mfd: kempld-core: Constify variables that point to const structure
[linux-2.6-block.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
30abb3a6 37#include <linux/bpf.h>
55782138
LZ
38
39#define CREATE_TRACE_POINTS
40#include <trace/events/block.h>
1da177e4 41
8324aa91 42#include "blk.h"
43a5e4e2 43#include "blk-mq.h"
bd166ef1 44#include "blk-mq-sched.h"
87760e5e 45#include "blk-wbt.h"
8324aa91 46
18fbda91
OS
47#ifdef CONFIG_DEBUG_FS
48struct dentry *blk_debugfs_root;
49#endif
50
d07335e5 51EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 55EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 56
a73f730d
TH
57DEFINE_IDA(blk_queue_ida);
58
1da177e4
LT
59/*
60 * For the allocated request tables
61 */
d674d414 62struct kmem_cache *request_cachep;
1da177e4
LT
63
64/*
65 * For queue allocation
66 */
6728cb0e 67struct kmem_cache *blk_requestq_cachep;
1da177e4 68
1da177e4
LT
69/*
70 * Controlling structure to kblockd
71 */
ff856bad 72static struct workqueue_struct *kblockd_workqueue;
1da177e4 73
8814ce8a
BVA
74/**
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
77 * @q: request queue
78 */
79void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80{
81 unsigned long flags;
82
83 spin_lock_irqsave(q->queue_lock, flags);
84 queue_flag_set(flag, q);
85 spin_unlock_irqrestore(q->queue_lock, flags);
86}
87EXPORT_SYMBOL(blk_queue_flag_set);
88
89/**
90 * blk_queue_flag_clear - atomically clear a queue flag
91 * @flag: flag to be cleared
92 * @q: request queue
93 */
94void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
95{
96 unsigned long flags;
97
98 spin_lock_irqsave(q->queue_lock, flags);
99 queue_flag_clear(flag, q);
100 spin_unlock_irqrestore(q->queue_lock, flags);
101}
102EXPORT_SYMBOL(blk_queue_flag_clear);
103
104/**
105 * blk_queue_flag_test_and_set - atomically test and set a queue flag
106 * @flag: flag to be set
107 * @q: request queue
108 *
109 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
110 * the flag was already set.
111 */
112bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
113{
114 unsigned long flags;
115 bool res;
116
117 spin_lock_irqsave(q->queue_lock, flags);
118 res = queue_flag_test_and_set(flag, q);
119 spin_unlock_irqrestore(q->queue_lock, flags);
120
121 return res;
122}
123EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
124
125/**
126 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
127 * @flag: flag to be cleared
128 * @q: request queue
129 *
130 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
131 * the flag was set.
132 */
133bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
134{
135 unsigned long flags;
136 bool res;
137
138 spin_lock_irqsave(q->queue_lock, flags);
139 res = queue_flag_test_and_clear(flag, q);
140 spin_unlock_irqrestore(q->queue_lock, flags);
141
142 return res;
143}
144EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
145
d40f75a0
TH
146static void blk_clear_congested(struct request_list *rl, int sync)
147{
d40f75a0
TH
148#ifdef CONFIG_CGROUP_WRITEBACK
149 clear_wb_congested(rl->blkg->wb_congested, sync);
150#else
482cf79c
TH
151 /*
152 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
153 * flip its congestion state for events on other blkcgs.
154 */
155 if (rl == &rl->q->root_rl)
dc3b17cc 156 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
157#endif
158}
159
160static void blk_set_congested(struct request_list *rl, int sync)
161{
d40f75a0
TH
162#ifdef CONFIG_CGROUP_WRITEBACK
163 set_wb_congested(rl->blkg->wb_congested, sync);
164#else
482cf79c
TH
165 /* see blk_clear_congested() */
166 if (rl == &rl->q->root_rl)
dc3b17cc 167 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
168#endif
169}
170
8324aa91 171void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
172{
173 int nr;
174
175 nr = q->nr_requests - (q->nr_requests / 8) + 1;
176 if (nr > q->nr_requests)
177 nr = q->nr_requests;
178 q->nr_congestion_on = nr;
179
180 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
181 if (nr < 1)
182 nr = 1;
183 q->nr_congestion_off = nr;
184}
185
2a4aa30c 186void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 187{
1afb20f3
FT
188 memset(rq, 0, sizeof(*rq));
189
1da177e4 190 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 191 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 192 rq->cpu = -1;
63a71386 193 rq->q = q;
a2dec7b3 194 rq->__sector = (sector_t) -1;
2e662b65
JA
195 INIT_HLIST_NODE(&rq->hash);
196 RB_CLEAR_NODE(&rq->rb_node);
63a71386 197 rq->tag = -1;
bd166ef1 198 rq->internal_tag = -1;
522a7775 199 rq->start_time_ns = ktime_get_ns();
09e099d4 200 rq->part = NULL;
1da177e4 201}
2a4aa30c 202EXPORT_SYMBOL(blk_rq_init);
1da177e4 203
2a842aca
CH
204static const struct {
205 int errno;
206 const char *name;
207} blk_errors[] = {
208 [BLK_STS_OK] = { 0, "" },
209 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
210 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
211 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
212 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
213 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
214 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
215 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
216 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
217 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 218 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 219 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 220
4e4cbee9
CH
221 /* device mapper special case, should not leak out: */
222 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
223
2a842aca
CH
224 /* everything else not covered above: */
225 [BLK_STS_IOERR] = { -EIO, "I/O" },
226};
227
228blk_status_t errno_to_blk_status(int errno)
229{
230 int i;
231
232 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
233 if (blk_errors[i].errno == errno)
234 return (__force blk_status_t)i;
235 }
236
237 return BLK_STS_IOERR;
238}
239EXPORT_SYMBOL_GPL(errno_to_blk_status);
240
241int blk_status_to_errno(blk_status_t status)
242{
243 int idx = (__force int)status;
244
34bd9c1c 245 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
246 return -EIO;
247 return blk_errors[idx].errno;
248}
249EXPORT_SYMBOL_GPL(blk_status_to_errno);
250
251static void print_req_error(struct request *req, blk_status_t status)
252{
253 int idx = (__force int)status;
254
34bd9c1c 255 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
256 return;
257
258 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
259 __func__, blk_errors[idx].name, req->rq_disk ?
260 req->rq_disk->disk_name : "?",
261 (unsigned long long)blk_rq_pos(req));
262}
263
5bb23a68 264static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 265 unsigned int nbytes, blk_status_t error)
1da177e4 266{
78d8e58a 267 if (error)
4e4cbee9 268 bio->bi_status = error;
797e7dbb 269
e8064021 270 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 271 bio_set_flag(bio, BIO_QUIET);
08bafc03 272
f79ea416 273 bio_advance(bio, nbytes);
7ba1ba12 274
143a87f4 275 /* don't actually finish bio if it's part of flush sequence */
e8064021 276 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 277 bio_endio(bio);
1da177e4 278}
1da177e4 279
1da177e4
LT
280void blk_dump_rq_flags(struct request *rq, char *msg)
281{
aebf526b
CH
282 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
283 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 284 (unsigned long long) rq->cmd_flags);
1da177e4 285
83096ebf
TH
286 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
287 (unsigned long long)blk_rq_pos(rq),
288 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
289 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
290 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 291}
1da177e4
LT
292EXPORT_SYMBOL(blk_dump_rq_flags);
293
3cca6dc1 294static void blk_delay_work(struct work_struct *work)
1da177e4 295{
3cca6dc1 296 struct request_queue *q;
1da177e4 297
3cca6dc1
JA
298 q = container_of(work, struct request_queue, delay_work.work);
299 spin_lock_irq(q->queue_lock);
24ecfbe2 300 __blk_run_queue(q);
3cca6dc1 301 spin_unlock_irq(q->queue_lock);
1da177e4 302}
1da177e4
LT
303
304/**
3cca6dc1
JA
305 * blk_delay_queue - restart queueing after defined interval
306 * @q: The &struct request_queue in question
307 * @msecs: Delay in msecs
1da177e4
LT
308 *
309 * Description:
3cca6dc1
JA
310 * Sometimes queueing needs to be postponed for a little while, to allow
311 * resources to come back. This function will make sure that queueing is
2fff8a92 312 * restarted around the specified time.
3cca6dc1
JA
313 */
314void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 315{
2fff8a92 316 lockdep_assert_held(q->queue_lock);
332ebbf7 317 WARN_ON_ONCE(q->mq_ops);
2fff8a92 318
70460571
BVA
319 if (likely(!blk_queue_dead(q)))
320 queue_delayed_work(kblockd_workqueue, &q->delay_work,
321 msecs_to_jiffies(msecs));
2ad8b1ef 322}
3cca6dc1 323EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 324
21491412
JA
325/**
326 * blk_start_queue_async - asynchronously restart a previously stopped queue
327 * @q: The &struct request_queue in question
328 *
329 * Description:
330 * blk_start_queue_async() will clear the stop flag on the queue, and
331 * ensure that the request_fn for the queue is run from an async
332 * context.
333 **/
334void blk_start_queue_async(struct request_queue *q)
335{
2fff8a92 336 lockdep_assert_held(q->queue_lock);
332ebbf7 337 WARN_ON_ONCE(q->mq_ops);
2fff8a92 338
21491412
JA
339 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
340 blk_run_queue_async(q);
341}
342EXPORT_SYMBOL(blk_start_queue_async);
343
1da177e4
LT
344/**
345 * blk_start_queue - restart a previously stopped queue
165125e1 346 * @q: The &struct request_queue in question
1da177e4
LT
347 *
348 * Description:
349 * blk_start_queue() will clear the stop flag on the queue, and call
350 * the request_fn for the queue if it was in a stopped state when
2fff8a92 351 * entered. Also see blk_stop_queue().
1da177e4 352 **/
165125e1 353void blk_start_queue(struct request_queue *q)
1da177e4 354{
2fff8a92 355 lockdep_assert_held(q->queue_lock);
332ebbf7 356 WARN_ON_ONCE(q->mq_ops);
a038e253 357
75ad23bc 358 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 359 __blk_run_queue(q);
1da177e4 360}
1da177e4
LT
361EXPORT_SYMBOL(blk_start_queue);
362
363/**
364 * blk_stop_queue - stop a queue
165125e1 365 * @q: The &struct request_queue in question
1da177e4
LT
366 *
367 * Description:
368 * The Linux block layer assumes that a block driver will consume all
369 * entries on the request queue when the request_fn strategy is called.
370 * Often this will not happen, because of hardware limitations (queue
371 * depth settings). If a device driver gets a 'queue full' response,
372 * or if it simply chooses not to queue more I/O at one point, it can
373 * call this function to prevent the request_fn from being called until
374 * the driver has signalled it's ready to go again. This happens by calling
2fff8a92 375 * blk_start_queue() to restart queue operations.
1da177e4 376 **/
165125e1 377void blk_stop_queue(struct request_queue *q)
1da177e4 378{
2fff8a92 379 lockdep_assert_held(q->queue_lock);
332ebbf7 380 WARN_ON_ONCE(q->mq_ops);
2fff8a92 381
136b5721 382 cancel_delayed_work(&q->delay_work);
75ad23bc 383 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
384}
385EXPORT_SYMBOL(blk_stop_queue);
386
387/**
388 * blk_sync_queue - cancel any pending callbacks on a queue
389 * @q: the queue
390 *
391 * Description:
392 * The block layer may perform asynchronous callback activity
393 * on a queue, such as calling the unplug function after a timeout.
394 * A block device may call blk_sync_queue to ensure that any
395 * such activity is cancelled, thus allowing it to release resources
59c51591 396 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
397 * that its ->make_request_fn will not re-add plugging prior to calling
398 * this function.
399 *
da527770 400 * This function does not cancel any asynchronous activity arising
da3dae54 401 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 402 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 403 *
1da177e4
LT
404 */
405void blk_sync_queue(struct request_queue *q)
406{
70ed28b9 407 del_timer_sync(&q->timeout);
4e9b6f20 408 cancel_work_sync(&q->timeout_work);
f04c1fe7
ML
409
410 if (q->mq_ops) {
411 struct blk_mq_hw_ctx *hctx;
412 int i;
413
aba7afc5 414 cancel_delayed_work_sync(&q->requeue_work);
21c6e939 415 queue_for_each_hw_ctx(q, hctx, i)
9f993737 416 cancel_delayed_work_sync(&hctx->run_work);
f04c1fe7
ML
417 } else {
418 cancel_delayed_work_sync(&q->delay_work);
419 }
1da177e4
LT
420}
421EXPORT_SYMBOL(blk_sync_queue);
422
c9254f2d
BVA
423/**
424 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
425 * @q: request queue pointer
426 *
427 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
428 * set and 1 if the flag was already set.
429 */
430int blk_set_preempt_only(struct request_queue *q)
431{
8814ce8a 432 return blk_queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
c9254f2d
BVA
433}
434EXPORT_SYMBOL_GPL(blk_set_preempt_only);
435
436void blk_clear_preempt_only(struct request_queue *q)
437{
8814ce8a 438 blk_queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
3a0a5299 439 wake_up_all(&q->mq_freeze_wq);
c9254f2d
BVA
440}
441EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
442
c246e80d
BVA
443/**
444 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
445 * @q: The queue to run
446 *
447 * Description:
448 * Invoke request handling on a queue if there are any pending requests.
449 * May be used to restart request handling after a request has completed.
450 * This variant runs the queue whether or not the queue has been
451 * stopped. Must be called with the queue lock held and interrupts
452 * disabled. See also @blk_run_queue.
453 */
454inline void __blk_run_queue_uncond(struct request_queue *q)
455{
2fff8a92 456 lockdep_assert_held(q->queue_lock);
332ebbf7 457 WARN_ON_ONCE(q->mq_ops);
2fff8a92 458
c246e80d
BVA
459 if (unlikely(blk_queue_dead(q)))
460 return;
461
24faf6f6
BVA
462 /*
463 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
464 * the queue lock internally. As a result multiple threads may be
465 * running such a request function concurrently. Keep track of the
466 * number of active request_fn invocations such that blk_drain_queue()
467 * can wait until all these request_fn calls have finished.
468 */
469 q->request_fn_active++;
c246e80d 470 q->request_fn(q);
24faf6f6 471 q->request_fn_active--;
c246e80d 472}
a7928c15 473EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 474
1da177e4 475/**
80a4b58e 476 * __blk_run_queue - run a single device queue
1da177e4 477 * @q: The queue to run
80a4b58e
JA
478 *
479 * Description:
2fff8a92 480 * See @blk_run_queue.
1da177e4 481 */
24ecfbe2 482void __blk_run_queue(struct request_queue *q)
1da177e4 483{
2fff8a92 484 lockdep_assert_held(q->queue_lock);
332ebbf7 485 WARN_ON_ONCE(q->mq_ops);
2fff8a92 486
a538cd03
TH
487 if (unlikely(blk_queue_stopped(q)))
488 return;
489
c246e80d 490 __blk_run_queue_uncond(q);
75ad23bc
NP
491}
492EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 493
24ecfbe2
CH
494/**
495 * blk_run_queue_async - run a single device queue in workqueue context
496 * @q: The queue to run
497 *
498 * Description:
499 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
2fff8a92
BVA
500 * of us.
501 *
502 * Note:
503 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
504 * has canceled q->delay_work, callers must hold the queue lock to avoid
505 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
24ecfbe2
CH
506 */
507void blk_run_queue_async(struct request_queue *q)
508{
2fff8a92 509 lockdep_assert_held(q->queue_lock);
332ebbf7 510 WARN_ON_ONCE(q->mq_ops);
2fff8a92 511
70460571 512 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 513 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 514}
c21e6beb 515EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 516
75ad23bc
NP
517/**
518 * blk_run_queue - run a single device queue
519 * @q: The queue to run
80a4b58e
JA
520 *
521 * Description:
522 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 523 * May be used to restart queueing when a request has completed.
75ad23bc
NP
524 */
525void blk_run_queue(struct request_queue *q)
526{
527 unsigned long flags;
528
332ebbf7
BVA
529 WARN_ON_ONCE(q->mq_ops);
530
75ad23bc 531 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 532 __blk_run_queue(q);
1da177e4
LT
533 spin_unlock_irqrestore(q->queue_lock, flags);
534}
535EXPORT_SYMBOL(blk_run_queue);
536
165125e1 537void blk_put_queue(struct request_queue *q)
483f4afc
AV
538{
539 kobject_put(&q->kobj);
540}
d86e0e83 541EXPORT_SYMBOL(blk_put_queue);
483f4afc 542
e3c78ca5 543/**
807592a4 544 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 545 * @q: queue to drain
c9a929dd 546 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 547 *
c9a929dd
TH
548 * Drain requests from @q. If @drain_all is set, all requests are drained.
549 * If not, only ELVPRIV requests are drained. The caller is responsible
550 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 551 */
807592a4
BVA
552static void __blk_drain_queue(struct request_queue *q, bool drain_all)
553 __releases(q->queue_lock)
554 __acquires(q->queue_lock)
e3c78ca5 555{
458f27a9
AH
556 int i;
557
807592a4 558 lockdep_assert_held(q->queue_lock);
332ebbf7 559 WARN_ON_ONCE(q->mq_ops);
807592a4 560
e3c78ca5 561 while (true) {
481a7d64 562 bool drain = false;
e3c78ca5 563
b855b04a
TH
564 /*
565 * The caller might be trying to drain @q before its
566 * elevator is initialized.
567 */
568 if (q->elevator)
569 elv_drain_elevator(q);
570
5efd6113 571 blkcg_drain_queue(q);
e3c78ca5 572
4eabc941
TH
573 /*
574 * This function might be called on a queue which failed
b855b04a
TH
575 * driver init after queue creation or is not yet fully
576 * active yet. Some drivers (e.g. fd and loop) get unhappy
577 * in such cases. Kick queue iff dispatch queue has
578 * something on it and @q has request_fn set.
4eabc941 579 */
b855b04a 580 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 581 __blk_run_queue(q);
c9a929dd 582
8a5ecdd4 583 drain |= q->nr_rqs_elvpriv;
24faf6f6 584 drain |= q->request_fn_active;
481a7d64
TH
585
586 /*
587 * Unfortunately, requests are queued at and tracked from
588 * multiple places and there's no single counter which can
589 * be drained. Check all the queues and counters.
590 */
591 if (drain_all) {
e97c293c 592 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
593 drain |= !list_empty(&q->queue_head);
594 for (i = 0; i < 2; i++) {
8a5ecdd4 595 drain |= q->nr_rqs[i];
481a7d64 596 drain |= q->in_flight[i];
7c94e1c1
ML
597 if (fq)
598 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
599 }
600 }
e3c78ca5 601
481a7d64 602 if (!drain)
e3c78ca5 603 break;
807592a4
BVA
604
605 spin_unlock_irq(q->queue_lock);
606
e3c78ca5 607 msleep(10);
807592a4
BVA
608
609 spin_lock_irq(q->queue_lock);
e3c78ca5 610 }
458f27a9
AH
611
612 /*
613 * With queue marked dead, any woken up waiter will fail the
614 * allocation path, so the wakeup chaining is lost and we're
615 * left with hung waiters. We need to wake up those waiters.
616 */
617 if (q->request_fn) {
a051661c
TH
618 struct request_list *rl;
619
a051661c
TH
620 blk_queue_for_each_rl(rl, q)
621 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
622 wake_up_all(&rl->wait[i]);
458f27a9 623 }
e3c78ca5
TH
624}
625
454be724
ML
626void blk_drain_queue(struct request_queue *q)
627{
628 spin_lock_irq(q->queue_lock);
629 __blk_drain_queue(q, true);
630 spin_unlock_irq(q->queue_lock);
631}
632
d732580b
TH
633/**
634 * blk_queue_bypass_start - enter queue bypass mode
635 * @q: queue of interest
636 *
637 * In bypass mode, only the dispatch FIFO queue of @q is used. This
638 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 639 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
640 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
641 * inside queue or RCU read lock.
d732580b
TH
642 */
643void blk_queue_bypass_start(struct request_queue *q)
644{
332ebbf7
BVA
645 WARN_ON_ONCE(q->mq_ops);
646
d732580b 647 spin_lock_irq(q->queue_lock);
776687bc 648 q->bypass_depth++;
d732580b
TH
649 queue_flag_set(QUEUE_FLAG_BYPASS, q);
650 spin_unlock_irq(q->queue_lock);
651
776687bc
TH
652 /*
653 * Queues start drained. Skip actual draining till init is
654 * complete. This avoids lenghty delays during queue init which
655 * can happen many times during boot.
656 */
657 if (blk_queue_init_done(q)) {
807592a4
BVA
658 spin_lock_irq(q->queue_lock);
659 __blk_drain_queue(q, false);
660 spin_unlock_irq(q->queue_lock);
661
b82d4b19
TH
662 /* ensure blk_queue_bypass() is %true inside RCU read lock */
663 synchronize_rcu();
664 }
d732580b
TH
665}
666EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
667
668/**
669 * blk_queue_bypass_end - leave queue bypass mode
670 * @q: queue of interest
671 *
672 * Leave bypass mode and restore the normal queueing behavior.
332ebbf7
BVA
673 *
674 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
675 * this function is called for both blk-sq and blk-mq queues.
d732580b
TH
676 */
677void blk_queue_bypass_end(struct request_queue *q)
678{
679 spin_lock_irq(q->queue_lock);
680 if (!--q->bypass_depth)
681 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
682 WARN_ON_ONCE(q->bypass_depth < 0);
683 spin_unlock_irq(q->queue_lock);
684}
685EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
686
aed3ea94
JA
687void blk_set_queue_dying(struct request_queue *q)
688{
8814ce8a 689 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
aed3ea94 690
d3cfb2a0
ML
691 /*
692 * When queue DYING flag is set, we need to block new req
693 * entering queue, so we call blk_freeze_queue_start() to
694 * prevent I/O from crossing blk_queue_enter().
695 */
696 blk_freeze_queue_start(q);
697
aed3ea94
JA
698 if (q->mq_ops)
699 blk_mq_wake_waiters(q);
700 else {
701 struct request_list *rl;
702
bbfc3c5d 703 spin_lock_irq(q->queue_lock);
aed3ea94
JA
704 blk_queue_for_each_rl(rl, q) {
705 if (rl->rq_pool) {
34d9715a
ML
706 wake_up_all(&rl->wait[BLK_RW_SYNC]);
707 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
aed3ea94
JA
708 }
709 }
bbfc3c5d 710 spin_unlock_irq(q->queue_lock);
aed3ea94 711 }
055f6e18
ML
712
713 /* Make blk_queue_enter() reexamine the DYING flag. */
714 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
715}
716EXPORT_SYMBOL_GPL(blk_set_queue_dying);
717
c9a929dd
TH
718/**
719 * blk_cleanup_queue - shutdown a request queue
720 * @q: request queue to shutdown
721 *
c246e80d
BVA
722 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
723 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 724 */
6728cb0e 725void blk_cleanup_queue(struct request_queue *q)
483f4afc 726{
c9a929dd 727 spinlock_t *lock = q->queue_lock;
e3335de9 728
3f3299d5 729 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 730 mutex_lock(&q->sysfs_lock);
aed3ea94 731 blk_set_queue_dying(q);
c9a929dd 732 spin_lock_irq(lock);
6ecf23af 733
80fd9979 734 /*
3f3299d5 735 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
736 * that, unlike blk_queue_bypass_start(), we aren't performing
737 * synchronize_rcu() after entering bypass mode to avoid the delay
738 * as some drivers create and destroy a lot of queues while
739 * probing. This is still safe because blk_release_queue() will be
740 * called only after the queue refcnt drops to zero and nothing,
741 * RCU or not, would be traversing the queue by then.
742 */
6ecf23af
TH
743 q->bypass_depth++;
744 queue_flag_set(QUEUE_FLAG_BYPASS, q);
745
c9a929dd
TH
746 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
747 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 748 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
749 spin_unlock_irq(lock);
750 mutex_unlock(&q->sysfs_lock);
751
c246e80d
BVA
752 /*
753 * Drain all requests queued before DYING marking. Set DEAD flag to
754 * prevent that q->request_fn() gets invoked after draining finished.
755 */
3ef28e83 756 blk_freeze_queue(q);
9c1051aa 757 spin_lock_irq(lock);
c246e80d 758 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 759 spin_unlock_irq(lock);
c9a929dd 760
c2856ae2
ML
761 /*
762 * make sure all in-progress dispatch are completed because
763 * blk_freeze_queue() can only complete all requests, and
764 * dispatch may still be in-progress since we dispatch requests
765 * from more than one contexts
766 */
767 if (q->mq_ops)
768 blk_mq_quiesce_queue(q);
769
5a48fc14
DW
770 /* for synchronous bio-based driver finish in-flight integrity i/o */
771 blk_flush_integrity();
772
c9a929dd 773 /* @q won't process any more request, flush async actions */
dc3b17cc 774 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
775 blk_sync_queue(q);
776
a063057d
BVA
777 /*
778 * I/O scheduler exit is only safe after the sysfs scheduler attribute
779 * has been removed.
780 */
781 WARN_ON_ONCE(q->kobj.state_in_sysfs);
782
783 /*
784 * Since the I/O scheduler exit code may access cgroup information,
785 * perform I/O scheduler exit before disassociating from the block
786 * cgroup controller.
787 */
788 if (q->elevator) {
789 ioc_clear_queue(q);
790 elevator_exit(q, q->elevator);
791 q->elevator = NULL;
792 }
793
794 /*
795 * Remove all references to @q from the block cgroup controller before
796 * restoring @q->queue_lock to avoid that restoring this pointer causes
797 * e.g. blkcg_print_blkgs() to crash.
798 */
799 blkcg_exit_queue(q);
800
801 /*
802 * Since the cgroup code may dereference the @q->backing_dev_info
803 * pointer, only decrease its reference count after having removed the
804 * association with the block cgroup controller.
805 */
806 bdi_put(q->backing_dev_info);
807
45a9c9d9
BVA
808 if (q->mq_ops)
809 blk_mq_free_queue(q);
3ef28e83 810 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 811
5e5cfac0
AH
812 spin_lock_irq(lock);
813 if (q->queue_lock != &q->__queue_lock)
814 q->queue_lock = &q->__queue_lock;
815 spin_unlock_irq(lock);
816
c9a929dd 817 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
818 blk_put_queue(q);
819}
1da177e4
LT
820EXPORT_SYMBOL(blk_cleanup_queue);
821
271508db 822/* Allocate memory local to the request queue */
6d247d7f 823static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 824{
6d247d7f
CH
825 struct request_queue *q = data;
826
827 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
828}
829
6d247d7f 830static void free_request_simple(void *element, void *data)
271508db
DR
831{
832 kmem_cache_free(request_cachep, element);
833}
834
6d247d7f
CH
835static void *alloc_request_size(gfp_t gfp_mask, void *data)
836{
837 struct request_queue *q = data;
838 struct request *rq;
839
840 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
841 q->node);
842 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
843 kfree(rq);
844 rq = NULL;
845 }
846 return rq;
847}
848
849static void free_request_size(void *element, void *data)
850{
851 struct request_queue *q = data;
852
853 if (q->exit_rq_fn)
854 q->exit_rq_fn(q, element);
855 kfree(element);
856}
857
5b788ce3
TH
858int blk_init_rl(struct request_list *rl, struct request_queue *q,
859 gfp_t gfp_mask)
1da177e4 860{
85acb3ba 861 if (unlikely(rl->rq_pool) || q->mq_ops)
1abec4fd
MS
862 return 0;
863
5b788ce3 864 rl->q = q;
1faa16d2
JA
865 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
866 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
867 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
868 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 869
6d247d7f
CH
870 if (q->cmd_size) {
871 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
872 alloc_request_size, free_request_size,
873 q, gfp_mask, q->node);
874 } else {
875 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
876 alloc_request_simple, free_request_simple,
877 q, gfp_mask, q->node);
878 }
1da177e4
LT
879 if (!rl->rq_pool)
880 return -ENOMEM;
881
b425e504
BVA
882 if (rl != &q->root_rl)
883 WARN_ON_ONCE(!blk_get_queue(q));
884
1da177e4
LT
885 return 0;
886}
887
b425e504 888void blk_exit_rl(struct request_queue *q, struct request_list *rl)
5b788ce3 889{
b425e504 890 if (rl->rq_pool) {
5b788ce3 891 mempool_destroy(rl->rq_pool);
b425e504
BVA
892 if (rl != &q->root_rl)
893 blk_put_queue(q);
894 }
5b788ce3
TH
895}
896
165125e1 897struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 898{
5ee0524b 899 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
1946089a
CL
900}
901EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 902
3a0a5299
BVA
903/**
904 * blk_queue_enter() - try to increase q->q_usage_counter
905 * @q: request queue pointer
906 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
907 */
9a95e4ef 908int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 909{
3a0a5299
BVA
910 const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
911
3ef28e83 912 while (true) {
3a0a5299 913 bool success = false;
3ef28e83 914
818e0fa2 915 rcu_read_lock();
3a0a5299
BVA
916 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
917 /*
918 * The code that sets the PREEMPT_ONLY flag is
919 * responsible for ensuring that that flag is globally
920 * visible before the queue is unfrozen.
921 */
922 if (preempt || !blk_queue_preempt_only(q)) {
923 success = true;
924 } else {
925 percpu_ref_put(&q->q_usage_counter);
926 }
927 }
818e0fa2 928 rcu_read_unlock();
3a0a5299
BVA
929
930 if (success)
3ef28e83
DW
931 return 0;
932
3a0a5299 933 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
934 return -EBUSY;
935
5ed61d3f 936 /*
1671d522 937 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 938 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
939 * .q_usage_counter and reading .mq_freeze_depth or
940 * queue dying flag, otherwise the following wait may
941 * never return if the two reads are reordered.
5ed61d3f
ML
942 */
943 smp_rmb();
944
1dc3039b
AJ
945 wait_event(q->mq_freeze_wq,
946 (atomic_read(&q->mq_freeze_depth) == 0 &&
947 (preempt || !blk_queue_preempt_only(q))) ||
948 blk_queue_dying(q));
3ef28e83
DW
949 if (blk_queue_dying(q))
950 return -ENODEV;
3ef28e83
DW
951 }
952}
953
954void blk_queue_exit(struct request_queue *q)
955{
956 percpu_ref_put(&q->q_usage_counter);
957}
958
959static void blk_queue_usage_counter_release(struct percpu_ref *ref)
960{
961 struct request_queue *q =
962 container_of(ref, struct request_queue, q_usage_counter);
963
964 wake_up_all(&q->mq_freeze_wq);
965}
966
bca237a5 967static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 968{
bca237a5 969 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
970
971 kblockd_schedule_work(&q->timeout_work);
972}
973
498f6650
BVA
974/**
975 * blk_alloc_queue_node - allocate a request queue
976 * @gfp_mask: memory allocation flags
977 * @node_id: NUMA node to allocate memory from
978 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
979 * serialize calls to the legacy .request_fn() callback. Ignored for
980 * blk-mq request queues.
981 *
982 * Note: pass the queue lock as the third argument to this function instead of
983 * setting the queue lock pointer explicitly to avoid triggering a sporadic
984 * crash in the blkcg code. This function namely calls blkcg_init_queue() and
985 * the queue lock pointer must be set before blkcg_init_queue() is called.
986 */
5ee0524b
BVA
987struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
988 spinlock_t *lock)
1946089a 989{
165125e1 990 struct request_queue *q;
338aa96d 991 int ret;
1946089a 992
8324aa91 993 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 994 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
995 if (!q)
996 return NULL;
997
cbf62af3
CH
998 INIT_LIST_HEAD(&q->queue_head);
999 q->last_merge = NULL;
1000 q->end_sector = 0;
1001 q->boundary_rq = NULL;
1002
00380a40 1003 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 1004 if (q->id < 0)
3d2936f4 1005 goto fail_q;
a73f730d 1006
338aa96d
KO
1007 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1008 if (ret)
54efd50b
KO
1009 goto fail_id;
1010
d03f6cdc
JK
1011 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1012 if (!q->backing_dev_info)
1013 goto fail_split;
1014
a83b576c
JA
1015 q->stats = blk_alloc_queue_stats();
1016 if (!q->stats)
1017 goto fail_stats;
1018
dc3b17cc 1019 q->backing_dev_info->ra_pages =
09cbfeaf 1020 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
1021 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1022 q->backing_dev_info->name = "block";
5151412d 1023 q->node = node_id;
0989a025 1024
bca237a5
KC
1025 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1026 laptop_mode_timer_fn, 0);
1027 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
4e9b6f20 1028 INIT_WORK(&q->timeout_work, NULL);
b855b04a 1029 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 1030 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 1031 INIT_LIST_HEAD(&q->icq_list);
4eef3049 1032#ifdef CONFIG_BLK_CGROUP
e8989fae 1033 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 1034#endif
3cca6dc1 1035 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 1036
8324aa91 1037 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 1038
5acb3cc2
WL
1039#ifdef CONFIG_BLK_DEV_IO_TRACE
1040 mutex_init(&q->blk_trace_mutex);
1041#endif
483f4afc 1042 mutex_init(&q->sysfs_lock);
e7e72bf6 1043 spin_lock_init(&q->__queue_lock);
483f4afc 1044
498f6650
BVA
1045 if (!q->mq_ops)
1046 q->queue_lock = lock ? : &q->__queue_lock;
c94a96ac 1047
b82d4b19
TH
1048 /*
1049 * A queue starts its life with bypass turned on to avoid
1050 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
1051 * init. The initial bypass will be finished when the queue is
1052 * registered by blk_register_queue().
b82d4b19
TH
1053 */
1054 q->bypass_depth = 1;
f78bac2c 1055 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
b82d4b19 1056
320ae51f
JA
1057 init_waitqueue_head(&q->mq_freeze_wq);
1058
3ef28e83
DW
1059 /*
1060 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1061 * See blk_register_queue() for details.
1062 */
1063 if (percpu_ref_init(&q->q_usage_counter,
1064 blk_queue_usage_counter_release,
1065 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 1066 goto fail_bdi;
f51b802c 1067
3ef28e83
DW
1068 if (blkcg_init_queue(q))
1069 goto fail_ref;
1070
1da177e4 1071 return q;
a73f730d 1072
3ef28e83
DW
1073fail_ref:
1074 percpu_ref_exit(&q->q_usage_counter);
fff4996b 1075fail_bdi:
a83b576c
JA
1076 blk_free_queue_stats(q->stats);
1077fail_stats:
d03f6cdc 1078 bdi_put(q->backing_dev_info);
54efd50b 1079fail_split:
338aa96d 1080 bioset_exit(&q->bio_split);
a73f730d
TH
1081fail_id:
1082 ida_simple_remove(&blk_queue_ida, q->id);
1083fail_q:
1084 kmem_cache_free(blk_requestq_cachep, q);
1085 return NULL;
1da177e4 1086}
1946089a 1087EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1088
1089/**
1090 * blk_init_queue - prepare a request queue for use with a block device
1091 * @rfn: The function to be called to process requests that have been
1092 * placed on the queue.
1093 * @lock: Request queue spin lock
1094 *
1095 * Description:
1096 * If a block device wishes to use the standard request handling procedures,
1097 * which sorts requests and coalesces adjacent requests, then it must
1098 * call blk_init_queue(). The function @rfn will be called when there
1099 * are requests on the queue that need to be processed. If the device
1100 * supports plugging, then @rfn may not be called immediately when requests
1101 * are available on the queue, but may be called at some time later instead.
1102 * Plugged queues are generally unplugged when a buffer belonging to one
1103 * of the requests on the queue is needed, or due to memory pressure.
1104 *
1105 * @rfn is not required, or even expected, to remove all requests off the
1106 * queue, but only as many as it can handle at a time. If it does leave
1107 * requests on the queue, it is responsible for arranging that the requests
1108 * get dealt with eventually.
1109 *
1110 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1111 * request queue; this lock will be taken also from interrupt context, so irq
1112 * disabling is needed for it.
1da177e4 1113 *
710027a4 1114 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
1115 * it didn't succeed.
1116 *
1117 * Note:
1118 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1119 * when the block device is deactivated (such as at module unload).
1120 **/
1946089a 1121
165125e1 1122struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 1123{
c304a51b 1124 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
1125}
1126EXPORT_SYMBOL(blk_init_queue);
1127
165125e1 1128struct request_queue *
1946089a
CL
1129blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1130{
5ea708d1 1131 struct request_queue *q;
1da177e4 1132
498f6650 1133 q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
5ea708d1 1134 if (!q)
c86d1b8a
MS
1135 return NULL;
1136
5ea708d1 1137 q->request_fn = rfn;
5ea708d1
CH
1138 if (blk_init_allocated_queue(q) < 0) {
1139 blk_cleanup_queue(q);
1140 return NULL;
1141 }
18741986 1142
7982e90c 1143 return q;
01effb0d
MS
1144}
1145EXPORT_SYMBOL(blk_init_queue_node);
1146
dece1635 1147static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 1148
1da177e4 1149
5ea708d1
CH
1150int blk_init_allocated_queue(struct request_queue *q)
1151{
332ebbf7
BVA
1152 WARN_ON_ONCE(q->mq_ops);
1153
6d247d7f 1154 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
ba483388 1155 if (!q->fq)
5ea708d1 1156 return -ENOMEM;
7982e90c 1157
6d247d7f
CH
1158 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1159 goto out_free_flush_queue;
7982e90c 1160
a051661c 1161 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 1162 goto out_exit_flush_rq;
1da177e4 1163
287922eb 1164 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 1165 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 1166
f3b144aa
JA
1167 /*
1168 * This also sets hw/phys segments, boundary and size
1169 */
c20e8de2 1170 blk_queue_make_request(q, blk_queue_bio);
1da177e4 1171
44ec9542
AS
1172 q->sg_reserved_size = INT_MAX;
1173
acddf3b3 1174 if (elevator_init(q))
6d247d7f 1175 goto out_exit_flush_rq;
5ea708d1 1176 return 0;
eb1c160b 1177
6d247d7f
CH
1178out_exit_flush_rq:
1179 if (q->exit_rq_fn)
1180 q->exit_rq_fn(q, q->fq->flush_rq);
1181out_free_flush_queue:
ba483388 1182 blk_free_flush_queue(q->fq);
5ea708d1 1183 return -ENOMEM;
1da177e4 1184}
5151412d 1185EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 1186
09ac46c4 1187bool blk_get_queue(struct request_queue *q)
1da177e4 1188{
3f3299d5 1189 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
1190 __blk_get_queue(q);
1191 return true;
1da177e4
LT
1192 }
1193
09ac46c4 1194 return false;
1da177e4 1195}
d86e0e83 1196EXPORT_SYMBOL(blk_get_queue);
1da177e4 1197
5b788ce3 1198static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 1199{
e8064021 1200 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 1201 elv_put_request(rl->q, rq);
f1f8cc94 1202 if (rq->elv.icq)
11a3122f 1203 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
1204 }
1205
5b788ce3 1206 mempool_free(rq, rl->rq_pool);
1da177e4
LT
1207}
1208
1da177e4
LT
1209/*
1210 * ioc_batching returns true if the ioc is a valid batching request and
1211 * should be given priority access to a request.
1212 */
165125e1 1213static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1214{
1215 if (!ioc)
1216 return 0;
1217
1218 /*
1219 * Make sure the process is able to allocate at least 1 request
1220 * even if the batch times out, otherwise we could theoretically
1221 * lose wakeups.
1222 */
1223 return ioc->nr_batch_requests == q->nr_batching ||
1224 (ioc->nr_batch_requests > 0
1225 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1226}
1227
1228/*
1229 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1230 * will cause the process to be a "batcher" on all queues in the system. This
1231 * is the behaviour we want though - once it gets a wakeup it should be given
1232 * a nice run.
1233 */
165125e1 1234static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1235{
1236 if (!ioc || ioc_batching(q, ioc))
1237 return;
1238
1239 ioc->nr_batch_requests = q->nr_batching;
1240 ioc->last_waited = jiffies;
1241}
1242
5b788ce3 1243static void __freed_request(struct request_list *rl, int sync)
1da177e4 1244{
5b788ce3 1245 struct request_queue *q = rl->q;
1da177e4 1246
d40f75a0
TH
1247 if (rl->count[sync] < queue_congestion_off_threshold(q))
1248 blk_clear_congested(rl, sync);
1da177e4 1249
1faa16d2
JA
1250 if (rl->count[sync] + 1 <= q->nr_requests) {
1251 if (waitqueue_active(&rl->wait[sync]))
1252 wake_up(&rl->wait[sync]);
1da177e4 1253
5b788ce3 1254 blk_clear_rl_full(rl, sync);
1da177e4
LT
1255 }
1256}
1257
1258/*
1259 * A request has just been released. Account for it, update the full and
1260 * congestion status, wake up any waiters. Called under q->queue_lock.
1261 */
e8064021
CH
1262static void freed_request(struct request_list *rl, bool sync,
1263 req_flags_t rq_flags)
1da177e4 1264{
5b788ce3 1265 struct request_queue *q = rl->q;
1da177e4 1266
8a5ecdd4 1267 q->nr_rqs[sync]--;
1faa16d2 1268 rl->count[sync]--;
e8064021 1269 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 1270 q->nr_rqs_elvpriv--;
1da177e4 1271
5b788ce3 1272 __freed_request(rl, sync);
1da177e4 1273
1faa16d2 1274 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 1275 __freed_request(rl, sync ^ 1);
1da177e4
LT
1276}
1277
e3a2b3f9
JA
1278int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1279{
1280 struct request_list *rl;
d40f75a0 1281 int on_thresh, off_thresh;
e3a2b3f9 1282
332ebbf7
BVA
1283 WARN_ON_ONCE(q->mq_ops);
1284
e3a2b3f9
JA
1285 spin_lock_irq(q->queue_lock);
1286 q->nr_requests = nr;
1287 blk_queue_congestion_threshold(q);
d40f75a0
TH
1288 on_thresh = queue_congestion_on_threshold(q);
1289 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1290
d40f75a0
TH
1291 blk_queue_for_each_rl(rl, q) {
1292 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1293 blk_set_congested(rl, BLK_RW_SYNC);
1294 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1295 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1296
d40f75a0
TH
1297 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1298 blk_set_congested(rl, BLK_RW_ASYNC);
1299 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1300 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1301
e3a2b3f9
JA
1302 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1303 blk_set_rl_full(rl, BLK_RW_SYNC);
1304 } else {
1305 blk_clear_rl_full(rl, BLK_RW_SYNC);
1306 wake_up(&rl->wait[BLK_RW_SYNC]);
1307 }
1308
1309 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1310 blk_set_rl_full(rl, BLK_RW_ASYNC);
1311 } else {
1312 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1313 wake_up(&rl->wait[BLK_RW_ASYNC]);
1314 }
1315 }
1316
1317 spin_unlock_irq(q->queue_lock);
1318 return 0;
1319}
1320
da8303c6 1321/**
a06e05e6 1322 * __get_request - get a free request
5b788ce3 1323 * @rl: request list to allocate from
ef295ecf 1324 * @op: operation and flags
da8303c6 1325 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1326 * @flags: BLQ_MQ_REQ_* flags
4accf5fc 1327 * @gfp_mask: allocator flags
da8303c6
TH
1328 *
1329 * Get a free request from @q. This function may fail under memory
1330 * pressure or if @q is dead.
1331 *
da3dae54 1332 * Must be called with @q->queue_lock held and,
a492f075
JL
1333 * Returns ERR_PTR on failure, with @q->queue_lock held.
1334 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1335 */
ef295ecf 1336static struct request *__get_request(struct request_list *rl, unsigned int op,
4accf5fc 1337 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask)
1da177e4 1338{
5b788ce3 1339 struct request_queue *q = rl->q;
b679281a 1340 struct request *rq;
7f4b35d1
TH
1341 struct elevator_type *et = q->elevator->type;
1342 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1343 struct io_cq *icq = NULL;
ef295ecf 1344 const bool is_sync = op_is_sync(op);
75eb6c37 1345 int may_queue;
e8064021 1346 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1347
2fff8a92
BVA
1348 lockdep_assert_held(q->queue_lock);
1349
3f3299d5 1350 if (unlikely(blk_queue_dying(q)))
a492f075 1351 return ERR_PTR(-ENODEV);
da8303c6 1352
ef295ecf 1353 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1354 if (may_queue == ELV_MQUEUE_NO)
1355 goto rq_starved;
1356
1faa16d2
JA
1357 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1358 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1359 /*
1360 * The queue will fill after this allocation, so set
1361 * it as full, and mark this process as "batching".
1362 * This process will be allowed to complete a batch of
1363 * requests, others will be blocked.
1364 */
5b788ce3 1365 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1366 ioc_set_batching(q, ioc);
5b788ce3 1367 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1368 } else {
1369 if (may_queue != ELV_MQUEUE_MUST
1370 && !ioc_batching(q, ioc)) {
1371 /*
1372 * The queue is full and the allocating
1373 * process is not a "batcher", and not
1374 * exempted by the IO scheduler
1375 */
a492f075 1376 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1377 }
1378 }
1da177e4 1379 }
d40f75a0 1380 blk_set_congested(rl, is_sync);
1da177e4
LT
1381 }
1382
082cf69e
JA
1383 /*
1384 * Only allow batching queuers to allocate up to 50% over the defined
1385 * limit of requests, otherwise we could have thousands of requests
1386 * allocated with any setting of ->nr_requests
1387 */
1faa16d2 1388 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1389 return ERR_PTR(-ENOMEM);
fd782a4a 1390
8a5ecdd4 1391 q->nr_rqs[is_sync]++;
1faa16d2
JA
1392 rl->count[is_sync]++;
1393 rl->starved[is_sync] = 0;
cb98fc8b 1394
f1f8cc94
TH
1395 /*
1396 * Decide whether the new request will be managed by elevator. If
e8064021 1397 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1398 * prevent the current elevator from being destroyed until the new
1399 * request is freed. This guarantees icq's won't be destroyed and
1400 * makes creating new ones safe.
1401 *
e6f7f93d
CH
1402 * Flush requests do not use the elevator so skip initialization.
1403 * This allows a request to share the flush and elevator data.
1404 *
f1f8cc94
TH
1405 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1406 * it will be created after releasing queue_lock.
1407 */
e6f7f93d 1408 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1409 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1410 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1411 if (et->icq_cache && ioc)
1412 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1413 }
cb98fc8b 1414
f253b86b 1415 if (blk_queue_io_stat(q))
e8064021 1416 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1417 spin_unlock_irq(q->queue_lock);
1418
29e2b09a 1419 /* allocate and init request */
5b788ce3 1420 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1421 if (!rq)
b679281a 1422 goto fail_alloc;
1da177e4 1423
29e2b09a 1424 blk_rq_init(q, rq);
a051661c 1425 blk_rq_set_rl(rq, rl);
ef295ecf 1426 rq->cmd_flags = op;
e8064021 1427 rq->rq_flags = rq_flags;
1b6d65a0
BVA
1428 if (flags & BLK_MQ_REQ_PREEMPT)
1429 rq->rq_flags |= RQF_PREEMPT;
29e2b09a 1430
aaf7c680 1431 /* init elvpriv */
e8064021 1432 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1433 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1434 if (ioc)
1435 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1436 if (!icq)
1437 goto fail_elvpriv;
29e2b09a 1438 }
aaf7c680
TH
1439
1440 rq->elv.icq = icq;
1441 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1442 goto fail_elvpriv;
1443
1444 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1445 if (icq)
1446 get_io_context(icq->ioc);
1447 }
aaf7c680 1448out:
88ee5ef1
JA
1449 /*
1450 * ioc may be NULL here, and ioc_batching will be false. That's
1451 * OK, if the queue is under the request limit then requests need
1452 * not count toward the nr_batch_requests limit. There will always
1453 * be some limit enforced by BLK_BATCH_TIME.
1454 */
1da177e4
LT
1455 if (ioc_batching(q, ioc))
1456 ioc->nr_batch_requests--;
6728cb0e 1457
e6a40b09 1458 trace_block_getrq(q, bio, op);
1da177e4 1459 return rq;
b679281a 1460
aaf7c680
TH
1461fail_elvpriv:
1462 /*
1463 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1464 * and may fail indefinitely under memory pressure and thus
1465 * shouldn't stall IO. Treat this request as !elvpriv. This will
1466 * disturb iosched and blkcg but weird is bettern than dead.
1467 */
7b2b10e0 1468 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
dc3b17cc 1469 __func__, dev_name(q->backing_dev_info->dev));
aaf7c680 1470
e8064021 1471 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1472 rq->elv.icq = NULL;
1473
1474 spin_lock_irq(q->queue_lock);
8a5ecdd4 1475 q->nr_rqs_elvpriv--;
aaf7c680
TH
1476 spin_unlock_irq(q->queue_lock);
1477 goto out;
1478
b679281a
TH
1479fail_alloc:
1480 /*
1481 * Allocation failed presumably due to memory. Undo anything we
1482 * might have messed up.
1483 *
1484 * Allocating task should really be put onto the front of the wait
1485 * queue, but this is pretty rare.
1486 */
1487 spin_lock_irq(q->queue_lock);
e8064021 1488 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1489
1490 /*
1491 * in the very unlikely event that allocation failed and no
1492 * requests for this direction was pending, mark us starved so that
1493 * freeing of a request in the other direction will notice
1494 * us. another possible fix would be to split the rq mempool into
1495 * READ and WRITE
1496 */
1497rq_starved:
1498 if (unlikely(rl->count[is_sync] == 0))
1499 rl->starved[is_sync] = 1;
a492f075 1500 return ERR_PTR(-ENOMEM);
1da177e4
LT
1501}
1502
da8303c6 1503/**
a06e05e6 1504 * get_request - get a free request
da8303c6 1505 * @q: request_queue to allocate request from
ef295ecf 1506 * @op: operation and flags
da8303c6 1507 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1508 * @flags: BLK_MQ_REQ_* flags.
4accf5fc 1509 * @gfp: allocator flags
da8303c6 1510 *
a9a14d36 1511 * Get a free request from @q. If %BLK_MQ_REQ_NOWAIT is set in @flags,
d0164adc 1512 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1513 *
da3dae54 1514 * Must be called with @q->queue_lock held and,
a492f075
JL
1515 * Returns ERR_PTR on failure, with @q->queue_lock held.
1516 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1517 */
ef295ecf 1518static struct request *get_request(struct request_queue *q, unsigned int op,
4accf5fc 1519 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp)
1da177e4 1520{
ef295ecf 1521 const bool is_sync = op_is_sync(op);
a06e05e6 1522 DEFINE_WAIT(wait);
a051661c 1523 struct request_list *rl;
1da177e4 1524 struct request *rq;
a051661c 1525
2fff8a92 1526 lockdep_assert_held(q->queue_lock);
332ebbf7 1527 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1528
a051661c 1529 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1530retry:
4accf5fc 1531 rq = __get_request(rl, op, bio, flags, gfp);
a492f075 1532 if (!IS_ERR(rq))
a06e05e6 1533 return rq;
1da177e4 1534
03a07c92
GR
1535 if (op & REQ_NOWAIT) {
1536 blk_put_rl(rl);
1537 return ERR_PTR(-EAGAIN);
1538 }
1539
6a15674d 1540 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1541 blk_put_rl(rl);
a492f075 1542 return rq;
a051661c 1543 }
1da177e4 1544
a06e05e6
TH
1545 /* wait on @rl and retry */
1546 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1547 TASK_UNINTERRUPTIBLE);
1da177e4 1548
e6a40b09 1549 trace_block_sleeprq(q, bio, op);
1da177e4 1550
a06e05e6
TH
1551 spin_unlock_irq(q->queue_lock);
1552 io_schedule();
d6344532 1553
a06e05e6
TH
1554 /*
1555 * After sleeping, we become a "batching" process and will be able
1556 * to allocate at least one request, and up to a big batch of them
1557 * for a small period time. See ioc_batching, ioc_set_batching
1558 */
a06e05e6 1559 ioc_set_batching(q, current->io_context);
05caf8db 1560
a06e05e6
TH
1561 spin_lock_irq(q->queue_lock);
1562 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1563
a06e05e6 1564 goto retry;
1da177e4
LT
1565}
1566
6a15674d 1567/* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
cd6ce148 1568static struct request *blk_old_get_request(struct request_queue *q,
9a95e4ef 1569 unsigned int op, blk_mq_req_flags_t flags)
1da177e4
LT
1570{
1571 struct request *rq;
c3036021 1572 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO;
055f6e18 1573 int ret = 0;
1da177e4 1574
332ebbf7
BVA
1575 WARN_ON_ONCE(q->mq_ops);
1576
7f4b35d1
TH
1577 /* create ioc upfront */
1578 create_io_context(gfp_mask, q->node);
1579
3a0a5299 1580 ret = blk_queue_enter(q, flags);
055f6e18
ML
1581 if (ret)
1582 return ERR_PTR(ret);
d6344532 1583 spin_lock_irq(q->queue_lock);
4accf5fc 1584 rq = get_request(q, op, NULL, flags, gfp_mask);
0c4de0f3 1585 if (IS_ERR(rq)) {
da8303c6 1586 spin_unlock_irq(q->queue_lock);
055f6e18 1587 blk_queue_exit(q);
0c4de0f3
CH
1588 return rq;
1589 }
1da177e4 1590
0c4de0f3
CH
1591 /* q->queue_lock is unlocked at this point */
1592 rq->__data_len = 0;
1593 rq->__sector = (sector_t) -1;
1594 rq->bio = rq->biotail = NULL;
1da177e4
LT
1595 return rq;
1596}
320ae51f 1597
6a15674d 1598/**
ff005a06 1599 * blk_get_request - allocate a request
6a15674d
BVA
1600 * @q: request queue to allocate a request for
1601 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1602 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1603 */
ff005a06
CH
1604struct request *blk_get_request(struct request_queue *q, unsigned int op,
1605 blk_mq_req_flags_t flags)
320ae51f 1606{
d280bab3
BVA
1607 struct request *req;
1608
6a15674d 1609 WARN_ON_ONCE(op & REQ_NOWAIT);
1b6d65a0 1610 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
6a15674d 1611
d280bab3 1612 if (q->mq_ops) {
6a15674d 1613 req = blk_mq_alloc_request(q, op, flags);
d280bab3
BVA
1614 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1615 q->mq_ops->initialize_rq_fn(req);
1616 } else {
6a15674d 1617 req = blk_old_get_request(q, op, flags);
d280bab3
BVA
1618 if (!IS_ERR(req) && q->initialize_rq_fn)
1619 q->initialize_rq_fn(req);
1620 }
1621
1622 return req;
320ae51f 1623}
1da177e4
LT
1624EXPORT_SYMBOL(blk_get_request);
1625
1626/**
1627 * blk_requeue_request - put a request back on queue
1628 * @q: request queue where request should be inserted
1629 * @rq: request to be inserted
1630 *
1631 * Description:
1632 * Drivers often keep queueing requests until the hardware cannot accept
1633 * more, when that condition happens we need to put the request back
1634 * on the queue. Must be called with queue lock held.
1635 */
165125e1 1636void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1637{
2fff8a92 1638 lockdep_assert_held(q->queue_lock);
332ebbf7 1639 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1640
242f9dcb
JA
1641 blk_delete_timer(rq);
1642 blk_clear_rq_complete(rq);
5f3ea37c 1643 trace_block_rq_requeue(q, rq);
a8a45941 1644 wbt_requeue(q->rq_wb, rq);
2056a782 1645
e8064021 1646 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1647 blk_queue_end_tag(q, rq);
1648
ba396a6c
JB
1649 BUG_ON(blk_queued_rq(rq));
1650
1da177e4
LT
1651 elv_requeue_request(q, rq);
1652}
1da177e4
LT
1653EXPORT_SYMBOL(blk_requeue_request);
1654
73c10101
JA
1655static void add_acct_request(struct request_queue *q, struct request *rq,
1656 int where)
1657{
320ae51f 1658 blk_account_io_start(rq, true);
7eaceacc 1659 __elv_add_request(q, rq, where);
73c10101
JA
1660}
1661
d62e26b3 1662static void part_round_stats_single(struct request_queue *q, int cpu,
b8d62b3a
JA
1663 struct hd_struct *part, unsigned long now,
1664 unsigned int inflight)
074a7aca 1665{
b8d62b3a 1666 if (inflight) {
074a7aca 1667 __part_stat_add(cpu, part, time_in_queue,
b8d62b3a 1668 inflight * (now - part->stamp));
074a7aca
TH
1669 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1670 }
1671 part->stamp = now;
1672}
1673
1674/**
496aa8a9 1675 * part_round_stats() - Round off the performance stats on a struct disk_stats.
d62e26b3 1676 * @q: target block queue
496aa8a9
RD
1677 * @cpu: cpu number for stats access
1678 * @part: target partition
1da177e4
LT
1679 *
1680 * The average IO queue length and utilisation statistics are maintained
1681 * by observing the current state of the queue length and the amount of
1682 * time it has been in this state for.
1683 *
1684 * Normally, that accounting is done on IO completion, but that can result
1685 * in more than a second's worth of IO being accounted for within any one
1686 * second, leading to >100% utilisation. To deal with that, we call this
1687 * function to do a round-off before returning the results when reading
1688 * /proc/diskstats. This accounts immediately for all queue usage up to
1689 * the current jiffies and restarts the counters again.
1690 */
d62e26b3 1691void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
6f2576af 1692{
b8d62b3a 1693 struct hd_struct *part2 = NULL;
6f2576af 1694 unsigned long now = jiffies;
b8d62b3a
JA
1695 unsigned int inflight[2];
1696 int stats = 0;
1697
1698 if (part->stamp != now)
1699 stats |= 1;
1700
1701 if (part->partno) {
1702 part2 = &part_to_disk(part)->part0;
1703 if (part2->stamp != now)
1704 stats |= 2;
1705 }
1706
1707 if (!stats)
1708 return;
1709
1710 part_in_flight(q, part, inflight);
6f2576af 1711
b8d62b3a
JA
1712 if (stats & 2)
1713 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1714 if (stats & 1)
1715 part_round_stats_single(q, cpu, part, now, inflight[0]);
6f2576af 1716}
074a7aca 1717EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1718
47fafbc7 1719#ifdef CONFIG_PM
c8158819
LM
1720static void blk_pm_put_request(struct request *rq)
1721{
e8064021 1722 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1723 pm_runtime_mark_last_busy(rq->q->dev);
1724}
1725#else
1726static inline void blk_pm_put_request(struct request *rq) {}
1727#endif
1728
165125e1 1729void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1730{
e8064021
CH
1731 req_flags_t rq_flags = req->rq_flags;
1732
1da177e4
LT
1733 if (unlikely(!q))
1734 return;
1da177e4 1735
6f5ba581
CH
1736 if (q->mq_ops) {
1737 blk_mq_free_request(req);
1738 return;
1739 }
1740
2fff8a92
BVA
1741 lockdep_assert_held(q->queue_lock);
1742
6cc77e9c 1743 blk_req_zone_write_unlock(req);
c8158819
LM
1744 blk_pm_put_request(req);
1745
8922e16c
TH
1746 elv_completed_request(q, req);
1747
1cd96c24
BH
1748 /* this is a bio leak */
1749 WARN_ON(req->bio != NULL);
1750
a8a45941 1751 wbt_done(q->rq_wb, req);
87760e5e 1752
1da177e4
LT
1753 /*
1754 * Request may not have originated from ll_rw_blk. if not,
1755 * it didn't come out of our reserved rq pools
1756 */
e8064021 1757 if (rq_flags & RQF_ALLOCED) {
a051661c 1758 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1759 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1760
1da177e4 1761 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1762 BUG_ON(ELV_ON_HASH(req));
1da177e4 1763
a051661c 1764 blk_free_request(rl, req);
e8064021 1765 freed_request(rl, sync, rq_flags);
a051661c 1766 blk_put_rl(rl);
055f6e18 1767 blk_queue_exit(q);
1da177e4
LT
1768 }
1769}
6e39b69e
MC
1770EXPORT_SYMBOL_GPL(__blk_put_request);
1771
1da177e4
LT
1772void blk_put_request(struct request *req)
1773{
165125e1 1774 struct request_queue *q = req->q;
8922e16c 1775
320ae51f
JA
1776 if (q->mq_ops)
1777 blk_mq_free_request(req);
1778 else {
1779 unsigned long flags;
1780
1781 spin_lock_irqsave(q->queue_lock, flags);
1782 __blk_put_request(q, req);
1783 spin_unlock_irqrestore(q->queue_lock, flags);
1784 }
1da177e4 1785}
1da177e4
LT
1786EXPORT_SYMBOL(blk_put_request);
1787
320ae51f
JA
1788bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1789 struct bio *bio)
73c10101 1790{
1eff9d32 1791 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1792
73c10101
JA
1793 if (!ll_back_merge_fn(q, req, bio))
1794 return false;
1795
8c1cf6bb 1796 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1797
1798 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1799 blk_rq_set_mixed_merge(req);
1800
1801 req->biotail->bi_next = bio;
1802 req->biotail = bio;
4f024f37 1803 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1804 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1805
320ae51f 1806 blk_account_io_start(req, false);
73c10101
JA
1807 return true;
1808}
1809
320ae51f
JA
1810bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1811 struct bio *bio)
73c10101 1812{
1eff9d32 1813 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1814
73c10101
JA
1815 if (!ll_front_merge_fn(q, req, bio))
1816 return false;
1817
8c1cf6bb 1818 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1819
1820 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1821 blk_rq_set_mixed_merge(req);
1822
73c10101
JA
1823 bio->bi_next = req->bio;
1824 req->bio = bio;
1825
4f024f37
KO
1826 req->__sector = bio->bi_iter.bi_sector;
1827 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1828 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1829
320ae51f 1830 blk_account_io_start(req, false);
73c10101
JA
1831 return true;
1832}
1833
1e739730
CH
1834bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1835 struct bio *bio)
1836{
1837 unsigned short segments = blk_rq_nr_discard_segments(req);
1838
1839 if (segments >= queue_max_discard_segments(q))
1840 goto no_merge;
1841 if (blk_rq_sectors(req) + bio_sectors(bio) >
1842 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1843 goto no_merge;
1844
1845 req->biotail->bi_next = bio;
1846 req->biotail = bio;
1847 req->__data_len += bio->bi_iter.bi_size;
1848 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1849 req->nr_phys_segments = segments + 1;
1850
1851 blk_account_io_start(req, false);
1852 return true;
1853no_merge:
1854 req_set_nomerge(q, req);
1855 return false;
1856}
1857
bd87b589 1858/**
320ae51f 1859 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1860 * @q: request_queue new bio is being queued at
1861 * @bio: new bio being queued
1862 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1863 * @same_queue_rq: pointer to &struct request that gets filled in when
1864 * another request associated with @q is found on the plug list
1865 * (optional, may be %NULL)
bd87b589
TH
1866 *
1867 * Determine whether @bio being queued on @q can be merged with a request
1868 * on %current's plugged list. Returns %true if merge was successful,
1869 * otherwise %false.
1870 *
07c2bd37
TH
1871 * Plugging coalesces IOs from the same issuer for the same purpose without
1872 * going through @q->queue_lock. As such it's more of an issuing mechanism
1873 * than scheduling, and the request, while may have elvpriv data, is not
1874 * added on the elevator at this point. In addition, we don't have
1875 * reliable access to the elevator outside queue lock. Only check basic
1876 * merging parameters without querying the elevator.
da41a589
RE
1877 *
1878 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1879 */
320ae51f 1880bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1881 unsigned int *request_count,
1882 struct request **same_queue_rq)
73c10101
JA
1883{
1884 struct blk_plug *plug;
1885 struct request *rq;
92f399c7 1886 struct list_head *plug_list;
73c10101 1887
bd87b589 1888 plug = current->plug;
73c10101 1889 if (!plug)
34fe7c05 1890 return false;
56ebdaf2 1891 *request_count = 0;
73c10101 1892
92f399c7
SL
1893 if (q->mq_ops)
1894 plug_list = &plug->mq_list;
1895 else
1896 plug_list = &plug->list;
1897
1898 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 1899 bool merged = false;
73c10101 1900
5b3f341f 1901 if (rq->q == q) {
1b2e19f1 1902 (*request_count)++;
5b3f341f
SL
1903 /*
1904 * Only blk-mq multiple hardware queues case checks the
1905 * rq in the same queue, there should be only one such
1906 * rq in a queue
1907 **/
1908 if (same_queue_rq)
1909 *same_queue_rq = rq;
1910 }
56ebdaf2 1911
07c2bd37 1912 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1913 continue;
1914
34fe7c05
CH
1915 switch (blk_try_merge(rq, bio)) {
1916 case ELEVATOR_BACK_MERGE:
1917 merged = bio_attempt_back_merge(q, rq, bio);
1918 break;
1919 case ELEVATOR_FRONT_MERGE:
1920 merged = bio_attempt_front_merge(q, rq, bio);
1921 break;
1e739730
CH
1922 case ELEVATOR_DISCARD_MERGE:
1923 merged = bio_attempt_discard_merge(q, rq, bio);
1924 break;
34fe7c05
CH
1925 default:
1926 break;
73c10101 1927 }
34fe7c05
CH
1928
1929 if (merged)
1930 return true;
73c10101 1931 }
34fe7c05
CH
1932
1933 return false;
73c10101
JA
1934}
1935
0809e3ac
JM
1936unsigned int blk_plug_queued_count(struct request_queue *q)
1937{
1938 struct blk_plug *plug;
1939 struct request *rq;
1940 struct list_head *plug_list;
1941 unsigned int ret = 0;
1942
1943 plug = current->plug;
1944 if (!plug)
1945 goto out;
1946
1947 if (q->mq_ops)
1948 plug_list = &plug->mq_list;
1949 else
1950 plug_list = &plug->list;
1951
1952 list_for_each_entry(rq, plug_list, queuelist) {
1953 if (rq->q == q)
1954 ret++;
1955 }
1956out:
1957 return ret;
1958}
1959
da8d7f07 1960void blk_init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1961{
0be0dee6
BVA
1962 struct io_context *ioc = rq_ioc(bio);
1963
1eff9d32 1964 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1965 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1966
4f024f37 1967 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1968 if (ioprio_valid(bio_prio(bio)))
1969 req->ioprio = bio_prio(bio);
0be0dee6
BVA
1970 else if (ioc)
1971 req->ioprio = ioc->ioprio;
1972 else
1973 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
cb6934f8 1974 req->write_hint = bio->bi_write_hint;
bc1c56fd 1975 blk_rq_bio_prep(req->q, req, bio);
52d9e675 1976}
da8d7f07 1977EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
52d9e675 1978
dece1635 1979static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1980{
73c10101 1981 struct blk_plug *plug;
34fe7c05 1982 int where = ELEVATOR_INSERT_SORT;
e4d750c9 1983 struct request *req, *free;
56ebdaf2 1984 unsigned int request_count = 0;
87760e5e 1985 unsigned int wb_acct;
1da177e4 1986
1da177e4
LT
1987 /*
1988 * low level driver can indicate that it wants pages above a
1989 * certain limit bounced to low memory (ie for highmem, or even
1990 * ISA dma in theory)
1991 */
1992 blk_queue_bounce(q, &bio);
1993
af67c31f 1994 blk_queue_split(q, &bio);
23688bf4 1995
e23947bd 1996 if (!bio_integrity_prep(bio))
dece1635 1997 return BLK_QC_T_NONE;
ffecfd1a 1998
f73f44eb 1999 if (op_is_flush(bio->bi_opf)) {
73c10101 2000 spin_lock_irq(q->queue_lock);
ae1b1539 2001 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
2002 goto get_rq;
2003 }
2004
73c10101
JA
2005 /*
2006 * Check if we can merge with the plugged list before grabbing
2007 * any locks.
2008 */
0809e3ac
JM
2009 if (!blk_queue_nomerges(q)) {
2010 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 2011 return BLK_QC_T_NONE;
0809e3ac
JM
2012 } else
2013 request_count = blk_plug_queued_count(q);
1da177e4 2014
73c10101 2015 spin_lock_irq(q->queue_lock);
2056a782 2016
34fe7c05
CH
2017 switch (elv_merge(q, &req, bio)) {
2018 case ELEVATOR_BACK_MERGE:
2019 if (!bio_attempt_back_merge(q, req, bio))
2020 break;
2021 elv_bio_merged(q, req, bio);
2022 free = attempt_back_merge(q, req);
2023 if (free)
2024 __blk_put_request(q, free);
2025 else
2026 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2027 goto out_unlock;
2028 case ELEVATOR_FRONT_MERGE:
2029 if (!bio_attempt_front_merge(q, req, bio))
2030 break;
2031 elv_bio_merged(q, req, bio);
2032 free = attempt_front_merge(q, req);
2033 if (free)
2034 __blk_put_request(q, free);
2035 else
2036 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2037 goto out_unlock;
2038 default:
2039 break;
1da177e4
LT
2040 }
2041
450991bc 2042get_rq:
87760e5e
JA
2043 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
2044
1da177e4 2045 /*
450991bc 2046 * Grab a free request. This is might sleep but can not fail.
d6344532 2047 * Returns with the queue unlocked.
450991bc 2048 */
055f6e18 2049 blk_queue_enter_live(q);
c3036021 2050 req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO);
a492f075 2051 if (IS_ERR(req)) {
055f6e18 2052 blk_queue_exit(q);
87760e5e 2053 __wbt_done(q->rq_wb, wb_acct);
4e4cbee9
CH
2054 if (PTR_ERR(req) == -ENOMEM)
2055 bio->bi_status = BLK_STS_RESOURCE;
2056 else
2057 bio->bi_status = BLK_STS_IOERR;
4246a0b6 2058 bio_endio(bio);
da8303c6
TH
2059 goto out_unlock;
2060 }
d6344532 2061
a8a45941 2062 wbt_track(req, wb_acct);
87760e5e 2063
450991bc
NP
2064 /*
2065 * After dropping the lock and possibly sleeping here, our request
2066 * may now be mergeable after it had proven unmergeable (above).
2067 * We don't worry about that case for efficiency. It won't happen
2068 * often, and the elevators are able to handle it.
1da177e4 2069 */
da8d7f07 2070 blk_init_request_from_bio(req, bio);
1da177e4 2071
9562ad9a 2072 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 2073 req->cpu = raw_smp_processor_id();
73c10101
JA
2074
2075 plug = current->plug;
721a9602 2076 if (plug) {
dc6d36c9
JA
2077 /*
2078 * If this is the first request added after a plug, fire
7aef2e78 2079 * of a plug trace.
0a6219a9
ML
2080 *
2081 * @request_count may become stale because of schedule
2082 * out, so check plug list again.
dc6d36c9 2083 */
0a6219a9 2084 if (!request_count || list_empty(&plug->list))
dc6d36c9 2085 trace_block_plug(q);
3540d5e8 2086 else {
50d24c34
SL
2087 struct request *last = list_entry_rq(plug->list.prev);
2088 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2089 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 2090 blk_flush_plug_list(plug, false);
019ceb7d
SL
2091 trace_block_plug(q);
2092 }
73c10101 2093 }
73c10101 2094 list_add_tail(&req->queuelist, &plug->list);
320ae51f 2095 blk_account_io_start(req, true);
73c10101
JA
2096 } else {
2097 spin_lock_irq(q->queue_lock);
2098 add_acct_request(q, req, where);
24ecfbe2 2099 __blk_run_queue(q);
73c10101
JA
2100out_unlock:
2101 spin_unlock_irq(q->queue_lock);
2102 }
dece1635
JA
2103
2104 return BLK_QC_T_NONE;
1da177e4
LT
2105}
2106
52c5e62d 2107static void handle_bad_sector(struct bio *bio, sector_t maxsector)
1da177e4
LT
2108{
2109 char b[BDEVNAME_SIZE];
2110
2111 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 2112 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
74d46992 2113 bio_devname(bio, b), bio->bi_opf,
f73a1c7d 2114 (unsigned long long)bio_end_sector(bio),
52c5e62d 2115 (long long)maxsector);
1da177e4
LT
2116}
2117
c17bb495
AM
2118#ifdef CONFIG_FAIL_MAKE_REQUEST
2119
2120static DECLARE_FAULT_ATTR(fail_make_request);
2121
2122static int __init setup_fail_make_request(char *str)
2123{
2124 return setup_fault_attr(&fail_make_request, str);
2125}
2126__setup("fail_make_request=", setup_fail_make_request);
2127
b2c9cd37 2128static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 2129{
b2c9cd37 2130 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
2131}
2132
2133static int __init fail_make_request_debugfs(void)
2134{
dd48c085
AM
2135 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2136 NULL, &fail_make_request);
2137
21f9fcd8 2138 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
2139}
2140
2141late_initcall(fail_make_request_debugfs);
2142
2143#else /* CONFIG_FAIL_MAKE_REQUEST */
2144
b2c9cd37
AM
2145static inline bool should_fail_request(struct hd_struct *part,
2146 unsigned int bytes)
c17bb495 2147{
b2c9cd37 2148 return false;
c17bb495
AM
2149}
2150
2151#endif /* CONFIG_FAIL_MAKE_REQUEST */
2152
721c7fc7
ID
2153static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2154{
2155 if (part->policy && op_is_write(bio_op(bio))) {
2156 char b[BDEVNAME_SIZE];
2157
2158 printk(KERN_ERR
2159 "generic_make_request: Trying to write "
2160 "to read-only block-device %s (partno %d)\n",
2161 bio_devname(bio, b), part->partno);
2162 return true;
2163 }
2164
2165 return false;
2166}
2167
30abb3a6
HM
2168static noinline int should_fail_bio(struct bio *bio)
2169{
2170 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2171 return -EIO;
2172 return 0;
2173}
2174ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2175
52c5e62d
CH
2176/*
2177 * Check whether this bio extends beyond the end of the device or partition.
2178 * This may well happen - the kernel calls bread() without checking the size of
2179 * the device, e.g., when mounting a file system.
2180 */
2181static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2182{
2183 unsigned int nr_sectors = bio_sectors(bio);
2184
2185 if (nr_sectors && maxsector &&
2186 (nr_sectors > maxsector ||
2187 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2188 handle_bad_sector(bio, maxsector);
2189 return -EIO;
2190 }
2191 return 0;
2192}
2193
74d46992
CH
2194/*
2195 * Remap block n of partition p to block n+start(p) of the disk.
2196 */
2197static inline int blk_partition_remap(struct bio *bio)
2198{
2199 struct hd_struct *p;
52c5e62d 2200 int ret = -EIO;
74d46992 2201
721c7fc7
ID
2202 rcu_read_lock();
2203 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
52c5e62d
CH
2204 if (unlikely(!p))
2205 goto out;
2206 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2207 goto out;
2208 if (unlikely(bio_check_ro(bio, p)))
721c7fc7 2209 goto out;
721c7fc7 2210
74d46992
CH
2211 /*
2212 * Zone reset does not include bi_size so bio_sectors() is always 0.
2213 * Include a test for the reset op code and perform the remap if needed.
2214 */
52c5e62d
CH
2215 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2216 if (bio_check_eod(bio, part_nr_sects_read(p)))
2217 goto out;
2218 bio->bi_iter.bi_sector += p->start_sect;
52c5e62d
CH
2219 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2220 bio->bi_iter.bi_sector - p->start_sect);
2221 }
c04fa44b 2222 bio->bi_partno = 0;
52c5e62d 2223 ret = 0;
721c7fc7
ID
2224out:
2225 rcu_read_unlock();
74d46992
CH
2226 return ret;
2227}
2228
27a84d54
CH
2229static noinline_for_stack bool
2230generic_make_request_checks(struct bio *bio)
1da177e4 2231{
165125e1 2232 struct request_queue *q;
5a7bbad2 2233 int nr_sectors = bio_sectors(bio);
4e4cbee9 2234 blk_status_t status = BLK_STS_IOERR;
5a7bbad2 2235 char b[BDEVNAME_SIZE];
1da177e4
LT
2236
2237 might_sleep();
1da177e4 2238
74d46992 2239 q = bio->bi_disk->queue;
5a7bbad2
CH
2240 if (unlikely(!q)) {
2241 printk(KERN_ERR
2242 "generic_make_request: Trying to access "
2243 "nonexistent block-device %s (%Lu)\n",
74d46992 2244 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
5a7bbad2
CH
2245 goto end_io;
2246 }
c17bb495 2247
03a07c92
GR
2248 /*
2249 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2250 * if queue is not a request based queue.
2251 */
03a07c92
GR
2252 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2253 goto not_supported;
2254
30abb3a6 2255 if (should_fail_bio(bio))
5a7bbad2 2256 goto end_io;
2056a782 2257
52c5e62d
CH
2258 if (bio->bi_partno) {
2259 if (unlikely(blk_partition_remap(bio)))
721c7fc7
ID
2260 goto end_io;
2261 } else {
52c5e62d
CH
2262 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2263 goto end_io;
2264 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
721c7fc7
ID
2265 goto end_io;
2266 }
2056a782 2267
5a7bbad2
CH
2268 /*
2269 * Filter flush bio's early so that make_request based
2270 * drivers without flush support don't have to worry
2271 * about them.
2272 */
f3a8ab7d 2273 if (op_is_flush(bio->bi_opf) &&
c888a8f9 2274 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 2275 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 2276 if (!nr_sectors) {
4e4cbee9 2277 status = BLK_STS_OK;
51fd77bd
JA
2278 goto end_io;
2279 }
5a7bbad2 2280 }
5ddfe969 2281
288dab8a
CH
2282 switch (bio_op(bio)) {
2283 case REQ_OP_DISCARD:
2284 if (!blk_queue_discard(q))
2285 goto not_supported;
2286 break;
2287 case REQ_OP_SECURE_ERASE:
2288 if (!blk_queue_secure_erase(q))
2289 goto not_supported;
2290 break;
2291 case REQ_OP_WRITE_SAME:
74d46992 2292 if (!q->limits.max_write_same_sectors)
288dab8a 2293 goto not_supported;
58886785 2294 break;
2d253440
ST
2295 case REQ_OP_ZONE_REPORT:
2296 case REQ_OP_ZONE_RESET:
74d46992 2297 if (!blk_queue_is_zoned(q))
2d253440 2298 goto not_supported;
288dab8a 2299 break;
a6f0788e 2300 case REQ_OP_WRITE_ZEROES:
74d46992 2301 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
2302 goto not_supported;
2303 break;
288dab8a
CH
2304 default:
2305 break;
5a7bbad2 2306 }
01edede4 2307
7f4b35d1
TH
2308 /*
2309 * Various block parts want %current->io_context and lazy ioc
2310 * allocation ends up trading a lot of pain for a small amount of
2311 * memory. Just allocate it upfront. This may fail and block
2312 * layer knows how to live with it.
2313 */
2314 create_io_context(GFP_ATOMIC, q->node);
2315
ae118896
TH
2316 if (!blkcg_bio_issue_check(q, bio))
2317 return false;
27a84d54 2318
fbbaf700
N
2319 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2320 trace_block_bio_queue(q, bio);
2321 /* Now that enqueuing has been traced, we need to trace
2322 * completion as well.
2323 */
2324 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2325 }
27a84d54 2326 return true;
a7384677 2327
288dab8a 2328not_supported:
4e4cbee9 2329 status = BLK_STS_NOTSUPP;
a7384677 2330end_io:
4e4cbee9 2331 bio->bi_status = status;
4246a0b6 2332 bio_endio(bio);
27a84d54 2333 return false;
1da177e4
LT
2334}
2335
27a84d54
CH
2336/**
2337 * generic_make_request - hand a buffer to its device driver for I/O
2338 * @bio: The bio describing the location in memory and on the device.
2339 *
2340 * generic_make_request() is used to make I/O requests of block
2341 * devices. It is passed a &struct bio, which describes the I/O that needs
2342 * to be done.
2343 *
2344 * generic_make_request() does not return any status. The
2345 * success/failure status of the request, along with notification of
2346 * completion, is delivered asynchronously through the bio->bi_end_io
2347 * function described (one day) else where.
2348 *
2349 * The caller of generic_make_request must make sure that bi_io_vec
2350 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2351 * set to describe the device address, and the
2352 * bi_end_io and optionally bi_private are set to describe how
2353 * completion notification should be signaled.
2354 *
2355 * generic_make_request and the drivers it calls may use bi_next if this
2356 * bio happens to be merged with someone else, and may resubmit the bio to
2357 * a lower device by calling into generic_make_request recursively, which
2358 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2359 */
dece1635 2360blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2361{
f5fe1b51
N
2362 /*
2363 * bio_list_on_stack[0] contains bios submitted by the current
2364 * make_request_fn.
2365 * bio_list_on_stack[1] contains bios that were submitted before
2366 * the current make_request_fn, but that haven't been processed
2367 * yet.
2368 */
2369 struct bio_list bio_list_on_stack[2];
37f9579f
BVA
2370 blk_mq_req_flags_t flags = 0;
2371 struct request_queue *q = bio->bi_disk->queue;
dece1635 2372 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2373
37f9579f
BVA
2374 if (bio->bi_opf & REQ_NOWAIT)
2375 flags = BLK_MQ_REQ_NOWAIT;
cd4a4ae4
JA
2376 if (bio_flagged(bio, BIO_QUEUE_ENTERED))
2377 blk_queue_enter_live(q);
2378 else if (blk_queue_enter(q, flags) < 0) {
37f9579f
BVA
2379 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2380 bio_wouldblock_error(bio);
2381 else
2382 bio_io_error(bio);
2383 return ret;
2384 }
2385
27a84d54 2386 if (!generic_make_request_checks(bio))
dece1635 2387 goto out;
27a84d54
CH
2388
2389 /*
2390 * We only want one ->make_request_fn to be active at a time, else
2391 * stack usage with stacked devices could be a problem. So use
2392 * current->bio_list to keep a list of requests submited by a
2393 * make_request_fn function. current->bio_list is also used as a
2394 * flag to say if generic_make_request is currently active in this
2395 * task or not. If it is NULL, then no make_request is active. If
2396 * it is non-NULL, then a make_request is active, and new requests
2397 * should be added at the tail
2398 */
bddd87c7 2399 if (current->bio_list) {
f5fe1b51 2400 bio_list_add(&current->bio_list[0], bio);
dece1635 2401 goto out;
d89d8796 2402 }
27a84d54 2403
d89d8796
NB
2404 /* following loop may be a bit non-obvious, and so deserves some
2405 * explanation.
2406 * Before entering the loop, bio->bi_next is NULL (as all callers
2407 * ensure that) so we have a list with a single bio.
2408 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2409 * we assign bio_list to a pointer to the bio_list_on_stack,
2410 * thus initialising the bio_list of new bios to be
27a84d54 2411 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2412 * through a recursive call to generic_make_request. If it
2413 * did, we find a non-NULL value in bio_list and re-enter the loop
2414 * from the top. In this case we really did just take the bio
bddd87c7 2415 * of the top of the list (no pretending) and so remove it from
27a84d54 2416 * bio_list, and call into ->make_request() again.
d89d8796
NB
2417 */
2418 BUG_ON(bio->bi_next);
f5fe1b51
N
2419 bio_list_init(&bio_list_on_stack[0]);
2420 current->bio_list = bio_list_on_stack;
d89d8796 2421 do {
37f9579f
BVA
2422 bool enter_succeeded = true;
2423
2424 if (unlikely(q != bio->bi_disk->queue)) {
2425 if (q)
2426 blk_queue_exit(q);
2427 q = bio->bi_disk->queue;
2428 flags = 0;
2429 if (bio->bi_opf & REQ_NOWAIT)
2430 flags = BLK_MQ_REQ_NOWAIT;
2431 if (blk_queue_enter(q, flags) < 0) {
2432 enter_succeeded = false;
2433 q = NULL;
2434 }
2435 }
27a84d54 2436
37f9579f 2437 if (enter_succeeded) {
79bd9959
N
2438 struct bio_list lower, same;
2439
2440 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
2441 bio_list_on_stack[1] = bio_list_on_stack[0];
2442 bio_list_init(&bio_list_on_stack[0]);
dece1635 2443 ret = q->make_request_fn(q, bio);
3ef28e83 2444
79bd9959
N
2445 /* sort new bios into those for a lower level
2446 * and those for the same level
2447 */
2448 bio_list_init(&lower);
2449 bio_list_init(&same);
f5fe1b51 2450 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
74d46992 2451 if (q == bio->bi_disk->queue)
79bd9959
N
2452 bio_list_add(&same, bio);
2453 else
2454 bio_list_add(&lower, bio);
2455 /* now assemble so we handle the lowest level first */
f5fe1b51
N
2456 bio_list_merge(&bio_list_on_stack[0], &lower);
2457 bio_list_merge(&bio_list_on_stack[0], &same);
2458 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 2459 } else {
03a07c92
GR
2460 if (unlikely(!blk_queue_dying(q) &&
2461 (bio->bi_opf & REQ_NOWAIT)))
2462 bio_wouldblock_error(bio);
2463 else
2464 bio_io_error(bio);
3ef28e83 2465 }
f5fe1b51 2466 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 2467 } while (bio);
bddd87c7 2468 current->bio_list = NULL; /* deactivate */
dece1635
JA
2469
2470out:
37f9579f
BVA
2471 if (q)
2472 blk_queue_exit(q);
dece1635 2473 return ret;
d89d8796 2474}
1da177e4
LT
2475EXPORT_SYMBOL(generic_make_request);
2476
f421e1d9
CH
2477/**
2478 * direct_make_request - hand a buffer directly to its device driver for I/O
2479 * @bio: The bio describing the location in memory and on the device.
2480 *
2481 * This function behaves like generic_make_request(), but does not protect
2482 * against recursion. Must only be used if the called driver is known
2483 * to not call generic_make_request (or direct_make_request) again from
2484 * its make_request function. (Calling direct_make_request again from
2485 * a workqueue is perfectly fine as that doesn't recurse).
2486 */
2487blk_qc_t direct_make_request(struct bio *bio)
2488{
2489 struct request_queue *q = bio->bi_disk->queue;
2490 bool nowait = bio->bi_opf & REQ_NOWAIT;
2491 blk_qc_t ret;
2492
2493 if (!generic_make_request_checks(bio))
2494 return BLK_QC_T_NONE;
2495
3a0a5299 2496 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
f421e1d9
CH
2497 if (nowait && !blk_queue_dying(q))
2498 bio->bi_status = BLK_STS_AGAIN;
2499 else
2500 bio->bi_status = BLK_STS_IOERR;
2501 bio_endio(bio);
2502 return BLK_QC_T_NONE;
2503 }
2504
2505 ret = q->make_request_fn(q, bio);
2506 blk_queue_exit(q);
2507 return ret;
2508}
2509EXPORT_SYMBOL_GPL(direct_make_request);
2510
1da177e4 2511/**
710027a4 2512 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2513 * @bio: The &struct bio which describes the I/O
2514 *
2515 * submit_bio() is very similar in purpose to generic_make_request(), and
2516 * uses that function to do most of the work. Both are fairly rough
710027a4 2517 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2518 *
2519 */
4e49ea4a 2520blk_qc_t submit_bio(struct bio *bio)
1da177e4 2521{
bf2de6f5
JA
2522 /*
2523 * If it's a regular read/write or a barrier with data attached,
2524 * go through the normal accounting stuff before submission.
2525 */
e2a60da7 2526 if (bio_has_data(bio)) {
4363ac7c
MP
2527 unsigned int count;
2528
95fe6c1a 2529 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
7c5a0dcf 2530 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
4363ac7c
MP
2531 else
2532 count = bio_sectors(bio);
2533
a8ebb056 2534 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2535 count_vm_events(PGPGOUT, count);
2536 } else {
4f024f37 2537 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2538 count_vm_events(PGPGIN, count);
2539 }
2540
2541 if (unlikely(block_dump)) {
2542 char b[BDEVNAME_SIZE];
8dcbdc74 2543 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2544 current->comm, task_pid_nr(current),
a8ebb056 2545 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2546 (unsigned long long)bio->bi_iter.bi_sector,
74d46992 2547 bio_devname(bio, b), count);
bf2de6f5 2548 }
1da177e4
LT
2549 }
2550
dece1635 2551 return generic_make_request(bio);
1da177e4 2552}
1da177e4
LT
2553EXPORT_SYMBOL(submit_bio);
2554
ea435e1b
CH
2555bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2556{
2557 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2558 return false;
2559
2560 if (current->plug)
2561 blk_flush_plug_list(current->plug, false);
2562 return q->poll_fn(q, cookie);
2563}
2564EXPORT_SYMBOL_GPL(blk_poll);
2565
82124d60 2566/**
bf4e6b4e
HR
2567 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2568 * for new the queue limits
82124d60
KU
2569 * @q: the queue
2570 * @rq: the request being checked
2571 *
2572 * Description:
2573 * @rq may have been made based on weaker limitations of upper-level queues
2574 * in request stacking drivers, and it may violate the limitation of @q.
2575 * Since the block layer and the underlying device driver trust @rq
2576 * after it is inserted to @q, it should be checked against @q before
2577 * the insertion using this generic function.
2578 *
82124d60 2579 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2580 * limits when retrying requests on other queues. Those requests need
2581 * to be checked against the new queue limits again during dispatch.
82124d60 2582 */
bf4e6b4e
HR
2583static int blk_cloned_rq_check_limits(struct request_queue *q,
2584 struct request *rq)
82124d60 2585{
8fe0d473 2586 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2587 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2588 return -EIO;
2589 }
2590
2591 /*
2592 * queue's settings related to segment counting like q->bounce_pfn
2593 * may differ from that of other stacking queues.
2594 * Recalculate it to check the request correctly on this queue's
2595 * limitation.
2596 */
2597 blk_recalc_rq_segments(rq);
8a78362c 2598 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2599 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2600 return -EIO;
2601 }
2602
2603 return 0;
2604}
82124d60
KU
2605
2606/**
2607 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2608 * @q: the queue to submit the request
2609 * @rq: the request being queued
2610 */
2a842aca 2611blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60
KU
2612{
2613 unsigned long flags;
4853abaa 2614 int where = ELEVATOR_INSERT_BACK;
82124d60 2615
bf4e6b4e 2616 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 2617 return BLK_STS_IOERR;
82124d60 2618
b2c9cd37
AM
2619 if (rq->rq_disk &&
2620 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 2621 return BLK_STS_IOERR;
82124d60 2622
7fb4898e
KB
2623 if (q->mq_ops) {
2624 if (blk_queue_io_stat(q))
2625 blk_account_io_start(rq, true);
157f377b
JA
2626 /*
2627 * Since we have a scheduler attached on the top device,
2628 * bypass a potential scheduler on the bottom device for
2629 * insert.
2630 */
c77ff7fd 2631 return blk_mq_request_issue_directly(rq);
7fb4898e
KB
2632 }
2633
82124d60 2634 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2635 if (unlikely(blk_queue_dying(q))) {
8ba61435 2636 spin_unlock_irqrestore(q->queue_lock, flags);
2a842aca 2637 return BLK_STS_IOERR;
8ba61435 2638 }
82124d60
KU
2639
2640 /*
2641 * Submitting request must be dequeued before calling this function
2642 * because it will be linked to another request_queue
2643 */
2644 BUG_ON(blk_queued_rq(rq));
2645
f73f44eb 2646 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2647 where = ELEVATOR_INSERT_FLUSH;
2648
2649 add_acct_request(q, rq, where);
e67b77c7
JM
2650 if (where == ELEVATOR_INSERT_FLUSH)
2651 __blk_run_queue(q);
82124d60
KU
2652 spin_unlock_irqrestore(q->queue_lock, flags);
2653
2a842aca 2654 return BLK_STS_OK;
82124d60
KU
2655}
2656EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2657
80a761fd
TH
2658/**
2659 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2660 * @rq: request to examine
2661 *
2662 * Description:
2663 * A request could be merge of IOs which require different failure
2664 * handling. This function determines the number of bytes which
2665 * can be failed from the beginning of the request without
2666 * crossing into area which need to be retried further.
2667 *
2668 * Return:
2669 * The number of bytes to fail.
80a761fd
TH
2670 */
2671unsigned int blk_rq_err_bytes(const struct request *rq)
2672{
2673 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2674 unsigned int bytes = 0;
2675 struct bio *bio;
2676
e8064021 2677 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2678 return blk_rq_bytes(rq);
2679
2680 /*
2681 * Currently the only 'mixing' which can happen is between
2682 * different fastfail types. We can safely fail portions
2683 * which have all the failfast bits that the first one has -
2684 * the ones which are at least as eager to fail as the first
2685 * one.
2686 */
2687 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2688 if ((bio->bi_opf & ff) != ff)
80a761fd 2689 break;
4f024f37 2690 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2691 }
2692
2693 /* this could lead to infinite loop */
2694 BUG_ON(blk_rq_bytes(rq) && !bytes);
2695 return bytes;
2696}
2697EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2698
320ae51f 2699void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2700{
c2553b58 2701 if (blk_do_io_stat(req)) {
bc58ba94
JA
2702 const int rw = rq_data_dir(req);
2703 struct hd_struct *part;
2704 int cpu;
2705
2706 cpu = part_stat_lock();
09e099d4 2707 part = req->part;
bc58ba94
JA
2708 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2709 part_stat_unlock();
2710 }
2711}
2712
522a7775 2713void blk_account_io_done(struct request *req, u64 now)
bc58ba94 2714{
bc58ba94 2715 /*
dd4c133f
TH
2716 * Account IO completion. flush_rq isn't accounted as a
2717 * normal IO on queueing nor completion. Accounting the
2718 * containing request is enough.
bc58ba94 2719 */
e8064021 2720 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
522a7775 2721 unsigned long duration;
bc58ba94
JA
2722 const int rw = rq_data_dir(req);
2723 struct hd_struct *part;
2724 int cpu;
2725
522a7775 2726 duration = nsecs_to_jiffies(now - req->start_time_ns);
bc58ba94 2727 cpu = part_stat_lock();
09e099d4 2728 part = req->part;
bc58ba94
JA
2729
2730 part_stat_inc(cpu, part, ios[rw]);
2731 part_stat_add(cpu, part, ticks[rw], duration);
d62e26b3
JA
2732 part_round_stats(req->q, cpu, part);
2733 part_dec_in_flight(req->q, part, rw);
bc58ba94 2734
6c23a968 2735 hd_struct_put(part);
bc58ba94
JA
2736 part_stat_unlock();
2737 }
2738}
2739
47fafbc7 2740#ifdef CONFIG_PM
c8158819
LM
2741/*
2742 * Don't process normal requests when queue is suspended
2743 * or in the process of suspending/resuming
2744 */
e4f36b24 2745static bool blk_pm_allow_request(struct request *rq)
c8158819 2746{
e4f36b24
CH
2747 switch (rq->q->rpm_status) {
2748 case RPM_RESUMING:
2749 case RPM_SUSPENDING:
2750 return rq->rq_flags & RQF_PM;
2751 case RPM_SUSPENDED:
2752 return false;
2753 }
2754
2755 return true;
c8158819
LM
2756}
2757#else
e4f36b24 2758static bool blk_pm_allow_request(struct request *rq)
c8158819 2759{
e4f36b24 2760 return true;
c8158819
LM
2761}
2762#endif
2763
320ae51f
JA
2764void blk_account_io_start(struct request *rq, bool new_io)
2765{
2766 struct hd_struct *part;
2767 int rw = rq_data_dir(rq);
2768 int cpu;
2769
2770 if (!blk_do_io_stat(rq))
2771 return;
2772
2773 cpu = part_stat_lock();
2774
2775 if (!new_io) {
2776 part = rq->part;
2777 part_stat_inc(cpu, part, merges[rw]);
2778 } else {
2779 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2780 if (!hd_struct_try_get(part)) {
2781 /*
2782 * The partition is already being removed,
2783 * the request will be accounted on the disk only
2784 *
2785 * We take a reference on disk->part0 although that
2786 * partition will never be deleted, so we can treat
2787 * it as any other partition.
2788 */
2789 part = &rq->rq_disk->part0;
2790 hd_struct_get(part);
2791 }
d62e26b3
JA
2792 part_round_stats(rq->q, cpu, part);
2793 part_inc_in_flight(rq->q, part, rw);
320ae51f
JA
2794 rq->part = part;
2795 }
2796
2797 part_stat_unlock();
2798}
2799
9c988374
CH
2800static struct request *elv_next_request(struct request_queue *q)
2801{
2802 struct request *rq;
2803 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2804
2805 WARN_ON_ONCE(q->mq_ops);
2806
2807 while (1) {
e4f36b24
CH
2808 list_for_each_entry(rq, &q->queue_head, queuelist) {
2809 if (blk_pm_allow_request(rq))
2810 return rq;
2811
2812 if (rq->rq_flags & RQF_SOFTBARRIER)
2813 break;
9c988374
CH
2814 }
2815
2816 /*
2817 * Flush request is running and flush request isn't queueable
2818 * in the drive, we can hold the queue till flush request is
2819 * finished. Even we don't do this, driver can't dispatch next
2820 * requests and will requeue them. And this can improve
2821 * throughput too. For example, we have request flush1, write1,
2822 * flush 2. flush1 is dispatched, then queue is hold, write1
2823 * isn't inserted to queue. After flush1 is finished, flush2
2824 * will be dispatched. Since disk cache is already clean,
2825 * flush2 will be finished very soon, so looks like flush2 is
2826 * folded to flush1.
2827 * Since the queue is hold, a flag is set to indicate the queue
2828 * should be restarted later. Please see flush_end_io() for
2829 * details.
2830 */
2831 if (fq->flush_pending_idx != fq->flush_running_idx &&
2832 !queue_flush_queueable(q)) {
2833 fq->flush_queue_delayed = 1;
2834 return NULL;
2835 }
2836 if (unlikely(blk_queue_bypass(q)) ||
2837 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2838 return NULL;
2839 }
2840}
2841
3bcddeac 2842/**
9934c8c0
TH
2843 * blk_peek_request - peek at the top of a request queue
2844 * @q: request queue to peek at
2845 *
2846 * Description:
2847 * Return the request at the top of @q. The returned request
2848 * should be started using blk_start_request() before LLD starts
2849 * processing it.
2850 *
2851 * Return:
2852 * Pointer to the request at the top of @q if available. Null
2853 * otherwise.
9934c8c0
TH
2854 */
2855struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2856{
2857 struct request *rq;
2858 int ret;
2859
2fff8a92 2860 lockdep_assert_held(q->queue_lock);
332ebbf7 2861 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2862
9c988374 2863 while ((rq = elv_next_request(q)) != NULL) {
e8064021 2864 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2865 /*
2866 * This is the first time the device driver
2867 * sees this request (possibly after
2868 * requeueing). Notify IO scheduler.
2869 */
e8064021 2870 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2871 elv_activate_rq(q, rq);
2872
2873 /*
2874 * just mark as started even if we don't start
2875 * it, a request that has been delayed should
2876 * not be passed by new incoming requests
2877 */
e8064021 2878 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2879 trace_block_rq_issue(q, rq);
2880 }
2881
2882 if (!q->boundary_rq || q->boundary_rq == rq) {
2883 q->end_sector = rq_end_sector(rq);
2884 q->boundary_rq = NULL;
2885 }
2886
e8064021 2887 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2888 break;
2889
2e46e8b2 2890 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2891 /*
2892 * make sure space for the drain appears we
2893 * know we can do this because max_hw_segments
2894 * has been adjusted to be one fewer than the
2895 * device can handle
2896 */
2897 rq->nr_phys_segments++;
2898 }
2899
2900 if (!q->prep_rq_fn)
2901 break;
2902
2903 ret = q->prep_rq_fn(q, rq);
2904 if (ret == BLKPREP_OK) {
2905 break;
2906 } else if (ret == BLKPREP_DEFER) {
2907 /*
2908 * the request may have been (partially) prepped.
2909 * we need to keep this request in the front to
e8064021 2910 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2911 * prevent other fs requests from passing this one.
2912 */
2e46e8b2 2913 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2914 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2915 /*
2916 * remove the space for the drain we added
2917 * so that we don't add it again
2918 */
2919 --rq->nr_phys_segments;
2920 }
2921
2922 rq = NULL;
2923 break;
0fb5b1fb 2924 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
e8064021 2925 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2926 /*
2927 * Mark this request as started so we don't trigger
2928 * any debug logic in the end I/O path.
2929 */
2930 blk_start_request(rq);
2a842aca
CH
2931 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2932 BLK_STS_TARGET : BLK_STS_IOERR);
158dbda0
TH
2933 } else {
2934 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2935 break;
2936 }
2937 }
2938
2939 return rq;
2940}
9934c8c0 2941EXPORT_SYMBOL(blk_peek_request);
158dbda0 2942
5034435c 2943static void blk_dequeue_request(struct request *rq)
158dbda0 2944{
9934c8c0
TH
2945 struct request_queue *q = rq->q;
2946
158dbda0
TH
2947 BUG_ON(list_empty(&rq->queuelist));
2948 BUG_ON(ELV_ON_HASH(rq));
2949
2950 list_del_init(&rq->queuelist);
2951
2952 /*
2953 * the time frame between a request being removed from the lists
2954 * and to it is freed is accounted as io that is in progress at
2955 * the driver side.
2956 */
522a7775 2957 if (blk_account_rq(rq))
0a7ae2ff 2958 q->in_flight[rq_is_sync(rq)]++;
158dbda0
TH
2959}
2960
9934c8c0
TH
2961/**
2962 * blk_start_request - start request processing on the driver
2963 * @req: request to dequeue
2964 *
2965 * Description:
2966 * Dequeue @req and start timeout timer on it. This hands off the
2967 * request to the driver.
9934c8c0
TH
2968 */
2969void blk_start_request(struct request *req)
2970{
2fff8a92 2971 lockdep_assert_held(req->q->queue_lock);
332ebbf7 2972 WARN_ON_ONCE(req->q->mq_ops);
2fff8a92 2973
9934c8c0
TH
2974 blk_dequeue_request(req);
2975
cf43e6be 2976 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
544ccc8d
OS
2977 req->io_start_time_ns = ktime_get_ns();
2978#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2979 req->throtl_size = blk_rq_sectors(req);
2980#endif
cf43e6be 2981 req->rq_flags |= RQF_STATS;
a8a45941 2982 wbt_issue(req->q->rq_wb, req);
cf43e6be
JA
2983 }
2984
e14575b3 2985 BUG_ON(blk_rq_is_complete(req));
9934c8c0
TH
2986 blk_add_timer(req);
2987}
2988EXPORT_SYMBOL(blk_start_request);
2989
2990/**
2991 * blk_fetch_request - fetch a request from a request queue
2992 * @q: request queue to fetch a request from
2993 *
2994 * Description:
2995 * Return the request at the top of @q. The request is started on
2996 * return and LLD can start processing it immediately.
2997 *
2998 * Return:
2999 * Pointer to the request at the top of @q if available. Null
3000 * otherwise.
9934c8c0
TH
3001 */
3002struct request *blk_fetch_request(struct request_queue *q)
3003{
3004 struct request *rq;
3005
2fff8a92 3006 lockdep_assert_held(q->queue_lock);
332ebbf7 3007 WARN_ON_ONCE(q->mq_ops);
2fff8a92 3008
9934c8c0
TH
3009 rq = blk_peek_request(q);
3010 if (rq)
3011 blk_start_request(rq);
3012 return rq;
3013}
3014EXPORT_SYMBOL(blk_fetch_request);
3015
ef71de8b
CH
3016/*
3017 * Steal bios from a request and add them to a bio list.
3018 * The request must not have been partially completed before.
3019 */
3020void blk_steal_bios(struct bio_list *list, struct request *rq)
3021{
3022 if (rq->bio) {
3023 if (list->tail)
3024 list->tail->bi_next = rq->bio;
3025 else
3026 list->head = rq->bio;
3027 list->tail = rq->biotail;
3028
3029 rq->bio = NULL;
3030 rq->biotail = NULL;
3031 }
3032
3033 rq->__data_len = 0;
3034}
3035EXPORT_SYMBOL_GPL(blk_steal_bios);
3036
3bcddeac 3037/**
2e60e022 3038 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 3039 * @req: the request being processed
2a842aca 3040 * @error: block status code
8ebf9756 3041 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
3042 *
3043 * Description:
8ebf9756
RD
3044 * Ends I/O on a number of bytes attached to @req, but doesn't complete
3045 * the request structure even if @req doesn't have leftover.
3046 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
3047 *
3048 * This special helper function is only for request stacking drivers
3049 * (e.g. request-based dm) so that they can handle partial completion.
3050 * Actual device drivers should use blk_end_request instead.
3051 *
3052 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3053 * %false return from this function.
3bcddeac
KU
3054 *
3055 * Return:
2e60e022
TH
3056 * %false - this request doesn't have any more data
3057 * %true - this request has more data
3bcddeac 3058 **/
2a842aca
CH
3059bool blk_update_request(struct request *req, blk_status_t error,
3060 unsigned int nr_bytes)
1da177e4 3061{
f79ea416 3062 int total_bytes;
1da177e4 3063
2a842aca 3064 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 3065
2e60e022
TH
3066 if (!req->bio)
3067 return false;
3068
2a842aca
CH
3069 if (unlikely(error && !blk_rq_is_passthrough(req) &&
3070 !(req->rq_flags & RQF_QUIET)))
3071 print_req_error(req, error);
1da177e4 3072
bc58ba94 3073 blk_account_io_completion(req, nr_bytes);
d72d904a 3074
f79ea416
KO
3075 total_bytes = 0;
3076 while (req->bio) {
3077 struct bio *bio = req->bio;
4f024f37 3078 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 3079
9c24c10a 3080 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 3081 req->bio = bio->bi_next;
1da177e4 3082
fbbaf700
N
3083 /* Completion has already been traced */
3084 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 3085 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 3086
f79ea416
KO
3087 total_bytes += bio_bytes;
3088 nr_bytes -= bio_bytes;
1da177e4 3089
f79ea416
KO
3090 if (!nr_bytes)
3091 break;
1da177e4
LT
3092 }
3093
3094 /*
3095 * completely done
3096 */
2e60e022
TH
3097 if (!req->bio) {
3098 /*
3099 * Reset counters so that the request stacking driver
3100 * can find how many bytes remain in the request
3101 * later.
3102 */
a2dec7b3 3103 req->__data_len = 0;
2e60e022
TH
3104 return false;
3105 }
1da177e4 3106
a2dec7b3 3107 req->__data_len -= total_bytes;
2e46e8b2
TH
3108
3109 /* update sector only for requests with clear definition of sector */
57292b58 3110 if (!blk_rq_is_passthrough(req))
a2dec7b3 3111 req->__sector += total_bytes >> 9;
2e46e8b2 3112
80a761fd 3113 /* mixed attributes always follow the first bio */
e8064021 3114 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 3115 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 3116 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
3117 }
3118
ed6565e7
CH
3119 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3120 /*
3121 * If total number of sectors is less than the first segment
3122 * size, something has gone terribly wrong.
3123 */
3124 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3125 blk_dump_rq_flags(req, "request botched");
3126 req->__data_len = blk_rq_cur_bytes(req);
3127 }
2e46e8b2 3128
ed6565e7
CH
3129 /* recalculate the number of segments */
3130 blk_recalc_rq_segments(req);
3131 }
2e46e8b2 3132
2e60e022 3133 return true;
1da177e4 3134}
2e60e022 3135EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 3136
2a842aca 3137static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2e60e022
TH
3138 unsigned int nr_bytes,
3139 unsigned int bidi_bytes)
5efccd17 3140{
2e60e022
TH
3141 if (blk_update_request(rq, error, nr_bytes))
3142 return true;
5efccd17 3143
2e60e022
TH
3144 /* Bidi request must be completed as a whole */
3145 if (unlikely(blk_bidi_rq(rq)) &&
3146 blk_update_request(rq->next_rq, error, bidi_bytes))
3147 return true;
5efccd17 3148
e2e1a148
JA
3149 if (blk_queue_add_random(rq->q))
3150 add_disk_randomness(rq->rq_disk);
2e60e022
TH
3151
3152 return false;
1da177e4
LT
3153}
3154
28018c24
JB
3155/**
3156 * blk_unprep_request - unprepare a request
3157 * @req: the request
3158 *
3159 * This function makes a request ready for complete resubmission (or
3160 * completion). It happens only after all error handling is complete,
3161 * so represents the appropriate moment to deallocate any resources
3162 * that were allocated to the request in the prep_rq_fn. The queue
3163 * lock is held when calling this.
3164 */
3165void blk_unprep_request(struct request *req)
3166{
3167 struct request_queue *q = req->q;
3168
e8064021 3169 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
3170 if (q->unprep_rq_fn)
3171 q->unprep_rq_fn(q, req);
3172}
3173EXPORT_SYMBOL_GPL(blk_unprep_request);
3174
2a842aca 3175void blk_finish_request(struct request *req, blk_status_t error)
1da177e4 3176{
cf43e6be 3177 struct request_queue *q = req->q;
522a7775 3178 u64 now = ktime_get_ns();
cf43e6be 3179
2fff8a92 3180 lockdep_assert_held(req->q->queue_lock);
332ebbf7 3181 WARN_ON_ONCE(q->mq_ops);
2fff8a92 3182
cf43e6be 3183 if (req->rq_flags & RQF_STATS)
522a7775 3184 blk_stat_add(req, now);
cf43e6be 3185
e8064021 3186 if (req->rq_flags & RQF_QUEUED)
cf43e6be 3187 blk_queue_end_tag(q, req);
b8286239 3188
ba396a6c 3189 BUG_ON(blk_queued_rq(req));
1da177e4 3190
57292b58 3191 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
dc3b17cc 3192 laptop_io_completion(req->q->backing_dev_info);
1da177e4 3193
e78042e5
MA
3194 blk_delete_timer(req);
3195
e8064021 3196 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
3197 blk_unprep_request(req);
3198
522a7775 3199 blk_account_io_done(req, now);
b8286239 3200
87760e5e 3201 if (req->end_io) {
a8a45941 3202 wbt_done(req->q->rq_wb, req);
8ffdc655 3203 req->end_io(req, error);
87760e5e 3204 } else {
b8286239
KU
3205 if (blk_bidi_rq(req))
3206 __blk_put_request(req->next_rq->q, req->next_rq);
3207
cf43e6be 3208 __blk_put_request(q, req);
b8286239 3209 }
1da177e4 3210}
12120077 3211EXPORT_SYMBOL(blk_finish_request);
1da177e4 3212
3b11313a 3213/**
2e60e022
TH
3214 * blk_end_bidi_request - Complete a bidi request
3215 * @rq: the request to complete
2a842aca 3216 * @error: block status code
2e60e022
TH
3217 * @nr_bytes: number of bytes to complete @rq
3218 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
3219 *
3220 * Description:
e3a04fe3 3221 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
3222 * Drivers that supports bidi can safely call this member for any
3223 * type of request, bidi or uni. In the later case @bidi_bytes is
3224 * just ignored.
336cdb40
KU
3225 *
3226 * Return:
2e60e022
TH
3227 * %false - we are done with this request
3228 * %true - still buffers pending for this request
a0cd1285 3229 **/
2a842aca 3230static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
32fab448
KU
3231 unsigned int nr_bytes, unsigned int bidi_bytes)
3232{
336cdb40 3233 struct request_queue *q = rq->q;
2e60e022 3234 unsigned long flags;
32fab448 3235
332ebbf7
BVA
3236 WARN_ON_ONCE(q->mq_ops);
3237
2e60e022
TH
3238 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3239 return true;
32fab448 3240
336cdb40 3241 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 3242 blk_finish_request(rq, error);
336cdb40
KU
3243 spin_unlock_irqrestore(q->queue_lock, flags);
3244
2e60e022 3245 return false;
32fab448
KU
3246}
3247
336cdb40 3248/**
2e60e022
TH
3249 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3250 * @rq: the request to complete
2a842aca 3251 * @error: block status code
e3a04fe3
KU
3252 * @nr_bytes: number of bytes to complete @rq
3253 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
3254 *
3255 * Description:
2e60e022
TH
3256 * Identical to blk_end_bidi_request() except that queue lock is
3257 * assumed to be locked on entry and remains so on return.
336cdb40
KU
3258 *
3259 * Return:
2e60e022
TH
3260 * %false - we are done with this request
3261 * %true - still buffers pending for this request
336cdb40 3262 **/
2a842aca 3263static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
b1f74493 3264 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 3265{
2fff8a92 3266 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3267 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3268
2e60e022
TH
3269 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3270 return true;
336cdb40 3271
2e60e022 3272 blk_finish_request(rq, error);
336cdb40 3273
2e60e022 3274 return false;
336cdb40 3275}
e19a3ab0
KU
3276
3277/**
3278 * blk_end_request - Helper function for drivers to complete the request.
3279 * @rq: the request being processed
2a842aca 3280 * @error: block status code
e19a3ab0
KU
3281 * @nr_bytes: number of bytes to complete
3282 *
3283 * Description:
3284 * Ends I/O on a number of bytes attached to @rq.
3285 * If @rq has leftover, sets it up for the next range of segments.
3286 *
3287 * Return:
b1f74493
FT
3288 * %false - we are done with this request
3289 * %true - still buffers pending for this request
e19a3ab0 3290 **/
2a842aca
CH
3291bool blk_end_request(struct request *rq, blk_status_t error,
3292 unsigned int nr_bytes)
e19a3ab0 3293{
332ebbf7 3294 WARN_ON_ONCE(rq->q->mq_ops);
b1f74493 3295 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 3296}
56ad1740 3297EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
3298
3299/**
b1f74493
FT
3300 * blk_end_request_all - Helper function for drives to finish the request.
3301 * @rq: the request to finish
2a842aca 3302 * @error: block status code
336cdb40
KU
3303 *
3304 * Description:
b1f74493
FT
3305 * Completely finish @rq.
3306 */
2a842aca 3307void blk_end_request_all(struct request *rq, blk_status_t error)
336cdb40 3308{
b1f74493
FT
3309 bool pending;
3310 unsigned int bidi_bytes = 0;
336cdb40 3311
b1f74493
FT
3312 if (unlikely(blk_bidi_rq(rq)))
3313 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 3314
b1f74493
FT
3315 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3316 BUG_ON(pending);
3317}
56ad1740 3318EXPORT_SYMBOL(blk_end_request_all);
336cdb40 3319
e3a04fe3 3320/**
b1f74493
FT
3321 * __blk_end_request - Helper function for drivers to complete the request.
3322 * @rq: the request being processed
2a842aca 3323 * @error: block status code
b1f74493 3324 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
3325 *
3326 * Description:
b1f74493 3327 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
3328 *
3329 * Return:
b1f74493
FT
3330 * %false - we are done with this request
3331 * %true - still buffers pending for this request
e3a04fe3 3332 **/
2a842aca
CH
3333bool __blk_end_request(struct request *rq, blk_status_t error,
3334 unsigned int nr_bytes)
e3a04fe3 3335{
2fff8a92 3336 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3337 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3338
b1f74493 3339 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 3340}
56ad1740 3341EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 3342
32fab448 3343/**
b1f74493
FT
3344 * __blk_end_request_all - Helper function for drives to finish the request.
3345 * @rq: the request to finish
2a842aca 3346 * @error: block status code
32fab448
KU
3347 *
3348 * Description:
b1f74493 3349 * Completely finish @rq. Must be called with queue lock held.
32fab448 3350 */
2a842aca 3351void __blk_end_request_all(struct request *rq, blk_status_t error)
32fab448 3352{
b1f74493
FT
3353 bool pending;
3354 unsigned int bidi_bytes = 0;
3355
2fff8a92 3356 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3357 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3358
b1f74493
FT
3359 if (unlikely(blk_bidi_rq(rq)))
3360 bidi_bytes = blk_rq_bytes(rq->next_rq);
3361
3362 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3363 BUG_ON(pending);
32fab448 3364}
56ad1740 3365EXPORT_SYMBOL(__blk_end_request_all);
32fab448 3366
e19a3ab0 3367/**
b1f74493
FT
3368 * __blk_end_request_cur - Helper function to finish the current request chunk.
3369 * @rq: the request to finish the current chunk for
2a842aca 3370 * @error: block status code
e19a3ab0
KU
3371 *
3372 * Description:
b1f74493
FT
3373 * Complete the current consecutively mapped chunk from @rq. Must
3374 * be called with queue lock held.
e19a3ab0
KU
3375 *
3376 * Return:
b1f74493
FT
3377 * %false - we are done with this request
3378 * %true - still buffers pending for this request
3379 */
2a842aca 3380bool __blk_end_request_cur(struct request *rq, blk_status_t error)
e19a3ab0 3381{
b1f74493 3382 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 3383}
56ad1740 3384EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 3385
86db1e29
JA
3386void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3387 struct bio *bio)
1da177e4 3388{
b4f42e28 3389 if (bio_has_data(bio))
fb2dce86 3390 rq->nr_phys_segments = bio_phys_segments(q, bio);
445251d0
JA
3391 else if (bio_op(bio) == REQ_OP_DISCARD)
3392 rq->nr_phys_segments = 1;
b4f42e28 3393
4f024f37 3394 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 3395 rq->bio = rq->biotail = bio;
1da177e4 3396
74d46992
CH
3397 if (bio->bi_disk)
3398 rq->rq_disk = bio->bi_disk;
66846572 3399}
1da177e4 3400
2d4dc890
IL
3401#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3402/**
3403 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3404 * @rq: the request to be flushed
3405 *
3406 * Description:
3407 * Flush all pages in @rq.
3408 */
3409void rq_flush_dcache_pages(struct request *rq)
3410{
3411 struct req_iterator iter;
7988613b 3412 struct bio_vec bvec;
2d4dc890
IL
3413
3414 rq_for_each_segment(bvec, rq, iter)
7988613b 3415 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
3416}
3417EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3418#endif
3419
ef9e3fac
KU
3420/**
3421 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3422 * @q : the queue of the device being checked
3423 *
3424 * Description:
3425 * Check if underlying low-level drivers of a device are busy.
3426 * If the drivers want to export their busy state, they must set own
3427 * exporting function using blk_queue_lld_busy() first.
3428 *
3429 * Basically, this function is used only by request stacking drivers
3430 * to stop dispatching requests to underlying devices when underlying
3431 * devices are busy. This behavior helps more I/O merging on the queue
3432 * of the request stacking driver and prevents I/O throughput regression
3433 * on burst I/O load.
3434 *
3435 * Return:
3436 * 0 - Not busy (The request stacking driver should dispatch request)
3437 * 1 - Busy (The request stacking driver should stop dispatching request)
3438 */
3439int blk_lld_busy(struct request_queue *q)
3440{
3441 if (q->lld_busy_fn)
3442 return q->lld_busy_fn(q);
3443
3444 return 0;
3445}
3446EXPORT_SYMBOL_GPL(blk_lld_busy);
3447
78d8e58a
MS
3448/**
3449 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3450 * @rq: the clone request to be cleaned up
3451 *
3452 * Description:
3453 * Free all bios in @rq for a cloned request.
3454 */
3455void blk_rq_unprep_clone(struct request *rq)
3456{
3457 struct bio *bio;
3458
3459 while ((bio = rq->bio) != NULL) {
3460 rq->bio = bio->bi_next;
3461
3462 bio_put(bio);
3463 }
3464}
3465EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3466
3467/*
3468 * Copy attributes of the original request to the clone request.
3469 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3470 */
3471static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3472{
3473 dst->cpu = src->cpu;
b0fd271d
KU
3474 dst->__sector = blk_rq_pos(src);
3475 dst->__data_len = blk_rq_bytes(src);
297ba57d
BVA
3476 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3477 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3478 dst->special_vec = src->special_vec;
3479 }
b0fd271d
KU
3480 dst->nr_phys_segments = src->nr_phys_segments;
3481 dst->ioprio = src->ioprio;
3482 dst->extra_len = src->extra_len;
78d8e58a
MS
3483}
3484
3485/**
3486 * blk_rq_prep_clone - Helper function to setup clone request
3487 * @rq: the request to be setup
3488 * @rq_src: original request to be cloned
3489 * @bs: bio_set that bios for clone are allocated from
3490 * @gfp_mask: memory allocation mask for bio
3491 * @bio_ctr: setup function to be called for each clone bio.
3492 * Returns %0 for success, non %0 for failure.
3493 * @data: private data to be passed to @bio_ctr
3494 *
3495 * Description:
3496 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3497 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3498 * are not copied, and copying such parts is the caller's responsibility.
3499 * Also, pages which the original bios are pointing to are not copied
3500 * and the cloned bios just point same pages.
3501 * So cloned bios must be completed before original bios, which means
3502 * the caller must complete @rq before @rq_src.
3503 */
3504int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3505 struct bio_set *bs, gfp_t gfp_mask,
3506 int (*bio_ctr)(struct bio *, struct bio *, void *),
3507 void *data)
3508{
3509 struct bio *bio, *bio_src;
3510
3511 if (!bs)
f4f8154a 3512 bs = &fs_bio_set;
78d8e58a
MS
3513
3514 __rq_for_each_bio(bio_src, rq_src) {
3515 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3516 if (!bio)
3517 goto free_and_out;
3518
3519 if (bio_ctr && bio_ctr(bio, bio_src, data))
3520 goto free_and_out;
3521
3522 if (rq->bio) {
3523 rq->biotail->bi_next = bio;
3524 rq->biotail = bio;
3525 } else
3526 rq->bio = rq->biotail = bio;
3527 }
3528
3529 __blk_rq_prep_clone(rq, rq_src);
3530
3531 return 0;
3532
3533free_and_out:
3534 if (bio)
3535 bio_put(bio);
3536 blk_rq_unprep_clone(rq);
3537
3538 return -ENOMEM;
b0fd271d
KU
3539}
3540EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3541
59c3d45e 3542int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3543{
3544 return queue_work(kblockd_workqueue, work);
3545}
1da177e4
LT
3546EXPORT_SYMBOL(kblockd_schedule_work);
3547
ee63cfa7
JA
3548int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3549{
3550 return queue_work_on(cpu, kblockd_workqueue, work);
3551}
3552EXPORT_SYMBOL(kblockd_schedule_work_on);
3553
818cd1cb
JA
3554int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3555 unsigned long delay)
3556{
3557 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3558}
3559EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3560
75df7136
SJ
3561/**
3562 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3563 * @plug: The &struct blk_plug that needs to be initialized
3564 *
3565 * Description:
3566 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3567 * pending I/O should the task end up blocking between blk_start_plug() and
3568 * blk_finish_plug(). This is important from a performance perspective, but
3569 * also ensures that we don't deadlock. For instance, if the task is blocking
3570 * for a memory allocation, memory reclaim could end up wanting to free a
3571 * page belonging to that request that is currently residing in our private
3572 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3573 * this kind of deadlock.
3574 */
73c10101
JA
3575void blk_start_plug(struct blk_plug *plug)
3576{
3577 struct task_struct *tsk = current;
3578
dd6cf3e1
SL
3579 /*
3580 * If this is a nested plug, don't actually assign it.
3581 */
3582 if (tsk->plug)
3583 return;
3584
73c10101 3585 INIT_LIST_HEAD(&plug->list);
320ae51f 3586 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3587 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3588 /*
dd6cf3e1
SL
3589 * Store ordering should not be needed here, since a potential
3590 * preempt will imply a full memory barrier
73c10101 3591 */
dd6cf3e1 3592 tsk->plug = plug;
73c10101
JA
3593}
3594EXPORT_SYMBOL(blk_start_plug);
3595
3596static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3597{
3598 struct request *rqa = container_of(a, struct request, queuelist);
3599 struct request *rqb = container_of(b, struct request, queuelist);
3600
975927b9
JM
3601 return !(rqa->q < rqb->q ||
3602 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3603}
3604
49cac01e
JA
3605/*
3606 * If 'from_schedule' is true, then postpone the dispatch of requests
3607 * until a safe kblockd context. We due this to avoid accidental big
3608 * additional stack usage in driver dispatch, in places where the originally
3609 * plugger did not intend it.
3610 */
f6603783 3611static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3612 bool from_schedule)
99e22598 3613 __releases(q->queue_lock)
94b5eb28 3614{
2fff8a92
BVA
3615 lockdep_assert_held(q->queue_lock);
3616
49cac01e 3617 trace_block_unplug(q, depth, !from_schedule);
99e22598 3618
70460571 3619 if (from_schedule)
24ecfbe2 3620 blk_run_queue_async(q);
70460571 3621 else
24ecfbe2 3622 __blk_run_queue(q);
50864670 3623 spin_unlock_irq(q->queue_lock);
94b5eb28
JA
3624}
3625
74018dc3 3626static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3627{
3628 LIST_HEAD(callbacks);
3629
2a7d5559
SL
3630 while (!list_empty(&plug->cb_list)) {
3631 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3632
2a7d5559
SL
3633 while (!list_empty(&callbacks)) {
3634 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3635 struct blk_plug_cb,
3636 list);
2a7d5559 3637 list_del(&cb->list);
74018dc3 3638 cb->callback(cb, from_schedule);
2a7d5559 3639 }
048c9374
N
3640 }
3641}
3642
9cbb1750
N
3643struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3644 int size)
3645{
3646 struct blk_plug *plug = current->plug;
3647 struct blk_plug_cb *cb;
3648
3649 if (!plug)
3650 return NULL;
3651
3652 list_for_each_entry(cb, &plug->cb_list, list)
3653 if (cb->callback == unplug && cb->data == data)
3654 return cb;
3655
3656 /* Not currently on the callback list */
3657 BUG_ON(size < sizeof(*cb));
3658 cb = kzalloc(size, GFP_ATOMIC);
3659 if (cb) {
3660 cb->data = data;
3661 cb->callback = unplug;
3662 list_add(&cb->list, &plug->cb_list);
3663 }
3664 return cb;
3665}
3666EXPORT_SYMBOL(blk_check_plugged);
3667
49cac01e 3668void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3669{
3670 struct request_queue *q;
73c10101 3671 struct request *rq;
109b8129 3672 LIST_HEAD(list);
94b5eb28 3673 unsigned int depth;
73c10101 3674
74018dc3 3675 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3676
3677 if (!list_empty(&plug->mq_list))
3678 blk_mq_flush_plug_list(plug, from_schedule);
3679
73c10101
JA
3680 if (list_empty(&plug->list))
3681 return;
3682
109b8129
N
3683 list_splice_init(&plug->list, &list);
3684
422765c2 3685 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3686
3687 q = NULL;
94b5eb28 3688 depth = 0;
18811272 3689
109b8129
N
3690 while (!list_empty(&list)) {
3691 rq = list_entry_rq(list.next);
73c10101 3692 list_del_init(&rq->queuelist);
73c10101
JA
3693 BUG_ON(!rq->q);
3694 if (rq->q != q) {
99e22598
JA
3695 /*
3696 * This drops the queue lock
3697 */
3698 if (q)
49cac01e 3699 queue_unplugged(q, depth, from_schedule);
73c10101 3700 q = rq->q;
94b5eb28 3701 depth = 0;
50864670 3702 spin_lock_irq(q->queue_lock);
73c10101 3703 }
8ba61435
TH
3704
3705 /*
3706 * Short-circuit if @q is dead
3707 */
3f3299d5 3708 if (unlikely(blk_queue_dying(q))) {
2a842aca 3709 __blk_end_request_all(rq, BLK_STS_IOERR);
8ba61435
TH
3710 continue;
3711 }
3712
73c10101
JA
3713 /*
3714 * rq is already accounted, so use raw insert
3715 */
f73f44eb 3716 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3717 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3718 else
3719 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3720
3721 depth++;
73c10101
JA
3722 }
3723
99e22598
JA
3724 /*
3725 * This drops the queue lock
3726 */
3727 if (q)
49cac01e 3728 queue_unplugged(q, depth, from_schedule);
73c10101 3729}
73c10101
JA
3730
3731void blk_finish_plug(struct blk_plug *plug)
3732{
dd6cf3e1
SL
3733 if (plug != current->plug)
3734 return;
f6603783 3735 blk_flush_plug_list(plug, false);
73c10101 3736
dd6cf3e1 3737 current->plug = NULL;
73c10101 3738}
88b996cd 3739EXPORT_SYMBOL(blk_finish_plug);
73c10101 3740
47fafbc7 3741#ifdef CONFIG_PM
6c954667
LM
3742/**
3743 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3744 * @q: the queue of the device
3745 * @dev: the device the queue belongs to
3746 *
3747 * Description:
3748 * Initialize runtime-PM-related fields for @q and start auto suspend for
3749 * @dev. Drivers that want to take advantage of request-based runtime PM
3750 * should call this function after @dev has been initialized, and its
3751 * request queue @q has been allocated, and runtime PM for it can not happen
3752 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3753 * cases, driver should call this function before any I/O has taken place.
3754 *
3755 * This function takes care of setting up using auto suspend for the device,
3756 * the autosuspend delay is set to -1 to make runtime suspend impossible
3757 * until an updated value is either set by user or by driver. Drivers do
3758 * not need to touch other autosuspend settings.
3759 *
3760 * The block layer runtime PM is request based, so only works for drivers
3761 * that use request as their IO unit instead of those directly use bio's.
3762 */
3763void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3764{
765e40b6
CH
3765 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3766 if (q->mq_ops)
3767 return;
3768
6c954667
LM
3769 q->dev = dev;
3770 q->rpm_status = RPM_ACTIVE;
3771 pm_runtime_set_autosuspend_delay(q->dev, -1);
3772 pm_runtime_use_autosuspend(q->dev);
3773}
3774EXPORT_SYMBOL(blk_pm_runtime_init);
3775
3776/**
3777 * blk_pre_runtime_suspend - Pre runtime suspend check
3778 * @q: the queue of the device
3779 *
3780 * Description:
3781 * This function will check if runtime suspend is allowed for the device
3782 * by examining if there are any requests pending in the queue. If there
3783 * are requests pending, the device can not be runtime suspended; otherwise,
3784 * the queue's status will be updated to SUSPENDING and the driver can
3785 * proceed to suspend the device.
3786 *
3787 * For the not allowed case, we mark last busy for the device so that
3788 * runtime PM core will try to autosuspend it some time later.
3789 *
3790 * This function should be called near the start of the device's
3791 * runtime_suspend callback.
3792 *
3793 * Return:
3794 * 0 - OK to runtime suspend the device
3795 * -EBUSY - Device should not be runtime suspended
3796 */
3797int blk_pre_runtime_suspend(struct request_queue *q)
3798{
3799 int ret = 0;
3800
4fd41a85
KX
3801 if (!q->dev)
3802 return ret;
3803
6c954667
LM
3804 spin_lock_irq(q->queue_lock);
3805 if (q->nr_pending) {
3806 ret = -EBUSY;
3807 pm_runtime_mark_last_busy(q->dev);
3808 } else {
3809 q->rpm_status = RPM_SUSPENDING;
3810 }
3811 spin_unlock_irq(q->queue_lock);
3812 return ret;
3813}
3814EXPORT_SYMBOL(blk_pre_runtime_suspend);
3815
3816/**
3817 * blk_post_runtime_suspend - Post runtime suspend processing
3818 * @q: the queue of the device
3819 * @err: return value of the device's runtime_suspend function
3820 *
3821 * Description:
3822 * Update the queue's runtime status according to the return value of the
3823 * device's runtime suspend function and mark last busy for the device so
3824 * that PM core will try to auto suspend the device at a later time.
3825 *
3826 * This function should be called near the end of the device's
3827 * runtime_suspend callback.
3828 */
3829void blk_post_runtime_suspend(struct request_queue *q, int err)
3830{
4fd41a85
KX
3831 if (!q->dev)
3832 return;
3833
6c954667
LM
3834 spin_lock_irq(q->queue_lock);
3835 if (!err) {
3836 q->rpm_status = RPM_SUSPENDED;
3837 } else {
3838 q->rpm_status = RPM_ACTIVE;
3839 pm_runtime_mark_last_busy(q->dev);
3840 }
3841 spin_unlock_irq(q->queue_lock);
3842}
3843EXPORT_SYMBOL(blk_post_runtime_suspend);
3844
3845/**
3846 * blk_pre_runtime_resume - Pre runtime resume processing
3847 * @q: the queue of the device
3848 *
3849 * Description:
3850 * Update the queue's runtime status to RESUMING in preparation for the
3851 * runtime resume of the device.
3852 *
3853 * This function should be called near the start of the device's
3854 * runtime_resume callback.
3855 */
3856void blk_pre_runtime_resume(struct request_queue *q)
3857{
4fd41a85
KX
3858 if (!q->dev)
3859 return;
3860
6c954667
LM
3861 spin_lock_irq(q->queue_lock);
3862 q->rpm_status = RPM_RESUMING;
3863 spin_unlock_irq(q->queue_lock);
3864}
3865EXPORT_SYMBOL(blk_pre_runtime_resume);
3866
3867/**
3868 * blk_post_runtime_resume - Post runtime resume processing
3869 * @q: the queue of the device
3870 * @err: return value of the device's runtime_resume function
3871 *
3872 * Description:
3873 * Update the queue's runtime status according to the return value of the
3874 * device's runtime_resume function. If it is successfully resumed, process
3875 * the requests that are queued into the device's queue when it is resuming
3876 * and then mark last busy and initiate autosuspend for it.
3877 *
3878 * This function should be called near the end of the device's
3879 * runtime_resume callback.
3880 */
3881void blk_post_runtime_resume(struct request_queue *q, int err)
3882{
4fd41a85
KX
3883 if (!q->dev)
3884 return;
3885
6c954667
LM
3886 spin_lock_irq(q->queue_lock);
3887 if (!err) {
3888 q->rpm_status = RPM_ACTIVE;
3889 __blk_run_queue(q);
3890 pm_runtime_mark_last_busy(q->dev);
c60855cd 3891 pm_request_autosuspend(q->dev);
6c954667
LM
3892 } else {
3893 q->rpm_status = RPM_SUSPENDED;
3894 }
3895 spin_unlock_irq(q->queue_lock);
3896}
3897EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3898
3899/**
3900 * blk_set_runtime_active - Force runtime status of the queue to be active
3901 * @q: the queue of the device
3902 *
3903 * If the device is left runtime suspended during system suspend the resume
3904 * hook typically resumes the device and corrects runtime status
3905 * accordingly. However, that does not affect the queue runtime PM status
3906 * which is still "suspended". This prevents processing requests from the
3907 * queue.
3908 *
3909 * This function can be used in driver's resume hook to correct queue
3910 * runtime PM status and re-enable peeking requests from the queue. It
3911 * should be called before first request is added to the queue.
3912 */
3913void blk_set_runtime_active(struct request_queue *q)
3914{
3915 spin_lock_irq(q->queue_lock);
3916 q->rpm_status = RPM_ACTIVE;
3917 pm_runtime_mark_last_busy(q->dev);
3918 pm_request_autosuspend(q->dev);
3919 spin_unlock_irq(q->queue_lock);
3920}
3921EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3922#endif
3923
1da177e4
LT
3924int __init blk_dev_init(void)
3925{
ef295ecf
CH
3926 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3927 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3928 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3929 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3930 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3931
89b90be2
TH
3932 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3933 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3934 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3935 if (!kblockd_workqueue)
3936 panic("Failed to create kblockd\n");
3937
3938 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3939 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3940
c2789bd4 3941 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3942 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3943
18fbda91
OS
3944#ifdef CONFIG_DEBUG_FS
3945 blk_debugfs_root = debugfs_create_dir("block", NULL);
3946#endif
3947
d38ecf93 3948 return 0;
1da177e4 3949}