Merge tag 'v4.20-rc1' into patchwork
[linux-2.6-block.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
30abb3a6 37#include <linux/bpf.h>
55782138
LZ
38
39#define CREATE_TRACE_POINTS
40#include <trace/events/block.h>
1da177e4 41
8324aa91 42#include "blk.h"
43a5e4e2 43#include "blk-mq.h"
bd166ef1 44#include "blk-mq-sched.h"
bca6b067 45#include "blk-pm.h"
c1c80384 46#include "blk-rq-qos.h"
8324aa91 47
18fbda91
OS
48#ifdef CONFIG_DEBUG_FS
49struct dentry *blk_debugfs_root;
50#endif
51
d07335e5 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 55EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 56EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 57
a73f730d
TH
58DEFINE_IDA(blk_queue_ida);
59
1da177e4
LT
60/*
61 * For the allocated request tables
62 */
d674d414 63struct kmem_cache *request_cachep;
1da177e4
LT
64
65/*
66 * For queue allocation
67 */
6728cb0e 68struct kmem_cache *blk_requestq_cachep;
1da177e4 69
1da177e4
LT
70/*
71 * Controlling structure to kblockd
72 */
ff856bad 73static struct workqueue_struct *kblockd_workqueue;
1da177e4 74
8814ce8a
BVA
75/**
76 * blk_queue_flag_set - atomically set a queue flag
77 * @flag: flag to be set
78 * @q: request queue
79 */
80void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81{
82 unsigned long flags;
83
84 spin_lock_irqsave(q->queue_lock, flags);
85 queue_flag_set(flag, q);
86 spin_unlock_irqrestore(q->queue_lock, flags);
87}
88EXPORT_SYMBOL(blk_queue_flag_set);
89
90/**
91 * blk_queue_flag_clear - atomically clear a queue flag
92 * @flag: flag to be cleared
93 * @q: request queue
94 */
95void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
96{
97 unsigned long flags;
98
99 spin_lock_irqsave(q->queue_lock, flags);
100 queue_flag_clear(flag, q);
101 spin_unlock_irqrestore(q->queue_lock, flags);
102}
103EXPORT_SYMBOL(blk_queue_flag_clear);
104
105/**
106 * blk_queue_flag_test_and_set - atomically test and set a queue flag
107 * @flag: flag to be set
108 * @q: request queue
109 *
110 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
111 * the flag was already set.
112 */
113bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
114{
115 unsigned long flags;
116 bool res;
117
118 spin_lock_irqsave(q->queue_lock, flags);
119 res = queue_flag_test_and_set(flag, q);
120 spin_unlock_irqrestore(q->queue_lock, flags);
121
122 return res;
123}
124EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
125
126/**
127 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
128 * @flag: flag to be cleared
129 * @q: request queue
130 *
131 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
132 * the flag was set.
133 */
134bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
135{
136 unsigned long flags;
137 bool res;
138
139 spin_lock_irqsave(q->queue_lock, flags);
140 res = queue_flag_test_and_clear(flag, q);
141 spin_unlock_irqrestore(q->queue_lock, flags);
142
143 return res;
144}
145EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
146
d40f75a0
TH
147static void blk_clear_congested(struct request_list *rl, int sync)
148{
d40f75a0
TH
149#ifdef CONFIG_CGROUP_WRITEBACK
150 clear_wb_congested(rl->blkg->wb_congested, sync);
151#else
482cf79c
TH
152 /*
153 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
154 * flip its congestion state for events on other blkcgs.
155 */
156 if (rl == &rl->q->root_rl)
dc3b17cc 157 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
158#endif
159}
160
161static void blk_set_congested(struct request_list *rl, int sync)
162{
d40f75a0
TH
163#ifdef CONFIG_CGROUP_WRITEBACK
164 set_wb_congested(rl->blkg->wb_congested, sync);
165#else
482cf79c
TH
166 /* see blk_clear_congested() */
167 if (rl == &rl->q->root_rl)
dc3b17cc 168 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
169#endif
170}
171
8324aa91 172void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
173{
174 int nr;
175
176 nr = q->nr_requests - (q->nr_requests / 8) + 1;
177 if (nr > q->nr_requests)
178 nr = q->nr_requests;
179 q->nr_congestion_on = nr;
180
181 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
182 if (nr < 1)
183 nr = 1;
184 q->nr_congestion_off = nr;
185}
186
2a4aa30c 187void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 188{
1afb20f3
FT
189 memset(rq, 0, sizeof(*rq));
190
1da177e4 191 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 192 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 193 rq->cpu = -1;
63a71386 194 rq->q = q;
a2dec7b3 195 rq->__sector = (sector_t) -1;
2e662b65
JA
196 INIT_HLIST_NODE(&rq->hash);
197 RB_CLEAR_NODE(&rq->rb_node);
63a71386 198 rq->tag = -1;
bd166ef1 199 rq->internal_tag = -1;
522a7775 200 rq->start_time_ns = ktime_get_ns();
09e099d4 201 rq->part = NULL;
1da177e4 202}
2a4aa30c 203EXPORT_SYMBOL(blk_rq_init);
1da177e4 204
2a842aca
CH
205static const struct {
206 int errno;
207 const char *name;
208} blk_errors[] = {
209 [BLK_STS_OK] = { 0, "" },
210 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
211 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
212 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
213 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
214 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
215 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
216 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
217 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
218 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 219 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 220 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 221
4e4cbee9
CH
222 /* device mapper special case, should not leak out: */
223 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
224
2a842aca
CH
225 /* everything else not covered above: */
226 [BLK_STS_IOERR] = { -EIO, "I/O" },
227};
228
229blk_status_t errno_to_blk_status(int errno)
230{
231 int i;
232
233 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
234 if (blk_errors[i].errno == errno)
235 return (__force blk_status_t)i;
236 }
237
238 return BLK_STS_IOERR;
239}
240EXPORT_SYMBOL_GPL(errno_to_blk_status);
241
242int blk_status_to_errno(blk_status_t status)
243{
244 int idx = (__force int)status;
245
34bd9c1c 246 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
247 return -EIO;
248 return blk_errors[idx].errno;
249}
250EXPORT_SYMBOL_GPL(blk_status_to_errno);
251
252static void print_req_error(struct request *req, blk_status_t status)
253{
254 int idx = (__force int)status;
255
34bd9c1c 256 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
257 return;
258
259 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
260 __func__, blk_errors[idx].name, req->rq_disk ?
261 req->rq_disk->disk_name : "?",
262 (unsigned long long)blk_rq_pos(req));
263}
264
5bb23a68 265static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 266 unsigned int nbytes, blk_status_t error)
1da177e4 267{
78d8e58a 268 if (error)
4e4cbee9 269 bio->bi_status = error;
797e7dbb 270
e8064021 271 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 272 bio_set_flag(bio, BIO_QUIET);
08bafc03 273
f79ea416 274 bio_advance(bio, nbytes);
7ba1ba12 275
143a87f4 276 /* don't actually finish bio if it's part of flush sequence */
e8064021 277 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 278 bio_endio(bio);
1da177e4 279}
1da177e4 280
1da177e4
LT
281void blk_dump_rq_flags(struct request *rq, char *msg)
282{
aebf526b
CH
283 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
284 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 285 (unsigned long long) rq->cmd_flags);
1da177e4 286
83096ebf
TH
287 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
288 (unsigned long long)blk_rq_pos(rq),
289 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
290 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
291 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 292}
1da177e4
LT
293EXPORT_SYMBOL(blk_dump_rq_flags);
294
3cca6dc1 295static void blk_delay_work(struct work_struct *work)
1da177e4 296{
3cca6dc1 297 struct request_queue *q;
1da177e4 298
3cca6dc1
JA
299 q = container_of(work, struct request_queue, delay_work.work);
300 spin_lock_irq(q->queue_lock);
24ecfbe2 301 __blk_run_queue(q);
3cca6dc1 302 spin_unlock_irq(q->queue_lock);
1da177e4 303}
1da177e4
LT
304
305/**
3cca6dc1
JA
306 * blk_delay_queue - restart queueing after defined interval
307 * @q: The &struct request_queue in question
308 * @msecs: Delay in msecs
1da177e4
LT
309 *
310 * Description:
3cca6dc1
JA
311 * Sometimes queueing needs to be postponed for a little while, to allow
312 * resources to come back. This function will make sure that queueing is
2fff8a92 313 * restarted around the specified time.
3cca6dc1
JA
314 */
315void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 316{
2fff8a92 317 lockdep_assert_held(q->queue_lock);
332ebbf7 318 WARN_ON_ONCE(q->mq_ops);
2fff8a92 319
70460571
BVA
320 if (likely(!blk_queue_dead(q)))
321 queue_delayed_work(kblockd_workqueue, &q->delay_work,
322 msecs_to_jiffies(msecs));
2ad8b1ef 323}
3cca6dc1 324EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 325
21491412
JA
326/**
327 * blk_start_queue_async - asynchronously restart a previously stopped queue
328 * @q: The &struct request_queue in question
329 *
330 * Description:
331 * blk_start_queue_async() will clear the stop flag on the queue, and
332 * ensure that the request_fn for the queue is run from an async
333 * context.
334 **/
335void blk_start_queue_async(struct request_queue *q)
336{
2fff8a92 337 lockdep_assert_held(q->queue_lock);
332ebbf7 338 WARN_ON_ONCE(q->mq_ops);
2fff8a92 339
21491412
JA
340 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
341 blk_run_queue_async(q);
342}
343EXPORT_SYMBOL(blk_start_queue_async);
344
1da177e4
LT
345/**
346 * blk_start_queue - restart a previously stopped queue
165125e1 347 * @q: The &struct request_queue in question
1da177e4
LT
348 *
349 * Description:
350 * blk_start_queue() will clear the stop flag on the queue, and call
351 * the request_fn for the queue if it was in a stopped state when
2fff8a92 352 * entered. Also see blk_stop_queue().
1da177e4 353 **/
165125e1 354void blk_start_queue(struct request_queue *q)
1da177e4 355{
2fff8a92 356 lockdep_assert_held(q->queue_lock);
332ebbf7 357 WARN_ON_ONCE(q->mq_ops);
a038e253 358
75ad23bc 359 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 360 __blk_run_queue(q);
1da177e4 361}
1da177e4
LT
362EXPORT_SYMBOL(blk_start_queue);
363
364/**
365 * blk_stop_queue - stop a queue
165125e1 366 * @q: The &struct request_queue in question
1da177e4
LT
367 *
368 * Description:
369 * The Linux block layer assumes that a block driver will consume all
370 * entries on the request queue when the request_fn strategy is called.
371 * Often this will not happen, because of hardware limitations (queue
372 * depth settings). If a device driver gets a 'queue full' response,
373 * or if it simply chooses not to queue more I/O at one point, it can
374 * call this function to prevent the request_fn from being called until
375 * the driver has signalled it's ready to go again. This happens by calling
2fff8a92 376 * blk_start_queue() to restart queue operations.
1da177e4 377 **/
165125e1 378void blk_stop_queue(struct request_queue *q)
1da177e4 379{
2fff8a92 380 lockdep_assert_held(q->queue_lock);
332ebbf7 381 WARN_ON_ONCE(q->mq_ops);
2fff8a92 382
136b5721 383 cancel_delayed_work(&q->delay_work);
75ad23bc 384 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
385}
386EXPORT_SYMBOL(blk_stop_queue);
387
388/**
389 * blk_sync_queue - cancel any pending callbacks on a queue
390 * @q: the queue
391 *
392 * Description:
393 * The block layer may perform asynchronous callback activity
394 * on a queue, such as calling the unplug function after a timeout.
395 * A block device may call blk_sync_queue to ensure that any
396 * such activity is cancelled, thus allowing it to release resources
59c51591 397 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
398 * that its ->make_request_fn will not re-add plugging prior to calling
399 * this function.
400 *
da527770 401 * This function does not cancel any asynchronous activity arising
da3dae54 402 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 403 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 404 *
1da177e4
LT
405 */
406void blk_sync_queue(struct request_queue *q)
407{
70ed28b9 408 del_timer_sync(&q->timeout);
4e9b6f20 409 cancel_work_sync(&q->timeout_work);
f04c1fe7
ML
410
411 if (q->mq_ops) {
412 struct blk_mq_hw_ctx *hctx;
413 int i;
414
aba7afc5 415 cancel_delayed_work_sync(&q->requeue_work);
21c6e939 416 queue_for_each_hw_ctx(q, hctx, i)
9f993737 417 cancel_delayed_work_sync(&hctx->run_work);
f04c1fe7
ML
418 } else {
419 cancel_delayed_work_sync(&q->delay_work);
420 }
1da177e4
LT
421}
422EXPORT_SYMBOL(blk_sync_queue);
423
c9254f2d 424/**
cd84a62e 425 * blk_set_pm_only - increment pm_only counter
c9254f2d 426 * @q: request queue pointer
c9254f2d 427 */
cd84a62e 428void blk_set_pm_only(struct request_queue *q)
c9254f2d 429{
cd84a62e 430 atomic_inc(&q->pm_only);
c9254f2d 431}
cd84a62e 432EXPORT_SYMBOL_GPL(blk_set_pm_only);
c9254f2d 433
cd84a62e 434void blk_clear_pm_only(struct request_queue *q)
c9254f2d 435{
cd84a62e
BVA
436 int pm_only;
437
438 pm_only = atomic_dec_return(&q->pm_only);
439 WARN_ON_ONCE(pm_only < 0);
440 if (pm_only == 0)
441 wake_up_all(&q->mq_freeze_wq);
c9254f2d 442}
cd84a62e 443EXPORT_SYMBOL_GPL(blk_clear_pm_only);
c9254f2d 444
c246e80d
BVA
445/**
446 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
447 * @q: The queue to run
448 *
449 * Description:
450 * Invoke request handling on a queue if there are any pending requests.
451 * May be used to restart request handling after a request has completed.
452 * This variant runs the queue whether or not the queue has been
453 * stopped. Must be called with the queue lock held and interrupts
454 * disabled. See also @blk_run_queue.
455 */
456inline void __blk_run_queue_uncond(struct request_queue *q)
457{
2fff8a92 458 lockdep_assert_held(q->queue_lock);
332ebbf7 459 WARN_ON_ONCE(q->mq_ops);
2fff8a92 460
c246e80d
BVA
461 if (unlikely(blk_queue_dead(q)))
462 return;
463
24faf6f6
BVA
464 /*
465 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
466 * the queue lock internally. As a result multiple threads may be
467 * running such a request function concurrently. Keep track of the
468 * number of active request_fn invocations such that blk_drain_queue()
469 * can wait until all these request_fn calls have finished.
470 */
471 q->request_fn_active++;
c246e80d 472 q->request_fn(q);
24faf6f6 473 q->request_fn_active--;
c246e80d 474}
a7928c15 475EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 476
1da177e4 477/**
80a4b58e 478 * __blk_run_queue - run a single device queue
1da177e4 479 * @q: The queue to run
80a4b58e
JA
480 *
481 * Description:
2fff8a92 482 * See @blk_run_queue.
1da177e4 483 */
24ecfbe2 484void __blk_run_queue(struct request_queue *q)
1da177e4 485{
2fff8a92 486 lockdep_assert_held(q->queue_lock);
332ebbf7 487 WARN_ON_ONCE(q->mq_ops);
2fff8a92 488
a538cd03
TH
489 if (unlikely(blk_queue_stopped(q)))
490 return;
491
c246e80d 492 __blk_run_queue_uncond(q);
75ad23bc
NP
493}
494EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 495
24ecfbe2
CH
496/**
497 * blk_run_queue_async - run a single device queue in workqueue context
498 * @q: The queue to run
499 *
500 * Description:
501 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
2fff8a92
BVA
502 * of us.
503 *
504 * Note:
505 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
506 * has canceled q->delay_work, callers must hold the queue lock to avoid
507 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
24ecfbe2
CH
508 */
509void blk_run_queue_async(struct request_queue *q)
510{
2fff8a92 511 lockdep_assert_held(q->queue_lock);
332ebbf7 512 WARN_ON_ONCE(q->mq_ops);
2fff8a92 513
70460571 514 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 515 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 516}
c21e6beb 517EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 518
75ad23bc
NP
519/**
520 * blk_run_queue - run a single device queue
521 * @q: The queue to run
80a4b58e
JA
522 *
523 * Description:
524 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 525 * May be used to restart queueing when a request has completed.
75ad23bc
NP
526 */
527void blk_run_queue(struct request_queue *q)
528{
529 unsigned long flags;
530
332ebbf7
BVA
531 WARN_ON_ONCE(q->mq_ops);
532
75ad23bc 533 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 534 __blk_run_queue(q);
1da177e4
LT
535 spin_unlock_irqrestore(q->queue_lock, flags);
536}
537EXPORT_SYMBOL(blk_run_queue);
538
165125e1 539void blk_put_queue(struct request_queue *q)
483f4afc
AV
540{
541 kobject_put(&q->kobj);
542}
d86e0e83 543EXPORT_SYMBOL(blk_put_queue);
483f4afc 544
e3c78ca5 545/**
807592a4 546 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 547 * @q: queue to drain
c9a929dd 548 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 549 *
c9a929dd
TH
550 * Drain requests from @q. If @drain_all is set, all requests are drained.
551 * If not, only ELVPRIV requests are drained. The caller is responsible
552 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 553 */
807592a4
BVA
554static void __blk_drain_queue(struct request_queue *q, bool drain_all)
555 __releases(q->queue_lock)
556 __acquires(q->queue_lock)
e3c78ca5 557{
458f27a9
AH
558 int i;
559
807592a4 560 lockdep_assert_held(q->queue_lock);
332ebbf7 561 WARN_ON_ONCE(q->mq_ops);
807592a4 562
e3c78ca5 563 while (true) {
481a7d64 564 bool drain = false;
e3c78ca5 565
b855b04a
TH
566 /*
567 * The caller might be trying to drain @q before its
568 * elevator is initialized.
569 */
570 if (q->elevator)
571 elv_drain_elevator(q);
572
5efd6113 573 blkcg_drain_queue(q);
e3c78ca5 574
4eabc941
TH
575 /*
576 * This function might be called on a queue which failed
b855b04a
TH
577 * driver init after queue creation or is not yet fully
578 * active yet. Some drivers (e.g. fd and loop) get unhappy
579 * in such cases. Kick queue iff dispatch queue has
580 * something on it and @q has request_fn set.
4eabc941 581 */
b855b04a 582 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 583 __blk_run_queue(q);
c9a929dd 584
8a5ecdd4 585 drain |= q->nr_rqs_elvpriv;
24faf6f6 586 drain |= q->request_fn_active;
481a7d64
TH
587
588 /*
589 * Unfortunately, requests are queued at and tracked from
590 * multiple places and there's no single counter which can
591 * be drained. Check all the queues and counters.
592 */
593 if (drain_all) {
e97c293c 594 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
595 drain |= !list_empty(&q->queue_head);
596 for (i = 0; i < 2; i++) {
8a5ecdd4 597 drain |= q->nr_rqs[i];
481a7d64 598 drain |= q->in_flight[i];
7c94e1c1
ML
599 if (fq)
600 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
601 }
602 }
e3c78ca5 603
481a7d64 604 if (!drain)
e3c78ca5 605 break;
807592a4
BVA
606
607 spin_unlock_irq(q->queue_lock);
608
e3c78ca5 609 msleep(10);
807592a4
BVA
610
611 spin_lock_irq(q->queue_lock);
e3c78ca5 612 }
458f27a9
AH
613
614 /*
615 * With queue marked dead, any woken up waiter will fail the
616 * allocation path, so the wakeup chaining is lost and we're
617 * left with hung waiters. We need to wake up those waiters.
618 */
619 if (q->request_fn) {
a051661c
TH
620 struct request_list *rl;
621
a051661c
TH
622 blk_queue_for_each_rl(rl, q)
623 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
624 wake_up_all(&rl->wait[i]);
458f27a9 625 }
e3c78ca5
TH
626}
627
454be724
ML
628void blk_drain_queue(struct request_queue *q)
629{
630 spin_lock_irq(q->queue_lock);
631 __blk_drain_queue(q, true);
632 spin_unlock_irq(q->queue_lock);
633}
634
d732580b
TH
635/**
636 * blk_queue_bypass_start - enter queue bypass mode
637 * @q: queue of interest
638 *
639 * In bypass mode, only the dispatch FIFO queue of @q is used. This
640 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 641 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
642 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
643 * inside queue or RCU read lock.
d732580b
TH
644 */
645void blk_queue_bypass_start(struct request_queue *q)
646{
332ebbf7
BVA
647 WARN_ON_ONCE(q->mq_ops);
648
d732580b 649 spin_lock_irq(q->queue_lock);
776687bc 650 q->bypass_depth++;
d732580b
TH
651 queue_flag_set(QUEUE_FLAG_BYPASS, q);
652 spin_unlock_irq(q->queue_lock);
653
776687bc
TH
654 /*
655 * Queues start drained. Skip actual draining till init is
656 * complete. This avoids lenghty delays during queue init which
657 * can happen many times during boot.
658 */
659 if (blk_queue_init_done(q)) {
807592a4
BVA
660 spin_lock_irq(q->queue_lock);
661 __blk_drain_queue(q, false);
662 spin_unlock_irq(q->queue_lock);
663
b82d4b19
TH
664 /* ensure blk_queue_bypass() is %true inside RCU read lock */
665 synchronize_rcu();
666 }
d732580b
TH
667}
668EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
669
670/**
671 * blk_queue_bypass_end - leave queue bypass mode
672 * @q: queue of interest
673 *
674 * Leave bypass mode and restore the normal queueing behavior.
332ebbf7
BVA
675 *
676 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
677 * this function is called for both blk-sq and blk-mq queues.
d732580b
TH
678 */
679void blk_queue_bypass_end(struct request_queue *q)
680{
681 spin_lock_irq(q->queue_lock);
682 if (!--q->bypass_depth)
683 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
684 WARN_ON_ONCE(q->bypass_depth < 0);
685 spin_unlock_irq(q->queue_lock);
686}
687EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
688
aed3ea94
JA
689void blk_set_queue_dying(struct request_queue *q)
690{
8814ce8a 691 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
aed3ea94 692
d3cfb2a0
ML
693 /*
694 * When queue DYING flag is set, we need to block new req
695 * entering queue, so we call blk_freeze_queue_start() to
696 * prevent I/O from crossing blk_queue_enter().
697 */
698 blk_freeze_queue_start(q);
699
aed3ea94
JA
700 if (q->mq_ops)
701 blk_mq_wake_waiters(q);
702 else {
703 struct request_list *rl;
704
bbfc3c5d 705 spin_lock_irq(q->queue_lock);
aed3ea94
JA
706 blk_queue_for_each_rl(rl, q) {
707 if (rl->rq_pool) {
34d9715a
ML
708 wake_up_all(&rl->wait[BLK_RW_SYNC]);
709 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
aed3ea94
JA
710 }
711 }
bbfc3c5d 712 spin_unlock_irq(q->queue_lock);
aed3ea94 713 }
055f6e18
ML
714
715 /* Make blk_queue_enter() reexamine the DYING flag. */
716 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
717}
718EXPORT_SYMBOL_GPL(blk_set_queue_dying);
719
4cf6324b
BVA
720/* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
721void blk_exit_queue(struct request_queue *q)
722{
723 /*
724 * Since the I/O scheduler exit code may access cgroup information,
725 * perform I/O scheduler exit before disassociating from the block
726 * cgroup controller.
727 */
728 if (q->elevator) {
729 ioc_clear_queue(q);
730 elevator_exit(q, q->elevator);
731 q->elevator = NULL;
732 }
733
734 /*
735 * Remove all references to @q from the block cgroup controller before
736 * restoring @q->queue_lock to avoid that restoring this pointer causes
737 * e.g. blkcg_print_blkgs() to crash.
738 */
739 blkcg_exit_queue(q);
740
741 /*
742 * Since the cgroup code may dereference the @q->backing_dev_info
743 * pointer, only decrease its reference count after having removed the
744 * association with the block cgroup controller.
745 */
746 bdi_put(q->backing_dev_info);
747}
748
c9a929dd
TH
749/**
750 * blk_cleanup_queue - shutdown a request queue
751 * @q: request queue to shutdown
752 *
c246e80d
BVA
753 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
754 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 755 */
6728cb0e 756void blk_cleanup_queue(struct request_queue *q)
483f4afc 757{
c9a929dd 758 spinlock_t *lock = q->queue_lock;
e3335de9 759
3f3299d5 760 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 761 mutex_lock(&q->sysfs_lock);
aed3ea94 762 blk_set_queue_dying(q);
c9a929dd 763 spin_lock_irq(lock);
6ecf23af 764
80fd9979 765 /*
3f3299d5 766 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
767 * that, unlike blk_queue_bypass_start(), we aren't performing
768 * synchronize_rcu() after entering bypass mode to avoid the delay
769 * as some drivers create and destroy a lot of queues while
770 * probing. This is still safe because blk_release_queue() will be
771 * called only after the queue refcnt drops to zero and nothing,
772 * RCU or not, would be traversing the queue by then.
773 */
6ecf23af
TH
774 q->bypass_depth++;
775 queue_flag_set(QUEUE_FLAG_BYPASS, q);
776
c9a929dd
TH
777 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
778 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 779 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
780 spin_unlock_irq(lock);
781 mutex_unlock(&q->sysfs_lock);
782
c246e80d
BVA
783 /*
784 * Drain all requests queued before DYING marking. Set DEAD flag to
785 * prevent that q->request_fn() gets invoked after draining finished.
786 */
3ef28e83 787 blk_freeze_queue(q);
c57cdf7a
ML
788
789 rq_qos_exit(q);
790
9c1051aa 791 spin_lock_irq(lock);
c246e80d 792 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 793 spin_unlock_irq(lock);
c9a929dd 794
c2856ae2
ML
795 /*
796 * make sure all in-progress dispatch are completed because
797 * blk_freeze_queue() can only complete all requests, and
798 * dispatch may still be in-progress since we dispatch requests
1311326c
ML
799 * from more than one contexts.
800 *
801 * No need to quiesce queue if it isn't initialized yet since
802 * blk_freeze_queue() should be enough for cases of passthrough
803 * request.
c2856ae2 804 */
1311326c 805 if (q->mq_ops && blk_queue_init_done(q))
c2856ae2
ML
806 blk_mq_quiesce_queue(q);
807
5a48fc14
DW
808 /* for synchronous bio-based driver finish in-flight integrity i/o */
809 blk_flush_integrity();
810
c9a929dd 811 /* @q won't process any more request, flush async actions */
dc3b17cc 812 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
813 blk_sync_queue(q);
814
a063057d
BVA
815 /*
816 * I/O scheduler exit is only safe after the sysfs scheduler attribute
817 * has been removed.
818 */
819 WARN_ON_ONCE(q->kobj.state_in_sysfs);
820
4cf6324b 821 blk_exit_queue(q);
a063057d 822
45a9c9d9
BVA
823 if (q->mq_ops)
824 blk_mq_free_queue(q);
3ef28e83 825 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 826
5e5cfac0
AH
827 spin_lock_irq(lock);
828 if (q->queue_lock != &q->__queue_lock)
829 q->queue_lock = &q->__queue_lock;
830 spin_unlock_irq(lock);
831
c9a929dd 832 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
833 blk_put_queue(q);
834}
1da177e4
LT
835EXPORT_SYMBOL(blk_cleanup_queue);
836
271508db 837/* Allocate memory local to the request queue */
6d247d7f 838static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 839{
6d247d7f
CH
840 struct request_queue *q = data;
841
842 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
843}
844
6d247d7f 845static void free_request_simple(void *element, void *data)
271508db
DR
846{
847 kmem_cache_free(request_cachep, element);
848}
849
6d247d7f
CH
850static void *alloc_request_size(gfp_t gfp_mask, void *data)
851{
852 struct request_queue *q = data;
853 struct request *rq;
854
855 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
856 q->node);
857 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
858 kfree(rq);
859 rq = NULL;
860 }
861 return rq;
862}
863
864static void free_request_size(void *element, void *data)
865{
866 struct request_queue *q = data;
867
868 if (q->exit_rq_fn)
869 q->exit_rq_fn(q, element);
870 kfree(element);
871}
872
5b788ce3
TH
873int blk_init_rl(struct request_list *rl, struct request_queue *q,
874 gfp_t gfp_mask)
1da177e4 875{
85acb3ba 876 if (unlikely(rl->rq_pool) || q->mq_ops)
1abec4fd
MS
877 return 0;
878
5b788ce3 879 rl->q = q;
1faa16d2
JA
880 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
881 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
882 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
883 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 884
6d247d7f
CH
885 if (q->cmd_size) {
886 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
887 alloc_request_size, free_request_size,
888 q, gfp_mask, q->node);
889 } else {
890 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
891 alloc_request_simple, free_request_simple,
892 q, gfp_mask, q->node);
893 }
1da177e4
LT
894 if (!rl->rq_pool)
895 return -ENOMEM;
896
b425e504
BVA
897 if (rl != &q->root_rl)
898 WARN_ON_ONCE(!blk_get_queue(q));
899
1da177e4
LT
900 return 0;
901}
902
b425e504 903void blk_exit_rl(struct request_queue *q, struct request_list *rl)
5b788ce3 904{
b425e504 905 if (rl->rq_pool) {
5b788ce3 906 mempool_destroy(rl->rq_pool);
b425e504
BVA
907 if (rl != &q->root_rl)
908 blk_put_queue(q);
909 }
5b788ce3
TH
910}
911
165125e1 912struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 913{
5ee0524b 914 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
1946089a
CL
915}
916EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 917
3a0a5299
BVA
918/**
919 * blk_queue_enter() - try to increase q->q_usage_counter
920 * @q: request queue pointer
921 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
922 */
9a95e4ef 923int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 924{
cd84a62e 925 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
3a0a5299 926
3ef28e83 927 while (true) {
3a0a5299 928 bool success = false;
3ef28e83 929
818e0fa2 930 rcu_read_lock();
3a0a5299
BVA
931 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
932 /*
cd84a62e
BVA
933 * The code that increments the pm_only counter is
934 * responsible for ensuring that that counter is
935 * globally visible before the queue is unfrozen.
3a0a5299 936 */
cd84a62e 937 if (pm || !blk_queue_pm_only(q)) {
3a0a5299
BVA
938 success = true;
939 } else {
940 percpu_ref_put(&q->q_usage_counter);
941 }
942 }
818e0fa2 943 rcu_read_unlock();
3a0a5299
BVA
944
945 if (success)
3ef28e83
DW
946 return 0;
947
3a0a5299 948 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
949 return -EBUSY;
950
5ed61d3f 951 /*
1671d522 952 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 953 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
954 * .q_usage_counter and reading .mq_freeze_depth or
955 * queue dying flag, otherwise the following wait may
956 * never return if the two reads are reordered.
5ed61d3f
ML
957 */
958 smp_rmb();
959
1dc3039b
AJ
960 wait_event(q->mq_freeze_wq,
961 (atomic_read(&q->mq_freeze_depth) == 0 &&
0d25bd07
BVA
962 (pm || (blk_pm_request_resume(q),
963 !blk_queue_pm_only(q)))) ||
1dc3039b 964 blk_queue_dying(q));
3ef28e83
DW
965 if (blk_queue_dying(q))
966 return -ENODEV;
3ef28e83
DW
967 }
968}
969
970void blk_queue_exit(struct request_queue *q)
971{
972 percpu_ref_put(&q->q_usage_counter);
973}
974
975static void blk_queue_usage_counter_release(struct percpu_ref *ref)
976{
977 struct request_queue *q =
978 container_of(ref, struct request_queue, q_usage_counter);
979
980 wake_up_all(&q->mq_freeze_wq);
981}
982
bca237a5 983static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 984{
bca237a5 985 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
986
987 kblockd_schedule_work(&q->timeout_work);
988}
989
498f6650
BVA
990/**
991 * blk_alloc_queue_node - allocate a request queue
992 * @gfp_mask: memory allocation flags
993 * @node_id: NUMA node to allocate memory from
994 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
995 * serialize calls to the legacy .request_fn() callback. Ignored for
996 * blk-mq request queues.
997 *
998 * Note: pass the queue lock as the third argument to this function instead of
999 * setting the queue lock pointer explicitly to avoid triggering a sporadic
1000 * crash in the blkcg code. This function namely calls blkcg_init_queue() and
1001 * the queue lock pointer must be set before blkcg_init_queue() is called.
1002 */
5ee0524b
BVA
1003struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
1004 spinlock_t *lock)
1946089a 1005{
165125e1 1006 struct request_queue *q;
338aa96d 1007 int ret;
1946089a 1008
8324aa91 1009 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 1010 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
1011 if (!q)
1012 return NULL;
1013
cbf62af3
CH
1014 INIT_LIST_HEAD(&q->queue_head);
1015 q->last_merge = NULL;
1016 q->end_sector = 0;
1017 q->boundary_rq = NULL;
1018
00380a40 1019 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 1020 if (q->id < 0)
3d2936f4 1021 goto fail_q;
a73f730d 1022
338aa96d
KO
1023 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1024 if (ret)
54efd50b
KO
1025 goto fail_id;
1026
d03f6cdc
JK
1027 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1028 if (!q->backing_dev_info)
1029 goto fail_split;
1030
a83b576c
JA
1031 q->stats = blk_alloc_queue_stats();
1032 if (!q->stats)
1033 goto fail_stats;
1034
dc3b17cc 1035 q->backing_dev_info->ra_pages =
09cbfeaf 1036 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
1037 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1038 q->backing_dev_info->name = "block";
5151412d 1039 q->node = node_id;
0989a025 1040
bca237a5
KC
1041 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1042 laptop_mode_timer_fn, 0);
1043 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
4e9b6f20 1044 INIT_WORK(&q->timeout_work, NULL);
242f9dcb 1045 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 1046 INIT_LIST_HEAD(&q->icq_list);
4eef3049 1047#ifdef CONFIG_BLK_CGROUP
e8989fae 1048 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 1049#endif
3cca6dc1 1050 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 1051
8324aa91 1052 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 1053
5acb3cc2
WL
1054#ifdef CONFIG_BLK_DEV_IO_TRACE
1055 mutex_init(&q->blk_trace_mutex);
1056#endif
483f4afc 1057 mutex_init(&q->sysfs_lock);
e7e72bf6 1058 spin_lock_init(&q->__queue_lock);
483f4afc 1059
5e27891e 1060 q->queue_lock = lock ? : &q->__queue_lock;
c94a96ac 1061
b82d4b19
TH
1062 /*
1063 * A queue starts its life with bypass turned on to avoid
1064 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
1065 * init. The initial bypass will be finished when the queue is
1066 * registered by blk_register_queue().
b82d4b19
TH
1067 */
1068 q->bypass_depth = 1;
f78bac2c 1069 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
b82d4b19 1070
320ae51f
JA
1071 init_waitqueue_head(&q->mq_freeze_wq);
1072
3ef28e83
DW
1073 /*
1074 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1075 * See blk_register_queue() for details.
1076 */
1077 if (percpu_ref_init(&q->q_usage_counter,
1078 blk_queue_usage_counter_release,
1079 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 1080 goto fail_bdi;
f51b802c 1081
3ef28e83
DW
1082 if (blkcg_init_queue(q))
1083 goto fail_ref;
1084
1da177e4 1085 return q;
a73f730d 1086
3ef28e83
DW
1087fail_ref:
1088 percpu_ref_exit(&q->q_usage_counter);
fff4996b 1089fail_bdi:
a83b576c
JA
1090 blk_free_queue_stats(q->stats);
1091fail_stats:
d03f6cdc 1092 bdi_put(q->backing_dev_info);
54efd50b 1093fail_split:
338aa96d 1094 bioset_exit(&q->bio_split);
a73f730d
TH
1095fail_id:
1096 ida_simple_remove(&blk_queue_ida, q->id);
1097fail_q:
1098 kmem_cache_free(blk_requestq_cachep, q);
1099 return NULL;
1da177e4 1100}
1946089a 1101EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1102
1103/**
1104 * blk_init_queue - prepare a request queue for use with a block device
1105 * @rfn: The function to be called to process requests that have been
1106 * placed on the queue.
1107 * @lock: Request queue spin lock
1108 *
1109 * Description:
1110 * If a block device wishes to use the standard request handling procedures,
1111 * which sorts requests and coalesces adjacent requests, then it must
1112 * call blk_init_queue(). The function @rfn will be called when there
1113 * are requests on the queue that need to be processed. If the device
1114 * supports plugging, then @rfn may not be called immediately when requests
1115 * are available on the queue, but may be called at some time later instead.
1116 * Plugged queues are generally unplugged when a buffer belonging to one
1117 * of the requests on the queue is needed, or due to memory pressure.
1118 *
1119 * @rfn is not required, or even expected, to remove all requests off the
1120 * queue, but only as many as it can handle at a time. If it does leave
1121 * requests on the queue, it is responsible for arranging that the requests
1122 * get dealt with eventually.
1123 *
1124 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1125 * request queue; this lock will be taken also from interrupt context, so irq
1126 * disabling is needed for it.
1da177e4 1127 *
710027a4 1128 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
1129 * it didn't succeed.
1130 *
1131 * Note:
1132 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1133 * when the block device is deactivated (such as at module unload).
1134 **/
1946089a 1135
165125e1 1136struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 1137{
c304a51b 1138 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
1139}
1140EXPORT_SYMBOL(blk_init_queue);
1141
165125e1 1142struct request_queue *
1946089a
CL
1143blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1144{
5ea708d1 1145 struct request_queue *q;
1da177e4 1146
498f6650 1147 q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
5ea708d1 1148 if (!q)
c86d1b8a
MS
1149 return NULL;
1150
5ea708d1 1151 q->request_fn = rfn;
5ea708d1
CH
1152 if (blk_init_allocated_queue(q) < 0) {
1153 blk_cleanup_queue(q);
1154 return NULL;
1155 }
18741986 1156
7982e90c 1157 return q;
01effb0d
MS
1158}
1159EXPORT_SYMBOL(blk_init_queue_node);
1160
dece1635 1161static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 1162
1da177e4 1163
5ea708d1
CH
1164int blk_init_allocated_queue(struct request_queue *q)
1165{
332ebbf7
BVA
1166 WARN_ON_ONCE(q->mq_ops);
1167
5b202853 1168 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size, GFP_KERNEL);
ba483388 1169 if (!q->fq)
5ea708d1 1170 return -ENOMEM;
7982e90c 1171
6d247d7f
CH
1172 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1173 goto out_free_flush_queue;
7982e90c 1174
a051661c 1175 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 1176 goto out_exit_flush_rq;
1da177e4 1177
287922eb 1178 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 1179 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 1180
f3b144aa
JA
1181 /*
1182 * This also sets hw/phys segments, boundary and size
1183 */
c20e8de2 1184 blk_queue_make_request(q, blk_queue_bio);
1da177e4 1185
44ec9542
AS
1186 q->sg_reserved_size = INT_MAX;
1187
acddf3b3 1188 if (elevator_init(q))
6d247d7f 1189 goto out_exit_flush_rq;
5ea708d1 1190 return 0;
eb1c160b 1191
6d247d7f
CH
1192out_exit_flush_rq:
1193 if (q->exit_rq_fn)
1194 q->exit_rq_fn(q, q->fq->flush_rq);
1195out_free_flush_queue:
ba483388 1196 blk_free_flush_queue(q->fq);
54648cf1 1197 q->fq = NULL;
5ea708d1 1198 return -ENOMEM;
1da177e4 1199}
5151412d 1200EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 1201
09ac46c4 1202bool blk_get_queue(struct request_queue *q)
1da177e4 1203{
3f3299d5 1204 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
1205 __blk_get_queue(q);
1206 return true;
1da177e4
LT
1207 }
1208
09ac46c4 1209 return false;
1da177e4 1210}
d86e0e83 1211EXPORT_SYMBOL(blk_get_queue);
1da177e4 1212
5b788ce3 1213static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 1214{
e8064021 1215 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 1216 elv_put_request(rl->q, rq);
f1f8cc94 1217 if (rq->elv.icq)
11a3122f 1218 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
1219 }
1220
5b788ce3 1221 mempool_free(rq, rl->rq_pool);
1da177e4
LT
1222}
1223
1da177e4
LT
1224/*
1225 * ioc_batching returns true if the ioc is a valid batching request and
1226 * should be given priority access to a request.
1227 */
165125e1 1228static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1229{
1230 if (!ioc)
1231 return 0;
1232
1233 /*
1234 * Make sure the process is able to allocate at least 1 request
1235 * even if the batch times out, otherwise we could theoretically
1236 * lose wakeups.
1237 */
1238 return ioc->nr_batch_requests == q->nr_batching ||
1239 (ioc->nr_batch_requests > 0
1240 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1241}
1242
1243/*
1244 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1245 * will cause the process to be a "batcher" on all queues in the system. This
1246 * is the behaviour we want though - once it gets a wakeup it should be given
1247 * a nice run.
1248 */
165125e1 1249static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1250{
1251 if (!ioc || ioc_batching(q, ioc))
1252 return;
1253
1254 ioc->nr_batch_requests = q->nr_batching;
1255 ioc->last_waited = jiffies;
1256}
1257
5b788ce3 1258static void __freed_request(struct request_list *rl, int sync)
1da177e4 1259{
5b788ce3 1260 struct request_queue *q = rl->q;
1da177e4 1261
d40f75a0
TH
1262 if (rl->count[sync] < queue_congestion_off_threshold(q))
1263 blk_clear_congested(rl, sync);
1da177e4 1264
1faa16d2
JA
1265 if (rl->count[sync] + 1 <= q->nr_requests) {
1266 if (waitqueue_active(&rl->wait[sync]))
1267 wake_up(&rl->wait[sync]);
1da177e4 1268
5b788ce3 1269 blk_clear_rl_full(rl, sync);
1da177e4
LT
1270 }
1271}
1272
1273/*
1274 * A request has just been released. Account for it, update the full and
1275 * congestion status, wake up any waiters. Called under q->queue_lock.
1276 */
e8064021
CH
1277static void freed_request(struct request_list *rl, bool sync,
1278 req_flags_t rq_flags)
1da177e4 1279{
5b788ce3 1280 struct request_queue *q = rl->q;
1da177e4 1281
8a5ecdd4 1282 q->nr_rqs[sync]--;
1faa16d2 1283 rl->count[sync]--;
e8064021 1284 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 1285 q->nr_rqs_elvpriv--;
1da177e4 1286
5b788ce3 1287 __freed_request(rl, sync);
1da177e4 1288
1faa16d2 1289 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 1290 __freed_request(rl, sync ^ 1);
1da177e4
LT
1291}
1292
e3a2b3f9
JA
1293int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1294{
1295 struct request_list *rl;
d40f75a0 1296 int on_thresh, off_thresh;
e3a2b3f9 1297
332ebbf7
BVA
1298 WARN_ON_ONCE(q->mq_ops);
1299
e3a2b3f9
JA
1300 spin_lock_irq(q->queue_lock);
1301 q->nr_requests = nr;
1302 blk_queue_congestion_threshold(q);
d40f75a0
TH
1303 on_thresh = queue_congestion_on_threshold(q);
1304 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1305
d40f75a0
TH
1306 blk_queue_for_each_rl(rl, q) {
1307 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1308 blk_set_congested(rl, BLK_RW_SYNC);
1309 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1310 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1311
d40f75a0
TH
1312 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1313 blk_set_congested(rl, BLK_RW_ASYNC);
1314 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1315 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1316
e3a2b3f9
JA
1317 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1318 blk_set_rl_full(rl, BLK_RW_SYNC);
1319 } else {
1320 blk_clear_rl_full(rl, BLK_RW_SYNC);
1321 wake_up(&rl->wait[BLK_RW_SYNC]);
1322 }
1323
1324 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1325 blk_set_rl_full(rl, BLK_RW_ASYNC);
1326 } else {
1327 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1328 wake_up(&rl->wait[BLK_RW_ASYNC]);
1329 }
1330 }
1331
1332 spin_unlock_irq(q->queue_lock);
1333 return 0;
1334}
1335
da8303c6 1336/**
a06e05e6 1337 * __get_request - get a free request
5b788ce3 1338 * @rl: request list to allocate from
ef295ecf 1339 * @op: operation and flags
da8303c6 1340 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1341 * @flags: BLQ_MQ_REQ_* flags
4accf5fc 1342 * @gfp_mask: allocator flags
da8303c6
TH
1343 *
1344 * Get a free request from @q. This function may fail under memory
1345 * pressure or if @q is dead.
1346 *
da3dae54 1347 * Must be called with @q->queue_lock held and,
a492f075
JL
1348 * Returns ERR_PTR on failure, with @q->queue_lock held.
1349 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1350 */
ef295ecf 1351static struct request *__get_request(struct request_list *rl, unsigned int op,
4accf5fc 1352 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask)
1da177e4 1353{
5b788ce3 1354 struct request_queue *q = rl->q;
b679281a 1355 struct request *rq;
7f4b35d1
TH
1356 struct elevator_type *et = q->elevator->type;
1357 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1358 struct io_cq *icq = NULL;
ef295ecf 1359 const bool is_sync = op_is_sync(op);
75eb6c37 1360 int may_queue;
e8064021 1361 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1362
2fff8a92
BVA
1363 lockdep_assert_held(q->queue_lock);
1364
3f3299d5 1365 if (unlikely(blk_queue_dying(q)))
a492f075 1366 return ERR_PTR(-ENODEV);
da8303c6 1367
ef295ecf 1368 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1369 if (may_queue == ELV_MQUEUE_NO)
1370 goto rq_starved;
1371
1faa16d2
JA
1372 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1373 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1374 /*
1375 * The queue will fill after this allocation, so set
1376 * it as full, and mark this process as "batching".
1377 * This process will be allowed to complete a batch of
1378 * requests, others will be blocked.
1379 */
5b788ce3 1380 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1381 ioc_set_batching(q, ioc);
5b788ce3 1382 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1383 } else {
1384 if (may_queue != ELV_MQUEUE_MUST
1385 && !ioc_batching(q, ioc)) {
1386 /*
1387 * The queue is full and the allocating
1388 * process is not a "batcher", and not
1389 * exempted by the IO scheduler
1390 */
a492f075 1391 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1392 }
1393 }
1da177e4 1394 }
d40f75a0 1395 blk_set_congested(rl, is_sync);
1da177e4
LT
1396 }
1397
082cf69e
JA
1398 /*
1399 * Only allow batching queuers to allocate up to 50% over the defined
1400 * limit of requests, otherwise we could have thousands of requests
1401 * allocated with any setting of ->nr_requests
1402 */
1faa16d2 1403 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1404 return ERR_PTR(-ENOMEM);
fd782a4a 1405
8a5ecdd4 1406 q->nr_rqs[is_sync]++;
1faa16d2
JA
1407 rl->count[is_sync]++;
1408 rl->starved[is_sync] = 0;
cb98fc8b 1409
f1f8cc94
TH
1410 /*
1411 * Decide whether the new request will be managed by elevator. If
e8064021 1412 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1413 * prevent the current elevator from being destroyed until the new
1414 * request is freed. This guarantees icq's won't be destroyed and
1415 * makes creating new ones safe.
1416 *
e6f7f93d
CH
1417 * Flush requests do not use the elevator so skip initialization.
1418 * This allows a request to share the flush and elevator data.
1419 *
f1f8cc94
TH
1420 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1421 * it will be created after releasing queue_lock.
1422 */
e6f7f93d 1423 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1424 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1425 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1426 if (et->icq_cache && ioc)
1427 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1428 }
cb98fc8b 1429
f253b86b 1430 if (blk_queue_io_stat(q))
e8064021 1431 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1432 spin_unlock_irq(q->queue_lock);
1433
29e2b09a 1434 /* allocate and init request */
5b788ce3 1435 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1436 if (!rq)
b679281a 1437 goto fail_alloc;
1da177e4 1438
29e2b09a 1439 blk_rq_init(q, rq);
a051661c 1440 blk_rq_set_rl(rq, rl);
ef295ecf 1441 rq->cmd_flags = op;
e8064021 1442 rq->rq_flags = rq_flags;
1b6d65a0
BVA
1443 if (flags & BLK_MQ_REQ_PREEMPT)
1444 rq->rq_flags |= RQF_PREEMPT;
29e2b09a 1445
aaf7c680 1446 /* init elvpriv */
e8064021 1447 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1448 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1449 if (ioc)
1450 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1451 if (!icq)
1452 goto fail_elvpriv;
29e2b09a 1453 }
aaf7c680
TH
1454
1455 rq->elv.icq = icq;
1456 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1457 goto fail_elvpriv;
1458
1459 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1460 if (icq)
1461 get_io_context(icq->ioc);
1462 }
aaf7c680 1463out:
88ee5ef1
JA
1464 /*
1465 * ioc may be NULL here, and ioc_batching will be false. That's
1466 * OK, if the queue is under the request limit then requests need
1467 * not count toward the nr_batch_requests limit. There will always
1468 * be some limit enforced by BLK_BATCH_TIME.
1469 */
1da177e4
LT
1470 if (ioc_batching(q, ioc))
1471 ioc->nr_batch_requests--;
6728cb0e 1472
e6a40b09 1473 trace_block_getrq(q, bio, op);
1da177e4 1474 return rq;
b679281a 1475
aaf7c680
TH
1476fail_elvpriv:
1477 /*
1478 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1479 * and may fail indefinitely under memory pressure and thus
1480 * shouldn't stall IO. Treat this request as !elvpriv. This will
1481 * disturb iosched and blkcg but weird is bettern than dead.
1482 */
7b2b10e0 1483 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
dc3b17cc 1484 __func__, dev_name(q->backing_dev_info->dev));
aaf7c680 1485
e8064021 1486 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1487 rq->elv.icq = NULL;
1488
1489 spin_lock_irq(q->queue_lock);
8a5ecdd4 1490 q->nr_rqs_elvpriv--;
aaf7c680
TH
1491 spin_unlock_irq(q->queue_lock);
1492 goto out;
1493
b679281a
TH
1494fail_alloc:
1495 /*
1496 * Allocation failed presumably due to memory. Undo anything we
1497 * might have messed up.
1498 *
1499 * Allocating task should really be put onto the front of the wait
1500 * queue, but this is pretty rare.
1501 */
1502 spin_lock_irq(q->queue_lock);
e8064021 1503 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1504
1505 /*
1506 * in the very unlikely event that allocation failed and no
1507 * requests for this direction was pending, mark us starved so that
1508 * freeing of a request in the other direction will notice
1509 * us. another possible fix would be to split the rq mempool into
1510 * READ and WRITE
1511 */
1512rq_starved:
1513 if (unlikely(rl->count[is_sync] == 0))
1514 rl->starved[is_sync] = 1;
a492f075 1515 return ERR_PTR(-ENOMEM);
1da177e4
LT
1516}
1517
da8303c6 1518/**
a06e05e6 1519 * get_request - get a free request
da8303c6 1520 * @q: request_queue to allocate request from
ef295ecf 1521 * @op: operation and flags
da8303c6 1522 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1523 * @flags: BLK_MQ_REQ_* flags.
4accf5fc 1524 * @gfp: allocator flags
da8303c6 1525 *
a9a14d36 1526 * Get a free request from @q. If %BLK_MQ_REQ_NOWAIT is set in @flags,
d0164adc 1527 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1528 *
da3dae54 1529 * Must be called with @q->queue_lock held and,
a492f075
JL
1530 * Returns ERR_PTR on failure, with @q->queue_lock held.
1531 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1532 */
ef295ecf 1533static struct request *get_request(struct request_queue *q, unsigned int op,
4accf5fc 1534 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp)
1da177e4 1535{
ef295ecf 1536 const bool is_sync = op_is_sync(op);
a06e05e6 1537 DEFINE_WAIT(wait);
a051661c 1538 struct request_list *rl;
1da177e4 1539 struct request *rq;
a051661c 1540
2fff8a92 1541 lockdep_assert_held(q->queue_lock);
332ebbf7 1542 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1543
a051661c 1544 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1545retry:
4accf5fc 1546 rq = __get_request(rl, op, bio, flags, gfp);
a492f075 1547 if (!IS_ERR(rq))
a06e05e6 1548 return rq;
1da177e4 1549
03a07c92
GR
1550 if (op & REQ_NOWAIT) {
1551 blk_put_rl(rl);
1552 return ERR_PTR(-EAGAIN);
1553 }
1554
6a15674d 1555 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1556 blk_put_rl(rl);
a492f075 1557 return rq;
a051661c 1558 }
1da177e4 1559
a06e05e6
TH
1560 /* wait on @rl and retry */
1561 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1562 TASK_UNINTERRUPTIBLE);
1da177e4 1563
e6a40b09 1564 trace_block_sleeprq(q, bio, op);
1da177e4 1565
a06e05e6
TH
1566 spin_unlock_irq(q->queue_lock);
1567 io_schedule();
d6344532 1568
a06e05e6
TH
1569 /*
1570 * After sleeping, we become a "batching" process and will be able
1571 * to allocate at least one request, and up to a big batch of them
1572 * for a small period time. See ioc_batching, ioc_set_batching
1573 */
a06e05e6 1574 ioc_set_batching(q, current->io_context);
05caf8db 1575
a06e05e6
TH
1576 spin_lock_irq(q->queue_lock);
1577 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1578
a06e05e6 1579 goto retry;
1da177e4
LT
1580}
1581
6a15674d 1582/* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
cd6ce148 1583static struct request *blk_old_get_request(struct request_queue *q,
9a95e4ef 1584 unsigned int op, blk_mq_req_flags_t flags)
1da177e4
LT
1585{
1586 struct request *rq;
c3036021 1587 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO;
055f6e18 1588 int ret = 0;
1da177e4 1589
332ebbf7
BVA
1590 WARN_ON_ONCE(q->mq_ops);
1591
7f4b35d1
TH
1592 /* create ioc upfront */
1593 create_io_context(gfp_mask, q->node);
1594
3a0a5299 1595 ret = blk_queue_enter(q, flags);
055f6e18
ML
1596 if (ret)
1597 return ERR_PTR(ret);
d6344532 1598 spin_lock_irq(q->queue_lock);
4accf5fc 1599 rq = get_request(q, op, NULL, flags, gfp_mask);
0c4de0f3 1600 if (IS_ERR(rq)) {
da8303c6 1601 spin_unlock_irq(q->queue_lock);
055f6e18 1602 blk_queue_exit(q);
0c4de0f3
CH
1603 return rq;
1604 }
1da177e4 1605
0c4de0f3
CH
1606 /* q->queue_lock is unlocked at this point */
1607 rq->__data_len = 0;
1608 rq->__sector = (sector_t) -1;
1609 rq->bio = rq->biotail = NULL;
1da177e4
LT
1610 return rq;
1611}
320ae51f 1612
6a15674d 1613/**
ff005a06 1614 * blk_get_request - allocate a request
6a15674d
BVA
1615 * @q: request queue to allocate a request for
1616 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1617 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1618 */
ff005a06
CH
1619struct request *blk_get_request(struct request_queue *q, unsigned int op,
1620 blk_mq_req_flags_t flags)
320ae51f 1621{
d280bab3
BVA
1622 struct request *req;
1623
6a15674d 1624 WARN_ON_ONCE(op & REQ_NOWAIT);
1b6d65a0 1625 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
6a15674d 1626
d280bab3 1627 if (q->mq_ops) {
6a15674d 1628 req = blk_mq_alloc_request(q, op, flags);
d280bab3
BVA
1629 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1630 q->mq_ops->initialize_rq_fn(req);
1631 } else {
6a15674d 1632 req = blk_old_get_request(q, op, flags);
d280bab3
BVA
1633 if (!IS_ERR(req) && q->initialize_rq_fn)
1634 q->initialize_rq_fn(req);
1635 }
1636
1637 return req;
320ae51f 1638}
1da177e4
LT
1639EXPORT_SYMBOL(blk_get_request);
1640
1641/**
1642 * blk_requeue_request - put a request back on queue
1643 * @q: request queue where request should be inserted
1644 * @rq: request to be inserted
1645 *
1646 * Description:
1647 * Drivers often keep queueing requests until the hardware cannot accept
1648 * more, when that condition happens we need to put the request back
1649 * on the queue. Must be called with queue lock held.
1650 */
165125e1 1651void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1652{
2fff8a92 1653 lockdep_assert_held(q->queue_lock);
332ebbf7 1654 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1655
242f9dcb
JA
1656 blk_delete_timer(rq);
1657 blk_clear_rq_complete(rq);
5f3ea37c 1658 trace_block_rq_requeue(q, rq);
a7905043 1659 rq_qos_requeue(q, rq);
2056a782 1660
e8064021 1661 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1662 blk_queue_end_tag(q, rq);
1663
ba396a6c
JB
1664 BUG_ON(blk_queued_rq(rq));
1665
1da177e4
LT
1666 elv_requeue_request(q, rq);
1667}
1da177e4
LT
1668EXPORT_SYMBOL(blk_requeue_request);
1669
73c10101
JA
1670static void add_acct_request(struct request_queue *q, struct request *rq,
1671 int where)
1672{
320ae51f 1673 blk_account_io_start(rq, true);
7eaceacc 1674 __elv_add_request(q, rq, where);
73c10101
JA
1675}
1676
d62e26b3 1677static void part_round_stats_single(struct request_queue *q, int cpu,
b8d62b3a
JA
1678 struct hd_struct *part, unsigned long now,
1679 unsigned int inflight)
074a7aca 1680{
b8d62b3a 1681 if (inflight) {
074a7aca 1682 __part_stat_add(cpu, part, time_in_queue,
b8d62b3a 1683 inflight * (now - part->stamp));
074a7aca
TH
1684 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1685 }
1686 part->stamp = now;
1687}
1688
1689/**
496aa8a9 1690 * part_round_stats() - Round off the performance stats on a struct disk_stats.
d62e26b3 1691 * @q: target block queue
496aa8a9
RD
1692 * @cpu: cpu number for stats access
1693 * @part: target partition
1da177e4
LT
1694 *
1695 * The average IO queue length and utilisation statistics are maintained
1696 * by observing the current state of the queue length and the amount of
1697 * time it has been in this state for.
1698 *
1699 * Normally, that accounting is done on IO completion, but that can result
1700 * in more than a second's worth of IO being accounted for within any one
1701 * second, leading to >100% utilisation. To deal with that, we call this
1702 * function to do a round-off before returning the results when reading
1703 * /proc/diskstats. This accounts immediately for all queue usage up to
1704 * the current jiffies and restarts the counters again.
1705 */
d62e26b3 1706void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
6f2576af 1707{
b8d62b3a 1708 struct hd_struct *part2 = NULL;
6f2576af 1709 unsigned long now = jiffies;
b8d62b3a
JA
1710 unsigned int inflight[2];
1711 int stats = 0;
1712
1713 if (part->stamp != now)
1714 stats |= 1;
1715
1716 if (part->partno) {
1717 part2 = &part_to_disk(part)->part0;
1718 if (part2->stamp != now)
1719 stats |= 2;
1720 }
1721
1722 if (!stats)
1723 return;
1724
1725 part_in_flight(q, part, inflight);
6f2576af 1726
b8d62b3a
JA
1727 if (stats & 2)
1728 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1729 if (stats & 1)
1730 part_round_stats_single(q, cpu, part, now, inflight[0]);
6f2576af 1731}
074a7aca 1732EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1733
165125e1 1734void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1735{
e8064021
CH
1736 req_flags_t rq_flags = req->rq_flags;
1737
1da177e4
LT
1738 if (unlikely(!q))
1739 return;
1da177e4 1740
6f5ba581
CH
1741 if (q->mq_ops) {
1742 blk_mq_free_request(req);
1743 return;
1744 }
1745
2fff8a92
BVA
1746 lockdep_assert_held(q->queue_lock);
1747
6cc77e9c 1748 blk_req_zone_write_unlock(req);
c8158819 1749 blk_pm_put_request(req);
154b00d5 1750 blk_pm_mark_last_busy(req);
c8158819 1751
8922e16c
TH
1752 elv_completed_request(q, req);
1753
1cd96c24
BH
1754 /* this is a bio leak */
1755 WARN_ON(req->bio != NULL);
1756
a7905043 1757 rq_qos_done(q, req);
87760e5e 1758
1da177e4
LT
1759 /*
1760 * Request may not have originated from ll_rw_blk. if not,
1761 * it didn't come out of our reserved rq pools
1762 */
e8064021 1763 if (rq_flags & RQF_ALLOCED) {
a051661c 1764 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1765 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1766
1da177e4 1767 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1768 BUG_ON(ELV_ON_HASH(req));
1da177e4 1769
a051661c 1770 blk_free_request(rl, req);
e8064021 1771 freed_request(rl, sync, rq_flags);
a051661c 1772 blk_put_rl(rl);
055f6e18 1773 blk_queue_exit(q);
1da177e4
LT
1774 }
1775}
6e39b69e
MC
1776EXPORT_SYMBOL_GPL(__blk_put_request);
1777
1da177e4
LT
1778void blk_put_request(struct request *req)
1779{
165125e1 1780 struct request_queue *q = req->q;
8922e16c 1781
320ae51f
JA
1782 if (q->mq_ops)
1783 blk_mq_free_request(req);
1784 else {
1785 unsigned long flags;
1786
1787 spin_lock_irqsave(q->queue_lock, flags);
1788 __blk_put_request(q, req);
1789 spin_unlock_irqrestore(q->queue_lock, flags);
1790 }
1da177e4 1791}
1da177e4
LT
1792EXPORT_SYMBOL(blk_put_request);
1793
320ae51f
JA
1794bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1795 struct bio *bio)
73c10101 1796{
1eff9d32 1797 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1798
73c10101
JA
1799 if (!ll_back_merge_fn(q, req, bio))
1800 return false;
1801
8c1cf6bb 1802 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1803
1804 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1805 blk_rq_set_mixed_merge(req);
1806
1807 req->biotail->bi_next = bio;
1808 req->biotail = bio;
4f024f37 1809 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1810 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1811
320ae51f 1812 blk_account_io_start(req, false);
73c10101
JA
1813 return true;
1814}
1815
320ae51f
JA
1816bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1817 struct bio *bio)
73c10101 1818{
1eff9d32 1819 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1820
73c10101
JA
1821 if (!ll_front_merge_fn(q, req, bio))
1822 return false;
1823
8c1cf6bb 1824 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1825
1826 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1827 blk_rq_set_mixed_merge(req);
1828
73c10101
JA
1829 bio->bi_next = req->bio;
1830 req->bio = bio;
1831
4f024f37
KO
1832 req->__sector = bio->bi_iter.bi_sector;
1833 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1834 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1835
320ae51f 1836 blk_account_io_start(req, false);
73c10101
JA
1837 return true;
1838}
1839
1e739730
CH
1840bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1841 struct bio *bio)
1842{
1843 unsigned short segments = blk_rq_nr_discard_segments(req);
1844
1845 if (segments >= queue_max_discard_segments(q))
1846 goto no_merge;
1847 if (blk_rq_sectors(req) + bio_sectors(bio) >
1848 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1849 goto no_merge;
1850
1851 req->biotail->bi_next = bio;
1852 req->biotail = bio;
1853 req->__data_len += bio->bi_iter.bi_size;
1854 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1855 req->nr_phys_segments = segments + 1;
1856
1857 blk_account_io_start(req, false);
1858 return true;
1859no_merge:
1860 req_set_nomerge(q, req);
1861 return false;
1862}
1863
bd87b589 1864/**
320ae51f 1865 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1866 * @q: request_queue new bio is being queued at
1867 * @bio: new bio being queued
1868 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1869 * @same_queue_rq: pointer to &struct request that gets filled in when
1870 * another request associated with @q is found on the plug list
1871 * (optional, may be %NULL)
bd87b589
TH
1872 *
1873 * Determine whether @bio being queued on @q can be merged with a request
1874 * on %current's plugged list. Returns %true if merge was successful,
1875 * otherwise %false.
1876 *
07c2bd37
TH
1877 * Plugging coalesces IOs from the same issuer for the same purpose without
1878 * going through @q->queue_lock. As such it's more of an issuing mechanism
1879 * than scheduling, and the request, while may have elvpriv data, is not
1880 * added on the elevator at this point. In addition, we don't have
1881 * reliable access to the elevator outside queue lock. Only check basic
1882 * merging parameters without querying the elevator.
da41a589
RE
1883 *
1884 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1885 */
320ae51f 1886bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1887 unsigned int *request_count,
1888 struct request **same_queue_rq)
73c10101
JA
1889{
1890 struct blk_plug *plug;
1891 struct request *rq;
92f399c7 1892 struct list_head *plug_list;
73c10101 1893
bd87b589 1894 plug = current->plug;
73c10101 1895 if (!plug)
34fe7c05 1896 return false;
56ebdaf2 1897 *request_count = 0;
73c10101 1898
92f399c7
SL
1899 if (q->mq_ops)
1900 plug_list = &plug->mq_list;
1901 else
1902 plug_list = &plug->list;
1903
1904 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 1905 bool merged = false;
73c10101 1906
5b3f341f 1907 if (rq->q == q) {
1b2e19f1 1908 (*request_count)++;
5b3f341f
SL
1909 /*
1910 * Only blk-mq multiple hardware queues case checks the
1911 * rq in the same queue, there should be only one such
1912 * rq in a queue
1913 **/
1914 if (same_queue_rq)
1915 *same_queue_rq = rq;
1916 }
56ebdaf2 1917
07c2bd37 1918 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1919 continue;
1920
34fe7c05
CH
1921 switch (blk_try_merge(rq, bio)) {
1922 case ELEVATOR_BACK_MERGE:
1923 merged = bio_attempt_back_merge(q, rq, bio);
1924 break;
1925 case ELEVATOR_FRONT_MERGE:
1926 merged = bio_attempt_front_merge(q, rq, bio);
1927 break;
1e739730
CH
1928 case ELEVATOR_DISCARD_MERGE:
1929 merged = bio_attempt_discard_merge(q, rq, bio);
1930 break;
34fe7c05
CH
1931 default:
1932 break;
73c10101 1933 }
34fe7c05
CH
1934
1935 if (merged)
1936 return true;
73c10101 1937 }
34fe7c05
CH
1938
1939 return false;
73c10101
JA
1940}
1941
0809e3ac
JM
1942unsigned int blk_plug_queued_count(struct request_queue *q)
1943{
1944 struct blk_plug *plug;
1945 struct request *rq;
1946 struct list_head *plug_list;
1947 unsigned int ret = 0;
1948
1949 plug = current->plug;
1950 if (!plug)
1951 goto out;
1952
1953 if (q->mq_ops)
1954 plug_list = &plug->mq_list;
1955 else
1956 plug_list = &plug->list;
1957
1958 list_for_each_entry(rq, plug_list, queuelist) {
1959 if (rq->q == q)
1960 ret++;
1961 }
1962out:
1963 return ret;
1964}
1965
da8d7f07 1966void blk_init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1967{
0be0dee6
BVA
1968 struct io_context *ioc = rq_ioc(bio);
1969
1eff9d32 1970 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1971 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1972
4f024f37 1973 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1974 if (ioprio_valid(bio_prio(bio)))
1975 req->ioprio = bio_prio(bio);
0be0dee6
BVA
1976 else if (ioc)
1977 req->ioprio = ioc->ioprio;
1978 else
1979 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
cb6934f8 1980 req->write_hint = bio->bi_write_hint;
bc1c56fd 1981 blk_rq_bio_prep(req->q, req, bio);
52d9e675 1982}
da8d7f07 1983EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
52d9e675 1984
dece1635 1985static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1986{
73c10101 1987 struct blk_plug *plug;
34fe7c05 1988 int where = ELEVATOR_INSERT_SORT;
e4d750c9 1989 struct request *req, *free;
56ebdaf2 1990 unsigned int request_count = 0;
1da177e4 1991
1da177e4
LT
1992 /*
1993 * low level driver can indicate that it wants pages above a
1994 * certain limit bounced to low memory (ie for highmem, or even
1995 * ISA dma in theory)
1996 */
1997 blk_queue_bounce(q, &bio);
1998
af67c31f 1999 blk_queue_split(q, &bio);
23688bf4 2000
e23947bd 2001 if (!bio_integrity_prep(bio))
dece1635 2002 return BLK_QC_T_NONE;
ffecfd1a 2003
f73f44eb 2004 if (op_is_flush(bio->bi_opf)) {
73c10101 2005 spin_lock_irq(q->queue_lock);
ae1b1539 2006 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
2007 goto get_rq;
2008 }
2009
73c10101
JA
2010 /*
2011 * Check if we can merge with the plugged list before grabbing
2012 * any locks.
2013 */
0809e3ac
JM
2014 if (!blk_queue_nomerges(q)) {
2015 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 2016 return BLK_QC_T_NONE;
0809e3ac
JM
2017 } else
2018 request_count = blk_plug_queued_count(q);
1da177e4 2019
73c10101 2020 spin_lock_irq(q->queue_lock);
2056a782 2021
34fe7c05
CH
2022 switch (elv_merge(q, &req, bio)) {
2023 case ELEVATOR_BACK_MERGE:
2024 if (!bio_attempt_back_merge(q, req, bio))
2025 break;
2026 elv_bio_merged(q, req, bio);
2027 free = attempt_back_merge(q, req);
2028 if (free)
2029 __blk_put_request(q, free);
2030 else
2031 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2032 goto out_unlock;
2033 case ELEVATOR_FRONT_MERGE:
2034 if (!bio_attempt_front_merge(q, req, bio))
2035 break;
2036 elv_bio_merged(q, req, bio);
2037 free = attempt_front_merge(q, req);
2038 if (free)
2039 __blk_put_request(q, free);
2040 else
2041 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2042 goto out_unlock;
2043 default:
2044 break;
1da177e4
LT
2045 }
2046
450991bc 2047get_rq:
c1c80384 2048 rq_qos_throttle(q, bio, q->queue_lock);
87760e5e 2049
1da177e4 2050 /*
450991bc 2051 * Grab a free request. This is might sleep but can not fail.
d6344532 2052 * Returns with the queue unlocked.
450991bc 2053 */
055f6e18 2054 blk_queue_enter_live(q);
c3036021 2055 req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO);
a492f075 2056 if (IS_ERR(req)) {
055f6e18 2057 blk_queue_exit(q);
c1c80384 2058 rq_qos_cleanup(q, bio);
4e4cbee9
CH
2059 if (PTR_ERR(req) == -ENOMEM)
2060 bio->bi_status = BLK_STS_RESOURCE;
2061 else
2062 bio->bi_status = BLK_STS_IOERR;
4246a0b6 2063 bio_endio(bio);
da8303c6
TH
2064 goto out_unlock;
2065 }
d6344532 2066
c1c80384 2067 rq_qos_track(q, req, bio);
87760e5e 2068
450991bc
NP
2069 /*
2070 * After dropping the lock and possibly sleeping here, our request
2071 * may now be mergeable after it had proven unmergeable (above).
2072 * We don't worry about that case for efficiency. It won't happen
2073 * often, and the elevators are able to handle it.
1da177e4 2074 */
da8d7f07 2075 blk_init_request_from_bio(req, bio);
1da177e4 2076
9562ad9a 2077 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 2078 req->cpu = raw_smp_processor_id();
73c10101
JA
2079
2080 plug = current->plug;
721a9602 2081 if (plug) {
dc6d36c9
JA
2082 /*
2083 * If this is the first request added after a plug, fire
7aef2e78 2084 * of a plug trace.
0a6219a9
ML
2085 *
2086 * @request_count may become stale because of schedule
2087 * out, so check plug list again.
dc6d36c9 2088 */
0a6219a9 2089 if (!request_count || list_empty(&plug->list))
dc6d36c9 2090 trace_block_plug(q);
3540d5e8 2091 else {
50d24c34
SL
2092 struct request *last = list_entry_rq(plug->list.prev);
2093 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2094 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 2095 blk_flush_plug_list(plug, false);
019ceb7d
SL
2096 trace_block_plug(q);
2097 }
73c10101 2098 }
73c10101 2099 list_add_tail(&req->queuelist, &plug->list);
320ae51f 2100 blk_account_io_start(req, true);
73c10101
JA
2101 } else {
2102 spin_lock_irq(q->queue_lock);
2103 add_acct_request(q, req, where);
24ecfbe2 2104 __blk_run_queue(q);
73c10101
JA
2105out_unlock:
2106 spin_unlock_irq(q->queue_lock);
2107 }
dece1635
JA
2108
2109 return BLK_QC_T_NONE;
1da177e4
LT
2110}
2111
52c5e62d 2112static void handle_bad_sector(struct bio *bio, sector_t maxsector)
1da177e4
LT
2113{
2114 char b[BDEVNAME_SIZE];
2115
2116 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 2117 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
74d46992 2118 bio_devname(bio, b), bio->bi_opf,
f73a1c7d 2119 (unsigned long long)bio_end_sector(bio),
52c5e62d 2120 (long long)maxsector);
1da177e4
LT
2121}
2122
c17bb495
AM
2123#ifdef CONFIG_FAIL_MAKE_REQUEST
2124
2125static DECLARE_FAULT_ATTR(fail_make_request);
2126
2127static int __init setup_fail_make_request(char *str)
2128{
2129 return setup_fault_attr(&fail_make_request, str);
2130}
2131__setup("fail_make_request=", setup_fail_make_request);
2132
b2c9cd37 2133static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 2134{
b2c9cd37 2135 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
2136}
2137
2138static int __init fail_make_request_debugfs(void)
2139{
dd48c085
AM
2140 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2141 NULL, &fail_make_request);
2142
21f9fcd8 2143 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
2144}
2145
2146late_initcall(fail_make_request_debugfs);
2147
2148#else /* CONFIG_FAIL_MAKE_REQUEST */
2149
b2c9cd37
AM
2150static inline bool should_fail_request(struct hd_struct *part,
2151 unsigned int bytes)
c17bb495 2152{
b2c9cd37 2153 return false;
c17bb495
AM
2154}
2155
2156#endif /* CONFIG_FAIL_MAKE_REQUEST */
2157
721c7fc7
ID
2158static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2159{
b089cfd9
JA
2160 const int op = bio_op(bio);
2161
8b2ded1c 2162 if (part->policy && op_is_write(op)) {
721c7fc7
ID
2163 char b[BDEVNAME_SIZE];
2164
8b2ded1c
MP
2165 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
2166 return false;
2167
a32e236e 2168 WARN_ONCE(1,
721c7fc7
ID
2169 "generic_make_request: Trying to write "
2170 "to read-only block-device %s (partno %d)\n",
2171 bio_devname(bio, b), part->partno);
a32e236e
LT
2172 /* Older lvm-tools actually trigger this */
2173 return false;
721c7fc7
ID
2174 }
2175
2176 return false;
2177}
2178
30abb3a6
HM
2179static noinline int should_fail_bio(struct bio *bio)
2180{
2181 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2182 return -EIO;
2183 return 0;
2184}
2185ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2186
52c5e62d
CH
2187/*
2188 * Check whether this bio extends beyond the end of the device or partition.
2189 * This may well happen - the kernel calls bread() without checking the size of
2190 * the device, e.g., when mounting a file system.
2191 */
2192static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2193{
2194 unsigned int nr_sectors = bio_sectors(bio);
2195
2196 if (nr_sectors && maxsector &&
2197 (nr_sectors > maxsector ||
2198 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2199 handle_bad_sector(bio, maxsector);
2200 return -EIO;
2201 }
2202 return 0;
2203}
2204
74d46992
CH
2205/*
2206 * Remap block n of partition p to block n+start(p) of the disk.
2207 */
2208static inline int blk_partition_remap(struct bio *bio)
2209{
2210 struct hd_struct *p;
52c5e62d 2211 int ret = -EIO;
74d46992 2212
721c7fc7
ID
2213 rcu_read_lock();
2214 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
52c5e62d
CH
2215 if (unlikely(!p))
2216 goto out;
2217 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2218 goto out;
2219 if (unlikely(bio_check_ro(bio, p)))
721c7fc7 2220 goto out;
721c7fc7 2221
74d46992
CH
2222 /*
2223 * Zone reset does not include bi_size so bio_sectors() is always 0.
2224 * Include a test for the reset op code and perform the remap if needed.
2225 */
52c5e62d
CH
2226 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2227 if (bio_check_eod(bio, part_nr_sects_read(p)))
2228 goto out;
2229 bio->bi_iter.bi_sector += p->start_sect;
52c5e62d
CH
2230 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2231 bio->bi_iter.bi_sector - p->start_sect);
2232 }
c04fa44b 2233 bio->bi_partno = 0;
52c5e62d 2234 ret = 0;
721c7fc7
ID
2235out:
2236 rcu_read_unlock();
74d46992
CH
2237 return ret;
2238}
2239
27a84d54
CH
2240static noinline_for_stack bool
2241generic_make_request_checks(struct bio *bio)
1da177e4 2242{
165125e1 2243 struct request_queue *q;
5a7bbad2 2244 int nr_sectors = bio_sectors(bio);
4e4cbee9 2245 blk_status_t status = BLK_STS_IOERR;
5a7bbad2 2246 char b[BDEVNAME_SIZE];
1da177e4
LT
2247
2248 might_sleep();
1da177e4 2249
74d46992 2250 q = bio->bi_disk->queue;
5a7bbad2
CH
2251 if (unlikely(!q)) {
2252 printk(KERN_ERR
2253 "generic_make_request: Trying to access "
2254 "nonexistent block-device %s (%Lu)\n",
74d46992 2255 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
5a7bbad2
CH
2256 goto end_io;
2257 }
c17bb495 2258
03a07c92
GR
2259 /*
2260 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2261 * if queue is not a request based queue.
2262 */
03a07c92
GR
2263 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2264 goto not_supported;
2265
30abb3a6 2266 if (should_fail_bio(bio))
5a7bbad2 2267 goto end_io;
2056a782 2268
52c5e62d
CH
2269 if (bio->bi_partno) {
2270 if (unlikely(blk_partition_remap(bio)))
721c7fc7
ID
2271 goto end_io;
2272 } else {
52c5e62d
CH
2273 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2274 goto end_io;
2275 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
721c7fc7
ID
2276 goto end_io;
2277 }
2056a782 2278
5a7bbad2
CH
2279 /*
2280 * Filter flush bio's early so that make_request based
2281 * drivers without flush support don't have to worry
2282 * about them.
2283 */
f3a8ab7d 2284 if (op_is_flush(bio->bi_opf) &&
c888a8f9 2285 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 2286 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 2287 if (!nr_sectors) {
4e4cbee9 2288 status = BLK_STS_OK;
51fd77bd
JA
2289 goto end_io;
2290 }
5a7bbad2 2291 }
5ddfe969 2292
288dab8a
CH
2293 switch (bio_op(bio)) {
2294 case REQ_OP_DISCARD:
2295 if (!blk_queue_discard(q))
2296 goto not_supported;
2297 break;
2298 case REQ_OP_SECURE_ERASE:
2299 if (!blk_queue_secure_erase(q))
2300 goto not_supported;
2301 break;
2302 case REQ_OP_WRITE_SAME:
74d46992 2303 if (!q->limits.max_write_same_sectors)
288dab8a 2304 goto not_supported;
58886785 2305 break;
2d253440 2306 case REQ_OP_ZONE_RESET:
74d46992 2307 if (!blk_queue_is_zoned(q))
2d253440 2308 goto not_supported;
288dab8a 2309 break;
a6f0788e 2310 case REQ_OP_WRITE_ZEROES:
74d46992 2311 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
2312 goto not_supported;
2313 break;
288dab8a
CH
2314 default:
2315 break;
5a7bbad2 2316 }
01edede4 2317
7f4b35d1
TH
2318 /*
2319 * Various block parts want %current->io_context and lazy ioc
2320 * allocation ends up trading a lot of pain for a small amount of
2321 * memory. Just allocate it upfront. This may fail and block
2322 * layer knows how to live with it.
2323 */
2324 create_io_context(GFP_ATOMIC, q->node);
2325
ae118896
TH
2326 if (!blkcg_bio_issue_check(q, bio))
2327 return false;
27a84d54 2328
fbbaf700
N
2329 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2330 trace_block_bio_queue(q, bio);
2331 /* Now that enqueuing has been traced, we need to trace
2332 * completion as well.
2333 */
2334 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2335 }
27a84d54 2336 return true;
a7384677 2337
288dab8a 2338not_supported:
4e4cbee9 2339 status = BLK_STS_NOTSUPP;
a7384677 2340end_io:
4e4cbee9 2341 bio->bi_status = status;
4246a0b6 2342 bio_endio(bio);
27a84d54 2343 return false;
1da177e4
LT
2344}
2345
27a84d54
CH
2346/**
2347 * generic_make_request - hand a buffer to its device driver for I/O
2348 * @bio: The bio describing the location in memory and on the device.
2349 *
2350 * generic_make_request() is used to make I/O requests of block
2351 * devices. It is passed a &struct bio, which describes the I/O that needs
2352 * to be done.
2353 *
2354 * generic_make_request() does not return any status. The
2355 * success/failure status of the request, along with notification of
2356 * completion, is delivered asynchronously through the bio->bi_end_io
2357 * function described (one day) else where.
2358 *
2359 * The caller of generic_make_request must make sure that bi_io_vec
2360 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2361 * set to describe the device address, and the
2362 * bi_end_io and optionally bi_private are set to describe how
2363 * completion notification should be signaled.
2364 *
2365 * generic_make_request and the drivers it calls may use bi_next if this
2366 * bio happens to be merged with someone else, and may resubmit the bio to
2367 * a lower device by calling into generic_make_request recursively, which
2368 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2369 */
dece1635 2370blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2371{
f5fe1b51
N
2372 /*
2373 * bio_list_on_stack[0] contains bios submitted by the current
2374 * make_request_fn.
2375 * bio_list_on_stack[1] contains bios that were submitted before
2376 * the current make_request_fn, but that haven't been processed
2377 * yet.
2378 */
2379 struct bio_list bio_list_on_stack[2];
37f9579f
BVA
2380 blk_mq_req_flags_t flags = 0;
2381 struct request_queue *q = bio->bi_disk->queue;
dece1635 2382 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2383
37f9579f
BVA
2384 if (bio->bi_opf & REQ_NOWAIT)
2385 flags = BLK_MQ_REQ_NOWAIT;
cd4a4ae4
JA
2386 if (bio_flagged(bio, BIO_QUEUE_ENTERED))
2387 blk_queue_enter_live(q);
2388 else if (blk_queue_enter(q, flags) < 0) {
37f9579f
BVA
2389 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2390 bio_wouldblock_error(bio);
2391 else
2392 bio_io_error(bio);
2393 return ret;
2394 }
2395
27a84d54 2396 if (!generic_make_request_checks(bio))
dece1635 2397 goto out;
27a84d54
CH
2398
2399 /*
2400 * We only want one ->make_request_fn to be active at a time, else
2401 * stack usage with stacked devices could be a problem. So use
2402 * current->bio_list to keep a list of requests submited by a
2403 * make_request_fn function. current->bio_list is also used as a
2404 * flag to say if generic_make_request is currently active in this
2405 * task or not. If it is NULL, then no make_request is active. If
2406 * it is non-NULL, then a make_request is active, and new requests
2407 * should be added at the tail
2408 */
bddd87c7 2409 if (current->bio_list) {
f5fe1b51 2410 bio_list_add(&current->bio_list[0], bio);
dece1635 2411 goto out;
d89d8796 2412 }
27a84d54 2413
d89d8796
NB
2414 /* following loop may be a bit non-obvious, and so deserves some
2415 * explanation.
2416 * Before entering the loop, bio->bi_next is NULL (as all callers
2417 * ensure that) so we have a list with a single bio.
2418 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2419 * we assign bio_list to a pointer to the bio_list_on_stack,
2420 * thus initialising the bio_list of new bios to be
27a84d54 2421 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2422 * through a recursive call to generic_make_request. If it
2423 * did, we find a non-NULL value in bio_list and re-enter the loop
2424 * from the top. In this case we really did just take the bio
bddd87c7 2425 * of the top of the list (no pretending) and so remove it from
27a84d54 2426 * bio_list, and call into ->make_request() again.
d89d8796
NB
2427 */
2428 BUG_ON(bio->bi_next);
f5fe1b51
N
2429 bio_list_init(&bio_list_on_stack[0]);
2430 current->bio_list = bio_list_on_stack;
d89d8796 2431 do {
37f9579f
BVA
2432 bool enter_succeeded = true;
2433
2434 if (unlikely(q != bio->bi_disk->queue)) {
2435 if (q)
2436 blk_queue_exit(q);
2437 q = bio->bi_disk->queue;
2438 flags = 0;
2439 if (bio->bi_opf & REQ_NOWAIT)
2440 flags = BLK_MQ_REQ_NOWAIT;
2441 if (blk_queue_enter(q, flags) < 0) {
2442 enter_succeeded = false;
2443 q = NULL;
2444 }
2445 }
27a84d54 2446
37f9579f 2447 if (enter_succeeded) {
79bd9959
N
2448 struct bio_list lower, same;
2449
2450 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
2451 bio_list_on_stack[1] = bio_list_on_stack[0];
2452 bio_list_init(&bio_list_on_stack[0]);
dece1635 2453 ret = q->make_request_fn(q, bio);
3ef28e83 2454
79bd9959
N
2455 /* sort new bios into those for a lower level
2456 * and those for the same level
2457 */
2458 bio_list_init(&lower);
2459 bio_list_init(&same);
f5fe1b51 2460 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
74d46992 2461 if (q == bio->bi_disk->queue)
79bd9959
N
2462 bio_list_add(&same, bio);
2463 else
2464 bio_list_add(&lower, bio);
2465 /* now assemble so we handle the lowest level first */
f5fe1b51
N
2466 bio_list_merge(&bio_list_on_stack[0], &lower);
2467 bio_list_merge(&bio_list_on_stack[0], &same);
2468 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 2469 } else {
03a07c92
GR
2470 if (unlikely(!blk_queue_dying(q) &&
2471 (bio->bi_opf & REQ_NOWAIT)))
2472 bio_wouldblock_error(bio);
2473 else
2474 bio_io_error(bio);
3ef28e83 2475 }
f5fe1b51 2476 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 2477 } while (bio);
bddd87c7 2478 current->bio_list = NULL; /* deactivate */
dece1635
JA
2479
2480out:
37f9579f
BVA
2481 if (q)
2482 blk_queue_exit(q);
dece1635 2483 return ret;
d89d8796 2484}
1da177e4
LT
2485EXPORT_SYMBOL(generic_make_request);
2486
f421e1d9
CH
2487/**
2488 * direct_make_request - hand a buffer directly to its device driver for I/O
2489 * @bio: The bio describing the location in memory and on the device.
2490 *
2491 * This function behaves like generic_make_request(), but does not protect
2492 * against recursion. Must only be used if the called driver is known
2493 * to not call generic_make_request (or direct_make_request) again from
2494 * its make_request function. (Calling direct_make_request again from
2495 * a workqueue is perfectly fine as that doesn't recurse).
2496 */
2497blk_qc_t direct_make_request(struct bio *bio)
2498{
2499 struct request_queue *q = bio->bi_disk->queue;
2500 bool nowait = bio->bi_opf & REQ_NOWAIT;
2501 blk_qc_t ret;
2502
2503 if (!generic_make_request_checks(bio))
2504 return BLK_QC_T_NONE;
2505
3a0a5299 2506 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
f421e1d9
CH
2507 if (nowait && !blk_queue_dying(q))
2508 bio->bi_status = BLK_STS_AGAIN;
2509 else
2510 bio->bi_status = BLK_STS_IOERR;
2511 bio_endio(bio);
2512 return BLK_QC_T_NONE;
2513 }
2514
2515 ret = q->make_request_fn(q, bio);
2516 blk_queue_exit(q);
2517 return ret;
2518}
2519EXPORT_SYMBOL_GPL(direct_make_request);
2520
1da177e4 2521/**
710027a4 2522 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2523 * @bio: The &struct bio which describes the I/O
2524 *
2525 * submit_bio() is very similar in purpose to generic_make_request(), and
2526 * uses that function to do most of the work. Both are fairly rough
710027a4 2527 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2528 *
2529 */
4e49ea4a 2530blk_qc_t submit_bio(struct bio *bio)
1da177e4 2531{
bf2de6f5
JA
2532 /*
2533 * If it's a regular read/write or a barrier with data attached,
2534 * go through the normal accounting stuff before submission.
2535 */
e2a60da7 2536 if (bio_has_data(bio)) {
4363ac7c
MP
2537 unsigned int count;
2538
95fe6c1a 2539 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
7c5a0dcf 2540 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
4363ac7c
MP
2541 else
2542 count = bio_sectors(bio);
2543
a8ebb056 2544 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2545 count_vm_events(PGPGOUT, count);
2546 } else {
4f024f37 2547 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2548 count_vm_events(PGPGIN, count);
2549 }
2550
2551 if (unlikely(block_dump)) {
2552 char b[BDEVNAME_SIZE];
8dcbdc74 2553 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2554 current->comm, task_pid_nr(current),
a8ebb056 2555 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2556 (unsigned long long)bio->bi_iter.bi_sector,
74d46992 2557 bio_devname(bio, b), count);
bf2de6f5 2558 }
1da177e4
LT
2559 }
2560
dece1635 2561 return generic_make_request(bio);
1da177e4 2562}
1da177e4
LT
2563EXPORT_SYMBOL(submit_bio);
2564
ea435e1b
CH
2565bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2566{
2567 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2568 return false;
2569
2570 if (current->plug)
2571 blk_flush_plug_list(current->plug, false);
2572 return q->poll_fn(q, cookie);
2573}
2574EXPORT_SYMBOL_GPL(blk_poll);
2575
82124d60 2576/**
bf4e6b4e
HR
2577 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2578 * for new the queue limits
82124d60
KU
2579 * @q: the queue
2580 * @rq: the request being checked
2581 *
2582 * Description:
2583 * @rq may have been made based on weaker limitations of upper-level queues
2584 * in request stacking drivers, and it may violate the limitation of @q.
2585 * Since the block layer and the underlying device driver trust @rq
2586 * after it is inserted to @q, it should be checked against @q before
2587 * the insertion using this generic function.
2588 *
82124d60 2589 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2590 * limits when retrying requests on other queues. Those requests need
2591 * to be checked against the new queue limits again during dispatch.
82124d60 2592 */
bf4e6b4e
HR
2593static int blk_cloned_rq_check_limits(struct request_queue *q,
2594 struct request *rq)
82124d60 2595{
8fe0d473 2596 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2597 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2598 return -EIO;
2599 }
2600
2601 /*
2602 * queue's settings related to segment counting like q->bounce_pfn
2603 * may differ from that of other stacking queues.
2604 * Recalculate it to check the request correctly on this queue's
2605 * limitation.
2606 */
2607 blk_recalc_rq_segments(rq);
8a78362c 2608 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2609 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2610 return -EIO;
2611 }
2612
2613 return 0;
2614}
82124d60
KU
2615
2616/**
2617 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2618 * @q: the queue to submit the request
2619 * @rq: the request being queued
2620 */
2a842aca 2621blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60
KU
2622{
2623 unsigned long flags;
4853abaa 2624 int where = ELEVATOR_INSERT_BACK;
82124d60 2625
bf4e6b4e 2626 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 2627 return BLK_STS_IOERR;
82124d60 2628
b2c9cd37
AM
2629 if (rq->rq_disk &&
2630 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 2631 return BLK_STS_IOERR;
82124d60 2632
7fb4898e
KB
2633 if (q->mq_ops) {
2634 if (blk_queue_io_stat(q))
2635 blk_account_io_start(rq, true);
157f377b
JA
2636 /*
2637 * Since we have a scheduler attached on the top device,
2638 * bypass a potential scheduler on the bottom device for
2639 * insert.
2640 */
c77ff7fd 2641 return blk_mq_request_issue_directly(rq);
7fb4898e
KB
2642 }
2643
82124d60 2644 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2645 if (unlikely(blk_queue_dying(q))) {
8ba61435 2646 spin_unlock_irqrestore(q->queue_lock, flags);
2a842aca 2647 return BLK_STS_IOERR;
8ba61435 2648 }
82124d60
KU
2649
2650 /*
2651 * Submitting request must be dequeued before calling this function
2652 * because it will be linked to another request_queue
2653 */
2654 BUG_ON(blk_queued_rq(rq));
2655
f73f44eb 2656 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2657 where = ELEVATOR_INSERT_FLUSH;
2658
2659 add_acct_request(q, rq, where);
e67b77c7
JM
2660 if (where == ELEVATOR_INSERT_FLUSH)
2661 __blk_run_queue(q);
82124d60
KU
2662 spin_unlock_irqrestore(q->queue_lock, flags);
2663
2a842aca 2664 return BLK_STS_OK;
82124d60
KU
2665}
2666EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2667
80a761fd
TH
2668/**
2669 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2670 * @rq: request to examine
2671 *
2672 * Description:
2673 * A request could be merge of IOs which require different failure
2674 * handling. This function determines the number of bytes which
2675 * can be failed from the beginning of the request without
2676 * crossing into area which need to be retried further.
2677 *
2678 * Return:
2679 * The number of bytes to fail.
80a761fd
TH
2680 */
2681unsigned int blk_rq_err_bytes(const struct request *rq)
2682{
2683 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2684 unsigned int bytes = 0;
2685 struct bio *bio;
2686
e8064021 2687 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2688 return blk_rq_bytes(rq);
2689
2690 /*
2691 * Currently the only 'mixing' which can happen is between
2692 * different fastfail types. We can safely fail portions
2693 * which have all the failfast bits that the first one has -
2694 * the ones which are at least as eager to fail as the first
2695 * one.
2696 */
2697 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2698 if ((bio->bi_opf & ff) != ff)
80a761fd 2699 break;
4f024f37 2700 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2701 }
2702
2703 /* this could lead to infinite loop */
2704 BUG_ON(blk_rq_bytes(rq) && !bytes);
2705 return bytes;
2706}
2707EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2708
320ae51f 2709void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2710{
c2553b58 2711 if (blk_do_io_stat(req)) {
ddcf35d3 2712 const int sgrp = op_stat_group(req_op(req));
bc58ba94
JA
2713 struct hd_struct *part;
2714 int cpu;
2715
2716 cpu = part_stat_lock();
09e099d4 2717 part = req->part;
ddcf35d3 2718 part_stat_add(cpu, part, sectors[sgrp], bytes >> 9);
bc58ba94
JA
2719 part_stat_unlock();
2720 }
2721}
2722
522a7775 2723void blk_account_io_done(struct request *req, u64 now)
bc58ba94 2724{
bc58ba94 2725 /*
dd4c133f
TH
2726 * Account IO completion. flush_rq isn't accounted as a
2727 * normal IO on queueing nor completion. Accounting the
2728 * containing request is enough.
bc58ba94 2729 */
e8064021 2730 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
ddcf35d3 2731 const int sgrp = op_stat_group(req_op(req));
bc58ba94
JA
2732 struct hd_struct *part;
2733 int cpu;
2734
2735 cpu = part_stat_lock();
09e099d4 2736 part = req->part;
bc58ba94 2737
ddcf35d3 2738 part_stat_inc(cpu, part, ios[sgrp]);
b57e99b4 2739 part_stat_add(cpu, part, nsecs[sgrp], now - req->start_time_ns);
d62e26b3 2740 part_round_stats(req->q, cpu, part);
ddcf35d3 2741 part_dec_in_flight(req->q, part, rq_data_dir(req));
bc58ba94 2742
6c23a968 2743 hd_struct_put(part);
bc58ba94
JA
2744 part_stat_unlock();
2745 }
2746}
2747
320ae51f
JA
2748void blk_account_io_start(struct request *rq, bool new_io)
2749{
2750 struct hd_struct *part;
2751 int rw = rq_data_dir(rq);
2752 int cpu;
2753
2754 if (!blk_do_io_stat(rq))
2755 return;
2756
2757 cpu = part_stat_lock();
2758
2759 if (!new_io) {
2760 part = rq->part;
2761 part_stat_inc(cpu, part, merges[rw]);
2762 } else {
2763 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2764 if (!hd_struct_try_get(part)) {
2765 /*
2766 * The partition is already being removed,
2767 * the request will be accounted on the disk only
2768 *
2769 * We take a reference on disk->part0 although that
2770 * partition will never be deleted, so we can treat
2771 * it as any other partition.
2772 */
2773 part = &rq->rq_disk->part0;
2774 hd_struct_get(part);
2775 }
d62e26b3
JA
2776 part_round_stats(rq->q, cpu, part);
2777 part_inc_in_flight(rq->q, part, rw);
320ae51f
JA
2778 rq->part = part;
2779 }
2780
2781 part_stat_unlock();
2782}
2783
9c988374
CH
2784static struct request *elv_next_request(struct request_queue *q)
2785{
2786 struct request *rq;
2787 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2788
2789 WARN_ON_ONCE(q->mq_ops);
2790
2791 while (1) {
e4f36b24 2792 list_for_each_entry(rq, &q->queue_head, queuelist) {
7cedffec
BVA
2793#ifdef CONFIG_PM
2794 /*
2795 * If a request gets queued in state RPM_SUSPENDED
2796 * then that's a kernel bug.
2797 */
2798 WARN_ON_ONCE(q->rpm_status == RPM_SUSPENDED);
2799#endif
2800 return rq;
9c988374
CH
2801 }
2802
2803 /*
2804 * Flush request is running and flush request isn't queueable
2805 * in the drive, we can hold the queue till flush request is
2806 * finished. Even we don't do this, driver can't dispatch next
2807 * requests and will requeue them. And this can improve
2808 * throughput too. For example, we have request flush1, write1,
2809 * flush 2. flush1 is dispatched, then queue is hold, write1
2810 * isn't inserted to queue. After flush1 is finished, flush2
2811 * will be dispatched. Since disk cache is already clean,
2812 * flush2 will be finished very soon, so looks like flush2 is
2813 * folded to flush1.
2814 * Since the queue is hold, a flag is set to indicate the queue
2815 * should be restarted later. Please see flush_end_io() for
2816 * details.
2817 */
2818 if (fq->flush_pending_idx != fq->flush_running_idx &&
2819 !queue_flush_queueable(q)) {
2820 fq->flush_queue_delayed = 1;
2821 return NULL;
2822 }
2823 if (unlikely(blk_queue_bypass(q)) ||
2824 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2825 return NULL;
2826 }
2827}
2828
3bcddeac 2829/**
9934c8c0
TH
2830 * blk_peek_request - peek at the top of a request queue
2831 * @q: request queue to peek at
2832 *
2833 * Description:
2834 * Return the request at the top of @q. The returned request
2835 * should be started using blk_start_request() before LLD starts
2836 * processing it.
2837 *
2838 * Return:
2839 * Pointer to the request at the top of @q if available. Null
2840 * otherwise.
9934c8c0
TH
2841 */
2842struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2843{
2844 struct request *rq;
2845 int ret;
2846
2fff8a92 2847 lockdep_assert_held(q->queue_lock);
332ebbf7 2848 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2849
9c988374 2850 while ((rq = elv_next_request(q)) != NULL) {
e8064021 2851 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2852 /*
2853 * This is the first time the device driver
2854 * sees this request (possibly after
2855 * requeueing). Notify IO scheduler.
2856 */
e8064021 2857 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2858 elv_activate_rq(q, rq);
2859
2860 /*
2861 * just mark as started even if we don't start
2862 * it, a request that has been delayed should
2863 * not be passed by new incoming requests
2864 */
e8064021 2865 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2866 trace_block_rq_issue(q, rq);
2867 }
2868
2869 if (!q->boundary_rq || q->boundary_rq == rq) {
2870 q->end_sector = rq_end_sector(rq);
2871 q->boundary_rq = NULL;
2872 }
2873
e8064021 2874 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2875 break;
2876
2e46e8b2 2877 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2878 /*
2879 * make sure space for the drain appears we
2880 * know we can do this because max_hw_segments
2881 * has been adjusted to be one fewer than the
2882 * device can handle
2883 */
2884 rq->nr_phys_segments++;
2885 }
2886
2887 if (!q->prep_rq_fn)
2888 break;
2889
2890 ret = q->prep_rq_fn(q, rq);
2891 if (ret == BLKPREP_OK) {
2892 break;
2893 } else if (ret == BLKPREP_DEFER) {
2894 /*
2895 * the request may have been (partially) prepped.
2896 * we need to keep this request in the front to
e8064021 2897 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2898 * prevent other fs requests from passing this one.
2899 */
2e46e8b2 2900 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2901 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2902 /*
2903 * remove the space for the drain we added
2904 * so that we don't add it again
2905 */
2906 --rq->nr_phys_segments;
2907 }
2908
2909 rq = NULL;
2910 break;
0fb5b1fb 2911 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
e8064021 2912 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2913 /*
2914 * Mark this request as started so we don't trigger
2915 * any debug logic in the end I/O path.
2916 */
2917 blk_start_request(rq);
2a842aca
CH
2918 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2919 BLK_STS_TARGET : BLK_STS_IOERR);
158dbda0
TH
2920 } else {
2921 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2922 break;
2923 }
2924 }
2925
2926 return rq;
2927}
9934c8c0 2928EXPORT_SYMBOL(blk_peek_request);
158dbda0 2929
5034435c 2930static void blk_dequeue_request(struct request *rq)
158dbda0 2931{
9934c8c0
TH
2932 struct request_queue *q = rq->q;
2933
158dbda0
TH
2934 BUG_ON(list_empty(&rq->queuelist));
2935 BUG_ON(ELV_ON_HASH(rq));
2936
2937 list_del_init(&rq->queuelist);
2938
2939 /*
2940 * the time frame between a request being removed from the lists
2941 * and to it is freed is accounted as io that is in progress at
2942 * the driver side.
2943 */
522a7775 2944 if (blk_account_rq(rq))
0a7ae2ff 2945 q->in_flight[rq_is_sync(rq)]++;
158dbda0
TH
2946}
2947
9934c8c0
TH
2948/**
2949 * blk_start_request - start request processing on the driver
2950 * @req: request to dequeue
2951 *
2952 * Description:
2953 * Dequeue @req and start timeout timer on it. This hands off the
2954 * request to the driver.
9934c8c0
TH
2955 */
2956void blk_start_request(struct request *req)
2957{
2fff8a92 2958 lockdep_assert_held(req->q->queue_lock);
332ebbf7 2959 WARN_ON_ONCE(req->q->mq_ops);
2fff8a92 2960
9934c8c0
TH
2961 blk_dequeue_request(req);
2962
cf43e6be 2963 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
544ccc8d
OS
2964 req->io_start_time_ns = ktime_get_ns();
2965#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2966 req->throtl_size = blk_rq_sectors(req);
2967#endif
cf43e6be 2968 req->rq_flags |= RQF_STATS;
a7905043 2969 rq_qos_issue(req->q, req);
cf43e6be
JA
2970 }
2971
e14575b3 2972 BUG_ON(blk_rq_is_complete(req));
9934c8c0
TH
2973 blk_add_timer(req);
2974}
2975EXPORT_SYMBOL(blk_start_request);
2976
2977/**
2978 * blk_fetch_request - fetch a request from a request queue
2979 * @q: request queue to fetch a request from
2980 *
2981 * Description:
2982 * Return the request at the top of @q. The request is started on
2983 * return and LLD can start processing it immediately.
2984 *
2985 * Return:
2986 * Pointer to the request at the top of @q if available. Null
2987 * otherwise.
9934c8c0
TH
2988 */
2989struct request *blk_fetch_request(struct request_queue *q)
2990{
2991 struct request *rq;
2992
2fff8a92 2993 lockdep_assert_held(q->queue_lock);
332ebbf7 2994 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2995
9934c8c0
TH
2996 rq = blk_peek_request(q);
2997 if (rq)
2998 blk_start_request(rq);
2999 return rq;
3000}
3001EXPORT_SYMBOL(blk_fetch_request);
3002
ef71de8b
CH
3003/*
3004 * Steal bios from a request and add them to a bio list.
3005 * The request must not have been partially completed before.
3006 */
3007void blk_steal_bios(struct bio_list *list, struct request *rq)
3008{
3009 if (rq->bio) {
3010 if (list->tail)
3011 list->tail->bi_next = rq->bio;
3012 else
3013 list->head = rq->bio;
3014 list->tail = rq->biotail;
3015
3016 rq->bio = NULL;
3017 rq->biotail = NULL;
3018 }
3019
3020 rq->__data_len = 0;
3021}
3022EXPORT_SYMBOL_GPL(blk_steal_bios);
3023
3bcddeac 3024/**
2e60e022 3025 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 3026 * @req: the request being processed
2a842aca 3027 * @error: block status code
8ebf9756 3028 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
3029 *
3030 * Description:
8ebf9756
RD
3031 * Ends I/O on a number of bytes attached to @req, but doesn't complete
3032 * the request structure even if @req doesn't have leftover.
3033 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
3034 *
3035 * This special helper function is only for request stacking drivers
3036 * (e.g. request-based dm) so that they can handle partial completion.
3037 * Actual device drivers should use blk_end_request instead.
3038 *
3039 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3040 * %false return from this function.
3bcddeac 3041 *
1954e9a9
BVA
3042 * Note:
3043 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
3044 * blk_rq_bytes() and in blk_update_request().
3045 *
3bcddeac 3046 * Return:
2e60e022
TH
3047 * %false - this request doesn't have any more data
3048 * %true - this request has more data
3bcddeac 3049 **/
2a842aca
CH
3050bool blk_update_request(struct request *req, blk_status_t error,
3051 unsigned int nr_bytes)
1da177e4 3052{
f79ea416 3053 int total_bytes;
1da177e4 3054
2a842aca 3055 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 3056
2e60e022
TH
3057 if (!req->bio)
3058 return false;
3059
2a842aca
CH
3060 if (unlikely(error && !blk_rq_is_passthrough(req) &&
3061 !(req->rq_flags & RQF_QUIET)))
3062 print_req_error(req, error);
1da177e4 3063
bc58ba94 3064 blk_account_io_completion(req, nr_bytes);
d72d904a 3065
f79ea416
KO
3066 total_bytes = 0;
3067 while (req->bio) {
3068 struct bio *bio = req->bio;
4f024f37 3069 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 3070
9c24c10a 3071 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 3072 req->bio = bio->bi_next;
1da177e4 3073
fbbaf700
N
3074 /* Completion has already been traced */
3075 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 3076 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 3077
f79ea416
KO
3078 total_bytes += bio_bytes;
3079 nr_bytes -= bio_bytes;
1da177e4 3080
f79ea416
KO
3081 if (!nr_bytes)
3082 break;
1da177e4
LT
3083 }
3084
3085 /*
3086 * completely done
3087 */
2e60e022
TH
3088 if (!req->bio) {
3089 /*
3090 * Reset counters so that the request stacking driver
3091 * can find how many bytes remain in the request
3092 * later.
3093 */
a2dec7b3 3094 req->__data_len = 0;
2e60e022
TH
3095 return false;
3096 }
1da177e4 3097
a2dec7b3 3098 req->__data_len -= total_bytes;
2e46e8b2
TH
3099
3100 /* update sector only for requests with clear definition of sector */
57292b58 3101 if (!blk_rq_is_passthrough(req))
a2dec7b3 3102 req->__sector += total_bytes >> 9;
2e46e8b2 3103
80a761fd 3104 /* mixed attributes always follow the first bio */
e8064021 3105 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 3106 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 3107 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
3108 }
3109
ed6565e7
CH
3110 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3111 /*
3112 * If total number of sectors is less than the first segment
3113 * size, something has gone terribly wrong.
3114 */
3115 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3116 blk_dump_rq_flags(req, "request botched");
3117 req->__data_len = blk_rq_cur_bytes(req);
3118 }
2e46e8b2 3119
ed6565e7
CH
3120 /* recalculate the number of segments */
3121 blk_recalc_rq_segments(req);
3122 }
2e46e8b2 3123
2e60e022 3124 return true;
1da177e4 3125}
2e60e022 3126EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 3127
2a842aca 3128static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2e60e022
TH
3129 unsigned int nr_bytes,
3130 unsigned int bidi_bytes)
5efccd17 3131{
2e60e022
TH
3132 if (blk_update_request(rq, error, nr_bytes))
3133 return true;
5efccd17 3134
2e60e022
TH
3135 /* Bidi request must be completed as a whole */
3136 if (unlikely(blk_bidi_rq(rq)) &&
3137 blk_update_request(rq->next_rq, error, bidi_bytes))
3138 return true;
5efccd17 3139
e2e1a148
JA
3140 if (blk_queue_add_random(rq->q))
3141 add_disk_randomness(rq->rq_disk);
2e60e022
TH
3142
3143 return false;
1da177e4
LT
3144}
3145
28018c24
JB
3146/**
3147 * blk_unprep_request - unprepare a request
3148 * @req: the request
3149 *
3150 * This function makes a request ready for complete resubmission (or
3151 * completion). It happens only after all error handling is complete,
3152 * so represents the appropriate moment to deallocate any resources
3153 * that were allocated to the request in the prep_rq_fn. The queue
3154 * lock is held when calling this.
3155 */
3156void blk_unprep_request(struct request *req)
3157{
3158 struct request_queue *q = req->q;
3159
e8064021 3160 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
3161 if (q->unprep_rq_fn)
3162 q->unprep_rq_fn(q, req);
3163}
3164EXPORT_SYMBOL_GPL(blk_unprep_request);
3165
2a842aca 3166void blk_finish_request(struct request *req, blk_status_t error)
1da177e4 3167{
cf43e6be 3168 struct request_queue *q = req->q;
522a7775 3169 u64 now = ktime_get_ns();
cf43e6be 3170
2fff8a92 3171 lockdep_assert_held(req->q->queue_lock);
332ebbf7 3172 WARN_ON_ONCE(q->mq_ops);
2fff8a92 3173
cf43e6be 3174 if (req->rq_flags & RQF_STATS)
522a7775 3175 blk_stat_add(req, now);
cf43e6be 3176
e8064021 3177 if (req->rq_flags & RQF_QUEUED)
cf43e6be 3178 blk_queue_end_tag(q, req);
b8286239 3179
ba396a6c 3180 BUG_ON(blk_queued_rq(req));
1da177e4 3181
57292b58 3182 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
dc3b17cc 3183 laptop_io_completion(req->q->backing_dev_info);
1da177e4 3184
e78042e5
MA
3185 blk_delete_timer(req);
3186
e8064021 3187 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
3188 blk_unprep_request(req);
3189
522a7775 3190 blk_account_io_done(req, now);
b8286239 3191
87760e5e 3192 if (req->end_io) {
a7905043 3193 rq_qos_done(q, req);
8ffdc655 3194 req->end_io(req, error);
87760e5e 3195 } else {
b8286239
KU
3196 if (blk_bidi_rq(req))
3197 __blk_put_request(req->next_rq->q, req->next_rq);
3198
cf43e6be 3199 __blk_put_request(q, req);
b8286239 3200 }
1da177e4 3201}
12120077 3202EXPORT_SYMBOL(blk_finish_request);
1da177e4 3203
3b11313a 3204/**
2e60e022
TH
3205 * blk_end_bidi_request - Complete a bidi request
3206 * @rq: the request to complete
2a842aca 3207 * @error: block status code
2e60e022
TH
3208 * @nr_bytes: number of bytes to complete @rq
3209 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
3210 *
3211 * Description:
e3a04fe3 3212 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
3213 * Drivers that supports bidi can safely call this member for any
3214 * type of request, bidi or uni. In the later case @bidi_bytes is
3215 * just ignored.
336cdb40
KU
3216 *
3217 * Return:
2e60e022
TH
3218 * %false - we are done with this request
3219 * %true - still buffers pending for this request
a0cd1285 3220 **/
2a842aca 3221static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
32fab448
KU
3222 unsigned int nr_bytes, unsigned int bidi_bytes)
3223{
336cdb40 3224 struct request_queue *q = rq->q;
2e60e022 3225 unsigned long flags;
32fab448 3226
332ebbf7
BVA
3227 WARN_ON_ONCE(q->mq_ops);
3228
2e60e022
TH
3229 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3230 return true;
32fab448 3231
336cdb40 3232 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 3233 blk_finish_request(rq, error);
336cdb40
KU
3234 spin_unlock_irqrestore(q->queue_lock, flags);
3235
2e60e022 3236 return false;
32fab448
KU
3237}
3238
336cdb40 3239/**
2e60e022
TH
3240 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3241 * @rq: the request to complete
2a842aca 3242 * @error: block status code
e3a04fe3
KU
3243 * @nr_bytes: number of bytes to complete @rq
3244 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
3245 *
3246 * Description:
2e60e022
TH
3247 * Identical to blk_end_bidi_request() except that queue lock is
3248 * assumed to be locked on entry and remains so on return.
336cdb40
KU
3249 *
3250 * Return:
2e60e022
TH
3251 * %false - we are done with this request
3252 * %true - still buffers pending for this request
336cdb40 3253 **/
2a842aca 3254static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
b1f74493 3255 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 3256{
2fff8a92 3257 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3258 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3259
2e60e022
TH
3260 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3261 return true;
336cdb40 3262
2e60e022 3263 blk_finish_request(rq, error);
336cdb40 3264
2e60e022 3265 return false;
336cdb40 3266}
e19a3ab0
KU
3267
3268/**
3269 * blk_end_request - Helper function for drivers to complete the request.
3270 * @rq: the request being processed
2a842aca 3271 * @error: block status code
e19a3ab0
KU
3272 * @nr_bytes: number of bytes to complete
3273 *
3274 * Description:
3275 * Ends I/O on a number of bytes attached to @rq.
3276 * If @rq has leftover, sets it up for the next range of segments.
3277 *
3278 * Return:
b1f74493
FT
3279 * %false - we are done with this request
3280 * %true - still buffers pending for this request
e19a3ab0 3281 **/
2a842aca
CH
3282bool blk_end_request(struct request *rq, blk_status_t error,
3283 unsigned int nr_bytes)
e19a3ab0 3284{
332ebbf7 3285 WARN_ON_ONCE(rq->q->mq_ops);
b1f74493 3286 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 3287}
56ad1740 3288EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
3289
3290/**
b1f74493
FT
3291 * blk_end_request_all - Helper function for drives to finish the request.
3292 * @rq: the request to finish
2a842aca 3293 * @error: block status code
336cdb40
KU
3294 *
3295 * Description:
b1f74493
FT
3296 * Completely finish @rq.
3297 */
2a842aca 3298void blk_end_request_all(struct request *rq, blk_status_t error)
336cdb40 3299{
b1f74493
FT
3300 bool pending;
3301 unsigned int bidi_bytes = 0;
336cdb40 3302
b1f74493
FT
3303 if (unlikely(blk_bidi_rq(rq)))
3304 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 3305
b1f74493
FT
3306 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3307 BUG_ON(pending);
3308}
56ad1740 3309EXPORT_SYMBOL(blk_end_request_all);
336cdb40 3310
e3a04fe3 3311/**
b1f74493
FT
3312 * __blk_end_request - Helper function for drivers to complete the request.
3313 * @rq: the request being processed
2a842aca 3314 * @error: block status code
b1f74493 3315 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
3316 *
3317 * Description:
b1f74493 3318 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
3319 *
3320 * Return:
b1f74493
FT
3321 * %false - we are done with this request
3322 * %true - still buffers pending for this request
e3a04fe3 3323 **/
2a842aca
CH
3324bool __blk_end_request(struct request *rq, blk_status_t error,
3325 unsigned int nr_bytes)
e3a04fe3 3326{
2fff8a92 3327 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3328 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3329
b1f74493 3330 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 3331}
56ad1740 3332EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 3333
32fab448 3334/**
b1f74493
FT
3335 * __blk_end_request_all - Helper function for drives to finish the request.
3336 * @rq: the request to finish
2a842aca 3337 * @error: block status code
32fab448
KU
3338 *
3339 * Description:
b1f74493 3340 * Completely finish @rq. Must be called with queue lock held.
32fab448 3341 */
2a842aca 3342void __blk_end_request_all(struct request *rq, blk_status_t error)
32fab448 3343{
b1f74493
FT
3344 bool pending;
3345 unsigned int bidi_bytes = 0;
3346
2fff8a92 3347 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3348 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3349
b1f74493
FT
3350 if (unlikely(blk_bidi_rq(rq)))
3351 bidi_bytes = blk_rq_bytes(rq->next_rq);
3352
3353 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3354 BUG_ON(pending);
32fab448 3355}
56ad1740 3356EXPORT_SYMBOL(__blk_end_request_all);
32fab448 3357
e19a3ab0 3358/**
b1f74493
FT
3359 * __blk_end_request_cur - Helper function to finish the current request chunk.
3360 * @rq: the request to finish the current chunk for
2a842aca 3361 * @error: block status code
e19a3ab0
KU
3362 *
3363 * Description:
b1f74493
FT
3364 * Complete the current consecutively mapped chunk from @rq. Must
3365 * be called with queue lock held.
e19a3ab0
KU
3366 *
3367 * Return:
b1f74493
FT
3368 * %false - we are done with this request
3369 * %true - still buffers pending for this request
3370 */
2a842aca 3371bool __blk_end_request_cur(struct request *rq, blk_status_t error)
e19a3ab0 3372{
b1f74493 3373 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 3374}
56ad1740 3375EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 3376
86db1e29
JA
3377void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3378 struct bio *bio)
1da177e4 3379{
b4f42e28 3380 if (bio_has_data(bio))
fb2dce86 3381 rq->nr_phys_segments = bio_phys_segments(q, bio);
445251d0
JA
3382 else if (bio_op(bio) == REQ_OP_DISCARD)
3383 rq->nr_phys_segments = 1;
b4f42e28 3384
4f024f37 3385 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 3386 rq->bio = rq->biotail = bio;
1da177e4 3387
74d46992
CH
3388 if (bio->bi_disk)
3389 rq->rq_disk = bio->bi_disk;
66846572 3390}
1da177e4 3391
2d4dc890
IL
3392#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3393/**
3394 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3395 * @rq: the request to be flushed
3396 *
3397 * Description:
3398 * Flush all pages in @rq.
3399 */
3400void rq_flush_dcache_pages(struct request *rq)
3401{
3402 struct req_iterator iter;
7988613b 3403 struct bio_vec bvec;
2d4dc890
IL
3404
3405 rq_for_each_segment(bvec, rq, iter)
7988613b 3406 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
3407}
3408EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3409#endif
3410
ef9e3fac
KU
3411/**
3412 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3413 * @q : the queue of the device being checked
3414 *
3415 * Description:
3416 * Check if underlying low-level drivers of a device are busy.
3417 * If the drivers want to export their busy state, they must set own
3418 * exporting function using blk_queue_lld_busy() first.
3419 *
3420 * Basically, this function is used only by request stacking drivers
3421 * to stop dispatching requests to underlying devices when underlying
3422 * devices are busy. This behavior helps more I/O merging on the queue
3423 * of the request stacking driver and prevents I/O throughput regression
3424 * on burst I/O load.
3425 *
3426 * Return:
3427 * 0 - Not busy (The request stacking driver should dispatch request)
3428 * 1 - Busy (The request stacking driver should stop dispatching request)
3429 */
3430int blk_lld_busy(struct request_queue *q)
3431{
3432 if (q->lld_busy_fn)
3433 return q->lld_busy_fn(q);
3434
3435 return 0;
3436}
3437EXPORT_SYMBOL_GPL(blk_lld_busy);
3438
78d8e58a
MS
3439/**
3440 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3441 * @rq: the clone request to be cleaned up
3442 *
3443 * Description:
3444 * Free all bios in @rq for a cloned request.
3445 */
3446void blk_rq_unprep_clone(struct request *rq)
3447{
3448 struct bio *bio;
3449
3450 while ((bio = rq->bio) != NULL) {
3451 rq->bio = bio->bi_next;
3452
3453 bio_put(bio);
3454 }
3455}
3456EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3457
3458/*
3459 * Copy attributes of the original request to the clone request.
3460 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3461 */
3462static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3463{
3464 dst->cpu = src->cpu;
b0fd271d
KU
3465 dst->__sector = blk_rq_pos(src);
3466 dst->__data_len = blk_rq_bytes(src);
297ba57d
BVA
3467 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3468 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3469 dst->special_vec = src->special_vec;
3470 }
b0fd271d
KU
3471 dst->nr_phys_segments = src->nr_phys_segments;
3472 dst->ioprio = src->ioprio;
3473 dst->extra_len = src->extra_len;
78d8e58a
MS
3474}
3475
3476/**
3477 * blk_rq_prep_clone - Helper function to setup clone request
3478 * @rq: the request to be setup
3479 * @rq_src: original request to be cloned
3480 * @bs: bio_set that bios for clone are allocated from
3481 * @gfp_mask: memory allocation mask for bio
3482 * @bio_ctr: setup function to be called for each clone bio.
3483 * Returns %0 for success, non %0 for failure.
3484 * @data: private data to be passed to @bio_ctr
3485 *
3486 * Description:
3487 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3488 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3489 * are not copied, and copying such parts is the caller's responsibility.
3490 * Also, pages which the original bios are pointing to are not copied
3491 * and the cloned bios just point same pages.
3492 * So cloned bios must be completed before original bios, which means
3493 * the caller must complete @rq before @rq_src.
3494 */
3495int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3496 struct bio_set *bs, gfp_t gfp_mask,
3497 int (*bio_ctr)(struct bio *, struct bio *, void *),
3498 void *data)
3499{
3500 struct bio *bio, *bio_src;
3501
3502 if (!bs)
f4f8154a 3503 bs = &fs_bio_set;
78d8e58a
MS
3504
3505 __rq_for_each_bio(bio_src, rq_src) {
3506 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3507 if (!bio)
3508 goto free_and_out;
3509
3510 if (bio_ctr && bio_ctr(bio, bio_src, data))
3511 goto free_and_out;
3512
3513 if (rq->bio) {
3514 rq->biotail->bi_next = bio;
3515 rq->biotail = bio;
3516 } else
3517 rq->bio = rq->biotail = bio;
3518 }
3519
3520 __blk_rq_prep_clone(rq, rq_src);
3521
3522 return 0;
3523
3524free_and_out:
3525 if (bio)
3526 bio_put(bio);
3527 blk_rq_unprep_clone(rq);
3528
3529 return -ENOMEM;
b0fd271d
KU
3530}
3531EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3532
59c3d45e 3533int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3534{
3535 return queue_work(kblockd_workqueue, work);
3536}
1da177e4
LT
3537EXPORT_SYMBOL(kblockd_schedule_work);
3538
ee63cfa7
JA
3539int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3540{
3541 return queue_work_on(cpu, kblockd_workqueue, work);
3542}
3543EXPORT_SYMBOL(kblockd_schedule_work_on);
3544
818cd1cb
JA
3545int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3546 unsigned long delay)
3547{
3548 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3549}
3550EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3551
75df7136
SJ
3552/**
3553 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3554 * @plug: The &struct blk_plug that needs to be initialized
3555 *
3556 * Description:
3557 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3558 * pending I/O should the task end up blocking between blk_start_plug() and
3559 * blk_finish_plug(). This is important from a performance perspective, but
3560 * also ensures that we don't deadlock. For instance, if the task is blocking
3561 * for a memory allocation, memory reclaim could end up wanting to free a
3562 * page belonging to that request that is currently residing in our private
3563 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3564 * this kind of deadlock.
3565 */
73c10101
JA
3566void blk_start_plug(struct blk_plug *plug)
3567{
3568 struct task_struct *tsk = current;
3569
dd6cf3e1
SL
3570 /*
3571 * If this is a nested plug, don't actually assign it.
3572 */
3573 if (tsk->plug)
3574 return;
3575
73c10101 3576 INIT_LIST_HEAD(&plug->list);
320ae51f 3577 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3578 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3579 /*
dd6cf3e1
SL
3580 * Store ordering should not be needed here, since a potential
3581 * preempt will imply a full memory barrier
73c10101 3582 */
dd6cf3e1 3583 tsk->plug = plug;
73c10101
JA
3584}
3585EXPORT_SYMBOL(blk_start_plug);
3586
3587static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3588{
3589 struct request *rqa = container_of(a, struct request, queuelist);
3590 struct request *rqb = container_of(b, struct request, queuelist);
3591
975927b9
JM
3592 return !(rqa->q < rqb->q ||
3593 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3594}
3595
49cac01e
JA
3596/*
3597 * If 'from_schedule' is true, then postpone the dispatch of requests
3598 * until a safe kblockd context. We due this to avoid accidental big
3599 * additional stack usage in driver dispatch, in places where the originally
3600 * plugger did not intend it.
3601 */
f6603783 3602static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3603 bool from_schedule)
99e22598 3604 __releases(q->queue_lock)
94b5eb28 3605{
2fff8a92
BVA
3606 lockdep_assert_held(q->queue_lock);
3607
49cac01e 3608 trace_block_unplug(q, depth, !from_schedule);
99e22598 3609
70460571 3610 if (from_schedule)
24ecfbe2 3611 blk_run_queue_async(q);
70460571 3612 else
24ecfbe2 3613 __blk_run_queue(q);
50864670 3614 spin_unlock_irq(q->queue_lock);
94b5eb28
JA
3615}
3616
74018dc3 3617static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3618{
3619 LIST_HEAD(callbacks);
3620
2a7d5559
SL
3621 while (!list_empty(&plug->cb_list)) {
3622 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3623
2a7d5559
SL
3624 while (!list_empty(&callbacks)) {
3625 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3626 struct blk_plug_cb,
3627 list);
2a7d5559 3628 list_del(&cb->list);
74018dc3 3629 cb->callback(cb, from_schedule);
2a7d5559 3630 }
048c9374
N
3631 }
3632}
3633
9cbb1750
N
3634struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3635 int size)
3636{
3637 struct blk_plug *plug = current->plug;
3638 struct blk_plug_cb *cb;
3639
3640 if (!plug)
3641 return NULL;
3642
3643 list_for_each_entry(cb, &plug->cb_list, list)
3644 if (cb->callback == unplug && cb->data == data)
3645 return cb;
3646
3647 /* Not currently on the callback list */
3648 BUG_ON(size < sizeof(*cb));
3649 cb = kzalloc(size, GFP_ATOMIC);
3650 if (cb) {
3651 cb->data = data;
3652 cb->callback = unplug;
3653 list_add(&cb->list, &plug->cb_list);
3654 }
3655 return cb;
3656}
3657EXPORT_SYMBOL(blk_check_plugged);
3658
49cac01e 3659void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3660{
3661 struct request_queue *q;
73c10101 3662 struct request *rq;
109b8129 3663 LIST_HEAD(list);
94b5eb28 3664 unsigned int depth;
73c10101 3665
74018dc3 3666 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3667
3668 if (!list_empty(&plug->mq_list))
3669 blk_mq_flush_plug_list(plug, from_schedule);
3670
73c10101
JA
3671 if (list_empty(&plug->list))
3672 return;
3673
109b8129
N
3674 list_splice_init(&plug->list, &list);
3675
422765c2 3676 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3677
3678 q = NULL;
94b5eb28 3679 depth = 0;
18811272 3680
109b8129
N
3681 while (!list_empty(&list)) {
3682 rq = list_entry_rq(list.next);
73c10101 3683 list_del_init(&rq->queuelist);
73c10101
JA
3684 BUG_ON(!rq->q);
3685 if (rq->q != q) {
99e22598
JA
3686 /*
3687 * This drops the queue lock
3688 */
3689 if (q)
49cac01e 3690 queue_unplugged(q, depth, from_schedule);
73c10101 3691 q = rq->q;
94b5eb28 3692 depth = 0;
50864670 3693 spin_lock_irq(q->queue_lock);
73c10101 3694 }
8ba61435
TH
3695
3696 /*
3697 * Short-circuit if @q is dead
3698 */
3f3299d5 3699 if (unlikely(blk_queue_dying(q))) {
2a842aca 3700 __blk_end_request_all(rq, BLK_STS_IOERR);
8ba61435
TH
3701 continue;
3702 }
3703
73c10101
JA
3704 /*
3705 * rq is already accounted, so use raw insert
3706 */
f73f44eb 3707 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3708 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3709 else
3710 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3711
3712 depth++;
73c10101
JA
3713 }
3714
99e22598
JA
3715 /*
3716 * This drops the queue lock
3717 */
3718 if (q)
49cac01e 3719 queue_unplugged(q, depth, from_schedule);
73c10101 3720}
73c10101
JA
3721
3722void blk_finish_plug(struct blk_plug *plug)
3723{
dd6cf3e1
SL
3724 if (plug != current->plug)
3725 return;
f6603783 3726 blk_flush_plug_list(plug, false);
73c10101 3727
dd6cf3e1 3728 current->plug = NULL;
73c10101 3729}
88b996cd 3730EXPORT_SYMBOL(blk_finish_plug);
73c10101 3731
1da177e4
LT
3732int __init blk_dev_init(void)
3733{
ef295ecf
CH
3734 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3735 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3736 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3737 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3738 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3739
89b90be2
TH
3740 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3741 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3742 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3743 if (!kblockd_workqueue)
3744 panic("Failed to create kblockd\n");
3745
3746 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3747 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3748
c2789bd4 3749 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3750 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3751
18fbda91
OS
3752#ifdef CONFIG_DEBUG_FS
3753 blk_debugfs_root = debugfs_create_dir("block", NULL);
3754#endif
3755
d38ecf93 3756 return 0;
1da177e4 3757}