cfq-iosched: rework seeky detection
[linux-2.6-block.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
ad5ebd2f 12#include <linux/jiffies.h>
1da177e4 13#include <linux/rbtree.h>
22e2c507 14#include <linux/ioprio.h>
7b679138 15#include <linux/blktrace_api.h>
25bc6b07 16#include "blk-cgroup.h"
1da177e4
LT
17
18/*
19 * tunables
20 */
fe094d98
JA
21/* max queue in one round of service */
22static const int cfq_quantum = 4;
64100099 23static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
24/* maximum backwards seek, in KiB */
25static const int cfq_back_max = 16 * 1024;
26/* penalty of a backwards seek */
27static const int cfq_back_penalty = 2;
64100099 28static const int cfq_slice_sync = HZ / 10;
3b18152c 29static int cfq_slice_async = HZ / 25;
64100099 30static const int cfq_slice_async_rq = 2;
caaa5f9f 31static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
32static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33static const int cfq_hist_divisor = 4;
22e2c507 34
d9e7620e 35/*
0871714e 36 * offset from end of service tree
d9e7620e 37 */
0871714e 38#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
39
40/*
41 * below this threshold, we consider thinktime immediate
42 */
43#define CFQ_MIN_TT (2)
44
22e2c507 45#define CFQ_SLICE_SCALE (5)
45333d5a 46#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 47#define CFQ_SERVICE_SHIFT 12
22e2c507 48
3dde36dd
CZ
49#define CFQQ_SEEK_THR (sector_t)(8 * 100)
50#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 51
fe094d98
JA
52#define RQ_CIC(rq) \
53 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 54#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 55
e18b890b
CL
56static struct kmem_cache *cfq_pool;
57static struct kmem_cache *cfq_ioc_pool;
1da177e4 58
245b2e70 59static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 60static struct completion *ioc_gone;
9a11b4ed 61static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 62
22e2c507
JA
63#define CFQ_PRIO_LISTS IOPRIO_BE_NR
64#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
65#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
206dc69b 67#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 68#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 69
cc09e299
JA
70/*
71 * Most of our rbtree usage is for sorting with min extraction, so
72 * if we cache the leftmost node we don't have to walk down the tree
73 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
74 * move this into the elevator for the rq sorting as well.
75 */
76struct cfq_rb_root {
77 struct rb_root rb;
78 struct rb_node *left;
aa6f6a3d 79 unsigned count;
1fa8f6d6 80 u64 min_vdisktime;
25bc6b07 81 struct rb_node *active;
58ff82f3 82 unsigned total_weight;
cc09e299 83};
1fa8f6d6 84#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
cc09e299 85
6118b70b
JA
86/*
87 * Per process-grouping structure
88 */
89struct cfq_queue {
90 /* reference count */
91 atomic_t ref;
92 /* various state flags, see below */
93 unsigned int flags;
94 /* parent cfq_data */
95 struct cfq_data *cfqd;
96 /* service_tree member */
97 struct rb_node rb_node;
98 /* service_tree key */
99 unsigned long rb_key;
100 /* prio tree member */
101 struct rb_node p_node;
102 /* prio tree root we belong to, if any */
103 struct rb_root *p_root;
104 /* sorted list of pending requests */
105 struct rb_root sort_list;
106 /* if fifo isn't expired, next request to serve */
107 struct request *next_rq;
108 /* requests queued in sort_list */
109 int queued[2];
110 /* currently allocated requests */
111 int allocated[2];
112 /* fifo list of requests in sort_list */
113 struct list_head fifo;
114
dae739eb
VG
115 /* time when queue got scheduled in to dispatch first request. */
116 unsigned long dispatch_start;
f75edf2d 117 unsigned int allocated_slice;
c4081ba5 118 unsigned int slice_dispatch;
dae739eb
VG
119 /* time when first request from queue completed and slice started. */
120 unsigned long slice_start;
6118b70b
JA
121 unsigned long slice_end;
122 long slice_resid;
6118b70b
JA
123
124 /* pending metadata requests */
125 int meta_pending;
126 /* number of requests that are on the dispatch list or inside driver */
127 int dispatched;
128
129 /* io prio of this group */
130 unsigned short ioprio, org_ioprio;
131 unsigned short ioprio_class, org_ioprio_class;
132
c4081ba5
RK
133 pid_t pid;
134
3dde36dd 135 u32 seek_history;
b2c18e1e
JM
136 sector_t last_request_pos;
137
aa6f6a3d 138 struct cfq_rb_root *service_tree;
df5fe3e8 139 struct cfq_queue *new_cfqq;
cdb16e8f 140 struct cfq_group *cfqg;
ae30c286 141 struct cfq_group *orig_cfqg;
22084190
VG
142 /* Sectors dispatched in current dispatch round */
143 unsigned long nr_sectors;
6118b70b
JA
144};
145
c0324a02 146/*
718eee05 147 * First index in the service_trees.
c0324a02
CZ
148 * IDLE is handled separately, so it has negative index
149 */
150enum wl_prio_t {
c0324a02 151 BE_WORKLOAD = 0,
615f0259
VG
152 RT_WORKLOAD = 1,
153 IDLE_WORKLOAD = 2,
c0324a02
CZ
154};
155
718eee05
CZ
156/*
157 * Second index in the service_trees.
158 */
159enum wl_type_t {
160 ASYNC_WORKLOAD = 0,
161 SYNC_NOIDLE_WORKLOAD = 1,
162 SYNC_WORKLOAD = 2
163};
164
cdb16e8f
VG
165/* This is per cgroup per device grouping structure */
166struct cfq_group {
1fa8f6d6
VG
167 /* group service_tree member */
168 struct rb_node rb_node;
169
170 /* group service_tree key */
171 u64 vdisktime;
25bc6b07 172 unsigned int weight;
1fa8f6d6
VG
173 bool on_st;
174
175 /* number of cfqq currently on this group */
176 int nr_cfqq;
177
58ff82f3
VG
178 /* Per group busy queus average. Useful for workload slice calc. */
179 unsigned int busy_queues_avg[2];
cdb16e8f
VG
180 /*
181 * rr lists of queues with requests, onle rr for each priority class.
182 * Counts are embedded in the cfq_rb_root
183 */
184 struct cfq_rb_root service_trees[2][3];
185 struct cfq_rb_root service_tree_idle;
dae739eb
VG
186
187 unsigned long saved_workload_slice;
188 enum wl_type_t saved_workload;
189 enum wl_prio_t saved_serving_prio;
25fb5169
VG
190 struct blkio_group blkg;
191#ifdef CONFIG_CFQ_GROUP_IOSCHED
192 struct hlist_node cfqd_node;
b1c35769 193 atomic_t ref;
25fb5169 194#endif
cdb16e8f 195};
718eee05 196
22e2c507
JA
197/*
198 * Per block device queue structure
199 */
1da177e4 200struct cfq_data {
165125e1 201 struct request_queue *queue;
1fa8f6d6
VG
202 /* Root service tree for cfq_groups */
203 struct cfq_rb_root grp_service_tree;
cdb16e8f 204 struct cfq_group root_group;
22e2c507 205
c0324a02
CZ
206 /*
207 * The priority currently being served
22e2c507 208 */
c0324a02 209 enum wl_prio_t serving_prio;
718eee05
CZ
210 enum wl_type_t serving_type;
211 unsigned long workload_expires;
cdb16e8f 212 struct cfq_group *serving_group;
8e550632 213 bool noidle_tree_requires_idle;
a36e71f9
JA
214
215 /*
216 * Each priority tree is sorted by next_request position. These
217 * trees are used when determining if two or more queues are
218 * interleaving requests (see cfq_close_cooperator).
219 */
220 struct rb_root prio_trees[CFQ_PRIO_LISTS];
221
22e2c507
JA
222 unsigned int busy_queues;
223
5ad531db 224 int rq_in_driver[2];
3ed9a296 225 int sync_flight;
45333d5a
AC
226
227 /*
228 * queue-depth detection
229 */
230 int rq_queued;
25776e35 231 int hw_tag;
e459dd08
CZ
232 /*
233 * hw_tag can be
234 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
235 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
236 * 0 => no NCQ
237 */
238 int hw_tag_est_depth;
239 unsigned int hw_tag_samples;
1da177e4 240
22e2c507
JA
241 /*
242 * idle window management
243 */
244 struct timer_list idle_slice_timer;
23e018a1 245 struct work_struct unplug_work;
1da177e4 246
22e2c507
JA
247 struct cfq_queue *active_queue;
248 struct cfq_io_context *active_cic;
22e2c507 249
c2dea2d1
VT
250 /*
251 * async queue for each priority case
252 */
253 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
254 struct cfq_queue *async_idle_cfqq;
15c31be4 255
6d048f53 256 sector_t last_position;
1da177e4 257
1da177e4
LT
258 /*
259 * tunables, see top of file
260 */
261 unsigned int cfq_quantum;
22e2c507 262 unsigned int cfq_fifo_expire[2];
1da177e4
LT
263 unsigned int cfq_back_penalty;
264 unsigned int cfq_back_max;
22e2c507
JA
265 unsigned int cfq_slice[2];
266 unsigned int cfq_slice_async_rq;
267 unsigned int cfq_slice_idle;
963b72fc 268 unsigned int cfq_latency;
ae30c286 269 unsigned int cfq_group_isolation;
d9ff4187
AV
270
271 struct list_head cic_list;
1da177e4 272
6118b70b
JA
273 /*
274 * Fallback dummy cfqq for extreme OOM conditions
275 */
276 struct cfq_queue oom_cfqq;
365722bb 277
573412b2 278 unsigned long last_delayed_sync;
25fb5169
VG
279
280 /* List of cfq groups being managed on this device*/
281 struct hlist_head cfqg_list;
bb729bc9 282 struct rcu_head rcu;
1da177e4
LT
283};
284
25fb5169
VG
285static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
286
cdb16e8f
VG
287static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
288 enum wl_prio_t prio,
65b32a57 289 enum wl_type_t type)
c0324a02 290{
1fa8f6d6
VG
291 if (!cfqg)
292 return NULL;
293
c0324a02 294 if (prio == IDLE_WORKLOAD)
cdb16e8f 295 return &cfqg->service_tree_idle;
c0324a02 296
cdb16e8f 297 return &cfqg->service_trees[prio][type];
c0324a02
CZ
298}
299
3b18152c 300enum cfqq_state_flags {
b0b8d749
JA
301 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
302 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 303 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 304 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
305 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
306 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
307 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 308 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 309 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 310 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 311 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 312 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 313 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
314};
315
316#define CFQ_CFQQ_FNS(name) \
317static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
318{ \
fe094d98 319 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
320} \
321static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
322{ \
fe094d98 323 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
324} \
325static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
326{ \
fe094d98 327 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
328}
329
330CFQ_CFQQ_FNS(on_rr);
331CFQ_CFQQ_FNS(wait_request);
b029195d 332CFQ_CFQQ_FNS(must_dispatch);
3b18152c 333CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
334CFQ_CFQQ_FNS(fifo_expire);
335CFQ_CFQQ_FNS(idle_window);
336CFQ_CFQQ_FNS(prio_changed);
44f7c160 337CFQ_CFQQ_FNS(slice_new);
91fac317 338CFQ_CFQQ_FNS(sync);
a36e71f9 339CFQ_CFQQ_FNS(coop);
ae54abed 340CFQ_CFQQ_FNS(split_coop);
76280aff 341CFQ_CFQQ_FNS(deep);
f75edf2d 342CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
343#undef CFQ_CFQQ_FNS
344
2868ef7b
VG
345#ifdef CONFIG_DEBUG_CFQ_IOSCHED
346#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
347 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
348 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
349 blkg_path(&(cfqq)->cfqg->blkg), ##args);
350
351#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
352 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
353 blkg_path(&(cfqg)->blkg), ##args); \
354
355#else
7b679138
JA
356#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
357 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
358#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
359#endif
7b679138
JA
360#define cfq_log(cfqd, fmt, args...) \
361 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
362
615f0259
VG
363/* Traverses through cfq group service trees */
364#define for_each_cfqg_st(cfqg, i, j, st) \
365 for (i = 0; i <= IDLE_WORKLOAD; i++) \
366 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
367 : &cfqg->service_tree_idle; \
368 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
369 (i == IDLE_WORKLOAD && j == 0); \
370 j++, st = i < IDLE_WORKLOAD ? \
371 &cfqg->service_trees[i][j]: NULL) \
372
373
c0324a02
CZ
374static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
375{
376 if (cfq_class_idle(cfqq))
377 return IDLE_WORKLOAD;
378 if (cfq_class_rt(cfqq))
379 return RT_WORKLOAD;
380 return BE_WORKLOAD;
381}
382
718eee05
CZ
383
384static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
385{
386 if (!cfq_cfqq_sync(cfqq))
387 return ASYNC_WORKLOAD;
388 if (!cfq_cfqq_idle_window(cfqq))
389 return SYNC_NOIDLE_WORKLOAD;
390 return SYNC_WORKLOAD;
391}
392
58ff82f3
VG
393static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
394 struct cfq_data *cfqd,
395 struct cfq_group *cfqg)
c0324a02
CZ
396{
397 if (wl == IDLE_WORKLOAD)
cdb16e8f 398 return cfqg->service_tree_idle.count;
c0324a02 399
cdb16e8f
VG
400 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
401 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
402 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
403}
404
f26bd1f0
VG
405static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
406 struct cfq_group *cfqg)
407{
408 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
409 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
410}
411
165125e1 412static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 413static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 414 struct io_context *, gfp_t);
4ac845a2 415static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
416 struct io_context *);
417
5ad531db
JA
418static inline int rq_in_driver(struct cfq_data *cfqd)
419{
420 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
421}
422
91fac317 423static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 424 bool is_sync)
91fac317 425{
a6151c3a 426 return cic->cfqq[is_sync];
91fac317
VT
427}
428
429static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 430 struct cfq_queue *cfqq, bool is_sync)
91fac317 431{
a6151c3a 432 cic->cfqq[is_sync] = cfqq;
91fac317
VT
433}
434
435/*
436 * We regard a request as SYNC, if it's either a read or has the SYNC bit
437 * set (in which case it could also be direct WRITE).
438 */
a6151c3a 439static inline bool cfq_bio_sync(struct bio *bio)
91fac317 440{
a6151c3a 441 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 442}
1da177e4 443
99f95e52
AM
444/*
445 * scheduler run of queue, if there are requests pending and no one in the
446 * driver that will restart queueing
447 */
23e018a1 448static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 449{
7b679138
JA
450 if (cfqd->busy_queues) {
451 cfq_log(cfqd, "schedule dispatch");
23e018a1 452 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 453 }
99f95e52
AM
454}
455
165125e1 456static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
457{
458 struct cfq_data *cfqd = q->elevator->elevator_data;
459
f04a6424 460 return !cfqd->rq_queued;
99f95e52
AM
461}
462
44f7c160
JA
463/*
464 * Scale schedule slice based on io priority. Use the sync time slice only
465 * if a queue is marked sync and has sync io queued. A sync queue with async
466 * io only, should not get full sync slice length.
467 */
a6151c3a 468static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 469 unsigned short prio)
44f7c160 470{
d9e7620e 471 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 472
d9e7620e
JA
473 WARN_ON(prio >= IOPRIO_BE_NR);
474
475 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
476}
44f7c160 477
d9e7620e
JA
478static inline int
479cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
480{
481 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
482}
483
25bc6b07
VG
484static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
485{
486 u64 d = delta << CFQ_SERVICE_SHIFT;
487
488 d = d * BLKIO_WEIGHT_DEFAULT;
489 do_div(d, cfqg->weight);
490 return d;
491}
492
493static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
494{
495 s64 delta = (s64)(vdisktime - min_vdisktime);
496 if (delta > 0)
497 min_vdisktime = vdisktime;
498
499 return min_vdisktime;
500}
501
502static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
503{
504 s64 delta = (s64)(vdisktime - min_vdisktime);
505 if (delta < 0)
506 min_vdisktime = vdisktime;
507
508 return min_vdisktime;
509}
510
511static void update_min_vdisktime(struct cfq_rb_root *st)
512{
513 u64 vdisktime = st->min_vdisktime;
514 struct cfq_group *cfqg;
515
516 if (st->active) {
517 cfqg = rb_entry_cfqg(st->active);
518 vdisktime = cfqg->vdisktime;
519 }
520
521 if (st->left) {
522 cfqg = rb_entry_cfqg(st->left);
523 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
524 }
525
526 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
527}
528
5db5d642
CZ
529/*
530 * get averaged number of queues of RT/BE priority.
531 * average is updated, with a formula that gives more weight to higher numbers,
532 * to quickly follows sudden increases and decrease slowly
533 */
534
58ff82f3
VG
535static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
536 struct cfq_group *cfqg, bool rt)
5869619c 537{
5db5d642
CZ
538 unsigned min_q, max_q;
539 unsigned mult = cfq_hist_divisor - 1;
540 unsigned round = cfq_hist_divisor / 2;
58ff82f3 541 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 542
58ff82f3
VG
543 min_q = min(cfqg->busy_queues_avg[rt], busy);
544 max_q = max(cfqg->busy_queues_avg[rt], busy);
545 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 546 cfq_hist_divisor;
58ff82f3
VG
547 return cfqg->busy_queues_avg[rt];
548}
549
550static inline unsigned
551cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
552{
553 struct cfq_rb_root *st = &cfqd->grp_service_tree;
554
555 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
556}
557
44f7c160
JA
558static inline void
559cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
560{
5db5d642
CZ
561 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
562 if (cfqd->cfq_latency) {
58ff82f3
VG
563 /*
564 * interested queues (we consider only the ones with the same
565 * priority class in the cfq group)
566 */
567 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
568 cfq_class_rt(cfqq));
5db5d642
CZ
569 unsigned sync_slice = cfqd->cfq_slice[1];
570 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
571 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
572
573 if (expect_latency > group_slice) {
5db5d642
CZ
574 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
575 /* scale low_slice according to IO priority
576 * and sync vs async */
577 unsigned low_slice =
578 min(slice, base_low_slice * slice / sync_slice);
579 /* the adapted slice value is scaled to fit all iqs
580 * into the target latency */
58ff82f3 581 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
582 low_slice);
583 }
584 }
dae739eb 585 cfqq->slice_start = jiffies;
5db5d642 586 cfqq->slice_end = jiffies + slice;
f75edf2d 587 cfqq->allocated_slice = slice;
7b679138 588 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
589}
590
591/*
592 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
593 * isn't valid until the first request from the dispatch is activated
594 * and the slice time set.
595 */
a6151c3a 596static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
597{
598 if (cfq_cfqq_slice_new(cfqq))
599 return 0;
600 if (time_before(jiffies, cfqq->slice_end))
601 return 0;
602
603 return 1;
604}
605
1da177e4 606/*
5e705374 607 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 608 * We choose the request that is closest to the head right now. Distance
e8a99053 609 * behind the head is penalized and only allowed to a certain extent.
1da177e4 610 */
5e705374 611static struct request *
cf7c25cf 612cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 613{
cf7c25cf 614 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 615 unsigned long back_max;
e8a99053
AM
616#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
617#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
618 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 619
5e705374
JA
620 if (rq1 == NULL || rq1 == rq2)
621 return rq2;
622 if (rq2 == NULL)
623 return rq1;
9c2c38a1 624
5e705374
JA
625 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
626 return rq1;
627 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
628 return rq2;
374f84ac
JA
629 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
630 return rq1;
631 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
632 return rq2;
1da177e4 633
83096ebf
TH
634 s1 = blk_rq_pos(rq1);
635 s2 = blk_rq_pos(rq2);
1da177e4 636
1da177e4
LT
637 /*
638 * by definition, 1KiB is 2 sectors
639 */
640 back_max = cfqd->cfq_back_max * 2;
641
642 /*
643 * Strict one way elevator _except_ in the case where we allow
644 * short backward seeks which are biased as twice the cost of a
645 * similar forward seek.
646 */
647 if (s1 >= last)
648 d1 = s1 - last;
649 else if (s1 + back_max >= last)
650 d1 = (last - s1) * cfqd->cfq_back_penalty;
651 else
e8a99053 652 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
653
654 if (s2 >= last)
655 d2 = s2 - last;
656 else if (s2 + back_max >= last)
657 d2 = (last - s2) * cfqd->cfq_back_penalty;
658 else
e8a99053 659 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
660
661 /* Found required data */
e8a99053
AM
662
663 /*
664 * By doing switch() on the bit mask "wrap" we avoid having to
665 * check two variables for all permutations: --> faster!
666 */
667 switch (wrap) {
5e705374 668 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 669 if (d1 < d2)
5e705374 670 return rq1;
e8a99053 671 else if (d2 < d1)
5e705374 672 return rq2;
e8a99053
AM
673 else {
674 if (s1 >= s2)
5e705374 675 return rq1;
e8a99053 676 else
5e705374 677 return rq2;
e8a99053 678 }
1da177e4 679
e8a99053 680 case CFQ_RQ2_WRAP:
5e705374 681 return rq1;
e8a99053 682 case CFQ_RQ1_WRAP:
5e705374
JA
683 return rq2;
684 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
685 default:
686 /*
687 * Since both rqs are wrapped,
688 * start with the one that's further behind head
689 * (--> only *one* back seek required),
690 * since back seek takes more time than forward.
691 */
692 if (s1 <= s2)
5e705374 693 return rq1;
1da177e4 694 else
5e705374 695 return rq2;
1da177e4
LT
696 }
697}
698
498d3aa2
JA
699/*
700 * The below is leftmost cache rbtree addon
701 */
0871714e 702static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 703{
615f0259
VG
704 /* Service tree is empty */
705 if (!root->count)
706 return NULL;
707
cc09e299
JA
708 if (!root->left)
709 root->left = rb_first(&root->rb);
710
0871714e
JA
711 if (root->left)
712 return rb_entry(root->left, struct cfq_queue, rb_node);
713
714 return NULL;
cc09e299
JA
715}
716
1fa8f6d6
VG
717static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
718{
719 if (!root->left)
720 root->left = rb_first(&root->rb);
721
722 if (root->left)
723 return rb_entry_cfqg(root->left);
724
725 return NULL;
726}
727
a36e71f9
JA
728static void rb_erase_init(struct rb_node *n, struct rb_root *root)
729{
730 rb_erase(n, root);
731 RB_CLEAR_NODE(n);
732}
733
cc09e299
JA
734static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
735{
736 if (root->left == n)
737 root->left = NULL;
a36e71f9 738 rb_erase_init(n, &root->rb);
aa6f6a3d 739 --root->count;
cc09e299
JA
740}
741
1da177e4
LT
742/*
743 * would be nice to take fifo expire time into account as well
744 */
5e705374
JA
745static struct request *
746cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
747 struct request *last)
1da177e4 748{
21183b07
JA
749 struct rb_node *rbnext = rb_next(&last->rb_node);
750 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 751 struct request *next = NULL, *prev = NULL;
1da177e4 752
21183b07 753 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
754
755 if (rbprev)
5e705374 756 prev = rb_entry_rq(rbprev);
1da177e4 757
21183b07 758 if (rbnext)
5e705374 759 next = rb_entry_rq(rbnext);
21183b07
JA
760 else {
761 rbnext = rb_first(&cfqq->sort_list);
762 if (rbnext && rbnext != &last->rb_node)
5e705374 763 next = rb_entry_rq(rbnext);
21183b07 764 }
1da177e4 765
cf7c25cf 766 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
767}
768
d9e7620e
JA
769static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
770 struct cfq_queue *cfqq)
1da177e4 771{
d9e7620e
JA
772 /*
773 * just an approximation, should be ok.
774 */
cdb16e8f 775 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 776 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
777}
778
1fa8f6d6
VG
779static inline s64
780cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
781{
782 return cfqg->vdisktime - st->min_vdisktime;
783}
784
785static void
786__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
787{
788 struct rb_node **node = &st->rb.rb_node;
789 struct rb_node *parent = NULL;
790 struct cfq_group *__cfqg;
791 s64 key = cfqg_key(st, cfqg);
792 int left = 1;
793
794 while (*node != NULL) {
795 parent = *node;
796 __cfqg = rb_entry_cfqg(parent);
797
798 if (key < cfqg_key(st, __cfqg))
799 node = &parent->rb_left;
800 else {
801 node = &parent->rb_right;
802 left = 0;
803 }
804 }
805
806 if (left)
807 st->left = &cfqg->rb_node;
808
809 rb_link_node(&cfqg->rb_node, parent, node);
810 rb_insert_color(&cfqg->rb_node, &st->rb);
811}
812
813static void
814cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
815{
816 struct cfq_rb_root *st = &cfqd->grp_service_tree;
817 struct cfq_group *__cfqg;
818 struct rb_node *n;
819
820 cfqg->nr_cfqq++;
821 if (cfqg->on_st)
822 return;
823
824 /*
825 * Currently put the group at the end. Later implement something
826 * so that groups get lesser vtime based on their weights, so that
827 * if group does not loose all if it was not continously backlogged.
828 */
829 n = rb_last(&st->rb);
830 if (n) {
831 __cfqg = rb_entry_cfqg(n);
832 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
833 } else
834 cfqg->vdisktime = st->min_vdisktime;
835
836 __cfq_group_service_tree_add(st, cfqg);
837 cfqg->on_st = true;
58ff82f3 838 st->total_weight += cfqg->weight;
1fa8f6d6
VG
839}
840
841static void
842cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
843{
844 struct cfq_rb_root *st = &cfqd->grp_service_tree;
845
25bc6b07
VG
846 if (st->active == &cfqg->rb_node)
847 st->active = NULL;
848
1fa8f6d6
VG
849 BUG_ON(cfqg->nr_cfqq < 1);
850 cfqg->nr_cfqq--;
25bc6b07 851
1fa8f6d6
VG
852 /* If there are other cfq queues under this group, don't delete it */
853 if (cfqg->nr_cfqq)
854 return;
855
2868ef7b 856 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1fa8f6d6 857 cfqg->on_st = false;
58ff82f3 858 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
859 if (!RB_EMPTY_NODE(&cfqg->rb_node))
860 cfq_rb_erase(&cfqg->rb_node, st);
dae739eb 861 cfqg->saved_workload_slice = 0;
22084190 862 blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
863}
864
865static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
866{
f75edf2d 867 unsigned int slice_used;
dae739eb
VG
868
869 /*
870 * Queue got expired before even a single request completed or
871 * got expired immediately after first request completion.
872 */
873 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
874 /*
875 * Also charge the seek time incurred to the group, otherwise
876 * if there are mutiple queues in the group, each can dispatch
877 * a single request on seeky media and cause lots of seek time
878 * and group will never know it.
879 */
880 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
881 1);
882 } else {
883 slice_used = jiffies - cfqq->slice_start;
f75edf2d
VG
884 if (slice_used > cfqq->allocated_slice)
885 slice_used = cfqq->allocated_slice;
dae739eb
VG
886 }
887
22084190
VG
888 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
889 cfqq->nr_sectors);
dae739eb
VG
890 return slice_used;
891}
892
893static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
894 struct cfq_queue *cfqq)
895{
896 struct cfq_rb_root *st = &cfqd->grp_service_tree;
f26bd1f0
VG
897 unsigned int used_sl, charge_sl;
898 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
899 - cfqg->service_tree_idle.count;
900
901 BUG_ON(nr_sync < 0);
902 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
dae739eb 903
f26bd1f0
VG
904 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
905 charge_sl = cfqq->allocated_slice;
dae739eb
VG
906
907 /* Can't update vdisktime while group is on service tree */
908 cfq_rb_erase(&cfqg->rb_node, st);
f26bd1f0 909 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
dae739eb
VG
910 __cfq_group_service_tree_add(st, cfqg);
911
912 /* This group is being expired. Save the context */
913 if (time_after(cfqd->workload_expires, jiffies)) {
914 cfqg->saved_workload_slice = cfqd->workload_expires
915 - jiffies;
916 cfqg->saved_workload = cfqd->serving_type;
917 cfqg->saved_serving_prio = cfqd->serving_prio;
918 } else
919 cfqg->saved_workload_slice = 0;
2868ef7b
VG
920
921 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
922 st->min_vdisktime);
22084190
VG
923 blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
924 cfqq->nr_sectors);
1fa8f6d6
VG
925}
926
25fb5169
VG
927#ifdef CONFIG_CFQ_GROUP_IOSCHED
928static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
929{
930 if (blkg)
931 return container_of(blkg, struct cfq_group, blkg);
932 return NULL;
933}
934
f8d461d6
VG
935void
936cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
937{
938 cfqg_of_blkg(blkg)->weight = weight;
939}
940
25fb5169
VG
941static struct cfq_group *
942cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
943{
944 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
945 struct cfq_group *cfqg = NULL;
946 void *key = cfqd;
947 int i, j;
948 struct cfq_rb_root *st;
22084190
VG
949 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
950 unsigned int major, minor;
25fb5169 951
25fb5169
VG
952 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
953 if (cfqg || !create)
954 goto done;
955
956 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
957 if (!cfqg)
958 goto done;
959
960 cfqg->weight = blkcg->weight;
961 for_each_cfqg_st(cfqg, i, j, st)
962 *st = CFQ_RB_ROOT;
963 RB_CLEAR_NODE(&cfqg->rb_node);
964
b1c35769
VG
965 /*
966 * Take the initial reference that will be released on destroy
967 * This can be thought of a joint reference by cgroup and
968 * elevator which will be dropped by either elevator exit
969 * or cgroup deletion path depending on who is exiting first.
970 */
971 atomic_set(&cfqg->ref, 1);
972
25fb5169 973 /* Add group onto cgroup list */
22084190
VG
974 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
975 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
976 MKDEV(major, minor));
25fb5169
VG
977
978 /* Add group on cfqd list */
979 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
980
981done:
25fb5169
VG
982 return cfqg;
983}
984
985/*
986 * Search for the cfq group current task belongs to. If create = 1, then also
987 * create the cfq group if it does not exist. request_queue lock must be held.
988 */
989static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
990{
991 struct cgroup *cgroup;
992 struct cfq_group *cfqg = NULL;
993
994 rcu_read_lock();
995 cgroup = task_cgroup(current, blkio_subsys_id);
996 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
997 if (!cfqg && create)
998 cfqg = &cfqd->root_group;
999 rcu_read_unlock();
1000 return cfqg;
1001}
1002
1003static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1004{
1005 /* Currently, all async queues are mapped to root group */
1006 if (!cfq_cfqq_sync(cfqq))
1007 cfqg = &cfqq->cfqd->root_group;
1008
1009 cfqq->cfqg = cfqg;
b1c35769
VG
1010 /* cfqq reference on cfqg */
1011 atomic_inc(&cfqq->cfqg->ref);
1012}
1013
1014static void cfq_put_cfqg(struct cfq_group *cfqg)
1015{
1016 struct cfq_rb_root *st;
1017 int i, j;
1018
1019 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1020 if (!atomic_dec_and_test(&cfqg->ref))
1021 return;
1022 for_each_cfqg_st(cfqg, i, j, st)
1023 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1024 kfree(cfqg);
1025}
1026
1027static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1028{
1029 /* Something wrong if we are trying to remove same group twice */
1030 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1031
1032 hlist_del_init(&cfqg->cfqd_node);
1033
1034 /*
1035 * Put the reference taken at the time of creation so that when all
1036 * queues are gone, group can be destroyed.
1037 */
1038 cfq_put_cfqg(cfqg);
1039}
1040
1041static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1042{
1043 struct hlist_node *pos, *n;
1044 struct cfq_group *cfqg;
1045
1046 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1047 /*
1048 * If cgroup removal path got to blk_group first and removed
1049 * it from cgroup list, then it will take care of destroying
1050 * cfqg also.
1051 */
1052 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1053 cfq_destroy_cfqg(cfqd, cfqg);
1054 }
25fb5169 1055}
b1c35769
VG
1056
1057/*
1058 * Blk cgroup controller notification saying that blkio_group object is being
1059 * delinked as associated cgroup object is going away. That also means that
1060 * no new IO will come in this group. So get rid of this group as soon as
1061 * any pending IO in the group is finished.
1062 *
1063 * This function is called under rcu_read_lock(). key is the rcu protected
1064 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1065 * read lock.
1066 *
1067 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1068 * it should not be NULL as even if elevator was exiting, cgroup deltion
1069 * path got to it first.
1070 */
1071void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1072{
1073 unsigned long flags;
1074 struct cfq_data *cfqd = key;
1075
1076 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1077 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1078 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1079}
1080
25fb5169
VG
1081#else /* GROUP_IOSCHED */
1082static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1083{
1084 return &cfqd->root_group;
1085}
1086static inline void
1087cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1088 cfqq->cfqg = cfqg;
1089}
1090
b1c35769
VG
1091static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1092static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1093
25fb5169
VG
1094#endif /* GROUP_IOSCHED */
1095
498d3aa2 1096/*
c0324a02 1097 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1098 * requests waiting to be processed. It is sorted in the order that
1099 * we will service the queues.
1100 */
a36e71f9 1101static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1102 bool add_front)
d9e7620e 1103{
0871714e
JA
1104 struct rb_node **p, *parent;
1105 struct cfq_queue *__cfqq;
d9e7620e 1106 unsigned long rb_key;
c0324a02 1107 struct cfq_rb_root *service_tree;
498d3aa2 1108 int left;
dae739eb 1109 int new_cfqq = 1;
ae30c286
VG
1110 int group_changed = 0;
1111
1112#ifdef CONFIG_CFQ_GROUP_IOSCHED
1113 if (!cfqd->cfq_group_isolation
1114 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1115 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1116 /* Move this cfq to root group */
1117 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1118 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1119 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1120 cfqq->orig_cfqg = cfqq->cfqg;
1121 cfqq->cfqg = &cfqd->root_group;
1122 atomic_inc(&cfqd->root_group.ref);
1123 group_changed = 1;
1124 } else if (!cfqd->cfq_group_isolation
1125 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1126 /* cfqq is sequential now needs to go to its original group */
1127 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1128 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1129 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1130 cfq_put_cfqg(cfqq->cfqg);
1131 cfqq->cfqg = cfqq->orig_cfqg;
1132 cfqq->orig_cfqg = NULL;
1133 group_changed = 1;
1134 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1135 }
1136#endif
d9e7620e 1137
cdb16e8f 1138 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1139 cfqq_type(cfqq));
0871714e
JA
1140 if (cfq_class_idle(cfqq)) {
1141 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1142 parent = rb_last(&service_tree->rb);
0871714e
JA
1143 if (parent && parent != &cfqq->rb_node) {
1144 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1145 rb_key += __cfqq->rb_key;
1146 } else
1147 rb_key += jiffies;
1148 } else if (!add_front) {
b9c8946b
JA
1149 /*
1150 * Get our rb key offset. Subtract any residual slice
1151 * value carried from last service. A negative resid
1152 * count indicates slice overrun, and this should position
1153 * the next service time further away in the tree.
1154 */
edd75ffd 1155 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1156 rb_key -= cfqq->slice_resid;
edd75ffd 1157 cfqq->slice_resid = 0;
48e025e6
CZ
1158 } else {
1159 rb_key = -HZ;
aa6f6a3d 1160 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1161 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1162 }
1da177e4 1163
d9e7620e 1164 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1165 new_cfqq = 0;
99f9628a 1166 /*
d9e7620e 1167 * same position, nothing more to do
99f9628a 1168 */
c0324a02
CZ
1169 if (rb_key == cfqq->rb_key &&
1170 cfqq->service_tree == service_tree)
d9e7620e 1171 return;
1da177e4 1172
aa6f6a3d
CZ
1173 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1174 cfqq->service_tree = NULL;
1da177e4 1175 }
d9e7620e 1176
498d3aa2 1177 left = 1;
0871714e 1178 parent = NULL;
aa6f6a3d
CZ
1179 cfqq->service_tree = service_tree;
1180 p = &service_tree->rb.rb_node;
d9e7620e 1181 while (*p) {
67060e37 1182 struct rb_node **n;
cc09e299 1183
d9e7620e
JA
1184 parent = *p;
1185 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1186
0c534e0a 1187 /*
c0324a02 1188 * sort by key, that represents service time.
0c534e0a 1189 */
c0324a02 1190 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1191 n = &(*p)->rb_left;
c0324a02 1192 else {
67060e37 1193 n = &(*p)->rb_right;
cc09e299 1194 left = 0;
c0324a02 1195 }
67060e37
JA
1196
1197 p = n;
d9e7620e
JA
1198 }
1199
cc09e299 1200 if (left)
aa6f6a3d 1201 service_tree->left = &cfqq->rb_node;
cc09e299 1202
d9e7620e
JA
1203 cfqq->rb_key = rb_key;
1204 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1205 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1206 service_tree->count++;
ae30c286 1207 if ((add_front || !new_cfqq) && !group_changed)
dae739eb 1208 return;
1fa8f6d6 1209 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
1210}
1211
a36e71f9 1212static struct cfq_queue *
f2d1f0ae
JA
1213cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1214 sector_t sector, struct rb_node **ret_parent,
1215 struct rb_node ***rb_link)
a36e71f9 1216{
a36e71f9
JA
1217 struct rb_node **p, *parent;
1218 struct cfq_queue *cfqq = NULL;
1219
1220 parent = NULL;
1221 p = &root->rb_node;
1222 while (*p) {
1223 struct rb_node **n;
1224
1225 parent = *p;
1226 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1227
1228 /*
1229 * Sort strictly based on sector. Smallest to the left,
1230 * largest to the right.
1231 */
2e46e8b2 1232 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1233 n = &(*p)->rb_right;
2e46e8b2 1234 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1235 n = &(*p)->rb_left;
1236 else
1237 break;
1238 p = n;
3ac6c9f8 1239 cfqq = NULL;
a36e71f9
JA
1240 }
1241
1242 *ret_parent = parent;
1243 if (rb_link)
1244 *rb_link = p;
3ac6c9f8 1245 return cfqq;
a36e71f9
JA
1246}
1247
1248static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1249{
a36e71f9
JA
1250 struct rb_node **p, *parent;
1251 struct cfq_queue *__cfqq;
1252
f2d1f0ae
JA
1253 if (cfqq->p_root) {
1254 rb_erase(&cfqq->p_node, cfqq->p_root);
1255 cfqq->p_root = NULL;
1256 }
a36e71f9
JA
1257
1258 if (cfq_class_idle(cfqq))
1259 return;
1260 if (!cfqq->next_rq)
1261 return;
1262
f2d1f0ae 1263 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1264 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1265 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1266 if (!__cfqq) {
1267 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1268 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1269 } else
1270 cfqq->p_root = NULL;
a36e71f9
JA
1271}
1272
498d3aa2
JA
1273/*
1274 * Update cfqq's position in the service tree.
1275 */
edd75ffd 1276static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1277{
6d048f53
JA
1278 /*
1279 * Resorting requires the cfqq to be on the RR list already.
1280 */
a36e71f9 1281 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1282 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1283 cfq_prio_tree_add(cfqd, cfqq);
1284 }
6d048f53
JA
1285}
1286
1da177e4
LT
1287/*
1288 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1289 * the pending list according to last request service
1da177e4 1290 */
febffd61 1291static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1292{
7b679138 1293 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1294 BUG_ON(cfq_cfqq_on_rr(cfqq));
1295 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
1296 cfqd->busy_queues++;
1297
edd75ffd 1298 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1299}
1300
498d3aa2
JA
1301/*
1302 * Called when the cfqq no longer has requests pending, remove it from
1303 * the service tree.
1304 */
febffd61 1305static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1306{
7b679138 1307 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1308 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1309 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1310
aa6f6a3d
CZ
1311 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1312 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1313 cfqq->service_tree = NULL;
1314 }
f2d1f0ae
JA
1315 if (cfqq->p_root) {
1316 rb_erase(&cfqq->p_node, cfqq->p_root);
1317 cfqq->p_root = NULL;
1318 }
d9e7620e 1319
1fa8f6d6 1320 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1321 BUG_ON(!cfqd->busy_queues);
1322 cfqd->busy_queues--;
1323}
1324
1325/*
1326 * rb tree support functions
1327 */
febffd61 1328static void cfq_del_rq_rb(struct request *rq)
1da177e4 1329{
5e705374 1330 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1331 const int sync = rq_is_sync(rq);
1da177e4 1332
b4878f24
JA
1333 BUG_ON(!cfqq->queued[sync]);
1334 cfqq->queued[sync]--;
1da177e4 1335
5e705374 1336 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1337
f04a6424
VG
1338 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1339 /*
1340 * Queue will be deleted from service tree when we actually
1341 * expire it later. Right now just remove it from prio tree
1342 * as it is empty.
1343 */
1344 if (cfqq->p_root) {
1345 rb_erase(&cfqq->p_node, cfqq->p_root);
1346 cfqq->p_root = NULL;
1347 }
1348 }
1da177e4
LT
1349}
1350
5e705374 1351static void cfq_add_rq_rb(struct request *rq)
1da177e4 1352{
5e705374 1353 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1354 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1355 struct request *__alias, *prev;
1da177e4 1356
5380a101 1357 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1358
1359 /*
1360 * looks a little odd, but the first insert might return an alias.
1361 * if that happens, put the alias on the dispatch list
1362 */
21183b07 1363 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1364 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1365
1366 if (!cfq_cfqq_on_rr(cfqq))
1367 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1368
1369 /*
1370 * check if this request is a better next-serve candidate
1371 */
a36e71f9 1372 prev = cfqq->next_rq;
cf7c25cf 1373 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1374
1375 /*
1376 * adjust priority tree position, if ->next_rq changes
1377 */
1378 if (prev != cfqq->next_rq)
1379 cfq_prio_tree_add(cfqd, cfqq);
1380
5044eed4 1381 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1382}
1383
febffd61 1384static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1385{
5380a101
JA
1386 elv_rb_del(&cfqq->sort_list, rq);
1387 cfqq->queued[rq_is_sync(rq)]--;
5e705374 1388 cfq_add_rq_rb(rq);
1da177e4
LT
1389}
1390
206dc69b
JA
1391static struct request *
1392cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1393{
206dc69b 1394 struct task_struct *tsk = current;
91fac317 1395 struct cfq_io_context *cic;
206dc69b 1396 struct cfq_queue *cfqq;
1da177e4 1397
4ac845a2 1398 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1399 if (!cic)
1400 return NULL;
1401
1402 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1403 if (cfqq) {
1404 sector_t sector = bio->bi_sector + bio_sectors(bio);
1405
21183b07 1406 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1407 }
1da177e4 1408
1da177e4
LT
1409 return NULL;
1410}
1411
165125e1 1412static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1413{
22e2c507 1414 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1415
5ad531db 1416 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 1417 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 1418 rq_in_driver(cfqd));
25776e35 1419
5b93629b 1420 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1421}
1422
165125e1 1423static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1424{
b4878f24 1425 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 1426 const int sync = rq_is_sync(rq);
b4878f24 1427
5ad531db
JA
1428 WARN_ON(!cfqd->rq_in_driver[sync]);
1429 cfqd->rq_in_driver[sync]--;
7b679138 1430 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 1431 rq_in_driver(cfqd));
1da177e4
LT
1432}
1433
b4878f24 1434static void cfq_remove_request(struct request *rq)
1da177e4 1435{
5e705374 1436 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1437
5e705374
JA
1438 if (cfqq->next_rq == rq)
1439 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1440
b4878f24 1441 list_del_init(&rq->queuelist);
5e705374 1442 cfq_del_rq_rb(rq);
374f84ac 1443
45333d5a 1444 cfqq->cfqd->rq_queued--;
374f84ac
JA
1445 if (rq_is_meta(rq)) {
1446 WARN_ON(!cfqq->meta_pending);
1447 cfqq->meta_pending--;
1448 }
1da177e4
LT
1449}
1450
165125e1
JA
1451static int cfq_merge(struct request_queue *q, struct request **req,
1452 struct bio *bio)
1da177e4
LT
1453{
1454 struct cfq_data *cfqd = q->elevator->elevator_data;
1455 struct request *__rq;
1da177e4 1456
206dc69b 1457 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1458 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1459 *req = __rq;
1460 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1461 }
1462
1463 return ELEVATOR_NO_MERGE;
1da177e4
LT
1464}
1465
165125e1 1466static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1467 int type)
1da177e4 1468{
21183b07 1469 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1470 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1471
5e705374 1472 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1473 }
1da177e4
LT
1474}
1475
1476static void
165125e1 1477cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1478 struct request *next)
1479{
cf7c25cf 1480 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1481 /*
1482 * reposition in fifo if next is older than rq
1483 */
1484 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1485 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1486 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1487 rq_set_fifo_time(rq, rq_fifo_time(next));
1488 }
22e2c507 1489
cf7c25cf
CZ
1490 if (cfqq->next_rq == next)
1491 cfqq->next_rq = rq;
b4878f24 1492 cfq_remove_request(next);
22e2c507
JA
1493}
1494
165125e1 1495static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1496 struct bio *bio)
1497{
1498 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1499 struct cfq_io_context *cic;
da775265 1500 struct cfq_queue *cfqq;
da775265
JA
1501
1502 /*
ec8acb69 1503 * Disallow merge of a sync bio into an async request.
da775265 1504 */
91fac317 1505 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1506 return false;
da775265
JA
1507
1508 /*
719d3402
JA
1509 * Lookup the cfqq that this bio will be queued with. Allow
1510 * merge only if rq is queued there.
da775265 1511 */
4ac845a2 1512 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1513 if (!cic)
a6151c3a 1514 return false;
719d3402 1515
91fac317 1516 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1517 return cfqq == RQ_CFQQ(rq);
da775265
JA
1518}
1519
febffd61
JA
1520static void __cfq_set_active_queue(struct cfq_data *cfqd,
1521 struct cfq_queue *cfqq)
22e2c507
JA
1522{
1523 if (cfqq) {
7b679138 1524 cfq_log_cfqq(cfqd, cfqq, "set_active");
dae739eb
VG
1525 cfqq->slice_start = 0;
1526 cfqq->dispatch_start = jiffies;
f75edf2d 1527 cfqq->allocated_slice = 0;
22e2c507 1528 cfqq->slice_end = 0;
2f5cb738 1529 cfqq->slice_dispatch = 0;
22084190 1530 cfqq->nr_sectors = 0;
2f5cb738 1531
2f5cb738 1532 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1533 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1534 cfq_clear_cfqq_must_alloc_slice(cfqq);
1535 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1536 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
1537
1538 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
1539 }
1540
1541 cfqd->active_queue = cfqq;
1542}
1543
7b14e3b5
JA
1544/*
1545 * current cfqq expired its slice (or was too idle), select new one
1546 */
1547static void
1548__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1549 bool timed_out)
7b14e3b5 1550{
7b679138
JA
1551 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1552
7b14e3b5
JA
1553 if (cfq_cfqq_wait_request(cfqq))
1554 del_timer(&cfqd->idle_slice_timer);
1555
7b14e3b5 1556 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1557 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1558
ae54abed
SL
1559 /*
1560 * If this cfqq is shared between multiple processes, check to
1561 * make sure that those processes are still issuing I/Os within
1562 * the mean seek distance. If not, it may be time to break the
1563 * queues apart again.
1564 */
1565 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1566 cfq_mark_cfqq_split_coop(cfqq);
1567
7b14e3b5 1568 /*
6084cdda 1569 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1570 */
7b679138 1571 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1572 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1573 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1574 }
7b14e3b5 1575
dae739eb
VG
1576 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1577
f04a6424
VG
1578 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1579 cfq_del_cfqq_rr(cfqd, cfqq);
1580
edd75ffd 1581 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1582
1583 if (cfqq == cfqd->active_queue)
1584 cfqd->active_queue = NULL;
1585
dae739eb
VG
1586 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1587 cfqd->grp_service_tree.active = NULL;
1588
7b14e3b5
JA
1589 if (cfqd->active_cic) {
1590 put_io_context(cfqd->active_cic->ioc);
1591 cfqd->active_cic = NULL;
1592 }
7b14e3b5
JA
1593}
1594
a6151c3a 1595static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1596{
1597 struct cfq_queue *cfqq = cfqd->active_queue;
1598
1599 if (cfqq)
6084cdda 1600 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1601}
1602
498d3aa2
JA
1603/*
1604 * Get next queue for service. Unless we have a queue preemption,
1605 * we'll simply select the first cfqq in the service tree.
1606 */
6d048f53 1607static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1608{
c0324a02 1609 struct cfq_rb_root *service_tree =
cdb16e8f 1610 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1611 cfqd->serving_type);
d9e7620e 1612
f04a6424
VG
1613 if (!cfqd->rq_queued)
1614 return NULL;
1615
1fa8f6d6
VG
1616 /* There is nothing to dispatch */
1617 if (!service_tree)
1618 return NULL;
c0324a02
CZ
1619 if (RB_EMPTY_ROOT(&service_tree->rb))
1620 return NULL;
1621 return cfq_rb_first(service_tree);
6d048f53
JA
1622}
1623
f04a6424
VG
1624static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1625{
25fb5169 1626 struct cfq_group *cfqg;
f04a6424
VG
1627 struct cfq_queue *cfqq;
1628 int i, j;
1629 struct cfq_rb_root *st;
1630
1631 if (!cfqd->rq_queued)
1632 return NULL;
1633
25fb5169
VG
1634 cfqg = cfq_get_next_cfqg(cfqd);
1635 if (!cfqg)
1636 return NULL;
1637
f04a6424
VG
1638 for_each_cfqg_st(cfqg, i, j, st)
1639 if ((cfqq = cfq_rb_first(st)) != NULL)
1640 return cfqq;
1641 return NULL;
1642}
1643
498d3aa2
JA
1644/*
1645 * Get and set a new active queue for service.
1646 */
a36e71f9
JA
1647static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1648 struct cfq_queue *cfqq)
6d048f53 1649{
e00ef799 1650 if (!cfqq)
a36e71f9 1651 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1652
22e2c507 1653 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1654 return cfqq;
22e2c507
JA
1655}
1656
d9e7620e
JA
1657static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1658 struct request *rq)
1659{
83096ebf
TH
1660 if (blk_rq_pos(rq) >= cfqd->last_position)
1661 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1662 else
83096ebf 1663 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1664}
1665
b2c18e1e 1666static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2f7a2d89 1667 struct request *rq, bool for_preempt)
6d048f53 1668{
3dde36dd 1669 return cfq_dist_from_last(cfqd, rq) <= CFQQ_SEEK_THR;
6d048f53
JA
1670}
1671
a36e71f9
JA
1672static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1673 struct cfq_queue *cur_cfqq)
1674{
f2d1f0ae 1675 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1676 struct rb_node *parent, *node;
1677 struct cfq_queue *__cfqq;
1678 sector_t sector = cfqd->last_position;
1679
1680 if (RB_EMPTY_ROOT(root))
1681 return NULL;
1682
1683 /*
1684 * First, if we find a request starting at the end of the last
1685 * request, choose it.
1686 */
f2d1f0ae 1687 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1688 if (__cfqq)
1689 return __cfqq;
1690
1691 /*
1692 * If the exact sector wasn't found, the parent of the NULL leaf
1693 * will contain the closest sector.
1694 */
1695 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2f7a2d89 1696 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
a36e71f9
JA
1697 return __cfqq;
1698
2e46e8b2 1699 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1700 node = rb_next(&__cfqq->p_node);
1701 else
1702 node = rb_prev(&__cfqq->p_node);
1703 if (!node)
1704 return NULL;
1705
1706 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2f7a2d89 1707 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
a36e71f9
JA
1708 return __cfqq;
1709
1710 return NULL;
1711}
1712
1713/*
1714 * cfqd - obvious
1715 * cur_cfqq - passed in so that we don't decide that the current queue is
1716 * closely cooperating with itself.
1717 *
1718 * So, basically we're assuming that that cur_cfqq has dispatched at least
1719 * one request, and that cfqd->last_position reflects a position on the disk
1720 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1721 * assumption.
1722 */
1723static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1724 struct cfq_queue *cur_cfqq)
6d048f53 1725{
a36e71f9
JA
1726 struct cfq_queue *cfqq;
1727
e6c5bc73
JM
1728 if (!cfq_cfqq_sync(cur_cfqq))
1729 return NULL;
1730 if (CFQQ_SEEKY(cur_cfqq))
1731 return NULL;
1732
b9d8f4c7
GJ
1733 /*
1734 * Don't search priority tree if it's the only queue in the group.
1735 */
1736 if (cur_cfqq->cfqg->nr_cfqq == 1)
1737 return NULL;
1738
6d048f53 1739 /*
d9e7620e
JA
1740 * We should notice if some of the queues are cooperating, eg
1741 * working closely on the same area of the disk. In that case,
1742 * we can group them together and don't waste time idling.
6d048f53 1743 */
a36e71f9
JA
1744 cfqq = cfqq_close(cfqd, cur_cfqq);
1745 if (!cfqq)
1746 return NULL;
1747
8682e1f1
VG
1748 /* If new queue belongs to different cfq_group, don't choose it */
1749 if (cur_cfqq->cfqg != cfqq->cfqg)
1750 return NULL;
1751
df5fe3e8
JM
1752 /*
1753 * It only makes sense to merge sync queues.
1754 */
1755 if (!cfq_cfqq_sync(cfqq))
1756 return NULL;
e6c5bc73
JM
1757 if (CFQQ_SEEKY(cfqq))
1758 return NULL;
df5fe3e8 1759
c0324a02
CZ
1760 /*
1761 * Do not merge queues of different priority classes
1762 */
1763 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1764 return NULL;
1765
a36e71f9 1766 return cfqq;
6d048f53
JA
1767}
1768
a6d44e98
CZ
1769/*
1770 * Determine whether we should enforce idle window for this queue.
1771 */
1772
1773static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1774{
1775 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1776 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1777
f04a6424
VG
1778 BUG_ON(!service_tree);
1779 BUG_ON(!service_tree->count);
1780
a6d44e98
CZ
1781 /* We never do for idle class queues. */
1782 if (prio == IDLE_WORKLOAD)
1783 return false;
1784
1785 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1786 if (cfq_cfqq_idle_window(cfqq) &&
1787 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1788 return true;
1789
1790 /*
1791 * Otherwise, we do only if they are the last ones
1792 * in their service tree.
1793 */
1efe8fe1 1794 return service_tree->count == 1 && cfq_cfqq_sync(cfqq);
a6d44e98
CZ
1795}
1796
6d048f53 1797static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1798{
1792669c 1799 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1800 struct cfq_io_context *cic;
7b14e3b5
JA
1801 unsigned long sl;
1802
a68bbddb 1803 /*
f7d7b7a7
JA
1804 * SSD device without seek penalty, disable idling. But only do so
1805 * for devices that support queuing, otherwise we still have a problem
1806 * with sync vs async workloads.
a68bbddb 1807 */
f7d7b7a7 1808 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1809 return;
1810
dd67d051 1811 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1812 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1813
1814 /*
1815 * idle is disabled, either manually or by past process history
1816 */
a6d44e98 1817 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1818 return;
1819
7b679138 1820 /*
8e550632 1821 * still active requests from this queue, don't idle
7b679138 1822 */
8e550632 1823 if (cfqq->dispatched)
7b679138
JA
1824 return;
1825
22e2c507
JA
1826 /*
1827 * task has exited, don't wait
1828 */
206dc69b 1829 cic = cfqd->active_cic;
66dac98e 1830 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1831 return;
1832
355b659c
CZ
1833 /*
1834 * If our average think time is larger than the remaining time
1835 * slice, then don't idle. This avoids overrunning the allotted
1836 * time slice.
1837 */
1838 if (sample_valid(cic->ttime_samples) &&
1839 (cfqq->slice_end - jiffies < cic->ttime_mean))
1840 return;
1841
3b18152c 1842 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1843
6d048f53 1844 sl = cfqd->cfq_slice_idle;
206dc69b 1845
7b14e3b5 1846 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1847 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1848}
1849
498d3aa2
JA
1850/*
1851 * Move request from internal lists to the request queue dispatch list.
1852 */
165125e1 1853static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1854{
3ed9a296 1855 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1856 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1857
7b679138
JA
1858 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1859
06d21886 1860 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1861 cfq_remove_request(rq);
6d048f53 1862 cfqq->dispatched++;
5380a101 1863 elv_dispatch_sort(q, rq);
3ed9a296
JA
1864
1865 if (cfq_cfqq_sync(cfqq))
1866 cfqd->sync_flight++;
22084190 1867 cfqq->nr_sectors += blk_rq_sectors(rq);
1da177e4
LT
1868}
1869
1870/*
1871 * return expired entry, or NULL to just start from scratch in rbtree
1872 */
febffd61 1873static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1874{
30996f40 1875 struct request *rq = NULL;
1da177e4 1876
3b18152c 1877 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1878 return NULL;
cb887411
JA
1879
1880 cfq_mark_cfqq_fifo_expire(cfqq);
1881
89850f7e
JA
1882 if (list_empty(&cfqq->fifo))
1883 return NULL;
1da177e4 1884
89850f7e 1885 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1886 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1887 rq = NULL;
1da177e4 1888
30996f40 1889 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1890 return rq;
1da177e4
LT
1891}
1892
22e2c507
JA
1893static inline int
1894cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1895{
1896 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1897
22e2c507 1898 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1899
22e2c507 1900 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1901}
1902
df5fe3e8
JM
1903/*
1904 * Must be called with the queue_lock held.
1905 */
1906static int cfqq_process_refs(struct cfq_queue *cfqq)
1907{
1908 int process_refs, io_refs;
1909
1910 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1911 process_refs = atomic_read(&cfqq->ref) - io_refs;
1912 BUG_ON(process_refs < 0);
1913 return process_refs;
1914}
1915
1916static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1917{
e6c5bc73 1918 int process_refs, new_process_refs;
df5fe3e8
JM
1919 struct cfq_queue *__cfqq;
1920
1921 /* Avoid a circular list and skip interim queue merges */
1922 while ((__cfqq = new_cfqq->new_cfqq)) {
1923 if (__cfqq == cfqq)
1924 return;
1925 new_cfqq = __cfqq;
1926 }
1927
1928 process_refs = cfqq_process_refs(cfqq);
1929 /*
1930 * If the process for the cfqq has gone away, there is no
1931 * sense in merging the queues.
1932 */
1933 if (process_refs == 0)
1934 return;
1935
e6c5bc73
JM
1936 /*
1937 * Merge in the direction of the lesser amount of work.
1938 */
1939 new_process_refs = cfqq_process_refs(new_cfqq);
1940 if (new_process_refs >= process_refs) {
1941 cfqq->new_cfqq = new_cfqq;
1942 atomic_add(process_refs, &new_cfqq->ref);
1943 } else {
1944 new_cfqq->new_cfqq = cfqq;
1945 atomic_add(new_process_refs, &cfqq->ref);
1946 }
df5fe3e8
JM
1947}
1948
cdb16e8f 1949static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 1950 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
1951{
1952 struct cfq_queue *queue;
1953 int i;
1954 bool key_valid = false;
1955 unsigned long lowest_key = 0;
1956 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1957
65b32a57
VG
1958 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
1959 /* select the one with lowest rb_key */
1960 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
1961 if (queue &&
1962 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1963 lowest_key = queue->rb_key;
1964 cur_best = i;
1965 key_valid = true;
1966 }
1967 }
1968
1969 return cur_best;
1970}
1971
cdb16e8f 1972static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 1973{
718eee05
CZ
1974 unsigned slice;
1975 unsigned count;
cdb16e8f 1976 struct cfq_rb_root *st;
58ff82f3 1977 unsigned group_slice;
718eee05 1978
1fa8f6d6
VG
1979 if (!cfqg) {
1980 cfqd->serving_prio = IDLE_WORKLOAD;
1981 cfqd->workload_expires = jiffies + 1;
1982 return;
1983 }
1984
718eee05 1985 /* Choose next priority. RT > BE > IDLE */
58ff82f3 1986 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 1987 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 1988 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
1989 cfqd->serving_prio = BE_WORKLOAD;
1990 else {
1991 cfqd->serving_prio = IDLE_WORKLOAD;
1992 cfqd->workload_expires = jiffies + 1;
1993 return;
1994 }
1995
1996 /*
1997 * For RT and BE, we have to choose also the type
1998 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1999 * expiration time
2000 */
65b32a57 2001 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2002 count = st->count;
718eee05
CZ
2003
2004 /*
65b32a57 2005 * check workload expiration, and that we still have other queues ready
718eee05 2006 */
65b32a57 2007 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2008 return;
2009
2010 /* otherwise select new workload type */
2011 cfqd->serving_type =
65b32a57
VG
2012 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2013 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2014 count = st->count;
718eee05
CZ
2015
2016 /*
2017 * the workload slice is computed as a fraction of target latency
2018 * proportional to the number of queues in that workload, over
2019 * all the queues in the same priority class
2020 */
58ff82f3
VG
2021 group_slice = cfq_group_slice(cfqd, cfqg);
2022
2023 slice = group_slice * count /
2024 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2025 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2026
f26bd1f0
VG
2027 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2028 unsigned int tmp;
2029
2030 /*
2031 * Async queues are currently system wide. Just taking
2032 * proportion of queues with-in same group will lead to higher
2033 * async ratio system wide as generally root group is going
2034 * to have higher weight. A more accurate thing would be to
2035 * calculate system wide asnc/sync ratio.
2036 */
2037 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2038 tmp = tmp/cfqd->busy_queues;
2039 slice = min_t(unsigned, slice, tmp);
2040
718eee05
CZ
2041 /* async workload slice is scaled down according to
2042 * the sync/async slice ratio. */
2043 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2044 } else
718eee05
CZ
2045 /* sync workload slice is at least 2 * cfq_slice_idle */
2046 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2047
2048 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2049 cfqd->workload_expires = jiffies + slice;
8e550632 2050 cfqd->noidle_tree_requires_idle = false;
718eee05
CZ
2051}
2052
1fa8f6d6
VG
2053static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2054{
2055 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2056 struct cfq_group *cfqg;
1fa8f6d6
VG
2057
2058 if (RB_EMPTY_ROOT(&st->rb))
2059 return NULL;
25bc6b07
VG
2060 cfqg = cfq_rb_first_group(st);
2061 st->active = &cfqg->rb_node;
2062 update_min_vdisktime(st);
2063 return cfqg;
1fa8f6d6
VG
2064}
2065
cdb16e8f
VG
2066static void cfq_choose_cfqg(struct cfq_data *cfqd)
2067{
1fa8f6d6
VG
2068 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2069
2070 cfqd->serving_group = cfqg;
dae739eb
VG
2071
2072 /* Restore the workload type data */
2073 if (cfqg->saved_workload_slice) {
2074 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2075 cfqd->serving_type = cfqg->saved_workload;
2076 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2077 } else
2078 cfqd->workload_expires = jiffies - 1;
2079
1fa8f6d6 2080 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2081}
2082
22e2c507 2083/*
498d3aa2
JA
2084 * Select a queue for service. If we have a current active queue,
2085 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2086 */
1b5ed5e1 2087static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2088{
a36e71f9 2089 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2090
22e2c507
JA
2091 cfqq = cfqd->active_queue;
2092 if (!cfqq)
2093 goto new_queue;
1da177e4 2094
f04a6424
VG
2095 if (!cfqd->rq_queued)
2096 return NULL;
c244bb50
VG
2097
2098 /*
2099 * We were waiting for group to get backlogged. Expire the queue
2100 */
2101 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2102 goto expire;
2103
22e2c507 2104 /*
6d048f53 2105 * The active queue has run out of time, expire it and select new.
22e2c507 2106 */
7667aa06
VG
2107 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2108 /*
2109 * If slice had not expired at the completion of last request
2110 * we might not have turned on wait_busy flag. Don't expire
2111 * the queue yet. Allow the group to get backlogged.
2112 *
2113 * The very fact that we have used the slice, that means we
2114 * have been idling all along on this queue and it should be
2115 * ok to wait for this request to complete.
2116 */
82bbbf28
VG
2117 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2118 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2119 cfqq = NULL;
7667aa06 2120 goto keep_queue;
82bbbf28 2121 } else
7667aa06
VG
2122 goto expire;
2123 }
1da177e4 2124
22e2c507 2125 /*
6d048f53
JA
2126 * The active queue has requests and isn't expired, allow it to
2127 * dispatch.
22e2c507 2128 */
dd67d051 2129 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2130 goto keep_queue;
6d048f53 2131
a36e71f9
JA
2132 /*
2133 * If another queue has a request waiting within our mean seek
2134 * distance, let it run. The expire code will check for close
2135 * cooperators and put the close queue at the front of the service
df5fe3e8 2136 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2137 */
b3b6d040 2138 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2139 if (new_cfqq) {
2140 if (!cfqq->new_cfqq)
2141 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2142 goto expire;
df5fe3e8 2143 }
a36e71f9 2144
6d048f53
JA
2145 /*
2146 * No requests pending. If the active queue still has requests in
2147 * flight or is idling for a new request, allow either of these
2148 * conditions to happen (or time out) before selecting a new queue.
2149 */
cc197479 2150 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 2151 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
2152 cfqq = NULL;
2153 goto keep_queue;
22e2c507
JA
2154 }
2155
3b18152c 2156expire:
6084cdda 2157 cfq_slice_expired(cfqd, 0);
3b18152c 2158new_queue:
718eee05
CZ
2159 /*
2160 * Current queue expired. Check if we have to switch to a new
2161 * service tree
2162 */
2163 if (!new_cfqq)
cdb16e8f 2164 cfq_choose_cfqg(cfqd);
718eee05 2165
a36e71f9 2166 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2167keep_queue:
3b18152c 2168 return cfqq;
22e2c507
JA
2169}
2170
febffd61 2171static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2172{
2173 int dispatched = 0;
2174
2175 while (cfqq->next_rq) {
2176 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2177 dispatched++;
2178 }
2179
2180 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2181
2182 /* By default cfqq is not expired if it is empty. Do it explicitly */
2183 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2184 return dispatched;
2185}
2186
498d3aa2
JA
2187/*
2188 * Drain our current requests. Used for barriers and when switching
2189 * io schedulers on-the-fly.
2190 */
d9e7620e 2191static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2192{
0871714e 2193 struct cfq_queue *cfqq;
d9e7620e 2194 int dispatched = 0;
cdb16e8f 2195
f04a6424
VG
2196 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2197 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 2198
6084cdda 2199 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
2200 BUG_ON(cfqd->busy_queues);
2201
6923715a 2202 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2203 return dispatched;
2204}
2205
0b182d61 2206static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2207{
2f5cb738 2208 unsigned int max_dispatch;
22e2c507 2209
5ad531db
JA
2210 /*
2211 * Drain async requests before we start sync IO
2212 */
a6d44e98 2213 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
0b182d61 2214 return false;
5ad531db 2215
2f5cb738
JA
2216 /*
2217 * If this is an async queue and we have sync IO in flight, let it wait
2218 */
2219 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
0b182d61 2220 return false;
2f5cb738
JA
2221
2222 max_dispatch = cfqd->cfq_quantum;
2223 if (cfq_class_idle(cfqq))
2224 max_dispatch = 1;
b4878f24 2225
2f5cb738
JA
2226 /*
2227 * Does this cfqq already have too much IO in flight?
2228 */
2229 if (cfqq->dispatched >= max_dispatch) {
2230 /*
2231 * idle queue must always only have a single IO in flight
2232 */
3ed9a296 2233 if (cfq_class_idle(cfqq))
0b182d61 2234 return false;
3ed9a296 2235
2f5cb738
JA
2236 /*
2237 * We have other queues, don't allow more IO from this one
2238 */
2239 if (cfqd->busy_queues > 1)
0b182d61 2240 return false;
9ede209e 2241
365722bb 2242 /*
474b18cc 2243 * Sole queue user, no limit
365722bb 2244 */
474b18cc 2245 max_dispatch = -1;
8e296755
JA
2246 }
2247
2248 /*
2249 * Async queues must wait a bit before being allowed dispatch.
2250 * We also ramp up the dispatch depth gradually for async IO,
2251 * based on the last sync IO we serviced
2252 */
963b72fc 2253 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2254 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2255 unsigned int depth;
365722bb 2256
61f0c1dc 2257 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2258 if (!depth && !cfqq->dispatched)
2259 depth = 1;
8e296755
JA
2260 if (depth < max_dispatch)
2261 max_dispatch = depth;
2f5cb738 2262 }
3ed9a296 2263
0b182d61
JA
2264 /*
2265 * If we're below the current max, allow a dispatch
2266 */
2267 return cfqq->dispatched < max_dispatch;
2268}
2269
2270/*
2271 * Dispatch a request from cfqq, moving them to the request queue
2272 * dispatch list.
2273 */
2274static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2275{
2276 struct request *rq;
2277
2278 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2279
2280 if (!cfq_may_dispatch(cfqd, cfqq))
2281 return false;
2282
2283 /*
2284 * follow expired path, else get first next available
2285 */
2286 rq = cfq_check_fifo(cfqq);
2287 if (!rq)
2288 rq = cfqq->next_rq;
2289
2290 /*
2291 * insert request into driver dispatch list
2292 */
2293 cfq_dispatch_insert(cfqd->queue, rq);
2294
2295 if (!cfqd->active_cic) {
2296 struct cfq_io_context *cic = RQ_CIC(rq);
2297
2298 atomic_long_inc(&cic->ioc->refcount);
2299 cfqd->active_cic = cic;
2300 }
2301
2302 return true;
2303}
2304
2305/*
2306 * Find the cfqq that we need to service and move a request from that to the
2307 * dispatch list
2308 */
2309static int cfq_dispatch_requests(struct request_queue *q, int force)
2310{
2311 struct cfq_data *cfqd = q->elevator->elevator_data;
2312 struct cfq_queue *cfqq;
2313
2314 if (!cfqd->busy_queues)
2315 return 0;
2316
2317 if (unlikely(force))
2318 return cfq_forced_dispatch(cfqd);
2319
2320 cfqq = cfq_select_queue(cfqd);
2321 if (!cfqq)
8e296755
JA
2322 return 0;
2323
2f5cb738 2324 /*
0b182d61 2325 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2326 */
0b182d61
JA
2327 if (!cfq_dispatch_request(cfqd, cfqq))
2328 return 0;
2329
2f5cb738 2330 cfqq->slice_dispatch++;
b029195d 2331 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2332
2f5cb738
JA
2333 /*
2334 * expire an async queue immediately if it has used up its slice. idle
2335 * queue always expire after 1 dispatch round.
2336 */
2337 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2338 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2339 cfq_class_idle(cfqq))) {
2340 cfqq->slice_end = jiffies + 1;
2341 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2342 }
2343
b217a903 2344 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2345 return 1;
1da177e4
LT
2346}
2347
1da177e4 2348/*
5e705374
JA
2349 * task holds one reference to the queue, dropped when task exits. each rq
2350 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2351 *
b1c35769 2352 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2353 * queue lock must be held here.
2354 */
2355static void cfq_put_queue(struct cfq_queue *cfqq)
2356{
22e2c507 2357 struct cfq_data *cfqd = cfqq->cfqd;
878eaddd 2358 struct cfq_group *cfqg, *orig_cfqg;
22e2c507
JA
2359
2360 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
2361
2362 if (!atomic_dec_and_test(&cfqq->ref))
2363 return;
2364
7b679138 2365 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2366 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2367 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2368 cfqg = cfqq->cfqg;
878eaddd 2369 orig_cfqg = cfqq->orig_cfqg;
1da177e4 2370
28f95cbc 2371 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 2372 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2373 cfq_schedule_dispatch(cfqd);
28f95cbc 2374 }
22e2c507 2375
f04a6424 2376 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2377 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2378 cfq_put_cfqg(cfqg);
878eaddd
VG
2379 if (orig_cfqg)
2380 cfq_put_cfqg(orig_cfqg);
1da177e4
LT
2381}
2382
d6de8be7
JA
2383/*
2384 * Must always be called with the rcu_read_lock() held
2385 */
07416d29
JA
2386static void
2387__call_for_each_cic(struct io_context *ioc,
2388 void (*func)(struct io_context *, struct cfq_io_context *))
2389{
2390 struct cfq_io_context *cic;
2391 struct hlist_node *n;
2392
2393 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2394 func(ioc, cic);
2395}
2396
4ac845a2 2397/*
34e6bbf2 2398 * Call func for each cic attached to this ioc.
4ac845a2 2399 */
34e6bbf2 2400static void
4ac845a2
JA
2401call_for_each_cic(struct io_context *ioc,
2402 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2403{
4ac845a2 2404 rcu_read_lock();
07416d29 2405 __call_for_each_cic(ioc, func);
4ac845a2 2406 rcu_read_unlock();
34e6bbf2
FC
2407}
2408
2409static void cfq_cic_free_rcu(struct rcu_head *head)
2410{
2411 struct cfq_io_context *cic;
2412
2413 cic = container_of(head, struct cfq_io_context, rcu_head);
2414
2415 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2416 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2417
9a11b4ed
JA
2418 if (ioc_gone) {
2419 /*
2420 * CFQ scheduler is exiting, grab exit lock and check
2421 * the pending io context count. If it hits zero,
2422 * complete ioc_gone and set it back to NULL
2423 */
2424 spin_lock(&ioc_gone_lock);
245b2e70 2425 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2426 complete(ioc_gone);
2427 ioc_gone = NULL;
2428 }
2429 spin_unlock(&ioc_gone_lock);
2430 }
34e6bbf2 2431}
4ac845a2 2432
34e6bbf2
FC
2433static void cfq_cic_free(struct cfq_io_context *cic)
2434{
2435 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2436}
2437
2438static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2439{
2440 unsigned long flags;
2441
2442 BUG_ON(!cic->dead_key);
2443
2444 spin_lock_irqsave(&ioc->lock, flags);
2445 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 2446 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2447 spin_unlock_irqrestore(&ioc->lock, flags);
2448
34e6bbf2 2449 cfq_cic_free(cic);
4ac845a2
JA
2450}
2451
d6de8be7
JA
2452/*
2453 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2454 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2455 * and ->trim() which is called with the task lock held
2456 */
4ac845a2
JA
2457static void cfq_free_io_context(struct io_context *ioc)
2458{
4ac845a2 2459 /*
34e6bbf2
FC
2460 * ioc->refcount is zero here, or we are called from elv_unregister(),
2461 * so no more cic's are allowed to be linked into this ioc. So it
2462 * should be ok to iterate over the known list, we will see all cic's
2463 * since no new ones are added.
4ac845a2 2464 */
07416d29 2465 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2466}
2467
89850f7e 2468static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 2469{
df5fe3e8
JM
2470 struct cfq_queue *__cfqq, *next;
2471
28f95cbc 2472 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 2473 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2474 cfq_schedule_dispatch(cfqd);
28f95cbc 2475 }
22e2c507 2476
df5fe3e8
JM
2477 /*
2478 * If this queue was scheduled to merge with another queue, be
2479 * sure to drop the reference taken on that queue (and others in
2480 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2481 */
2482 __cfqq = cfqq->new_cfqq;
2483 while (__cfqq) {
2484 if (__cfqq == cfqq) {
2485 WARN(1, "cfqq->new_cfqq loop detected\n");
2486 break;
2487 }
2488 next = __cfqq->new_cfqq;
2489 cfq_put_queue(__cfqq);
2490 __cfqq = next;
2491 }
2492
89850f7e
JA
2493 cfq_put_queue(cfqq);
2494}
22e2c507 2495
89850f7e
JA
2496static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2497 struct cfq_io_context *cic)
2498{
4faa3c81
FC
2499 struct io_context *ioc = cic->ioc;
2500
fc46379d 2501 list_del_init(&cic->queue_list);
4ac845a2
JA
2502
2503 /*
2504 * Make sure key == NULL is seen for dead queues
2505 */
fc46379d 2506 smp_wmb();
4ac845a2 2507 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
2508 cic->key = NULL;
2509
4faa3c81
FC
2510 if (ioc->ioc_data == cic)
2511 rcu_assign_pointer(ioc->ioc_data, NULL);
2512
ff6657c6
JA
2513 if (cic->cfqq[BLK_RW_ASYNC]) {
2514 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2515 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2516 }
2517
ff6657c6
JA
2518 if (cic->cfqq[BLK_RW_SYNC]) {
2519 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2520 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2521 }
89850f7e
JA
2522}
2523
4ac845a2
JA
2524static void cfq_exit_single_io_context(struct io_context *ioc,
2525 struct cfq_io_context *cic)
89850f7e
JA
2526{
2527 struct cfq_data *cfqd = cic->key;
2528
89850f7e 2529 if (cfqd) {
165125e1 2530 struct request_queue *q = cfqd->queue;
4ac845a2 2531 unsigned long flags;
89850f7e 2532
4ac845a2 2533 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2534
2535 /*
2536 * Ensure we get a fresh copy of the ->key to prevent
2537 * race between exiting task and queue
2538 */
2539 smp_read_barrier_depends();
2540 if (cic->key)
2541 __cfq_exit_single_io_context(cfqd, cic);
2542
4ac845a2 2543 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2544 }
1da177e4
LT
2545}
2546
498d3aa2
JA
2547/*
2548 * The process that ioc belongs to has exited, we need to clean up
2549 * and put the internal structures we have that belongs to that process.
2550 */
e2d74ac0 2551static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2552{
4ac845a2 2553 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2554}
2555
22e2c507 2556static struct cfq_io_context *
8267e268 2557cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2558{
b5deef90 2559 struct cfq_io_context *cic;
1da177e4 2560
94f6030c
CL
2561 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2562 cfqd->queue->node);
1da177e4 2563 if (cic) {
22e2c507 2564 cic->last_end_request = jiffies;
553698f9 2565 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2566 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2567 cic->dtor = cfq_free_io_context;
2568 cic->exit = cfq_exit_io_context;
245b2e70 2569 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2570 }
2571
2572 return cic;
2573}
2574
fd0928df 2575static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2576{
2577 struct task_struct *tsk = current;
2578 int ioprio_class;
2579
3b18152c 2580 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2581 return;
2582
fd0928df 2583 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2584 switch (ioprio_class) {
fe094d98
JA
2585 default:
2586 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2587 case IOPRIO_CLASS_NONE:
2588 /*
6d63c275 2589 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2590 */
2591 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2592 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2593 break;
2594 case IOPRIO_CLASS_RT:
2595 cfqq->ioprio = task_ioprio(ioc);
2596 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2597 break;
2598 case IOPRIO_CLASS_BE:
2599 cfqq->ioprio = task_ioprio(ioc);
2600 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2601 break;
2602 case IOPRIO_CLASS_IDLE:
2603 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2604 cfqq->ioprio = 7;
2605 cfq_clear_cfqq_idle_window(cfqq);
2606 break;
22e2c507
JA
2607 }
2608
2609 /*
2610 * keep track of original prio settings in case we have to temporarily
2611 * elevate the priority of this queue
2612 */
2613 cfqq->org_ioprio = cfqq->ioprio;
2614 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2615 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2616}
2617
febffd61 2618static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2619{
478a82b0
AV
2620 struct cfq_data *cfqd = cic->key;
2621 struct cfq_queue *cfqq;
c1b707d2 2622 unsigned long flags;
35e6077c 2623
caaa5f9f
JA
2624 if (unlikely(!cfqd))
2625 return;
2626
c1b707d2 2627 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2628
ff6657c6 2629 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2630 if (cfqq) {
2631 struct cfq_queue *new_cfqq;
ff6657c6
JA
2632 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2633 GFP_ATOMIC);
caaa5f9f 2634 if (new_cfqq) {
ff6657c6 2635 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2636 cfq_put_queue(cfqq);
2637 }
22e2c507 2638 }
caaa5f9f 2639
ff6657c6 2640 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2641 if (cfqq)
2642 cfq_mark_cfqq_prio_changed(cfqq);
2643
c1b707d2 2644 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2645}
2646
fc46379d 2647static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2648{
4ac845a2 2649 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2650 ioc->ioprio_changed = 0;
22e2c507
JA
2651}
2652
d5036d77 2653static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2654 pid_t pid, bool is_sync)
d5036d77
JA
2655{
2656 RB_CLEAR_NODE(&cfqq->rb_node);
2657 RB_CLEAR_NODE(&cfqq->p_node);
2658 INIT_LIST_HEAD(&cfqq->fifo);
2659
2660 atomic_set(&cfqq->ref, 0);
2661 cfqq->cfqd = cfqd;
2662
2663 cfq_mark_cfqq_prio_changed(cfqq);
2664
2665 if (is_sync) {
2666 if (!cfq_class_idle(cfqq))
2667 cfq_mark_cfqq_idle_window(cfqq);
2668 cfq_mark_cfqq_sync(cfqq);
2669 }
2670 cfqq->pid = pid;
2671}
2672
24610333
VG
2673#ifdef CONFIG_CFQ_GROUP_IOSCHED
2674static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2675{
2676 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2677 struct cfq_data *cfqd = cic->key;
2678 unsigned long flags;
2679 struct request_queue *q;
2680
2681 if (unlikely(!cfqd))
2682 return;
2683
2684 q = cfqd->queue;
2685
2686 spin_lock_irqsave(q->queue_lock, flags);
2687
2688 if (sync_cfqq) {
2689 /*
2690 * Drop reference to sync queue. A new sync queue will be
2691 * assigned in new group upon arrival of a fresh request.
2692 */
2693 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2694 cic_set_cfqq(cic, NULL, 1);
2695 cfq_put_queue(sync_cfqq);
2696 }
2697
2698 spin_unlock_irqrestore(q->queue_lock, flags);
2699}
2700
2701static void cfq_ioc_set_cgroup(struct io_context *ioc)
2702{
2703 call_for_each_cic(ioc, changed_cgroup);
2704 ioc->cgroup_changed = 0;
2705}
2706#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2707
22e2c507 2708static struct cfq_queue *
a6151c3a 2709cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2710 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2711{
22e2c507 2712 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2713 struct cfq_io_context *cic;
cdb16e8f 2714 struct cfq_group *cfqg;
22e2c507
JA
2715
2716retry:
cdb16e8f 2717 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2718 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2719 /* cic always exists here */
2720 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2721
6118b70b
JA
2722 /*
2723 * Always try a new alloc if we fell back to the OOM cfqq
2724 * originally, since it should just be a temporary situation.
2725 */
2726 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2727 cfqq = NULL;
22e2c507
JA
2728 if (new_cfqq) {
2729 cfqq = new_cfqq;
2730 new_cfqq = NULL;
2731 } else if (gfp_mask & __GFP_WAIT) {
2732 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2733 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2734 gfp_mask | __GFP_ZERO,
94f6030c 2735 cfqd->queue->node);
22e2c507 2736 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2737 if (new_cfqq)
2738 goto retry;
22e2c507 2739 } else {
94f6030c
CL
2740 cfqq = kmem_cache_alloc_node(cfq_pool,
2741 gfp_mask | __GFP_ZERO,
2742 cfqd->queue->node);
22e2c507
JA
2743 }
2744
6118b70b
JA
2745 if (cfqq) {
2746 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2747 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2748 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2749 cfq_log_cfqq(cfqd, cfqq, "alloced");
2750 } else
2751 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2752 }
2753
2754 if (new_cfqq)
2755 kmem_cache_free(cfq_pool, new_cfqq);
2756
22e2c507
JA
2757 return cfqq;
2758}
2759
c2dea2d1
VT
2760static struct cfq_queue **
2761cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2762{
fe094d98 2763 switch (ioprio_class) {
c2dea2d1
VT
2764 case IOPRIO_CLASS_RT:
2765 return &cfqd->async_cfqq[0][ioprio];
2766 case IOPRIO_CLASS_BE:
2767 return &cfqd->async_cfqq[1][ioprio];
2768 case IOPRIO_CLASS_IDLE:
2769 return &cfqd->async_idle_cfqq;
2770 default:
2771 BUG();
2772 }
2773}
2774
15c31be4 2775static struct cfq_queue *
a6151c3a 2776cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2777 gfp_t gfp_mask)
2778{
fd0928df
JA
2779 const int ioprio = task_ioprio(ioc);
2780 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2781 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2782 struct cfq_queue *cfqq = NULL;
2783
c2dea2d1
VT
2784 if (!is_sync) {
2785 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2786 cfqq = *async_cfqq;
2787 }
2788
6118b70b 2789 if (!cfqq)
fd0928df 2790 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2791
2792 /*
2793 * pin the queue now that it's allocated, scheduler exit will prune it
2794 */
c2dea2d1 2795 if (!is_sync && !(*async_cfqq)) {
15c31be4 2796 atomic_inc(&cfqq->ref);
c2dea2d1 2797 *async_cfqq = cfqq;
15c31be4
JA
2798 }
2799
2800 atomic_inc(&cfqq->ref);
2801 return cfqq;
2802}
2803
498d3aa2
JA
2804/*
2805 * We drop cfq io contexts lazily, so we may find a dead one.
2806 */
dbecf3ab 2807static void
4ac845a2
JA
2808cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2809 struct cfq_io_context *cic)
dbecf3ab 2810{
4ac845a2
JA
2811 unsigned long flags;
2812
fc46379d 2813 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2814
4ac845a2
JA
2815 spin_lock_irqsave(&ioc->lock, flags);
2816
4faa3c81 2817 BUG_ON(ioc->ioc_data == cic);
597bc485 2818
4ac845a2 2819 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2820 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2821 spin_unlock_irqrestore(&ioc->lock, flags);
2822
2823 cfq_cic_free(cic);
dbecf3ab
OH
2824}
2825
e2d74ac0 2826static struct cfq_io_context *
4ac845a2 2827cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2828{
e2d74ac0 2829 struct cfq_io_context *cic;
d6de8be7 2830 unsigned long flags;
4ac845a2 2831 void *k;
e2d74ac0 2832
91fac317
VT
2833 if (unlikely(!ioc))
2834 return NULL;
2835
d6de8be7
JA
2836 rcu_read_lock();
2837
597bc485
JA
2838 /*
2839 * we maintain a last-hit cache, to avoid browsing over the tree
2840 */
4ac845a2 2841 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2842 if (cic && cic->key == cfqd) {
2843 rcu_read_unlock();
597bc485 2844 return cic;
d6de8be7 2845 }
597bc485 2846
4ac845a2 2847 do {
4ac845a2
JA
2848 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2849 rcu_read_unlock();
2850 if (!cic)
2851 break;
be3b0753
OH
2852 /* ->key must be copied to avoid race with cfq_exit_queue() */
2853 k = cic->key;
2854 if (unlikely(!k)) {
4ac845a2 2855 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2856 rcu_read_lock();
4ac845a2 2857 continue;
dbecf3ab 2858 }
e2d74ac0 2859
d6de8be7 2860 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2861 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2862 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2863 break;
2864 } while (1);
e2d74ac0 2865
4ac845a2 2866 return cic;
e2d74ac0
JA
2867}
2868
4ac845a2
JA
2869/*
2870 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2871 * the process specific cfq io context when entered from the block layer.
2872 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2873 */
febffd61
JA
2874static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2875 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2876{
0261d688 2877 unsigned long flags;
4ac845a2 2878 int ret;
e2d74ac0 2879
4ac845a2
JA
2880 ret = radix_tree_preload(gfp_mask);
2881 if (!ret) {
2882 cic->ioc = ioc;
2883 cic->key = cfqd;
e2d74ac0 2884
4ac845a2
JA
2885 spin_lock_irqsave(&ioc->lock, flags);
2886 ret = radix_tree_insert(&ioc->radix_root,
2887 (unsigned long) cfqd, cic);
ffc4e759
JA
2888 if (!ret)
2889 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2890 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2891
4ac845a2
JA
2892 radix_tree_preload_end();
2893
2894 if (!ret) {
2895 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2896 list_add(&cic->queue_list, &cfqd->cic_list);
2897 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2898 }
e2d74ac0
JA
2899 }
2900
4ac845a2
JA
2901 if (ret)
2902 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2903
4ac845a2 2904 return ret;
e2d74ac0
JA
2905}
2906
1da177e4
LT
2907/*
2908 * Setup general io context and cfq io context. There can be several cfq
2909 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2910 * than one device managed by cfq.
1da177e4
LT
2911 */
2912static struct cfq_io_context *
e2d74ac0 2913cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2914{
22e2c507 2915 struct io_context *ioc = NULL;
1da177e4 2916 struct cfq_io_context *cic;
1da177e4 2917
22e2c507 2918 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2919
b5deef90 2920 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2921 if (!ioc)
2922 return NULL;
2923
4ac845a2 2924 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2925 if (cic)
2926 goto out;
1da177e4 2927
e2d74ac0
JA
2928 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2929 if (cic == NULL)
2930 goto err;
1da177e4 2931
4ac845a2
JA
2932 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2933 goto err_free;
2934
1da177e4 2935out:
fc46379d
JA
2936 smp_read_barrier_depends();
2937 if (unlikely(ioc->ioprio_changed))
2938 cfq_ioc_set_ioprio(ioc);
2939
24610333
VG
2940#ifdef CONFIG_CFQ_GROUP_IOSCHED
2941 if (unlikely(ioc->cgroup_changed))
2942 cfq_ioc_set_cgroup(ioc);
2943#endif
1da177e4 2944 return cic;
4ac845a2
JA
2945err_free:
2946 cfq_cic_free(cic);
1da177e4
LT
2947err:
2948 put_io_context(ioc);
2949 return NULL;
2950}
2951
22e2c507
JA
2952static void
2953cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2954{
aaf1228d
JA
2955 unsigned long elapsed = jiffies - cic->last_end_request;
2956 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2957
22e2c507
JA
2958 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2959 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2960 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2961}
1da177e4 2962
206dc69b 2963static void
b2c18e1e 2964cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2965 struct request *rq)
206dc69b 2966{
3dde36dd
CZ
2967 sector_t sdist = 0;
2968 if (cfqq->last_request_pos) {
2969 if (cfqq->last_request_pos < blk_rq_pos(rq))
2970 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2971 else
2972 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2973 }
206dc69b 2974
3dde36dd
CZ
2975 cfqq->seek_history <<= 1;
2976 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 2977}
1da177e4 2978
22e2c507
JA
2979/*
2980 * Disable idle window if the process thinks too long or seeks so much that
2981 * it doesn't matter
2982 */
2983static void
2984cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2985 struct cfq_io_context *cic)
2986{
7b679138 2987 int old_idle, enable_idle;
1be92f2f 2988
0871714e
JA
2989 /*
2990 * Don't idle for async or idle io prio class
2991 */
2992 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
2993 return;
2994
c265a7f4 2995 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 2996
76280aff
CZ
2997 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2998 cfq_mark_cfqq_deep(cfqq);
2999
66dac98e 3000 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3dde36dd 3001 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507
JA
3002 enable_idle = 0;
3003 else if (sample_valid(cic->ttime_samples)) {
718eee05 3004 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3005 enable_idle = 0;
3006 else
3007 enable_idle = 1;
1da177e4
LT
3008 }
3009
7b679138
JA
3010 if (old_idle != enable_idle) {
3011 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3012 if (enable_idle)
3013 cfq_mark_cfqq_idle_window(cfqq);
3014 else
3015 cfq_clear_cfqq_idle_window(cfqq);
3016 }
22e2c507 3017}
1da177e4 3018
22e2c507
JA
3019/*
3020 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3021 * no or if we aren't sure, a 1 will cause a preempt.
3022 */
a6151c3a 3023static bool
22e2c507 3024cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3025 struct request *rq)
22e2c507 3026{
6d048f53 3027 struct cfq_queue *cfqq;
22e2c507 3028
6d048f53
JA
3029 cfqq = cfqd->active_queue;
3030 if (!cfqq)
a6151c3a 3031 return false;
22e2c507 3032
6d048f53 3033 if (cfq_class_idle(new_cfqq))
a6151c3a 3034 return false;
22e2c507
JA
3035
3036 if (cfq_class_idle(cfqq))
a6151c3a 3037 return true;
1e3335de 3038
875feb63
DS
3039 /*
3040 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3041 */
3042 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3043 return false;
3044
374f84ac
JA
3045 /*
3046 * if the new request is sync, but the currently running queue is
3047 * not, let the sync request have priority.
3048 */
5e705374 3049 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3050 return true;
1e3335de 3051
8682e1f1
VG
3052 if (new_cfqq->cfqg != cfqq->cfqg)
3053 return false;
3054
3055 if (cfq_slice_used(cfqq))
3056 return true;
3057
3058 /* Allow preemption only if we are idling on sync-noidle tree */
3059 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3060 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3061 new_cfqq->service_tree->count == 2 &&
3062 RB_EMPTY_ROOT(&cfqq->sort_list))
3063 return true;
3064
374f84ac
JA
3065 /*
3066 * So both queues are sync. Let the new request get disk time if
3067 * it's a metadata request and the current queue is doing regular IO.
3068 */
3069 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 3070 return true;
22e2c507 3071
3a9a3f6c
DS
3072 /*
3073 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3074 */
3075 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3076 return true;
3a9a3f6c 3077
1e3335de 3078 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3079 return false;
1e3335de
JA
3080
3081 /*
3082 * if this request is as-good as one we would expect from the
3083 * current cfqq, let it preempt
3084 */
2f7a2d89 3085 if (cfq_rq_close(cfqd, cfqq, rq, true))
a6151c3a 3086 return true;
1e3335de 3087
a6151c3a 3088 return false;
22e2c507
JA
3089}
3090
3091/*
3092 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3093 * let it have half of its nominal slice.
3094 */
3095static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3096{
7b679138 3097 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 3098 cfq_slice_expired(cfqd, 1);
22e2c507 3099
bf572256
JA
3100 /*
3101 * Put the new queue at the front of the of the current list,
3102 * so we know that it will be selected next.
3103 */
3104 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3105
3106 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 3107
44f7c160
JA
3108 cfqq->slice_end = 0;
3109 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3110}
3111
22e2c507 3112/*
5e705374 3113 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3114 * something we should do about it
3115 */
3116static void
5e705374
JA
3117cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3118 struct request *rq)
22e2c507 3119{
5e705374 3120 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3121
45333d5a 3122 cfqd->rq_queued++;
374f84ac
JA
3123 if (rq_is_meta(rq))
3124 cfqq->meta_pending++;
3125
9c2c38a1 3126 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3127 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3128 cfq_update_idle_window(cfqd, cfqq, cic);
3129
b2c18e1e 3130 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3131
3132 if (cfqq == cfqd->active_queue) {
3133 /*
b029195d
JA
3134 * Remember that we saw a request from this process, but
3135 * don't start queuing just yet. Otherwise we risk seeing lots
3136 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3137 * and merging. If the request is already larger than a single
3138 * page, let it rip immediately. For that case we assume that
2d870722
JA
3139 * merging is already done. Ditto for a busy system that
3140 * has other work pending, don't risk delaying until the
3141 * idle timer unplug to continue working.
22e2c507 3142 */
d6ceb25e 3143 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3144 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3145 cfqd->busy_queues > 1) {
d6ceb25e 3146 del_timer(&cfqd->idle_slice_timer);
554554f6 3147 cfq_clear_cfqq_wait_request(cfqq);
bf791937
VG
3148 __blk_run_queue(cfqd->queue);
3149 } else
3150 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 3151 }
5e705374 3152 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3153 /*
3154 * not the active queue - expire current slice if it is
3155 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3156 * has some old slice time left and is of higher priority or
3157 * this new queue is RT and the current one is BE
22e2c507
JA
3158 */
3159 cfq_preempt_queue(cfqd, cfqq);
a7f55792 3160 __blk_run_queue(cfqd->queue);
22e2c507 3161 }
1da177e4
LT
3162}
3163
165125e1 3164static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3165{
b4878f24 3166 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3167 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3168
7b679138 3169 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3170 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3171
30996f40 3172 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3173 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3174 cfq_add_rq_rb(rq);
22e2c507 3175
5e705374 3176 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3177}
3178
45333d5a
AC
3179/*
3180 * Update hw_tag based on peak queue depth over 50 samples under
3181 * sufficient load.
3182 */
3183static void cfq_update_hw_tag(struct cfq_data *cfqd)
3184{
1a1238a7
SL
3185 struct cfq_queue *cfqq = cfqd->active_queue;
3186
e459dd08
CZ
3187 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3188 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3189
3190 if (cfqd->hw_tag == 1)
3191 return;
45333d5a
AC
3192
3193 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 3194 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3195 return;
3196
1a1238a7
SL
3197 /*
3198 * If active queue hasn't enough requests and can idle, cfq might not
3199 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3200 * case
3201 */
3202 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3203 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3204 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3205 return;
3206
45333d5a
AC
3207 if (cfqd->hw_tag_samples++ < 50)
3208 return;
3209
e459dd08 3210 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3211 cfqd->hw_tag = 1;
3212 else
3213 cfqd->hw_tag = 0;
45333d5a
AC
3214}
3215
7667aa06
VG
3216static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3217{
3218 struct cfq_io_context *cic = cfqd->active_cic;
3219
3220 /* If there are other queues in the group, don't wait */
3221 if (cfqq->cfqg->nr_cfqq > 1)
3222 return false;
3223
3224 if (cfq_slice_used(cfqq))
3225 return true;
3226
3227 /* if slice left is less than think time, wait busy */
3228 if (cic && sample_valid(cic->ttime_samples)
3229 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3230 return true;
3231
3232 /*
3233 * If think times is less than a jiffy than ttime_mean=0 and above
3234 * will not be true. It might happen that slice has not expired yet
3235 * but will expire soon (4-5 ns) during select_queue(). To cover the
3236 * case where think time is less than a jiffy, mark the queue wait
3237 * busy if only 1 jiffy is left in the slice.
3238 */
3239 if (cfqq->slice_end - jiffies == 1)
3240 return true;
3241
3242 return false;
3243}
3244
165125e1 3245static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3246{
5e705374 3247 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3248 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3249 const int sync = rq_is_sync(rq);
b4878f24 3250 unsigned long now;
1da177e4 3251
b4878f24 3252 now = jiffies;
2868ef7b 3253 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
1da177e4 3254
45333d5a
AC
3255 cfq_update_hw_tag(cfqd);
3256
5ad531db 3257 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 3258 WARN_ON(!cfqq->dispatched);
5ad531db 3259 cfqd->rq_in_driver[sync]--;
6d048f53 3260 cfqq->dispatched--;
1da177e4 3261
3ed9a296
JA
3262 if (cfq_cfqq_sync(cfqq))
3263 cfqd->sync_flight--;
3264
365722bb 3265 if (sync) {
5e705374 3266 RQ_CIC(rq)->last_end_request = now;
573412b2
CZ
3267 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3268 cfqd->last_delayed_sync = now;
365722bb 3269 }
caaa5f9f
JA
3270
3271 /*
3272 * If this is the active queue, check if it needs to be expired,
3273 * or if we want to idle in case it has no pending requests.
3274 */
3275 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3276 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3277
44f7c160
JA
3278 if (cfq_cfqq_slice_new(cfqq)) {
3279 cfq_set_prio_slice(cfqd, cfqq);
3280 cfq_clear_cfqq_slice_new(cfqq);
3281 }
f75edf2d
VG
3282
3283 /*
7667aa06
VG
3284 * Should we wait for next request to come in before we expire
3285 * the queue.
f75edf2d 3286 */
7667aa06 3287 if (cfq_should_wait_busy(cfqd, cfqq)) {
f75edf2d
VG
3288 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3289 cfq_mark_cfqq_wait_busy(cfqq);
3290 }
3291
a36e71f9 3292 /*
8e550632
CZ
3293 * Idling is not enabled on:
3294 * - expired queues
3295 * - idle-priority queues
3296 * - async queues
3297 * - queues with still some requests queued
3298 * - when there is a close cooperator
a36e71f9 3299 */
0871714e 3300 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 3301 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3302 else if (sync && cfqq_empty &&
3303 !cfq_close_cooperator(cfqd, cfqq)) {
3304 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3305 /*
3306 * Idling is enabled for SYNC_WORKLOAD.
3307 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3308 * only if we processed at least one !rq_noidle request
3309 */
3310 if (cfqd->serving_type == SYNC_WORKLOAD
c04645e5
VG
3311 || cfqd->noidle_tree_requires_idle
3312 || cfqq->cfqg->nr_cfqq == 1)
8e550632
CZ
3313 cfq_arm_slice_timer(cfqd);
3314 }
caaa5f9f 3315 }
6d048f53 3316
5ad531db 3317 if (!rq_in_driver(cfqd))
23e018a1 3318 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3319}
3320
22e2c507
JA
3321/*
3322 * we temporarily boost lower priority queues if they are holding fs exclusive
3323 * resources. they are boosted to normal prio (CLASS_BE/4)
3324 */
3325static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3326{
22e2c507
JA
3327 if (has_fs_excl()) {
3328 /*
3329 * boost idle prio on transactions that would lock out other
3330 * users of the filesystem
3331 */
3332 if (cfq_class_idle(cfqq))
3333 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3334 if (cfqq->ioprio > IOPRIO_NORM)
3335 cfqq->ioprio = IOPRIO_NORM;
3336 } else {
3337 /*
dddb7451 3338 * unboost the queue (if needed)
22e2c507 3339 */
dddb7451
CZ
3340 cfqq->ioprio_class = cfqq->org_ioprio_class;
3341 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3342 }
22e2c507 3343}
1da177e4 3344
89850f7e 3345static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3346{
1b379d8d 3347 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3348 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3349 return ELV_MQUEUE_MUST;
3b18152c 3350 }
1da177e4 3351
22e2c507 3352 return ELV_MQUEUE_MAY;
22e2c507
JA
3353}
3354
165125e1 3355static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3356{
3357 struct cfq_data *cfqd = q->elevator->elevator_data;
3358 struct task_struct *tsk = current;
91fac317 3359 struct cfq_io_context *cic;
22e2c507
JA
3360 struct cfq_queue *cfqq;
3361
3362 /*
3363 * don't force setup of a queue from here, as a call to may_queue
3364 * does not necessarily imply that a request actually will be queued.
3365 * so just lookup a possibly existing queue, or return 'may queue'
3366 * if that fails
3367 */
4ac845a2 3368 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3369 if (!cic)
3370 return ELV_MQUEUE_MAY;
3371
b0b78f81 3372 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3373 if (cfqq) {
fd0928df 3374 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3375 cfq_prio_boost(cfqq);
3376
89850f7e 3377 return __cfq_may_queue(cfqq);
22e2c507
JA
3378 }
3379
3380 return ELV_MQUEUE_MAY;
1da177e4
LT
3381}
3382
1da177e4
LT
3383/*
3384 * queue lock held here
3385 */
bb37b94c 3386static void cfq_put_request(struct request *rq)
1da177e4 3387{
5e705374 3388 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3389
5e705374 3390 if (cfqq) {
22e2c507 3391 const int rw = rq_data_dir(rq);
1da177e4 3392
22e2c507
JA
3393 BUG_ON(!cfqq->allocated[rw]);
3394 cfqq->allocated[rw]--;
1da177e4 3395
5e705374 3396 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3397
1da177e4 3398 rq->elevator_private = NULL;
5e705374 3399 rq->elevator_private2 = NULL;
1da177e4 3400
1da177e4
LT
3401 cfq_put_queue(cfqq);
3402 }
3403}
3404
df5fe3e8
JM
3405static struct cfq_queue *
3406cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3407 struct cfq_queue *cfqq)
3408{
3409 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3410 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3411 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3412 cfq_put_queue(cfqq);
3413 return cic_to_cfqq(cic, 1);
3414}
3415
e6c5bc73
JM
3416/*
3417 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3418 * was the last process referring to said cfqq.
3419 */
3420static struct cfq_queue *
3421split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3422{
3423 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3424 cfqq->pid = current->pid;
3425 cfq_clear_cfqq_coop(cfqq);
ae54abed 3426 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3427 return cfqq;
3428 }
3429
3430 cic_set_cfqq(cic, NULL, 1);
3431 cfq_put_queue(cfqq);
3432 return NULL;
3433}
1da177e4 3434/*
22e2c507 3435 * Allocate cfq data structures associated with this request.
1da177e4 3436 */
22e2c507 3437static int
165125e1 3438cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3439{
3440 struct cfq_data *cfqd = q->elevator->elevator_data;
3441 struct cfq_io_context *cic;
3442 const int rw = rq_data_dir(rq);
a6151c3a 3443 const bool is_sync = rq_is_sync(rq);
22e2c507 3444 struct cfq_queue *cfqq;
1da177e4
LT
3445 unsigned long flags;
3446
3447 might_sleep_if(gfp_mask & __GFP_WAIT);
3448
e2d74ac0 3449 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3450
1da177e4
LT
3451 spin_lock_irqsave(q->queue_lock, flags);
3452
22e2c507
JA
3453 if (!cic)
3454 goto queue_fail;
3455
e6c5bc73 3456new_queue:
91fac317 3457 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3458 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3459 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3460 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3461 } else {
e6c5bc73
JM
3462 /*
3463 * If the queue was seeky for too long, break it apart.
3464 */
ae54abed 3465 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3466 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3467 cfqq = split_cfqq(cic, cfqq);
3468 if (!cfqq)
3469 goto new_queue;
3470 }
3471
df5fe3e8
JM
3472 /*
3473 * Check to see if this queue is scheduled to merge with
3474 * another, closely cooperating queue. The merging of
3475 * queues happens here as it must be done in process context.
3476 * The reference on new_cfqq was taken in merge_cfqqs.
3477 */
3478 if (cfqq->new_cfqq)
3479 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3480 }
1da177e4
LT
3481
3482 cfqq->allocated[rw]++;
22e2c507 3483 atomic_inc(&cfqq->ref);
1da177e4 3484
5e705374 3485 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 3486
5e705374
JA
3487 rq->elevator_private = cic;
3488 rq->elevator_private2 = cfqq;
3489 return 0;
1da177e4 3490
22e2c507
JA
3491queue_fail:
3492 if (cic)
3493 put_io_context(cic->ioc);
89850f7e 3494
23e018a1 3495 cfq_schedule_dispatch(cfqd);
1da177e4 3496 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3497 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3498 return 1;
3499}
3500
65f27f38 3501static void cfq_kick_queue(struct work_struct *work)
22e2c507 3502{
65f27f38 3503 struct cfq_data *cfqd =
23e018a1 3504 container_of(work, struct cfq_data, unplug_work);
165125e1 3505 struct request_queue *q = cfqd->queue;
22e2c507 3506
40bb54d1 3507 spin_lock_irq(q->queue_lock);
a7f55792 3508 __blk_run_queue(cfqd->queue);
40bb54d1 3509 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3510}
3511
3512/*
3513 * Timer running if the active_queue is currently idling inside its time slice
3514 */
3515static void cfq_idle_slice_timer(unsigned long data)
3516{
3517 struct cfq_data *cfqd = (struct cfq_data *) data;
3518 struct cfq_queue *cfqq;
3519 unsigned long flags;
3c6bd2f8 3520 int timed_out = 1;
22e2c507 3521
7b679138
JA
3522 cfq_log(cfqd, "idle timer fired");
3523
22e2c507
JA
3524 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3525
fe094d98
JA
3526 cfqq = cfqd->active_queue;
3527 if (cfqq) {
3c6bd2f8
JA
3528 timed_out = 0;
3529
b029195d
JA
3530 /*
3531 * We saw a request before the queue expired, let it through
3532 */
3533 if (cfq_cfqq_must_dispatch(cfqq))
3534 goto out_kick;
3535
22e2c507
JA
3536 /*
3537 * expired
3538 */
44f7c160 3539 if (cfq_slice_used(cfqq))
22e2c507
JA
3540 goto expire;
3541
3542 /*
3543 * only expire and reinvoke request handler, if there are
3544 * other queues with pending requests
3545 */
caaa5f9f 3546 if (!cfqd->busy_queues)
22e2c507 3547 goto out_cont;
22e2c507
JA
3548
3549 /*
3550 * not expired and it has a request pending, let it dispatch
3551 */
75e50984 3552 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3553 goto out_kick;
76280aff
CZ
3554
3555 /*
3556 * Queue depth flag is reset only when the idle didn't succeed
3557 */
3558 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3559 }
3560expire:
6084cdda 3561 cfq_slice_expired(cfqd, timed_out);
22e2c507 3562out_kick:
23e018a1 3563 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3564out_cont:
3565 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3566}
3567
3b18152c
JA
3568static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3569{
3570 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3571 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3572}
22e2c507 3573
c2dea2d1
VT
3574static void cfq_put_async_queues(struct cfq_data *cfqd)
3575{
3576 int i;
3577
3578 for (i = 0; i < IOPRIO_BE_NR; i++) {
3579 if (cfqd->async_cfqq[0][i])
3580 cfq_put_queue(cfqd->async_cfqq[0][i]);
3581 if (cfqd->async_cfqq[1][i])
3582 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3583 }
2389d1ef
ON
3584
3585 if (cfqd->async_idle_cfqq)
3586 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3587}
3588
bb729bc9
JA
3589static void cfq_cfqd_free(struct rcu_head *head)
3590{
3591 kfree(container_of(head, struct cfq_data, rcu));
3592}
3593
b374d18a 3594static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3595{
22e2c507 3596 struct cfq_data *cfqd = e->elevator_data;
165125e1 3597 struct request_queue *q = cfqd->queue;
22e2c507 3598
3b18152c 3599 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3600
d9ff4187 3601 spin_lock_irq(q->queue_lock);
e2d74ac0 3602
d9ff4187 3603 if (cfqd->active_queue)
6084cdda 3604 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3605
3606 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3607 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3608 struct cfq_io_context,
3609 queue_list);
89850f7e
JA
3610
3611 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3612 }
e2d74ac0 3613
c2dea2d1 3614 cfq_put_async_queues(cfqd);
b1c35769
VG
3615 cfq_release_cfq_groups(cfqd);
3616 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
15c31be4 3617
d9ff4187 3618 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3619
3620 cfq_shutdown_timer_wq(cfqd);
3621
b1c35769 3622 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
bb729bc9 3623 call_rcu(&cfqd->rcu, cfq_cfqd_free);
1da177e4
LT
3624}
3625
165125e1 3626static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3627{
3628 struct cfq_data *cfqd;
718eee05 3629 int i, j;
cdb16e8f 3630 struct cfq_group *cfqg;
615f0259 3631 struct cfq_rb_root *st;
1da177e4 3632
94f6030c 3633 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3634 if (!cfqd)
bc1c1169 3635 return NULL;
1da177e4 3636
1fa8f6d6
VG
3637 /* Init root service tree */
3638 cfqd->grp_service_tree = CFQ_RB_ROOT;
3639
cdb16e8f
VG
3640 /* Init root group */
3641 cfqg = &cfqd->root_group;
615f0259
VG
3642 for_each_cfqg_st(cfqg, i, j, st)
3643 *st = CFQ_RB_ROOT;
1fa8f6d6 3644 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3645
25bc6b07
VG
3646 /* Give preference to root group over other groups */
3647 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3648
25fb5169 3649#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769
VG
3650 /*
3651 * Take a reference to root group which we never drop. This is just
3652 * to make sure that cfq_put_cfqg() does not try to kfree root group
3653 */
3654 atomic_set(&cfqg->ref, 1);
22084190
VG
3655 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3656 0);
25fb5169 3657#endif
26a2ac00
JA
3658 /*
3659 * Not strictly needed (since RB_ROOT just clears the node and we
3660 * zeroed cfqd on alloc), but better be safe in case someone decides
3661 * to add magic to the rb code
3662 */
3663 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3664 cfqd->prio_trees[i] = RB_ROOT;
3665
6118b70b
JA
3666 /*
3667 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3668 * Grab a permanent reference to it, so that the normal code flow
3669 * will not attempt to free it.
3670 */
3671 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3672 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3673 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3674
d9ff4187 3675 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3676
1da177e4 3677 cfqd->queue = q;
1da177e4 3678
22e2c507
JA
3679 init_timer(&cfqd->idle_slice_timer);
3680 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3681 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3682
23e018a1 3683 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3684
1da177e4 3685 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3686 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3687 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3688 cfqd->cfq_back_max = cfq_back_max;
3689 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3690 cfqd->cfq_slice[0] = cfq_slice_async;
3691 cfqd->cfq_slice[1] = cfq_slice_sync;
3692 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3693 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 3694 cfqd->cfq_latency = 1;
ae30c286 3695 cfqd->cfq_group_isolation = 0;
e459dd08 3696 cfqd->hw_tag = -1;
edc71131
CZ
3697 /*
3698 * we optimistically start assuming sync ops weren't delayed in last
3699 * second, in order to have larger depth for async operations.
3700 */
573412b2 3701 cfqd->last_delayed_sync = jiffies - HZ;
bb729bc9 3702 INIT_RCU_HEAD(&cfqd->rcu);
bc1c1169 3703 return cfqd;
1da177e4
LT
3704}
3705
3706static void cfq_slab_kill(void)
3707{
d6de8be7
JA
3708 /*
3709 * Caller already ensured that pending RCU callbacks are completed,
3710 * so we should have no busy allocations at this point.
3711 */
1da177e4
LT
3712 if (cfq_pool)
3713 kmem_cache_destroy(cfq_pool);
3714 if (cfq_ioc_pool)
3715 kmem_cache_destroy(cfq_ioc_pool);
3716}
3717
3718static int __init cfq_slab_setup(void)
3719{
0a31bd5f 3720 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3721 if (!cfq_pool)
3722 goto fail;
3723
34e6bbf2 3724 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3725 if (!cfq_ioc_pool)
3726 goto fail;
3727
3728 return 0;
3729fail:
3730 cfq_slab_kill();
3731 return -ENOMEM;
3732}
3733
1da177e4
LT
3734/*
3735 * sysfs parts below -->
3736 */
1da177e4
LT
3737static ssize_t
3738cfq_var_show(unsigned int var, char *page)
3739{
3740 return sprintf(page, "%d\n", var);
3741}
3742
3743static ssize_t
3744cfq_var_store(unsigned int *var, const char *page, size_t count)
3745{
3746 char *p = (char *) page;
3747
3748 *var = simple_strtoul(p, &p, 10);
3749 return count;
3750}
3751
1da177e4 3752#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3753static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3754{ \
3d1ab40f 3755 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3756 unsigned int __data = __VAR; \
3757 if (__CONV) \
3758 __data = jiffies_to_msecs(__data); \
3759 return cfq_var_show(__data, (page)); \
3760}
3761SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3762SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3763SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3764SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3765SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3766SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3767SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3768SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3769SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3770SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
ae30c286 3771SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
1da177e4
LT
3772#undef SHOW_FUNCTION
3773
3774#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3775static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3776{ \
3d1ab40f 3777 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3778 unsigned int __data; \
3779 int ret = cfq_var_store(&__data, (page), count); \
3780 if (__data < (MIN)) \
3781 __data = (MIN); \
3782 else if (__data > (MAX)) \
3783 __data = (MAX); \
3784 if (__CONV) \
3785 *(__PTR) = msecs_to_jiffies(__data); \
3786 else \
3787 *(__PTR) = __data; \
3788 return ret; \
3789}
3790STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3791STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3792 UINT_MAX, 1);
3793STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3794 UINT_MAX, 1);
e572ec7e 3795STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3796STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3797 UINT_MAX, 0);
22e2c507
JA
3798STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3799STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3800STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3801STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3802 UINT_MAX, 0);
963b72fc 3803STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
ae30c286 3804STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
1da177e4
LT
3805#undef STORE_FUNCTION
3806
e572ec7e
AV
3807#define CFQ_ATTR(name) \
3808 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3809
3810static struct elv_fs_entry cfq_attrs[] = {
3811 CFQ_ATTR(quantum),
e572ec7e
AV
3812 CFQ_ATTR(fifo_expire_sync),
3813 CFQ_ATTR(fifo_expire_async),
3814 CFQ_ATTR(back_seek_max),
3815 CFQ_ATTR(back_seek_penalty),
3816 CFQ_ATTR(slice_sync),
3817 CFQ_ATTR(slice_async),
3818 CFQ_ATTR(slice_async_rq),
3819 CFQ_ATTR(slice_idle),
963b72fc 3820 CFQ_ATTR(low_latency),
ae30c286 3821 CFQ_ATTR(group_isolation),
e572ec7e 3822 __ATTR_NULL
1da177e4
LT
3823};
3824
1da177e4
LT
3825static struct elevator_type iosched_cfq = {
3826 .ops = {
3827 .elevator_merge_fn = cfq_merge,
3828 .elevator_merged_fn = cfq_merged_request,
3829 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3830 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 3831 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3832 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3833 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3834 .elevator_deactivate_req_fn = cfq_deactivate_request,
3835 .elevator_queue_empty_fn = cfq_queue_empty,
3836 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3837 .elevator_former_req_fn = elv_rb_former_request,
3838 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3839 .elevator_set_req_fn = cfq_set_request,
3840 .elevator_put_req_fn = cfq_put_request,
3841 .elevator_may_queue_fn = cfq_may_queue,
3842 .elevator_init_fn = cfq_init_queue,
3843 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3844 .trim = cfq_free_io_context,
1da177e4 3845 },
3d1ab40f 3846 .elevator_attrs = cfq_attrs,
1da177e4
LT
3847 .elevator_name = "cfq",
3848 .elevator_owner = THIS_MODULE,
3849};
3850
3e252066
VG
3851#ifdef CONFIG_CFQ_GROUP_IOSCHED
3852static struct blkio_policy_type blkio_policy_cfq = {
3853 .ops = {
3854 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3855 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3856 },
3857};
3858#else
3859static struct blkio_policy_type blkio_policy_cfq;
3860#endif
3861
1da177e4
LT
3862static int __init cfq_init(void)
3863{
22e2c507
JA
3864 /*
3865 * could be 0 on HZ < 1000 setups
3866 */
3867 if (!cfq_slice_async)
3868 cfq_slice_async = 1;
3869 if (!cfq_slice_idle)
3870 cfq_slice_idle = 1;
3871
1da177e4
LT
3872 if (cfq_slab_setup())
3873 return -ENOMEM;
3874
2fdd82bd 3875 elv_register(&iosched_cfq);
3e252066 3876 blkio_policy_register(&blkio_policy_cfq);
1da177e4 3877
2fdd82bd 3878 return 0;
1da177e4
LT
3879}
3880
3881static void __exit cfq_exit(void)
3882{
6e9a4738 3883 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 3884 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 3885 elv_unregister(&iosched_cfq);
334e94de 3886 ioc_gone = &all_gone;
fba82272
OH
3887 /* ioc_gone's update must be visible before reading ioc_count */
3888 smp_wmb();
d6de8be7
JA
3889
3890 /*
3891 * this also protects us from entering cfq_slab_kill() with
3892 * pending RCU callbacks
3893 */
245b2e70 3894 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3895 wait_for_completion(&all_gone);
83521d3e 3896 cfq_slab_kill();
1da177e4
LT
3897}
3898
3899module_init(cfq_init);
3900module_exit(cfq_exit);
3901
3902MODULE_AUTHOR("Jens Axboe");
3903MODULE_LICENSE("GPL");
3904MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");