->on_st)
831 return;
832
833 /*
834 * Currently put the group at the end. Later implement something
835 * so that groups get lesser vtime based on their weights, so that
836 * if group does not loose all if it was not continously backlogged.
837 */
838 n = rb_last(&st->rb);
839 if (n) {
840 __cfqg = rb_entry_cfqg(n);
841 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
842 } else
843 cfqg->vdisktime = st->min_vdisktime;
844
845 __cfq_group_service_tree_add(st, cfqg);
846 cfqg->on_st = true;
58ff82f3
VG
847 cfqd->nr_groups++;
848 st->total_weight += cfqg->weight;
1fa8f6d6
VG
849}
850
851static void
852cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
853{
854 struct cfq_rb_root *st = &cfqd->grp_service_tree;
855
25bc6b07
VG
856 if (st->active == &cfqg->rb_node)
857 st->active = NULL;
858
1fa8f6d6
VG
859 BUG_ON(cfqg->nr_cfqq < 1);
860 cfqg->nr_cfqq--;
25bc6b07 861
1fa8f6d6
VG
862 /* If there are other cfq queues under this group, don't delete it */
863 if (cfqg->nr_cfqq)
864 return;
865
2868ef7b 866 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1fa8f6d6 867 cfqg->on_st = false;
58ff82f3
VG
868 cfqd->nr_groups--;
869 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
870 if (!RB_EMPTY_NODE(&cfqg->rb_node))
871 cfq_rb_erase(&cfqg->rb_node, st);
dae739eb 872 cfqg->saved_workload_slice = 0;
22084190 873 blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
874}
875
876static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
877{
f75edf2d 878 unsigned int slice_used;
dae739eb
VG
879
880 /*
881 * Queue got expired before even a single request completed or
882 * got expired immediately after first request completion.
883 */
884 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
885 /*
886 * Also charge the seek time incurred to the group, otherwise
887 * if there are mutiple queues in the group, each can dispatch
888 * a single request on seeky media and cause lots of seek time
889 * and group will never know it.
890 */
891 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
892 1);
893 } else {
894 slice_used = jiffies - cfqq->slice_start;
f75edf2d
VG
895 if (slice_used > cfqq->allocated_slice)
896 slice_used = cfqq->allocated_slice;
dae739eb
VG
897 }
898
22084190
VG
899 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
900 cfqq->nr_sectors);
dae739eb
VG
901 return slice_used;
902}
903
904static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
905 struct cfq_queue *cfqq)
906{
907 struct cfq_rb_root *st = &cfqd->grp_service_tree;
f26bd1f0
VG
908 unsigned int used_sl, charge_sl;
909 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
910 - cfqg->service_tree_idle.count;
911
912 BUG_ON(nr_sync < 0);
913 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
dae739eb 914
f26bd1f0
VG
915 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
916 charge_sl = cfqq->allocated_slice;
dae739eb
VG
917
918 /* Can't update vdisktime while group is on service tree */
919 cfq_rb_erase(&cfqg->rb_node, st);
f26bd1f0 920 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
dae739eb
VG
921 __cfq_group_service_tree_add(st, cfqg);
922
923 /* This group is being expired. Save the context */
924 if (time_after(cfqd->workload_expires, jiffies)) {
925 cfqg->saved_workload_slice = cfqd->workload_expires
926 - jiffies;
927 cfqg->saved_workload = cfqd->serving_type;
928 cfqg->saved_serving_prio = cfqd->serving_prio;
929 } else
930 cfqg->saved_workload_slice = 0;
2868ef7b
VG
931
932 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
933 st->min_vdisktime);
22084190
VG
934 blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
935 cfqq->nr_sectors);
1fa8f6d6
VG
936}
937
25fb5169
VG
938#ifdef CONFIG_CFQ_GROUP_IOSCHED
939static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
940{
941 if (blkg)
942 return container_of(blkg, struct cfq_group, blkg);
943 return NULL;
944}
945
f8d461d6
VG
946void
947cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
948{
949 cfqg_of_blkg(blkg)->weight = weight;
950}
951
25fb5169
VG
952static struct cfq_group *
953cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
954{
955 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
956 struct cfq_group *cfqg = NULL;
957 void *key = cfqd;
958 int i, j;
959 struct cfq_rb_root *st;
22084190
VG
960 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
961 unsigned int major, minor;
25fb5169
VG
962
963 /* Do we need to take this reference */
9d6a986c 964 if (!blkiocg_css_tryget(blkcg))
25fb5169
VG
965 return NULL;;
966
967 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
968 if (cfqg || !create)
969 goto done;
970
971 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
972 if (!cfqg)
973 goto done;
974
975 cfqg->weight = blkcg->weight;
976 for_each_cfqg_st(cfqg, i, j, st)
977 *st = CFQ_RB_ROOT;
978 RB_CLEAR_NODE(&cfqg->rb_node);
979
b1c35769
VG
980 /*
981 * Take the initial reference that will be released on destroy
982 * This can be thought of a joint reference by cgroup and
983 * elevator which will be dropped by either elevator exit
984 * or cgroup deletion path depending on who is exiting first.
985 */
986 atomic_set(&cfqg->ref, 1);
987
25fb5169 988 /* Add group onto cgroup list */
22084190
VG
989 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
990 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
991 MKDEV(major, minor));
25fb5169
VG
992
993 /* Add group on cfqd list */
994 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
995
996done:
9d6a986c 997 blkiocg_css_put(blkcg);
25fb5169
VG
998 return cfqg;
999}
1000
1001/*
1002 * Search for the cfq group current task belongs to. If create = 1, then also
1003 * create the cfq group if it does not exist. request_queue lock must be held.
1004 */
1005static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1006{
1007 struct cgroup *cgroup;
1008 struct cfq_group *cfqg = NULL;
1009
1010 rcu_read_lock();
1011 cgroup = task_cgroup(current, blkio_subsys_id);
1012 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1013 if (!cfqg && create)
1014 cfqg = &cfqd->root_group;
1015 rcu_read_unlock();
1016 return cfqg;
1017}
1018
1019static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1020{
1021 /* Currently, all async queues are mapped to root group */
1022 if (!cfq_cfqq_sync(cfqq))
1023 cfqg = &cfqq->cfqd->root_group;
1024
1025 cfqq->cfqg = cfqg;
b1c35769
VG
1026 /* cfqq reference on cfqg */
1027 atomic_inc(&cfqq->cfqg->ref);
1028}
1029
1030static void cfq_put_cfqg(struct cfq_group *cfqg)
1031{
1032 struct cfq_rb_root *st;
1033 int i, j;
1034
1035 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1036 if (!atomic_dec_and_test(&cfqg->ref))
1037 return;
1038 for_each_cfqg_st(cfqg, i, j, st)
1039 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1040 kfree(cfqg);
1041}
1042
1043static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1044{
1045 /* Something wrong if we are trying to remove same group twice */
1046 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1047
1048 hlist_del_init(&cfqg->cfqd_node);
1049
1050 /*
1051 * Put the reference taken at the time of creation so that when all
1052 * queues are gone, group can be destroyed.
1053 */
1054 cfq_put_cfqg(cfqg);
1055}
1056
1057static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1058{
1059 struct hlist_node *pos, *n;
1060 struct cfq_group *cfqg;
1061
1062 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1063 /*
1064 * If cgroup removal path got to blk_group first and removed
1065 * it from cgroup list, then it will take care of destroying
1066 * cfqg also.
1067 */
1068 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1069 cfq_destroy_cfqg(cfqd, cfqg);
1070 }
25fb5169 1071}
b1c35769
VG
1072
1073/*
1074 * Blk cgroup controller notification saying that blkio_group object is being
1075 * delinked as associated cgroup object is going away. That also means that
1076 * no new IO will come in this group. So get rid of this group as soon as
1077 * any pending IO in the group is finished.
1078 *
1079 * This function is called under rcu_read_lock(). key is the rcu protected
1080 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1081 * read lock.
1082 *
1083 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1084 * it should not be NULL as even if elevator was exiting, cgroup deltion
1085 * path got to it first.
1086 */
1087void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1088{
1089 unsigned long flags;
1090 struct cfq_data *cfqd = key;
1091
1092 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1093 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1094 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1095}
1096
25fb5169
VG
1097#else /* GROUP_IOSCHED */
1098static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1099{
1100 return &cfqd->root_group;
1101}
1102static inline void
1103cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1104 cfqq->cfqg = cfqg;
1105}
1106
b1c35769
VG
1107static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1108static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1109
25fb5169
VG
1110#endif /* GROUP_IOSCHED */
1111
498d3aa2 1112/*
c0324a02 1113 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1114 * requests waiting to be processed. It is sorted in the order that
1115 * we will service the queues.
1116 */
a36e71f9 1117static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1118 bool add_front)
d9e7620e 1119{
0871714e
JA
1120 struct rb_node **p, *parent;
1121 struct cfq_queue *__cfqq;
d9e7620e 1122 unsigned long rb_key;
c0324a02 1123 struct cfq_rb_root *service_tree;
498d3aa2 1124 int left;
dae739eb 1125 int new_cfqq = 1;
ae30c286
VG
1126 int group_changed = 0;
1127
1128#ifdef CONFIG_CFQ_GROUP_IOSCHED
1129 if (!cfqd->cfq_group_isolation
1130 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1131 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1132 /* Move this cfq to root group */
1133 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1134 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1135 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1136 cfqq->orig_cfqg = cfqq->cfqg;
1137 cfqq->cfqg = &cfqd->root_group;
1138 atomic_inc(&cfqd->root_group.ref);
1139 group_changed = 1;
1140 } else if (!cfqd->cfq_group_isolation
1141 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1142 /* cfqq is sequential now needs to go to its original group */
1143 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1144 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1145 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1146 cfq_put_cfqg(cfqq->cfqg);
1147 cfqq->cfqg = cfqq->orig_cfqg;
1148 cfqq->orig_cfqg = NULL;
1149 group_changed = 1;
1150 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1151 }
1152#endif
d9e7620e 1153
cdb16e8f
VG
1154 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1155 cfqq_type(cfqq), cfqd);
0871714e
JA
1156 if (cfq_class_idle(cfqq)) {
1157 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1158 parent = rb_last(&service_tree->rb);
0871714e
JA
1159 if (parent && parent != &cfqq->rb_node) {
1160 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1161 rb_key += __cfqq->rb_key;
1162 } else
1163 rb_key += jiffies;
1164 } else if (!add_front) {
b9c8946b
JA
1165 /*
1166 * Get our rb key offset. Subtract any residual slice
1167 * value carried from last service. A negative resid
1168 * count indicates slice overrun, and this should position
1169 * the next service time further away in the tree.
1170 */
edd75ffd 1171 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1172 rb_key -= cfqq->slice_resid;
edd75ffd 1173 cfqq->slice_resid = 0;
48e025e6
CZ
1174 } else {
1175 rb_key = -HZ;
aa6f6a3d 1176 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1177 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1178 }
1da177e4 1179
d9e7620e 1180 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1181 new_cfqq = 0;
99f9628a 1182 /*
d9e7620e 1183 * same position, nothing more to do
99f9628a 1184 */
c0324a02
CZ
1185 if (rb_key == cfqq->rb_key &&
1186 cfqq->service_tree == service_tree)
d9e7620e 1187 return;
1da177e4 1188
aa6f6a3d
CZ
1189 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1190 cfqq->service_tree = NULL;
1da177e4 1191 }
d9e7620e 1192
498d3aa2 1193 left = 1;
0871714e 1194 parent = NULL;
aa6f6a3d
CZ
1195 cfqq->service_tree = service_tree;
1196 p = &service_tree->rb.rb_node;
d9e7620e 1197 while (*p) {
67060e37 1198 struct rb_node **n;
cc09e299 1199
d9e7620e
JA
1200 parent = *p;
1201 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1202
0c534e0a 1203 /*
c0324a02 1204 * sort by key, that represents service time.
0c534e0a 1205 */
c0324a02 1206 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1207 n = &(*p)->rb_left;
c0324a02 1208 else {
67060e37 1209 n = &(*p)->rb_right;
cc09e299 1210 left = 0;
c0324a02 1211 }
67060e37
JA
1212
1213 p = n;
d9e7620e
JA
1214 }
1215
cc09e299 1216 if (left)
aa6f6a3d 1217 service_tree->left = &cfqq->rb_node;
cc09e299 1218
d9e7620e
JA
1219 cfqq->rb_key = rb_key;
1220 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1221 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1222 service_tree->count++;
ae30c286 1223 if ((add_front || !new_cfqq) && !group_changed)
dae739eb 1224 return;
1fa8f6d6 1225 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
1226}
1227
a36e71f9 1228static struct cfq_queue *
f2d1f0ae
JA
1229cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1230 sector_t sector, struct rb_node **ret_parent,
1231 struct rb_node ***rb_link)
a36e71f9 1232{
a36e71f9
JA
1233 struct rb_node **p, *parent;
1234 struct cfq_queue *cfqq = NULL;
1235
1236 parent = NULL;
1237 p = &root->rb_node;
1238 while (*p) {
1239 struct rb_node **n;
1240
1241 parent = *p;
1242 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1243
1244 /*
1245 * Sort strictly based on sector. Smallest to the left,
1246 * largest to the right.
1247 */
2e46e8b2 1248 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1249 n = &(*p)->rb_right;
2e46e8b2 1250 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1251 n = &(*p)->rb_left;
1252 else
1253 break;
1254 p = n;
3ac6c9f8 1255 cfqq = NULL;
a36e71f9
JA
1256 }
1257
1258 *ret_parent = parent;
1259 if (rb_link)
1260 *rb_link = p;
3ac6c9f8 1261 return cfqq;
a36e71f9
JA
1262}
1263
1264static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1265{
a36e71f9
JA
1266 struct rb_node **p, *parent;
1267 struct cfq_queue *__cfqq;
1268
f2d1f0ae
JA
1269 if (cfqq->p_root) {
1270 rb_erase(&cfqq->p_node, cfqq->p_root);
1271 cfqq->p_root = NULL;
1272 }
a36e71f9
JA
1273
1274 if (cfq_class_idle(cfqq))
1275 return;
1276 if (!cfqq->next_rq)
1277 return;
1278
f2d1f0ae 1279 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1280 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1281 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1282 if (!__cfqq) {
1283 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1284 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1285 } else
1286 cfqq->p_root = NULL;
a36e71f9
JA
1287}
1288
498d3aa2
JA
1289/*
1290 * Update cfqq's position in the service tree.
1291 */
edd75ffd 1292static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1293{
6d048f53
JA
1294 /*
1295 * Resorting requires the cfqq to be on the RR list already.
1296 */
a36e71f9 1297 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1298 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1299 cfq_prio_tree_add(cfqd, cfqq);
1300 }
6d048f53
JA
1301}
1302
1da177e4
LT
1303/*
1304 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1305 * the pending list according to last request service
1da177e4 1306 */
febffd61 1307static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1308{
7b679138 1309 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1310 BUG_ON(cfq_cfqq_on_rr(cfqq));
1311 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
1312 cfqd->busy_queues++;
1313
edd75ffd 1314 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1315}
1316
498d3aa2
JA
1317/*
1318 * Called when the cfqq no longer has requests pending, remove it from
1319 * the service tree.
1320 */
febffd61 1321static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1322{
7b679138 1323 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1324 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1325 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1326
aa6f6a3d
CZ
1327 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1328 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1329 cfqq->service_tree = NULL;
1330 }
f2d1f0ae
JA
1331 if (cfqq->p_root) {
1332 rb_erase(&cfqq->p_node, cfqq->p_root);
1333 cfqq->p_root = NULL;
1334 }
d9e7620e 1335
1fa8f6d6 1336 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1337 BUG_ON(!cfqd->busy_queues);
1338 cfqd->busy_queues--;
1339}
1340
1341/*
1342 * rb tree support functions
1343 */
febffd61 1344static void cfq_del_rq_rb(struct request *rq)
1da177e4 1345{
5e705374 1346 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1347 const int sync = rq_is_sync(rq);
1da177e4 1348
b4878f24
JA
1349 BUG_ON(!cfqq->queued[sync]);
1350 cfqq->queued[sync]--;
1da177e4 1351
5e705374 1352 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1353
f04a6424
VG
1354 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1355 /*
1356 * Queue will be deleted from service tree when we actually
1357 * expire it later. Right now just remove it from prio tree
1358 * as it is empty.
1359 */
1360 if (cfqq->p_root) {
1361 rb_erase(&cfqq->p_node, cfqq->p_root);
1362 cfqq->p_root = NULL;
1363 }
1364 }
1da177e4
LT
1365}
1366
5e705374 1367static void cfq_add_rq_rb(struct request *rq)
1da177e4 1368{
5e705374 1369 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1370 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1371 struct request *__alias, *prev;
1da177e4 1372
5380a101 1373 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1374
1375 /*
1376 * looks a little odd, but the first insert might return an alias.
1377 * if that happens, put the alias on the dispatch list
1378 */
21183b07 1379 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1380 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1381
1382 if (!cfq_cfqq_on_rr(cfqq))
1383 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1384
1385 /*
1386 * check if this request is a better next-serve candidate
1387 */
a36e71f9 1388 prev = cfqq->next_rq;
cf7c25cf 1389 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1390
1391 /*
1392 * adjust priority tree position, if ->next_rq changes
1393 */
1394 if (prev != cfqq->next_rq)
1395 cfq_prio_tree_add(cfqd, cfqq);
1396
5044eed4 1397 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1398}
1399
febffd61 1400static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1401{
5380a101
JA
1402 elv_rb_del(&cfqq->sort_list, rq);
1403 cfqq->queued[rq_is_sync(rq)]--;
5e705374 1404 cfq_add_rq_rb(rq);
1da177e4
LT
1405}
1406
206dc69b
JA
1407static struct request *
1408cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1409{
206dc69b 1410 struct task_struct *tsk = current;
91fac317 1411 struct cfq_io_context *cic;
206dc69b 1412 struct cfq_queue *cfqq;
1da177e4 1413
4ac845a2 1414 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1415 if (!cic)
1416 return NULL;
1417
1418 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1419 if (cfqq) {
1420 sector_t sector = bio->bi_sector + bio_sectors(bio);
1421
21183b07 1422 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1423 }
1da177e4 1424
1da177e4
LT
1425 return NULL;
1426}
1427
165125e1 1428static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1429{
22e2c507 1430 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1431
5ad531db 1432 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 1433 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 1434 rq_in_driver(cfqd));
25776e35 1435
5b93629b 1436 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1437}
1438
165125e1 1439static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1440{
b4878f24 1441 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 1442 const int sync = rq_is_sync(rq);
b4878f24 1443
5ad531db
JA
1444 WARN_ON(!cfqd->rq_in_driver[sync]);
1445 cfqd->rq_in_driver[sync]--;
7b679138 1446 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 1447 rq_in_driver(cfqd));
1da177e4
LT
1448}
1449
b4878f24 1450static void cfq_remove_request(struct request *rq)
1da177e4 1451{
5e705374 1452 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1453
5e705374
JA
1454 if (cfqq->next_rq == rq)
1455 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1456
b4878f24 1457 list_del_init(&rq->queuelist);
5e705374 1458 cfq_del_rq_rb(rq);
374f84ac 1459
45333d5a 1460 cfqq->cfqd->rq_queued--;
374f84ac
JA
1461 if (rq_is_meta(rq)) {
1462 WARN_ON(!cfqq->meta_pending);
1463 cfqq->meta_pending--;
1464 }
1da177e4
LT
1465}
1466
165125e1
JA
1467static int cfq_merge(struct request_queue *q, struct request **req,
1468 struct bio *bio)
1da177e4
LT
1469{
1470 struct cfq_data *cfqd = q->elevator->elevator_data;
1471 struct request *__rq;
1da177e4 1472
206dc69b 1473 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1474 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1475 *req = __rq;
1476 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1477 }
1478
1479 return ELEVATOR_NO_MERGE;
1da177e4
LT
1480}
1481
165125e1 1482static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1483 int type)
1da177e4 1484{
21183b07 1485 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1486 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1487
5e705374 1488 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1489 }
1da177e4
LT
1490}
1491
1492static void
165125e1 1493cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1494 struct request *next)
1495{
cf7c25cf 1496 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1497 /*
1498 * reposition in fifo if next is older than rq
1499 */
1500 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1501 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1502 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1503 rq_set_fifo_time(rq, rq_fifo_time(next));
1504 }
22e2c507 1505
cf7c25cf
CZ
1506 if (cfqq->next_rq == next)
1507 cfqq->next_rq = rq;
b4878f24 1508 cfq_remove_request(next);
22e2c507
JA
1509}
1510
165125e1 1511static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1512 struct bio *bio)
1513{
1514 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1515 struct cfq_io_context *cic;
da775265 1516 struct cfq_queue *cfqq;
da775265 1517
8682e1f1
VG
1518 /* Deny merge if bio and rq don't belong to same cfq group */
1519 if ((RQ_CFQQ(rq))->cfqg != cfq_get_cfqg(cfqd, 0))
1520 return false;
da775265 1521 /*
ec8acb69 1522 * Disallow merge of a sync bio into an async request.
da775265 1523 */
91fac317 1524 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1525 return false;
da775265
JA
1526
1527 /*
719d3402
JA
1528 * Lookup the cfqq that this bio will be queued with. Allow
1529 * merge only if rq is queued there.
da775265 1530 */
4ac845a2 1531 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1532 if (!cic)
a6151c3a 1533 return false;
719d3402 1534
91fac317 1535 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1536 return cfqq == RQ_CFQQ(rq);
da775265
JA
1537}
1538
febffd61
JA
1539static void __cfq_set_active_queue(struct cfq_data *cfqd,
1540 struct cfq_queue *cfqq)
22e2c507
JA
1541{
1542 if (cfqq) {
7b679138 1543 cfq_log_cfqq(cfqd, cfqq, "set_active");
dae739eb
VG
1544 cfqq->slice_start = 0;
1545 cfqq->dispatch_start = jiffies;
f75edf2d 1546 cfqq->allocated_slice = 0;
22e2c507 1547 cfqq->slice_end = 0;
2f5cb738 1548 cfqq->slice_dispatch = 0;
22084190 1549 cfqq->nr_sectors = 0;
2f5cb738 1550
2f5cb738 1551 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1552 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1553 cfq_clear_cfqq_must_alloc_slice(cfqq);
1554 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1555 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
1556
1557 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
1558 }
1559
1560 cfqd->active_queue = cfqq;
1561}
1562
7b14e3b5
JA
1563/*
1564 * current cfqq expired its slice (or was too idle), select new one
1565 */
1566static void
1567__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1568 bool timed_out)
7b14e3b5 1569{
7b679138
JA
1570 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1571
7b14e3b5
JA
1572 if (cfq_cfqq_wait_request(cfqq))
1573 del_timer(&cfqd->idle_slice_timer);
1574
7b14e3b5 1575 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d
VG
1576 cfq_clear_cfqq_wait_busy(cfqq);
1577 cfq_clear_cfqq_wait_busy_done(cfqq);
7b14e3b5
JA
1578
1579 /*
6084cdda 1580 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1581 */
7b679138 1582 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1583 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1584 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1585 }
7b14e3b5 1586
dae739eb
VG
1587 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1588
f04a6424
VG
1589 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1590 cfq_del_cfqq_rr(cfqd, cfqq);
1591
edd75ffd 1592 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1593
1594 if (cfqq == cfqd->active_queue)
1595 cfqd->active_queue = NULL;
1596
dae739eb
VG
1597 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1598 cfqd->grp_service_tree.active = NULL;
1599
7b14e3b5
JA
1600 if (cfqd->active_cic) {
1601 put_io_context(cfqd->active_cic->ioc);
1602 cfqd->active_cic = NULL;
1603 }
7b14e3b5
JA
1604}
1605
a6151c3a 1606static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1607{
1608 struct cfq_queue *cfqq = cfqd->active_queue;
1609
1610 if (cfqq)
6084cdda 1611 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1612}
1613
498d3aa2
JA
1614/*
1615 * Get next queue for service. Unless we have a queue preemption,
1616 * we'll simply select the first cfqq in the service tree.
1617 */
6d048f53 1618static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1619{
c0324a02 1620 struct cfq_rb_root *service_tree =
cdb16e8f
VG
1621 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1622 cfqd->serving_type, cfqd);
d9e7620e 1623
f04a6424
VG
1624 if (!cfqd->rq_queued)
1625 return NULL;
1626
1fa8f6d6
VG
1627 /* There is nothing to dispatch */
1628 if (!service_tree)
1629 return NULL;
c0324a02
CZ
1630 if (RB_EMPTY_ROOT(&service_tree->rb))
1631 return NULL;
1632 return cfq_rb_first(service_tree);
6d048f53
JA
1633}
1634
f04a6424
VG
1635static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1636{
25fb5169 1637 struct cfq_group *cfqg;
f04a6424
VG
1638 struct cfq_queue *cfqq;
1639 int i, j;
1640 struct cfq_rb_root *st;
1641
1642 if (!cfqd->rq_queued)
1643 return NULL;
1644
25fb5169
VG
1645 cfqg = cfq_get_next_cfqg(cfqd);
1646 if (!cfqg)
1647 return NULL;
1648
f04a6424
VG
1649 for_each_cfqg_st(cfqg, i, j, st)
1650 if ((cfqq = cfq_rb_first(st)) != NULL)
1651 return cfqq;
1652 return NULL;
1653}
1654
498d3aa2
JA
1655/*
1656 * Get and set a new active queue for service.
1657 */
a36e71f9
JA
1658static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1659 struct cfq_queue *cfqq)
6d048f53 1660{
e00ef799 1661 if (!cfqq)
a36e71f9 1662 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1663
22e2c507 1664 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1665 return cfqq;
22e2c507
JA
1666}
1667
d9e7620e
JA
1668static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1669 struct request *rq)
1670{
83096ebf
TH
1671 if (blk_rq_pos(rq) >= cfqd->last_position)
1672 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1673 else
83096ebf 1674 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1675}
1676
b2c18e1e
JM
1677#define CFQQ_SEEK_THR 8 * 1024
1678#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
04dc6e71 1679
b2c18e1e
JM
1680static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1681 struct request *rq)
6d048f53 1682{
b2c18e1e 1683 sector_t sdist = cfqq->seek_mean;
6d048f53 1684
b2c18e1e
JM
1685 if (!sample_valid(cfqq->seek_samples))
1686 sdist = CFQQ_SEEK_THR;
6d048f53 1687
04dc6e71 1688 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
1689}
1690
a36e71f9
JA
1691static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1692 struct cfq_queue *cur_cfqq)
1693{
f2d1f0ae 1694 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1695 struct rb_node *parent, *node;
1696 struct cfq_queue *__cfqq;
1697 sector_t sector = cfqd->last_position;
1698
1699 if (RB_EMPTY_ROOT(root))
1700 return NULL;
1701
1702 /*
1703 * First, if we find a request starting at the end of the last
1704 * request, choose it.
1705 */
f2d1f0ae 1706 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1707 if (__cfqq)
1708 return __cfqq;
1709
1710 /*
1711 * If the exact sector wasn't found, the parent of the NULL leaf
1712 * will contain the closest sector.
1713 */
1714 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
b2c18e1e 1715 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1716 return __cfqq;
1717
2e46e8b2 1718 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1719 node = rb_next(&__cfqq->p_node);
1720 else
1721 node = rb_prev(&__cfqq->p_node);
1722 if (!node)
1723 return NULL;
1724
1725 __cfqq = rb_entry(node, struct cfq_queue, p_node);
b2c18e1e 1726 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1727 return __cfqq;
1728
1729 return NULL;
1730}
1731
1732/*
1733 * cfqd - obvious
1734 * cur_cfqq - passed in so that we don't decide that the current queue is
1735 * closely cooperating with itself.
1736 *
1737 * So, basically we're assuming that that cur_cfqq has dispatched at least
1738 * one request, and that cfqd->last_position reflects a position on the disk
1739 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1740 * assumption.
1741 */
1742static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1743 struct cfq_queue *cur_cfqq)
6d048f53 1744{
a36e71f9
JA
1745 struct cfq_queue *cfqq;
1746
e6c5bc73
JM
1747 if (!cfq_cfqq_sync(cur_cfqq))
1748 return NULL;
1749 if (CFQQ_SEEKY(cur_cfqq))
1750 return NULL;
1751
b9d8f4c7
GJ
1752 /*
1753 * Don't search priority tree if it's the only queue in the group.
1754 */
1755 if (cur_cfqq->cfqg->nr_cfqq == 1)
1756 return NULL;
1757
6d048f53 1758 /*
d9e7620e
JA
1759 * We should notice if some of the queues are cooperating, eg
1760 * working closely on the same area of the disk. In that case,
1761 * we can group them together and don't waste time idling.
6d048f53 1762 */
a36e71f9
JA
1763 cfqq = cfqq_close(cfqd, cur_cfqq);
1764 if (!cfqq)
1765 return NULL;
1766
8682e1f1
VG
1767 /* If new queue belongs to different cfq_group, don't choose it */
1768 if (cur_cfqq->cfqg != cfqq->cfqg)
1769 return NULL;
1770
df5fe3e8
JM
1771 /*
1772 * It only makes sense to merge sync queues.
1773 */
1774 if (!cfq_cfqq_sync(cfqq))
1775 return NULL;
e6c5bc73
JM
1776 if (CFQQ_SEEKY(cfqq))
1777 return NULL;
df5fe3e8 1778
c0324a02
CZ
1779 /*
1780 * Do not merge queues of different priority classes
1781 */
1782 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1783 return NULL;
1784
a36e71f9 1785 return cfqq;
6d048f53
JA
1786}
1787
a6d44e98
CZ
1788/*
1789 * Determine whether we should enforce idle window for this queue.
1790 */
1791
1792static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1793{
1794 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1795 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1796
f04a6424
VG
1797 BUG_ON(!service_tree);
1798 BUG_ON(!service_tree->count);
1799
a6d44e98
CZ
1800 /* We never do for idle class queues. */
1801 if (prio == IDLE_WORKLOAD)
1802 return false;
1803
1804 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1805 if (cfq_cfqq_idle_window(cfqq) &&
1806 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1807 return true;
1808
1809 /*
1810 * Otherwise, we do only if they are the last ones
1811 * in their service tree.
1812 */
f04a6424 1813 return service_tree->count == 1;
a6d44e98
CZ
1814}
1815
6d048f53 1816static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1817{
1792669c 1818 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1819 struct cfq_io_context *cic;
7b14e3b5
JA
1820 unsigned long sl;
1821
a68bbddb 1822 /*
f7d7b7a7
JA
1823 * SSD device without seek penalty, disable idling. But only do so
1824 * for devices that support queuing, otherwise we still have a problem
1825 * with sync vs async workloads.
a68bbddb 1826 */
f7d7b7a7 1827 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1828 return;
1829
dd67d051 1830 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1831 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1832
1833 /*
1834 * idle is disabled, either manually or by past process history
1835 */
a6d44e98 1836 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1837 return;
1838
7b679138 1839 /*
8e550632 1840 * still active requests from this queue, don't idle
7b679138 1841 */
8e550632 1842 if (cfqq->dispatched)
7b679138
JA
1843 return;
1844
22e2c507
JA
1845 /*
1846 * task has exited, don't wait
1847 */
206dc69b 1848 cic = cfqd->active_cic;
66dac98e 1849 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1850 return;
1851
355b659c
CZ
1852 /*
1853 * If our average think time is larger than the remaining time
1854 * slice, then don't idle. This avoids overrunning the allotted
1855 * time slice.
1856 */
1857 if (sample_valid(cic->ttime_samples) &&
1858 (cfqq->slice_end - jiffies < cic->ttime_mean))
1859 return;
1860
3b18152c 1861 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1862
6d048f53 1863 sl = cfqd->cfq_slice_idle;
206dc69b 1864
7b14e3b5 1865 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1866 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1867}
1868
498d3aa2
JA
1869/*
1870 * Move request from internal lists to the request queue dispatch list.
1871 */
165125e1 1872static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1873{
3ed9a296 1874 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1875 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1876
7b679138
JA
1877 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1878
06d21886 1879 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1880 cfq_remove_request(rq);
6d048f53 1881 cfqq->dispatched++;
5380a101 1882 elv_dispatch_sort(q, rq);
3ed9a296
JA
1883
1884 if (cfq_cfqq_sync(cfqq))
1885 cfqd->sync_flight++;
22084190 1886 cfqq->nr_sectors += blk_rq_sectors(rq);
1da177e4
LT
1887}
1888
1889/*
1890 * return expired entry, or NULL to just start from scratch in rbtree
1891 */
febffd61 1892static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1893{
30996f40 1894 struct request *rq = NULL;
1da177e4 1895
3b18152c 1896 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1897 return NULL;
cb887411
JA
1898
1899 cfq_mark_cfqq_fifo_expire(cfqq);
1900
89850f7e
JA
1901 if (list_empty(&cfqq->fifo))
1902 return NULL;
1da177e4 1903
89850f7e 1904 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1905 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1906 rq = NULL;
1da177e4 1907
30996f40 1908 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1909 return rq;
1da177e4
LT
1910}
1911
22e2c507
JA
1912static inline int
1913cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1914{
1915 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1916
22e2c507 1917 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1918
22e2c507 1919 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1920}
1921
df5fe3e8
JM
1922/*
1923 * Must be called with the queue_lock held.
1924 */
1925static int cfqq_process_refs(struct cfq_queue *cfqq)
1926{
1927 int process_refs, io_refs;
1928
1929 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1930 process_refs = atomic_read(&cfqq->ref) - io_refs;
1931 BUG_ON(process_refs < 0);
1932 return process_refs;
1933}
1934
1935static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1936{
e6c5bc73 1937 int process_refs, new_process_refs;
df5fe3e8
JM
1938 struct cfq_queue *__cfqq;
1939
1940 /* Avoid a circular list and skip interim queue merges */
1941 while ((__cfqq = new_cfqq->new_cfqq)) {
1942 if (__cfqq == cfqq)
1943 return;
1944 new_cfqq = __cfqq;
1945 }
1946
1947 process_refs = cfqq_process_refs(cfqq);
1948 /*
1949 * If the process for the cfqq has gone away, there is no
1950 * sense in merging the queues.
1951 */
1952 if (process_refs == 0)
1953 return;
1954
e6c5bc73
JM
1955 /*
1956 * Merge in the direction of the lesser amount of work.
1957 */
1958 new_process_refs = cfqq_process_refs(new_cfqq);
1959 if (new_process_refs >= process_refs) {
1960 cfqq->new_cfqq = new_cfqq;
1961 atomic_add(process_refs, &new_cfqq->ref);
1962 } else {
1963 new_cfqq->new_cfqq = cfqq;
1964 atomic_add(new_process_refs, &cfqq->ref);
1965 }
df5fe3e8
JM
1966}
1967
cdb16e8f
VG
1968static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1969 struct cfq_group *cfqg, enum wl_prio_t prio,
1970 bool prio_changed)
718eee05
CZ
1971{
1972 struct cfq_queue *queue;
1973 int i;
1974 bool key_valid = false;
1975 unsigned long lowest_key = 0;
1976 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1977
1978 if (prio_changed) {
1979 /*
1980 * When priorities switched, we prefer starting
1981 * from SYNC_NOIDLE (first choice), or just SYNC
1982 * over ASYNC
1983 */
cdb16e8f 1984 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
718eee05
CZ
1985 return cur_best;
1986 cur_best = SYNC_WORKLOAD;
cdb16e8f 1987 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
718eee05
CZ
1988 return cur_best;
1989
1990 return ASYNC_WORKLOAD;
1991 }
1992
1993 for (i = 0; i < 3; ++i) {
1994 /* otherwise, select the one with lowest rb_key */
cdb16e8f 1995 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
718eee05
CZ
1996 if (queue &&
1997 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1998 lowest_key = queue->rb_key;
1999 cur_best = i;
2000 key_valid = true;
2001 }
2002 }
2003
2004 return cur_best;
2005}
2006
cdb16e8f 2007static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05
CZ
2008{
2009 enum wl_prio_t previous_prio = cfqd->serving_prio;
2010 bool prio_changed;
2011 unsigned slice;
2012 unsigned count;
cdb16e8f 2013 struct cfq_rb_root *st;
58ff82f3 2014 unsigned group_slice;
718eee05 2015
1fa8f6d6
VG
2016 if (!cfqg) {
2017 cfqd->serving_prio = IDLE_WORKLOAD;
2018 cfqd->workload_expires = jiffies + 1;
2019 return;
2020 }
2021
718eee05 2022 /* Choose next priority. RT > BE > IDLE */
58ff82f3 2023 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 2024 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2025 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2026 cfqd->serving_prio = BE_WORKLOAD;
2027 else {
2028 cfqd->serving_prio = IDLE_WORKLOAD;
2029 cfqd->workload_expires = jiffies + 1;
2030 return;
2031 }
2032
2033 /*
2034 * For RT and BE, we have to choose also the type
2035 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2036 * expiration time
2037 */
2038 prio_changed = (cfqd->serving_prio != previous_prio);
cdb16e8f
VG
2039 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2040 cfqd);
2041 count = st->count;
718eee05
CZ
2042
2043 /*
2044 * If priority didn't change, check workload expiration,
2045 * and that we still have other queues ready
2046 */
2047 if (!prio_changed && count &&
2048 !time_after(jiffies, cfqd->workload_expires))
2049 return;
2050
2051 /* otherwise select new workload type */
2052 cfqd->serving_type =
cdb16e8f
VG
2053 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
2054 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2055 cfqd);
2056 count = st->count;
718eee05
CZ
2057
2058 /*
2059 * the workload slice is computed as a fraction of target latency
2060 * proportional to the number of queues in that workload, over
2061 * all the queues in the same priority class
2062 */
58ff82f3
VG
2063 group_slice = cfq_group_slice(cfqd, cfqg);
2064
2065 slice = group_slice * count /
2066 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2067 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2068
f26bd1f0
VG
2069 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2070 unsigned int tmp;
2071
2072 /*
2073 * Async queues are currently system wide. Just taking
2074 * proportion of queues with-in same group will lead to higher
2075 * async ratio system wide as generally root group is going
2076 * to have higher weight. A more accurate thing would be to
2077 * calculate system wide asnc/sync ratio.
2078 */
2079 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2080 tmp = tmp/cfqd->busy_queues;
2081 slice = min_t(unsigned, slice, tmp);
2082
718eee05
CZ
2083 /* async workload slice is scaled down according to
2084 * the sync/async slice ratio. */
2085 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2086 } else
718eee05
CZ
2087 /* sync workload slice is at least 2 * cfq_slice_idle */
2088 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2089
2090 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2091 cfqd->workload_expires = jiffies + slice;
8e550632 2092 cfqd->noidle_tree_requires_idle = false;
718eee05
CZ
2093}
2094
1fa8f6d6
VG
2095static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2096{
2097 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2098 struct cfq_group *cfqg;
1fa8f6d6
VG
2099
2100 if (RB_EMPTY_ROOT(&st->rb))
2101 return NULL;
25bc6b07
VG
2102 cfqg = cfq_rb_first_group(st);
2103 st->active = &cfqg->rb_node;
2104 update_min_vdisktime(st);
2105 return cfqg;
1fa8f6d6
VG
2106}
2107
cdb16e8f
VG
2108static void cfq_choose_cfqg(struct cfq_data *cfqd)
2109{
1fa8f6d6
VG
2110 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2111
2112 cfqd->serving_group = cfqg;
dae739eb
VG
2113
2114 /* Restore the workload type data */
2115 if (cfqg->saved_workload_slice) {
2116 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2117 cfqd->serving_type = cfqg->saved_workload;
2118 cfqd->serving_prio = cfqg->saved_serving_prio;
2119 }
1fa8f6d6 2120 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2121}
2122
22e2c507 2123/*
498d3aa2
JA
2124 * Select a queue for service. If we have a current active queue,
2125 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2126 */
1b5ed5e1 2127static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2128{
a36e71f9 2129 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2130
22e2c507
JA
2131 cfqq = cfqd->active_queue;
2132 if (!cfqq)
2133 goto new_queue;
1da177e4 2134
f04a6424
VG
2135 if (!cfqd->rq_queued)
2136 return NULL;
22e2c507 2137 /*
6d048f53 2138 * The active queue has run out of time, expire it and select new.
22e2c507 2139 */
f75edf2d
VG
2140 if ((cfq_slice_used(cfqq) || cfq_cfqq_wait_busy_done(cfqq))
2141 && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 2142 goto expire;
1da177e4 2143
22e2c507 2144 /*
6d048f53
JA
2145 * The active queue has requests and isn't expired, allow it to
2146 * dispatch.
22e2c507 2147 */
dd67d051 2148 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2149 goto keep_queue;
6d048f53 2150
a36e71f9
JA
2151 /*
2152 * If another queue has a request waiting within our mean seek
2153 * distance, let it run. The expire code will check for close
2154 * cooperators and put the close queue at the front of the service
df5fe3e8 2155 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2156 */
b3b6d040 2157 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2158 if (new_cfqq) {
2159 if (!cfqq->new_cfqq)
2160 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2161 goto expire;
df5fe3e8 2162 }
a36e71f9 2163
6d048f53
JA
2164 /*
2165 * No requests pending. If the active queue still has requests in
2166 * flight or is idling for a new request, allow either of these
2167 * conditions to happen (or time out) before selecting a new queue.
2168 */
cc197479 2169 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 2170 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
2171 cfqq = NULL;
2172 goto keep_queue;
22e2c507
JA
2173 }
2174
3b18152c 2175expire:
6084cdda 2176 cfq_slice_expired(cfqd, 0);
3b18152c 2177new_queue:
718eee05
CZ
2178 /*
2179 * Current queue expired. Check if we have to switch to a new
2180 * service tree
2181 */
2182 if (!new_cfqq)
cdb16e8f 2183 cfq_choose_cfqg(cfqd);
718eee05 2184
a36e71f9 2185 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2186keep_queue:
3b18152c 2187 return cfqq;
22e2c507
JA
2188}
2189
febffd61 2190static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2191{
2192 int dispatched = 0;
2193
2194 while (cfqq->next_rq) {
2195 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2196 dispatched++;
2197 }
2198
2199 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2200
2201 /* By default cfqq is not expired if it is empty. Do it explicitly */
2202 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2203 return dispatched;
2204}
2205
498d3aa2
JA
2206/*
2207 * Drain our current requests. Used for barriers and when switching
2208 * io schedulers on-the-fly.
2209 */
d9e7620e 2210static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2211{
0871714e 2212 struct cfq_queue *cfqq;
d9e7620e 2213 int dispatched = 0;
cdb16e8f 2214
f04a6424
VG
2215 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2216 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 2217
6084cdda 2218 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
2219 BUG_ON(cfqd->busy_queues);
2220
6923715a 2221 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2222 return dispatched;
2223}
2224
0b182d61 2225static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2226{
2f5cb738 2227 unsigned int max_dispatch;
22e2c507 2228
5ad531db
JA
2229 /*
2230 * Drain async requests before we start sync IO
2231 */
a6d44e98 2232 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
0b182d61 2233 return false;
5ad531db 2234
2f5cb738
JA
2235 /*
2236 * If this is an async queue and we have sync IO in flight, let it wait
2237 */
2238 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
0b182d61 2239 return false;
2f5cb738
JA
2240
2241 max_dispatch = cfqd->cfq_quantum;
2242 if (cfq_class_idle(cfqq))
2243 max_dispatch = 1;
b4878f24 2244
2f5cb738
JA
2245 /*
2246 * Does this cfqq already have too much IO in flight?
2247 */
2248 if (cfqq->dispatched >= max_dispatch) {
2249 /*
2250 * idle queue must always only have a single IO in flight
2251 */
3ed9a296 2252 if (cfq_class_idle(cfqq))
0b182d61 2253 return false;
3ed9a296 2254
2f5cb738
JA
2255 /*
2256 * We have other queues, don't allow more IO from this one
2257 */
2258 if (cfqd->busy_queues > 1)
0b182d61 2259 return false;
9ede209e 2260
365722bb 2261 /*
474b18cc 2262 * Sole queue user, no limit
365722bb 2263 */
474b18cc 2264 max_dispatch = -1;
8e296755
JA
2265 }
2266
2267 /*
2268 * Async queues must wait a bit before being allowed dispatch.
2269 * We also ramp up the dispatch depth gradually for async IO,
2270 * based on the last sync IO we serviced
2271 */
963b72fc 2272 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2273 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2274 unsigned int depth;
365722bb 2275
61f0c1dc 2276 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2277 if (!depth && !cfqq->dispatched)
2278 depth = 1;
8e296755
JA
2279 if (depth < max_dispatch)
2280 max_dispatch = depth;
2f5cb738 2281 }
3ed9a296 2282
0b182d61
JA
2283 /*
2284 * If we're below the current max, allow a dispatch
2285 */
2286 return cfqq->dispatched < max_dispatch;
2287}
2288
2289/*
2290 * Dispatch a request from cfqq, moving them to the request queue
2291 * dispatch list.
2292 */
2293static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2294{
2295 struct request *rq;
2296
2297 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2298
2299 if (!cfq_may_dispatch(cfqd, cfqq))
2300 return false;
2301
2302 /*
2303 * follow expired path, else get first next available
2304 */
2305 rq = cfq_check_fifo(cfqq);
2306 if (!rq)
2307 rq = cfqq->next_rq;
2308
2309 /*
2310 * insert request into driver dispatch list
2311 */
2312 cfq_dispatch_insert(cfqd->queue, rq);
2313
2314 if (!cfqd->active_cic) {
2315 struct cfq_io_context *cic = RQ_CIC(rq);
2316
2317 atomic_long_inc(&cic->ioc->refcount);
2318 cfqd->active_cic = cic;
2319 }
2320
2321 return true;
2322}
2323
2324/*
2325 * Find the cfqq that we need to service and move a request from that to the
2326 * dispatch list
2327 */
2328static int cfq_dispatch_requests(struct request_queue *q, int force)
2329{
2330 struct cfq_data *cfqd = q->elevator->elevator_data;
2331 struct cfq_queue *cfqq;
2332
2333 if (!cfqd->busy_queues)
2334 return 0;
2335
2336 if (unlikely(force))
2337 return cfq_forced_dispatch(cfqd);
2338
2339 cfqq = cfq_select_queue(cfqd);
2340 if (!cfqq)
8e296755
JA
2341 return 0;
2342
2f5cb738 2343 /*
0b182d61 2344 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2345 */
0b182d61
JA
2346 if (!cfq_dispatch_request(cfqd, cfqq))
2347 return 0;
2348
2f5cb738 2349 cfqq->slice_dispatch++;
b029195d 2350 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2351
2f5cb738
JA
2352 /*
2353 * expire an async queue immediately if it has used up its slice. idle
2354 * queue always expire after 1 dispatch round.
2355 */
2356 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2357 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2358 cfq_class_idle(cfqq))) {
2359 cfqq->slice_end = jiffies + 1;
2360 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2361 }
2362
b217a903 2363 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2364 return 1;
1da177e4
LT
2365}
2366
1da177e4 2367/*
5e705374
JA
2368 * task holds one reference to the queue, dropped when task exits. each rq
2369 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2370 *
b1c35769 2371 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2372 * queue lock must be held here.
2373 */
2374static void cfq_put_queue(struct cfq_queue *cfqq)
2375{
22e2c507 2376 struct cfq_data *cfqd = cfqq->cfqd;
878eaddd 2377 struct cfq_group *cfqg, *orig_cfqg;
22e2c507
JA
2378
2379 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
2380
2381 if (!atomic_dec_and_test(&cfqq->ref))
2382 return;
2383
7b679138 2384 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2385 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2386 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2387 cfqg = cfqq->cfqg;
878eaddd 2388 orig_cfqg = cfqq->orig_cfqg;
1da177e4 2389
28f95cbc 2390 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 2391 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2392 cfq_schedule_dispatch(cfqd);
28f95cbc 2393 }
22e2c507 2394
f04a6424 2395 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2396 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2397 cfq_put_cfqg(cfqg);
878eaddd
VG
2398 if (orig_cfqg)
2399 cfq_put_cfqg(orig_cfqg);
1da177e4
LT
2400}
2401
d6de8be7
JA
2402/*
2403 * Must always be called with the rcu_read_lock() held
2404 */
07416d29
JA
2405static void
2406__call_for_each_cic(struct io_context *ioc,
2407 void (*func)(struct io_context *, struct cfq_io_context *))
2408{
2409 struct cfq_io_context *cic;
2410 struct hlist_node *n;
2411
2412 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2413 func(ioc, cic);
2414}
2415
4ac845a2 2416/*
34e6bbf2 2417 * Call func for each cic attached to this ioc.
4ac845a2 2418 */
34e6bbf2 2419static void
4ac845a2
JA
2420call_for_each_cic(struct io_context *ioc,
2421 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2422{
4ac845a2 2423 rcu_read_lock();
07416d29 2424 __call_for_each_cic(ioc, func);
4ac845a2 2425 rcu_read_unlock();
34e6bbf2
FC
2426}
2427
2428static void cfq_cic_free_rcu(struct rcu_head *head)
2429{
2430 struct cfq_io_context *cic;
2431
2432 cic = container_of(head, struct cfq_io_context, rcu_head);
2433
2434 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2435 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2436
9a11b4ed
JA
2437 if (ioc_gone) {
2438 /*
2439 * CFQ scheduler is exiting, grab exit lock and check
2440 * the pending io context count. If it hits zero,
2441 * complete ioc_gone and set it back to NULL
2442 */
2443 spin_lock(&ioc_gone_lock);
245b2e70 2444 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2445 complete(ioc_gone);
2446 ioc_gone = NULL;
2447 }
2448 spin_unlock(&ioc_gone_lock);
2449 }
34e6bbf2 2450}
4ac845a2 2451
34e6bbf2
FC
2452static void cfq_cic_free(struct cfq_io_context *cic)
2453{
2454 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2455}
2456
2457static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2458{
2459 unsigned long flags;
2460
2461 BUG_ON(!cic->dead_key);
2462
2463 spin_lock_irqsave(&ioc->lock, flags);
2464 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 2465 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2466 spin_unlock_irqrestore(&ioc->lock, flags);
2467
34e6bbf2 2468 cfq_cic_free(cic);
4ac845a2
JA
2469}
2470
d6de8be7
JA
2471/*
2472 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2473 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2474 * and ->trim() which is called with the task lock held
2475 */
4ac845a2
JA
2476static void cfq_free_io_context(struct io_context *ioc)
2477{
4ac845a2 2478 /*
34e6bbf2
FC
2479 * ioc->refcount is zero here, or we are called from elv_unregister(),
2480 * so no more cic's are allowed to be linked into this ioc. So it
2481 * should be ok to iterate over the known list, we will see all cic's
2482 * since no new ones are added.
4ac845a2 2483 */
07416d29 2484 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2485}
2486
89850f7e 2487static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 2488{
df5fe3e8
JM
2489 struct cfq_queue *__cfqq, *next;
2490
28f95cbc 2491 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 2492 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2493 cfq_schedule_dispatch(cfqd);
28f95cbc 2494 }
22e2c507 2495
df5fe3e8
JM
2496 /*
2497 * If this queue was scheduled to merge with another queue, be
2498 * sure to drop the reference taken on that queue (and others in
2499 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2500 */
2501 __cfqq = cfqq->new_cfqq;
2502 while (__cfqq) {
2503 if (__cfqq == cfqq) {
2504 WARN(1, "cfqq->new_cfqq loop detected\n");
2505 break;
2506 }
2507 next = __cfqq->new_cfqq;
2508 cfq_put_queue(__cfqq);
2509 __cfqq = next;
2510 }
2511
89850f7e
JA
2512 cfq_put_queue(cfqq);
2513}
22e2c507 2514
89850f7e
JA
2515static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2516 struct cfq_io_context *cic)
2517{
4faa3c81
FC
2518 struct io_context *ioc = cic->ioc;
2519
fc46379d 2520 list_del_init(&cic->queue_list);
4ac845a2
JA
2521
2522 /*
2523 * Make sure key == NULL is seen for dead queues
2524 */
fc46379d 2525 smp_wmb();
4ac845a2 2526 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
2527 cic->key = NULL;
2528
4faa3c81
FC
2529 if (ioc->ioc_data == cic)
2530 rcu_assign_pointer(ioc->ioc_data, NULL);
2531
ff6657c6
JA
2532 if (cic->cfqq[BLK_RW_ASYNC]) {
2533 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2534 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2535 }
2536
ff6657c6
JA
2537 if (cic->cfqq[BLK_RW_SYNC]) {
2538 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2539 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2540 }
89850f7e
JA
2541}
2542
4ac845a2
JA
2543static void cfq_exit_single_io_context(struct io_context *ioc,
2544 struct cfq_io_context *cic)
89850f7e
JA
2545{
2546 struct cfq_data *cfqd = cic->key;
2547
89850f7e 2548 if (cfqd) {
165125e1 2549 struct request_queue *q = cfqd->queue;
4ac845a2 2550 unsigned long flags;
89850f7e 2551
4ac845a2 2552 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2553
2554 /*
2555 * Ensure we get a fresh copy of the ->key to prevent
2556 * race between exiting task and queue
2557 */
2558 smp_read_barrier_depends();
2559 if (cic->key)
2560 __cfq_exit_single_io_context(cfqd, cic);
2561
4ac845a2 2562 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2563 }
1da177e4
LT
2564}
2565
498d3aa2
JA
2566/*
2567 * The process that ioc belongs to has exited, we need to clean up
2568 * and put the internal structures we have that belongs to that process.
2569 */
e2d74ac0 2570static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2571{
4ac845a2 2572 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2573}
2574
22e2c507 2575static struct cfq_io_context *
8267e268 2576cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2577{
b5deef90 2578 struct cfq_io_context *cic;
1da177e4 2579
94f6030c
CL
2580 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2581 cfqd->queue->node);
1da177e4 2582 if (cic) {
22e2c507 2583 cic->last_end_request = jiffies;
553698f9 2584 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2585 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2586 cic->dtor = cfq_free_io_context;
2587 cic->exit = cfq_exit_io_context;
245b2e70 2588 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2589 }
2590
2591 return cic;
2592}
2593
fd0928df 2594static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2595{
2596 struct task_struct *tsk = current;
2597 int ioprio_class;
2598
3b18152c 2599 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2600 return;
2601
fd0928df 2602 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2603 switch (ioprio_class) {
fe094d98
JA
2604 default:
2605 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2606 case IOPRIO_CLASS_NONE:
2607 /*
6d63c275 2608 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2609 */
2610 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2611 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2612 break;
2613 case IOPRIO_CLASS_RT:
2614 cfqq->ioprio = task_ioprio(ioc);
2615 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2616 break;
2617 case IOPRIO_CLASS_BE:
2618 cfqq->ioprio = task_ioprio(ioc);
2619 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2620 break;
2621 case IOPRIO_CLASS_IDLE:
2622 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2623 cfqq->ioprio = 7;
2624 cfq_clear_cfqq_idle_window(cfqq);
2625 break;
22e2c507
JA
2626 }
2627
2628 /*
2629 * keep track of original prio settings in case we have to temporarily
2630 * elevate the priority of this queue
2631 */
2632 cfqq->org_ioprio = cfqq->ioprio;
2633 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2634 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2635}
2636
febffd61 2637static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2638{
478a82b0
AV
2639 struct cfq_data *cfqd = cic->key;
2640 struct cfq_queue *cfqq;
c1b707d2 2641 unsigned long flags;
35e6077c 2642
caaa5f9f
JA
2643 if (unlikely(!cfqd))
2644 return;
2645
c1b707d2 2646 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2647
ff6657c6 2648 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2649 if (cfqq) {
2650 struct cfq_queue *new_cfqq;
ff6657c6
JA
2651 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2652 GFP_ATOMIC);
caaa5f9f 2653 if (new_cfqq) {
ff6657c6 2654 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2655 cfq_put_queue(cfqq);
2656 }
22e2c507 2657 }
caaa5f9f 2658
ff6657c6 2659 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2660 if (cfqq)
2661 cfq_mark_cfqq_prio_changed(cfqq);
2662
c1b707d2 2663 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2664}
2665
fc46379d 2666static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2667{
4ac845a2 2668 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2669 ioc->ioprio_changed = 0;
22e2c507
JA
2670}
2671
d5036d77 2672static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2673 pid_t pid, bool is_sync)
d5036d77
JA
2674{
2675 RB_CLEAR_NODE(&cfqq->rb_node);
2676 RB_CLEAR_NODE(&cfqq->p_node);
2677 INIT_LIST_HEAD(&cfqq->fifo);
2678
2679 atomic_set(&cfqq->ref, 0);
2680 cfqq->cfqd = cfqd;
2681
2682 cfq_mark_cfqq_prio_changed(cfqq);
2683
2684 if (is_sync) {
2685 if (!cfq_class_idle(cfqq))
2686 cfq_mark_cfqq_idle_window(cfqq);
2687 cfq_mark_cfqq_sync(cfqq);
2688 }
2689 cfqq->pid = pid;
2690}
2691
24610333
VG
2692#ifdef CONFIG_CFQ_GROUP_IOSCHED
2693static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2694{
2695 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2696 struct cfq_data *cfqd = cic->key;
2697 unsigned long flags;
2698 struct request_queue *q;
2699
2700 if (unlikely(!cfqd))
2701 return;
2702
2703 q = cfqd->queue;
2704
2705 spin_lock_irqsave(q->queue_lock, flags);
2706
2707 if (sync_cfqq) {
2708 /*
2709 * Drop reference to sync queue. A new sync queue will be
2710 * assigned in new group upon arrival of a fresh request.
2711 */
2712 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2713 cic_set_cfqq(cic, NULL, 1);
2714 cfq_put_queue(sync_cfqq);
2715 }
2716
2717 spin_unlock_irqrestore(q->queue_lock, flags);
2718}
2719
2720static void cfq_ioc_set_cgroup(struct io_context *ioc)
2721{
2722 call_for_each_cic(ioc, changed_cgroup);
2723 ioc->cgroup_changed = 0;
2724}
2725#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2726
22e2c507 2727static struct cfq_queue *
a6151c3a 2728cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2729 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2730{
22e2c507 2731 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2732 struct cfq_io_context *cic;
cdb16e8f 2733 struct cfq_group *cfqg;
22e2c507
JA
2734
2735retry:
cdb16e8f 2736 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2737 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2738 /* cic always exists here */
2739 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2740
6118b70b
JA
2741 /*
2742 * Always try a new alloc if we fell back to the OOM cfqq
2743 * originally, since it should just be a temporary situation.
2744 */
2745 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2746 cfqq = NULL;
22e2c507
JA
2747 if (new_cfqq) {
2748 cfqq = new_cfqq;
2749 new_cfqq = NULL;
2750 } else if (gfp_mask & __GFP_WAIT) {
2751 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2752 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2753 gfp_mask | __GFP_ZERO,
94f6030c 2754 cfqd->queue->node);
22e2c507 2755 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2756 if (new_cfqq)
2757 goto retry;
22e2c507 2758 } else {
94f6030c
CL
2759 cfqq = kmem_cache_alloc_node(cfq_pool,
2760 gfp_mask | __GFP_ZERO,
2761 cfqd->queue->node);
22e2c507
JA
2762 }
2763
6118b70b
JA
2764 if (cfqq) {
2765 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2766 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2767 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2768 cfq_log_cfqq(cfqd, cfqq, "alloced");
2769 } else
2770 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2771 }
2772
2773 if (new_cfqq)
2774 kmem_cache_free(cfq_pool, new_cfqq);
2775
22e2c507
JA
2776 return cfqq;
2777}
2778
c2dea2d1
VT
2779static struct cfq_queue **
2780cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2781{
fe094d98 2782 switch (ioprio_class) {
c2dea2d1
VT
2783 case IOPRIO_CLASS_RT:
2784 return &cfqd->async_cfqq[0][ioprio];
2785 case IOPRIO_CLASS_BE:
2786 return &cfqd->async_cfqq[1][ioprio];
2787 case IOPRIO_CLASS_IDLE:
2788 return &cfqd->async_idle_cfqq;
2789 default:
2790 BUG();
2791 }
2792}
2793
15c31be4 2794static struct cfq_queue *
a6151c3a 2795cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2796 gfp_t gfp_mask)
2797{
fd0928df
JA
2798 const int ioprio = task_ioprio(ioc);
2799 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2800 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2801 struct cfq_queue *cfqq = NULL;
2802
c2dea2d1
VT
2803 if (!is_sync) {
2804 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2805 cfqq = *async_cfqq;
2806 }
2807
6118b70b 2808 if (!cfqq)
fd0928df 2809 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2810
2811 /*
2812 * pin the queue now that it's allocated, scheduler exit will prune it
2813 */
c2dea2d1 2814 if (!is_sync && !(*async_cfqq)) {
15c31be4 2815 atomic_inc(&cfqq->ref);
c2dea2d1 2816 *async_cfqq = cfqq;
15c31be4
JA
2817 }
2818
2819 atomic_inc(&cfqq->ref);
2820 return cfqq;
2821}
2822
498d3aa2
JA
2823/*
2824 * We drop cfq io contexts lazily, so we may find a dead one.
2825 */
dbecf3ab 2826static void
4ac845a2
JA
2827cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2828 struct cfq_io_context *cic)
dbecf3ab 2829{
4ac845a2
JA
2830 unsigned long flags;
2831
fc46379d 2832 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2833
4ac845a2
JA
2834 spin_lock_irqsave(&ioc->lock, flags);
2835
4faa3c81 2836 BUG_ON(ioc->ioc_data == cic);
597bc485 2837
4ac845a2 2838 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2839 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2840 spin_unlock_irqrestore(&ioc->lock, flags);
2841
2842 cfq_cic_free(cic);
dbecf3ab
OH
2843}
2844
e2d74ac0 2845static struct cfq_io_context *
4ac845a2 2846cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2847{
e2d74ac0 2848 struct cfq_io_context *cic;
d6de8be7 2849 unsigned long flags;
4ac845a2 2850 void *k;
e2d74ac0 2851
91fac317
VT
2852 if (unlikely(!ioc))
2853 return NULL;
2854
d6de8be7
JA
2855 rcu_read_lock();
2856
597bc485
JA
2857 /*
2858 * we maintain a last-hit cache, to avoid browsing over the tree
2859 */
4ac845a2 2860 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2861 if (cic && cic->key == cfqd) {
2862 rcu_read_unlock();
597bc485 2863 return cic;
d6de8be7 2864 }
597bc485 2865
4ac845a2 2866 do {
4ac845a2
JA
2867 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2868 rcu_read_unlock();
2869 if (!cic)
2870 break;
be3b0753
OH
2871 /* ->key must be copied to avoid race with cfq_exit_queue() */
2872 k = cic->key;
2873 if (unlikely(!k)) {
4ac845a2 2874 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2875 rcu_read_lock();
4ac845a2 2876 continue;
dbecf3ab 2877 }
e2d74ac0 2878
d6de8be7 2879 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2880 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2881 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2882 break;
2883 } while (1);
e2d74ac0 2884
4ac845a2 2885 return cic;
e2d74ac0
JA
2886}
2887
4ac845a2
JA
2888/*
2889 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2890 * the process specific cfq io context when entered from the block layer.
2891 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2892 */
febffd61
JA
2893static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2894 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2895{
0261d688 2896 unsigned long flags;
4ac845a2 2897 int ret;
e2d74ac0 2898
4ac845a2
JA
2899 ret = radix_tree_preload(gfp_mask);
2900 if (!ret) {
2901 cic->ioc = ioc;
2902 cic->key = cfqd;
e2d74ac0 2903
4ac845a2
JA
2904 spin_lock_irqsave(&ioc->lock, flags);
2905 ret = radix_tree_insert(&ioc->radix_root,
2906 (unsigned long) cfqd, cic);
ffc4e759
JA
2907 if (!ret)
2908 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2909 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2910
4ac845a2
JA
2911 radix_tree_preload_end();
2912
2913 if (!ret) {
2914 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2915 list_add(&cic->queue_list, &cfqd->cic_list);
2916 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2917 }
e2d74ac0
JA
2918 }
2919
4ac845a2
JA
2920 if (ret)
2921 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2922
4ac845a2 2923 return ret;
e2d74ac0
JA
2924}
2925
1da177e4
LT
2926/*
2927 * Setup general io context and cfq io context. There can be several cfq
2928 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2929 * than one device managed by cfq.
1da177e4
LT
2930 */
2931static struct cfq_io_context *
e2d74ac0 2932cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2933{
22e2c507 2934 struct io_context *ioc = NULL;
1da177e4 2935 struct cfq_io_context *cic;
1da177e4 2936
22e2c507 2937 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2938
b5deef90 2939 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2940 if (!ioc)
2941 return NULL;
2942
4ac845a2 2943 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2944 if (cic)
2945 goto out;
1da177e4 2946
e2d74ac0
JA
2947 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2948 if (cic == NULL)
2949 goto err;
1da177e4 2950
4ac845a2
JA
2951 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2952 goto err_free;
2953
1da177e4 2954out:
fc46379d
JA
2955 smp_read_barrier_depends();
2956 if (unlikely(ioc->ioprio_changed))
2957 cfq_ioc_set_ioprio(ioc);
2958
24610333
VG
2959#ifdef CONFIG_CFQ_GROUP_IOSCHED
2960 if (unlikely(ioc->cgroup_changed))
2961 cfq_ioc_set_cgroup(ioc);
2962#endif
1da177e4 2963 return cic;
4ac845a2
JA
2964err_free:
2965 cfq_cic_free(cic);
1da177e4
LT
2966err:
2967 put_io_context(ioc);
2968 return NULL;
2969}
2970
22e2c507
JA
2971static void
2972cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2973{
aaf1228d
JA
2974 unsigned long elapsed = jiffies - cic->last_end_request;
2975 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2976
22e2c507
JA
2977 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2978 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2979 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2980}
1da177e4 2981
206dc69b 2982static void
b2c18e1e 2983cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2984 struct request *rq)
206dc69b
JA
2985{
2986 sector_t sdist;
2987 u64 total;
2988
b2c18e1e 2989 if (!cfqq->last_request_pos)
4d00aa47 2990 sdist = 0;
b2c18e1e
JM
2991 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2992 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
206dc69b 2993 else
b2c18e1e 2994 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
2995
2996 /*
2997 * Don't allow the seek distance to get too large from the
2998 * odd fragment, pagein, etc
2999 */
b2c18e1e
JM
3000 if (cfqq->seek_samples <= 60) /* second&third seek */
3001 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
206dc69b 3002 else
b2c18e1e 3003 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
206dc69b 3004
b2c18e1e
JM
3005 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
3006 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
3007 total = cfqq->seek_total + (cfqq->seek_samples/2);
3008 do_div(total, cfqq->seek_samples);
3009 cfqq->seek_mean = (sector_t)total;
e6c5bc73
JM
3010
3011 /*
3012 * If this cfqq is shared between multiple processes, check to
3013 * make sure that those processes are still issuing I/Os within
3014 * the mean seek distance. If not, it may be time to break the
3015 * queues apart again.
3016 */
3017 if (cfq_cfqq_coop(cfqq)) {
3018 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
3019 cfqq->seeky_start = jiffies;
3020 else if (!CFQQ_SEEKY(cfqq))
3021 cfqq->seeky_start = 0;
3022 }
206dc69b 3023}
1da177e4 3024
22e2c507
JA
3025/*
3026 * Disable idle window if the process thinks too long or seeks so much that
3027 * it doesn't matter
3028 */
3029static void
3030cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3031 struct cfq_io_context *cic)
3032{
7b679138 3033 int old_idle, enable_idle;
1be92f2f 3034
0871714e
JA
3035 /*
3036 * Don't idle for async or idle io prio class
3037 */
3038 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3039 return;
3040
c265a7f4 3041 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3042
76280aff
CZ
3043 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3044 cfq_mark_cfqq_deep(cfqq);
3045
66dac98e 3046 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
76280aff
CZ
3047 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
3048 && CFQQ_SEEKY(cfqq)))
22e2c507
JA
3049 enable_idle = 0;
3050 else if (sample_valid(cic->ttime_samples)) {
718eee05 3051 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3052 enable_idle = 0;
3053 else
3054 enable_idle = 1;
1da177e4
LT
3055 }
3056
7b679138
JA
3057 if (old_idle != enable_idle) {
3058 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3059 if (enable_idle)
3060 cfq_mark_cfqq_idle_window(cfqq);
3061 else
3062 cfq_clear_cfqq_idle_window(cfqq);
3063 }
22e2c507 3064}
1da177e4 3065
22e2c507
JA
3066/*
3067 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3068 * no or if we aren't sure, a 1 will cause a preempt.
3069 */
a6151c3a 3070static bool
22e2c507 3071cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3072 struct request *rq)
22e2c507 3073{
6d048f53 3074 struct cfq_queue *cfqq;
22e2c507 3075
6d048f53
JA
3076 cfqq = cfqd->active_queue;
3077 if (!cfqq)
a6151c3a 3078 return false;
22e2c507 3079
6d048f53 3080 if (cfq_class_idle(new_cfqq))
a6151c3a 3081 return false;
22e2c507
JA
3082
3083 if (cfq_class_idle(cfqq))
a6151c3a 3084 return true;
1e3335de 3085
374f84ac
JA
3086 /*
3087 * if the new request is sync, but the currently running queue is
3088 * not, let the sync request have priority.
3089 */
5e705374 3090 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3091 return true;
1e3335de 3092
8682e1f1
VG
3093 if (new_cfqq->cfqg != cfqq->cfqg)
3094 return false;
3095
3096 if (cfq_slice_used(cfqq))
3097 return true;
3098
3099 /* Allow preemption only if we are idling on sync-noidle tree */
3100 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3101 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3102 new_cfqq->service_tree->count == 2 &&
3103 RB_EMPTY_ROOT(&cfqq->sort_list))
3104 return true;
3105
374f84ac
JA
3106 /*
3107 * So both queues are sync. Let the new request get disk time if
3108 * it's a metadata request and the current queue is doing regular IO.
3109 */
3110 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 3111 return true;
22e2c507 3112
3a9a3f6c
DS
3113 /*
3114 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3115 */
3116 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3117 return true;
3a9a3f6c 3118
1e3335de 3119 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3120 return false;
1e3335de
JA
3121
3122 /*
3123 * if this request is as-good as one we would expect from the
3124 * current cfqq, let it preempt
3125 */
e00ef799 3126 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3127 return true;
1e3335de 3128
a6151c3a 3129 return false;
22e2c507
JA
3130}
3131
3132/*
3133 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3134 * let it have half of its nominal slice.
3135 */
3136static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3137{
7b679138 3138 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 3139 cfq_slice_expired(cfqd, 1);
22e2c507 3140
bf572256
JA
3141 /*
3142 * Put the new queue at the front of the of the current list,
3143 * so we know that it will be selected next.
3144 */
3145 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3146
3147 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 3148
44f7c160
JA
3149 cfqq->slice_end = 0;
3150 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3151}
3152
22e2c507 3153/*
5e705374 3154 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3155 * something we should do about it
3156 */
3157static void
5e705374
JA
3158cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3159 struct request *rq)
22e2c507 3160{
5e705374 3161 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3162
45333d5a 3163 cfqd->rq_queued++;
374f84ac
JA
3164 if (rq_is_meta(rq))
3165 cfqq->meta_pending++;
3166
9c2c38a1 3167 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3168 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3169 cfq_update_idle_window(cfqd, cfqq, cic);
3170
b2c18e1e 3171 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3172
3173 if (cfqq == cfqd->active_queue) {
f75edf2d
VG
3174 if (cfq_cfqq_wait_busy(cfqq)) {
3175 cfq_clear_cfqq_wait_busy(cfqq);
3176 cfq_mark_cfqq_wait_busy_done(cfqq);
3177 }
22e2c507 3178 /*
b029195d
JA
3179 * Remember that we saw a request from this process, but
3180 * don't start queuing just yet. Otherwise we risk seeing lots
3181 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3182 * and merging. If the request is already larger than a single
3183 * page, let it rip immediately. For that case we assume that
2d870722
JA
3184 * merging is already done. Ditto for a busy system that
3185 * has other work pending, don't risk delaying until the
3186 * idle timer unplug to continue working.
22e2c507 3187 */
d6ceb25e 3188 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3189 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3190 cfqd->busy_queues > 1) {
d6ceb25e 3191 del_timer(&cfqd->idle_slice_timer);
bf791937
VG
3192 __blk_run_queue(cfqd->queue);
3193 } else
3194 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 3195 }
5e705374 3196 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3197 /*
3198 * not the active queue - expire current slice if it is
3199 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3200 * has some old slice time left and is of higher priority or
3201 * this new queue is RT and the current one is BE
22e2c507
JA
3202 */
3203 cfq_preempt_queue(cfqd, cfqq);
a7f55792 3204 __blk_run_queue(cfqd->queue);
22e2c507 3205 }
1da177e4
LT
3206}
3207
165125e1 3208static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3209{
b4878f24 3210 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3211 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3212
7b679138 3213 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3214 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3215
30996f40 3216 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3217 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3218 cfq_add_rq_rb(rq);
22e2c507 3219
5e705374 3220 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3221}
3222
45333d5a
AC
3223/*
3224 * Update hw_tag based on peak queue depth over 50 samples under
3225 * sufficient load.
3226 */
3227static void cfq_update_hw_tag(struct cfq_data *cfqd)
3228{
1a1238a7
SL
3229 struct cfq_queue *cfqq = cfqd->active_queue;
3230
e459dd08
CZ
3231 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3232 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3233
3234 if (cfqd->hw_tag == 1)
3235 return;
45333d5a
AC
3236
3237 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 3238 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3239 return;
3240
1a1238a7
SL
3241 /*
3242 * If active queue hasn't enough requests and can idle, cfq might not
3243 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3244 * case
3245 */
3246 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3247 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3248 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3249 return;
3250
45333d5a
AC
3251 if (cfqd->hw_tag_samples++ < 50)
3252 return;
3253
e459dd08 3254 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3255 cfqd->hw_tag = 1;
3256 else
3257 cfqd->hw_tag = 0;
45333d5a
AC
3258}
3259
165125e1 3260static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3261{
5e705374 3262 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3263 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3264 const int sync = rq_is_sync(rq);
b4878f24 3265 unsigned long now;
1da177e4 3266
b4878f24 3267 now = jiffies;
2868ef7b 3268 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
1da177e4 3269
45333d5a
AC
3270 cfq_update_hw_tag(cfqd);
3271
5ad531db 3272 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 3273 WARN_ON(!cfqq->dispatched);
5ad531db 3274 cfqd->rq_in_driver[sync]--;
6d048f53 3275 cfqq->dispatched--;
1da177e4 3276
3ed9a296
JA
3277 if (cfq_cfqq_sync(cfqq))
3278 cfqd->sync_flight--;
3279
365722bb 3280 if (sync) {
5e705374 3281 RQ_CIC(rq)->last_end_request = now;
573412b2
CZ
3282 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3283 cfqd->last_delayed_sync = now;
365722bb 3284 }
caaa5f9f
JA
3285
3286 /*
3287 * If this is the active queue, check if it needs to be expired,
3288 * or if we want to idle in case it has no pending requests.
3289 */
3290 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3291 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3292
44f7c160
JA
3293 if (cfq_cfqq_slice_new(cfqq)) {
3294 cfq_set_prio_slice(cfqd, cfqq);
3295 cfq_clear_cfqq_slice_new(cfqq);
3296 }
f75edf2d
VG
3297
3298 /*
3299 * If this queue consumed its slice and this is last queue
3300 * in the group, wait for next request before we expire
3301 * the queue
3302 */
3303 if (cfq_slice_used(cfqq) && cfqq->cfqg->nr_cfqq == 1) {
3304 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3305 cfq_mark_cfqq_wait_busy(cfqq);
3306 }
3307
a36e71f9 3308 /*
8e550632
CZ
3309 * Idling is not enabled on:
3310 * - expired queues
3311 * - idle-priority queues
3312 * - async queues
3313 * - queues with still some requests queued
3314 * - when there is a close cooperator
a36e71f9 3315 */
0871714e 3316 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 3317 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3318 else if (sync && cfqq_empty &&
3319 !cfq_close_cooperator(cfqd, cfqq)) {
3320 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3321 /*
3322 * Idling is enabled for SYNC_WORKLOAD.
3323 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3324 * only if we processed at least one !rq_noidle request
3325 */
3326 if (cfqd->serving_type == SYNC_WORKLOAD
c04645e5
VG
3327 || cfqd->noidle_tree_requires_idle
3328 || cfqq->cfqg->nr_cfqq == 1)
8e550632
CZ
3329 cfq_arm_slice_timer(cfqd);
3330 }
caaa5f9f 3331 }
6d048f53 3332
5ad531db 3333 if (!rq_in_driver(cfqd))
23e018a1 3334 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3335}
3336
22e2c507
JA
3337/*
3338 * we temporarily boost lower priority queues if they are holding fs exclusive
3339 * resources. they are boosted to normal prio (CLASS_BE/4)
3340 */
3341static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3342{
22e2c507
JA
3343 if (has_fs_excl()) {
3344 /*
3345 * boost idle prio on transactions that would lock out other
3346 * users of the filesystem
3347 */
3348 if (cfq_class_idle(cfqq))
3349 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3350 if (cfqq->ioprio > IOPRIO_NORM)
3351 cfqq->ioprio = IOPRIO_NORM;
3352 } else {
3353 /*
dddb7451 3354 * unboost the queue (if needed)
22e2c507 3355 */
dddb7451
CZ
3356 cfqq->ioprio_class = cfqq->org_ioprio_class;
3357 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3358 }
22e2c507 3359}
1da177e4 3360
89850f7e 3361static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3362{
1b379d8d 3363 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3364 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3365 return ELV_MQUEUE_MUST;
3b18152c 3366 }
1da177e4 3367
22e2c507 3368 return ELV_MQUEUE_MAY;
22e2c507
JA
3369}
3370
165125e1 3371static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3372{
3373 struct cfq_data *cfqd = q->elevator->elevator_data;
3374 struct task_struct *tsk = current;
91fac317 3375 struct cfq_io_context *cic;
22e2c507
JA
3376 struct cfq_queue *cfqq;
3377
3378 /*
3379 * don't force setup of a queue from here, as a call to may_queue
3380 * does not necessarily imply that a request actually will be queued.
3381 * so just lookup a possibly existing queue, or return 'may queue'
3382 * if that fails
3383 */
4ac845a2 3384 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3385 if (!cic)
3386 return ELV_MQUEUE_MAY;
3387
b0b78f81 3388 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3389 if (cfqq) {
fd0928df 3390 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3391 cfq_prio_boost(cfqq);
3392
89850f7e 3393 return __cfq_may_queue(cfqq);
22e2c507
JA
3394 }
3395
3396 return ELV_MQUEUE_MAY;
1da177e4
LT
3397}
3398
1da177e4
LT
3399/*
3400 * queue lock held here
3401 */
bb37b94c 3402static void cfq_put_request(struct request *rq)
1da177e4 3403{
5e705374 3404 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3405
5e705374 3406 if (cfqq) {
22e2c507 3407 const int rw = rq_data_dir(rq);
1da177e4 3408
22e2c507
JA
3409 BUG_ON(!cfqq->allocated[rw]);
3410 cfqq->allocated[rw]--;
1da177e4 3411
5e705374 3412 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3413
1da177e4 3414 rq->elevator_private = NULL;
5e705374 3415 rq->elevator_private2 = NULL;
1da177e4 3416
1da177e4
LT
3417 cfq_put_queue(cfqq);
3418 }
3419}
3420
df5fe3e8
JM
3421static struct cfq_queue *
3422cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3423 struct cfq_queue *cfqq)
3424{
3425 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3426 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3427 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3428 cfq_put_queue(cfqq);
3429 return cic_to_cfqq(cic, 1);
3430}
3431
e6c5bc73
JM
3432static int should_split_cfqq(struct cfq_queue *cfqq)
3433{
3434 if (cfqq->seeky_start &&
3435 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3436 return 1;
3437 return 0;
3438}
3439
3440/*
3441 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3442 * was the last process referring to said cfqq.
3443 */
3444static struct cfq_queue *
3445split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3446{
3447 if (cfqq_process_refs(cfqq) == 1) {
3448 cfqq->seeky_start = 0;
3449 cfqq->pid = current->pid;
3450 cfq_clear_cfqq_coop(cfqq);
3451 return cfqq;
3452 }
3453
3454 cic_set_cfqq(cic, NULL, 1);
3455 cfq_put_queue(cfqq);
3456 return NULL;
3457}
1da177e4 3458/*
22e2c507 3459 * Allocate cfq data structures associated with this request.
1da177e4 3460 */
22e2c507 3461static int
165125e1 3462cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3463{
3464 struct cfq_data *cfqd = q->elevator->elevator_data;
3465 struct cfq_io_context *cic;
3466 const int rw = rq_data_dir(rq);
a6151c3a 3467 const bool is_sync = rq_is_sync(rq);
22e2c507 3468 struct cfq_queue *cfqq;
1da177e4
LT
3469 unsigned long flags;
3470
3471 might_sleep_if(gfp_mask & __GFP_WAIT);
3472
e2d74ac0 3473 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3474
1da177e4
LT
3475 spin_lock_irqsave(q->queue_lock, flags);
3476
22e2c507
JA
3477 if (!cic)
3478 goto queue_fail;
3479
e6c5bc73 3480new_queue:
91fac317 3481 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3482 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3483 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3484 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3485 } else {
e6c5bc73
JM
3486 /*
3487 * If the queue was seeky for too long, break it apart.
3488 */
3489 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3490 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3491 cfqq = split_cfqq(cic, cfqq);
3492 if (!cfqq)
3493 goto new_queue;
3494 }
3495
df5fe3e8
JM
3496 /*
3497 * Check to see if this queue is scheduled to merge with
3498 * another, closely cooperating queue. The merging of
3499 * queues happens here as it must be done in process context.
3500 * The reference on new_cfqq was taken in merge_cfqqs.
3501 */
3502 if (cfqq->new_cfqq)
3503 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3504 }
1da177e4
LT
3505
3506 cfqq->allocated[rw]++;
22e2c507 3507 atomic_inc(&cfqq->ref);
1da177e4 3508
5e705374 3509 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 3510
5e705374
JA
3511 rq->elevator_private = cic;
3512 rq->elevator_private2 = cfqq;
3513 return 0;
1da177e4 3514
22e2c507
JA
3515queue_fail:
3516 if (cic)
3517 put_io_context(cic->ioc);
89850f7e 3518
23e018a1 3519 cfq_schedule_dispatch(cfqd);
1da177e4 3520 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3521 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3522 return 1;
3523}
3524
65f27f38 3525static void cfq_kick_queue(struct work_struct *work)
22e2c507 3526{
65f27f38 3527 struct cfq_data *cfqd =
23e018a1 3528 container_of(work, struct cfq_data, unplug_work);
165125e1 3529 struct request_queue *q = cfqd->queue;
22e2c507 3530
40bb54d1 3531 spin_lock_irq(q->queue_lock);
a7f55792 3532 __blk_run_queue(cfqd->queue);
40bb54d1 3533 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3534}
3535
3536/*
3537 * Timer running if the active_queue is currently idling inside its time slice
3538 */
3539static void cfq_idle_slice_timer(unsigned long data)
3540{
3541 struct cfq_data *cfqd = (struct cfq_data *) data;
3542 struct cfq_queue *cfqq;
3543 unsigned long flags;
3c6bd2f8 3544 int timed_out = 1;
22e2c507 3545
7b679138
JA
3546 cfq_log(cfqd, "idle timer fired");
3547
22e2c507
JA
3548 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3549
fe094d98
JA
3550 cfqq = cfqd->active_queue;
3551 if (cfqq) {
3c6bd2f8
JA
3552 timed_out = 0;
3553
b029195d
JA
3554 /*
3555 * We saw a request before the queue expired, let it through
3556 */
3557 if (cfq_cfqq_must_dispatch(cfqq))
3558 goto out_kick;
3559
22e2c507
JA
3560 /*
3561 * expired
3562 */
44f7c160 3563 if (cfq_slice_used(cfqq))
22e2c507
JA
3564 goto expire;
3565
3566 /*
3567 * only expire and reinvoke request handler, if there are
3568 * other queues with pending requests
3569 */
caaa5f9f 3570 if (!cfqd->busy_queues)
22e2c507 3571 goto out_cont;
22e2c507
JA
3572
3573 /*
3574 * not expired and it has a request pending, let it dispatch
3575 */
75e50984 3576 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3577 goto out_kick;
76280aff
CZ
3578
3579 /*
3580 * Queue depth flag is reset only when the idle didn't succeed
3581 */
3582 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3583 }
3584expire:
6084cdda 3585 cfq_slice_expired(cfqd, timed_out);
22e2c507 3586out_kick:
23e018a1 3587 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3588out_cont:
3589 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3590}
3591
3b18152c
JA
3592static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3593{
3594 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3595 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3596}
22e2c507 3597
c2dea2d1
VT
3598static void cfq_put_async_queues(struct cfq_data *cfqd)
3599{
3600 int i;
3601
3602 for (i = 0; i < IOPRIO_BE_NR; i++) {
3603 if (cfqd->async_cfqq[0][i])
3604 cfq_put_queue(cfqd->async_cfqq[0][i]);
3605 if (cfqd->async_cfqq[1][i])
3606 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3607 }
2389d1ef
ON
3608
3609 if (cfqd->async_idle_cfqq)
3610 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3611}
3612
bb729bc9
JA
3613static void cfq_cfqd_free(struct rcu_head *head)
3614{
3615 kfree(container_of(head, struct cfq_data, rcu));
3616}
3617
b374d18a 3618static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3619{
22e2c507 3620 struct cfq_data *cfqd = e->elevator_data;
165125e1 3621 struct request_queue *q = cfqd->queue;
22e2c507 3622
3b18152c 3623 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3624
d9ff4187 3625 spin_lock_irq(q->queue_lock);
e2d74ac0 3626
d9ff4187 3627 if (cfqd->active_queue)
6084cdda 3628 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3629
3630 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3631 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3632 struct cfq_io_context,
3633 queue_list);
89850f7e
JA
3634
3635 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3636 }
e2d74ac0 3637
c2dea2d1 3638 cfq_put_async_queues(cfqd);
b1c35769
VG
3639 cfq_release_cfq_groups(cfqd);
3640 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
15c31be4 3641
d9ff4187 3642 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3643
3644 cfq_shutdown_timer_wq(cfqd);
3645
b1c35769 3646 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
bb729bc9 3647 call_rcu(&cfqd->rcu, cfq_cfqd_free);
1da177e4
LT
3648}
3649
165125e1 3650static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3651{
3652 struct cfq_data *cfqd;
718eee05 3653 int i, j;
cdb16e8f 3654 struct cfq_group *cfqg;
615f0259 3655 struct cfq_rb_root *st;
1da177e4 3656
94f6030c 3657 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3658 if (!cfqd)
bc1c1169 3659 return NULL;
1da177e4 3660
1fa8f6d6
VG
3661 /* Init root service tree */
3662 cfqd->grp_service_tree = CFQ_RB_ROOT;
3663
cdb16e8f
VG
3664 /* Init root group */
3665 cfqg = &cfqd->root_group;
615f0259
VG
3666 for_each_cfqg_st(cfqg, i, j, st)
3667 *st = CFQ_RB_ROOT;
1fa8f6d6 3668 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3669
25bc6b07
VG
3670 /* Give preference to root group over other groups */
3671 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3672
25fb5169 3673#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769
VG
3674 /*
3675 * Take a reference to root group which we never drop. This is just
3676 * to make sure that cfq_put_cfqg() does not try to kfree root group
3677 */
3678 atomic_set(&cfqg->ref, 1);
22084190
VG
3679 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3680 0);
25fb5169 3681#endif
26a2ac00
JA
3682 /*
3683 * Not strictly needed (since RB_ROOT just clears the node and we
3684 * zeroed cfqd on alloc), but better be safe in case someone decides
3685 * to add magic to the rb code
3686 */
3687 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3688 cfqd->prio_trees[i] = RB_ROOT;
3689
6118b70b
JA
3690 /*
3691 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3692 * Grab a permanent reference to it, so that the normal code flow
3693 * will not attempt to free it.
3694 */
3695 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3696 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3697 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3698
d9ff4187 3699 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3700
1da177e4 3701 cfqd->queue = q;
1da177e4 3702
22e2c507
JA
3703 init_timer(&cfqd->idle_slice_timer);
3704 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3705 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3706
23e018a1 3707 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3708
1da177e4 3709 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3710 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3711 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3712 cfqd->cfq_back_max = cfq_back_max;
3713 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3714 cfqd->cfq_slice[0] = cfq_slice_async;
3715 cfqd->cfq_slice[1] = cfq_slice_sync;
3716 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3717 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 3718 cfqd->cfq_latency = 1;
ae30c286 3719 cfqd->cfq_group_isolation = 0;
e459dd08 3720 cfqd->hw_tag = -1;
573412b2 3721 cfqd->last_delayed_sync = jiffies - HZ;
bb729bc9 3722 INIT_RCU_HEAD(&cfqd->rcu);
bc1c1169 3723 return cfqd;
1da177e4
LT
3724}
3725
3726static void cfq_slab_kill(void)
3727{
d6de8be7
JA
3728 /*
3729 * Caller already ensured that pending RCU callbacks are completed,
3730 * so we should have no busy allocations at this point.
3731 */
1da177e4
LT
3732 if (cfq_pool)
3733 kmem_cache_destroy(cfq_pool);
3734 if (cfq_ioc_pool)
3735 kmem_cache_destroy(cfq_ioc_pool);
3736}
3737
3738static int __init cfq_slab_setup(void)
3739{
0a31bd5f 3740 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3741 if (!cfq_pool)
3742 goto fail;
3743
34e6bbf2 3744 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3745 if (!cfq_ioc_pool)
3746 goto fail;
3747
3748 return 0;
3749fail:
3750 cfq_slab_kill();
3751 return -ENOMEM;
3752}
3753
1da177e4
LT
3754/*
3755 * sysfs parts below -->
3756 */
1da177e4
LT
3757static ssize_t
3758cfq_var_show(unsigned int var, char *page)
3759{
3760 return sprintf(page, "%d\n", var);
3761}
3762
3763static ssize_t
3764cfq_var_store(unsigned int *var, const char *page, size_t count)
3765{
3766 char *p = (char *) page;
3767
3768 *var = simple_strtoul(p, &p, 10);
3769 return count;
3770}
3771
1da177e4 3772#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3773static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3774{ \
3d1ab40f 3775 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3776 unsigned int __data = __VAR; \
3777 if (__CONV) \
3778 __data = jiffies_to_msecs(__data); \
3779 return cfq_var_show(__data, (page)); \
3780}
3781SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3782SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3783SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3784SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3785SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3786SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3787SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3788SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3789SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3790SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
ae30c286 3791SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
1da177e4
LT
3792#undef SHOW_FUNCTION
3793
3794#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3795static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3796{ \
3d1ab40f 3797 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3798 unsigned int __data; \
3799 int ret = cfq_var_store(&__data, (page), count); \
3800 if (__data < (MIN)) \
3801 __data = (MIN); \
3802 else if (__data > (MAX)) \
3803 __data = (MAX); \
3804 if (__CONV) \
3805 *(__PTR) = msecs_to_jiffies(__data); \
3806 else \
3807 *(__PTR) = __data; \
3808 return ret; \
3809}
3810STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3811STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3812 UINT_MAX, 1);
3813STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3814 UINT_MAX, 1);
e572ec7e 3815STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3816STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3817 UINT_MAX, 0);
22e2c507
JA
3818STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3819STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3820STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3821STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3822 UINT_MAX, 0);
963b72fc 3823STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
ae30c286 3824STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
1da177e4
LT
3825#undef STORE_FUNCTION
3826
e572ec7e
AV
3827#define CFQ_ATTR(name) \
3828 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3829
3830static struct elv_fs_entry cfq_attrs[] = {
3831 CFQ_ATTR(quantum),
e572ec7e
AV
3832 CFQ_ATTR(fifo_expire_sync),
3833 CFQ_ATTR(fifo_expire_async),
3834 CFQ_ATTR(back_seek_max),
3835 CFQ_ATTR(back_seek_penalty),
3836 CFQ_ATTR(slice_sync),
3837 CFQ_ATTR(slice_async),
3838 CFQ_ATTR(slice_async_rq),
3839 CFQ_ATTR(slice_idle),
963b72fc 3840 CFQ_ATTR(low_latency),
ae30c286 3841 CFQ_ATTR(group_isolation),
e572ec7e 3842 __ATTR_NULL
1da177e4
LT
3843};
3844
1da177e4
LT
3845static struct elevator_type iosched_cfq = {
3846 .ops = {
3847 .elevator_merge_fn = cfq_merge,
3848 .elevator_merged_fn = cfq_merged_request,
3849 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3850 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 3851 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3852 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3853 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3854 .elevator_deactivate_req_fn = cfq_deactivate_request,
3855 .elevator_queue_empty_fn = cfq_queue_empty,
3856 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3857 .elevator_former_req_fn = elv_rb_former_request,
3858 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3859 .elevator_set_req_fn = cfq_set_request,
3860 .elevator_put_req_fn = cfq_put_request,
3861 .elevator_may_queue_fn = cfq_may_queue,
3862 .elevator_init_fn = cfq_init_queue,
3863 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3864 .trim = cfq_free_io_context,
1da177e4 3865 },
3d1ab40f 3866 .elevator_attrs = cfq_attrs,
1da177e4
LT
3867 .elevator_name = "cfq",
3868 .elevator_owner = THIS_MODULE,
3869};
3870
3e252066
VG
3871#ifdef CONFIG_CFQ_GROUP_IOSCHED
3872static struct blkio_policy_type blkio_policy_cfq = {
3873 .ops = {
3874 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3875 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3876 },
3877};
3878#else
3879static struct blkio_policy_type blkio_policy_cfq;
3880#endif
3881
1da177e4
LT
3882static int __init cfq_init(void)
3883{
22e2c507
JA
3884 /*
3885 * could be 0 on HZ < 1000 setups
3886 */
3887 if (!cfq_slice_async)
3888 cfq_slice_async = 1;
3889 if (!cfq_slice_idle)
3890 cfq_slice_idle = 1;
3891
1da177e4
LT
3892 if (cfq_slab_setup())
3893 return -ENOMEM;
3894
2fdd82bd 3895 elv_register(&iosched_cfq);
3e252066 3896 blkio_policy_register(&blkio_policy_cfq);
1da177e4 3897
2fdd82bd 3898 return 0;
1da177e4
LT
3899}
3900
3901static void __exit cfq_exit(void)
3902{
6e9a4738 3903 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 3904 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 3905 elv_unregister(&iosched_cfq);
334e94de 3906 ioc_gone = &all_gone;
fba82272
OH
3907 /* ioc_gone's update must be visible before reading ioc_count */
3908 smp_wmb();
d6de8be7
JA
3909
3910 /*
3911 * this also protects us from entering cfq_slab_kill() with
3912 * pending RCU callbacks
3913 */
245b2e70 3914 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3915 wait_for_completion(&all_gone);
83521d3e 3916 cfq_slab_kill();
1da177e4
LT
3917}
3918
3919module_init(cfq_init);
3920module_exit(cfq_exit);
3921
3922MODULE_AUTHOR("Jens Axboe");
3923MODULE_LICENSE("GPL");
3924MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");