mm/page_ext: resurrect struct page extending code for debugging
[linux-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
1da177e4
LT
22
23struct mempolicy;
24struct anon_vma;
bf181b9f 25struct anon_vma_chain;
4e950f6f 26struct file_ra_state;
e8edc6e0 27struct user_struct;
4e950f6f 28struct writeback_control;
1da177e4 29
fccc9987 30#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 31extern unsigned long max_mapnr;
fccc9987
JL
32
33static inline void set_max_mapnr(unsigned long limit)
34{
35 max_mapnr = limit;
36}
37#else
38static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
39#endif
40
4481374c 41extern unsigned long totalram_pages;
1da177e4 42extern void * high_memory;
1da177e4
LT
43extern int page_cluster;
44
45#ifdef CONFIG_SYSCTL
46extern int sysctl_legacy_va_layout;
47#else
48#define sysctl_legacy_va_layout 0
49#endif
50
51#include <asm/page.h>
52#include <asm/pgtable.h>
53#include <asm/processor.h>
1da177e4 54
79442ed1
TC
55#ifndef __pa_symbol
56#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
57#endif
58
593befa6
DD
59/*
60 * To prevent common memory management code establishing
61 * a zero page mapping on a read fault.
62 * This macro should be defined within <asm/pgtable.h>.
63 * s390 does this to prevent multiplexing of hardware bits
64 * related to the physical page in case of virtualization.
65 */
66#ifndef mm_forbids_zeropage
67#define mm_forbids_zeropage(X) (0)
68#endif
69
c9b1d098 70extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 71extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 72
49f0ce5f
JM
73extern int sysctl_overcommit_memory;
74extern int sysctl_overcommit_ratio;
75extern unsigned long sysctl_overcommit_kbytes;
76
77extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
78 size_t *, loff_t *);
79extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
80 size_t *, loff_t *);
81
1da177e4
LT
82#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
83
27ac792c
AR
84/* to align the pointer to the (next) page boundary */
85#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
86
0fa73b86
AM
87/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
88#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
89
1da177e4
LT
90/*
91 * Linux kernel virtual memory manager primitives.
92 * The idea being to have a "virtual" mm in the same way
93 * we have a virtual fs - giving a cleaner interface to the
94 * mm details, and allowing different kinds of memory mappings
95 * (from shared memory to executable loading to arbitrary
96 * mmap() functions).
97 */
98
c43692e8
CL
99extern struct kmem_cache *vm_area_cachep;
100
1da177e4 101#ifndef CONFIG_MMU
8feae131
DH
102extern struct rb_root nommu_region_tree;
103extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
104
105extern unsigned int kobjsize(const void *objp);
106#endif
107
108/*
605d9288 109 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 110 */
cc2383ec
KK
111#define VM_NONE 0x00000000
112
1da177e4
LT
113#define VM_READ 0x00000001 /* currently active flags */
114#define VM_WRITE 0x00000002
115#define VM_EXEC 0x00000004
116#define VM_SHARED 0x00000008
117
7e2cff42 118/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
119#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
120#define VM_MAYWRITE 0x00000020
121#define VM_MAYEXEC 0x00000040
122#define VM_MAYSHARE 0x00000080
123
124#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 125#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
126#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
127
1da177e4
LT
128#define VM_LOCKED 0x00002000
129#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
130
131 /* Used by sys_madvise() */
132#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
133#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
134
135#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
136#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 137#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 138#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
139#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
140#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
cc2383ec 141#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 142#define VM_ARCH_2 0x02000000
0103bd16 143#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 144
d9104d1c
CG
145#ifdef CONFIG_MEM_SOFT_DIRTY
146# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
147#else
148# define VM_SOFTDIRTY 0
149#endif
150
b379d790 151#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
152#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
153#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 154#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 155
cc2383ec
KK
156#if defined(CONFIG_X86)
157# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
158#elif defined(CONFIG_PPC)
159# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
160#elif defined(CONFIG_PARISC)
161# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
162#elif defined(CONFIG_METAG)
163# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
164#elif defined(CONFIG_IA64)
165# define VM_GROWSUP VM_ARCH_1
166#elif !defined(CONFIG_MMU)
167# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
168#endif
169
4aae7e43
QR
170#if defined(CONFIG_X86)
171/* MPX specific bounds table or bounds directory */
172# define VM_MPX VM_ARCH_2
173#endif
174
cc2383ec
KK
175#ifndef VM_GROWSUP
176# define VM_GROWSUP VM_NONE
177#endif
178
a8bef8ff
MG
179/* Bits set in the VMA until the stack is in its final location */
180#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
181
1da177e4
LT
182#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
183#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
184#endif
185
186#ifdef CONFIG_STACK_GROWSUP
187#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
188#else
189#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
190#endif
191
b291f000 192/*
78f11a25
AA
193 * Special vmas that are non-mergable, non-mlock()able.
194 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 195 */
9050d7eb 196#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 197
a0715cc2
AT
198/* This mask defines which mm->def_flags a process can inherit its parent */
199#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
200
1da177e4
LT
201/*
202 * mapping from the currently active vm_flags protection bits (the
203 * low four bits) to a page protection mask..
204 */
205extern pgprot_t protection_map[16];
206
d0217ac0
NP
207#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
208#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 209#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 210#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 211#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 212#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
45cac65b 213#define FAULT_FLAG_TRIED 0x40 /* second try */
759496ba 214#define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
d0217ac0 215
54cb8821 216/*
d0217ac0 217 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
218 * ->fault function. The vma's ->fault is responsible for returning a bitmask
219 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 220 *
d0217ac0 221 * pgoff should be used in favour of virtual_address, if possible. If pgoff
0b173bc4 222 * is used, one may implement ->remap_pages to get nonlinear mapping support.
54cb8821 223 */
d0217ac0
NP
224struct vm_fault {
225 unsigned int flags; /* FAULT_FLAG_xxx flags */
226 pgoff_t pgoff; /* Logical page offset based on vma */
227 void __user *virtual_address; /* Faulting virtual address */
228
229 struct page *page; /* ->fault handlers should return a
83c54070 230 * page here, unless VM_FAULT_NOPAGE
d0217ac0 231 * is set (which is also implied by
83c54070 232 * VM_FAULT_ERROR).
d0217ac0 233 */
8c6e50b0
KS
234 /* for ->map_pages() only */
235 pgoff_t max_pgoff; /* map pages for offset from pgoff till
236 * max_pgoff inclusive */
237 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 238};
1da177e4
LT
239
240/*
241 * These are the virtual MM functions - opening of an area, closing and
242 * unmapping it (needed to keep files on disk up-to-date etc), pointer
243 * to the functions called when a no-page or a wp-page exception occurs.
244 */
245struct vm_operations_struct {
246 void (*open)(struct vm_area_struct * area);
247 void (*close)(struct vm_area_struct * area);
d0217ac0 248 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
8c6e50b0 249 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
250
251 /* notification that a previously read-only page is about to become
252 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 253 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
254
255 /* called by access_process_vm when get_user_pages() fails, typically
256 * for use by special VMAs that can switch between memory and hardware
257 */
258 int (*access)(struct vm_area_struct *vma, unsigned long addr,
259 void *buf, int len, int write);
78d683e8
AL
260
261 /* Called by the /proc/PID/maps code to ask the vma whether it
262 * has a special name. Returning non-NULL will also cause this
263 * vma to be dumped unconditionally. */
264 const char *(*name)(struct vm_area_struct *vma);
265
1da177e4 266#ifdef CONFIG_NUMA
a6020ed7
LS
267 /*
268 * set_policy() op must add a reference to any non-NULL @new mempolicy
269 * to hold the policy upon return. Caller should pass NULL @new to
270 * remove a policy and fall back to surrounding context--i.e. do not
271 * install a MPOL_DEFAULT policy, nor the task or system default
272 * mempolicy.
273 */
1da177e4 274 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
275
276 /*
277 * get_policy() op must add reference [mpol_get()] to any policy at
278 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
279 * in mm/mempolicy.c will do this automatically.
280 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
281 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
282 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
283 * must return NULL--i.e., do not "fallback" to task or system default
284 * policy.
285 */
1da177e4
LT
286 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
287 unsigned long addr);
7b2259b3
CL
288 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
289 const nodemask_t *to, unsigned long flags);
1da177e4 290#endif
0b173bc4
KK
291 /* called by sys_remap_file_pages() to populate non-linear mapping */
292 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
293 unsigned long size, pgoff_t pgoff);
1da177e4
LT
294};
295
296struct mmu_gather;
297struct inode;
298
349aef0b
AM
299#define page_private(page) ((page)->private)
300#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 301
b12c4ad1
MK
302/* It's valid only if the page is free path or free_list */
303static inline void set_freepage_migratetype(struct page *page, int migratetype)
304{
95e34412 305 page->index = migratetype;
b12c4ad1
MK
306}
307
308/* It's valid only if the page is free path or free_list */
309static inline int get_freepage_migratetype(struct page *page)
310{
95e34412 311 return page->index;
b12c4ad1
MK
312}
313
1da177e4
LT
314/*
315 * FIXME: take this include out, include page-flags.h in
316 * files which need it (119 of them)
317 */
318#include <linux/page-flags.h>
71e3aac0 319#include <linux/huge_mm.h>
1da177e4
LT
320
321/*
322 * Methods to modify the page usage count.
323 *
324 * What counts for a page usage:
325 * - cache mapping (page->mapping)
326 * - private data (page->private)
327 * - page mapped in a task's page tables, each mapping
328 * is counted separately
329 *
330 * Also, many kernel routines increase the page count before a critical
331 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
332 */
333
334/*
da6052f7 335 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 336 */
7c8ee9a8
NP
337static inline int put_page_testzero(struct page *page)
338{
309381fe 339 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 340 return atomic_dec_and_test(&page->_count);
7c8ee9a8 341}
1da177e4
LT
342
343/*
7c8ee9a8
NP
344 * Try to grab a ref unless the page has a refcount of zero, return false if
345 * that is the case.
8e0861fa
AK
346 * This can be called when MMU is off so it must not access
347 * any of the virtual mappings.
1da177e4 348 */
7c8ee9a8
NP
349static inline int get_page_unless_zero(struct page *page)
350{
8dc04efb 351 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 352}
1da177e4 353
8e0861fa
AK
354/*
355 * Try to drop a ref unless the page has a refcount of one, return false if
356 * that is the case.
357 * This is to make sure that the refcount won't become zero after this drop.
358 * This can be called when MMU is off so it must not access
359 * any of the virtual mappings.
360 */
361static inline int put_page_unless_one(struct page *page)
362{
363 return atomic_add_unless(&page->_count, -1, 1);
364}
365
53df8fdc 366extern int page_is_ram(unsigned long pfn);
67cf13ce 367extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
53df8fdc 368
48667e7a 369/* Support for virtually mapped pages */
b3bdda02
CL
370struct page *vmalloc_to_page(const void *addr);
371unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 372
0738c4bb
PM
373/*
374 * Determine if an address is within the vmalloc range
375 *
376 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
377 * is no special casing required.
378 */
9e2779fa
CL
379static inline int is_vmalloc_addr(const void *x)
380{
0738c4bb 381#ifdef CONFIG_MMU
9e2779fa
CL
382 unsigned long addr = (unsigned long)x;
383
384 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
385#else
386 return 0;
8ca3ed87 387#endif
0738c4bb 388}
81ac3ad9
KH
389#ifdef CONFIG_MMU
390extern int is_vmalloc_or_module_addr(const void *x);
391#else
934831d0 392static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
393{
394 return 0;
395}
396#endif
9e2779fa 397
39f1f78d
AV
398extern void kvfree(const void *addr);
399
e9da73d6
AA
400static inline void compound_lock(struct page *page)
401{
402#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 403 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
404 bit_spin_lock(PG_compound_lock, &page->flags);
405#endif
406}
407
408static inline void compound_unlock(struct page *page)
409{
410#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 411 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
412 bit_spin_unlock(PG_compound_lock, &page->flags);
413#endif
414}
415
416static inline unsigned long compound_lock_irqsave(struct page *page)
417{
418 unsigned long uninitialized_var(flags);
419#ifdef CONFIG_TRANSPARENT_HUGEPAGE
420 local_irq_save(flags);
421 compound_lock(page);
422#endif
423 return flags;
424}
425
426static inline void compound_unlock_irqrestore(struct page *page,
427 unsigned long flags)
428{
429#ifdef CONFIG_TRANSPARENT_HUGEPAGE
430 compound_unlock(page);
431 local_irq_restore(flags);
432#endif
433}
434
d2ee40ea
JZ
435static inline struct page *compound_head_by_tail(struct page *tail)
436{
437 struct page *head = tail->first_page;
438
439 /*
440 * page->first_page may be a dangling pointer to an old
441 * compound page, so recheck that it is still a tail
442 * page before returning.
443 */
444 smp_rmb();
445 if (likely(PageTail(tail)))
446 return head;
447 return tail;
448}
449
d85f3385
CL
450static inline struct page *compound_head(struct page *page)
451{
d2ee40ea
JZ
452 if (unlikely(PageTail(page)))
453 return compound_head_by_tail(page);
d85f3385
CL
454 return page;
455}
456
70b50f94
AA
457/*
458 * The atomic page->_mapcount, starts from -1: so that transitions
459 * both from it and to it can be tracked, using atomic_inc_and_test
460 * and atomic_add_negative(-1).
461 */
22b751c3 462static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
463{
464 atomic_set(&(page)->_mapcount, -1);
465}
466
467static inline int page_mapcount(struct page *page)
468{
469 return atomic_read(&(page)->_mapcount) + 1;
470}
471
4c21e2f2 472static inline int page_count(struct page *page)
1da177e4 473{
d85f3385 474 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
475}
476
44518d2b
AA
477#ifdef CONFIG_HUGETLB_PAGE
478extern int PageHeadHuge(struct page *page_head);
479#else /* CONFIG_HUGETLB_PAGE */
480static inline int PageHeadHuge(struct page *page_head)
481{
482 return 0;
483}
484#endif /* CONFIG_HUGETLB_PAGE */
485
486static inline bool __compound_tail_refcounted(struct page *page)
487{
488 return !PageSlab(page) && !PageHeadHuge(page);
489}
490
491/*
492 * This takes a head page as parameter and tells if the
493 * tail page reference counting can be skipped.
494 *
495 * For this to be safe, PageSlab and PageHeadHuge must remain true on
496 * any given page where they return true here, until all tail pins
497 * have been released.
498 */
499static inline bool compound_tail_refcounted(struct page *page)
500{
309381fe 501 VM_BUG_ON_PAGE(!PageHead(page), page);
44518d2b
AA
502 return __compound_tail_refcounted(page);
503}
504
b35a35b5
AA
505static inline void get_huge_page_tail(struct page *page)
506{
507 /*
5eaf1a9e 508 * __split_huge_page_refcount() cannot run from under us.
b35a35b5 509 */
309381fe
SL
510 VM_BUG_ON_PAGE(!PageTail(page), page);
511 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
512 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
5eaf1a9e 513 if (compound_tail_refcounted(page->first_page))
44518d2b 514 atomic_inc(&page->_mapcount);
b35a35b5
AA
515}
516
70b50f94
AA
517extern bool __get_page_tail(struct page *page);
518
1da177e4
LT
519static inline void get_page(struct page *page)
520{
70b50f94
AA
521 if (unlikely(PageTail(page)))
522 if (likely(__get_page_tail(page)))
523 return;
91807063
AA
524 /*
525 * Getting a normal page or the head of a compound page
70b50f94 526 * requires to already have an elevated page->_count.
91807063 527 */
309381fe 528 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
1da177e4
LT
529 atomic_inc(&page->_count);
530}
531
b49af68f
CL
532static inline struct page *virt_to_head_page(const void *x)
533{
534 struct page *page = virt_to_page(x);
535 return compound_head(page);
536}
537
7835e98b
NP
538/*
539 * Setup the page count before being freed into the page allocator for
540 * the first time (boot or memory hotplug)
541 */
542static inline void init_page_count(struct page *page)
543{
544 atomic_set(&page->_count, 1);
545}
546
5f24ce5f
AA
547/*
548 * PageBuddy() indicate that the page is free and in the buddy system
549 * (see mm/page_alloc.c).
ef2b4b95
AA
550 *
551 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
552 * -2 so that an underflow of the page_mapcount() won't be mistaken
553 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
554 * efficiently by most CPU architectures.
5f24ce5f 555 */
ef2b4b95
AA
556#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
557
5f24ce5f
AA
558static inline int PageBuddy(struct page *page)
559{
ef2b4b95 560 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
561}
562
563static inline void __SetPageBuddy(struct page *page)
564{
309381fe 565 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
ef2b4b95 566 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
567}
568
569static inline void __ClearPageBuddy(struct page *page)
570{
309381fe 571 VM_BUG_ON_PAGE(!PageBuddy(page), page);
5f24ce5f
AA
572 atomic_set(&page->_mapcount, -1);
573}
574
d6d86c0a
KK
575#define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
576
577static inline int PageBalloon(struct page *page)
578{
579 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
580}
581
582static inline void __SetPageBalloon(struct page *page)
583{
584 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
585 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
586}
587
588static inline void __ClearPageBalloon(struct page *page)
589{
590 VM_BUG_ON_PAGE(!PageBalloon(page), page);
591 atomic_set(&page->_mapcount, -1);
592}
593
1da177e4 594void put_page(struct page *page);
1d7ea732 595void put_pages_list(struct list_head *pages);
1da177e4 596
8dfcc9ba 597void split_page(struct page *page, unsigned int order);
748446bb 598int split_free_page(struct page *page);
8dfcc9ba 599
33f2ef89
AW
600/*
601 * Compound pages have a destructor function. Provide a
602 * prototype for that function and accessor functions.
603 * These are _only_ valid on the head of a PG_compound page.
604 */
605typedef void compound_page_dtor(struct page *);
606
607static inline void set_compound_page_dtor(struct page *page,
608 compound_page_dtor *dtor)
609{
610 page[1].lru.next = (void *)dtor;
611}
612
613static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
614{
615 return (compound_page_dtor *)page[1].lru.next;
616}
617
d85f3385
CL
618static inline int compound_order(struct page *page)
619{
6d777953 620 if (!PageHead(page))
d85f3385
CL
621 return 0;
622 return (unsigned long)page[1].lru.prev;
623}
624
625static inline void set_compound_order(struct page *page, unsigned long order)
626{
627 page[1].lru.prev = (void *)order;
628}
629
3dece370 630#ifdef CONFIG_MMU
14fd403f
AA
631/*
632 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
633 * servicing faults for write access. In the normal case, do always want
634 * pte_mkwrite. But get_user_pages can cause write faults for mappings
635 * that do not have writing enabled, when used by access_process_vm.
636 */
637static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
638{
639 if (likely(vma->vm_flags & VM_WRITE))
640 pte = pte_mkwrite(pte);
641 return pte;
642}
8c6e50b0
KS
643
644void do_set_pte(struct vm_area_struct *vma, unsigned long address,
645 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 646#endif
14fd403f 647
1da177e4
LT
648/*
649 * Multiple processes may "see" the same page. E.g. for untouched
650 * mappings of /dev/null, all processes see the same page full of
651 * zeroes, and text pages of executables and shared libraries have
652 * only one copy in memory, at most, normally.
653 *
654 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
655 * page_count() == 0 means the page is free. page->lru is then used for
656 * freelist management in the buddy allocator.
da6052f7 657 * page_count() > 0 means the page has been allocated.
1da177e4 658 *
da6052f7
NP
659 * Pages are allocated by the slab allocator in order to provide memory
660 * to kmalloc and kmem_cache_alloc. In this case, the management of the
661 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
662 * unless a particular usage is carefully commented. (the responsibility of
663 * freeing the kmalloc memory is the caller's, of course).
1da177e4 664 *
da6052f7
NP
665 * A page may be used by anyone else who does a __get_free_page().
666 * In this case, page_count still tracks the references, and should only
667 * be used through the normal accessor functions. The top bits of page->flags
668 * and page->virtual store page management information, but all other fields
669 * are unused and could be used privately, carefully. The management of this
670 * page is the responsibility of the one who allocated it, and those who have
671 * subsequently been given references to it.
672 *
673 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
674 * managed by the Linux memory manager: I/O, buffers, swapping etc.
675 * The following discussion applies only to them.
676 *
da6052f7
NP
677 * A pagecache page contains an opaque `private' member, which belongs to the
678 * page's address_space. Usually, this is the address of a circular list of
679 * the page's disk buffers. PG_private must be set to tell the VM to call
680 * into the filesystem to release these pages.
1da177e4 681 *
da6052f7
NP
682 * A page may belong to an inode's memory mapping. In this case, page->mapping
683 * is the pointer to the inode, and page->index is the file offset of the page,
684 * in units of PAGE_CACHE_SIZE.
1da177e4 685 *
da6052f7
NP
686 * If pagecache pages are not associated with an inode, they are said to be
687 * anonymous pages. These may become associated with the swapcache, and in that
688 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 689 *
da6052f7
NP
690 * In either case (swapcache or inode backed), the pagecache itself holds one
691 * reference to the page. Setting PG_private should also increment the
692 * refcount. The each user mapping also has a reference to the page.
1da177e4 693 *
da6052f7
NP
694 * The pagecache pages are stored in a per-mapping radix tree, which is
695 * rooted at mapping->page_tree, and indexed by offset.
696 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
697 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 698 *
da6052f7 699 * All pagecache pages may be subject to I/O:
1da177e4
LT
700 * - inode pages may need to be read from disk,
701 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
702 * to be written back to the inode on disk,
703 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
704 * modified may need to be swapped out to swap space and (later) to be read
705 * back into memory.
1da177e4
LT
706 */
707
708/*
709 * The zone field is never updated after free_area_init_core()
710 * sets it, so none of the operations on it need to be atomic.
1da177e4 711 */
348f8b6c 712
90572890 713/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 714#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
715#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
716#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 717#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 718
348f8b6c 719/*
25985edc 720 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
721 * sections we define the shift as 0; that plus a 0 mask ensures
722 * the compiler will optimise away reference to them.
723 */
d41dee36
AW
724#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
725#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
726#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 727#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 728
bce54bbf
WD
729/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
730#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 731#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
732#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
733 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 734#else
89689ae7 735#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
736#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
737 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
738#endif
739
bd8029b6 740#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 741
9223b419
CL
742#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
743#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
744#endif
745
d41dee36
AW
746#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
747#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
748#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 749#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 750#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 751
33dd4e0e 752static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 753{
348f8b6c 754 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 755}
1da177e4 756
9127ab4f
CS
757#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
758#define SECTION_IN_PAGE_FLAGS
759#endif
760
89689ae7 761/*
7a8010cd
VB
762 * The identification function is mainly used by the buddy allocator for
763 * determining if two pages could be buddies. We are not really identifying
764 * the zone since we could be using the section number id if we do not have
765 * node id available in page flags.
766 * We only guarantee that it will return the same value for two combinable
767 * pages in a zone.
89689ae7 768 */
cb2b95e1
AW
769static inline int page_zone_id(struct page *page)
770{
89689ae7 771 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
772}
773
25ba77c1 774static inline int zone_to_nid(struct zone *zone)
89fa3024 775{
d5f541ed
CL
776#ifdef CONFIG_NUMA
777 return zone->node;
778#else
779 return 0;
780#endif
89fa3024
CL
781}
782
89689ae7 783#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 784extern int page_to_nid(const struct page *page);
89689ae7 785#else
33dd4e0e 786static inline int page_to_nid(const struct page *page)
d41dee36 787{
89689ae7 788 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 789}
89689ae7
CL
790#endif
791
57e0a030 792#ifdef CONFIG_NUMA_BALANCING
90572890 793static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 794{
90572890 795 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
796}
797
90572890 798static inline int cpupid_to_pid(int cpupid)
57e0a030 799{
90572890 800 return cpupid & LAST__PID_MASK;
57e0a030 801}
b795854b 802
90572890 803static inline int cpupid_to_cpu(int cpupid)
b795854b 804{
90572890 805 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
806}
807
90572890 808static inline int cpupid_to_nid(int cpupid)
b795854b 809{
90572890 810 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
811}
812
90572890 813static inline bool cpupid_pid_unset(int cpupid)
57e0a030 814{
90572890 815 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
816}
817
90572890 818static inline bool cpupid_cpu_unset(int cpupid)
b795854b 819{
90572890 820 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
821}
822
8c8a743c
PZ
823static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
824{
825 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
826}
827
828#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
829#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
830static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 831{
1ae71d03 832 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 833}
90572890
PZ
834
835static inline int page_cpupid_last(struct page *page)
836{
837 return page->_last_cpupid;
838}
839static inline void page_cpupid_reset_last(struct page *page)
b795854b 840{
1ae71d03 841 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
842}
843#else
90572890 844static inline int page_cpupid_last(struct page *page)
75980e97 845{
90572890 846 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
847}
848
90572890 849extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 850
90572890 851static inline void page_cpupid_reset_last(struct page *page)
75980e97 852{
90572890 853 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 854
90572890
PZ
855 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
856 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 857}
90572890
PZ
858#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
859#else /* !CONFIG_NUMA_BALANCING */
860static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 861{
90572890 862 return page_to_nid(page); /* XXX */
57e0a030
MG
863}
864
90572890 865static inline int page_cpupid_last(struct page *page)
57e0a030 866{
90572890 867 return page_to_nid(page); /* XXX */
57e0a030
MG
868}
869
90572890 870static inline int cpupid_to_nid(int cpupid)
b795854b
MG
871{
872 return -1;
873}
874
90572890 875static inline int cpupid_to_pid(int cpupid)
b795854b
MG
876{
877 return -1;
878}
879
90572890 880static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
881{
882 return -1;
883}
884
90572890
PZ
885static inline int cpu_pid_to_cpupid(int nid, int pid)
886{
887 return -1;
888}
889
890static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
891{
892 return 1;
893}
894
90572890 895static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
896{
897}
8c8a743c
PZ
898
899static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
900{
901 return false;
902}
90572890 903#endif /* CONFIG_NUMA_BALANCING */
57e0a030 904
33dd4e0e 905static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
906{
907 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
908}
909
9127ab4f 910#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
911static inline void set_page_section(struct page *page, unsigned long section)
912{
913 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
914 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
915}
916
aa462abe 917static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
918{
919 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
920}
308c05e3 921#endif
d41dee36 922
2f1b6248 923static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
924{
925 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
926 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
927}
2f1b6248 928
348f8b6c
DH
929static inline void set_page_node(struct page *page, unsigned long node)
930{
931 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
932 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 933}
89689ae7 934
2f1b6248 935static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 936 unsigned long node, unsigned long pfn)
1da177e4 937{
348f8b6c
DH
938 set_page_zone(page, zone);
939 set_page_node(page, node);
9127ab4f 940#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 941 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 942#endif
1da177e4
LT
943}
944
f6ac2354
CL
945/*
946 * Some inline functions in vmstat.h depend on page_zone()
947 */
948#include <linux/vmstat.h>
949
33dd4e0e 950static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 951{
aa462abe 952 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
953}
954
955#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
956#define HASHED_PAGE_VIRTUAL
957#endif
958
959#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
960static inline void *page_address(const struct page *page)
961{
962 return page->virtual;
963}
964static inline void set_page_address(struct page *page, void *address)
965{
966 page->virtual = address;
967}
1da177e4
LT
968#define page_address_init() do { } while(0)
969#endif
970
971#if defined(HASHED_PAGE_VIRTUAL)
f9918794 972void *page_address(const struct page *page);
1da177e4
LT
973void set_page_address(struct page *page, void *virtual);
974void page_address_init(void);
975#endif
976
977#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
978#define page_address(page) lowmem_page_address(page)
979#define set_page_address(page, address) do { } while(0)
980#define page_address_init() do { } while(0)
981#endif
982
983/*
984 * On an anonymous page mapped into a user virtual memory area,
985 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
986 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
987 *
988 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
989 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
990 * and then page->mapping points, not to an anon_vma, but to a private
991 * structure which KSM associates with that merged page. See ksm.h.
992 *
993 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
994 *
995 * Please note that, confusingly, "page_mapping" refers to the inode
996 * address_space which maps the page from disk; whereas "page_mapped"
997 * refers to user virtual address space into which the page is mapped.
998 */
999#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
1000#define PAGE_MAPPING_KSM 2
1001#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4 1002
9800339b 1003extern struct address_space *page_mapping(struct page *page);
1da177e4 1004
3ca7b3c5
HD
1005/* Neutral page->mapping pointer to address_space or anon_vma or other */
1006static inline void *page_rmapping(struct page *page)
1007{
1008 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
1009}
1010
f981c595
MG
1011extern struct address_space *__page_file_mapping(struct page *);
1012
1013static inline
1014struct address_space *page_file_mapping(struct page *page)
1015{
1016 if (unlikely(PageSwapCache(page)))
1017 return __page_file_mapping(page);
1018
1019 return page->mapping;
1020}
1021
1da177e4
LT
1022static inline int PageAnon(struct page *page)
1023{
1024 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
1025}
1026
1027/*
1028 * Return the pagecache index of the passed page. Regular pagecache pages
1029 * use ->index whereas swapcache pages use ->private
1030 */
1031static inline pgoff_t page_index(struct page *page)
1032{
1033 if (unlikely(PageSwapCache(page)))
4c21e2f2 1034 return page_private(page);
1da177e4
LT
1035 return page->index;
1036}
1037
f981c595
MG
1038extern pgoff_t __page_file_index(struct page *page);
1039
1040/*
1041 * Return the file index of the page. Regular pagecache pages use ->index
1042 * whereas swapcache pages use swp_offset(->private)
1043 */
1044static inline pgoff_t page_file_index(struct page *page)
1045{
1046 if (unlikely(PageSwapCache(page)))
1047 return __page_file_index(page);
1048
1049 return page->index;
1050}
1051
1da177e4
LT
1052/*
1053 * Return true if this page is mapped into pagetables.
1054 */
1055static inline int page_mapped(struct page *page)
1056{
1057 return atomic_read(&(page)->_mapcount) >= 0;
1058}
1059
1da177e4
LT
1060/*
1061 * Different kinds of faults, as returned by handle_mm_fault().
1062 * Used to decide whether a process gets delivered SIGBUS or
1063 * just gets major/minor fault counters bumped up.
1064 */
d0217ac0 1065
83c54070 1066#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1067
83c54070
NP
1068#define VM_FAULT_OOM 0x0001
1069#define VM_FAULT_SIGBUS 0x0002
1070#define VM_FAULT_MAJOR 0x0004
1071#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1072#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1073#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 1074
83c54070
NP
1075#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1076#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1077#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1078#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1079
aa50d3a7
AK
1080#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1081
1082#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
c0292554 1083 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
aa50d3a7
AK
1084
1085/* Encode hstate index for a hwpoisoned large page */
1086#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1087#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1088
1c0fe6e3
NP
1089/*
1090 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1091 */
1092extern void pagefault_out_of_memory(void);
1093
1da177e4
LT
1094#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1095
ddd588b5 1096/*
7bf02ea2 1097 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1098 * various contexts.
1099 */
4b59e6c4 1100#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1101
7bf02ea2
DR
1102extern void show_free_areas(unsigned int flags);
1103extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1104
1da177e4 1105int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1106#ifdef CONFIG_SHMEM
1107bool shmem_mapping(struct address_space *mapping);
1108#else
1109static inline bool shmem_mapping(struct address_space *mapping)
1110{
1111 return false;
1112}
1113#endif
1da177e4 1114
e8edc6e0 1115extern int can_do_mlock(void);
1da177e4
LT
1116extern int user_shm_lock(size_t, struct user_struct *);
1117extern void user_shm_unlock(size_t, struct user_struct *);
1118
1119/*
1120 * Parameter block passed down to zap_pte_range in exceptional cases.
1121 */
1122struct zap_details {
1123 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1124 struct address_space *check_mapping; /* Check page->mapping if set */
1125 pgoff_t first_index; /* Lowest page->index to unmap */
1126 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1127};
1128
7e675137
NP
1129struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1130 pte_t pte);
1131
c627f9cc
JS
1132int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1133 unsigned long size);
14f5ff5d 1134void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1135 unsigned long size, struct zap_details *);
4f74d2c8
LT
1136void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1137 unsigned long start, unsigned long end);
e6473092
MM
1138
1139/**
1140 * mm_walk - callbacks for walk_page_range
1141 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1142 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1143 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1144 * this handler is required to be able to handle
1145 * pmd_trans_huge() pmds. They may simply choose to
1146 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1147 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1148 * @pte_hole: if set, called for each hole at all levels
5dc37642 1149 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
1150 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1151 * is used.
e6473092
MM
1152 *
1153 * (see walk_page_range for more details)
1154 */
1155struct mm_walk {
0f157a5b
AM
1156 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1157 unsigned long next, struct mm_walk *walk);
1158 int (*pud_entry)(pud_t *pud, unsigned long addr,
1159 unsigned long next, struct mm_walk *walk);
1160 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1161 unsigned long next, struct mm_walk *walk);
1162 int (*pte_entry)(pte_t *pte, unsigned long addr,
1163 unsigned long next, struct mm_walk *walk);
1164 int (*pte_hole)(unsigned long addr, unsigned long next,
1165 struct mm_walk *walk);
1166 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1167 unsigned long addr, unsigned long next,
1168 struct mm_walk *walk);
2165009b
DH
1169 struct mm_struct *mm;
1170 void *private;
e6473092
MM
1171};
1172
2165009b
DH
1173int walk_page_range(unsigned long addr, unsigned long end,
1174 struct mm_walk *walk);
42b77728 1175void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1176 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1177int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1178 struct vm_area_struct *vma);
1da177e4
LT
1179void unmap_mapping_range(struct address_space *mapping,
1180 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1181int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1182 unsigned long *pfn);
d87fe660 1183int follow_phys(struct vm_area_struct *vma, unsigned long address,
1184 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1185int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1186 void *buf, int len, int write);
1da177e4
LT
1187
1188static inline void unmap_shared_mapping_range(struct address_space *mapping,
1189 loff_t const holebegin, loff_t const holelen)
1190{
1191 unmap_mapping_range(mapping, holebegin, holelen, 0);
1192}
1193
7caef267 1194extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1195extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1196void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1197void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1198int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1199int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1200int invalidate_inode_page(struct page *page);
1201
7ee1dd3f 1202#ifdef CONFIG_MMU
83c54070 1203extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1204 unsigned long address, unsigned int flags);
5c723ba5
PZ
1205extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1206 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1207#else
1208static inline int handle_mm_fault(struct mm_struct *mm,
1209 struct vm_area_struct *vma, unsigned long address,
d06063cc 1210 unsigned int flags)
7ee1dd3f
DH
1211{
1212 /* should never happen if there's no MMU */
1213 BUG();
1214 return VM_FAULT_SIGBUS;
1215}
5c723ba5
PZ
1216static inline int fixup_user_fault(struct task_struct *tsk,
1217 struct mm_struct *mm, unsigned long address,
1218 unsigned int fault_flags)
1219{
1220 /* should never happen if there's no MMU */
1221 BUG();
1222 return -EFAULT;
1223}
7ee1dd3f 1224#endif
f33ea7f4 1225
1da177e4 1226extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1227extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1228 void *buf, int len, int write);
1da177e4 1229
28a35716
ML
1230long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1231 unsigned long start, unsigned long nr_pages,
1232 unsigned int foll_flags, struct page **pages,
1233 struct vm_area_struct **vmas, int *nonblocking);
1234long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1235 unsigned long start, unsigned long nr_pages,
1236 int write, int force, struct page **pages,
1237 struct vm_area_struct **vmas);
d2bf6be8
NP
1238int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1239 struct page **pages);
18022c5d
MG
1240struct kvec;
1241int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1242 struct page **pages);
1243int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1244struct page *get_dump_page(unsigned long addr);
1da177e4 1245
cf9a2ae8 1246extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1247extern void do_invalidatepage(struct page *page, unsigned int offset,
1248 unsigned int length);
cf9a2ae8 1249
1da177e4 1250int __set_page_dirty_nobuffers(struct page *page);
76719325 1251int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1252int redirty_page_for_writepage(struct writeback_control *wbc,
1253 struct page *page);
e3a7cca1 1254void account_page_dirtied(struct page *page, struct address_space *mapping);
b3c97528 1255int set_page_dirty(struct page *page);
1da177e4
LT
1256int set_page_dirty_lock(struct page *page);
1257int clear_page_dirty_for_io(struct page *page);
a9090253 1258int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1259
39aa3cb3 1260/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1261static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1262{
1263 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1264}
1265
a09a79f6
MP
1266static inline int stack_guard_page_start(struct vm_area_struct *vma,
1267 unsigned long addr)
1268{
1269 return (vma->vm_flags & VM_GROWSDOWN) &&
1270 (vma->vm_start == addr) &&
1271 !vma_growsdown(vma->vm_prev, addr);
1272}
1273
1274/* Is the vma a continuation of the stack vma below it? */
1275static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1276{
1277 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1278}
1279
1280static inline int stack_guard_page_end(struct vm_area_struct *vma,
1281 unsigned long addr)
1282{
1283 return (vma->vm_flags & VM_GROWSUP) &&
1284 (vma->vm_end == addr) &&
1285 !vma_growsup(vma->vm_next, addr);
1286}
1287
58cb6548
ON
1288extern struct task_struct *task_of_stack(struct task_struct *task,
1289 struct vm_area_struct *vma, bool in_group);
b7643757 1290
b6a2fea3
OW
1291extern unsigned long move_page_tables(struct vm_area_struct *vma,
1292 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1293 unsigned long new_addr, unsigned long len,
1294 bool need_rmap_locks);
7da4d641
PZ
1295extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1296 unsigned long end, pgprot_t newprot,
4b10e7d5 1297 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1298extern int mprotect_fixup(struct vm_area_struct *vma,
1299 struct vm_area_struct **pprev, unsigned long start,
1300 unsigned long end, unsigned long newflags);
1da177e4 1301
465a454f
PZ
1302/*
1303 * doesn't attempt to fault and will return short.
1304 */
1305int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1306 struct page **pages);
d559db08
KH
1307/*
1308 * per-process(per-mm_struct) statistics.
1309 */
d559db08
KH
1310static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1311{
69c97823
KK
1312 long val = atomic_long_read(&mm->rss_stat.count[member]);
1313
1314#ifdef SPLIT_RSS_COUNTING
1315 /*
1316 * counter is updated in asynchronous manner and may go to minus.
1317 * But it's never be expected number for users.
1318 */
1319 if (val < 0)
1320 val = 0;
172703b0 1321#endif
69c97823
KK
1322 return (unsigned long)val;
1323}
d559db08
KH
1324
1325static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1326{
172703b0 1327 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1328}
1329
1330static inline void inc_mm_counter(struct mm_struct *mm, int member)
1331{
172703b0 1332 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1333}
1334
1335static inline void dec_mm_counter(struct mm_struct *mm, int member)
1336{
172703b0 1337 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1338}
1339
d559db08
KH
1340static inline unsigned long get_mm_rss(struct mm_struct *mm)
1341{
1342 return get_mm_counter(mm, MM_FILEPAGES) +
1343 get_mm_counter(mm, MM_ANONPAGES);
1344}
1345
1346static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1347{
1348 return max(mm->hiwater_rss, get_mm_rss(mm));
1349}
1350
1351static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1352{
1353 return max(mm->hiwater_vm, mm->total_vm);
1354}
1355
1356static inline void update_hiwater_rss(struct mm_struct *mm)
1357{
1358 unsigned long _rss = get_mm_rss(mm);
1359
1360 if ((mm)->hiwater_rss < _rss)
1361 (mm)->hiwater_rss = _rss;
1362}
1363
1364static inline void update_hiwater_vm(struct mm_struct *mm)
1365{
1366 if (mm->hiwater_vm < mm->total_vm)
1367 mm->hiwater_vm = mm->total_vm;
1368}
1369
1370static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1371 struct mm_struct *mm)
1372{
1373 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1374
1375 if (*maxrss < hiwater_rss)
1376 *maxrss = hiwater_rss;
1377}
1378
53bddb4e 1379#if defined(SPLIT_RSS_COUNTING)
05af2e10 1380void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1381#else
05af2e10 1382static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1383{
1384}
1385#endif
465a454f 1386
4e950f6f 1387int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1388
25ca1d6c
NK
1389extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1390 spinlock_t **ptl);
1391static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1392 spinlock_t **ptl)
1393{
1394 pte_t *ptep;
1395 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1396 return ptep;
1397}
c9cfcddf 1398
5f22df00
NP
1399#ifdef __PAGETABLE_PUD_FOLDED
1400static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1401 unsigned long address)
1402{
1403 return 0;
1404}
1405#else
1bb3630e 1406int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1407#endif
1408
1409#ifdef __PAGETABLE_PMD_FOLDED
1410static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1411 unsigned long address)
1412{
1413 return 0;
1414}
1415#else
1bb3630e 1416int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1417#endif
1418
8ac1f832
AA
1419int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1420 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1421int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1422
1da177e4
LT
1423/*
1424 * The following ifdef needed to get the 4level-fixup.h header to work.
1425 * Remove it when 4level-fixup.h has been removed.
1426 */
1bb3630e 1427#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1428static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1429{
1bb3630e
HD
1430 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1431 NULL: pud_offset(pgd, address);
1da177e4
LT
1432}
1433
1434static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1435{
1bb3630e
HD
1436 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1437 NULL: pmd_offset(pud, address);
1da177e4 1438}
1bb3630e
HD
1439#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1440
57c1ffce 1441#if USE_SPLIT_PTE_PTLOCKS
597d795a 1442#if ALLOC_SPLIT_PTLOCKS
b35f1819 1443void __init ptlock_cache_init(void);
539edb58
PZ
1444extern bool ptlock_alloc(struct page *page);
1445extern void ptlock_free(struct page *page);
1446
1447static inline spinlock_t *ptlock_ptr(struct page *page)
1448{
1449 return page->ptl;
1450}
597d795a 1451#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1452static inline void ptlock_cache_init(void)
1453{
1454}
1455
49076ec2
KS
1456static inline bool ptlock_alloc(struct page *page)
1457{
49076ec2
KS
1458 return true;
1459}
539edb58 1460
49076ec2
KS
1461static inline void ptlock_free(struct page *page)
1462{
49076ec2
KS
1463}
1464
1465static inline spinlock_t *ptlock_ptr(struct page *page)
1466{
539edb58 1467 return &page->ptl;
49076ec2 1468}
597d795a 1469#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1470
1471static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1472{
1473 return ptlock_ptr(pmd_page(*pmd));
1474}
1475
1476static inline bool ptlock_init(struct page *page)
1477{
1478 /*
1479 * prep_new_page() initialize page->private (and therefore page->ptl)
1480 * with 0. Make sure nobody took it in use in between.
1481 *
1482 * It can happen if arch try to use slab for page table allocation:
1483 * slab code uses page->slab_cache and page->first_page (for tail
1484 * pages), which share storage with page->ptl.
1485 */
309381fe 1486 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1487 if (!ptlock_alloc(page))
1488 return false;
1489 spin_lock_init(ptlock_ptr(page));
1490 return true;
1491}
1492
1493/* Reset page->mapping so free_pages_check won't complain. */
1494static inline void pte_lock_deinit(struct page *page)
1495{
1496 page->mapping = NULL;
1497 ptlock_free(page);
1498}
1499
57c1ffce 1500#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1501/*
1502 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1503 */
49076ec2
KS
1504static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1505{
1506 return &mm->page_table_lock;
1507}
b35f1819 1508static inline void ptlock_cache_init(void) {}
49076ec2
KS
1509static inline bool ptlock_init(struct page *page) { return true; }
1510static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1511#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1512
b35f1819
KS
1513static inline void pgtable_init(void)
1514{
1515 ptlock_cache_init();
1516 pgtable_cache_init();
1517}
1518
390f44e2 1519static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1520{
2f569afd 1521 inc_zone_page_state(page, NR_PAGETABLE);
49076ec2 1522 return ptlock_init(page);
2f569afd
MS
1523}
1524
1525static inline void pgtable_page_dtor(struct page *page)
1526{
1527 pte_lock_deinit(page);
1528 dec_zone_page_state(page, NR_PAGETABLE);
1529}
1530
c74df32c
HD
1531#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1532({ \
4c21e2f2 1533 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1534 pte_t *__pte = pte_offset_map(pmd, address); \
1535 *(ptlp) = __ptl; \
1536 spin_lock(__ptl); \
1537 __pte; \
1538})
1539
1540#define pte_unmap_unlock(pte, ptl) do { \
1541 spin_unlock(ptl); \
1542 pte_unmap(pte); \
1543} while (0)
1544
8ac1f832
AA
1545#define pte_alloc_map(mm, vma, pmd, address) \
1546 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1547 pmd, address))? \
1548 NULL: pte_offset_map(pmd, address))
1bb3630e 1549
c74df32c 1550#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1551 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1552 pmd, address))? \
c74df32c
HD
1553 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1554
1bb3630e 1555#define pte_alloc_kernel(pmd, address) \
8ac1f832 1556 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1557 NULL: pte_offset_kernel(pmd, address))
1da177e4 1558
e009bb30
KS
1559#if USE_SPLIT_PMD_PTLOCKS
1560
634391ac
MS
1561static struct page *pmd_to_page(pmd_t *pmd)
1562{
1563 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1564 return virt_to_page((void *)((unsigned long) pmd & mask));
1565}
1566
e009bb30
KS
1567static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1568{
634391ac 1569 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1570}
1571
1572static inline bool pgtable_pmd_page_ctor(struct page *page)
1573{
e009bb30
KS
1574#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1575 page->pmd_huge_pte = NULL;
1576#endif
49076ec2 1577 return ptlock_init(page);
e009bb30
KS
1578}
1579
1580static inline void pgtable_pmd_page_dtor(struct page *page)
1581{
1582#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1583 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1584#endif
49076ec2 1585 ptlock_free(page);
e009bb30
KS
1586}
1587
634391ac 1588#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1589
1590#else
1591
9a86cb7b
KS
1592static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1593{
1594 return &mm->page_table_lock;
1595}
1596
e009bb30
KS
1597static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1598static inline void pgtable_pmd_page_dtor(struct page *page) {}
1599
c389a250 1600#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1601
e009bb30
KS
1602#endif
1603
9a86cb7b
KS
1604static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1605{
1606 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1607 spin_lock(ptl);
1608 return ptl;
1609}
1610
1da177e4 1611extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1612extern void free_area_init_node(int nid, unsigned long * zones_size,
1613 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1614extern void free_initmem(void);
1615
69afade7
JL
1616/*
1617 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1618 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1619 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1620 * Return pages freed into the buddy system.
1621 */
11199692 1622extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1623 int poison, char *s);
c3d5f5f0 1624
cfa11e08
JL
1625#ifdef CONFIG_HIGHMEM
1626/*
1627 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1628 * and totalram_pages.
1629 */
1630extern void free_highmem_page(struct page *page);
1631#endif
69afade7 1632
c3d5f5f0 1633extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1634extern void mem_init_print_info(const char *str);
69afade7
JL
1635
1636/* Free the reserved page into the buddy system, so it gets managed. */
1637static inline void __free_reserved_page(struct page *page)
1638{
1639 ClearPageReserved(page);
1640 init_page_count(page);
1641 __free_page(page);
1642}
1643
1644static inline void free_reserved_page(struct page *page)
1645{
1646 __free_reserved_page(page);
1647 adjust_managed_page_count(page, 1);
1648}
1649
1650static inline void mark_page_reserved(struct page *page)
1651{
1652 SetPageReserved(page);
1653 adjust_managed_page_count(page, -1);
1654}
1655
1656/*
1657 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1658 * The freed pages will be poisoned with pattern "poison" if it's within
1659 * range [0, UCHAR_MAX].
1660 * Return pages freed into the buddy system.
69afade7
JL
1661 */
1662static inline unsigned long free_initmem_default(int poison)
1663{
1664 extern char __init_begin[], __init_end[];
1665
11199692 1666 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1667 poison, "unused kernel");
1668}
1669
7ee3d4e8
JL
1670static inline unsigned long get_num_physpages(void)
1671{
1672 int nid;
1673 unsigned long phys_pages = 0;
1674
1675 for_each_online_node(nid)
1676 phys_pages += node_present_pages(nid);
1677
1678 return phys_pages;
1679}
1680
0ee332c1 1681#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1682/*
0ee332c1 1683 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1684 * zones, allocate the backing mem_map and account for memory holes in a more
1685 * architecture independent manner. This is a substitute for creating the
1686 * zone_sizes[] and zholes_size[] arrays and passing them to
1687 * free_area_init_node()
1688 *
1689 * An architecture is expected to register range of page frames backed by
0ee332c1 1690 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1691 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1692 * usage, an architecture is expected to do something like
1693 *
1694 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1695 * max_highmem_pfn};
1696 * for_each_valid_physical_page_range()
0ee332c1 1697 * memblock_add_node(base, size, nid)
c713216d
MG
1698 * free_area_init_nodes(max_zone_pfns);
1699 *
0ee332c1
TH
1700 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1701 * registered physical page range. Similarly
1702 * sparse_memory_present_with_active_regions() calls memory_present() for
1703 * each range when SPARSEMEM is enabled.
c713216d
MG
1704 *
1705 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1706 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1707 */
1708extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1709unsigned long node_map_pfn_alignment(void);
32996250
YL
1710unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1711 unsigned long end_pfn);
c713216d
MG
1712extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1713 unsigned long end_pfn);
1714extern void get_pfn_range_for_nid(unsigned int nid,
1715 unsigned long *start_pfn, unsigned long *end_pfn);
1716extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1717extern void free_bootmem_with_active_regions(int nid,
1718 unsigned long max_low_pfn);
1719extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1720
0ee332c1 1721#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1722
0ee332c1 1723#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1724 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1725static inline int __early_pfn_to_nid(unsigned long pfn)
1726{
1727 return 0;
1728}
1729#else
1730/* please see mm/page_alloc.c */
1731extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
1732/* there is a per-arch backend function. */
1733extern int __meminit __early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
1734#endif
1735
0e0b864e 1736extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1737extern void memmap_init_zone(unsigned long, int, unsigned long,
1738 unsigned long, enum memmap_context);
bc75d33f 1739extern void setup_per_zone_wmarks(void);
1b79acc9 1740extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1741extern void mem_init(void);
8feae131 1742extern void __init mmap_init(void);
b2b755b5 1743extern void show_mem(unsigned int flags);
1da177e4
LT
1744extern void si_meminfo(struct sysinfo * val);
1745extern void si_meminfo_node(struct sysinfo *val, int nid);
1746
3ee9a4f0
JP
1747extern __printf(3, 4)
1748void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1749
e7c8d5c9 1750extern void setup_per_cpu_pageset(void);
e7c8d5c9 1751
112067f0 1752extern void zone_pcp_update(struct zone *zone);
340175b7 1753extern void zone_pcp_reset(struct zone *zone);
112067f0 1754
75f7ad8e
PS
1755/* page_alloc.c */
1756extern int min_free_kbytes;
1757
8feae131 1758/* nommu.c */
33e5d769 1759extern atomic_long_t mmap_pages_allocated;
7e660872 1760extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1761
6b2dbba8 1762/* interval_tree.c */
6b2dbba8
ML
1763void vma_interval_tree_insert(struct vm_area_struct *node,
1764 struct rb_root *root);
9826a516
ML
1765void vma_interval_tree_insert_after(struct vm_area_struct *node,
1766 struct vm_area_struct *prev,
1767 struct rb_root *root);
6b2dbba8
ML
1768void vma_interval_tree_remove(struct vm_area_struct *node,
1769 struct rb_root *root);
1770struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1771 unsigned long start, unsigned long last);
1772struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1773 unsigned long start, unsigned long last);
1774
1775#define vma_interval_tree_foreach(vma, root, start, last) \
1776 for (vma = vma_interval_tree_iter_first(root, start, last); \
1777 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4
LT
1778
1779static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1780 struct list_head *list)
1781{
6b2dbba8 1782 list_add_tail(&vma->shared.nonlinear, list);
1da177e4
LT
1783}
1784
bf181b9f
ML
1785void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1786 struct rb_root *root);
1787void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1788 struct rb_root *root);
1789struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1790 struct rb_root *root, unsigned long start, unsigned long last);
1791struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1792 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1793#ifdef CONFIG_DEBUG_VM_RB
1794void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1795#endif
bf181b9f
ML
1796
1797#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1798 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1799 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1800
1da177e4 1801/* mmap.c */
34b4e4aa 1802extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1803extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1804 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1805extern struct vm_area_struct *vma_merge(struct mm_struct *,
1806 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1807 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1808 struct mempolicy *);
1809extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1810extern int split_vma(struct mm_struct *,
1811 struct vm_area_struct *, unsigned long addr, int new_below);
1812extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1813extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1814 struct rb_node **, struct rb_node *);
a8fb5618 1815extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1816extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1817 unsigned long addr, unsigned long len, pgoff_t pgoff,
1818 bool *need_rmap_locks);
1da177e4 1819extern void exit_mmap(struct mm_struct *);
925d1c40 1820
9c599024
CG
1821static inline int check_data_rlimit(unsigned long rlim,
1822 unsigned long new,
1823 unsigned long start,
1824 unsigned long end_data,
1825 unsigned long start_data)
1826{
1827 if (rlim < RLIM_INFINITY) {
1828 if (((new - start) + (end_data - start_data)) > rlim)
1829 return -ENOSPC;
1830 }
1831
1832 return 0;
1833}
1834
7906d00c
AA
1835extern int mm_take_all_locks(struct mm_struct *mm);
1836extern void mm_drop_all_locks(struct mm_struct *mm);
1837
38646013
JS
1838extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1839extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1840
119f657c 1841extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
3935ed6a
SS
1842extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1843 unsigned long addr, unsigned long len,
a62c34bd
AL
1844 unsigned long flags,
1845 const struct vm_special_mapping *spec);
1846/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
1847extern int install_special_mapping(struct mm_struct *mm,
1848 unsigned long addr, unsigned long len,
1849 unsigned long flags, struct page **pages);
1da177e4
LT
1850
1851extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1852
0165ab44 1853extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1854 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1855extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1856 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1857 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1858extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1859
bebeb3d6
ML
1860#ifdef CONFIG_MMU
1861extern int __mm_populate(unsigned long addr, unsigned long len,
1862 int ignore_errors);
1863static inline void mm_populate(unsigned long addr, unsigned long len)
1864{
1865 /* Ignore errors */
1866 (void) __mm_populate(addr, len, 1);
1867}
1868#else
1869static inline void mm_populate(unsigned long addr, unsigned long len) {}
1870#endif
1871
e4eb1ff6
LT
1872/* These take the mm semaphore themselves */
1873extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1874extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1875extern unsigned long vm_mmap(struct file *, unsigned long,
1876 unsigned long, unsigned long,
1877 unsigned long, unsigned long);
1da177e4 1878
db4fbfb9
ML
1879struct vm_unmapped_area_info {
1880#define VM_UNMAPPED_AREA_TOPDOWN 1
1881 unsigned long flags;
1882 unsigned long length;
1883 unsigned long low_limit;
1884 unsigned long high_limit;
1885 unsigned long align_mask;
1886 unsigned long align_offset;
1887};
1888
1889extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1890extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1891
1892/*
1893 * Search for an unmapped address range.
1894 *
1895 * We are looking for a range that:
1896 * - does not intersect with any VMA;
1897 * - is contained within the [low_limit, high_limit) interval;
1898 * - is at least the desired size.
1899 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1900 */
1901static inline unsigned long
1902vm_unmapped_area(struct vm_unmapped_area_info *info)
1903{
1904 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1905 return unmapped_area(info);
1906 else
1907 return unmapped_area_topdown(info);
1908}
1909
85821aab 1910/* truncate.c */
1da177e4 1911extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1912extern void truncate_inode_pages_range(struct address_space *,
1913 loff_t lstart, loff_t lend);
91b0abe3 1914extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
1915
1916/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1917extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 1918extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 1919extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1920
1921/* mm/page-writeback.c */
1922int write_one_page(struct page *page, int wait);
1cf6e7d8 1923void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1924
1925/* readahead.c */
1926#define VM_MAX_READAHEAD 128 /* kbytes */
1927#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1928
1da177e4 1929int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1930 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1931
1932void page_cache_sync_readahead(struct address_space *mapping,
1933 struct file_ra_state *ra,
1934 struct file *filp,
1935 pgoff_t offset,
1936 unsigned long size);
1937
1938void page_cache_async_readahead(struct address_space *mapping,
1939 struct file_ra_state *ra,
1940 struct file *filp,
1941 struct page *pg,
1942 pgoff_t offset,
1943 unsigned long size);
1944
1da177e4
LT
1945unsigned long max_sane_readahead(unsigned long nr);
1946
d05f3169 1947/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1948extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1949
1950/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1951extern int expand_downwards(struct vm_area_struct *vma,
1952 unsigned long address);
8ca3eb08 1953#if VM_GROWSUP
46dea3d0 1954extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
LT
1955#else
1956 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1957#endif
1da177e4
LT
1958
1959/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1960extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1961extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1962 struct vm_area_struct **pprev);
1963
1964/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1965 NULL if none. Assume start_addr < end_addr. */
1966static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1967{
1968 struct vm_area_struct * vma = find_vma(mm,start_addr);
1969
1970 if (vma && end_addr <= vma->vm_start)
1971 vma = NULL;
1972 return vma;
1973}
1974
1975static inline unsigned long vma_pages(struct vm_area_struct *vma)
1976{
1977 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1978}
1979
640708a2
PE
1980/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1981static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1982 unsigned long vm_start, unsigned long vm_end)
1983{
1984 struct vm_area_struct *vma = find_vma(mm, vm_start);
1985
1986 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1987 vma = NULL;
1988
1989 return vma;
1990}
1991
bad849b3 1992#ifdef CONFIG_MMU
804af2cf 1993pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 1994void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
1995#else
1996static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1997{
1998 return __pgprot(0);
1999}
64e45507
PF
2000static inline void vma_set_page_prot(struct vm_area_struct *vma)
2001{
2002 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2003}
bad849b3
DH
2004#endif
2005
5877231f 2006#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2007unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2008 unsigned long start, unsigned long end);
2009#endif
2010
deceb6cd 2011struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2012int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2013 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2014int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2015int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2016 unsigned long pfn);
423bad60
NP
2017int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2018 unsigned long pfn);
b4cbb197
LT
2019int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2020
deceb6cd 2021
240aadee
ML
2022struct page *follow_page_mask(struct vm_area_struct *vma,
2023 unsigned long address, unsigned int foll_flags,
2024 unsigned int *page_mask);
2025
2026static inline struct page *follow_page(struct vm_area_struct *vma,
2027 unsigned long address, unsigned int foll_flags)
2028{
2029 unsigned int unused_page_mask;
2030 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2031}
2032
deceb6cd
HD
2033#define FOLL_WRITE 0x01 /* check pte is writable */
2034#define FOLL_TOUCH 0x02 /* mark page accessed */
2035#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2036#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2037#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2038#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2039 * and return without waiting upon it */
110d74a9 2040#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 2041#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2042#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2043#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2044#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2045#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
1da177e4 2046
2f569afd 2047typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2048 void *data);
2049extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2050 unsigned long size, pte_fn_t fn, void *data);
2051
1da177e4 2052#ifdef CONFIG_PROC_FS
ab50b8ed 2053void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 2054#else
ab50b8ed 2055static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
2056 unsigned long flags, struct file *file, long pages)
2057{
44de9d0c 2058 mm->total_vm += pages;
1da177e4
LT
2059}
2060#endif /* CONFIG_PROC_FS */
2061
12d6f21e 2062#ifdef CONFIG_DEBUG_PAGEALLOC
12d6f21e 2063extern void kernel_map_pages(struct page *page, int numpages, int enable);
8a235efa
RW
2064#ifdef CONFIG_HIBERNATION
2065extern bool kernel_page_present(struct page *page);
2066#endif /* CONFIG_HIBERNATION */
12d6f21e 2067#else
1da177e4 2068static inline void
9858db50 2069kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2070#ifdef CONFIG_HIBERNATION
2071static inline bool kernel_page_present(struct page *page) { return true; }
2072#endif /* CONFIG_HIBERNATION */
1da177e4
LT
2073#endif
2074
a6c19dfe 2075#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2076extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2077extern int in_gate_area_no_mm(unsigned long addr);
2078extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2079#else
a6c19dfe
AL
2080static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2081{
2082 return NULL;
2083}
2084static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2085static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2086{
2087 return 0;
2088}
1da177e4
LT
2089#endif /* __HAVE_ARCH_GATE_AREA */
2090
146732ce
JT
2091#ifdef CONFIG_SYSCTL
2092extern int sysctl_drop_caches;
8d65af78 2093int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2094 void __user *, size_t *, loff_t *);
146732ce
JT
2095#endif
2096
a09ed5e0 2097unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
2098 unsigned long nr_pages_scanned,
2099 unsigned long lru_pages);
9d0243bc 2100
7a9166e3
LY
2101#ifndef CONFIG_MMU
2102#define randomize_va_space 0
2103#else
a62eaf15 2104extern int randomize_va_space;
7a9166e3 2105#endif
a62eaf15 2106
045e72ac 2107const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2108void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2109
9bdac914
YL
2110void sparse_mem_maps_populate_node(struct page **map_map,
2111 unsigned long pnum_begin,
2112 unsigned long pnum_end,
2113 unsigned long map_count,
2114 int nodeid);
2115
98f3cfc1 2116struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2117pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2118pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2119pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2120pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2121void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 2122void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 2123void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2124int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2125 int node);
2126int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2127void vmemmap_populate_print_last(void);
0197518c 2128#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2129void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2130#endif
46723bfa
YI
2131void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2132 unsigned long size);
6a46079c 2133
82ba011b
AK
2134enum mf_flags {
2135 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2136 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2137 MF_MUST_KILL = 1 << 2,
cf870c70 2138 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2139};
cd42f4a3 2140extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2141extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2142extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
2143extern int sysctl_memory_failure_early_kill;
2144extern int sysctl_memory_failure_recovery;
facb6011 2145extern void shake_page(struct page *p, int access);
293c07e3 2146extern atomic_long_t num_poisoned_pages;
facb6011 2147extern int soft_offline_page(struct page *page, int flags);
6a46079c 2148
47ad8475
AA
2149#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2150extern void clear_huge_page(struct page *page,
2151 unsigned long addr,
2152 unsigned int pages_per_huge_page);
2153extern void copy_user_huge_page(struct page *dst, struct page *src,
2154 unsigned long addr, struct vm_area_struct *vma,
2155 unsigned int pages_per_huge_page);
2156#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2157
c0a32fc5
SG
2158#ifdef CONFIG_DEBUG_PAGEALLOC
2159extern unsigned int _debug_guardpage_minorder;
2160
2161static inline unsigned int debug_guardpage_minorder(void)
2162{
2163 return _debug_guardpage_minorder;
2164}
2165
2166static inline bool page_is_guard(struct page *page)
2167{
2168 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2169}
2170#else
2171static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2172static inline bool page_is_guard(struct page *page) { return false; }
2173#endif /* CONFIG_DEBUG_PAGEALLOC */
2174
f9872caf
CS
2175#if MAX_NUMNODES > 1
2176void __init setup_nr_node_ids(void);
2177#else
2178static inline void setup_nr_node_ids(void) {}
2179#endif
2180
1da177e4
LT
2181#endif /* __KERNEL__ */
2182#endif /* _LINUX_MM_H */