Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-2.6-block.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
30abb3a6 37#include <linux/bpf.h>
55782138
LZ
38
39#define CREATE_TRACE_POINTS
40#include <trace/events/block.h>
1da177e4 41
8324aa91 42#include "blk.h"
43a5e4e2 43#include "blk-mq.h"
bd166ef1 44#include "blk-mq-sched.h"
bca6b067 45#include "blk-pm.h"
c1c80384 46#include "blk-rq-qos.h"
8324aa91 47
18fbda91
OS
48#ifdef CONFIG_DEBUG_FS
49struct dentry *blk_debugfs_root;
50#endif
51
d07335e5 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 55EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 56EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 57
a73f730d
TH
58DEFINE_IDA(blk_queue_ida);
59
1da177e4
LT
60/*
61 * For the allocated request tables
62 */
d674d414 63struct kmem_cache *request_cachep;
1da177e4
LT
64
65/*
66 * For queue allocation
67 */
6728cb0e 68struct kmem_cache *blk_requestq_cachep;
1da177e4 69
1da177e4
LT
70/*
71 * Controlling structure to kblockd
72 */
ff856bad 73static struct workqueue_struct *kblockd_workqueue;
1da177e4 74
8814ce8a
BVA
75/**
76 * blk_queue_flag_set - atomically set a queue flag
77 * @flag: flag to be set
78 * @q: request queue
79 */
80void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81{
82 unsigned long flags;
83
84 spin_lock_irqsave(q->queue_lock, flags);
85 queue_flag_set(flag, q);
86 spin_unlock_irqrestore(q->queue_lock, flags);
87}
88EXPORT_SYMBOL(blk_queue_flag_set);
89
90/**
91 * blk_queue_flag_clear - atomically clear a queue flag
92 * @flag: flag to be cleared
93 * @q: request queue
94 */
95void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
96{
97 unsigned long flags;
98
99 spin_lock_irqsave(q->queue_lock, flags);
100 queue_flag_clear(flag, q);
101 spin_unlock_irqrestore(q->queue_lock, flags);
102}
103EXPORT_SYMBOL(blk_queue_flag_clear);
104
105/**
106 * blk_queue_flag_test_and_set - atomically test and set a queue flag
107 * @flag: flag to be set
108 * @q: request queue
109 *
110 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
111 * the flag was already set.
112 */
113bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
114{
115 unsigned long flags;
116 bool res;
117
118 spin_lock_irqsave(q->queue_lock, flags);
119 res = queue_flag_test_and_set(flag, q);
120 spin_unlock_irqrestore(q->queue_lock, flags);
121
122 return res;
123}
124EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
125
126/**
127 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
128 * @flag: flag to be cleared
129 * @q: request queue
130 *
131 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
132 * the flag was set.
133 */
134bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
135{
136 unsigned long flags;
137 bool res;
138
139 spin_lock_irqsave(q->queue_lock, flags);
140 res = queue_flag_test_and_clear(flag, q);
141 spin_unlock_irqrestore(q->queue_lock, flags);
142
143 return res;
144}
145EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
146
d40f75a0
TH
147static void blk_clear_congested(struct request_list *rl, int sync)
148{
d40f75a0
TH
149#ifdef CONFIG_CGROUP_WRITEBACK
150 clear_wb_congested(rl->blkg->wb_congested, sync);
151#else
482cf79c
TH
152 /*
153 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
154 * flip its congestion state for events on other blkcgs.
155 */
156 if (rl == &rl->q->root_rl)
dc3b17cc 157 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
158#endif
159}
160
161static void blk_set_congested(struct request_list *rl, int sync)
162{
d40f75a0
TH
163#ifdef CONFIG_CGROUP_WRITEBACK
164 set_wb_congested(rl->blkg->wb_congested, sync);
165#else
482cf79c
TH
166 /* see blk_clear_congested() */
167 if (rl == &rl->q->root_rl)
dc3b17cc 168 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
169#endif
170}
171
8324aa91 172void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
173{
174 int nr;
175
176 nr = q->nr_requests - (q->nr_requests / 8) + 1;
177 if (nr > q->nr_requests)
178 nr = q->nr_requests;
179 q->nr_congestion_on = nr;
180
181 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
182 if (nr < 1)
183 nr = 1;
184 q->nr_congestion_off = nr;
185}
186
2a4aa30c 187void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 188{
1afb20f3
FT
189 memset(rq, 0, sizeof(*rq));
190
1da177e4 191 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 192 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 193 rq->cpu = -1;
63a71386 194 rq->q = q;
a2dec7b3 195 rq->__sector = (sector_t) -1;
2e662b65
JA
196 INIT_HLIST_NODE(&rq->hash);
197 RB_CLEAR_NODE(&rq->rb_node);
63a71386 198 rq->tag = -1;
bd166ef1 199 rq->internal_tag = -1;
522a7775 200 rq->start_time_ns = ktime_get_ns();
09e099d4 201 rq->part = NULL;
1da177e4 202}
2a4aa30c 203EXPORT_SYMBOL(blk_rq_init);
1da177e4 204
2a842aca
CH
205static const struct {
206 int errno;
207 const char *name;
208} blk_errors[] = {
209 [BLK_STS_OK] = { 0, "" },
210 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
211 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
212 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
213 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
214 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
215 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
216 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
217 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
218 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 219 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 220 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 221
4e4cbee9
CH
222 /* device mapper special case, should not leak out: */
223 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
224
2a842aca
CH
225 /* everything else not covered above: */
226 [BLK_STS_IOERR] = { -EIO, "I/O" },
227};
228
229blk_status_t errno_to_blk_status(int errno)
230{
231 int i;
232
233 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
234 if (blk_errors[i].errno == errno)
235 return (__force blk_status_t)i;
236 }
237
238 return BLK_STS_IOERR;
239}
240EXPORT_SYMBOL_GPL(errno_to_blk_status);
241
242int blk_status_to_errno(blk_status_t status)
243{
244 int idx = (__force int)status;
245
34bd9c1c 246 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
247 return -EIO;
248 return blk_errors[idx].errno;
249}
250EXPORT_SYMBOL_GPL(blk_status_to_errno);
251
252static void print_req_error(struct request *req, blk_status_t status)
253{
254 int idx = (__force int)status;
255
34bd9c1c 256 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
257 return;
258
259 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
260 __func__, blk_errors[idx].name, req->rq_disk ?
261 req->rq_disk->disk_name : "?",
262 (unsigned long long)blk_rq_pos(req));
263}
264
5bb23a68 265static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 266 unsigned int nbytes, blk_status_t error)
1da177e4 267{
78d8e58a 268 if (error)
4e4cbee9 269 bio->bi_status = error;
797e7dbb 270
e8064021 271 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 272 bio_set_flag(bio, BIO_QUIET);
08bafc03 273
f79ea416 274 bio_advance(bio, nbytes);
7ba1ba12 275
143a87f4 276 /* don't actually finish bio if it's part of flush sequence */
e8064021 277 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 278 bio_endio(bio);
1da177e4 279}
1da177e4 280
1da177e4
LT
281void blk_dump_rq_flags(struct request *rq, char *msg)
282{
aebf526b
CH
283 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
284 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 285 (unsigned long long) rq->cmd_flags);
1da177e4 286
83096ebf
TH
287 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
288 (unsigned long long)blk_rq_pos(rq),
289 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
290 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
291 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 292}
1da177e4
LT
293EXPORT_SYMBOL(blk_dump_rq_flags);
294
3cca6dc1 295static void blk_delay_work(struct work_struct *work)
1da177e4 296{
3cca6dc1 297 struct request_queue *q;
1da177e4 298
3cca6dc1
JA
299 q = container_of(work, struct request_queue, delay_work.work);
300 spin_lock_irq(q->queue_lock);
24ecfbe2 301 __blk_run_queue(q);
3cca6dc1 302 spin_unlock_irq(q->queue_lock);
1da177e4 303}
1da177e4
LT
304
305/**
3cca6dc1
JA
306 * blk_delay_queue - restart queueing after defined interval
307 * @q: The &struct request_queue in question
308 * @msecs: Delay in msecs
1da177e4
LT
309 *
310 * Description:
3cca6dc1
JA
311 * Sometimes queueing needs to be postponed for a little while, to allow
312 * resources to come back. This function will make sure that queueing is
2fff8a92 313 * restarted around the specified time.
3cca6dc1
JA
314 */
315void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 316{
2fff8a92 317 lockdep_assert_held(q->queue_lock);
332ebbf7 318 WARN_ON_ONCE(q->mq_ops);
2fff8a92 319
70460571
BVA
320 if (likely(!blk_queue_dead(q)))
321 queue_delayed_work(kblockd_workqueue, &q->delay_work,
322 msecs_to_jiffies(msecs));
2ad8b1ef 323}
3cca6dc1 324EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 325
21491412
JA
326/**
327 * blk_start_queue_async - asynchronously restart a previously stopped queue
328 * @q: The &struct request_queue in question
329 *
330 * Description:
331 * blk_start_queue_async() will clear the stop flag on the queue, and
332 * ensure that the request_fn for the queue is run from an async
333 * context.
334 **/
335void blk_start_queue_async(struct request_queue *q)
336{
2fff8a92 337 lockdep_assert_held(q->queue_lock);
332ebbf7 338 WARN_ON_ONCE(q->mq_ops);
2fff8a92 339
21491412
JA
340 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
341 blk_run_queue_async(q);
342}
343EXPORT_SYMBOL(blk_start_queue_async);
344
1da177e4
LT
345/**
346 * blk_start_queue - restart a previously stopped queue
165125e1 347 * @q: The &struct request_queue in question
1da177e4
LT
348 *
349 * Description:
350 * blk_start_queue() will clear the stop flag on the queue, and call
351 * the request_fn for the queue if it was in a stopped state when
2fff8a92 352 * entered. Also see blk_stop_queue().
1da177e4 353 **/
165125e1 354void blk_start_queue(struct request_queue *q)
1da177e4 355{
2fff8a92 356 lockdep_assert_held(q->queue_lock);
332ebbf7 357 WARN_ON_ONCE(q->mq_ops);
a038e253 358
75ad23bc 359 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 360 __blk_run_queue(q);
1da177e4 361}
1da177e4
LT
362EXPORT_SYMBOL(blk_start_queue);
363
364/**
365 * blk_stop_queue - stop a queue
165125e1 366 * @q: The &struct request_queue in question
1da177e4
LT
367 *
368 * Description:
369 * The Linux block layer assumes that a block driver will consume all
370 * entries on the request queue when the request_fn strategy is called.
371 * Often this will not happen, because of hardware limitations (queue
372 * depth settings). If a device driver gets a 'queue full' response,
373 * or if it simply chooses not to queue more I/O at one point, it can
374 * call this function to prevent the request_fn from being called until
375 * the driver has signalled it's ready to go again. This happens by calling
2fff8a92 376 * blk_start_queue() to restart queue operations.
1da177e4 377 **/
165125e1 378void blk_stop_queue(struct request_queue *q)
1da177e4 379{
2fff8a92 380 lockdep_assert_held(q->queue_lock);
332ebbf7 381 WARN_ON_ONCE(q->mq_ops);
2fff8a92 382
136b5721 383 cancel_delayed_work(&q->delay_work);
75ad23bc 384 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
385}
386EXPORT_SYMBOL(blk_stop_queue);
387
388/**
389 * blk_sync_queue - cancel any pending callbacks on a queue
390 * @q: the queue
391 *
392 * Description:
393 * The block layer may perform asynchronous callback activity
394 * on a queue, such as calling the unplug function after a timeout.
395 * A block device may call blk_sync_queue to ensure that any
396 * such activity is cancelled, thus allowing it to release resources
59c51591 397 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
398 * that its ->make_request_fn will not re-add plugging prior to calling
399 * this function.
400 *
da527770 401 * This function does not cancel any asynchronous activity arising
da3dae54 402 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 403 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 404 *
1da177e4
LT
405 */
406void blk_sync_queue(struct request_queue *q)
407{
70ed28b9 408 del_timer_sync(&q->timeout);
4e9b6f20 409 cancel_work_sync(&q->timeout_work);
f04c1fe7
ML
410
411 if (q->mq_ops) {
412 struct blk_mq_hw_ctx *hctx;
413 int i;
414
aba7afc5 415 cancel_delayed_work_sync(&q->requeue_work);
21c6e939 416 queue_for_each_hw_ctx(q, hctx, i)
9f993737 417 cancel_delayed_work_sync(&hctx->run_work);
f04c1fe7
ML
418 } else {
419 cancel_delayed_work_sync(&q->delay_work);
420 }
1da177e4
LT
421}
422EXPORT_SYMBOL(blk_sync_queue);
423
c9254f2d 424/**
cd84a62e 425 * blk_set_pm_only - increment pm_only counter
c9254f2d 426 * @q: request queue pointer
c9254f2d 427 */
cd84a62e 428void blk_set_pm_only(struct request_queue *q)
c9254f2d 429{
cd84a62e 430 atomic_inc(&q->pm_only);
c9254f2d 431}
cd84a62e 432EXPORT_SYMBOL_GPL(blk_set_pm_only);
c9254f2d 433
cd84a62e 434void blk_clear_pm_only(struct request_queue *q)
c9254f2d 435{
cd84a62e
BVA
436 int pm_only;
437
438 pm_only = atomic_dec_return(&q->pm_only);
439 WARN_ON_ONCE(pm_only < 0);
440 if (pm_only == 0)
441 wake_up_all(&q->mq_freeze_wq);
c9254f2d 442}
cd84a62e 443EXPORT_SYMBOL_GPL(blk_clear_pm_only);
c9254f2d 444
c246e80d
BVA
445/**
446 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
447 * @q: The queue to run
448 *
449 * Description:
450 * Invoke request handling on a queue if there are any pending requests.
451 * May be used to restart request handling after a request has completed.
452 * This variant runs the queue whether or not the queue has been
453 * stopped. Must be called with the queue lock held and interrupts
454 * disabled. See also @blk_run_queue.
455 */
456inline void __blk_run_queue_uncond(struct request_queue *q)
457{
2fff8a92 458 lockdep_assert_held(q->queue_lock);
332ebbf7 459 WARN_ON_ONCE(q->mq_ops);
2fff8a92 460
c246e80d
BVA
461 if (unlikely(blk_queue_dead(q)))
462 return;
463
24faf6f6
BVA
464 /*
465 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
466 * the queue lock internally. As a result multiple threads may be
467 * running such a request function concurrently. Keep track of the
468 * number of active request_fn invocations such that blk_drain_queue()
469 * can wait until all these request_fn calls have finished.
470 */
471 q->request_fn_active++;
c246e80d 472 q->request_fn(q);
24faf6f6 473 q->request_fn_active--;
c246e80d 474}
a7928c15 475EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 476
1da177e4 477/**
80a4b58e 478 * __blk_run_queue - run a single device queue
1da177e4 479 * @q: The queue to run
80a4b58e
JA
480 *
481 * Description:
2fff8a92 482 * See @blk_run_queue.
1da177e4 483 */
24ecfbe2 484void __blk_run_queue(struct request_queue *q)
1da177e4 485{
2fff8a92 486 lockdep_assert_held(q->queue_lock);
332ebbf7 487 WARN_ON_ONCE(q->mq_ops);
2fff8a92 488
a538cd03
TH
489 if (unlikely(blk_queue_stopped(q)))
490 return;
491
c246e80d 492 __blk_run_queue_uncond(q);
75ad23bc
NP
493}
494EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 495
24ecfbe2
CH
496/**
497 * blk_run_queue_async - run a single device queue in workqueue context
498 * @q: The queue to run
499 *
500 * Description:
501 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
2fff8a92
BVA
502 * of us.
503 *
504 * Note:
505 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
506 * has canceled q->delay_work, callers must hold the queue lock to avoid
507 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
24ecfbe2
CH
508 */
509void blk_run_queue_async(struct request_queue *q)
510{
2fff8a92 511 lockdep_assert_held(q->queue_lock);
332ebbf7 512 WARN_ON_ONCE(q->mq_ops);
2fff8a92 513
70460571 514 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 515 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 516}
c21e6beb 517EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 518
75ad23bc
NP
519/**
520 * blk_run_queue - run a single device queue
521 * @q: The queue to run
80a4b58e
JA
522 *
523 * Description:
524 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 525 * May be used to restart queueing when a request has completed.
75ad23bc
NP
526 */
527void blk_run_queue(struct request_queue *q)
528{
529 unsigned long flags;
530
332ebbf7
BVA
531 WARN_ON_ONCE(q->mq_ops);
532
75ad23bc 533 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 534 __blk_run_queue(q);
1da177e4
LT
535 spin_unlock_irqrestore(q->queue_lock, flags);
536}
537EXPORT_SYMBOL(blk_run_queue);
538
165125e1 539void blk_put_queue(struct request_queue *q)
483f4afc
AV
540{
541 kobject_put(&q->kobj);
542}
d86e0e83 543EXPORT_SYMBOL(blk_put_queue);
483f4afc 544
e3c78ca5 545/**
807592a4 546 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 547 * @q: queue to drain
c9a929dd 548 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 549 *
c9a929dd
TH
550 * Drain requests from @q. If @drain_all is set, all requests are drained.
551 * If not, only ELVPRIV requests are drained. The caller is responsible
552 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 553 */
807592a4
BVA
554static void __blk_drain_queue(struct request_queue *q, bool drain_all)
555 __releases(q->queue_lock)
556 __acquires(q->queue_lock)
e3c78ca5 557{
458f27a9
AH
558 int i;
559
807592a4 560 lockdep_assert_held(q->queue_lock);
332ebbf7 561 WARN_ON_ONCE(q->mq_ops);
807592a4 562
e3c78ca5 563 while (true) {
481a7d64 564 bool drain = false;
e3c78ca5 565
b855b04a
TH
566 /*
567 * The caller might be trying to drain @q before its
568 * elevator is initialized.
569 */
570 if (q->elevator)
571 elv_drain_elevator(q);
572
5efd6113 573 blkcg_drain_queue(q);
e3c78ca5 574
4eabc941
TH
575 /*
576 * This function might be called on a queue which failed
b855b04a
TH
577 * driver init after queue creation or is not yet fully
578 * active yet. Some drivers (e.g. fd and loop) get unhappy
579 * in such cases. Kick queue iff dispatch queue has
580 * something on it and @q has request_fn set.
4eabc941 581 */
b855b04a 582 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 583 __blk_run_queue(q);
c9a929dd 584
8a5ecdd4 585 drain |= q->nr_rqs_elvpriv;
24faf6f6 586 drain |= q->request_fn_active;
481a7d64
TH
587
588 /*
589 * Unfortunately, requests are queued at and tracked from
590 * multiple places and there's no single counter which can
591 * be drained. Check all the queues and counters.
592 */
593 if (drain_all) {
e97c293c 594 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
595 drain |= !list_empty(&q->queue_head);
596 for (i = 0; i < 2; i++) {
8a5ecdd4 597 drain |= q->nr_rqs[i];
481a7d64 598 drain |= q->in_flight[i];
7c94e1c1
ML
599 if (fq)
600 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
601 }
602 }
e3c78ca5 603
481a7d64 604 if (!drain)
e3c78ca5 605 break;
807592a4
BVA
606
607 spin_unlock_irq(q->queue_lock);
608
e3c78ca5 609 msleep(10);
807592a4
BVA
610
611 spin_lock_irq(q->queue_lock);
e3c78ca5 612 }
458f27a9
AH
613
614 /*
615 * With queue marked dead, any woken up waiter will fail the
616 * allocation path, so the wakeup chaining is lost and we're
617 * left with hung waiters. We need to wake up those waiters.
618 */
619 if (q->request_fn) {
a051661c
TH
620 struct request_list *rl;
621
a051661c
TH
622 blk_queue_for_each_rl(rl, q)
623 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
624 wake_up_all(&rl->wait[i]);
458f27a9 625 }
e3c78ca5
TH
626}
627
454be724
ML
628void blk_drain_queue(struct request_queue *q)
629{
630 spin_lock_irq(q->queue_lock);
631 __blk_drain_queue(q, true);
632 spin_unlock_irq(q->queue_lock);
633}
634
d732580b
TH
635/**
636 * blk_queue_bypass_start - enter queue bypass mode
637 * @q: queue of interest
638 *
639 * In bypass mode, only the dispatch FIFO queue of @q is used. This
640 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 641 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
642 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
643 * inside queue or RCU read lock.
d732580b
TH
644 */
645void blk_queue_bypass_start(struct request_queue *q)
646{
332ebbf7
BVA
647 WARN_ON_ONCE(q->mq_ops);
648
d732580b 649 spin_lock_irq(q->queue_lock);
776687bc 650 q->bypass_depth++;
d732580b
TH
651 queue_flag_set(QUEUE_FLAG_BYPASS, q);
652 spin_unlock_irq(q->queue_lock);
653
776687bc
TH
654 /*
655 * Queues start drained. Skip actual draining till init is
656 * complete. This avoids lenghty delays during queue init which
657 * can happen many times during boot.
658 */
659 if (blk_queue_init_done(q)) {
807592a4
BVA
660 spin_lock_irq(q->queue_lock);
661 __blk_drain_queue(q, false);
662 spin_unlock_irq(q->queue_lock);
663
b82d4b19
TH
664 /* ensure blk_queue_bypass() is %true inside RCU read lock */
665 synchronize_rcu();
666 }
d732580b
TH
667}
668EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
669
670/**
671 * blk_queue_bypass_end - leave queue bypass mode
672 * @q: queue of interest
673 *
674 * Leave bypass mode and restore the normal queueing behavior.
332ebbf7
BVA
675 *
676 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
677 * this function is called for both blk-sq and blk-mq queues.
d732580b
TH
678 */
679void blk_queue_bypass_end(struct request_queue *q)
680{
681 spin_lock_irq(q->queue_lock);
682 if (!--q->bypass_depth)
683 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
684 WARN_ON_ONCE(q->bypass_depth < 0);
685 spin_unlock_irq(q->queue_lock);
686}
687EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
688
aed3ea94
JA
689void blk_set_queue_dying(struct request_queue *q)
690{
8814ce8a 691 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
aed3ea94 692
d3cfb2a0
ML
693 /*
694 * When queue DYING flag is set, we need to block new req
695 * entering queue, so we call blk_freeze_queue_start() to
696 * prevent I/O from crossing blk_queue_enter().
697 */
698 blk_freeze_queue_start(q);
699
aed3ea94
JA
700 if (q->mq_ops)
701 blk_mq_wake_waiters(q);
702 else {
703 struct request_list *rl;
704
bbfc3c5d 705 spin_lock_irq(q->queue_lock);
aed3ea94
JA
706 blk_queue_for_each_rl(rl, q) {
707 if (rl->rq_pool) {
34d9715a
ML
708 wake_up_all(&rl->wait[BLK_RW_SYNC]);
709 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
aed3ea94
JA
710 }
711 }
bbfc3c5d 712 spin_unlock_irq(q->queue_lock);
aed3ea94 713 }
055f6e18
ML
714
715 /* Make blk_queue_enter() reexamine the DYING flag. */
716 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
717}
718EXPORT_SYMBOL_GPL(blk_set_queue_dying);
719
4cf6324b
BVA
720/* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
721void blk_exit_queue(struct request_queue *q)
722{
723 /*
724 * Since the I/O scheduler exit code may access cgroup information,
725 * perform I/O scheduler exit before disassociating from the block
726 * cgroup controller.
727 */
728 if (q->elevator) {
729 ioc_clear_queue(q);
730 elevator_exit(q, q->elevator);
731 q->elevator = NULL;
732 }
733
734 /*
735 * Remove all references to @q from the block cgroup controller before
736 * restoring @q->queue_lock to avoid that restoring this pointer causes
737 * e.g. blkcg_print_blkgs() to crash.
738 */
739 blkcg_exit_queue(q);
740
741 /*
742 * Since the cgroup code may dereference the @q->backing_dev_info
743 * pointer, only decrease its reference count after having removed the
744 * association with the block cgroup controller.
745 */
746 bdi_put(q->backing_dev_info);
747}
748
c9a929dd
TH
749/**
750 * blk_cleanup_queue - shutdown a request queue
751 * @q: request queue to shutdown
752 *
c246e80d
BVA
753 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
754 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 755 */
6728cb0e 756void blk_cleanup_queue(struct request_queue *q)
483f4afc 757{
c9a929dd 758 spinlock_t *lock = q->queue_lock;
e3335de9 759
3f3299d5 760 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 761 mutex_lock(&q->sysfs_lock);
aed3ea94 762 blk_set_queue_dying(q);
c9a929dd 763 spin_lock_irq(lock);
6ecf23af 764
80fd9979 765 /*
3f3299d5 766 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
767 * that, unlike blk_queue_bypass_start(), we aren't performing
768 * synchronize_rcu() after entering bypass mode to avoid the delay
769 * as some drivers create and destroy a lot of queues while
770 * probing. This is still safe because blk_release_queue() will be
771 * called only after the queue refcnt drops to zero and nothing,
772 * RCU or not, would be traversing the queue by then.
773 */
6ecf23af
TH
774 q->bypass_depth++;
775 queue_flag_set(QUEUE_FLAG_BYPASS, q);
776
c9a929dd
TH
777 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
778 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 779 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
780 spin_unlock_irq(lock);
781 mutex_unlock(&q->sysfs_lock);
782
c246e80d
BVA
783 /*
784 * Drain all requests queued before DYING marking. Set DEAD flag to
785 * prevent that q->request_fn() gets invoked after draining finished.
786 */
3ef28e83 787 blk_freeze_queue(q);
c57cdf7a
ML
788
789 rq_qos_exit(q);
790
9c1051aa 791 spin_lock_irq(lock);
c246e80d 792 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 793 spin_unlock_irq(lock);
c9a929dd 794
c2856ae2
ML
795 /*
796 * make sure all in-progress dispatch are completed because
797 * blk_freeze_queue() can only complete all requests, and
798 * dispatch may still be in-progress since we dispatch requests
1311326c
ML
799 * from more than one contexts.
800 *
8dc765d4
ML
801 * We rely on driver to deal with the race in case that queue
802 * initialization isn't done.
c2856ae2 803 */
1311326c 804 if (q->mq_ops && blk_queue_init_done(q))
c2856ae2
ML
805 blk_mq_quiesce_queue(q);
806
5a48fc14
DW
807 /* for synchronous bio-based driver finish in-flight integrity i/o */
808 blk_flush_integrity();
809
c9a929dd 810 /* @q won't process any more request, flush async actions */
dc3b17cc 811 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
812 blk_sync_queue(q);
813
a063057d
BVA
814 /*
815 * I/O scheduler exit is only safe after the sysfs scheduler attribute
816 * has been removed.
817 */
818 WARN_ON_ONCE(q->kobj.state_in_sysfs);
819
4cf6324b 820 blk_exit_queue(q);
a063057d 821
45a9c9d9
BVA
822 if (q->mq_ops)
823 blk_mq_free_queue(q);
3ef28e83 824 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 825
5e5cfac0
AH
826 spin_lock_irq(lock);
827 if (q->queue_lock != &q->__queue_lock)
828 q->queue_lock = &q->__queue_lock;
829 spin_unlock_irq(lock);
830
c9a929dd 831 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
832 blk_put_queue(q);
833}
1da177e4
LT
834EXPORT_SYMBOL(blk_cleanup_queue);
835
271508db 836/* Allocate memory local to the request queue */
6d247d7f 837static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 838{
6d247d7f
CH
839 struct request_queue *q = data;
840
841 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
842}
843
6d247d7f 844static void free_request_simple(void *element, void *data)
271508db
DR
845{
846 kmem_cache_free(request_cachep, element);
847}
848
6d247d7f
CH
849static void *alloc_request_size(gfp_t gfp_mask, void *data)
850{
851 struct request_queue *q = data;
852 struct request *rq;
853
854 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
855 q->node);
856 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
857 kfree(rq);
858 rq = NULL;
859 }
860 return rq;
861}
862
863static void free_request_size(void *element, void *data)
864{
865 struct request_queue *q = data;
866
867 if (q->exit_rq_fn)
868 q->exit_rq_fn(q, element);
869 kfree(element);
870}
871
5b788ce3
TH
872int blk_init_rl(struct request_list *rl, struct request_queue *q,
873 gfp_t gfp_mask)
1da177e4 874{
85acb3ba 875 if (unlikely(rl->rq_pool) || q->mq_ops)
1abec4fd
MS
876 return 0;
877
5b788ce3 878 rl->q = q;
1faa16d2
JA
879 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
880 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
881 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
882 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 883
6d247d7f
CH
884 if (q->cmd_size) {
885 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
886 alloc_request_size, free_request_size,
887 q, gfp_mask, q->node);
888 } else {
889 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
890 alloc_request_simple, free_request_simple,
891 q, gfp_mask, q->node);
892 }
1da177e4
LT
893 if (!rl->rq_pool)
894 return -ENOMEM;
895
b425e504
BVA
896 if (rl != &q->root_rl)
897 WARN_ON_ONCE(!blk_get_queue(q));
898
1da177e4
LT
899 return 0;
900}
901
b425e504 902void blk_exit_rl(struct request_queue *q, struct request_list *rl)
5b788ce3 903{
b425e504 904 if (rl->rq_pool) {
5b788ce3 905 mempool_destroy(rl->rq_pool);
b425e504
BVA
906 if (rl != &q->root_rl)
907 blk_put_queue(q);
908 }
5b788ce3
TH
909}
910
165125e1 911struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 912{
5ee0524b 913 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
1946089a
CL
914}
915EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 916
3a0a5299
BVA
917/**
918 * blk_queue_enter() - try to increase q->q_usage_counter
919 * @q: request queue pointer
920 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
921 */
9a95e4ef 922int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 923{
cd84a62e 924 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
3a0a5299 925
3ef28e83 926 while (true) {
3a0a5299 927 bool success = false;
3ef28e83 928
818e0fa2 929 rcu_read_lock();
3a0a5299
BVA
930 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
931 /*
cd84a62e
BVA
932 * The code that increments the pm_only counter is
933 * responsible for ensuring that that counter is
934 * globally visible before the queue is unfrozen.
3a0a5299 935 */
cd84a62e 936 if (pm || !blk_queue_pm_only(q)) {
3a0a5299
BVA
937 success = true;
938 } else {
939 percpu_ref_put(&q->q_usage_counter);
940 }
941 }
818e0fa2 942 rcu_read_unlock();
3a0a5299
BVA
943
944 if (success)
3ef28e83
DW
945 return 0;
946
3a0a5299 947 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
948 return -EBUSY;
949
5ed61d3f 950 /*
1671d522 951 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 952 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
953 * .q_usage_counter and reading .mq_freeze_depth or
954 * queue dying flag, otherwise the following wait may
955 * never return if the two reads are reordered.
5ed61d3f
ML
956 */
957 smp_rmb();
958
1dc3039b
AJ
959 wait_event(q->mq_freeze_wq,
960 (atomic_read(&q->mq_freeze_depth) == 0 &&
0d25bd07
BVA
961 (pm || (blk_pm_request_resume(q),
962 !blk_queue_pm_only(q)))) ||
1dc3039b 963 blk_queue_dying(q));
3ef28e83
DW
964 if (blk_queue_dying(q))
965 return -ENODEV;
3ef28e83
DW
966 }
967}
968
969void blk_queue_exit(struct request_queue *q)
970{
971 percpu_ref_put(&q->q_usage_counter);
972}
973
974static void blk_queue_usage_counter_release(struct percpu_ref *ref)
975{
976 struct request_queue *q =
977 container_of(ref, struct request_queue, q_usage_counter);
978
979 wake_up_all(&q->mq_freeze_wq);
980}
981
bca237a5 982static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 983{
bca237a5 984 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
985
986 kblockd_schedule_work(&q->timeout_work);
987}
988
498f6650
BVA
989/**
990 * blk_alloc_queue_node - allocate a request queue
991 * @gfp_mask: memory allocation flags
992 * @node_id: NUMA node to allocate memory from
993 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
994 * serialize calls to the legacy .request_fn() callback. Ignored for
995 * blk-mq request queues.
996 *
997 * Note: pass the queue lock as the third argument to this function instead of
998 * setting the queue lock pointer explicitly to avoid triggering a sporadic
999 * crash in the blkcg code. This function namely calls blkcg_init_queue() and
1000 * the queue lock pointer must be set before blkcg_init_queue() is called.
1001 */
5ee0524b
BVA
1002struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
1003 spinlock_t *lock)
1946089a 1004{
165125e1 1005 struct request_queue *q;
338aa96d 1006 int ret;
1946089a 1007
8324aa91 1008 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 1009 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
1010 if (!q)
1011 return NULL;
1012
cbf62af3
CH
1013 INIT_LIST_HEAD(&q->queue_head);
1014 q->last_merge = NULL;
1015 q->end_sector = 0;
1016 q->boundary_rq = NULL;
1017
00380a40 1018 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 1019 if (q->id < 0)
3d2936f4 1020 goto fail_q;
a73f730d 1021
338aa96d
KO
1022 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1023 if (ret)
54efd50b
KO
1024 goto fail_id;
1025
d03f6cdc
JK
1026 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1027 if (!q->backing_dev_info)
1028 goto fail_split;
1029
a83b576c
JA
1030 q->stats = blk_alloc_queue_stats();
1031 if (!q->stats)
1032 goto fail_stats;
1033
dc3b17cc 1034 q->backing_dev_info->ra_pages =
09cbfeaf 1035 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
1036 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1037 q->backing_dev_info->name = "block";
5151412d 1038 q->node = node_id;
0989a025 1039
bca237a5
KC
1040 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1041 laptop_mode_timer_fn, 0);
1042 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
4e9b6f20 1043 INIT_WORK(&q->timeout_work, NULL);
242f9dcb 1044 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 1045 INIT_LIST_HEAD(&q->icq_list);
4eef3049 1046#ifdef CONFIG_BLK_CGROUP
e8989fae 1047 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 1048#endif
3cca6dc1 1049 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 1050
8324aa91 1051 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 1052
5acb3cc2
WL
1053#ifdef CONFIG_BLK_DEV_IO_TRACE
1054 mutex_init(&q->blk_trace_mutex);
1055#endif
483f4afc 1056 mutex_init(&q->sysfs_lock);
e7e72bf6 1057 spin_lock_init(&q->__queue_lock);
483f4afc 1058
5e27891e 1059 q->queue_lock = lock ? : &q->__queue_lock;
c94a96ac 1060
b82d4b19
TH
1061 /*
1062 * A queue starts its life with bypass turned on to avoid
1063 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
1064 * init. The initial bypass will be finished when the queue is
1065 * registered by blk_register_queue().
b82d4b19
TH
1066 */
1067 q->bypass_depth = 1;
f78bac2c 1068 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
b82d4b19 1069
320ae51f
JA
1070 init_waitqueue_head(&q->mq_freeze_wq);
1071
3ef28e83
DW
1072 /*
1073 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1074 * See blk_register_queue() for details.
1075 */
1076 if (percpu_ref_init(&q->q_usage_counter,
1077 blk_queue_usage_counter_release,
1078 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 1079 goto fail_bdi;
f51b802c 1080
3ef28e83
DW
1081 if (blkcg_init_queue(q))
1082 goto fail_ref;
1083
1da177e4 1084 return q;
a73f730d 1085
3ef28e83
DW
1086fail_ref:
1087 percpu_ref_exit(&q->q_usage_counter);
fff4996b 1088fail_bdi:
a83b576c
JA
1089 blk_free_queue_stats(q->stats);
1090fail_stats:
d03f6cdc 1091 bdi_put(q->backing_dev_info);
54efd50b 1092fail_split:
338aa96d 1093 bioset_exit(&q->bio_split);
a73f730d
TH
1094fail_id:
1095 ida_simple_remove(&blk_queue_ida, q->id);
1096fail_q:
1097 kmem_cache_free(blk_requestq_cachep, q);
1098 return NULL;
1da177e4 1099}
1946089a 1100EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1101
1102/**
1103 * blk_init_queue - prepare a request queue for use with a block device
1104 * @rfn: The function to be called to process requests that have been
1105 * placed on the queue.
1106 * @lock: Request queue spin lock
1107 *
1108 * Description:
1109 * If a block device wishes to use the standard request handling procedures,
1110 * which sorts requests and coalesces adjacent requests, then it must
1111 * call blk_init_queue(). The function @rfn will be called when there
1112 * are requests on the queue that need to be processed. If the device
1113 * supports plugging, then @rfn may not be called immediately when requests
1114 * are available on the queue, but may be called at some time later instead.
1115 * Plugged queues are generally unplugged when a buffer belonging to one
1116 * of the requests on the queue is needed, or due to memory pressure.
1117 *
1118 * @rfn is not required, or even expected, to remove all requests off the
1119 * queue, but only as many as it can handle at a time. If it does leave
1120 * requests on the queue, it is responsible for arranging that the requests
1121 * get dealt with eventually.
1122 *
1123 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1124 * request queue; this lock will be taken also from interrupt context, so irq
1125 * disabling is needed for it.
1da177e4 1126 *
710027a4 1127 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
1128 * it didn't succeed.
1129 *
1130 * Note:
1131 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1132 * when the block device is deactivated (such as at module unload).
1133 **/
1946089a 1134
165125e1 1135struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 1136{
c304a51b 1137 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
1138}
1139EXPORT_SYMBOL(blk_init_queue);
1140
165125e1 1141struct request_queue *
1946089a
CL
1142blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1143{
5ea708d1 1144 struct request_queue *q;
1da177e4 1145
498f6650 1146 q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
5ea708d1 1147 if (!q)
c86d1b8a
MS
1148 return NULL;
1149
5ea708d1 1150 q->request_fn = rfn;
5ea708d1
CH
1151 if (blk_init_allocated_queue(q) < 0) {
1152 blk_cleanup_queue(q);
1153 return NULL;
1154 }
18741986 1155
7982e90c 1156 return q;
01effb0d
MS
1157}
1158EXPORT_SYMBOL(blk_init_queue_node);
1159
dece1635 1160static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 1161
1da177e4 1162
5ea708d1
CH
1163int blk_init_allocated_queue(struct request_queue *q)
1164{
332ebbf7
BVA
1165 WARN_ON_ONCE(q->mq_ops);
1166
5b202853 1167 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size, GFP_KERNEL);
ba483388 1168 if (!q->fq)
5ea708d1 1169 return -ENOMEM;
7982e90c 1170
6d247d7f
CH
1171 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1172 goto out_free_flush_queue;
7982e90c 1173
a051661c 1174 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 1175 goto out_exit_flush_rq;
1da177e4 1176
287922eb 1177 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 1178 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 1179
f3b144aa
JA
1180 /*
1181 * This also sets hw/phys segments, boundary and size
1182 */
c20e8de2 1183 blk_queue_make_request(q, blk_queue_bio);
1da177e4 1184
44ec9542
AS
1185 q->sg_reserved_size = INT_MAX;
1186
acddf3b3 1187 if (elevator_init(q))
6d247d7f 1188 goto out_exit_flush_rq;
5ea708d1 1189 return 0;
eb1c160b 1190
6d247d7f
CH
1191out_exit_flush_rq:
1192 if (q->exit_rq_fn)
1193 q->exit_rq_fn(q, q->fq->flush_rq);
1194out_free_flush_queue:
ba483388 1195 blk_free_flush_queue(q->fq);
54648cf1 1196 q->fq = NULL;
5ea708d1 1197 return -ENOMEM;
1da177e4 1198}
5151412d 1199EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 1200
09ac46c4 1201bool blk_get_queue(struct request_queue *q)
1da177e4 1202{
3f3299d5 1203 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
1204 __blk_get_queue(q);
1205 return true;
1da177e4
LT
1206 }
1207
09ac46c4 1208 return false;
1da177e4 1209}
d86e0e83 1210EXPORT_SYMBOL(blk_get_queue);
1da177e4 1211
5b788ce3 1212static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 1213{
e8064021 1214 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 1215 elv_put_request(rl->q, rq);
f1f8cc94 1216 if (rq->elv.icq)
11a3122f 1217 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
1218 }
1219
5b788ce3 1220 mempool_free(rq, rl->rq_pool);
1da177e4
LT
1221}
1222
1da177e4
LT
1223/*
1224 * ioc_batching returns true if the ioc is a valid batching request and
1225 * should be given priority access to a request.
1226 */
165125e1 1227static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1228{
1229 if (!ioc)
1230 return 0;
1231
1232 /*
1233 * Make sure the process is able to allocate at least 1 request
1234 * even if the batch times out, otherwise we could theoretically
1235 * lose wakeups.
1236 */
1237 return ioc->nr_batch_requests == q->nr_batching ||
1238 (ioc->nr_batch_requests > 0
1239 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1240}
1241
1242/*
1243 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1244 * will cause the process to be a "batcher" on all queues in the system. This
1245 * is the behaviour we want though - once it gets a wakeup it should be given
1246 * a nice run.
1247 */
165125e1 1248static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1249{
1250 if (!ioc || ioc_batching(q, ioc))
1251 return;
1252
1253 ioc->nr_batch_requests = q->nr_batching;
1254 ioc->last_waited = jiffies;
1255}
1256
5b788ce3 1257static void __freed_request(struct request_list *rl, int sync)
1da177e4 1258{
5b788ce3 1259 struct request_queue *q = rl->q;
1da177e4 1260
d40f75a0
TH
1261 if (rl->count[sync] < queue_congestion_off_threshold(q))
1262 blk_clear_congested(rl, sync);
1da177e4 1263
1faa16d2
JA
1264 if (rl->count[sync] + 1 <= q->nr_requests) {
1265 if (waitqueue_active(&rl->wait[sync]))
1266 wake_up(&rl->wait[sync]);
1da177e4 1267
5b788ce3 1268 blk_clear_rl_full(rl, sync);
1da177e4
LT
1269 }
1270}
1271
1272/*
1273 * A request has just been released. Account for it, update the full and
1274 * congestion status, wake up any waiters. Called under q->queue_lock.
1275 */
e8064021
CH
1276static void freed_request(struct request_list *rl, bool sync,
1277 req_flags_t rq_flags)
1da177e4 1278{
5b788ce3 1279 struct request_queue *q = rl->q;
1da177e4 1280
8a5ecdd4 1281 q->nr_rqs[sync]--;
1faa16d2 1282 rl->count[sync]--;
e8064021 1283 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 1284 q->nr_rqs_elvpriv--;
1da177e4 1285
5b788ce3 1286 __freed_request(rl, sync);
1da177e4 1287
1faa16d2 1288 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 1289 __freed_request(rl, sync ^ 1);
1da177e4
LT
1290}
1291
e3a2b3f9
JA
1292int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1293{
1294 struct request_list *rl;
d40f75a0 1295 int on_thresh, off_thresh;
e3a2b3f9 1296
332ebbf7
BVA
1297 WARN_ON_ONCE(q->mq_ops);
1298
e3a2b3f9
JA
1299 spin_lock_irq(q->queue_lock);
1300 q->nr_requests = nr;
1301 blk_queue_congestion_threshold(q);
d40f75a0
TH
1302 on_thresh = queue_congestion_on_threshold(q);
1303 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1304
d40f75a0
TH
1305 blk_queue_for_each_rl(rl, q) {
1306 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1307 blk_set_congested(rl, BLK_RW_SYNC);
1308 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1309 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1310
d40f75a0
TH
1311 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1312 blk_set_congested(rl, BLK_RW_ASYNC);
1313 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1314 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1315
e3a2b3f9
JA
1316 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1317 blk_set_rl_full(rl, BLK_RW_SYNC);
1318 } else {
1319 blk_clear_rl_full(rl, BLK_RW_SYNC);
1320 wake_up(&rl->wait[BLK_RW_SYNC]);
1321 }
1322
1323 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1324 blk_set_rl_full(rl, BLK_RW_ASYNC);
1325 } else {
1326 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1327 wake_up(&rl->wait[BLK_RW_ASYNC]);
1328 }
1329 }
1330
1331 spin_unlock_irq(q->queue_lock);
1332 return 0;
1333}
1334
da8303c6 1335/**
a06e05e6 1336 * __get_request - get a free request
5b788ce3 1337 * @rl: request list to allocate from
ef295ecf 1338 * @op: operation and flags
da8303c6 1339 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1340 * @flags: BLQ_MQ_REQ_* flags
4accf5fc 1341 * @gfp_mask: allocator flags
da8303c6
TH
1342 *
1343 * Get a free request from @q. This function may fail under memory
1344 * pressure or if @q is dead.
1345 *
da3dae54 1346 * Must be called with @q->queue_lock held and,
a492f075
JL
1347 * Returns ERR_PTR on failure, with @q->queue_lock held.
1348 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1349 */
ef295ecf 1350static struct request *__get_request(struct request_list *rl, unsigned int op,
4accf5fc 1351 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask)
1da177e4 1352{
5b788ce3 1353 struct request_queue *q = rl->q;
b679281a 1354 struct request *rq;
7f4b35d1
TH
1355 struct elevator_type *et = q->elevator->type;
1356 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1357 struct io_cq *icq = NULL;
ef295ecf 1358 const bool is_sync = op_is_sync(op);
75eb6c37 1359 int may_queue;
e8064021 1360 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1361
2fff8a92
BVA
1362 lockdep_assert_held(q->queue_lock);
1363
3f3299d5 1364 if (unlikely(blk_queue_dying(q)))
a492f075 1365 return ERR_PTR(-ENODEV);
da8303c6 1366
ef295ecf 1367 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1368 if (may_queue == ELV_MQUEUE_NO)
1369 goto rq_starved;
1370
1faa16d2
JA
1371 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1372 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1373 /*
1374 * The queue will fill after this allocation, so set
1375 * it as full, and mark this process as "batching".
1376 * This process will be allowed to complete a batch of
1377 * requests, others will be blocked.
1378 */
5b788ce3 1379 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1380 ioc_set_batching(q, ioc);
5b788ce3 1381 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1382 } else {
1383 if (may_queue != ELV_MQUEUE_MUST
1384 && !ioc_batching(q, ioc)) {
1385 /*
1386 * The queue is full and the allocating
1387 * process is not a "batcher", and not
1388 * exempted by the IO scheduler
1389 */
a492f075 1390 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1391 }
1392 }
1da177e4 1393 }
d40f75a0 1394 blk_set_congested(rl, is_sync);
1da177e4
LT
1395 }
1396
082cf69e
JA
1397 /*
1398 * Only allow batching queuers to allocate up to 50% over the defined
1399 * limit of requests, otherwise we could have thousands of requests
1400 * allocated with any setting of ->nr_requests
1401 */
1faa16d2 1402 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1403 return ERR_PTR(-ENOMEM);
fd782a4a 1404
8a5ecdd4 1405 q->nr_rqs[is_sync]++;
1faa16d2
JA
1406 rl->count[is_sync]++;
1407 rl->starved[is_sync] = 0;
cb98fc8b 1408
f1f8cc94
TH
1409 /*
1410 * Decide whether the new request will be managed by elevator. If
e8064021 1411 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1412 * prevent the current elevator from being destroyed until the new
1413 * request is freed. This guarantees icq's won't be destroyed and
1414 * makes creating new ones safe.
1415 *
e6f7f93d
CH
1416 * Flush requests do not use the elevator so skip initialization.
1417 * This allows a request to share the flush and elevator data.
1418 *
f1f8cc94
TH
1419 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1420 * it will be created after releasing queue_lock.
1421 */
e6f7f93d 1422 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1423 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1424 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1425 if (et->icq_cache && ioc)
1426 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1427 }
cb98fc8b 1428
f253b86b 1429 if (blk_queue_io_stat(q))
e8064021 1430 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1431 spin_unlock_irq(q->queue_lock);
1432
29e2b09a 1433 /* allocate and init request */
5b788ce3 1434 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1435 if (!rq)
b679281a 1436 goto fail_alloc;
1da177e4 1437
29e2b09a 1438 blk_rq_init(q, rq);
a051661c 1439 blk_rq_set_rl(rq, rl);
ef295ecf 1440 rq->cmd_flags = op;
e8064021 1441 rq->rq_flags = rq_flags;
1b6d65a0
BVA
1442 if (flags & BLK_MQ_REQ_PREEMPT)
1443 rq->rq_flags |= RQF_PREEMPT;
29e2b09a 1444
aaf7c680 1445 /* init elvpriv */
e8064021 1446 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1447 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1448 if (ioc)
1449 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1450 if (!icq)
1451 goto fail_elvpriv;
29e2b09a 1452 }
aaf7c680
TH
1453
1454 rq->elv.icq = icq;
1455 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1456 goto fail_elvpriv;
1457
1458 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1459 if (icq)
1460 get_io_context(icq->ioc);
1461 }
aaf7c680 1462out:
88ee5ef1
JA
1463 /*
1464 * ioc may be NULL here, and ioc_batching will be false. That's
1465 * OK, if the queue is under the request limit then requests need
1466 * not count toward the nr_batch_requests limit. There will always
1467 * be some limit enforced by BLK_BATCH_TIME.
1468 */
1da177e4
LT
1469 if (ioc_batching(q, ioc))
1470 ioc->nr_batch_requests--;
6728cb0e 1471
e6a40b09 1472 trace_block_getrq(q, bio, op);
1da177e4 1473 return rq;
b679281a 1474
aaf7c680
TH
1475fail_elvpriv:
1476 /*
1477 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1478 * and may fail indefinitely under memory pressure and thus
1479 * shouldn't stall IO. Treat this request as !elvpriv. This will
1480 * disturb iosched and blkcg but weird is bettern than dead.
1481 */
7b2b10e0 1482 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
dc3b17cc 1483 __func__, dev_name(q->backing_dev_info->dev));
aaf7c680 1484
e8064021 1485 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1486 rq->elv.icq = NULL;
1487
1488 spin_lock_irq(q->queue_lock);
8a5ecdd4 1489 q->nr_rqs_elvpriv--;
aaf7c680
TH
1490 spin_unlock_irq(q->queue_lock);
1491 goto out;
1492
b679281a
TH
1493fail_alloc:
1494 /*
1495 * Allocation failed presumably due to memory. Undo anything we
1496 * might have messed up.
1497 *
1498 * Allocating task should really be put onto the front of the wait
1499 * queue, but this is pretty rare.
1500 */
1501 spin_lock_irq(q->queue_lock);
e8064021 1502 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1503
1504 /*
1505 * in the very unlikely event that allocation failed and no
1506 * requests for this direction was pending, mark us starved so that
1507 * freeing of a request in the other direction will notice
1508 * us. another possible fix would be to split the rq mempool into
1509 * READ and WRITE
1510 */
1511rq_starved:
1512 if (unlikely(rl->count[is_sync] == 0))
1513 rl->starved[is_sync] = 1;
a492f075 1514 return ERR_PTR(-ENOMEM);
1da177e4
LT
1515}
1516
da8303c6 1517/**
a06e05e6 1518 * get_request - get a free request
da8303c6 1519 * @q: request_queue to allocate request from
ef295ecf 1520 * @op: operation and flags
da8303c6 1521 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1522 * @flags: BLK_MQ_REQ_* flags.
4accf5fc 1523 * @gfp: allocator flags
da8303c6 1524 *
a9a14d36 1525 * Get a free request from @q. If %BLK_MQ_REQ_NOWAIT is set in @flags,
d0164adc 1526 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1527 *
da3dae54 1528 * Must be called with @q->queue_lock held and,
a492f075
JL
1529 * Returns ERR_PTR on failure, with @q->queue_lock held.
1530 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1531 */
ef295ecf 1532static struct request *get_request(struct request_queue *q, unsigned int op,
4accf5fc 1533 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp)
1da177e4 1534{
ef295ecf 1535 const bool is_sync = op_is_sync(op);
a06e05e6 1536 DEFINE_WAIT(wait);
a051661c 1537 struct request_list *rl;
1da177e4 1538 struct request *rq;
a051661c 1539
2fff8a92 1540 lockdep_assert_held(q->queue_lock);
332ebbf7 1541 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1542
a051661c 1543 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1544retry:
4accf5fc 1545 rq = __get_request(rl, op, bio, flags, gfp);
a492f075 1546 if (!IS_ERR(rq))
a06e05e6 1547 return rq;
1da177e4 1548
03a07c92
GR
1549 if (op & REQ_NOWAIT) {
1550 blk_put_rl(rl);
1551 return ERR_PTR(-EAGAIN);
1552 }
1553
6a15674d 1554 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1555 blk_put_rl(rl);
a492f075 1556 return rq;
a051661c 1557 }
1da177e4 1558
a06e05e6
TH
1559 /* wait on @rl and retry */
1560 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1561 TASK_UNINTERRUPTIBLE);
1da177e4 1562
e6a40b09 1563 trace_block_sleeprq(q, bio, op);
1da177e4 1564
a06e05e6
TH
1565 spin_unlock_irq(q->queue_lock);
1566 io_schedule();
d6344532 1567
a06e05e6
TH
1568 /*
1569 * After sleeping, we become a "batching" process and will be able
1570 * to allocate at least one request, and up to a big batch of them
1571 * for a small period time. See ioc_batching, ioc_set_batching
1572 */
a06e05e6 1573 ioc_set_batching(q, current->io_context);
05caf8db 1574
a06e05e6
TH
1575 spin_lock_irq(q->queue_lock);
1576 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1577
a06e05e6 1578 goto retry;
1da177e4
LT
1579}
1580
6a15674d 1581/* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
cd6ce148 1582static struct request *blk_old_get_request(struct request_queue *q,
9a95e4ef 1583 unsigned int op, blk_mq_req_flags_t flags)
1da177e4
LT
1584{
1585 struct request *rq;
c3036021 1586 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO;
055f6e18 1587 int ret = 0;
1da177e4 1588
332ebbf7
BVA
1589 WARN_ON_ONCE(q->mq_ops);
1590
7f4b35d1
TH
1591 /* create ioc upfront */
1592 create_io_context(gfp_mask, q->node);
1593
3a0a5299 1594 ret = blk_queue_enter(q, flags);
055f6e18
ML
1595 if (ret)
1596 return ERR_PTR(ret);
d6344532 1597 spin_lock_irq(q->queue_lock);
4accf5fc 1598 rq = get_request(q, op, NULL, flags, gfp_mask);
0c4de0f3 1599 if (IS_ERR(rq)) {
da8303c6 1600 spin_unlock_irq(q->queue_lock);
055f6e18 1601 blk_queue_exit(q);
0c4de0f3
CH
1602 return rq;
1603 }
1da177e4 1604
0c4de0f3
CH
1605 /* q->queue_lock is unlocked at this point */
1606 rq->__data_len = 0;
1607 rq->__sector = (sector_t) -1;
1608 rq->bio = rq->biotail = NULL;
1da177e4
LT
1609 return rq;
1610}
320ae51f 1611
6a15674d 1612/**
ff005a06 1613 * blk_get_request - allocate a request
6a15674d
BVA
1614 * @q: request queue to allocate a request for
1615 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1616 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1617 */
ff005a06
CH
1618struct request *blk_get_request(struct request_queue *q, unsigned int op,
1619 blk_mq_req_flags_t flags)
320ae51f 1620{
d280bab3
BVA
1621 struct request *req;
1622
6a15674d 1623 WARN_ON_ONCE(op & REQ_NOWAIT);
1b6d65a0 1624 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
6a15674d 1625
d280bab3 1626 if (q->mq_ops) {
6a15674d 1627 req = blk_mq_alloc_request(q, op, flags);
d280bab3
BVA
1628 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1629 q->mq_ops->initialize_rq_fn(req);
1630 } else {
6a15674d 1631 req = blk_old_get_request(q, op, flags);
d280bab3
BVA
1632 if (!IS_ERR(req) && q->initialize_rq_fn)
1633 q->initialize_rq_fn(req);
1634 }
1635
1636 return req;
320ae51f 1637}
1da177e4
LT
1638EXPORT_SYMBOL(blk_get_request);
1639
1640/**
1641 * blk_requeue_request - put a request back on queue
1642 * @q: request queue where request should be inserted
1643 * @rq: request to be inserted
1644 *
1645 * Description:
1646 * Drivers often keep queueing requests until the hardware cannot accept
1647 * more, when that condition happens we need to put the request back
1648 * on the queue. Must be called with queue lock held.
1649 */
165125e1 1650void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1651{
2fff8a92 1652 lockdep_assert_held(q->queue_lock);
332ebbf7 1653 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1654
242f9dcb
JA
1655 blk_delete_timer(rq);
1656 blk_clear_rq_complete(rq);
5f3ea37c 1657 trace_block_rq_requeue(q, rq);
a7905043 1658 rq_qos_requeue(q, rq);
2056a782 1659
e8064021 1660 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1661 blk_queue_end_tag(q, rq);
1662
ba396a6c
JB
1663 BUG_ON(blk_queued_rq(rq));
1664
1da177e4
LT
1665 elv_requeue_request(q, rq);
1666}
1da177e4
LT
1667EXPORT_SYMBOL(blk_requeue_request);
1668
73c10101
JA
1669static void add_acct_request(struct request_queue *q, struct request *rq,
1670 int where)
1671{
320ae51f 1672 blk_account_io_start(rq, true);
7eaceacc 1673 __elv_add_request(q, rq, where);
73c10101
JA
1674}
1675
d62e26b3 1676static void part_round_stats_single(struct request_queue *q, int cpu,
b8d62b3a
JA
1677 struct hd_struct *part, unsigned long now,
1678 unsigned int inflight)
074a7aca 1679{
b8d62b3a 1680 if (inflight) {
074a7aca 1681 __part_stat_add(cpu, part, time_in_queue,
b8d62b3a 1682 inflight * (now - part->stamp));
074a7aca
TH
1683 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1684 }
1685 part->stamp = now;
1686}
1687
1688/**
496aa8a9 1689 * part_round_stats() - Round off the performance stats on a struct disk_stats.
d62e26b3 1690 * @q: target block queue
496aa8a9
RD
1691 * @cpu: cpu number for stats access
1692 * @part: target partition
1da177e4
LT
1693 *
1694 * The average IO queue length and utilisation statistics are maintained
1695 * by observing the current state of the queue length and the amount of
1696 * time it has been in this state for.
1697 *
1698 * Normally, that accounting is done on IO completion, but that can result
1699 * in more than a second's worth of IO being accounted for within any one
1700 * second, leading to >100% utilisation. To deal with that, we call this
1701 * function to do a round-off before returning the results when reading
1702 * /proc/diskstats. This accounts immediately for all queue usage up to
1703 * the current jiffies and restarts the counters again.
1704 */
d62e26b3 1705void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
6f2576af 1706{
b8d62b3a 1707 struct hd_struct *part2 = NULL;
6f2576af 1708 unsigned long now = jiffies;
b8d62b3a
JA
1709 unsigned int inflight[2];
1710 int stats = 0;
1711
1712 if (part->stamp != now)
1713 stats |= 1;
1714
1715 if (part->partno) {
1716 part2 = &part_to_disk(part)->part0;
1717 if (part2->stamp != now)
1718 stats |= 2;
1719 }
1720
1721 if (!stats)
1722 return;
1723
1724 part_in_flight(q, part, inflight);
6f2576af 1725
b8d62b3a
JA
1726 if (stats & 2)
1727 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1728 if (stats & 1)
1729 part_round_stats_single(q, cpu, part, now, inflight[0]);
6f2576af 1730}
074a7aca 1731EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1732
165125e1 1733void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1734{
e8064021
CH
1735 req_flags_t rq_flags = req->rq_flags;
1736
1da177e4
LT
1737 if (unlikely(!q))
1738 return;
1da177e4 1739
6f5ba581
CH
1740 if (q->mq_ops) {
1741 blk_mq_free_request(req);
1742 return;
1743 }
1744
2fff8a92
BVA
1745 lockdep_assert_held(q->queue_lock);
1746
6cc77e9c 1747 blk_req_zone_write_unlock(req);
c8158819 1748 blk_pm_put_request(req);
154b00d5 1749 blk_pm_mark_last_busy(req);
c8158819 1750
8922e16c
TH
1751 elv_completed_request(q, req);
1752
1cd96c24
BH
1753 /* this is a bio leak */
1754 WARN_ON(req->bio != NULL);
1755
a7905043 1756 rq_qos_done(q, req);
87760e5e 1757
1da177e4
LT
1758 /*
1759 * Request may not have originated from ll_rw_blk. if not,
1760 * it didn't come out of our reserved rq pools
1761 */
e8064021 1762 if (rq_flags & RQF_ALLOCED) {
a051661c 1763 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1764 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1765
1da177e4 1766 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1767 BUG_ON(ELV_ON_HASH(req));
1da177e4 1768
a051661c 1769 blk_free_request(rl, req);
e8064021 1770 freed_request(rl, sync, rq_flags);
a051661c 1771 blk_put_rl(rl);
055f6e18 1772 blk_queue_exit(q);
1da177e4
LT
1773 }
1774}
6e39b69e
MC
1775EXPORT_SYMBOL_GPL(__blk_put_request);
1776
1da177e4
LT
1777void blk_put_request(struct request *req)
1778{
165125e1 1779 struct request_queue *q = req->q;
8922e16c 1780
320ae51f
JA
1781 if (q->mq_ops)
1782 blk_mq_free_request(req);
1783 else {
1784 unsigned long flags;
1785
1786 spin_lock_irqsave(q->queue_lock, flags);
1787 __blk_put_request(q, req);
1788 spin_unlock_irqrestore(q->queue_lock, flags);
1789 }
1da177e4 1790}
1da177e4
LT
1791EXPORT_SYMBOL(blk_put_request);
1792
320ae51f
JA
1793bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1794 struct bio *bio)
73c10101 1795{
1eff9d32 1796 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1797
73c10101
JA
1798 if (!ll_back_merge_fn(q, req, bio))
1799 return false;
1800
8c1cf6bb 1801 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1802
1803 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1804 blk_rq_set_mixed_merge(req);
1805
1806 req->biotail->bi_next = bio;
1807 req->biotail = bio;
4f024f37 1808 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1809 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1810
320ae51f 1811 blk_account_io_start(req, false);
73c10101
JA
1812 return true;
1813}
1814
320ae51f
JA
1815bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1816 struct bio *bio)
73c10101 1817{
1eff9d32 1818 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1819
73c10101
JA
1820 if (!ll_front_merge_fn(q, req, bio))
1821 return false;
1822
8c1cf6bb 1823 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1824
1825 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1826 blk_rq_set_mixed_merge(req);
1827
73c10101
JA
1828 bio->bi_next = req->bio;
1829 req->bio = bio;
1830
4f024f37
KO
1831 req->__sector = bio->bi_iter.bi_sector;
1832 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1833 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1834
320ae51f 1835 blk_account_io_start(req, false);
73c10101
JA
1836 return true;
1837}
1838
1e739730
CH
1839bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1840 struct bio *bio)
1841{
1842 unsigned short segments = blk_rq_nr_discard_segments(req);
1843
1844 if (segments >= queue_max_discard_segments(q))
1845 goto no_merge;
1846 if (blk_rq_sectors(req) + bio_sectors(bio) >
1847 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1848 goto no_merge;
1849
1850 req->biotail->bi_next = bio;
1851 req->biotail = bio;
1852 req->__data_len += bio->bi_iter.bi_size;
1853 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1854 req->nr_phys_segments = segments + 1;
1855
1856 blk_account_io_start(req, false);
1857 return true;
1858no_merge:
1859 req_set_nomerge(q, req);
1860 return false;
1861}
1862
bd87b589 1863/**
320ae51f 1864 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1865 * @q: request_queue new bio is being queued at
1866 * @bio: new bio being queued
1867 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1868 * @same_queue_rq: pointer to &struct request that gets filled in when
1869 * another request associated with @q is found on the plug list
1870 * (optional, may be %NULL)
bd87b589
TH
1871 *
1872 * Determine whether @bio being queued on @q can be merged with a request
1873 * on %current's plugged list. Returns %true if merge was successful,
1874 * otherwise %false.
1875 *
07c2bd37
TH
1876 * Plugging coalesces IOs from the same issuer for the same purpose without
1877 * going through @q->queue_lock. As such it's more of an issuing mechanism
1878 * than scheduling, and the request, while may have elvpriv data, is not
1879 * added on the elevator at this point. In addition, we don't have
1880 * reliable access to the elevator outside queue lock. Only check basic
1881 * merging parameters without querying the elevator.
da41a589
RE
1882 *
1883 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1884 */
320ae51f 1885bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1886 unsigned int *request_count,
1887 struct request **same_queue_rq)
73c10101
JA
1888{
1889 struct blk_plug *plug;
1890 struct request *rq;
92f399c7 1891 struct list_head *plug_list;
73c10101 1892
bd87b589 1893 plug = current->plug;
73c10101 1894 if (!plug)
34fe7c05 1895 return false;
56ebdaf2 1896 *request_count = 0;
73c10101 1897
92f399c7
SL
1898 if (q->mq_ops)
1899 plug_list = &plug->mq_list;
1900 else
1901 plug_list = &plug->list;
1902
1903 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 1904 bool merged = false;
73c10101 1905
5b3f341f 1906 if (rq->q == q) {
1b2e19f1 1907 (*request_count)++;
5b3f341f
SL
1908 /*
1909 * Only blk-mq multiple hardware queues case checks the
1910 * rq in the same queue, there should be only one such
1911 * rq in a queue
1912 **/
1913 if (same_queue_rq)
1914 *same_queue_rq = rq;
1915 }
56ebdaf2 1916
07c2bd37 1917 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1918 continue;
1919
34fe7c05
CH
1920 switch (blk_try_merge(rq, bio)) {
1921 case ELEVATOR_BACK_MERGE:
1922 merged = bio_attempt_back_merge(q, rq, bio);
1923 break;
1924 case ELEVATOR_FRONT_MERGE:
1925 merged = bio_attempt_front_merge(q, rq, bio);
1926 break;
1e739730
CH
1927 case ELEVATOR_DISCARD_MERGE:
1928 merged = bio_attempt_discard_merge(q, rq, bio);
1929 break;
34fe7c05
CH
1930 default:
1931 break;
73c10101 1932 }
34fe7c05
CH
1933
1934 if (merged)
1935 return true;
73c10101 1936 }
34fe7c05
CH
1937
1938 return false;
73c10101
JA
1939}
1940
0809e3ac
JM
1941unsigned int blk_plug_queued_count(struct request_queue *q)
1942{
1943 struct blk_plug *plug;
1944 struct request *rq;
1945 struct list_head *plug_list;
1946 unsigned int ret = 0;
1947
1948 plug = current->plug;
1949 if (!plug)
1950 goto out;
1951
1952 if (q->mq_ops)
1953 plug_list = &plug->mq_list;
1954 else
1955 plug_list = &plug->list;
1956
1957 list_for_each_entry(rq, plug_list, queuelist) {
1958 if (rq->q == q)
1959 ret++;
1960 }
1961out:
1962 return ret;
1963}
1964
da8d7f07 1965void blk_init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1966{
0be0dee6
BVA
1967 struct io_context *ioc = rq_ioc(bio);
1968
1eff9d32 1969 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1970 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1971
4f024f37 1972 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1973 if (ioprio_valid(bio_prio(bio)))
1974 req->ioprio = bio_prio(bio);
0be0dee6
BVA
1975 else if (ioc)
1976 req->ioprio = ioc->ioprio;
1977 else
1978 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
cb6934f8 1979 req->write_hint = bio->bi_write_hint;
bc1c56fd 1980 blk_rq_bio_prep(req->q, req, bio);
52d9e675 1981}
da8d7f07 1982EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
52d9e675 1983
dece1635 1984static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1985{
73c10101 1986 struct blk_plug *plug;
34fe7c05 1987 int where = ELEVATOR_INSERT_SORT;
e4d750c9 1988 struct request *req, *free;
56ebdaf2 1989 unsigned int request_count = 0;
1da177e4 1990
1da177e4
LT
1991 /*
1992 * low level driver can indicate that it wants pages above a
1993 * certain limit bounced to low memory (ie for highmem, or even
1994 * ISA dma in theory)
1995 */
1996 blk_queue_bounce(q, &bio);
1997
af67c31f 1998 blk_queue_split(q, &bio);
23688bf4 1999
e23947bd 2000 if (!bio_integrity_prep(bio))
dece1635 2001 return BLK_QC_T_NONE;
ffecfd1a 2002
f73f44eb 2003 if (op_is_flush(bio->bi_opf)) {
73c10101 2004 spin_lock_irq(q->queue_lock);
ae1b1539 2005 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
2006 goto get_rq;
2007 }
2008
73c10101
JA
2009 /*
2010 * Check if we can merge with the plugged list before grabbing
2011 * any locks.
2012 */
0809e3ac
JM
2013 if (!blk_queue_nomerges(q)) {
2014 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 2015 return BLK_QC_T_NONE;
0809e3ac
JM
2016 } else
2017 request_count = blk_plug_queued_count(q);
1da177e4 2018
73c10101 2019 spin_lock_irq(q->queue_lock);
2056a782 2020
34fe7c05
CH
2021 switch (elv_merge(q, &req, bio)) {
2022 case ELEVATOR_BACK_MERGE:
2023 if (!bio_attempt_back_merge(q, req, bio))
2024 break;
2025 elv_bio_merged(q, req, bio);
2026 free = attempt_back_merge(q, req);
2027 if (free)
2028 __blk_put_request(q, free);
2029 else
2030 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2031 goto out_unlock;
2032 case ELEVATOR_FRONT_MERGE:
2033 if (!bio_attempt_front_merge(q, req, bio))
2034 break;
2035 elv_bio_merged(q, req, bio);
2036 free = attempt_front_merge(q, req);
2037 if (free)
2038 __blk_put_request(q, free);
2039 else
2040 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2041 goto out_unlock;
2042 default:
2043 break;
1da177e4
LT
2044 }
2045
450991bc 2046get_rq:
c1c80384 2047 rq_qos_throttle(q, bio, q->queue_lock);
87760e5e 2048
1da177e4 2049 /*
450991bc 2050 * Grab a free request. This is might sleep but can not fail.
d6344532 2051 * Returns with the queue unlocked.
450991bc 2052 */
055f6e18 2053 blk_queue_enter_live(q);
c3036021 2054 req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO);
a492f075 2055 if (IS_ERR(req)) {
055f6e18 2056 blk_queue_exit(q);
c1c80384 2057 rq_qos_cleanup(q, bio);
4e4cbee9
CH
2058 if (PTR_ERR(req) == -ENOMEM)
2059 bio->bi_status = BLK_STS_RESOURCE;
2060 else
2061 bio->bi_status = BLK_STS_IOERR;
4246a0b6 2062 bio_endio(bio);
da8303c6
TH
2063 goto out_unlock;
2064 }
d6344532 2065
c1c80384 2066 rq_qos_track(q, req, bio);
87760e5e 2067
450991bc
NP
2068 /*
2069 * After dropping the lock and possibly sleeping here, our request
2070 * may now be mergeable after it had proven unmergeable (above).
2071 * We don't worry about that case for efficiency. It won't happen
2072 * often, and the elevators are able to handle it.
1da177e4 2073 */
da8d7f07 2074 blk_init_request_from_bio(req, bio);
1da177e4 2075
9562ad9a 2076 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 2077 req->cpu = raw_smp_processor_id();
73c10101
JA
2078
2079 plug = current->plug;
721a9602 2080 if (plug) {
dc6d36c9
JA
2081 /*
2082 * If this is the first request added after a plug, fire
7aef2e78 2083 * of a plug trace.
0a6219a9
ML
2084 *
2085 * @request_count may become stale because of schedule
2086 * out, so check plug list again.
dc6d36c9 2087 */
0a6219a9 2088 if (!request_count || list_empty(&plug->list))
dc6d36c9 2089 trace_block_plug(q);
3540d5e8 2090 else {
50d24c34
SL
2091 struct request *last = list_entry_rq(plug->list.prev);
2092 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2093 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 2094 blk_flush_plug_list(plug, false);
019ceb7d
SL
2095 trace_block_plug(q);
2096 }
73c10101 2097 }
73c10101 2098 list_add_tail(&req->queuelist, &plug->list);
320ae51f 2099 blk_account_io_start(req, true);
73c10101
JA
2100 } else {
2101 spin_lock_irq(q->queue_lock);
2102 add_acct_request(q, req, where);
24ecfbe2 2103 __blk_run_queue(q);
73c10101
JA
2104out_unlock:
2105 spin_unlock_irq(q->queue_lock);
2106 }
dece1635
JA
2107
2108 return BLK_QC_T_NONE;
1da177e4
LT
2109}
2110
52c5e62d 2111static void handle_bad_sector(struct bio *bio, sector_t maxsector)
1da177e4
LT
2112{
2113 char b[BDEVNAME_SIZE];
2114
2115 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 2116 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
74d46992 2117 bio_devname(bio, b), bio->bi_opf,
f73a1c7d 2118 (unsigned long long)bio_end_sector(bio),
52c5e62d 2119 (long long)maxsector);
1da177e4
LT
2120}
2121
c17bb495
AM
2122#ifdef CONFIG_FAIL_MAKE_REQUEST
2123
2124static DECLARE_FAULT_ATTR(fail_make_request);
2125
2126static int __init setup_fail_make_request(char *str)
2127{
2128 return setup_fault_attr(&fail_make_request, str);
2129}
2130__setup("fail_make_request=", setup_fail_make_request);
2131
b2c9cd37 2132static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 2133{
b2c9cd37 2134 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
2135}
2136
2137static int __init fail_make_request_debugfs(void)
2138{
dd48c085
AM
2139 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2140 NULL, &fail_make_request);
2141
21f9fcd8 2142 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
2143}
2144
2145late_initcall(fail_make_request_debugfs);
2146
2147#else /* CONFIG_FAIL_MAKE_REQUEST */
2148
b2c9cd37
AM
2149static inline bool should_fail_request(struct hd_struct *part,
2150 unsigned int bytes)
c17bb495 2151{
b2c9cd37 2152 return false;
c17bb495
AM
2153}
2154
2155#endif /* CONFIG_FAIL_MAKE_REQUEST */
2156
721c7fc7
ID
2157static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2158{
b089cfd9
JA
2159 const int op = bio_op(bio);
2160
8b2ded1c 2161 if (part->policy && op_is_write(op)) {
721c7fc7
ID
2162 char b[BDEVNAME_SIZE];
2163
8b2ded1c
MP
2164 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
2165 return false;
2166
a32e236e 2167 WARN_ONCE(1,
721c7fc7
ID
2168 "generic_make_request: Trying to write "
2169 "to read-only block-device %s (partno %d)\n",
2170 bio_devname(bio, b), part->partno);
a32e236e
LT
2171 /* Older lvm-tools actually trigger this */
2172 return false;
721c7fc7
ID
2173 }
2174
2175 return false;
2176}
2177
30abb3a6
HM
2178static noinline int should_fail_bio(struct bio *bio)
2179{
2180 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2181 return -EIO;
2182 return 0;
2183}
2184ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2185
52c5e62d
CH
2186/*
2187 * Check whether this bio extends beyond the end of the device or partition.
2188 * This may well happen - the kernel calls bread() without checking the size of
2189 * the device, e.g., when mounting a file system.
2190 */
2191static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2192{
2193 unsigned int nr_sectors = bio_sectors(bio);
2194
2195 if (nr_sectors && maxsector &&
2196 (nr_sectors > maxsector ||
2197 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2198 handle_bad_sector(bio, maxsector);
2199 return -EIO;
2200 }
2201 return 0;
2202}
2203
74d46992
CH
2204/*
2205 * Remap block n of partition p to block n+start(p) of the disk.
2206 */
2207static inline int blk_partition_remap(struct bio *bio)
2208{
2209 struct hd_struct *p;
52c5e62d 2210 int ret = -EIO;
74d46992 2211
721c7fc7
ID
2212 rcu_read_lock();
2213 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
52c5e62d
CH
2214 if (unlikely(!p))
2215 goto out;
2216 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2217 goto out;
2218 if (unlikely(bio_check_ro(bio, p)))
721c7fc7 2219 goto out;
721c7fc7 2220
74d46992
CH
2221 /*
2222 * Zone reset does not include bi_size so bio_sectors() is always 0.
2223 * Include a test for the reset op code and perform the remap if needed.
2224 */
52c5e62d
CH
2225 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2226 if (bio_check_eod(bio, part_nr_sects_read(p)))
2227 goto out;
2228 bio->bi_iter.bi_sector += p->start_sect;
52c5e62d
CH
2229 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2230 bio->bi_iter.bi_sector - p->start_sect);
2231 }
c04fa44b 2232 bio->bi_partno = 0;
52c5e62d 2233 ret = 0;
721c7fc7
ID
2234out:
2235 rcu_read_unlock();
74d46992
CH
2236 return ret;
2237}
2238
27a84d54
CH
2239static noinline_for_stack bool
2240generic_make_request_checks(struct bio *bio)
1da177e4 2241{
165125e1 2242 struct request_queue *q;
5a7bbad2 2243 int nr_sectors = bio_sectors(bio);
4e4cbee9 2244 blk_status_t status = BLK_STS_IOERR;
5a7bbad2 2245 char b[BDEVNAME_SIZE];
1da177e4
LT
2246
2247 might_sleep();
1da177e4 2248
74d46992 2249 q = bio->bi_disk->queue;
5a7bbad2
CH
2250 if (unlikely(!q)) {
2251 printk(KERN_ERR
2252 "generic_make_request: Trying to access "
2253 "nonexistent block-device %s (%Lu)\n",
74d46992 2254 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
5a7bbad2
CH
2255 goto end_io;
2256 }
c17bb495 2257
03a07c92
GR
2258 /*
2259 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2260 * if queue is not a request based queue.
2261 */
03a07c92
GR
2262 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2263 goto not_supported;
2264
30abb3a6 2265 if (should_fail_bio(bio))
5a7bbad2 2266 goto end_io;
2056a782 2267
52c5e62d
CH
2268 if (bio->bi_partno) {
2269 if (unlikely(blk_partition_remap(bio)))
721c7fc7
ID
2270 goto end_io;
2271 } else {
52c5e62d
CH
2272 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2273 goto end_io;
2274 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
721c7fc7
ID
2275 goto end_io;
2276 }
2056a782 2277
5a7bbad2
CH
2278 /*
2279 * Filter flush bio's early so that make_request based
2280 * drivers without flush support don't have to worry
2281 * about them.
2282 */
f3a8ab7d 2283 if (op_is_flush(bio->bi_opf) &&
c888a8f9 2284 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 2285 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 2286 if (!nr_sectors) {
4e4cbee9 2287 status = BLK_STS_OK;
51fd77bd
JA
2288 goto end_io;
2289 }
5a7bbad2 2290 }
5ddfe969 2291
288dab8a
CH
2292 switch (bio_op(bio)) {
2293 case REQ_OP_DISCARD:
2294 if (!blk_queue_discard(q))
2295 goto not_supported;
2296 break;
2297 case REQ_OP_SECURE_ERASE:
2298 if (!blk_queue_secure_erase(q))
2299 goto not_supported;
2300 break;
2301 case REQ_OP_WRITE_SAME:
74d46992 2302 if (!q->limits.max_write_same_sectors)
288dab8a 2303 goto not_supported;
58886785 2304 break;
2d253440 2305 case REQ_OP_ZONE_RESET:
74d46992 2306 if (!blk_queue_is_zoned(q))
2d253440 2307 goto not_supported;
288dab8a 2308 break;
a6f0788e 2309 case REQ_OP_WRITE_ZEROES:
74d46992 2310 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
2311 goto not_supported;
2312 break;
288dab8a
CH
2313 default:
2314 break;
5a7bbad2 2315 }
01edede4 2316
7f4b35d1
TH
2317 /*
2318 * Various block parts want %current->io_context and lazy ioc
2319 * allocation ends up trading a lot of pain for a small amount of
2320 * memory. Just allocate it upfront. This may fail and block
2321 * layer knows how to live with it.
2322 */
2323 create_io_context(GFP_ATOMIC, q->node);
2324
ae118896
TH
2325 if (!blkcg_bio_issue_check(q, bio))
2326 return false;
27a84d54 2327
fbbaf700
N
2328 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2329 trace_block_bio_queue(q, bio);
2330 /* Now that enqueuing has been traced, we need to trace
2331 * completion as well.
2332 */
2333 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2334 }
27a84d54 2335 return true;
a7384677 2336
288dab8a 2337not_supported:
4e4cbee9 2338 status = BLK_STS_NOTSUPP;
a7384677 2339end_io:
4e4cbee9 2340 bio->bi_status = status;
4246a0b6 2341 bio_endio(bio);
27a84d54 2342 return false;
1da177e4
LT
2343}
2344
27a84d54
CH
2345/**
2346 * generic_make_request - hand a buffer to its device driver for I/O
2347 * @bio: The bio describing the location in memory and on the device.
2348 *
2349 * generic_make_request() is used to make I/O requests of block
2350 * devices. It is passed a &struct bio, which describes the I/O that needs
2351 * to be done.
2352 *
2353 * generic_make_request() does not return any status. The
2354 * success/failure status of the request, along with notification of
2355 * completion, is delivered asynchronously through the bio->bi_end_io
2356 * function described (one day) else where.
2357 *
2358 * The caller of generic_make_request must make sure that bi_io_vec
2359 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2360 * set to describe the device address, and the
2361 * bi_end_io and optionally bi_private are set to describe how
2362 * completion notification should be signaled.
2363 *
2364 * generic_make_request and the drivers it calls may use bi_next if this
2365 * bio happens to be merged with someone else, and may resubmit the bio to
2366 * a lower device by calling into generic_make_request recursively, which
2367 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2368 */
dece1635 2369blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2370{
f5fe1b51
N
2371 /*
2372 * bio_list_on_stack[0] contains bios submitted by the current
2373 * make_request_fn.
2374 * bio_list_on_stack[1] contains bios that were submitted before
2375 * the current make_request_fn, but that haven't been processed
2376 * yet.
2377 */
2378 struct bio_list bio_list_on_stack[2];
37f9579f
BVA
2379 blk_mq_req_flags_t flags = 0;
2380 struct request_queue *q = bio->bi_disk->queue;
dece1635 2381 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2382
37f9579f
BVA
2383 if (bio->bi_opf & REQ_NOWAIT)
2384 flags = BLK_MQ_REQ_NOWAIT;
cd4a4ae4
JA
2385 if (bio_flagged(bio, BIO_QUEUE_ENTERED))
2386 blk_queue_enter_live(q);
2387 else if (blk_queue_enter(q, flags) < 0) {
37f9579f
BVA
2388 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2389 bio_wouldblock_error(bio);
2390 else
2391 bio_io_error(bio);
2392 return ret;
2393 }
2394
27a84d54 2395 if (!generic_make_request_checks(bio))
dece1635 2396 goto out;
27a84d54
CH
2397
2398 /*
2399 * We only want one ->make_request_fn to be active at a time, else
2400 * stack usage with stacked devices could be a problem. So use
2401 * current->bio_list to keep a list of requests submited by a
2402 * make_request_fn function. current->bio_list is also used as a
2403 * flag to say if generic_make_request is currently active in this
2404 * task or not. If it is NULL, then no make_request is active. If
2405 * it is non-NULL, then a make_request is active, and new requests
2406 * should be added at the tail
2407 */
bddd87c7 2408 if (current->bio_list) {
f5fe1b51 2409 bio_list_add(&current->bio_list[0], bio);
dece1635 2410 goto out;
d89d8796 2411 }
27a84d54 2412
d89d8796
NB
2413 /* following loop may be a bit non-obvious, and so deserves some
2414 * explanation.
2415 * Before entering the loop, bio->bi_next is NULL (as all callers
2416 * ensure that) so we have a list with a single bio.
2417 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2418 * we assign bio_list to a pointer to the bio_list_on_stack,
2419 * thus initialising the bio_list of new bios to be
27a84d54 2420 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2421 * through a recursive call to generic_make_request. If it
2422 * did, we find a non-NULL value in bio_list and re-enter the loop
2423 * from the top. In this case we really did just take the bio
bddd87c7 2424 * of the top of the list (no pretending) and so remove it from
27a84d54 2425 * bio_list, and call into ->make_request() again.
d89d8796
NB
2426 */
2427 BUG_ON(bio->bi_next);
f5fe1b51
N
2428 bio_list_init(&bio_list_on_stack[0]);
2429 current->bio_list = bio_list_on_stack;
d89d8796 2430 do {
37f9579f
BVA
2431 bool enter_succeeded = true;
2432
2433 if (unlikely(q != bio->bi_disk->queue)) {
2434 if (q)
2435 blk_queue_exit(q);
2436 q = bio->bi_disk->queue;
2437 flags = 0;
2438 if (bio->bi_opf & REQ_NOWAIT)
2439 flags = BLK_MQ_REQ_NOWAIT;
2440 if (blk_queue_enter(q, flags) < 0) {
2441 enter_succeeded = false;
2442 q = NULL;
2443 }
2444 }
27a84d54 2445
37f9579f 2446 if (enter_succeeded) {
79bd9959
N
2447 struct bio_list lower, same;
2448
2449 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
2450 bio_list_on_stack[1] = bio_list_on_stack[0];
2451 bio_list_init(&bio_list_on_stack[0]);
dece1635 2452 ret = q->make_request_fn(q, bio);
3ef28e83 2453
79bd9959
N
2454 /* sort new bios into those for a lower level
2455 * and those for the same level
2456 */
2457 bio_list_init(&lower);
2458 bio_list_init(&same);
f5fe1b51 2459 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
74d46992 2460 if (q == bio->bi_disk->queue)
79bd9959
N
2461 bio_list_add(&same, bio);
2462 else
2463 bio_list_add(&lower, bio);
2464 /* now assemble so we handle the lowest level first */
f5fe1b51
N
2465 bio_list_merge(&bio_list_on_stack[0], &lower);
2466 bio_list_merge(&bio_list_on_stack[0], &same);
2467 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 2468 } else {
03a07c92
GR
2469 if (unlikely(!blk_queue_dying(q) &&
2470 (bio->bi_opf & REQ_NOWAIT)))
2471 bio_wouldblock_error(bio);
2472 else
2473 bio_io_error(bio);
3ef28e83 2474 }
f5fe1b51 2475 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 2476 } while (bio);
bddd87c7 2477 current->bio_list = NULL; /* deactivate */
dece1635
JA
2478
2479out:
37f9579f
BVA
2480 if (q)
2481 blk_queue_exit(q);
dece1635 2482 return ret;
d89d8796 2483}
1da177e4
LT
2484EXPORT_SYMBOL(generic_make_request);
2485
f421e1d9
CH
2486/**
2487 * direct_make_request - hand a buffer directly to its device driver for I/O
2488 * @bio: The bio describing the location in memory and on the device.
2489 *
2490 * This function behaves like generic_make_request(), but does not protect
2491 * against recursion. Must only be used if the called driver is known
2492 * to not call generic_make_request (or direct_make_request) again from
2493 * its make_request function. (Calling direct_make_request again from
2494 * a workqueue is perfectly fine as that doesn't recurse).
2495 */
2496blk_qc_t direct_make_request(struct bio *bio)
2497{
2498 struct request_queue *q = bio->bi_disk->queue;
2499 bool nowait = bio->bi_opf & REQ_NOWAIT;
2500 blk_qc_t ret;
2501
2502 if (!generic_make_request_checks(bio))
2503 return BLK_QC_T_NONE;
2504
3a0a5299 2505 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
f421e1d9
CH
2506 if (nowait && !blk_queue_dying(q))
2507 bio->bi_status = BLK_STS_AGAIN;
2508 else
2509 bio->bi_status = BLK_STS_IOERR;
2510 bio_endio(bio);
2511 return BLK_QC_T_NONE;
2512 }
2513
2514 ret = q->make_request_fn(q, bio);
2515 blk_queue_exit(q);
2516 return ret;
2517}
2518EXPORT_SYMBOL_GPL(direct_make_request);
2519
1da177e4 2520/**
710027a4 2521 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2522 * @bio: The &struct bio which describes the I/O
2523 *
2524 * submit_bio() is very similar in purpose to generic_make_request(), and
2525 * uses that function to do most of the work. Both are fairly rough
710027a4 2526 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2527 *
2528 */
4e49ea4a 2529blk_qc_t submit_bio(struct bio *bio)
1da177e4 2530{
bf2de6f5
JA
2531 /*
2532 * If it's a regular read/write or a barrier with data attached,
2533 * go through the normal accounting stuff before submission.
2534 */
e2a60da7 2535 if (bio_has_data(bio)) {
4363ac7c
MP
2536 unsigned int count;
2537
95fe6c1a 2538 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
7c5a0dcf 2539 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
4363ac7c
MP
2540 else
2541 count = bio_sectors(bio);
2542
a8ebb056 2543 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2544 count_vm_events(PGPGOUT, count);
2545 } else {
4f024f37 2546 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2547 count_vm_events(PGPGIN, count);
2548 }
2549
2550 if (unlikely(block_dump)) {
2551 char b[BDEVNAME_SIZE];
8dcbdc74 2552 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2553 current->comm, task_pid_nr(current),
a8ebb056 2554 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2555 (unsigned long long)bio->bi_iter.bi_sector,
74d46992 2556 bio_devname(bio, b), count);
bf2de6f5 2557 }
1da177e4
LT
2558 }
2559
dece1635 2560 return generic_make_request(bio);
1da177e4 2561}
1da177e4
LT
2562EXPORT_SYMBOL(submit_bio);
2563
ea435e1b
CH
2564bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2565{
2566 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2567 return false;
2568
2569 if (current->plug)
2570 blk_flush_plug_list(current->plug, false);
2571 return q->poll_fn(q, cookie);
2572}
2573EXPORT_SYMBOL_GPL(blk_poll);
2574
82124d60 2575/**
bf4e6b4e
HR
2576 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2577 * for new the queue limits
82124d60
KU
2578 * @q: the queue
2579 * @rq: the request being checked
2580 *
2581 * Description:
2582 * @rq may have been made based on weaker limitations of upper-level queues
2583 * in request stacking drivers, and it may violate the limitation of @q.
2584 * Since the block layer and the underlying device driver trust @rq
2585 * after it is inserted to @q, it should be checked against @q before
2586 * the insertion using this generic function.
2587 *
82124d60 2588 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2589 * limits when retrying requests on other queues. Those requests need
2590 * to be checked against the new queue limits again during dispatch.
82124d60 2591 */
bf4e6b4e
HR
2592static int blk_cloned_rq_check_limits(struct request_queue *q,
2593 struct request *rq)
82124d60 2594{
8fe0d473 2595 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2596 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2597 return -EIO;
2598 }
2599
2600 /*
2601 * queue's settings related to segment counting like q->bounce_pfn
2602 * may differ from that of other stacking queues.
2603 * Recalculate it to check the request correctly on this queue's
2604 * limitation.
2605 */
2606 blk_recalc_rq_segments(rq);
8a78362c 2607 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2608 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2609 return -EIO;
2610 }
2611
2612 return 0;
2613}
82124d60
KU
2614
2615/**
2616 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2617 * @q: the queue to submit the request
2618 * @rq: the request being queued
2619 */
2a842aca 2620blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60
KU
2621{
2622 unsigned long flags;
4853abaa 2623 int where = ELEVATOR_INSERT_BACK;
82124d60 2624
bf4e6b4e 2625 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 2626 return BLK_STS_IOERR;
82124d60 2627
b2c9cd37
AM
2628 if (rq->rq_disk &&
2629 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 2630 return BLK_STS_IOERR;
82124d60 2631
7fb4898e
KB
2632 if (q->mq_ops) {
2633 if (blk_queue_io_stat(q))
2634 blk_account_io_start(rq, true);
157f377b
JA
2635 /*
2636 * Since we have a scheduler attached on the top device,
2637 * bypass a potential scheduler on the bottom device for
2638 * insert.
2639 */
c77ff7fd 2640 return blk_mq_request_issue_directly(rq);
7fb4898e
KB
2641 }
2642
82124d60 2643 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2644 if (unlikely(blk_queue_dying(q))) {
8ba61435 2645 spin_unlock_irqrestore(q->queue_lock, flags);
2a842aca 2646 return BLK_STS_IOERR;
8ba61435 2647 }
82124d60
KU
2648
2649 /*
2650 * Submitting request must be dequeued before calling this function
2651 * because it will be linked to another request_queue
2652 */
2653 BUG_ON(blk_queued_rq(rq));
2654
f73f44eb 2655 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2656 where = ELEVATOR_INSERT_FLUSH;
2657
2658 add_acct_request(q, rq, where);
e67b77c7
JM
2659 if (where == ELEVATOR_INSERT_FLUSH)
2660 __blk_run_queue(q);
82124d60
KU
2661 spin_unlock_irqrestore(q->queue_lock, flags);
2662
2a842aca 2663 return BLK_STS_OK;
82124d60
KU
2664}
2665EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2666
80a761fd
TH
2667/**
2668 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2669 * @rq: request to examine
2670 *
2671 * Description:
2672 * A request could be merge of IOs which require different failure
2673 * handling. This function determines the number of bytes which
2674 * can be failed from the beginning of the request without
2675 * crossing into area which need to be retried further.
2676 *
2677 * Return:
2678 * The number of bytes to fail.
80a761fd
TH
2679 */
2680unsigned int blk_rq_err_bytes(const struct request *rq)
2681{
2682 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2683 unsigned int bytes = 0;
2684 struct bio *bio;
2685
e8064021 2686 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2687 return blk_rq_bytes(rq);
2688
2689 /*
2690 * Currently the only 'mixing' which can happen is between
2691 * different fastfail types. We can safely fail portions
2692 * which have all the failfast bits that the first one has -
2693 * the ones which are at least as eager to fail as the first
2694 * one.
2695 */
2696 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2697 if ((bio->bi_opf & ff) != ff)
80a761fd 2698 break;
4f024f37 2699 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2700 }
2701
2702 /* this could lead to infinite loop */
2703 BUG_ON(blk_rq_bytes(rq) && !bytes);
2704 return bytes;
2705}
2706EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2707
320ae51f 2708void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2709{
c2553b58 2710 if (blk_do_io_stat(req)) {
ddcf35d3 2711 const int sgrp = op_stat_group(req_op(req));
bc58ba94
JA
2712 struct hd_struct *part;
2713 int cpu;
2714
2715 cpu = part_stat_lock();
09e099d4 2716 part = req->part;
ddcf35d3 2717 part_stat_add(cpu, part, sectors[sgrp], bytes >> 9);
bc58ba94
JA
2718 part_stat_unlock();
2719 }
2720}
2721
522a7775 2722void blk_account_io_done(struct request *req, u64 now)
bc58ba94 2723{
bc58ba94 2724 /*
dd4c133f
TH
2725 * Account IO completion. flush_rq isn't accounted as a
2726 * normal IO on queueing nor completion. Accounting the
2727 * containing request is enough.
bc58ba94 2728 */
e8064021 2729 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
ddcf35d3 2730 const int sgrp = op_stat_group(req_op(req));
bc58ba94
JA
2731 struct hd_struct *part;
2732 int cpu;
2733
2734 cpu = part_stat_lock();
09e099d4 2735 part = req->part;
bc58ba94 2736
ddcf35d3 2737 part_stat_inc(cpu, part, ios[sgrp]);
b57e99b4 2738 part_stat_add(cpu, part, nsecs[sgrp], now - req->start_time_ns);
d62e26b3 2739 part_round_stats(req->q, cpu, part);
ddcf35d3 2740 part_dec_in_flight(req->q, part, rq_data_dir(req));
bc58ba94 2741
6c23a968 2742 hd_struct_put(part);
bc58ba94
JA
2743 part_stat_unlock();
2744 }
2745}
2746
320ae51f
JA
2747void blk_account_io_start(struct request *rq, bool new_io)
2748{
2749 struct hd_struct *part;
2750 int rw = rq_data_dir(rq);
2751 int cpu;
2752
2753 if (!blk_do_io_stat(rq))
2754 return;
2755
2756 cpu = part_stat_lock();
2757
2758 if (!new_io) {
2759 part = rq->part;
2760 part_stat_inc(cpu, part, merges[rw]);
2761 } else {
2762 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2763 if (!hd_struct_try_get(part)) {
2764 /*
2765 * The partition is already being removed,
2766 * the request will be accounted on the disk only
2767 *
2768 * We take a reference on disk->part0 although that
2769 * partition will never be deleted, so we can treat
2770 * it as any other partition.
2771 */
2772 part = &rq->rq_disk->part0;
2773 hd_struct_get(part);
2774 }
d62e26b3
JA
2775 part_round_stats(rq->q, cpu, part);
2776 part_inc_in_flight(rq->q, part, rw);
320ae51f
JA
2777 rq->part = part;
2778 }
2779
2780 part_stat_unlock();
2781}
2782
9c988374
CH
2783static struct request *elv_next_request(struct request_queue *q)
2784{
2785 struct request *rq;
2786 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2787
2788 WARN_ON_ONCE(q->mq_ops);
2789
2790 while (1) {
e4f36b24 2791 list_for_each_entry(rq, &q->queue_head, queuelist) {
7cedffec
BVA
2792#ifdef CONFIG_PM
2793 /*
2794 * If a request gets queued in state RPM_SUSPENDED
2795 * then that's a kernel bug.
2796 */
2797 WARN_ON_ONCE(q->rpm_status == RPM_SUSPENDED);
2798#endif
2799 return rq;
9c988374
CH
2800 }
2801
2802 /*
2803 * Flush request is running and flush request isn't queueable
2804 * in the drive, we can hold the queue till flush request is
2805 * finished. Even we don't do this, driver can't dispatch next
2806 * requests and will requeue them. And this can improve
2807 * throughput too. For example, we have request flush1, write1,
2808 * flush 2. flush1 is dispatched, then queue is hold, write1
2809 * isn't inserted to queue. After flush1 is finished, flush2
2810 * will be dispatched. Since disk cache is already clean,
2811 * flush2 will be finished very soon, so looks like flush2 is
2812 * folded to flush1.
2813 * Since the queue is hold, a flag is set to indicate the queue
2814 * should be restarted later. Please see flush_end_io() for
2815 * details.
2816 */
2817 if (fq->flush_pending_idx != fq->flush_running_idx &&
2818 !queue_flush_queueable(q)) {
2819 fq->flush_queue_delayed = 1;
2820 return NULL;
2821 }
2822 if (unlikely(blk_queue_bypass(q)) ||
2823 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2824 return NULL;
2825 }
2826}
2827
3bcddeac 2828/**
9934c8c0
TH
2829 * blk_peek_request - peek at the top of a request queue
2830 * @q: request queue to peek at
2831 *
2832 * Description:
2833 * Return the request at the top of @q. The returned request
2834 * should be started using blk_start_request() before LLD starts
2835 * processing it.
2836 *
2837 * Return:
2838 * Pointer to the request at the top of @q if available. Null
2839 * otherwise.
9934c8c0
TH
2840 */
2841struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2842{
2843 struct request *rq;
2844 int ret;
2845
2fff8a92 2846 lockdep_assert_held(q->queue_lock);
332ebbf7 2847 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2848
9c988374 2849 while ((rq = elv_next_request(q)) != NULL) {
e8064021 2850 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2851 /*
2852 * This is the first time the device driver
2853 * sees this request (possibly after
2854 * requeueing). Notify IO scheduler.
2855 */
e8064021 2856 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2857 elv_activate_rq(q, rq);
2858
2859 /*
2860 * just mark as started even if we don't start
2861 * it, a request that has been delayed should
2862 * not be passed by new incoming requests
2863 */
e8064021 2864 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2865 trace_block_rq_issue(q, rq);
2866 }
2867
2868 if (!q->boundary_rq || q->boundary_rq == rq) {
2869 q->end_sector = rq_end_sector(rq);
2870 q->boundary_rq = NULL;
2871 }
2872
e8064021 2873 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2874 break;
2875
2e46e8b2 2876 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2877 /*
2878 * make sure space for the drain appears we
2879 * know we can do this because max_hw_segments
2880 * has been adjusted to be one fewer than the
2881 * device can handle
2882 */
2883 rq->nr_phys_segments++;
2884 }
2885
2886 if (!q->prep_rq_fn)
2887 break;
2888
2889 ret = q->prep_rq_fn(q, rq);
2890 if (ret == BLKPREP_OK) {
2891 break;
2892 } else if (ret == BLKPREP_DEFER) {
2893 /*
2894 * the request may have been (partially) prepped.
2895 * we need to keep this request in the front to
e8064021 2896 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2897 * prevent other fs requests from passing this one.
2898 */
2e46e8b2 2899 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2900 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2901 /*
2902 * remove the space for the drain we added
2903 * so that we don't add it again
2904 */
2905 --rq->nr_phys_segments;
2906 }
2907
2908 rq = NULL;
2909 break;
0fb5b1fb 2910 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
e8064021 2911 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2912 /*
2913 * Mark this request as started so we don't trigger
2914 * any debug logic in the end I/O path.
2915 */
2916 blk_start_request(rq);
2a842aca
CH
2917 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2918 BLK_STS_TARGET : BLK_STS_IOERR);
158dbda0
TH
2919 } else {
2920 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2921 break;
2922 }
2923 }
2924
2925 return rq;
2926}
9934c8c0 2927EXPORT_SYMBOL(blk_peek_request);
158dbda0 2928
5034435c 2929static void blk_dequeue_request(struct request *rq)
158dbda0 2930{
9934c8c0
TH
2931 struct request_queue *q = rq->q;
2932
158dbda0
TH
2933 BUG_ON(list_empty(&rq->queuelist));
2934 BUG_ON(ELV_ON_HASH(rq));
2935
2936 list_del_init(&rq->queuelist);
2937
2938 /*
2939 * the time frame between a request being removed from the lists
2940 * and to it is freed is accounted as io that is in progress at
2941 * the driver side.
2942 */
522a7775 2943 if (blk_account_rq(rq))
0a7ae2ff 2944 q->in_flight[rq_is_sync(rq)]++;
158dbda0
TH
2945}
2946
9934c8c0
TH
2947/**
2948 * blk_start_request - start request processing on the driver
2949 * @req: request to dequeue
2950 *
2951 * Description:
2952 * Dequeue @req and start timeout timer on it. This hands off the
2953 * request to the driver.
9934c8c0
TH
2954 */
2955void blk_start_request(struct request *req)
2956{
2fff8a92 2957 lockdep_assert_held(req->q->queue_lock);
332ebbf7 2958 WARN_ON_ONCE(req->q->mq_ops);
2fff8a92 2959
9934c8c0
TH
2960 blk_dequeue_request(req);
2961
cf43e6be 2962 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
544ccc8d
OS
2963 req->io_start_time_ns = ktime_get_ns();
2964#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2965 req->throtl_size = blk_rq_sectors(req);
2966#endif
cf43e6be 2967 req->rq_flags |= RQF_STATS;
a7905043 2968 rq_qos_issue(req->q, req);
cf43e6be
JA
2969 }
2970
e14575b3 2971 BUG_ON(blk_rq_is_complete(req));
9934c8c0
TH
2972 blk_add_timer(req);
2973}
2974EXPORT_SYMBOL(blk_start_request);
2975
2976/**
2977 * blk_fetch_request - fetch a request from a request queue
2978 * @q: request queue to fetch a request from
2979 *
2980 * Description:
2981 * Return the request at the top of @q. The request is started on
2982 * return and LLD can start processing it immediately.
2983 *
2984 * Return:
2985 * Pointer to the request at the top of @q if available. Null
2986 * otherwise.
9934c8c0
TH
2987 */
2988struct request *blk_fetch_request(struct request_queue *q)
2989{
2990 struct request *rq;
2991
2fff8a92 2992 lockdep_assert_held(q->queue_lock);
332ebbf7 2993 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2994
9934c8c0
TH
2995 rq = blk_peek_request(q);
2996 if (rq)
2997 blk_start_request(rq);
2998 return rq;
2999}
3000EXPORT_SYMBOL(blk_fetch_request);
3001
ef71de8b
CH
3002/*
3003 * Steal bios from a request and add them to a bio list.
3004 * The request must not have been partially completed before.
3005 */
3006void blk_steal_bios(struct bio_list *list, struct request *rq)
3007{
3008 if (rq->bio) {
3009 if (list->tail)
3010 list->tail->bi_next = rq->bio;
3011 else
3012 list->head = rq->bio;
3013 list->tail = rq->biotail;
3014
3015 rq->bio = NULL;
3016 rq->biotail = NULL;
3017 }
3018
3019 rq->__data_len = 0;
3020}
3021EXPORT_SYMBOL_GPL(blk_steal_bios);
3022
3bcddeac 3023/**
2e60e022 3024 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 3025 * @req: the request being processed
2a842aca 3026 * @error: block status code
8ebf9756 3027 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
3028 *
3029 * Description:
8ebf9756
RD
3030 * Ends I/O on a number of bytes attached to @req, but doesn't complete
3031 * the request structure even if @req doesn't have leftover.
3032 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
3033 *
3034 * This special helper function is only for request stacking drivers
3035 * (e.g. request-based dm) so that they can handle partial completion.
3036 * Actual device drivers should use blk_end_request instead.
3037 *
3038 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3039 * %false return from this function.
3bcddeac 3040 *
1954e9a9
BVA
3041 * Note:
3042 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
3043 * blk_rq_bytes() and in blk_update_request().
3044 *
3bcddeac 3045 * Return:
2e60e022
TH
3046 * %false - this request doesn't have any more data
3047 * %true - this request has more data
3bcddeac 3048 **/
2a842aca
CH
3049bool blk_update_request(struct request *req, blk_status_t error,
3050 unsigned int nr_bytes)
1da177e4 3051{
f79ea416 3052 int total_bytes;
1da177e4 3053
2a842aca 3054 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 3055
2e60e022
TH
3056 if (!req->bio)
3057 return false;
3058
2a842aca
CH
3059 if (unlikely(error && !blk_rq_is_passthrough(req) &&
3060 !(req->rq_flags & RQF_QUIET)))
3061 print_req_error(req, error);
1da177e4 3062
bc58ba94 3063 blk_account_io_completion(req, nr_bytes);
d72d904a 3064
f79ea416
KO
3065 total_bytes = 0;
3066 while (req->bio) {
3067 struct bio *bio = req->bio;
4f024f37 3068 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 3069
9c24c10a 3070 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 3071 req->bio = bio->bi_next;
1da177e4 3072
fbbaf700
N
3073 /* Completion has already been traced */
3074 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 3075 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 3076
f79ea416
KO
3077 total_bytes += bio_bytes;
3078 nr_bytes -= bio_bytes;
1da177e4 3079
f79ea416
KO
3080 if (!nr_bytes)
3081 break;
1da177e4
LT
3082 }
3083
3084 /*
3085 * completely done
3086 */
2e60e022
TH
3087 if (!req->bio) {
3088 /*
3089 * Reset counters so that the request stacking driver
3090 * can find how many bytes remain in the request
3091 * later.
3092 */
a2dec7b3 3093 req->__data_len = 0;
2e60e022
TH
3094 return false;
3095 }
1da177e4 3096
a2dec7b3 3097 req->__data_len -= total_bytes;
2e46e8b2
TH
3098
3099 /* update sector only for requests with clear definition of sector */
57292b58 3100 if (!blk_rq_is_passthrough(req))
a2dec7b3 3101 req->__sector += total_bytes >> 9;
2e46e8b2 3102
80a761fd 3103 /* mixed attributes always follow the first bio */
e8064021 3104 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 3105 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 3106 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
3107 }
3108
ed6565e7
CH
3109 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3110 /*
3111 * If total number of sectors is less than the first segment
3112 * size, something has gone terribly wrong.
3113 */
3114 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3115 blk_dump_rq_flags(req, "request botched");
3116 req->__data_len = blk_rq_cur_bytes(req);
3117 }
2e46e8b2 3118
ed6565e7
CH
3119 /* recalculate the number of segments */
3120 blk_recalc_rq_segments(req);
3121 }
2e46e8b2 3122
2e60e022 3123 return true;
1da177e4 3124}
2e60e022 3125EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 3126
2a842aca 3127static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2e60e022
TH
3128 unsigned int nr_bytes,
3129 unsigned int bidi_bytes)
5efccd17 3130{
2e60e022
TH
3131 if (blk_update_request(rq, error, nr_bytes))
3132 return true;
5efccd17 3133
2e60e022
TH
3134 /* Bidi request must be completed as a whole */
3135 if (unlikely(blk_bidi_rq(rq)) &&
3136 blk_update_request(rq->next_rq, error, bidi_bytes))
3137 return true;
5efccd17 3138
e2e1a148
JA
3139 if (blk_queue_add_random(rq->q))
3140 add_disk_randomness(rq->rq_disk);
2e60e022
TH
3141
3142 return false;
1da177e4
LT
3143}
3144
28018c24
JB
3145/**
3146 * blk_unprep_request - unprepare a request
3147 * @req: the request
3148 *
3149 * This function makes a request ready for complete resubmission (or
3150 * completion). It happens only after all error handling is complete,
3151 * so represents the appropriate moment to deallocate any resources
3152 * that were allocated to the request in the prep_rq_fn. The queue
3153 * lock is held when calling this.
3154 */
3155void blk_unprep_request(struct request *req)
3156{
3157 struct request_queue *q = req->q;
3158
e8064021 3159 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
3160 if (q->unprep_rq_fn)
3161 q->unprep_rq_fn(q, req);
3162}
3163EXPORT_SYMBOL_GPL(blk_unprep_request);
3164
2a842aca 3165void blk_finish_request(struct request *req, blk_status_t error)
1da177e4 3166{
cf43e6be 3167 struct request_queue *q = req->q;
522a7775 3168 u64 now = ktime_get_ns();
cf43e6be 3169
2fff8a92 3170 lockdep_assert_held(req->q->queue_lock);
332ebbf7 3171 WARN_ON_ONCE(q->mq_ops);
2fff8a92 3172
cf43e6be 3173 if (req->rq_flags & RQF_STATS)
522a7775 3174 blk_stat_add(req, now);
cf43e6be 3175
e8064021 3176 if (req->rq_flags & RQF_QUEUED)
cf43e6be 3177 blk_queue_end_tag(q, req);
b8286239 3178
ba396a6c 3179 BUG_ON(blk_queued_rq(req));
1da177e4 3180
57292b58 3181 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
dc3b17cc 3182 laptop_io_completion(req->q->backing_dev_info);
1da177e4 3183
e78042e5
MA
3184 blk_delete_timer(req);
3185
e8064021 3186 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
3187 blk_unprep_request(req);
3188
522a7775 3189 blk_account_io_done(req, now);
b8286239 3190
87760e5e 3191 if (req->end_io) {
a7905043 3192 rq_qos_done(q, req);
8ffdc655 3193 req->end_io(req, error);
87760e5e 3194 } else {
b8286239
KU
3195 if (blk_bidi_rq(req))
3196 __blk_put_request(req->next_rq->q, req->next_rq);
3197
cf43e6be 3198 __blk_put_request(q, req);
b8286239 3199 }
1da177e4 3200}
12120077 3201EXPORT_SYMBOL(blk_finish_request);
1da177e4 3202
3b11313a 3203/**
2e60e022
TH
3204 * blk_end_bidi_request - Complete a bidi request
3205 * @rq: the request to complete
2a842aca 3206 * @error: block status code
2e60e022
TH
3207 * @nr_bytes: number of bytes to complete @rq
3208 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
3209 *
3210 * Description:
e3a04fe3 3211 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
3212 * Drivers that supports bidi can safely call this member for any
3213 * type of request, bidi or uni. In the later case @bidi_bytes is
3214 * just ignored.
336cdb40
KU
3215 *
3216 * Return:
2e60e022
TH
3217 * %false - we are done with this request
3218 * %true - still buffers pending for this request
a0cd1285 3219 **/
2a842aca 3220static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
32fab448
KU
3221 unsigned int nr_bytes, unsigned int bidi_bytes)
3222{
336cdb40 3223 struct request_queue *q = rq->q;
2e60e022 3224 unsigned long flags;
32fab448 3225
332ebbf7
BVA
3226 WARN_ON_ONCE(q->mq_ops);
3227
2e60e022
TH
3228 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3229 return true;
32fab448 3230
336cdb40 3231 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 3232 blk_finish_request(rq, error);
336cdb40
KU
3233 spin_unlock_irqrestore(q->queue_lock, flags);
3234
2e60e022 3235 return false;
32fab448
KU
3236}
3237
336cdb40 3238/**
2e60e022
TH
3239 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3240 * @rq: the request to complete
2a842aca 3241 * @error: block status code
e3a04fe3
KU
3242 * @nr_bytes: number of bytes to complete @rq
3243 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
3244 *
3245 * Description:
2e60e022
TH
3246 * Identical to blk_end_bidi_request() except that queue lock is
3247 * assumed to be locked on entry and remains so on return.
336cdb40
KU
3248 *
3249 * Return:
2e60e022
TH
3250 * %false - we are done with this request
3251 * %true - still buffers pending for this request
336cdb40 3252 **/
2a842aca 3253static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
b1f74493 3254 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 3255{
2fff8a92 3256 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3257 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3258
2e60e022
TH
3259 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3260 return true;
336cdb40 3261
2e60e022 3262 blk_finish_request(rq, error);
336cdb40 3263
2e60e022 3264 return false;
336cdb40 3265}
e19a3ab0
KU
3266
3267/**
3268 * blk_end_request - Helper function for drivers to complete the request.
3269 * @rq: the request being processed
2a842aca 3270 * @error: block status code
e19a3ab0
KU
3271 * @nr_bytes: number of bytes to complete
3272 *
3273 * Description:
3274 * Ends I/O on a number of bytes attached to @rq.
3275 * If @rq has leftover, sets it up for the next range of segments.
3276 *
3277 * Return:
b1f74493
FT
3278 * %false - we are done with this request
3279 * %true - still buffers pending for this request
e19a3ab0 3280 **/
2a842aca
CH
3281bool blk_end_request(struct request *rq, blk_status_t error,
3282 unsigned int nr_bytes)
e19a3ab0 3283{
332ebbf7 3284 WARN_ON_ONCE(rq->q->mq_ops);
b1f74493 3285 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 3286}
56ad1740 3287EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
3288
3289/**
b1f74493
FT
3290 * blk_end_request_all - Helper function for drives to finish the request.
3291 * @rq: the request to finish
2a842aca 3292 * @error: block status code
336cdb40
KU
3293 *
3294 * Description:
b1f74493
FT
3295 * Completely finish @rq.
3296 */
2a842aca 3297void blk_end_request_all(struct request *rq, blk_status_t error)
336cdb40 3298{
b1f74493
FT
3299 bool pending;
3300 unsigned int bidi_bytes = 0;
336cdb40 3301
b1f74493
FT
3302 if (unlikely(blk_bidi_rq(rq)))
3303 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 3304
b1f74493
FT
3305 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3306 BUG_ON(pending);
3307}
56ad1740 3308EXPORT_SYMBOL(blk_end_request_all);
336cdb40 3309
e3a04fe3 3310/**
b1f74493
FT
3311 * __blk_end_request - Helper function for drivers to complete the request.
3312 * @rq: the request being processed
2a842aca 3313 * @error: block status code
b1f74493 3314 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
3315 *
3316 * Description:
b1f74493 3317 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
3318 *
3319 * Return:
b1f74493
FT
3320 * %false - we are done with this request
3321 * %true - still buffers pending for this request
e3a04fe3 3322 **/
2a842aca
CH
3323bool __blk_end_request(struct request *rq, blk_status_t error,
3324 unsigned int nr_bytes)
e3a04fe3 3325{
2fff8a92 3326 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3327 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3328
b1f74493 3329 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 3330}
56ad1740 3331EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 3332
32fab448 3333/**
b1f74493
FT
3334 * __blk_end_request_all - Helper function for drives to finish the request.
3335 * @rq: the request to finish
2a842aca 3336 * @error: block status code
32fab448
KU
3337 *
3338 * Description:
b1f74493 3339 * Completely finish @rq. Must be called with queue lock held.
32fab448 3340 */
2a842aca 3341void __blk_end_request_all(struct request *rq, blk_status_t error)
32fab448 3342{
b1f74493
FT
3343 bool pending;
3344 unsigned int bidi_bytes = 0;
3345
2fff8a92 3346 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3347 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3348
b1f74493
FT
3349 if (unlikely(blk_bidi_rq(rq)))
3350 bidi_bytes = blk_rq_bytes(rq->next_rq);
3351
3352 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3353 BUG_ON(pending);
32fab448 3354}
56ad1740 3355EXPORT_SYMBOL(__blk_end_request_all);
32fab448 3356
e19a3ab0 3357/**
b1f74493
FT
3358 * __blk_end_request_cur - Helper function to finish the current request chunk.
3359 * @rq: the request to finish the current chunk for
2a842aca 3360 * @error: block status code
e19a3ab0
KU
3361 *
3362 * Description:
b1f74493
FT
3363 * Complete the current consecutively mapped chunk from @rq. Must
3364 * be called with queue lock held.
e19a3ab0
KU
3365 *
3366 * Return:
b1f74493
FT
3367 * %false - we are done with this request
3368 * %true - still buffers pending for this request
3369 */
2a842aca 3370bool __blk_end_request_cur(struct request *rq, blk_status_t error)
e19a3ab0 3371{
b1f74493 3372 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 3373}
56ad1740 3374EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 3375
86db1e29
JA
3376void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3377 struct bio *bio)
1da177e4 3378{
b4f42e28 3379 if (bio_has_data(bio))
fb2dce86 3380 rq->nr_phys_segments = bio_phys_segments(q, bio);
445251d0
JA
3381 else if (bio_op(bio) == REQ_OP_DISCARD)
3382 rq->nr_phys_segments = 1;
b4f42e28 3383
4f024f37 3384 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 3385 rq->bio = rq->biotail = bio;
1da177e4 3386
74d46992
CH
3387 if (bio->bi_disk)
3388 rq->rq_disk = bio->bi_disk;
66846572 3389}
1da177e4 3390
2d4dc890
IL
3391#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3392/**
3393 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3394 * @rq: the request to be flushed
3395 *
3396 * Description:
3397 * Flush all pages in @rq.
3398 */
3399void rq_flush_dcache_pages(struct request *rq)
3400{
3401 struct req_iterator iter;
7988613b 3402 struct bio_vec bvec;
2d4dc890
IL
3403
3404 rq_for_each_segment(bvec, rq, iter)
7988613b 3405 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
3406}
3407EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3408#endif
3409
ef9e3fac
KU
3410/**
3411 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3412 * @q : the queue of the device being checked
3413 *
3414 * Description:
3415 * Check if underlying low-level drivers of a device are busy.
3416 * If the drivers want to export their busy state, they must set own
3417 * exporting function using blk_queue_lld_busy() first.
3418 *
3419 * Basically, this function is used only by request stacking drivers
3420 * to stop dispatching requests to underlying devices when underlying
3421 * devices are busy. This behavior helps more I/O merging on the queue
3422 * of the request stacking driver and prevents I/O throughput regression
3423 * on burst I/O load.
3424 *
3425 * Return:
3426 * 0 - Not busy (The request stacking driver should dispatch request)
3427 * 1 - Busy (The request stacking driver should stop dispatching request)
3428 */
3429int blk_lld_busy(struct request_queue *q)
3430{
3431 if (q->lld_busy_fn)
3432 return q->lld_busy_fn(q);
3433
3434 return 0;
3435}
3436EXPORT_SYMBOL_GPL(blk_lld_busy);
3437
78d8e58a
MS
3438/**
3439 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3440 * @rq: the clone request to be cleaned up
3441 *
3442 * Description:
3443 * Free all bios in @rq for a cloned request.
3444 */
3445void blk_rq_unprep_clone(struct request *rq)
3446{
3447 struct bio *bio;
3448
3449 while ((bio = rq->bio) != NULL) {
3450 rq->bio = bio->bi_next;
3451
3452 bio_put(bio);
3453 }
3454}
3455EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3456
3457/*
3458 * Copy attributes of the original request to the clone request.
3459 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3460 */
3461static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3462{
3463 dst->cpu = src->cpu;
b0fd271d
KU
3464 dst->__sector = blk_rq_pos(src);
3465 dst->__data_len = blk_rq_bytes(src);
297ba57d
BVA
3466 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3467 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3468 dst->special_vec = src->special_vec;
3469 }
b0fd271d
KU
3470 dst->nr_phys_segments = src->nr_phys_segments;
3471 dst->ioprio = src->ioprio;
3472 dst->extra_len = src->extra_len;
78d8e58a
MS
3473}
3474
3475/**
3476 * blk_rq_prep_clone - Helper function to setup clone request
3477 * @rq: the request to be setup
3478 * @rq_src: original request to be cloned
3479 * @bs: bio_set that bios for clone are allocated from
3480 * @gfp_mask: memory allocation mask for bio
3481 * @bio_ctr: setup function to be called for each clone bio.
3482 * Returns %0 for success, non %0 for failure.
3483 * @data: private data to be passed to @bio_ctr
3484 *
3485 * Description:
3486 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3487 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3488 * are not copied, and copying such parts is the caller's responsibility.
3489 * Also, pages which the original bios are pointing to are not copied
3490 * and the cloned bios just point same pages.
3491 * So cloned bios must be completed before original bios, which means
3492 * the caller must complete @rq before @rq_src.
3493 */
3494int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3495 struct bio_set *bs, gfp_t gfp_mask,
3496 int (*bio_ctr)(struct bio *, struct bio *, void *),
3497 void *data)
3498{
3499 struct bio *bio, *bio_src;
3500
3501 if (!bs)
f4f8154a 3502 bs = &fs_bio_set;
78d8e58a
MS
3503
3504 __rq_for_each_bio(bio_src, rq_src) {
3505 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3506 if (!bio)
3507 goto free_and_out;
3508
3509 if (bio_ctr && bio_ctr(bio, bio_src, data))
3510 goto free_and_out;
3511
3512 if (rq->bio) {
3513 rq->biotail->bi_next = bio;
3514 rq->biotail = bio;
3515 } else
3516 rq->bio = rq->biotail = bio;
3517 }
3518
3519 __blk_rq_prep_clone(rq, rq_src);
3520
3521 return 0;
3522
3523free_and_out:
3524 if (bio)
3525 bio_put(bio);
3526 blk_rq_unprep_clone(rq);
3527
3528 return -ENOMEM;
b0fd271d
KU
3529}
3530EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3531
59c3d45e 3532int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3533{
3534 return queue_work(kblockd_workqueue, work);
3535}
1da177e4
LT
3536EXPORT_SYMBOL(kblockd_schedule_work);
3537
ee63cfa7
JA
3538int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3539{
3540 return queue_work_on(cpu, kblockd_workqueue, work);
3541}
3542EXPORT_SYMBOL(kblockd_schedule_work_on);
3543
818cd1cb
JA
3544int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3545 unsigned long delay)
3546{
3547 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3548}
3549EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3550
75df7136
SJ
3551/**
3552 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3553 * @plug: The &struct blk_plug that needs to be initialized
3554 *
3555 * Description:
3556 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3557 * pending I/O should the task end up blocking between blk_start_plug() and
3558 * blk_finish_plug(). This is important from a performance perspective, but
3559 * also ensures that we don't deadlock. For instance, if the task is blocking
3560 * for a memory allocation, memory reclaim could end up wanting to free a
3561 * page belonging to that request that is currently residing in our private
3562 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3563 * this kind of deadlock.
3564 */
73c10101
JA
3565void blk_start_plug(struct blk_plug *plug)
3566{
3567 struct task_struct *tsk = current;
3568
dd6cf3e1
SL
3569 /*
3570 * If this is a nested plug, don't actually assign it.
3571 */
3572 if (tsk->plug)
3573 return;
3574
73c10101 3575 INIT_LIST_HEAD(&plug->list);
320ae51f 3576 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3577 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3578 /*
dd6cf3e1
SL
3579 * Store ordering should not be needed here, since a potential
3580 * preempt will imply a full memory barrier
73c10101 3581 */
dd6cf3e1 3582 tsk->plug = plug;
73c10101
JA
3583}
3584EXPORT_SYMBOL(blk_start_plug);
3585
3586static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3587{
3588 struct request *rqa = container_of(a, struct request, queuelist);
3589 struct request *rqb = container_of(b, struct request, queuelist);
3590
975927b9
JM
3591 return !(rqa->q < rqb->q ||
3592 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3593}
3594
49cac01e
JA
3595/*
3596 * If 'from_schedule' is true, then postpone the dispatch of requests
3597 * until a safe kblockd context. We due this to avoid accidental big
3598 * additional stack usage in driver dispatch, in places where the originally
3599 * plugger did not intend it.
3600 */
f6603783 3601static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3602 bool from_schedule)
99e22598 3603 __releases(q->queue_lock)
94b5eb28 3604{
2fff8a92
BVA
3605 lockdep_assert_held(q->queue_lock);
3606
49cac01e 3607 trace_block_unplug(q, depth, !from_schedule);
99e22598 3608
70460571 3609 if (from_schedule)
24ecfbe2 3610 blk_run_queue_async(q);
70460571 3611 else
24ecfbe2 3612 __blk_run_queue(q);
50864670 3613 spin_unlock_irq(q->queue_lock);
94b5eb28
JA
3614}
3615
74018dc3 3616static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3617{
3618 LIST_HEAD(callbacks);
3619
2a7d5559
SL
3620 while (!list_empty(&plug->cb_list)) {
3621 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3622
2a7d5559
SL
3623 while (!list_empty(&callbacks)) {
3624 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3625 struct blk_plug_cb,
3626 list);
2a7d5559 3627 list_del(&cb->list);
74018dc3 3628 cb->callback(cb, from_schedule);
2a7d5559 3629 }
048c9374
N
3630 }
3631}
3632
9cbb1750
N
3633struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3634 int size)
3635{
3636 struct blk_plug *plug = current->plug;
3637 struct blk_plug_cb *cb;
3638
3639 if (!plug)
3640 return NULL;
3641
3642 list_for_each_entry(cb, &plug->cb_list, list)
3643 if (cb->callback == unplug && cb->data == data)
3644 return cb;
3645
3646 /* Not currently on the callback list */
3647 BUG_ON(size < sizeof(*cb));
3648 cb = kzalloc(size, GFP_ATOMIC);
3649 if (cb) {
3650 cb->data = data;
3651 cb->callback = unplug;
3652 list_add(&cb->list, &plug->cb_list);
3653 }
3654 return cb;
3655}
3656EXPORT_SYMBOL(blk_check_plugged);
3657
49cac01e 3658void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3659{
3660 struct request_queue *q;
73c10101 3661 struct request *rq;
109b8129 3662 LIST_HEAD(list);
94b5eb28 3663 unsigned int depth;
73c10101 3664
74018dc3 3665 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3666
3667 if (!list_empty(&plug->mq_list))
3668 blk_mq_flush_plug_list(plug, from_schedule);
3669
73c10101
JA
3670 if (list_empty(&plug->list))
3671 return;
3672
109b8129
N
3673 list_splice_init(&plug->list, &list);
3674
422765c2 3675 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3676
3677 q = NULL;
94b5eb28 3678 depth = 0;
18811272 3679
109b8129
N
3680 while (!list_empty(&list)) {
3681 rq = list_entry_rq(list.next);
73c10101 3682 list_del_init(&rq->queuelist);
73c10101
JA
3683 BUG_ON(!rq->q);
3684 if (rq->q != q) {
99e22598
JA
3685 /*
3686 * This drops the queue lock
3687 */
3688 if (q)
49cac01e 3689 queue_unplugged(q, depth, from_schedule);
73c10101 3690 q = rq->q;
94b5eb28 3691 depth = 0;
50864670 3692 spin_lock_irq(q->queue_lock);
73c10101 3693 }
8ba61435
TH
3694
3695 /*
3696 * Short-circuit if @q is dead
3697 */
3f3299d5 3698 if (unlikely(blk_queue_dying(q))) {
2a842aca 3699 __blk_end_request_all(rq, BLK_STS_IOERR);
8ba61435
TH
3700 continue;
3701 }
3702
73c10101
JA
3703 /*
3704 * rq is already accounted, so use raw insert
3705 */
f73f44eb 3706 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3707 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3708 else
3709 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3710
3711 depth++;
73c10101
JA
3712 }
3713
99e22598
JA
3714 /*
3715 * This drops the queue lock
3716 */
3717 if (q)
49cac01e 3718 queue_unplugged(q, depth, from_schedule);
73c10101 3719}
73c10101
JA
3720
3721void blk_finish_plug(struct blk_plug *plug)
3722{
dd6cf3e1
SL
3723 if (plug != current->plug)
3724 return;
f6603783 3725 blk_flush_plug_list(plug, false);
73c10101 3726
dd6cf3e1 3727 current->plug = NULL;
73c10101 3728}
88b996cd 3729EXPORT_SYMBOL(blk_finish_plug);
73c10101 3730
1da177e4
LT
3731int __init blk_dev_init(void)
3732{
ef295ecf
CH
3733 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3734 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3735 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3736 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3737 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3738
89b90be2
TH
3739 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3740 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3741 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3742 if (!kblockd_workqueue)
3743 panic("Failed to create kblockd\n");
3744
3745 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3746 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3747
c2789bd4 3748 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3749 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3750
18fbda91
OS
3751#ifdef CONFIG_DEBUG_FS
3752 blk_debugfs_root = debugfs_create_dir("block", NULL);
3753#endif
3754
d38ecf93 3755 return 0;
1da177e4 3756}