mremap: don't leak new_vma if f_op->mremap() fails
[linux-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
1da177e4
LT
23
24struct mempolicy;
25struct anon_vma;
bf181b9f 26struct anon_vma_chain;
4e950f6f 27struct file_ra_state;
e8edc6e0 28struct user_struct;
4e950f6f 29struct writeback_control;
682aa8e1 30struct bdi_writeback;
1da177e4 31
fccc9987 32#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 33extern unsigned long max_mapnr;
fccc9987
JL
34
35static inline void set_max_mapnr(unsigned long limit)
36{
37 max_mapnr = limit;
38}
39#else
40static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
41#endif
42
4481374c 43extern unsigned long totalram_pages;
1da177e4 44extern void * high_memory;
1da177e4
LT
45extern int page_cluster;
46
47#ifdef CONFIG_SYSCTL
48extern int sysctl_legacy_va_layout;
49#else
50#define sysctl_legacy_va_layout 0
51#endif
52
53#include <asm/page.h>
54#include <asm/pgtable.h>
55#include <asm/processor.h>
1da177e4 56
79442ed1
TC
57#ifndef __pa_symbol
58#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
59#endif
60
593befa6
DD
61/*
62 * To prevent common memory management code establishing
63 * a zero page mapping on a read fault.
64 * This macro should be defined within <asm/pgtable.h>.
65 * s390 does this to prevent multiplexing of hardware bits
66 * related to the physical page in case of virtualization.
67 */
68#ifndef mm_forbids_zeropage
69#define mm_forbids_zeropage(X) (0)
70#endif
71
c9b1d098 72extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 73extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 74
49f0ce5f
JM
75extern int sysctl_overcommit_memory;
76extern int sysctl_overcommit_ratio;
77extern unsigned long sysctl_overcommit_kbytes;
78
79extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
80 size_t *, loff_t *);
81extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
82 size_t *, loff_t *);
83
1da177e4
LT
84#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
85
27ac792c
AR
86/* to align the pointer to the (next) page boundary */
87#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
88
0fa73b86
AM
89/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
90#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
91
1da177e4
LT
92/*
93 * Linux kernel virtual memory manager primitives.
94 * The idea being to have a "virtual" mm in the same way
95 * we have a virtual fs - giving a cleaner interface to the
96 * mm details, and allowing different kinds of memory mappings
97 * (from shared memory to executable loading to arbitrary
98 * mmap() functions).
99 */
100
c43692e8
CL
101extern struct kmem_cache *vm_area_cachep;
102
1da177e4 103#ifndef CONFIG_MMU
8feae131
DH
104extern struct rb_root nommu_region_tree;
105extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
106
107extern unsigned int kobjsize(const void *objp);
108#endif
109
110/*
605d9288 111 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 112 */
cc2383ec
KK
113#define VM_NONE 0x00000000
114
1da177e4
LT
115#define VM_READ 0x00000001 /* currently active flags */
116#define VM_WRITE 0x00000002
117#define VM_EXEC 0x00000004
118#define VM_SHARED 0x00000008
119
7e2cff42 120/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
121#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
122#define VM_MAYWRITE 0x00000020
123#define VM_MAYEXEC 0x00000040
124#define VM_MAYSHARE 0x00000080
125
126#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 127#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 128#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 129#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 130#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 131
1da177e4
LT
132#define VM_LOCKED 0x00002000
133#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
134
135 /* Used by sys_madvise() */
136#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
137#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
138
139#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
140#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 141#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 142#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 143#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 144#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 145#define VM_ARCH_2 0x02000000
0103bd16 146#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 147
d9104d1c
CG
148#ifdef CONFIG_MEM_SOFT_DIRTY
149# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
150#else
151# define VM_SOFTDIRTY 0
152#endif
153
b379d790 154#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
155#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
156#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 157#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 158
cc2383ec
KK
159#if defined(CONFIG_X86)
160# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
161#elif defined(CONFIG_PPC)
162# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
163#elif defined(CONFIG_PARISC)
164# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
165#elif defined(CONFIG_METAG)
166# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
167#elif defined(CONFIG_IA64)
168# define VM_GROWSUP VM_ARCH_1
169#elif !defined(CONFIG_MMU)
170# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
171#endif
172
4aae7e43
QR
173#if defined(CONFIG_X86)
174/* MPX specific bounds table or bounds directory */
175# define VM_MPX VM_ARCH_2
176#endif
177
cc2383ec
KK
178#ifndef VM_GROWSUP
179# define VM_GROWSUP VM_NONE
180#endif
181
a8bef8ff
MG
182/* Bits set in the VMA until the stack is in its final location */
183#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
184
1da177e4
LT
185#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
186#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
187#endif
188
189#ifdef CONFIG_STACK_GROWSUP
190#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
191#else
192#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
193#endif
194
b291f000 195/*
78f11a25
AA
196 * Special vmas that are non-mergable, non-mlock()able.
197 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 198 */
9050d7eb 199#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 200
a0715cc2
AT
201/* This mask defines which mm->def_flags a process can inherit its parent */
202#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
203
1da177e4
LT
204/*
205 * mapping from the currently active vm_flags protection bits (the
206 * low four bits) to a page protection mask..
207 */
208extern pgprot_t protection_map[16];
209
d0217ac0 210#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
211#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
212#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
213#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
214#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
215#define FAULT_FLAG_TRIED 0x20 /* Second try */
216#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
d0217ac0 217
54cb8821 218/*
d0217ac0 219 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
220 * ->fault function. The vma's ->fault is responsible for returning a bitmask
221 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 222 *
9b4bdd2f 223 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 224 */
d0217ac0
NP
225struct vm_fault {
226 unsigned int flags; /* FAULT_FLAG_xxx flags */
227 pgoff_t pgoff; /* Logical page offset based on vma */
228 void __user *virtual_address; /* Faulting virtual address */
229
2e4cdab0 230 struct page *cow_page; /* Handler may choose to COW */
d0217ac0 231 struct page *page; /* ->fault handlers should return a
83c54070 232 * page here, unless VM_FAULT_NOPAGE
d0217ac0 233 * is set (which is also implied by
83c54070 234 * VM_FAULT_ERROR).
d0217ac0 235 */
8c6e50b0
KS
236 /* for ->map_pages() only */
237 pgoff_t max_pgoff; /* map pages for offset from pgoff till
238 * max_pgoff inclusive */
239 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 240};
1da177e4
LT
241
242/*
243 * These are the virtual MM functions - opening of an area, closing and
244 * unmapping it (needed to keep files on disk up-to-date etc), pointer
245 * to the functions called when a no-page or a wp-page exception occurs.
246 */
247struct vm_operations_struct {
248 void (*open)(struct vm_area_struct * area);
249 void (*close)(struct vm_area_struct * area);
d0217ac0 250 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
8c6e50b0 251 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
252
253 /* notification that a previously read-only page is about to become
254 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 255 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20 256
dd906184
BH
257 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
258 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
259
28b2ee20
RR
260 /* called by access_process_vm when get_user_pages() fails, typically
261 * for use by special VMAs that can switch between memory and hardware
262 */
263 int (*access)(struct vm_area_struct *vma, unsigned long addr,
264 void *buf, int len, int write);
78d683e8
AL
265
266 /* Called by the /proc/PID/maps code to ask the vma whether it
267 * has a special name. Returning non-NULL will also cause this
268 * vma to be dumped unconditionally. */
269 const char *(*name)(struct vm_area_struct *vma);
270
1da177e4 271#ifdef CONFIG_NUMA
a6020ed7
LS
272 /*
273 * set_policy() op must add a reference to any non-NULL @new mempolicy
274 * to hold the policy upon return. Caller should pass NULL @new to
275 * remove a policy and fall back to surrounding context--i.e. do not
276 * install a MPOL_DEFAULT policy, nor the task or system default
277 * mempolicy.
278 */
1da177e4 279 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
280
281 /*
282 * get_policy() op must add reference [mpol_get()] to any policy at
283 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
284 * in mm/mempolicy.c will do this automatically.
285 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
286 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
287 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
288 * must return NULL--i.e., do not "fallback" to task or system default
289 * policy.
290 */
1da177e4
LT
291 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
292 unsigned long addr);
293#endif
667a0a06
DV
294 /*
295 * Called by vm_normal_page() for special PTEs to find the
296 * page for @addr. This is useful if the default behavior
297 * (using pte_page()) would not find the correct page.
298 */
299 struct page *(*find_special_page)(struct vm_area_struct *vma,
300 unsigned long addr);
1da177e4
LT
301};
302
303struct mmu_gather;
304struct inode;
305
349aef0b
AM
306#define page_private(page) ((page)->private)
307#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 308
b12c4ad1
MK
309/* It's valid only if the page is free path or free_list */
310static inline void set_freepage_migratetype(struct page *page, int migratetype)
311{
95e34412 312 page->index = migratetype;
b12c4ad1
MK
313}
314
315/* It's valid only if the page is free path or free_list */
316static inline int get_freepage_migratetype(struct page *page)
317{
95e34412 318 return page->index;
b12c4ad1
MK
319}
320
1da177e4
LT
321/*
322 * FIXME: take this include out, include page-flags.h in
323 * files which need it (119 of them)
324 */
325#include <linux/page-flags.h>
71e3aac0 326#include <linux/huge_mm.h>
1da177e4
LT
327
328/*
329 * Methods to modify the page usage count.
330 *
331 * What counts for a page usage:
332 * - cache mapping (page->mapping)
333 * - private data (page->private)
334 * - page mapped in a task's page tables, each mapping
335 * is counted separately
336 *
337 * Also, many kernel routines increase the page count before a critical
338 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
339 */
340
341/*
da6052f7 342 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 343 */
7c8ee9a8
NP
344static inline int put_page_testzero(struct page *page)
345{
309381fe 346 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 347 return atomic_dec_and_test(&page->_count);
7c8ee9a8 348}
1da177e4
LT
349
350/*
7c8ee9a8
NP
351 * Try to grab a ref unless the page has a refcount of zero, return false if
352 * that is the case.
8e0861fa
AK
353 * This can be called when MMU is off so it must not access
354 * any of the virtual mappings.
1da177e4 355 */
7c8ee9a8
NP
356static inline int get_page_unless_zero(struct page *page)
357{
8dc04efb 358 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 359}
1da177e4 360
8e0861fa
AK
361/*
362 * Try to drop a ref unless the page has a refcount of one, return false if
363 * that is the case.
364 * This is to make sure that the refcount won't become zero after this drop.
365 * This can be called when MMU is off so it must not access
366 * any of the virtual mappings.
367 */
368static inline int put_page_unless_one(struct page *page)
369{
370 return atomic_add_unless(&page->_count, -1, 1);
371}
372
53df8fdc 373extern int page_is_ram(unsigned long pfn);
67cf13ce 374extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
53df8fdc 375
48667e7a 376/* Support for virtually mapped pages */
b3bdda02
CL
377struct page *vmalloc_to_page(const void *addr);
378unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 379
0738c4bb
PM
380/*
381 * Determine if an address is within the vmalloc range
382 *
383 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
384 * is no special casing required.
385 */
9e2779fa
CL
386static inline int is_vmalloc_addr(const void *x)
387{
0738c4bb 388#ifdef CONFIG_MMU
9e2779fa
CL
389 unsigned long addr = (unsigned long)x;
390
391 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
392#else
393 return 0;
8ca3ed87 394#endif
0738c4bb 395}
81ac3ad9
KH
396#ifdef CONFIG_MMU
397extern int is_vmalloc_or_module_addr(const void *x);
398#else
934831d0 399static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
400{
401 return 0;
402}
403#endif
9e2779fa 404
39f1f78d
AV
405extern void kvfree(const void *addr);
406
e9da73d6
AA
407static inline void compound_lock(struct page *page)
408{
409#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 410 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
411 bit_spin_lock(PG_compound_lock, &page->flags);
412#endif
413}
414
415static inline void compound_unlock(struct page *page)
416{
417#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 418 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
419 bit_spin_unlock(PG_compound_lock, &page->flags);
420#endif
421}
422
423static inline unsigned long compound_lock_irqsave(struct page *page)
424{
425 unsigned long uninitialized_var(flags);
426#ifdef CONFIG_TRANSPARENT_HUGEPAGE
427 local_irq_save(flags);
428 compound_lock(page);
429#endif
430 return flags;
431}
432
433static inline void compound_unlock_irqrestore(struct page *page,
434 unsigned long flags)
435{
436#ifdef CONFIG_TRANSPARENT_HUGEPAGE
437 compound_unlock(page);
438 local_irq_restore(flags);
439#endif
440}
441
d2ee40ea
JZ
442static inline struct page *compound_head_by_tail(struct page *tail)
443{
444 struct page *head = tail->first_page;
445
446 /*
447 * page->first_page may be a dangling pointer to an old
448 * compound page, so recheck that it is still a tail
449 * page before returning.
450 */
451 smp_rmb();
452 if (likely(PageTail(tail)))
453 return head;
454 return tail;
455}
456
ccaafd7f
JK
457/*
458 * Since either compound page could be dismantled asynchronously in THP
459 * or we access asynchronously arbitrary positioned struct page, there
460 * would be tail flag race. To handle this race, we should call
461 * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
462 */
d85f3385
CL
463static inline struct page *compound_head(struct page *page)
464{
d2ee40ea
JZ
465 if (unlikely(PageTail(page)))
466 return compound_head_by_tail(page);
d85f3385
CL
467 return page;
468}
469
ccaafd7f
JK
470/*
471 * If we access compound page synchronously such as access to
472 * allocated page, there is no need to handle tail flag race, so we can
473 * check tail flag directly without any synchronization primitive.
474 */
475static inline struct page *compound_head_fast(struct page *page)
476{
477 if (unlikely(PageTail(page)))
478 return page->first_page;
479 return page;
480}
481
70b50f94
AA
482/*
483 * The atomic page->_mapcount, starts from -1: so that transitions
484 * both from it and to it can be tracked, using atomic_inc_and_test
485 * and atomic_add_negative(-1).
486 */
22b751c3 487static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
488{
489 atomic_set(&(page)->_mapcount, -1);
490}
491
492static inline int page_mapcount(struct page *page)
493{
1d148e21
WY
494 VM_BUG_ON_PAGE(PageSlab(page), page);
495 return atomic_read(&page->_mapcount) + 1;
70b50f94
AA
496}
497
4c21e2f2 498static inline int page_count(struct page *page)
1da177e4 499{
d85f3385 500 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
501}
502
44518d2b
AA
503static inline bool __compound_tail_refcounted(struct page *page)
504{
c761471b 505 return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page);
44518d2b
AA
506}
507
508/*
509 * This takes a head page as parameter and tells if the
510 * tail page reference counting can be skipped.
511 *
512 * For this to be safe, PageSlab and PageHeadHuge must remain true on
513 * any given page where they return true here, until all tail pins
514 * have been released.
515 */
516static inline bool compound_tail_refcounted(struct page *page)
517{
309381fe 518 VM_BUG_ON_PAGE(!PageHead(page), page);
44518d2b
AA
519 return __compound_tail_refcounted(page);
520}
521
b35a35b5
AA
522static inline void get_huge_page_tail(struct page *page)
523{
524 /*
5eaf1a9e 525 * __split_huge_page_refcount() cannot run from under us.
b35a35b5 526 */
309381fe
SL
527 VM_BUG_ON_PAGE(!PageTail(page), page);
528 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
529 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
5eaf1a9e 530 if (compound_tail_refcounted(page->first_page))
44518d2b 531 atomic_inc(&page->_mapcount);
b35a35b5
AA
532}
533
70b50f94
AA
534extern bool __get_page_tail(struct page *page);
535
1da177e4
LT
536static inline void get_page(struct page *page)
537{
70b50f94
AA
538 if (unlikely(PageTail(page)))
539 if (likely(__get_page_tail(page)))
540 return;
91807063
AA
541 /*
542 * Getting a normal page or the head of a compound page
70b50f94 543 * requires to already have an elevated page->_count.
91807063 544 */
309381fe 545 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
1da177e4
LT
546 atomic_inc(&page->_count);
547}
548
b49af68f
CL
549static inline struct page *virt_to_head_page(const void *x)
550{
551 struct page *page = virt_to_page(x);
ccaafd7f
JK
552
553 /*
554 * We don't need to worry about synchronization of tail flag
555 * when we call virt_to_head_page() since it is only called for
556 * already allocated page and this page won't be freed until
557 * this virt_to_head_page() is finished. So use _fast variant.
558 */
559 return compound_head_fast(page);
b49af68f
CL
560}
561
7835e98b
NP
562/*
563 * Setup the page count before being freed into the page allocator for
564 * the first time (boot or memory hotplug)
565 */
566static inline void init_page_count(struct page *page)
567{
568 atomic_set(&page->_count, 1);
569}
570
1da177e4 571void put_page(struct page *page);
1d7ea732 572void put_pages_list(struct list_head *pages);
1da177e4 573
8dfcc9ba 574void split_page(struct page *page, unsigned int order);
748446bb 575int split_free_page(struct page *page);
8dfcc9ba 576
33f2ef89
AW
577/*
578 * Compound pages have a destructor function. Provide a
579 * prototype for that function and accessor functions.
580 * These are _only_ valid on the head of a PG_compound page.
581 */
33f2ef89
AW
582
583static inline void set_compound_page_dtor(struct page *page,
584 compound_page_dtor *dtor)
585{
e4b294c2 586 page[1].compound_dtor = dtor;
33f2ef89
AW
587}
588
589static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
590{
e4b294c2 591 return page[1].compound_dtor;
33f2ef89
AW
592}
593
d85f3385
CL
594static inline int compound_order(struct page *page)
595{
6d777953 596 if (!PageHead(page))
d85f3385 597 return 0;
e4b294c2 598 return page[1].compound_order;
d85f3385
CL
599}
600
601static inline void set_compound_order(struct page *page, unsigned long order)
602{
e4b294c2 603 page[1].compound_order = order;
d85f3385
CL
604}
605
3dece370 606#ifdef CONFIG_MMU
14fd403f
AA
607/*
608 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
609 * servicing faults for write access. In the normal case, do always want
610 * pte_mkwrite. But get_user_pages can cause write faults for mappings
611 * that do not have writing enabled, when used by access_process_vm.
612 */
613static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
614{
615 if (likely(vma->vm_flags & VM_WRITE))
616 pte = pte_mkwrite(pte);
617 return pte;
618}
8c6e50b0
KS
619
620void do_set_pte(struct vm_area_struct *vma, unsigned long address,
621 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 622#endif
14fd403f 623
1da177e4
LT
624/*
625 * Multiple processes may "see" the same page. E.g. for untouched
626 * mappings of /dev/null, all processes see the same page full of
627 * zeroes, and text pages of executables and shared libraries have
628 * only one copy in memory, at most, normally.
629 *
630 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
631 * page_count() == 0 means the page is free. page->lru is then used for
632 * freelist management in the buddy allocator.
da6052f7 633 * page_count() > 0 means the page has been allocated.
1da177e4 634 *
da6052f7
NP
635 * Pages are allocated by the slab allocator in order to provide memory
636 * to kmalloc and kmem_cache_alloc. In this case, the management of the
637 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
638 * unless a particular usage is carefully commented. (the responsibility of
639 * freeing the kmalloc memory is the caller's, of course).
1da177e4 640 *
da6052f7
NP
641 * A page may be used by anyone else who does a __get_free_page().
642 * In this case, page_count still tracks the references, and should only
643 * be used through the normal accessor functions. The top bits of page->flags
644 * and page->virtual store page management information, but all other fields
645 * are unused and could be used privately, carefully. The management of this
646 * page is the responsibility of the one who allocated it, and those who have
647 * subsequently been given references to it.
648 *
649 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
650 * managed by the Linux memory manager: I/O, buffers, swapping etc.
651 * The following discussion applies only to them.
652 *
da6052f7
NP
653 * A pagecache page contains an opaque `private' member, which belongs to the
654 * page's address_space. Usually, this is the address of a circular list of
655 * the page's disk buffers. PG_private must be set to tell the VM to call
656 * into the filesystem to release these pages.
1da177e4 657 *
da6052f7
NP
658 * A page may belong to an inode's memory mapping. In this case, page->mapping
659 * is the pointer to the inode, and page->index is the file offset of the page,
660 * in units of PAGE_CACHE_SIZE.
1da177e4 661 *
da6052f7
NP
662 * If pagecache pages are not associated with an inode, they are said to be
663 * anonymous pages. These may become associated with the swapcache, and in that
664 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 665 *
da6052f7
NP
666 * In either case (swapcache or inode backed), the pagecache itself holds one
667 * reference to the page. Setting PG_private should also increment the
668 * refcount. The each user mapping also has a reference to the page.
1da177e4 669 *
da6052f7
NP
670 * The pagecache pages are stored in a per-mapping radix tree, which is
671 * rooted at mapping->page_tree, and indexed by offset.
672 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
673 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 674 *
da6052f7 675 * All pagecache pages may be subject to I/O:
1da177e4
LT
676 * - inode pages may need to be read from disk,
677 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
678 * to be written back to the inode on disk,
679 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
680 * modified may need to be swapped out to swap space and (later) to be read
681 * back into memory.
1da177e4
LT
682 */
683
684/*
685 * The zone field is never updated after free_area_init_core()
686 * sets it, so none of the operations on it need to be atomic.
1da177e4 687 */
348f8b6c 688
90572890 689/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 690#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
691#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
692#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 693#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 694
348f8b6c 695/*
25985edc 696 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
697 * sections we define the shift as 0; that plus a 0 mask ensures
698 * the compiler will optimise away reference to them.
699 */
d41dee36
AW
700#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
701#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
702#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 703#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 704
bce54bbf
WD
705/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
706#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 707#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
708#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
709 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 710#else
89689ae7 711#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
712#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
713 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
714#endif
715
bd8029b6 716#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 717
9223b419
CL
718#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
719#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
720#endif
721
d41dee36
AW
722#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
723#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
724#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 725#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 726#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 727
33dd4e0e 728static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 729{
348f8b6c 730 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 731}
1da177e4 732
9127ab4f
CS
733#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
734#define SECTION_IN_PAGE_FLAGS
735#endif
736
89689ae7 737/*
7a8010cd
VB
738 * The identification function is mainly used by the buddy allocator for
739 * determining if two pages could be buddies. We are not really identifying
740 * the zone since we could be using the section number id if we do not have
741 * node id available in page flags.
742 * We only guarantee that it will return the same value for two combinable
743 * pages in a zone.
89689ae7 744 */
cb2b95e1
AW
745static inline int page_zone_id(struct page *page)
746{
89689ae7 747 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
748}
749
25ba77c1 750static inline int zone_to_nid(struct zone *zone)
89fa3024 751{
d5f541ed
CL
752#ifdef CONFIG_NUMA
753 return zone->node;
754#else
755 return 0;
756#endif
89fa3024
CL
757}
758
89689ae7 759#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 760extern int page_to_nid(const struct page *page);
89689ae7 761#else
33dd4e0e 762static inline int page_to_nid(const struct page *page)
d41dee36 763{
89689ae7 764 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 765}
89689ae7
CL
766#endif
767
57e0a030 768#ifdef CONFIG_NUMA_BALANCING
90572890 769static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 770{
90572890 771 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
772}
773
90572890 774static inline int cpupid_to_pid(int cpupid)
57e0a030 775{
90572890 776 return cpupid & LAST__PID_MASK;
57e0a030 777}
b795854b 778
90572890 779static inline int cpupid_to_cpu(int cpupid)
b795854b 780{
90572890 781 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
782}
783
90572890 784static inline int cpupid_to_nid(int cpupid)
b795854b 785{
90572890 786 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
787}
788
90572890 789static inline bool cpupid_pid_unset(int cpupid)
57e0a030 790{
90572890 791 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
792}
793
90572890 794static inline bool cpupid_cpu_unset(int cpupid)
b795854b 795{
90572890 796 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
797}
798
8c8a743c
PZ
799static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
800{
801 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
802}
803
804#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
805#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
806static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 807{
1ae71d03 808 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 809}
90572890
PZ
810
811static inline int page_cpupid_last(struct page *page)
812{
813 return page->_last_cpupid;
814}
815static inline void page_cpupid_reset_last(struct page *page)
b795854b 816{
1ae71d03 817 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
818}
819#else
90572890 820static inline int page_cpupid_last(struct page *page)
75980e97 821{
90572890 822 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
823}
824
90572890 825extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 826
90572890 827static inline void page_cpupid_reset_last(struct page *page)
75980e97 828{
90572890 829 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 830
90572890
PZ
831 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
832 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 833}
90572890
PZ
834#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
835#else /* !CONFIG_NUMA_BALANCING */
836static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 837{
90572890 838 return page_to_nid(page); /* XXX */
57e0a030
MG
839}
840
90572890 841static inline int page_cpupid_last(struct page *page)
57e0a030 842{
90572890 843 return page_to_nid(page); /* XXX */
57e0a030
MG
844}
845
90572890 846static inline int cpupid_to_nid(int cpupid)
b795854b
MG
847{
848 return -1;
849}
850
90572890 851static inline int cpupid_to_pid(int cpupid)
b795854b
MG
852{
853 return -1;
854}
855
90572890 856static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
857{
858 return -1;
859}
860
90572890
PZ
861static inline int cpu_pid_to_cpupid(int nid, int pid)
862{
863 return -1;
864}
865
866static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
867{
868 return 1;
869}
870
90572890 871static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
872{
873}
8c8a743c
PZ
874
875static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
876{
877 return false;
878}
90572890 879#endif /* CONFIG_NUMA_BALANCING */
57e0a030 880
33dd4e0e 881static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
882{
883 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
884}
885
9127ab4f 886#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
887static inline void set_page_section(struct page *page, unsigned long section)
888{
889 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
890 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
891}
892
aa462abe 893static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
894{
895 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
896}
308c05e3 897#endif
d41dee36 898
2f1b6248 899static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
900{
901 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
902 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
903}
2f1b6248 904
348f8b6c
DH
905static inline void set_page_node(struct page *page, unsigned long node)
906{
907 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
908 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 909}
89689ae7 910
2f1b6248 911static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 912 unsigned long node, unsigned long pfn)
1da177e4 913{
348f8b6c
DH
914 set_page_zone(page, zone);
915 set_page_node(page, node);
9127ab4f 916#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 917 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 918#endif
1da177e4
LT
919}
920
f6ac2354
CL
921/*
922 * Some inline functions in vmstat.h depend on page_zone()
923 */
924#include <linux/vmstat.h>
925
33dd4e0e 926static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 927{
aa462abe 928 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
929}
930
931#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
932#define HASHED_PAGE_VIRTUAL
933#endif
934
935#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
936static inline void *page_address(const struct page *page)
937{
938 return page->virtual;
939}
940static inline void set_page_address(struct page *page, void *address)
941{
942 page->virtual = address;
943}
1da177e4
LT
944#define page_address_init() do { } while(0)
945#endif
946
947#if defined(HASHED_PAGE_VIRTUAL)
f9918794 948void *page_address(const struct page *page);
1da177e4
LT
949void set_page_address(struct page *page, void *virtual);
950void page_address_init(void);
951#endif
952
953#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
954#define page_address(page) lowmem_page_address(page)
955#define set_page_address(page, address) do { } while(0)
956#define page_address_init() do { } while(0)
957#endif
958
e39155ea
KS
959extern void *page_rmapping(struct page *page);
960extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 961extern struct address_space *page_mapping(struct page *page);
1da177e4 962
f981c595
MG
963extern struct address_space *__page_file_mapping(struct page *);
964
965static inline
966struct address_space *page_file_mapping(struct page *page)
967{
968 if (unlikely(PageSwapCache(page)))
969 return __page_file_mapping(page);
970
971 return page->mapping;
972}
973
1da177e4
LT
974/*
975 * Return the pagecache index of the passed page. Regular pagecache pages
976 * use ->index whereas swapcache pages use ->private
977 */
978static inline pgoff_t page_index(struct page *page)
979{
980 if (unlikely(PageSwapCache(page)))
4c21e2f2 981 return page_private(page);
1da177e4
LT
982 return page->index;
983}
984
f981c595
MG
985extern pgoff_t __page_file_index(struct page *page);
986
987/*
988 * Return the file index of the page. Regular pagecache pages use ->index
989 * whereas swapcache pages use swp_offset(->private)
990 */
991static inline pgoff_t page_file_index(struct page *page)
992{
993 if (unlikely(PageSwapCache(page)))
994 return __page_file_index(page);
995
996 return page->index;
997}
998
1da177e4
LT
999/*
1000 * Return true if this page is mapped into pagetables.
1001 */
1002static inline int page_mapped(struct page *page)
1003{
1004 return atomic_read(&(page)->_mapcount) >= 0;
1005}
1006
2f064f34
MH
1007/*
1008 * Return true only if the page has been allocated with
1009 * ALLOC_NO_WATERMARKS and the low watermark was not
1010 * met implying that the system is under some pressure.
1011 */
1012static inline bool page_is_pfmemalloc(struct page *page)
1013{
1014 /*
1015 * Page index cannot be this large so this must be
1016 * a pfmemalloc page.
1017 */
1018 return page->index == -1UL;
1019}
1020
1021/*
1022 * Only to be called by the page allocator on a freshly allocated
1023 * page.
1024 */
1025static inline void set_page_pfmemalloc(struct page *page)
1026{
1027 page->index = -1UL;
1028}
1029
1030static inline void clear_page_pfmemalloc(struct page *page)
1031{
1032 page->index = 0;
1033}
1034
1da177e4
LT
1035/*
1036 * Different kinds of faults, as returned by handle_mm_fault().
1037 * Used to decide whether a process gets delivered SIGBUS or
1038 * just gets major/minor fault counters bumped up.
1039 */
d0217ac0 1040
83c54070 1041#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1042
83c54070
NP
1043#define VM_FAULT_OOM 0x0001
1044#define VM_FAULT_SIGBUS 0x0002
1045#define VM_FAULT_MAJOR 0x0004
1046#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1047#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1048#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1049#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1050
83c54070
NP
1051#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1052#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1053#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1054#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1055
aa50d3a7
AK
1056#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1057
33692f27
LT
1058#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1059 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1060 VM_FAULT_FALLBACK)
aa50d3a7
AK
1061
1062/* Encode hstate index for a hwpoisoned large page */
1063#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1064#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1065
1c0fe6e3
NP
1066/*
1067 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1068 */
1069extern void pagefault_out_of_memory(void);
1070
1da177e4
LT
1071#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1072
ddd588b5 1073/*
7bf02ea2 1074 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1075 * various contexts.
1076 */
4b59e6c4 1077#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1078
7bf02ea2
DR
1079extern void show_free_areas(unsigned int flags);
1080extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1081
1da177e4 1082int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1083#ifdef CONFIG_SHMEM
1084bool shmem_mapping(struct address_space *mapping);
1085#else
1086static inline bool shmem_mapping(struct address_space *mapping)
1087{
1088 return false;
1089}
1090#endif
1da177e4 1091
e8edc6e0 1092extern int can_do_mlock(void);
1da177e4
LT
1093extern int user_shm_lock(size_t, struct user_struct *);
1094extern void user_shm_unlock(size_t, struct user_struct *);
1095
1096/*
1097 * Parameter block passed down to zap_pte_range in exceptional cases.
1098 */
1099struct zap_details {
1da177e4
LT
1100 struct address_space *check_mapping; /* Check page->mapping if set */
1101 pgoff_t first_index; /* Lowest page->index to unmap */
1102 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1103};
1104
7e675137
NP
1105struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1106 pte_t pte);
1107
c627f9cc
JS
1108int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1109 unsigned long size);
14f5ff5d 1110void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1111 unsigned long size, struct zap_details *);
4f74d2c8
LT
1112void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1113 unsigned long start, unsigned long end);
e6473092
MM
1114
1115/**
1116 * mm_walk - callbacks for walk_page_range
e6473092 1117 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1118 * this handler is required to be able to handle
1119 * pmd_trans_huge() pmds. They may simply choose to
1120 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1121 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1122 * @pte_hole: if set, called for each hole at all levels
5dc37642 1123 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426
NH
1124 * @test_walk: caller specific callback function to determine whether
1125 * we walk over the current vma or not. A positive returned
1126 * value means "do page table walk over the current vma,"
1127 * and a negative one means "abort current page table walk
1128 * right now." 0 means "skip the current vma."
1129 * @mm: mm_struct representing the target process of page table walk
1130 * @vma: vma currently walked (NULL if walking outside vmas)
1131 * @private: private data for callbacks' usage
e6473092 1132 *
fafaa426 1133 * (see the comment on walk_page_range() for more details)
e6473092
MM
1134 */
1135struct mm_walk {
0f157a5b
AM
1136 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1137 unsigned long next, struct mm_walk *walk);
1138 int (*pte_entry)(pte_t *pte, unsigned long addr,
1139 unsigned long next, struct mm_walk *walk);
1140 int (*pte_hole)(unsigned long addr, unsigned long next,
1141 struct mm_walk *walk);
1142 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1143 unsigned long addr, unsigned long next,
1144 struct mm_walk *walk);
fafaa426
NH
1145 int (*test_walk)(unsigned long addr, unsigned long next,
1146 struct mm_walk *walk);
2165009b 1147 struct mm_struct *mm;
fafaa426 1148 struct vm_area_struct *vma;
2165009b 1149 void *private;
e6473092
MM
1150};
1151
2165009b
DH
1152int walk_page_range(unsigned long addr, unsigned long end,
1153 struct mm_walk *walk);
900fc5f1 1154int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1155void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1156 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1157int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1158 struct vm_area_struct *vma);
1da177e4
LT
1159void unmap_mapping_range(struct address_space *mapping,
1160 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1161int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1162 unsigned long *pfn);
d87fe660 1163int follow_phys(struct vm_area_struct *vma, unsigned long address,
1164 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1165int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1166 void *buf, int len, int write);
1da177e4
LT
1167
1168static inline void unmap_shared_mapping_range(struct address_space *mapping,
1169 loff_t const holebegin, loff_t const holelen)
1170{
1171 unmap_mapping_range(mapping, holebegin, holelen, 0);
1172}
1173
7caef267 1174extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1175extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1176void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1177void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1178int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1179int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1180int invalidate_inode_page(struct page *page);
1181
7ee1dd3f 1182#ifdef CONFIG_MMU
83c54070 1183extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1184 unsigned long address, unsigned int flags);
5c723ba5
PZ
1185extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1186 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1187#else
1188static inline int handle_mm_fault(struct mm_struct *mm,
1189 struct vm_area_struct *vma, unsigned long address,
d06063cc 1190 unsigned int flags)
7ee1dd3f
DH
1191{
1192 /* should never happen if there's no MMU */
1193 BUG();
1194 return VM_FAULT_SIGBUS;
1195}
5c723ba5
PZ
1196static inline int fixup_user_fault(struct task_struct *tsk,
1197 struct mm_struct *mm, unsigned long address,
1198 unsigned int fault_flags)
1199{
1200 /* should never happen if there's no MMU */
1201 BUG();
1202 return -EFAULT;
1203}
7ee1dd3f 1204#endif
f33ea7f4 1205
1da177e4 1206extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1207extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1208 void *buf, int len, int write);
1da177e4 1209
28a35716
ML
1210long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1211 unsigned long start, unsigned long nr_pages,
1212 unsigned int foll_flags, struct page **pages,
1213 struct vm_area_struct **vmas, int *nonblocking);
1214long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1215 unsigned long start, unsigned long nr_pages,
1216 int write, int force, struct page **pages,
1217 struct vm_area_struct **vmas);
f0818f47
AA
1218long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1219 unsigned long start, unsigned long nr_pages,
1220 int write, int force, struct page **pages,
1221 int *locked);
0fd71a56
AA
1222long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1223 unsigned long start, unsigned long nr_pages,
1224 int write, int force, struct page **pages,
1225 unsigned int gup_flags);
f0818f47
AA
1226long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1227 unsigned long start, unsigned long nr_pages,
1228 int write, int force, struct page **pages);
d2bf6be8
NP
1229int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1230 struct page **pages);
18022c5d
MG
1231struct kvec;
1232int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1233 struct page **pages);
1234int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1235struct page *get_dump_page(unsigned long addr);
1da177e4 1236
cf9a2ae8 1237extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1238extern void do_invalidatepage(struct page *page, unsigned int offset,
1239 unsigned int length);
cf9a2ae8 1240
1da177e4 1241int __set_page_dirty_nobuffers(struct page *page);
76719325 1242int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1243int redirty_page_for_writepage(struct writeback_control *wbc,
1244 struct page *page);
c4843a75
GT
1245void account_page_dirtied(struct page *page, struct address_space *mapping,
1246 struct mem_cgroup *memcg);
1247void account_page_cleaned(struct page *page, struct address_space *mapping,
682aa8e1 1248 struct mem_cgroup *memcg, struct bdi_writeback *wb);
b3c97528 1249int set_page_dirty(struct page *page);
1da177e4 1250int set_page_dirty_lock(struct page *page);
11f81bec 1251void cancel_dirty_page(struct page *page);
1da177e4 1252int clear_page_dirty_for_io(struct page *page);
b9ea2515 1253
a9090253 1254int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1255
39aa3cb3 1256/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1257static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1258{
1259 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1260}
1261
a09a79f6
MP
1262static inline int stack_guard_page_start(struct vm_area_struct *vma,
1263 unsigned long addr)
1264{
1265 return (vma->vm_flags & VM_GROWSDOWN) &&
1266 (vma->vm_start == addr) &&
1267 !vma_growsdown(vma->vm_prev, addr);
1268}
1269
1270/* Is the vma a continuation of the stack vma below it? */
1271static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1272{
1273 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1274}
1275
1276static inline int stack_guard_page_end(struct vm_area_struct *vma,
1277 unsigned long addr)
1278{
1279 return (vma->vm_flags & VM_GROWSUP) &&
1280 (vma->vm_end == addr) &&
1281 !vma_growsup(vma->vm_next, addr);
1282}
1283
58cb6548
ON
1284extern struct task_struct *task_of_stack(struct task_struct *task,
1285 struct vm_area_struct *vma, bool in_group);
b7643757 1286
b6a2fea3
OW
1287extern unsigned long move_page_tables(struct vm_area_struct *vma,
1288 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1289 unsigned long new_addr, unsigned long len,
1290 bool need_rmap_locks);
7da4d641
PZ
1291extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1292 unsigned long end, pgprot_t newprot,
4b10e7d5 1293 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1294extern int mprotect_fixup(struct vm_area_struct *vma,
1295 struct vm_area_struct **pprev, unsigned long start,
1296 unsigned long end, unsigned long newflags);
1da177e4 1297
465a454f
PZ
1298/*
1299 * doesn't attempt to fault and will return short.
1300 */
1301int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1302 struct page **pages);
d559db08
KH
1303/*
1304 * per-process(per-mm_struct) statistics.
1305 */
d559db08
KH
1306static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1307{
69c97823
KK
1308 long val = atomic_long_read(&mm->rss_stat.count[member]);
1309
1310#ifdef SPLIT_RSS_COUNTING
1311 /*
1312 * counter is updated in asynchronous manner and may go to minus.
1313 * But it's never be expected number for users.
1314 */
1315 if (val < 0)
1316 val = 0;
172703b0 1317#endif
69c97823
KK
1318 return (unsigned long)val;
1319}
d559db08
KH
1320
1321static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1322{
172703b0 1323 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1324}
1325
1326static inline void inc_mm_counter(struct mm_struct *mm, int member)
1327{
172703b0 1328 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1329}
1330
1331static inline void dec_mm_counter(struct mm_struct *mm, int member)
1332{
172703b0 1333 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1334}
1335
d559db08
KH
1336static inline unsigned long get_mm_rss(struct mm_struct *mm)
1337{
1338 return get_mm_counter(mm, MM_FILEPAGES) +
1339 get_mm_counter(mm, MM_ANONPAGES);
1340}
1341
1342static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1343{
1344 return max(mm->hiwater_rss, get_mm_rss(mm));
1345}
1346
1347static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1348{
1349 return max(mm->hiwater_vm, mm->total_vm);
1350}
1351
1352static inline void update_hiwater_rss(struct mm_struct *mm)
1353{
1354 unsigned long _rss = get_mm_rss(mm);
1355
1356 if ((mm)->hiwater_rss < _rss)
1357 (mm)->hiwater_rss = _rss;
1358}
1359
1360static inline void update_hiwater_vm(struct mm_struct *mm)
1361{
1362 if (mm->hiwater_vm < mm->total_vm)
1363 mm->hiwater_vm = mm->total_vm;
1364}
1365
695f0559
PC
1366static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1367{
1368 mm->hiwater_rss = get_mm_rss(mm);
1369}
1370
d559db08
KH
1371static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1372 struct mm_struct *mm)
1373{
1374 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1375
1376 if (*maxrss < hiwater_rss)
1377 *maxrss = hiwater_rss;
1378}
1379
53bddb4e 1380#if defined(SPLIT_RSS_COUNTING)
05af2e10 1381void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1382#else
05af2e10 1383static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1384{
1385}
1386#endif
465a454f 1387
4e950f6f 1388int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1389
25ca1d6c
NK
1390extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1391 spinlock_t **ptl);
1392static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1393 spinlock_t **ptl)
1394{
1395 pte_t *ptep;
1396 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1397 return ptep;
1398}
c9cfcddf 1399
5f22df00
NP
1400#ifdef __PAGETABLE_PUD_FOLDED
1401static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1402 unsigned long address)
1403{
1404 return 0;
1405}
1406#else
1bb3630e 1407int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1408#endif
1409
2d2f5119 1410#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1411static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1412 unsigned long address)
1413{
1414 return 0;
1415}
dc6c9a35 1416
2d2f5119
KS
1417static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1418
dc6c9a35
KS
1419static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1420{
1421 return 0;
1422}
1423
1424static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1425static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1426
5f22df00 1427#else
1bb3630e 1428int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1429
2d2f5119
KS
1430static inline void mm_nr_pmds_init(struct mm_struct *mm)
1431{
1432 atomic_long_set(&mm->nr_pmds, 0);
1433}
1434
dc6c9a35
KS
1435static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1436{
1437 return atomic_long_read(&mm->nr_pmds);
1438}
1439
1440static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1441{
1442 atomic_long_inc(&mm->nr_pmds);
1443}
1444
1445static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1446{
1447 atomic_long_dec(&mm->nr_pmds);
1448}
5f22df00
NP
1449#endif
1450
8ac1f832
AA
1451int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1452 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1453int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1454
1da177e4
LT
1455/*
1456 * The following ifdef needed to get the 4level-fixup.h header to work.
1457 * Remove it when 4level-fixup.h has been removed.
1458 */
1bb3630e 1459#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1460static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1461{
1bb3630e
HD
1462 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1463 NULL: pud_offset(pgd, address);
1da177e4
LT
1464}
1465
1466static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1467{
1bb3630e
HD
1468 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1469 NULL: pmd_offset(pud, address);
1da177e4 1470}
1bb3630e
HD
1471#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1472
57c1ffce 1473#if USE_SPLIT_PTE_PTLOCKS
597d795a 1474#if ALLOC_SPLIT_PTLOCKS
b35f1819 1475void __init ptlock_cache_init(void);
539edb58
PZ
1476extern bool ptlock_alloc(struct page *page);
1477extern void ptlock_free(struct page *page);
1478
1479static inline spinlock_t *ptlock_ptr(struct page *page)
1480{
1481 return page->ptl;
1482}
597d795a 1483#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1484static inline void ptlock_cache_init(void)
1485{
1486}
1487
49076ec2
KS
1488static inline bool ptlock_alloc(struct page *page)
1489{
49076ec2
KS
1490 return true;
1491}
539edb58 1492
49076ec2
KS
1493static inline void ptlock_free(struct page *page)
1494{
49076ec2
KS
1495}
1496
1497static inline spinlock_t *ptlock_ptr(struct page *page)
1498{
539edb58 1499 return &page->ptl;
49076ec2 1500}
597d795a 1501#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1502
1503static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1504{
1505 return ptlock_ptr(pmd_page(*pmd));
1506}
1507
1508static inline bool ptlock_init(struct page *page)
1509{
1510 /*
1511 * prep_new_page() initialize page->private (and therefore page->ptl)
1512 * with 0. Make sure nobody took it in use in between.
1513 *
1514 * It can happen if arch try to use slab for page table allocation:
1515 * slab code uses page->slab_cache and page->first_page (for tail
1516 * pages), which share storage with page->ptl.
1517 */
309381fe 1518 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1519 if (!ptlock_alloc(page))
1520 return false;
1521 spin_lock_init(ptlock_ptr(page));
1522 return true;
1523}
1524
1525/* Reset page->mapping so free_pages_check won't complain. */
1526static inline void pte_lock_deinit(struct page *page)
1527{
1528 page->mapping = NULL;
1529 ptlock_free(page);
1530}
1531
57c1ffce 1532#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1533/*
1534 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1535 */
49076ec2
KS
1536static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1537{
1538 return &mm->page_table_lock;
1539}
b35f1819 1540static inline void ptlock_cache_init(void) {}
49076ec2
KS
1541static inline bool ptlock_init(struct page *page) { return true; }
1542static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1543#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1544
b35f1819
KS
1545static inline void pgtable_init(void)
1546{
1547 ptlock_cache_init();
1548 pgtable_cache_init();
1549}
1550
390f44e2 1551static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1552{
2f569afd 1553 inc_zone_page_state(page, NR_PAGETABLE);
49076ec2 1554 return ptlock_init(page);
2f569afd
MS
1555}
1556
1557static inline void pgtable_page_dtor(struct page *page)
1558{
1559 pte_lock_deinit(page);
1560 dec_zone_page_state(page, NR_PAGETABLE);
1561}
1562
c74df32c
HD
1563#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1564({ \
4c21e2f2 1565 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1566 pte_t *__pte = pte_offset_map(pmd, address); \
1567 *(ptlp) = __ptl; \
1568 spin_lock(__ptl); \
1569 __pte; \
1570})
1571
1572#define pte_unmap_unlock(pte, ptl) do { \
1573 spin_unlock(ptl); \
1574 pte_unmap(pte); \
1575} while (0)
1576
8ac1f832
AA
1577#define pte_alloc_map(mm, vma, pmd, address) \
1578 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1579 pmd, address))? \
1580 NULL: pte_offset_map(pmd, address))
1bb3630e 1581
c74df32c 1582#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1583 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1584 pmd, address))? \
c74df32c
HD
1585 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1586
1bb3630e 1587#define pte_alloc_kernel(pmd, address) \
8ac1f832 1588 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1589 NULL: pte_offset_kernel(pmd, address))
1da177e4 1590
e009bb30
KS
1591#if USE_SPLIT_PMD_PTLOCKS
1592
634391ac
MS
1593static struct page *pmd_to_page(pmd_t *pmd)
1594{
1595 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1596 return virt_to_page((void *)((unsigned long) pmd & mask));
1597}
1598
e009bb30
KS
1599static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1600{
634391ac 1601 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1602}
1603
1604static inline bool pgtable_pmd_page_ctor(struct page *page)
1605{
e009bb30
KS
1606#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1607 page->pmd_huge_pte = NULL;
1608#endif
49076ec2 1609 return ptlock_init(page);
e009bb30
KS
1610}
1611
1612static inline void pgtable_pmd_page_dtor(struct page *page)
1613{
1614#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1615 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1616#endif
49076ec2 1617 ptlock_free(page);
e009bb30
KS
1618}
1619
634391ac 1620#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1621
1622#else
1623
9a86cb7b
KS
1624static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1625{
1626 return &mm->page_table_lock;
1627}
1628
e009bb30
KS
1629static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1630static inline void pgtable_pmd_page_dtor(struct page *page) {}
1631
c389a250 1632#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1633
e009bb30
KS
1634#endif
1635
9a86cb7b
KS
1636static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1637{
1638 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1639 spin_lock(ptl);
1640 return ptl;
1641}
1642
1da177e4 1643extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1644extern void free_area_init_node(int nid, unsigned long * zones_size,
1645 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1646extern void free_initmem(void);
1647
69afade7
JL
1648/*
1649 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1650 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1651 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1652 * Return pages freed into the buddy system.
1653 */
11199692 1654extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1655 int poison, char *s);
c3d5f5f0 1656
cfa11e08
JL
1657#ifdef CONFIG_HIGHMEM
1658/*
1659 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1660 * and totalram_pages.
1661 */
1662extern void free_highmem_page(struct page *page);
1663#endif
69afade7 1664
c3d5f5f0 1665extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1666extern void mem_init_print_info(const char *str);
69afade7 1667
92923ca3
NZ
1668extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1669
69afade7
JL
1670/* Free the reserved page into the buddy system, so it gets managed. */
1671static inline void __free_reserved_page(struct page *page)
1672{
1673 ClearPageReserved(page);
1674 init_page_count(page);
1675 __free_page(page);
1676}
1677
1678static inline void free_reserved_page(struct page *page)
1679{
1680 __free_reserved_page(page);
1681 adjust_managed_page_count(page, 1);
1682}
1683
1684static inline void mark_page_reserved(struct page *page)
1685{
1686 SetPageReserved(page);
1687 adjust_managed_page_count(page, -1);
1688}
1689
1690/*
1691 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1692 * The freed pages will be poisoned with pattern "poison" if it's within
1693 * range [0, UCHAR_MAX].
1694 * Return pages freed into the buddy system.
69afade7
JL
1695 */
1696static inline unsigned long free_initmem_default(int poison)
1697{
1698 extern char __init_begin[], __init_end[];
1699
11199692 1700 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1701 poison, "unused kernel");
1702}
1703
7ee3d4e8
JL
1704static inline unsigned long get_num_physpages(void)
1705{
1706 int nid;
1707 unsigned long phys_pages = 0;
1708
1709 for_each_online_node(nid)
1710 phys_pages += node_present_pages(nid);
1711
1712 return phys_pages;
1713}
1714
0ee332c1 1715#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1716/*
0ee332c1 1717 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1718 * zones, allocate the backing mem_map and account for memory holes in a more
1719 * architecture independent manner. This is a substitute for creating the
1720 * zone_sizes[] and zholes_size[] arrays and passing them to
1721 * free_area_init_node()
1722 *
1723 * An architecture is expected to register range of page frames backed by
0ee332c1 1724 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1725 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1726 * usage, an architecture is expected to do something like
1727 *
1728 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1729 * max_highmem_pfn};
1730 * for_each_valid_physical_page_range()
0ee332c1 1731 * memblock_add_node(base, size, nid)
c713216d
MG
1732 * free_area_init_nodes(max_zone_pfns);
1733 *
0ee332c1
TH
1734 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1735 * registered physical page range. Similarly
1736 * sparse_memory_present_with_active_regions() calls memory_present() for
1737 * each range when SPARSEMEM is enabled.
c713216d
MG
1738 *
1739 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1740 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1741 */
1742extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1743unsigned long node_map_pfn_alignment(void);
32996250
YL
1744unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1745 unsigned long end_pfn);
c713216d
MG
1746extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1747 unsigned long end_pfn);
1748extern void get_pfn_range_for_nid(unsigned int nid,
1749 unsigned long *start_pfn, unsigned long *end_pfn);
1750extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1751extern void free_bootmem_with_active_regions(int nid,
1752 unsigned long max_low_pfn);
1753extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1754
0ee332c1 1755#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1756
0ee332c1 1757#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1758 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1759static inline int __early_pfn_to_nid(unsigned long pfn,
1760 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1761{
1762 return 0;
1763}
1764#else
1765/* please see mm/page_alloc.c */
1766extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1767/* there is a per-arch backend function. */
8a942fde
MG
1768extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1769 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1770#endif
1771
0e0b864e 1772extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1773extern void memmap_init_zone(unsigned long, int, unsigned long,
1774 unsigned long, enum memmap_context);
bc75d33f 1775extern void setup_per_zone_wmarks(void);
1b79acc9 1776extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1777extern void mem_init(void);
8feae131 1778extern void __init mmap_init(void);
b2b755b5 1779extern void show_mem(unsigned int flags);
1da177e4
LT
1780extern void si_meminfo(struct sysinfo * val);
1781extern void si_meminfo_node(struct sysinfo *val, int nid);
1782
3ee9a4f0
JP
1783extern __printf(3, 4)
1784void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1785
e7c8d5c9 1786extern void setup_per_cpu_pageset(void);
e7c8d5c9 1787
112067f0 1788extern void zone_pcp_update(struct zone *zone);
340175b7 1789extern void zone_pcp_reset(struct zone *zone);
112067f0 1790
75f7ad8e
PS
1791/* page_alloc.c */
1792extern int min_free_kbytes;
1793
8feae131 1794/* nommu.c */
33e5d769 1795extern atomic_long_t mmap_pages_allocated;
7e660872 1796extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1797
6b2dbba8 1798/* interval_tree.c */
6b2dbba8
ML
1799void vma_interval_tree_insert(struct vm_area_struct *node,
1800 struct rb_root *root);
9826a516
ML
1801void vma_interval_tree_insert_after(struct vm_area_struct *node,
1802 struct vm_area_struct *prev,
1803 struct rb_root *root);
6b2dbba8
ML
1804void vma_interval_tree_remove(struct vm_area_struct *node,
1805 struct rb_root *root);
1806struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1807 unsigned long start, unsigned long last);
1808struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1809 unsigned long start, unsigned long last);
1810
1811#define vma_interval_tree_foreach(vma, root, start, last) \
1812 for (vma = vma_interval_tree_iter_first(root, start, last); \
1813 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 1814
bf181b9f
ML
1815void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1816 struct rb_root *root);
1817void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1818 struct rb_root *root);
1819struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1820 struct rb_root *root, unsigned long start, unsigned long last);
1821struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1822 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1823#ifdef CONFIG_DEBUG_VM_RB
1824void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1825#endif
bf181b9f
ML
1826
1827#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1828 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1829 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1830
1da177e4 1831/* mmap.c */
34b4e4aa 1832extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1833extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1834 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1835extern struct vm_area_struct *vma_merge(struct mm_struct *,
1836 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1837 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 1838 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4
LT
1839extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1840extern int split_vma(struct mm_struct *,
1841 struct vm_area_struct *, unsigned long addr, int new_below);
1842extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1843extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1844 struct rb_node **, struct rb_node *);
a8fb5618 1845extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1846extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1847 unsigned long addr, unsigned long len, pgoff_t pgoff,
1848 bool *need_rmap_locks);
1da177e4 1849extern void exit_mmap(struct mm_struct *);
925d1c40 1850
9c599024
CG
1851static inline int check_data_rlimit(unsigned long rlim,
1852 unsigned long new,
1853 unsigned long start,
1854 unsigned long end_data,
1855 unsigned long start_data)
1856{
1857 if (rlim < RLIM_INFINITY) {
1858 if (((new - start) + (end_data - start_data)) > rlim)
1859 return -ENOSPC;
1860 }
1861
1862 return 0;
1863}
1864
7906d00c
AA
1865extern int mm_take_all_locks(struct mm_struct *mm);
1866extern void mm_drop_all_locks(struct mm_struct *mm);
1867
38646013
JS
1868extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1869extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1870
119f657c 1871extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
3935ed6a
SS
1872extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1873 unsigned long addr, unsigned long len,
a62c34bd
AL
1874 unsigned long flags,
1875 const struct vm_special_mapping *spec);
1876/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
1877extern int install_special_mapping(struct mm_struct *mm,
1878 unsigned long addr, unsigned long len,
1879 unsigned long flags, struct page **pages);
1da177e4
LT
1880
1881extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1882
0165ab44 1883extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1884 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1885extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1886 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1887 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1888extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1889
bebeb3d6
ML
1890#ifdef CONFIG_MMU
1891extern int __mm_populate(unsigned long addr, unsigned long len,
1892 int ignore_errors);
1893static inline void mm_populate(unsigned long addr, unsigned long len)
1894{
1895 /* Ignore errors */
1896 (void) __mm_populate(addr, len, 1);
1897}
1898#else
1899static inline void mm_populate(unsigned long addr, unsigned long len) {}
1900#endif
1901
e4eb1ff6
LT
1902/* These take the mm semaphore themselves */
1903extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1904extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1905extern unsigned long vm_mmap(struct file *, unsigned long,
1906 unsigned long, unsigned long,
1907 unsigned long, unsigned long);
1da177e4 1908
db4fbfb9
ML
1909struct vm_unmapped_area_info {
1910#define VM_UNMAPPED_AREA_TOPDOWN 1
1911 unsigned long flags;
1912 unsigned long length;
1913 unsigned long low_limit;
1914 unsigned long high_limit;
1915 unsigned long align_mask;
1916 unsigned long align_offset;
1917};
1918
1919extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1920extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1921
1922/*
1923 * Search for an unmapped address range.
1924 *
1925 * We are looking for a range that:
1926 * - does not intersect with any VMA;
1927 * - is contained within the [low_limit, high_limit) interval;
1928 * - is at least the desired size.
1929 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1930 */
1931static inline unsigned long
1932vm_unmapped_area(struct vm_unmapped_area_info *info)
1933{
cdd7875e 1934 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 1935 return unmapped_area_topdown(info);
cdd7875e
BP
1936 else
1937 return unmapped_area(info);
db4fbfb9
ML
1938}
1939
85821aab 1940/* truncate.c */
1da177e4 1941extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1942extern void truncate_inode_pages_range(struct address_space *,
1943 loff_t lstart, loff_t lend);
91b0abe3 1944extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
1945
1946/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1947extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 1948extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 1949extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1950
1951/* mm/page-writeback.c */
1952int write_one_page(struct page *page, int wait);
1cf6e7d8 1953void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1954
1955/* readahead.c */
1956#define VM_MAX_READAHEAD 128 /* kbytes */
1957#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1958
1da177e4 1959int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1960 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1961
1962void page_cache_sync_readahead(struct address_space *mapping,
1963 struct file_ra_state *ra,
1964 struct file *filp,
1965 pgoff_t offset,
1966 unsigned long size);
1967
1968void page_cache_async_readahead(struct address_space *mapping,
1969 struct file_ra_state *ra,
1970 struct file *filp,
1971 struct page *pg,
1972 pgoff_t offset,
1973 unsigned long size);
1974
1da177e4
LT
1975unsigned long max_sane_readahead(unsigned long nr);
1976
d05f3169 1977/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1978extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1979
1980/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1981extern int expand_downwards(struct vm_area_struct *vma,
1982 unsigned long address);
8ca3eb08 1983#if VM_GROWSUP
46dea3d0 1984extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 1985#else
fee7e49d 1986 #define expand_upwards(vma, address) (0)
9ab88515 1987#endif
1da177e4
LT
1988
1989/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1990extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1991extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1992 struct vm_area_struct **pprev);
1993
1994/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1995 NULL if none. Assume start_addr < end_addr. */
1996static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1997{
1998 struct vm_area_struct * vma = find_vma(mm,start_addr);
1999
2000 if (vma && end_addr <= vma->vm_start)
2001 vma = NULL;
2002 return vma;
2003}
2004
2005static inline unsigned long vma_pages(struct vm_area_struct *vma)
2006{
2007 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2008}
2009
640708a2
PE
2010/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2011static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2012 unsigned long vm_start, unsigned long vm_end)
2013{
2014 struct vm_area_struct *vma = find_vma(mm, vm_start);
2015
2016 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2017 vma = NULL;
2018
2019 return vma;
2020}
2021
bad849b3 2022#ifdef CONFIG_MMU
804af2cf 2023pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2024void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2025#else
2026static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2027{
2028 return __pgprot(0);
2029}
64e45507
PF
2030static inline void vma_set_page_prot(struct vm_area_struct *vma)
2031{
2032 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2033}
bad849b3
DH
2034#endif
2035
5877231f 2036#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2037unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2038 unsigned long start, unsigned long end);
2039#endif
2040
deceb6cd 2041struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2042int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2043 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2044int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2045int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2046 unsigned long pfn);
423bad60
NP
2047int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2048 unsigned long pfn);
b4cbb197
LT
2049int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2050
deceb6cd 2051
240aadee
ML
2052struct page *follow_page_mask(struct vm_area_struct *vma,
2053 unsigned long address, unsigned int foll_flags,
2054 unsigned int *page_mask);
2055
2056static inline struct page *follow_page(struct vm_area_struct *vma,
2057 unsigned long address, unsigned int foll_flags)
2058{
2059 unsigned int unused_page_mask;
2060 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2061}
2062
deceb6cd
HD
2063#define FOLL_WRITE 0x01 /* check pte is writable */
2064#define FOLL_TOUCH 0x02 /* mark page accessed */
2065#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2066#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2067#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2068#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2069 * and return without waiting upon it */
84d33df2 2070#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2071#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2072#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2073#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2074#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2075#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
1da177e4 2076
2f569afd 2077typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2078 void *data);
2079extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2080 unsigned long size, pte_fn_t fn, void *data);
2081
1da177e4 2082#ifdef CONFIG_PROC_FS
ab50b8ed 2083void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 2084#else
ab50b8ed 2085static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
2086 unsigned long flags, struct file *file, long pages)
2087{
44de9d0c 2088 mm->total_vm += pages;
1da177e4
LT
2089}
2090#endif /* CONFIG_PROC_FS */
2091
12d6f21e 2092#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2093extern bool _debug_pagealloc_enabled;
2094extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2095
2096static inline bool debug_pagealloc_enabled(void)
2097{
2098 return _debug_pagealloc_enabled;
2099}
2100
2101static inline void
2102kernel_map_pages(struct page *page, int numpages, int enable)
2103{
2104 if (!debug_pagealloc_enabled())
2105 return;
2106
2107 __kernel_map_pages(page, numpages, enable);
2108}
8a235efa
RW
2109#ifdef CONFIG_HIBERNATION
2110extern bool kernel_page_present(struct page *page);
2111#endif /* CONFIG_HIBERNATION */
12d6f21e 2112#else
1da177e4 2113static inline void
9858db50 2114kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2115#ifdef CONFIG_HIBERNATION
2116static inline bool kernel_page_present(struct page *page) { return true; }
2117#endif /* CONFIG_HIBERNATION */
1da177e4
LT
2118#endif
2119
a6c19dfe 2120#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2121extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2122extern int in_gate_area_no_mm(unsigned long addr);
2123extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2124#else
a6c19dfe
AL
2125static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2126{
2127 return NULL;
2128}
2129static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2130static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2131{
2132 return 0;
2133}
1da177e4
LT
2134#endif /* __HAVE_ARCH_GATE_AREA */
2135
146732ce
JT
2136#ifdef CONFIG_SYSCTL
2137extern int sysctl_drop_caches;
8d65af78 2138int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2139 void __user *, size_t *, loff_t *);
146732ce
JT
2140#endif
2141
cb731d6c
VD
2142void drop_slab(void);
2143void drop_slab_node(int nid);
9d0243bc 2144
7a9166e3
LY
2145#ifndef CONFIG_MMU
2146#define randomize_va_space 0
2147#else
a62eaf15 2148extern int randomize_va_space;
7a9166e3 2149#endif
a62eaf15 2150
045e72ac 2151const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2152void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2153
9bdac914
YL
2154void sparse_mem_maps_populate_node(struct page **map_map,
2155 unsigned long pnum_begin,
2156 unsigned long pnum_end,
2157 unsigned long map_count,
2158 int nodeid);
2159
98f3cfc1 2160struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2161pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2162pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2163pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2164pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2165void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 2166void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 2167void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2168int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2169 int node);
2170int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2171void vmemmap_populate_print_last(void);
0197518c 2172#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2173void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2174#endif
46723bfa
YI
2175void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2176 unsigned long size);
6a46079c 2177
82ba011b
AK
2178enum mf_flags {
2179 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2180 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2181 MF_MUST_KILL = 1 << 2,
cf870c70 2182 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2183};
cd42f4a3 2184extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2185extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2186extern int unpoison_memory(unsigned long pfn);
ead07f6a 2187extern int get_hwpoison_page(struct page *page);
6a46079c
AK
2188extern int sysctl_memory_failure_early_kill;
2189extern int sysctl_memory_failure_recovery;
facb6011 2190extern void shake_page(struct page *p, int access);
293c07e3 2191extern atomic_long_t num_poisoned_pages;
facb6011 2192extern int soft_offline_page(struct page *page, int flags);
6a46079c 2193
cc637b17
XX
2194
2195/*
2196 * Error handlers for various types of pages.
2197 */
cc3e2af4 2198enum mf_result {
cc637b17
XX
2199 MF_IGNORED, /* Error: cannot be handled */
2200 MF_FAILED, /* Error: handling failed */
2201 MF_DELAYED, /* Will be handled later */
2202 MF_RECOVERED, /* Successfully recovered */
2203};
2204
2205enum mf_action_page_type {
2206 MF_MSG_KERNEL,
2207 MF_MSG_KERNEL_HIGH_ORDER,
2208 MF_MSG_SLAB,
2209 MF_MSG_DIFFERENT_COMPOUND,
2210 MF_MSG_POISONED_HUGE,
2211 MF_MSG_HUGE,
2212 MF_MSG_FREE_HUGE,
2213 MF_MSG_UNMAP_FAILED,
2214 MF_MSG_DIRTY_SWAPCACHE,
2215 MF_MSG_CLEAN_SWAPCACHE,
2216 MF_MSG_DIRTY_MLOCKED_LRU,
2217 MF_MSG_CLEAN_MLOCKED_LRU,
2218 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2219 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2220 MF_MSG_DIRTY_LRU,
2221 MF_MSG_CLEAN_LRU,
2222 MF_MSG_TRUNCATED_LRU,
2223 MF_MSG_BUDDY,
2224 MF_MSG_BUDDY_2ND,
2225 MF_MSG_UNKNOWN,
2226};
2227
47ad8475
AA
2228#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2229extern void clear_huge_page(struct page *page,
2230 unsigned long addr,
2231 unsigned int pages_per_huge_page);
2232extern void copy_user_huge_page(struct page *dst, struct page *src,
2233 unsigned long addr, struct vm_area_struct *vma,
2234 unsigned int pages_per_huge_page);
2235#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2236
e30825f1
JK
2237extern struct page_ext_operations debug_guardpage_ops;
2238extern struct page_ext_operations page_poisoning_ops;
2239
c0a32fc5
SG
2240#ifdef CONFIG_DEBUG_PAGEALLOC
2241extern unsigned int _debug_guardpage_minorder;
e30825f1 2242extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2243
2244static inline unsigned int debug_guardpage_minorder(void)
2245{
2246 return _debug_guardpage_minorder;
2247}
2248
e30825f1
JK
2249static inline bool debug_guardpage_enabled(void)
2250{
2251 return _debug_guardpage_enabled;
2252}
2253
c0a32fc5
SG
2254static inline bool page_is_guard(struct page *page)
2255{
e30825f1
JK
2256 struct page_ext *page_ext;
2257
2258 if (!debug_guardpage_enabled())
2259 return false;
2260
2261 page_ext = lookup_page_ext(page);
2262 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2263}
2264#else
2265static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2266static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2267static inline bool page_is_guard(struct page *page) { return false; }
2268#endif /* CONFIG_DEBUG_PAGEALLOC */
2269
f9872caf
CS
2270#if MAX_NUMNODES > 1
2271void __init setup_nr_node_ids(void);
2272#else
2273static inline void setup_nr_node_ids(void) {}
2274#endif
2275
1da177e4
LT
2276#endif /* __KERNEL__ */
2277#endif /* _LINUX_MM_H */