mm: drop support of non-linear mapping from fault codepath
[linux-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
1da177e4
LT
23
24struct mempolicy;
25struct anon_vma;
bf181b9f 26struct anon_vma_chain;
4e950f6f 27struct file_ra_state;
e8edc6e0 28struct user_struct;
4e950f6f 29struct writeback_control;
1da177e4 30
fccc9987 31#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 32extern unsigned long max_mapnr;
fccc9987
JL
33
34static inline void set_max_mapnr(unsigned long limit)
35{
36 max_mapnr = limit;
37}
38#else
39static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
40#endif
41
4481374c 42extern unsigned long totalram_pages;
1da177e4 43extern void * high_memory;
1da177e4
LT
44extern int page_cluster;
45
46#ifdef CONFIG_SYSCTL
47extern int sysctl_legacy_va_layout;
48#else
49#define sysctl_legacy_va_layout 0
50#endif
51
52#include <asm/page.h>
53#include <asm/pgtable.h>
54#include <asm/processor.h>
1da177e4 55
79442ed1
TC
56#ifndef __pa_symbol
57#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
58#endif
59
593befa6
DD
60/*
61 * To prevent common memory management code establishing
62 * a zero page mapping on a read fault.
63 * This macro should be defined within <asm/pgtable.h>.
64 * s390 does this to prevent multiplexing of hardware bits
65 * related to the physical page in case of virtualization.
66 */
67#ifndef mm_forbids_zeropage
68#define mm_forbids_zeropage(X) (0)
69#endif
70
c9b1d098 71extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 72extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 73
49f0ce5f
JM
74extern int sysctl_overcommit_memory;
75extern int sysctl_overcommit_ratio;
76extern unsigned long sysctl_overcommit_kbytes;
77
78extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
79 size_t *, loff_t *);
80extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
81 size_t *, loff_t *);
82
1da177e4
LT
83#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
84
27ac792c
AR
85/* to align the pointer to the (next) page boundary */
86#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
87
0fa73b86
AM
88/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
89#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
90
1da177e4
LT
91/*
92 * Linux kernel virtual memory manager primitives.
93 * The idea being to have a "virtual" mm in the same way
94 * we have a virtual fs - giving a cleaner interface to the
95 * mm details, and allowing different kinds of memory mappings
96 * (from shared memory to executable loading to arbitrary
97 * mmap() functions).
98 */
99
c43692e8
CL
100extern struct kmem_cache *vm_area_cachep;
101
1da177e4 102#ifndef CONFIG_MMU
8feae131
DH
103extern struct rb_root nommu_region_tree;
104extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
105
106extern unsigned int kobjsize(const void *objp);
107#endif
108
109/*
605d9288 110 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 111 */
cc2383ec
KK
112#define VM_NONE 0x00000000
113
1da177e4
LT
114#define VM_READ 0x00000001 /* currently active flags */
115#define VM_WRITE 0x00000002
116#define VM_EXEC 0x00000004
117#define VM_SHARED 0x00000008
118
7e2cff42 119/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
120#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
121#define VM_MAYWRITE 0x00000020
122#define VM_MAYEXEC 0x00000040
123#define VM_MAYSHARE 0x00000080
124
125#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 126#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
127#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
128
1da177e4
LT
129#define VM_LOCKED 0x00002000
130#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
131
132 /* Used by sys_madvise() */
133#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
134#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
135
136#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
137#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 138#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 139#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
140#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
141#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
cc2383ec 142#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 143#define VM_ARCH_2 0x02000000
0103bd16 144#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 145
d9104d1c
CG
146#ifdef CONFIG_MEM_SOFT_DIRTY
147# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
148#else
149# define VM_SOFTDIRTY 0
150#endif
151
b379d790 152#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
153#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
154#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 155#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 156
cc2383ec
KK
157#if defined(CONFIG_X86)
158# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
159#elif defined(CONFIG_PPC)
160# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
161#elif defined(CONFIG_PARISC)
162# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
163#elif defined(CONFIG_METAG)
164# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
165#elif defined(CONFIG_IA64)
166# define VM_GROWSUP VM_ARCH_1
167#elif !defined(CONFIG_MMU)
168# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
169#endif
170
4aae7e43
QR
171#if defined(CONFIG_X86)
172/* MPX specific bounds table or bounds directory */
173# define VM_MPX VM_ARCH_2
174#endif
175
cc2383ec
KK
176#ifndef VM_GROWSUP
177# define VM_GROWSUP VM_NONE
178#endif
179
a8bef8ff
MG
180/* Bits set in the VMA until the stack is in its final location */
181#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
182
1da177e4
LT
183#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
184#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
185#endif
186
187#ifdef CONFIG_STACK_GROWSUP
188#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
189#else
190#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
191#endif
192
b291f000 193/*
78f11a25
AA
194 * Special vmas that are non-mergable, non-mlock()able.
195 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 196 */
9050d7eb 197#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 198
a0715cc2
AT
199/* This mask defines which mm->def_flags a process can inherit its parent */
200#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
201
1da177e4
LT
202/*
203 * mapping from the currently active vm_flags protection bits (the
204 * low four bits) to a page protection mask..
205 */
206extern pgprot_t protection_map[16];
207
d0217ac0 208#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
209#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
210#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
211#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
212#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
213#define FAULT_FLAG_TRIED 0x20 /* Second try */
214#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
d0217ac0 215
54cb8821 216/*
d0217ac0 217 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
218 * ->fault function. The vma's ->fault is responsible for returning a bitmask
219 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 220 *
9b4bdd2f 221 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 222 */
d0217ac0
NP
223struct vm_fault {
224 unsigned int flags; /* FAULT_FLAG_xxx flags */
225 pgoff_t pgoff; /* Logical page offset based on vma */
226 void __user *virtual_address; /* Faulting virtual address */
227
228 struct page *page; /* ->fault handlers should return a
83c54070 229 * page here, unless VM_FAULT_NOPAGE
d0217ac0 230 * is set (which is also implied by
83c54070 231 * VM_FAULT_ERROR).
d0217ac0 232 */
8c6e50b0
KS
233 /* for ->map_pages() only */
234 pgoff_t max_pgoff; /* map pages for offset from pgoff till
235 * max_pgoff inclusive */
236 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 237};
1da177e4
LT
238
239/*
240 * These are the virtual MM functions - opening of an area, closing and
241 * unmapping it (needed to keep files on disk up-to-date etc), pointer
242 * to the functions called when a no-page or a wp-page exception occurs.
243 */
244struct vm_operations_struct {
245 void (*open)(struct vm_area_struct * area);
246 void (*close)(struct vm_area_struct * area);
d0217ac0 247 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
8c6e50b0 248 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
249
250 /* notification that a previously read-only page is about to become
251 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 252 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
253
254 /* called by access_process_vm when get_user_pages() fails, typically
255 * for use by special VMAs that can switch between memory and hardware
256 */
257 int (*access)(struct vm_area_struct *vma, unsigned long addr,
258 void *buf, int len, int write);
78d683e8
AL
259
260 /* Called by the /proc/PID/maps code to ask the vma whether it
261 * has a special name. Returning non-NULL will also cause this
262 * vma to be dumped unconditionally. */
263 const char *(*name)(struct vm_area_struct *vma);
264
1da177e4 265#ifdef CONFIG_NUMA
a6020ed7
LS
266 /*
267 * set_policy() op must add a reference to any non-NULL @new mempolicy
268 * to hold the policy upon return. Caller should pass NULL @new to
269 * remove a policy and fall back to surrounding context--i.e. do not
270 * install a MPOL_DEFAULT policy, nor the task or system default
271 * mempolicy.
272 */
1da177e4 273 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
274
275 /*
276 * get_policy() op must add reference [mpol_get()] to any policy at
277 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
278 * in mm/mempolicy.c will do this automatically.
279 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
280 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
281 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
282 * must return NULL--i.e., do not "fallback" to task or system default
283 * policy.
284 */
1da177e4
LT
285 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
286 unsigned long addr);
287#endif
0b173bc4
KK
288 /* called by sys_remap_file_pages() to populate non-linear mapping */
289 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
290 unsigned long size, pgoff_t pgoff);
1da177e4
LT
291};
292
293struct mmu_gather;
294struct inode;
295
349aef0b
AM
296#define page_private(page) ((page)->private)
297#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 298
b12c4ad1
MK
299/* It's valid only if the page is free path or free_list */
300static inline void set_freepage_migratetype(struct page *page, int migratetype)
301{
95e34412 302 page->index = migratetype;
b12c4ad1
MK
303}
304
305/* It's valid only if the page is free path or free_list */
306static inline int get_freepage_migratetype(struct page *page)
307{
95e34412 308 return page->index;
b12c4ad1
MK
309}
310
1da177e4
LT
311/*
312 * FIXME: take this include out, include page-flags.h in
313 * files which need it (119 of them)
314 */
315#include <linux/page-flags.h>
71e3aac0 316#include <linux/huge_mm.h>
1da177e4
LT
317
318/*
319 * Methods to modify the page usage count.
320 *
321 * What counts for a page usage:
322 * - cache mapping (page->mapping)
323 * - private data (page->private)
324 * - page mapped in a task's page tables, each mapping
325 * is counted separately
326 *
327 * Also, many kernel routines increase the page count before a critical
328 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
329 */
330
331/*
da6052f7 332 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 333 */
7c8ee9a8
NP
334static inline int put_page_testzero(struct page *page)
335{
309381fe 336 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 337 return atomic_dec_and_test(&page->_count);
7c8ee9a8 338}
1da177e4
LT
339
340/*
7c8ee9a8
NP
341 * Try to grab a ref unless the page has a refcount of zero, return false if
342 * that is the case.
8e0861fa
AK
343 * This can be called when MMU is off so it must not access
344 * any of the virtual mappings.
1da177e4 345 */
7c8ee9a8
NP
346static inline int get_page_unless_zero(struct page *page)
347{
8dc04efb 348 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 349}
1da177e4 350
8e0861fa
AK
351/*
352 * Try to drop a ref unless the page has a refcount of one, return false if
353 * that is the case.
354 * This is to make sure that the refcount won't become zero after this drop.
355 * This can be called when MMU is off so it must not access
356 * any of the virtual mappings.
357 */
358static inline int put_page_unless_one(struct page *page)
359{
360 return atomic_add_unless(&page->_count, -1, 1);
361}
362
53df8fdc 363extern int page_is_ram(unsigned long pfn);
67cf13ce 364extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
53df8fdc 365
48667e7a 366/* Support for virtually mapped pages */
b3bdda02
CL
367struct page *vmalloc_to_page(const void *addr);
368unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 369
0738c4bb
PM
370/*
371 * Determine if an address is within the vmalloc range
372 *
373 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
374 * is no special casing required.
375 */
9e2779fa
CL
376static inline int is_vmalloc_addr(const void *x)
377{
0738c4bb 378#ifdef CONFIG_MMU
9e2779fa
CL
379 unsigned long addr = (unsigned long)x;
380
381 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
382#else
383 return 0;
8ca3ed87 384#endif
0738c4bb 385}
81ac3ad9
KH
386#ifdef CONFIG_MMU
387extern int is_vmalloc_or_module_addr(const void *x);
388#else
934831d0 389static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
390{
391 return 0;
392}
393#endif
9e2779fa 394
39f1f78d
AV
395extern void kvfree(const void *addr);
396
e9da73d6
AA
397static inline void compound_lock(struct page *page)
398{
399#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 400 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
401 bit_spin_lock(PG_compound_lock, &page->flags);
402#endif
403}
404
405static inline void compound_unlock(struct page *page)
406{
407#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 408 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
409 bit_spin_unlock(PG_compound_lock, &page->flags);
410#endif
411}
412
413static inline unsigned long compound_lock_irqsave(struct page *page)
414{
415 unsigned long uninitialized_var(flags);
416#ifdef CONFIG_TRANSPARENT_HUGEPAGE
417 local_irq_save(flags);
418 compound_lock(page);
419#endif
420 return flags;
421}
422
423static inline void compound_unlock_irqrestore(struct page *page,
424 unsigned long flags)
425{
426#ifdef CONFIG_TRANSPARENT_HUGEPAGE
427 compound_unlock(page);
428 local_irq_restore(flags);
429#endif
430}
431
d2ee40ea
JZ
432static inline struct page *compound_head_by_tail(struct page *tail)
433{
434 struct page *head = tail->first_page;
435
436 /*
437 * page->first_page may be a dangling pointer to an old
438 * compound page, so recheck that it is still a tail
439 * page before returning.
440 */
441 smp_rmb();
442 if (likely(PageTail(tail)))
443 return head;
444 return tail;
445}
446
ccaafd7f
JK
447/*
448 * Since either compound page could be dismantled asynchronously in THP
449 * or we access asynchronously arbitrary positioned struct page, there
450 * would be tail flag race. To handle this race, we should call
451 * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
452 */
d85f3385
CL
453static inline struct page *compound_head(struct page *page)
454{
d2ee40ea
JZ
455 if (unlikely(PageTail(page)))
456 return compound_head_by_tail(page);
d85f3385
CL
457 return page;
458}
459
ccaafd7f
JK
460/*
461 * If we access compound page synchronously such as access to
462 * allocated page, there is no need to handle tail flag race, so we can
463 * check tail flag directly without any synchronization primitive.
464 */
465static inline struct page *compound_head_fast(struct page *page)
466{
467 if (unlikely(PageTail(page)))
468 return page->first_page;
469 return page;
470}
471
70b50f94
AA
472/*
473 * The atomic page->_mapcount, starts from -1: so that transitions
474 * both from it and to it can be tracked, using atomic_inc_and_test
475 * and atomic_add_negative(-1).
476 */
22b751c3 477static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
478{
479 atomic_set(&(page)->_mapcount, -1);
480}
481
482static inline int page_mapcount(struct page *page)
483{
484 return atomic_read(&(page)->_mapcount) + 1;
485}
486
4c21e2f2 487static inline int page_count(struct page *page)
1da177e4 488{
d85f3385 489 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
490}
491
44518d2b
AA
492#ifdef CONFIG_HUGETLB_PAGE
493extern int PageHeadHuge(struct page *page_head);
494#else /* CONFIG_HUGETLB_PAGE */
495static inline int PageHeadHuge(struct page *page_head)
496{
497 return 0;
498}
499#endif /* CONFIG_HUGETLB_PAGE */
500
501static inline bool __compound_tail_refcounted(struct page *page)
502{
503 return !PageSlab(page) && !PageHeadHuge(page);
504}
505
506/*
507 * This takes a head page as parameter and tells if the
508 * tail page reference counting can be skipped.
509 *
510 * For this to be safe, PageSlab and PageHeadHuge must remain true on
511 * any given page where they return true here, until all tail pins
512 * have been released.
513 */
514static inline bool compound_tail_refcounted(struct page *page)
515{
309381fe 516 VM_BUG_ON_PAGE(!PageHead(page), page);
44518d2b
AA
517 return __compound_tail_refcounted(page);
518}
519
b35a35b5
AA
520static inline void get_huge_page_tail(struct page *page)
521{
522 /*
5eaf1a9e 523 * __split_huge_page_refcount() cannot run from under us.
b35a35b5 524 */
309381fe
SL
525 VM_BUG_ON_PAGE(!PageTail(page), page);
526 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
527 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
5eaf1a9e 528 if (compound_tail_refcounted(page->first_page))
44518d2b 529 atomic_inc(&page->_mapcount);
b35a35b5
AA
530}
531
70b50f94
AA
532extern bool __get_page_tail(struct page *page);
533
1da177e4
LT
534static inline void get_page(struct page *page)
535{
70b50f94
AA
536 if (unlikely(PageTail(page)))
537 if (likely(__get_page_tail(page)))
538 return;
91807063
AA
539 /*
540 * Getting a normal page or the head of a compound page
70b50f94 541 * requires to already have an elevated page->_count.
91807063 542 */
309381fe 543 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
1da177e4
LT
544 atomic_inc(&page->_count);
545}
546
b49af68f
CL
547static inline struct page *virt_to_head_page(const void *x)
548{
549 struct page *page = virt_to_page(x);
ccaafd7f
JK
550
551 /*
552 * We don't need to worry about synchronization of tail flag
553 * when we call virt_to_head_page() since it is only called for
554 * already allocated page and this page won't be freed until
555 * this virt_to_head_page() is finished. So use _fast variant.
556 */
557 return compound_head_fast(page);
b49af68f
CL
558}
559
7835e98b
NP
560/*
561 * Setup the page count before being freed into the page allocator for
562 * the first time (boot or memory hotplug)
563 */
564static inline void init_page_count(struct page *page)
565{
566 atomic_set(&page->_count, 1);
567}
568
5f24ce5f
AA
569/*
570 * PageBuddy() indicate that the page is free and in the buddy system
571 * (see mm/page_alloc.c).
ef2b4b95
AA
572 *
573 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
574 * -2 so that an underflow of the page_mapcount() won't be mistaken
575 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
576 * efficiently by most CPU architectures.
5f24ce5f 577 */
ef2b4b95
AA
578#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
579
5f24ce5f
AA
580static inline int PageBuddy(struct page *page)
581{
ef2b4b95 582 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
583}
584
585static inline void __SetPageBuddy(struct page *page)
586{
309381fe 587 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
ef2b4b95 588 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
589}
590
591static inline void __ClearPageBuddy(struct page *page)
592{
309381fe 593 VM_BUG_ON_PAGE(!PageBuddy(page), page);
5f24ce5f
AA
594 atomic_set(&page->_mapcount, -1);
595}
596
d6d86c0a
KK
597#define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
598
599static inline int PageBalloon(struct page *page)
600{
601 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
602}
603
604static inline void __SetPageBalloon(struct page *page)
605{
606 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
607 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
608}
609
610static inline void __ClearPageBalloon(struct page *page)
611{
612 VM_BUG_ON_PAGE(!PageBalloon(page), page);
613 atomic_set(&page->_mapcount, -1);
614}
615
1da177e4 616void put_page(struct page *page);
1d7ea732 617void put_pages_list(struct list_head *pages);
1da177e4 618
8dfcc9ba 619void split_page(struct page *page, unsigned int order);
748446bb 620int split_free_page(struct page *page);
8dfcc9ba 621
33f2ef89
AW
622/*
623 * Compound pages have a destructor function. Provide a
624 * prototype for that function and accessor functions.
625 * These are _only_ valid on the head of a PG_compound page.
626 */
627typedef void compound_page_dtor(struct page *);
628
629static inline void set_compound_page_dtor(struct page *page,
630 compound_page_dtor *dtor)
631{
632 page[1].lru.next = (void *)dtor;
633}
634
635static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
636{
637 return (compound_page_dtor *)page[1].lru.next;
638}
639
d85f3385
CL
640static inline int compound_order(struct page *page)
641{
6d777953 642 if (!PageHead(page))
d85f3385
CL
643 return 0;
644 return (unsigned long)page[1].lru.prev;
645}
646
647static inline void set_compound_order(struct page *page, unsigned long order)
648{
649 page[1].lru.prev = (void *)order;
650}
651
3dece370 652#ifdef CONFIG_MMU
14fd403f
AA
653/*
654 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
655 * servicing faults for write access. In the normal case, do always want
656 * pte_mkwrite. But get_user_pages can cause write faults for mappings
657 * that do not have writing enabled, when used by access_process_vm.
658 */
659static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
660{
661 if (likely(vma->vm_flags & VM_WRITE))
662 pte = pte_mkwrite(pte);
663 return pte;
664}
8c6e50b0
KS
665
666void do_set_pte(struct vm_area_struct *vma, unsigned long address,
667 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 668#endif
14fd403f 669
1da177e4
LT
670/*
671 * Multiple processes may "see" the same page. E.g. for untouched
672 * mappings of /dev/null, all processes see the same page full of
673 * zeroes, and text pages of executables and shared libraries have
674 * only one copy in memory, at most, normally.
675 *
676 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
677 * page_count() == 0 means the page is free. page->lru is then used for
678 * freelist management in the buddy allocator.
da6052f7 679 * page_count() > 0 means the page has been allocated.
1da177e4 680 *
da6052f7
NP
681 * Pages are allocated by the slab allocator in order to provide memory
682 * to kmalloc and kmem_cache_alloc. In this case, the management of the
683 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
684 * unless a particular usage is carefully commented. (the responsibility of
685 * freeing the kmalloc memory is the caller's, of course).
1da177e4 686 *
da6052f7
NP
687 * A page may be used by anyone else who does a __get_free_page().
688 * In this case, page_count still tracks the references, and should only
689 * be used through the normal accessor functions. The top bits of page->flags
690 * and page->virtual store page management information, but all other fields
691 * are unused and could be used privately, carefully. The management of this
692 * page is the responsibility of the one who allocated it, and those who have
693 * subsequently been given references to it.
694 *
695 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
696 * managed by the Linux memory manager: I/O, buffers, swapping etc.
697 * The following discussion applies only to them.
698 *
da6052f7
NP
699 * A pagecache page contains an opaque `private' member, which belongs to the
700 * page's address_space. Usually, this is the address of a circular list of
701 * the page's disk buffers. PG_private must be set to tell the VM to call
702 * into the filesystem to release these pages.
1da177e4 703 *
da6052f7
NP
704 * A page may belong to an inode's memory mapping. In this case, page->mapping
705 * is the pointer to the inode, and page->index is the file offset of the page,
706 * in units of PAGE_CACHE_SIZE.
1da177e4 707 *
da6052f7
NP
708 * If pagecache pages are not associated with an inode, they are said to be
709 * anonymous pages. These may become associated with the swapcache, and in that
710 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 711 *
da6052f7
NP
712 * In either case (swapcache or inode backed), the pagecache itself holds one
713 * reference to the page. Setting PG_private should also increment the
714 * refcount. The each user mapping also has a reference to the page.
1da177e4 715 *
da6052f7
NP
716 * The pagecache pages are stored in a per-mapping radix tree, which is
717 * rooted at mapping->page_tree, and indexed by offset.
718 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
719 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 720 *
da6052f7 721 * All pagecache pages may be subject to I/O:
1da177e4
LT
722 * - inode pages may need to be read from disk,
723 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
724 * to be written back to the inode on disk,
725 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
726 * modified may need to be swapped out to swap space and (later) to be read
727 * back into memory.
1da177e4
LT
728 */
729
730/*
731 * The zone field is never updated after free_area_init_core()
732 * sets it, so none of the operations on it need to be atomic.
1da177e4 733 */
348f8b6c 734
90572890 735/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 736#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
737#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
738#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 739#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 740
348f8b6c 741/*
25985edc 742 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
743 * sections we define the shift as 0; that plus a 0 mask ensures
744 * the compiler will optimise away reference to them.
745 */
d41dee36
AW
746#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
747#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
748#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 749#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 750
bce54bbf
WD
751/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
752#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 753#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
754#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
755 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 756#else
89689ae7 757#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
758#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
759 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
760#endif
761
bd8029b6 762#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 763
9223b419
CL
764#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
765#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
766#endif
767
d41dee36
AW
768#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
769#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
770#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 771#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 772#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 773
33dd4e0e 774static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 775{
348f8b6c 776 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 777}
1da177e4 778
9127ab4f
CS
779#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
780#define SECTION_IN_PAGE_FLAGS
781#endif
782
89689ae7 783/*
7a8010cd
VB
784 * The identification function is mainly used by the buddy allocator for
785 * determining if two pages could be buddies. We are not really identifying
786 * the zone since we could be using the section number id if we do not have
787 * node id available in page flags.
788 * We only guarantee that it will return the same value for two combinable
789 * pages in a zone.
89689ae7 790 */
cb2b95e1
AW
791static inline int page_zone_id(struct page *page)
792{
89689ae7 793 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
794}
795
25ba77c1 796static inline int zone_to_nid(struct zone *zone)
89fa3024 797{
d5f541ed
CL
798#ifdef CONFIG_NUMA
799 return zone->node;
800#else
801 return 0;
802#endif
89fa3024
CL
803}
804
89689ae7 805#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 806extern int page_to_nid(const struct page *page);
89689ae7 807#else
33dd4e0e 808static inline int page_to_nid(const struct page *page)
d41dee36 809{
89689ae7 810 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 811}
89689ae7
CL
812#endif
813
57e0a030 814#ifdef CONFIG_NUMA_BALANCING
90572890 815static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 816{
90572890 817 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
818}
819
90572890 820static inline int cpupid_to_pid(int cpupid)
57e0a030 821{
90572890 822 return cpupid & LAST__PID_MASK;
57e0a030 823}
b795854b 824
90572890 825static inline int cpupid_to_cpu(int cpupid)
b795854b 826{
90572890 827 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
828}
829
90572890 830static inline int cpupid_to_nid(int cpupid)
b795854b 831{
90572890 832 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
833}
834
90572890 835static inline bool cpupid_pid_unset(int cpupid)
57e0a030 836{
90572890 837 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
838}
839
90572890 840static inline bool cpupid_cpu_unset(int cpupid)
b795854b 841{
90572890 842 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
843}
844
8c8a743c
PZ
845static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
846{
847 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
848}
849
850#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
851#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
852static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 853{
1ae71d03 854 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 855}
90572890
PZ
856
857static inline int page_cpupid_last(struct page *page)
858{
859 return page->_last_cpupid;
860}
861static inline void page_cpupid_reset_last(struct page *page)
b795854b 862{
1ae71d03 863 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
864}
865#else
90572890 866static inline int page_cpupid_last(struct page *page)
75980e97 867{
90572890 868 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
869}
870
90572890 871extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 872
90572890 873static inline void page_cpupid_reset_last(struct page *page)
75980e97 874{
90572890 875 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 876
90572890
PZ
877 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
878 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 879}
90572890
PZ
880#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
881#else /* !CONFIG_NUMA_BALANCING */
882static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 883{
90572890 884 return page_to_nid(page); /* XXX */
57e0a030
MG
885}
886
90572890 887static inline int page_cpupid_last(struct page *page)
57e0a030 888{
90572890 889 return page_to_nid(page); /* XXX */
57e0a030
MG
890}
891
90572890 892static inline int cpupid_to_nid(int cpupid)
b795854b
MG
893{
894 return -1;
895}
896
90572890 897static inline int cpupid_to_pid(int cpupid)
b795854b
MG
898{
899 return -1;
900}
901
90572890 902static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
903{
904 return -1;
905}
906
90572890
PZ
907static inline int cpu_pid_to_cpupid(int nid, int pid)
908{
909 return -1;
910}
911
912static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
913{
914 return 1;
915}
916
90572890 917static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
918{
919}
8c8a743c
PZ
920
921static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
922{
923 return false;
924}
90572890 925#endif /* CONFIG_NUMA_BALANCING */
57e0a030 926
33dd4e0e 927static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
928{
929 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
930}
931
9127ab4f 932#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
933static inline void set_page_section(struct page *page, unsigned long section)
934{
935 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
936 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
937}
938
aa462abe 939static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
940{
941 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
942}
308c05e3 943#endif
d41dee36 944
2f1b6248 945static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
946{
947 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
948 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
949}
2f1b6248 950
348f8b6c
DH
951static inline void set_page_node(struct page *page, unsigned long node)
952{
953 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
954 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 955}
89689ae7 956
2f1b6248 957static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 958 unsigned long node, unsigned long pfn)
1da177e4 959{
348f8b6c
DH
960 set_page_zone(page, zone);
961 set_page_node(page, node);
9127ab4f 962#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 963 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 964#endif
1da177e4
LT
965}
966
f6ac2354
CL
967/*
968 * Some inline functions in vmstat.h depend on page_zone()
969 */
970#include <linux/vmstat.h>
971
33dd4e0e 972static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 973{
aa462abe 974 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
975}
976
977#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
978#define HASHED_PAGE_VIRTUAL
979#endif
980
981#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
982static inline void *page_address(const struct page *page)
983{
984 return page->virtual;
985}
986static inline void set_page_address(struct page *page, void *address)
987{
988 page->virtual = address;
989}
1da177e4
LT
990#define page_address_init() do { } while(0)
991#endif
992
993#if defined(HASHED_PAGE_VIRTUAL)
f9918794 994void *page_address(const struct page *page);
1da177e4
LT
995void set_page_address(struct page *page, void *virtual);
996void page_address_init(void);
997#endif
998
999#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1000#define page_address(page) lowmem_page_address(page)
1001#define set_page_address(page, address) do { } while(0)
1002#define page_address_init() do { } while(0)
1003#endif
1004
1005/*
1006 * On an anonymous page mapped into a user virtual memory area,
1007 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
1008 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
1009 *
1010 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
1011 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
1012 * and then page->mapping points, not to an anon_vma, but to a private
1013 * structure which KSM associates with that merged page. See ksm.h.
1014 *
1015 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
1016 *
1017 * Please note that, confusingly, "page_mapping" refers to the inode
1018 * address_space which maps the page from disk; whereas "page_mapped"
1019 * refers to user virtual address space into which the page is mapped.
1020 */
1021#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
1022#define PAGE_MAPPING_KSM 2
1023#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4 1024
9800339b 1025extern struct address_space *page_mapping(struct page *page);
1da177e4 1026
3ca7b3c5
HD
1027/* Neutral page->mapping pointer to address_space or anon_vma or other */
1028static inline void *page_rmapping(struct page *page)
1029{
1030 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
1031}
1032
f981c595
MG
1033extern struct address_space *__page_file_mapping(struct page *);
1034
1035static inline
1036struct address_space *page_file_mapping(struct page *page)
1037{
1038 if (unlikely(PageSwapCache(page)))
1039 return __page_file_mapping(page);
1040
1041 return page->mapping;
1042}
1043
1da177e4
LT
1044static inline int PageAnon(struct page *page)
1045{
1046 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
1047}
1048
1049/*
1050 * Return the pagecache index of the passed page. Regular pagecache pages
1051 * use ->index whereas swapcache pages use ->private
1052 */
1053static inline pgoff_t page_index(struct page *page)
1054{
1055 if (unlikely(PageSwapCache(page)))
4c21e2f2 1056 return page_private(page);
1da177e4
LT
1057 return page->index;
1058}
1059
f981c595
MG
1060extern pgoff_t __page_file_index(struct page *page);
1061
1062/*
1063 * Return the file index of the page. Regular pagecache pages use ->index
1064 * whereas swapcache pages use swp_offset(->private)
1065 */
1066static inline pgoff_t page_file_index(struct page *page)
1067{
1068 if (unlikely(PageSwapCache(page)))
1069 return __page_file_index(page);
1070
1071 return page->index;
1072}
1073
1da177e4
LT
1074/*
1075 * Return true if this page is mapped into pagetables.
1076 */
1077static inline int page_mapped(struct page *page)
1078{
1079 return atomic_read(&(page)->_mapcount) >= 0;
1080}
1081
1da177e4
LT
1082/*
1083 * Different kinds of faults, as returned by handle_mm_fault().
1084 * Used to decide whether a process gets delivered SIGBUS or
1085 * just gets major/minor fault counters bumped up.
1086 */
d0217ac0 1087
83c54070 1088#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1089
83c54070
NP
1090#define VM_FAULT_OOM 0x0001
1091#define VM_FAULT_SIGBUS 0x0002
1092#define VM_FAULT_MAJOR 0x0004
1093#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1094#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1095#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1096#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1097
83c54070
NP
1098#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1099#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1100#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1101#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1102
aa50d3a7
AK
1103#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1104
33692f27
LT
1105#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1106 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1107 VM_FAULT_FALLBACK)
aa50d3a7
AK
1108
1109/* Encode hstate index for a hwpoisoned large page */
1110#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1111#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1112
1c0fe6e3
NP
1113/*
1114 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1115 */
1116extern void pagefault_out_of_memory(void);
1117
1da177e4
LT
1118#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1119
ddd588b5 1120/*
7bf02ea2 1121 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1122 * various contexts.
1123 */
4b59e6c4 1124#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1125
7bf02ea2
DR
1126extern void show_free_areas(unsigned int flags);
1127extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1128
1da177e4 1129int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1130#ifdef CONFIG_SHMEM
1131bool shmem_mapping(struct address_space *mapping);
1132#else
1133static inline bool shmem_mapping(struct address_space *mapping)
1134{
1135 return false;
1136}
1137#endif
1da177e4 1138
e8edc6e0 1139extern int can_do_mlock(void);
1da177e4
LT
1140extern int user_shm_lock(size_t, struct user_struct *);
1141extern void user_shm_unlock(size_t, struct user_struct *);
1142
1143/*
1144 * Parameter block passed down to zap_pte_range in exceptional cases.
1145 */
1146struct zap_details {
1da177e4
LT
1147 struct address_space *check_mapping; /* Check page->mapping if set */
1148 pgoff_t first_index; /* Lowest page->index to unmap */
1149 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1150};
1151
7e675137
NP
1152struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1153 pte_t pte);
1154
c627f9cc
JS
1155int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1156 unsigned long size);
14f5ff5d 1157void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1158 unsigned long size, struct zap_details *);
4f74d2c8
LT
1159void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1160 unsigned long start, unsigned long end);
e6473092
MM
1161
1162/**
1163 * mm_walk - callbacks for walk_page_range
1164 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1165 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1166 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1167 * this handler is required to be able to handle
1168 * pmd_trans_huge() pmds. They may simply choose to
1169 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1170 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1171 * @pte_hole: if set, called for each hole at all levels
5dc37642 1172 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
1173 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1174 * is used.
e6473092
MM
1175 *
1176 * (see walk_page_range for more details)
1177 */
1178struct mm_walk {
0f157a5b
AM
1179 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1180 unsigned long next, struct mm_walk *walk);
1181 int (*pud_entry)(pud_t *pud, unsigned long addr,
1182 unsigned long next, struct mm_walk *walk);
1183 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1184 unsigned long next, struct mm_walk *walk);
1185 int (*pte_entry)(pte_t *pte, unsigned long addr,
1186 unsigned long next, struct mm_walk *walk);
1187 int (*pte_hole)(unsigned long addr, unsigned long next,
1188 struct mm_walk *walk);
1189 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1190 unsigned long addr, unsigned long next,
1191 struct mm_walk *walk);
2165009b
DH
1192 struct mm_struct *mm;
1193 void *private;
e6473092
MM
1194};
1195
2165009b
DH
1196int walk_page_range(unsigned long addr, unsigned long end,
1197 struct mm_walk *walk);
42b77728 1198void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1199 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1200int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1201 struct vm_area_struct *vma);
1da177e4
LT
1202void unmap_mapping_range(struct address_space *mapping,
1203 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1204int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1205 unsigned long *pfn);
d87fe660 1206int follow_phys(struct vm_area_struct *vma, unsigned long address,
1207 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1208int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1209 void *buf, int len, int write);
1da177e4
LT
1210
1211static inline void unmap_shared_mapping_range(struct address_space *mapping,
1212 loff_t const holebegin, loff_t const holelen)
1213{
1214 unmap_mapping_range(mapping, holebegin, holelen, 0);
1215}
1216
7caef267 1217extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1218extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1219void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1220void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1221int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1222int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1223int invalidate_inode_page(struct page *page);
1224
7ee1dd3f 1225#ifdef CONFIG_MMU
83c54070 1226extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1227 unsigned long address, unsigned int flags);
5c723ba5
PZ
1228extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1229 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1230#else
1231static inline int handle_mm_fault(struct mm_struct *mm,
1232 struct vm_area_struct *vma, unsigned long address,
d06063cc 1233 unsigned int flags)
7ee1dd3f
DH
1234{
1235 /* should never happen if there's no MMU */
1236 BUG();
1237 return VM_FAULT_SIGBUS;
1238}
5c723ba5
PZ
1239static inline int fixup_user_fault(struct task_struct *tsk,
1240 struct mm_struct *mm, unsigned long address,
1241 unsigned int fault_flags)
1242{
1243 /* should never happen if there's no MMU */
1244 BUG();
1245 return -EFAULT;
1246}
7ee1dd3f 1247#endif
f33ea7f4 1248
1da177e4 1249extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1250extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1251 void *buf, int len, int write);
1da177e4 1252
28a35716
ML
1253long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1254 unsigned long start, unsigned long nr_pages,
1255 unsigned int foll_flags, struct page **pages,
1256 struct vm_area_struct **vmas, int *nonblocking);
1257long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1258 unsigned long start, unsigned long nr_pages,
1259 int write, int force, struct page **pages,
1260 struct vm_area_struct **vmas);
d2bf6be8
NP
1261int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1262 struct page **pages);
18022c5d
MG
1263struct kvec;
1264int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1265 struct page **pages);
1266int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1267struct page *get_dump_page(unsigned long addr);
1da177e4 1268
cf9a2ae8 1269extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1270extern void do_invalidatepage(struct page *page, unsigned int offset,
1271 unsigned int length);
cf9a2ae8 1272
1da177e4 1273int __set_page_dirty_nobuffers(struct page *page);
76719325 1274int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1275int redirty_page_for_writepage(struct writeback_control *wbc,
1276 struct page *page);
e3a7cca1 1277void account_page_dirtied(struct page *page, struct address_space *mapping);
b3c97528 1278int set_page_dirty(struct page *page);
1da177e4
LT
1279int set_page_dirty_lock(struct page *page);
1280int clear_page_dirty_for_io(struct page *page);
a9090253 1281int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1282
39aa3cb3 1283/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1284static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1285{
1286 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1287}
1288
a09a79f6
MP
1289static inline int stack_guard_page_start(struct vm_area_struct *vma,
1290 unsigned long addr)
1291{
1292 return (vma->vm_flags & VM_GROWSDOWN) &&
1293 (vma->vm_start == addr) &&
1294 !vma_growsdown(vma->vm_prev, addr);
1295}
1296
1297/* Is the vma a continuation of the stack vma below it? */
1298static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1299{
1300 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1301}
1302
1303static inline int stack_guard_page_end(struct vm_area_struct *vma,
1304 unsigned long addr)
1305{
1306 return (vma->vm_flags & VM_GROWSUP) &&
1307 (vma->vm_end == addr) &&
1308 !vma_growsup(vma->vm_next, addr);
1309}
1310
58cb6548
ON
1311extern struct task_struct *task_of_stack(struct task_struct *task,
1312 struct vm_area_struct *vma, bool in_group);
b7643757 1313
b6a2fea3
OW
1314extern unsigned long move_page_tables(struct vm_area_struct *vma,
1315 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1316 unsigned long new_addr, unsigned long len,
1317 bool need_rmap_locks);
7da4d641
PZ
1318extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1319 unsigned long end, pgprot_t newprot,
4b10e7d5 1320 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1321extern int mprotect_fixup(struct vm_area_struct *vma,
1322 struct vm_area_struct **pprev, unsigned long start,
1323 unsigned long end, unsigned long newflags);
1da177e4 1324
465a454f
PZ
1325/*
1326 * doesn't attempt to fault and will return short.
1327 */
1328int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1329 struct page **pages);
d559db08
KH
1330/*
1331 * per-process(per-mm_struct) statistics.
1332 */
d559db08
KH
1333static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1334{
69c97823
KK
1335 long val = atomic_long_read(&mm->rss_stat.count[member]);
1336
1337#ifdef SPLIT_RSS_COUNTING
1338 /*
1339 * counter is updated in asynchronous manner and may go to minus.
1340 * But it's never be expected number for users.
1341 */
1342 if (val < 0)
1343 val = 0;
172703b0 1344#endif
69c97823
KK
1345 return (unsigned long)val;
1346}
d559db08
KH
1347
1348static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1349{
172703b0 1350 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1351}
1352
1353static inline void inc_mm_counter(struct mm_struct *mm, int member)
1354{
172703b0 1355 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1356}
1357
1358static inline void dec_mm_counter(struct mm_struct *mm, int member)
1359{
172703b0 1360 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1361}
1362
d559db08
KH
1363static inline unsigned long get_mm_rss(struct mm_struct *mm)
1364{
1365 return get_mm_counter(mm, MM_FILEPAGES) +
1366 get_mm_counter(mm, MM_ANONPAGES);
1367}
1368
1369static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1370{
1371 return max(mm->hiwater_rss, get_mm_rss(mm));
1372}
1373
1374static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1375{
1376 return max(mm->hiwater_vm, mm->total_vm);
1377}
1378
1379static inline void update_hiwater_rss(struct mm_struct *mm)
1380{
1381 unsigned long _rss = get_mm_rss(mm);
1382
1383 if ((mm)->hiwater_rss < _rss)
1384 (mm)->hiwater_rss = _rss;
1385}
1386
1387static inline void update_hiwater_vm(struct mm_struct *mm)
1388{
1389 if (mm->hiwater_vm < mm->total_vm)
1390 mm->hiwater_vm = mm->total_vm;
1391}
1392
1393static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1394 struct mm_struct *mm)
1395{
1396 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1397
1398 if (*maxrss < hiwater_rss)
1399 *maxrss = hiwater_rss;
1400}
1401
53bddb4e 1402#if defined(SPLIT_RSS_COUNTING)
05af2e10 1403void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1404#else
05af2e10 1405static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1406{
1407}
1408#endif
465a454f 1409
4e950f6f 1410int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1411
25ca1d6c
NK
1412extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1413 spinlock_t **ptl);
1414static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1415 spinlock_t **ptl)
1416{
1417 pte_t *ptep;
1418 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1419 return ptep;
1420}
c9cfcddf 1421
5f22df00
NP
1422#ifdef __PAGETABLE_PUD_FOLDED
1423static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1424 unsigned long address)
1425{
1426 return 0;
1427}
1428#else
1bb3630e 1429int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1430#endif
1431
1432#ifdef __PAGETABLE_PMD_FOLDED
1433static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1434 unsigned long address)
1435{
1436 return 0;
1437}
1438#else
1bb3630e 1439int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1440#endif
1441
8ac1f832
AA
1442int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1443 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1444int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1445
1da177e4
LT
1446/*
1447 * The following ifdef needed to get the 4level-fixup.h header to work.
1448 * Remove it when 4level-fixup.h has been removed.
1449 */
1bb3630e 1450#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1451static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1452{
1bb3630e
HD
1453 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1454 NULL: pud_offset(pgd, address);
1da177e4
LT
1455}
1456
1457static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1458{
1bb3630e
HD
1459 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1460 NULL: pmd_offset(pud, address);
1da177e4 1461}
1bb3630e
HD
1462#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1463
57c1ffce 1464#if USE_SPLIT_PTE_PTLOCKS
597d795a 1465#if ALLOC_SPLIT_PTLOCKS
b35f1819 1466void __init ptlock_cache_init(void);
539edb58
PZ
1467extern bool ptlock_alloc(struct page *page);
1468extern void ptlock_free(struct page *page);
1469
1470static inline spinlock_t *ptlock_ptr(struct page *page)
1471{
1472 return page->ptl;
1473}
597d795a 1474#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1475static inline void ptlock_cache_init(void)
1476{
1477}
1478
49076ec2
KS
1479static inline bool ptlock_alloc(struct page *page)
1480{
49076ec2
KS
1481 return true;
1482}
539edb58 1483
49076ec2
KS
1484static inline void ptlock_free(struct page *page)
1485{
49076ec2
KS
1486}
1487
1488static inline spinlock_t *ptlock_ptr(struct page *page)
1489{
539edb58 1490 return &page->ptl;
49076ec2 1491}
597d795a 1492#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1493
1494static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1495{
1496 return ptlock_ptr(pmd_page(*pmd));
1497}
1498
1499static inline bool ptlock_init(struct page *page)
1500{
1501 /*
1502 * prep_new_page() initialize page->private (and therefore page->ptl)
1503 * with 0. Make sure nobody took it in use in between.
1504 *
1505 * It can happen if arch try to use slab for page table allocation:
1506 * slab code uses page->slab_cache and page->first_page (for tail
1507 * pages), which share storage with page->ptl.
1508 */
309381fe 1509 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1510 if (!ptlock_alloc(page))
1511 return false;
1512 spin_lock_init(ptlock_ptr(page));
1513 return true;
1514}
1515
1516/* Reset page->mapping so free_pages_check won't complain. */
1517static inline void pte_lock_deinit(struct page *page)
1518{
1519 page->mapping = NULL;
1520 ptlock_free(page);
1521}
1522
57c1ffce 1523#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1524/*
1525 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1526 */
49076ec2
KS
1527static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1528{
1529 return &mm->page_table_lock;
1530}
b35f1819 1531static inline void ptlock_cache_init(void) {}
49076ec2
KS
1532static inline bool ptlock_init(struct page *page) { return true; }
1533static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1534#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1535
b35f1819
KS
1536static inline void pgtable_init(void)
1537{
1538 ptlock_cache_init();
1539 pgtable_cache_init();
1540}
1541
390f44e2 1542static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1543{
2f569afd 1544 inc_zone_page_state(page, NR_PAGETABLE);
49076ec2 1545 return ptlock_init(page);
2f569afd
MS
1546}
1547
1548static inline void pgtable_page_dtor(struct page *page)
1549{
1550 pte_lock_deinit(page);
1551 dec_zone_page_state(page, NR_PAGETABLE);
1552}
1553
c74df32c
HD
1554#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1555({ \
4c21e2f2 1556 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1557 pte_t *__pte = pte_offset_map(pmd, address); \
1558 *(ptlp) = __ptl; \
1559 spin_lock(__ptl); \
1560 __pte; \
1561})
1562
1563#define pte_unmap_unlock(pte, ptl) do { \
1564 spin_unlock(ptl); \
1565 pte_unmap(pte); \
1566} while (0)
1567
8ac1f832
AA
1568#define pte_alloc_map(mm, vma, pmd, address) \
1569 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1570 pmd, address))? \
1571 NULL: pte_offset_map(pmd, address))
1bb3630e 1572
c74df32c 1573#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1574 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1575 pmd, address))? \
c74df32c
HD
1576 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1577
1bb3630e 1578#define pte_alloc_kernel(pmd, address) \
8ac1f832 1579 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1580 NULL: pte_offset_kernel(pmd, address))
1da177e4 1581
e009bb30
KS
1582#if USE_SPLIT_PMD_PTLOCKS
1583
634391ac
MS
1584static struct page *pmd_to_page(pmd_t *pmd)
1585{
1586 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1587 return virt_to_page((void *)((unsigned long) pmd & mask));
1588}
1589
e009bb30
KS
1590static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1591{
634391ac 1592 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1593}
1594
1595static inline bool pgtable_pmd_page_ctor(struct page *page)
1596{
e009bb30
KS
1597#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1598 page->pmd_huge_pte = NULL;
1599#endif
49076ec2 1600 return ptlock_init(page);
e009bb30
KS
1601}
1602
1603static inline void pgtable_pmd_page_dtor(struct page *page)
1604{
1605#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1606 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1607#endif
49076ec2 1608 ptlock_free(page);
e009bb30
KS
1609}
1610
634391ac 1611#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1612
1613#else
1614
9a86cb7b
KS
1615static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1616{
1617 return &mm->page_table_lock;
1618}
1619
e009bb30
KS
1620static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1621static inline void pgtable_pmd_page_dtor(struct page *page) {}
1622
c389a250 1623#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1624
e009bb30
KS
1625#endif
1626
9a86cb7b
KS
1627static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1628{
1629 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1630 spin_lock(ptl);
1631 return ptl;
1632}
1633
1da177e4 1634extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1635extern void free_area_init_node(int nid, unsigned long * zones_size,
1636 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1637extern void free_initmem(void);
1638
69afade7
JL
1639/*
1640 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1641 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1642 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1643 * Return pages freed into the buddy system.
1644 */
11199692 1645extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1646 int poison, char *s);
c3d5f5f0 1647
cfa11e08
JL
1648#ifdef CONFIG_HIGHMEM
1649/*
1650 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1651 * and totalram_pages.
1652 */
1653extern void free_highmem_page(struct page *page);
1654#endif
69afade7 1655
c3d5f5f0 1656extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1657extern void mem_init_print_info(const char *str);
69afade7
JL
1658
1659/* Free the reserved page into the buddy system, so it gets managed. */
1660static inline void __free_reserved_page(struct page *page)
1661{
1662 ClearPageReserved(page);
1663 init_page_count(page);
1664 __free_page(page);
1665}
1666
1667static inline void free_reserved_page(struct page *page)
1668{
1669 __free_reserved_page(page);
1670 adjust_managed_page_count(page, 1);
1671}
1672
1673static inline void mark_page_reserved(struct page *page)
1674{
1675 SetPageReserved(page);
1676 adjust_managed_page_count(page, -1);
1677}
1678
1679/*
1680 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1681 * The freed pages will be poisoned with pattern "poison" if it's within
1682 * range [0, UCHAR_MAX].
1683 * Return pages freed into the buddy system.
69afade7
JL
1684 */
1685static inline unsigned long free_initmem_default(int poison)
1686{
1687 extern char __init_begin[], __init_end[];
1688
11199692 1689 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1690 poison, "unused kernel");
1691}
1692
7ee3d4e8
JL
1693static inline unsigned long get_num_physpages(void)
1694{
1695 int nid;
1696 unsigned long phys_pages = 0;
1697
1698 for_each_online_node(nid)
1699 phys_pages += node_present_pages(nid);
1700
1701 return phys_pages;
1702}
1703
0ee332c1 1704#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1705/*
0ee332c1 1706 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1707 * zones, allocate the backing mem_map and account for memory holes in a more
1708 * architecture independent manner. This is a substitute for creating the
1709 * zone_sizes[] and zholes_size[] arrays and passing them to
1710 * free_area_init_node()
1711 *
1712 * An architecture is expected to register range of page frames backed by
0ee332c1 1713 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1714 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1715 * usage, an architecture is expected to do something like
1716 *
1717 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1718 * max_highmem_pfn};
1719 * for_each_valid_physical_page_range()
0ee332c1 1720 * memblock_add_node(base, size, nid)
c713216d
MG
1721 * free_area_init_nodes(max_zone_pfns);
1722 *
0ee332c1
TH
1723 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1724 * registered physical page range. Similarly
1725 * sparse_memory_present_with_active_regions() calls memory_present() for
1726 * each range when SPARSEMEM is enabled.
c713216d
MG
1727 *
1728 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1729 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1730 */
1731extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1732unsigned long node_map_pfn_alignment(void);
32996250
YL
1733unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1734 unsigned long end_pfn);
c713216d
MG
1735extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1736 unsigned long end_pfn);
1737extern void get_pfn_range_for_nid(unsigned int nid,
1738 unsigned long *start_pfn, unsigned long *end_pfn);
1739extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1740extern void free_bootmem_with_active_regions(int nid,
1741 unsigned long max_low_pfn);
1742extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1743
0ee332c1 1744#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1745
0ee332c1 1746#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1747 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1748static inline int __early_pfn_to_nid(unsigned long pfn)
1749{
1750 return 0;
1751}
1752#else
1753/* please see mm/page_alloc.c */
1754extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
1755/* there is a per-arch backend function. */
1756extern int __meminit __early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
1757#endif
1758
0e0b864e 1759extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1760extern void memmap_init_zone(unsigned long, int, unsigned long,
1761 unsigned long, enum memmap_context);
bc75d33f 1762extern void setup_per_zone_wmarks(void);
1b79acc9 1763extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1764extern void mem_init(void);
8feae131 1765extern void __init mmap_init(void);
b2b755b5 1766extern void show_mem(unsigned int flags);
1da177e4
LT
1767extern void si_meminfo(struct sysinfo * val);
1768extern void si_meminfo_node(struct sysinfo *val, int nid);
1769
3ee9a4f0
JP
1770extern __printf(3, 4)
1771void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1772
e7c8d5c9 1773extern void setup_per_cpu_pageset(void);
e7c8d5c9 1774
112067f0 1775extern void zone_pcp_update(struct zone *zone);
340175b7 1776extern void zone_pcp_reset(struct zone *zone);
112067f0 1777
75f7ad8e
PS
1778/* page_alloc.c */
1779extern int min_free_kbytes;
1780
8feae131 1781/* nommu.c */
33e5d769 1782extern atomic_long_t mmap_pages_allocated;
7e660872 1783extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1784
6b2dbba8 1785/* interval_tree.c */
6b2dbba8
ML
1786void vma_interval_tree_insert(struct vm_area_struct *node,
1787 struct rb_root *root);
9826a516
ML
1788void vma_interval_tree_insert_after(struct vm_area_struct *node,
1789 struct vm_area_struct *prev,
1790 struct rb_root *root);
6b2dbba8
ML
1791void vma_interval_tree_remove(struct vm_area_struct *node,
1792 struct rb_root *root);
1793struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1794 unsigned long start, unsigned long last);
1795struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1796 unsigned long start, unsigned long last);
1797
1798#define vma_interval_tree_foreach(vma, root, start, last) \
1799 for (vma = vma_interval_tree_iter_first(root, start, last); \
1800 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4
LT
1801
1802static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1803 struct list_head *list)
1804{
6b2dbba8 1805 list_add_tail(&vma->shared.nonlinear, list);
1da177e4
LT
1806}
1807
bf181b9f
ML
1808void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1809 struct rb_root *root);
1810void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1811 struct rb_root *root);
1812struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1813 struct rb_root *root, unsigned long start, unsigned long last);
1814struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1815 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1816#ifdef CONFIG_DEBUG_VM_RB
1817void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1818#endif
bf181b9f
ML
1819
1820#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1821 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1822 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1823
1da177e4 1824/* mmap.c */
34b4e4aa 1825extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1826extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1827 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1828extern struct vm_area_struct *vma_merge(struct mm_struct *,
1829 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1830 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1831 struct mempolicy *);
1832extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1833extern int split_vma(struct mm_struct *,
1834 struct vm_area_struct *, unsigned long addr, int new_below);
1835extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1836extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1837 struct rb_node **, struct rb_node *);
a8fb5618 1838extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1839extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1840 unsigned long addr, unsigned long len, pgoff_t pgoff,
1841 bool *need_rmap_locks);
1da177e4 1842extern void exit_mmap(struct mm_struct *);
925d1c40 1843
9c599024
CG
1844static inline int check_data_rlimit(unsigned long rlim,
1845 unsigned long new,
1846 unsigned long start,
1847 unsigned long end_data,
1848 unsigned long start_data)
1849{
1850 if (rlim < RLIM_INFINITY) {
1851 if (((new - start) + (end_data - start_data)) > rlim)
1852 return -ENOSPC;
1853 }
1854
1855 return 0;
1856}
1857
7906d00c
AA
1858extern int mm_take_all_locks(struct mm_struct *mm);
1859extern void mm_drop_all_locks(struct mm_struct *mm);
1860
38646013
JS
1861extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1862extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1863
119f657c 1864extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
3935ed6a
SS
1865extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1866 unsigned long addr, unsigned long len,
a62c34bd
AL
1867 unsigned long flags,
1868 const struct vm_special_mapping *spec);
1869/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
1870extern int install_special_mapping(struct mm_struct *mm,
1871 unsigned long addr, unsigned long len,
1872 unsigned long flags, struct page **pages);
1da177e4
LT
1873
1874extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1875
0165ab44 1876extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1877 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1878extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1879 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1880 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1881extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1882
bebeb3d6
ML
1883#ifdef CONFIG_MMU
1884extern int __mm_populate(unsigned long addr, unsigned long len,
1885 int ignore_errors);
1886static inline void mm_populate(unsigned long addr, unsigned long len)
1887{
1888 /* Ignore errors */
1889 (void) __mm_populate(addr, len, 1);
1890}
1891#else
1892static inline void mm_populate(unsigned long addr, unsigned long len) {}
1893#endif
1894
e4eb1ff6
LT
1895/* These take the mm semaphore themselves */
1896extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1897extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1898extern unsigned long vm_mmap(struct file *, unsigned long,
1899 unsigned long, unsigned long,
1900 unsigned long, unsigned long);
1da177e4 1901
db4fbfb9
ML
1902struct vm_unmapped_area_info {
1903#define VM_UNMAPPED_AREA_TOPDOWN 1
1904 unsigned long flags;
1905 unsigned long length;
1906 unsigned long low_limit;
1907 unsigned long high_limit;
1908 unsigned long align_mask;
1909 unsigned long align_offset;
1910};
1911
1912extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1913extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1914
1915/*
1916 * Search for an unmapped address range.
1917 *
1918 * We are looking for a range that:
1919 * - does not intersect with any VMA;
1920 * - is contained within the [low_limit, high_limit) interval;
1921 * - is at least the desired size.
1922 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1923 */
1924static inline unsigned long
1925vm_unmapped_area(struct vm_unmapped_area_info *info)
1926{
1927 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1928 return unmapped_area(info);
1929 else
1930 return unmapped_area_topdown(info);
1931}
1932
85821aab 1933/* truncate.c */
1da177e4 1934extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1935extern void truncate_inode_pages_range(struct address_space *,
1936 loff_t lstart, loff_t lend);
91b0abe3 1937extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
1938
1939/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1940extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 1941extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 1942extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1943
1944/* mm/page-writeback.c */
1945int write_one_page(struct page *page, int wait);
1cf6e7d8 1946void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1947
1948/* readahead.c */
1949#define VM_MAX_READAHEAD 128 /* kbytes */
1950#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1951
1da177e4 1952int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1953 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1954
1955void page_cache_sync_readahead(struct address_space *mapping,
1956 struct file_ra_state *ra,
1957 struct file *filp,
1958 pgoff_t offset,
1959 unsigned long size);
1960
1961void page_cache_async_readahead(struct address_space *mapping,
1962 struct file_ra_state *ra,
1963 struct file *filp,
1964 struct page *pg,
1965 pgoff_t offset,
1966 unsigned long size);
1967
1da177e4
LT
1968unsigned long max_sane_readahead(unsigned long nr);
1969
d05f3169 1970/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1971extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1972
1973/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1974extern int expand_downwards(struct vm_area_struct *vma,
1975 unsigned long address);
8ca3eb08 1976#if VM_GROWSUP
46dea3d0 1977extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 1978#else
fee7e49d 1979 #define expand_upwards(vma, address) (0)
9ab88515 1980#endif
1da177e4
LT
1981
1982/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1983extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1984extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1985 struct vm_area_struct **pprev);
1986
1987/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1988 NULL if none. Assume start_addr < end_addr. */
1989static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1990{
1991 struct vm_area_struct * vma = find_vma(mm,start_addr);
1992
1993 if (vma && end_addr <= vma->vm_start)
1994 vma = NULL;
1995 return vma;
1996}
1997
1998static inline unsigned long vma_pages(struct vm_area_struct *vma)
1999{
2000 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2001}
2002
640708a2
PE
2003/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2004static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2005 unsigned long vm_start, unsigned long vm_end)
2006{
2007 struct vm_area_struct *vma = find_vma(mm, vm_start);
2008
2009 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2010 vma = NULL;
2011
2012 return vma;
2013}
2014
bad849b3 2015#ifdef CONFIG_MMU
804af2cf 2016pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2017void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2018#else
2019static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2020{
2021 return __pgprot(0);
2022}
64e45507
PF
2023static inline void vma_set_page_prot(struct vm_area_struct *vma)
2024{
2025 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2026}
bad849b3
DH
2027#endif
2028
5877231f 2029#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2030unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2031 unsigned long start, unsigned long end);
2032#endif
2033
deceb6cd 2034struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2035int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2036 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2037int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2038int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2039 unsigned long pfn);
423bad60
NP
2040int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2041 unsigned long pfn);
b4cbb197
LT
2042int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2043
deceb6cd 2044
240aadee
ML
2045struct page *follow_page_mask(struct vm_area_struct *vma,
2046 unsigned long address, unsigned int foll_flags,
2047 unsigned int *page_mask);
2048
2049static inline struct page *follow_page(struct vm_area_struct *vma,
2050 unsigned long address, unsigned int foll_flags)
2051{
2052 unsigned int unused_page_mask;
2053 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2054}
2055
deceb6cd
HD
2056#define FOLL_WRITE 0x01 /* check pte is writable */
2057#define FOLL_TOUCH 0x02 /* mark page accessed */
2058#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2059#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2060#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2061#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2062 * and return without waiting upon it */
110d74a9 2063#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 2064#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2065#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2066#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2067#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2068#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
1da177e4 2069
2f569afd 2070typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2071 void *data);
2072extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2073 unsigned long size, pte_fn_t fn, void *data);
2074
1da177e4 2075#ifdef CONFIG_PROC_FS
ab50b8ed 2076void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 2077#else
ab50b8ed 2078static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
2079 unsigned long flags, struct file *file, long pages)
2080{
44de9d0c 2081 mm->total_vm += pages;
1da177e4
LT
2082}
2083#endif /* CONFIG_PROC_FS */
2084
12d6f21e 2085#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2086extern bool _debug_pagealloc_enabled;
2087extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2088
2089static inline bool debug_pagealloc_enabled(void)
2090{
2091 return _debug_pagealloc_enabled;
2092}
2093
2094static inline void
2095kernel_map_pages(struct page *page, int numpages, int enable)
2096{
2097 if (!debug_pagealloc_enabled())
2098 return;
2099
2100 __kernel_map_pages(page, numpages, enable);
2101}
8a235efa
RW
2102#ifdef CONFIG_HIBERNATION
2103extern bool kernel_page_present(struct page *page);
2104#endif /* CONFIG_HIBERNATION */
12d6f21e 2105#else
1da177e4 2106static inline void
9858db50 2107kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2108#ifdef CONFIG_HIBERNATION
2109static inline bool kernel_page_present(struct page *page) { return true; }
2110#endif /* CONFIG_HIBERNATION */
1da177e4
LT
2111#endif
2112
a6c19dfe 2113#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2114extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2115extern int in_gate_area_no_mm(unsigned long addr);
2116extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2117#else
a6c19dfe
AL
2118static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2119{
2120 return NULL;
2121}
2122static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2123static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2124{
2125 return 0;
2126}
1da177e4
LT
2127#endif /* __HAVE_ARCH_GATE_AREA */
2128
146732ce
JT
2129#ifdef CONFIG_SYSCTL
2130extern int sysctl_drop_caches;
8d65af78 2131int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2132 void __user *, size_t *, loff_t *);
146732ce
JT
2133#endif
2134
6b4f7799
JW
2135unsigned long shrink_node_slabs(gfp_t gfp_mask, int nid,
2136 unsigned long nr_scanned,
2137 unsigned long nr_eligible);
9d0243bc 2138
7a9166e3
LY
2139#ifndef CONFIG_MMU
2140#define randomize_va_space 0
2141#else
a62eaf15 2142extern int randomize_va_space;
7a9166e3 2143#endif
a62eaf15 2144
045e72ac 2145const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2146void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2147
9bdac914
YL
2148void sparse_mem_maps_populate_node(struct page **map_map,
2149 unsigned long pnum_begin,
2150 unsigned long pnum_end,
2151 unsigned long map_count,
2152 int nodeid);
2153
98f3cfc1 2154struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2155pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2156pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2157pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2158pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2159void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 2160void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 2161void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2162int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2163 int node);
2164int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2165void vmemmap_populate_print_last(void);
0197518c 2166#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2167void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2168#endif
46723bfa
YI
2169void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2170 unsigned long size);
6a46079c 2171
82ba011b
AK
2172enum mf_flags {
2173 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2174 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2175 MF_MUST_KILL = 1 << 2,
cf870c70 2176 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2177};
cd42f4a3 2178extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2179extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2180extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
2181extern int sysctl_memory_failure_early_kill;
2182extern int sysctl_memory_failure_recovery;
facb6011 2183extern void shake_page(struct page *p, int access);
293c07e3 2184extern atomic_long_t num_poisoned_pages;
facb6011 2185extern int soft_offline_page(struct page *page, int flags);
6a46079c 2186
47ad8475
AA
2187#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2188extern void clear_huge_page(struct page *page,
2189 unsigned long addr,
2190 unsigned int pages_per_huge_page);
2191extern void copy_user_huge_page(struct page *dst, struct page *src,
2192 unsigned long addr, struct vm_area_struct *vma,
2193 unsigned int pages_per_huge_page);
2194#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2195
e30825f1
JK
2196extern struct page_ext_operations debug_guardpage_ops;
2197extern struct page_ext_operations page_poisoning_ops;
2198
c0a32fc5
SG
2199#ifdef CONFIG_DEBUG_PAGEALLOC
2200extern unsigned int _debug_guardpage_minorder;
e30825f1 2201extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2202
2203static inline unsigned int debug_guardpage_minorder(void)
2204{
2205 return _debug_guardpage_minorder;
2206}
2207
e30825f1
JK
2208static inline bool debug_guardpage_enabled(void)
2209{
2210 return _debug_guardpage_enabled;
2211}
2212
c0a32fc5
SG
2213static inline bool page_is_guard(struct page *page)
2214{
e30825f1
JK
2215 struct page_ext *page_ext;
2216
2217 if (!debug_guardpage_enabled())
2218 return false;
2219
2220 page_ext = lookup_page_ext(page);
2221 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2222}
2223#else
2224static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2225static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2226static inline bool page_is_guard(struct page *page) { return false; }
2227#endif /* CONFIG_DEBUG_PAGEALLOC */
2228
f9872caf
CS
2229#if MAX_NUMNODES > 1
2230void __init setup_nr_node_ids(void);
2231#else
2232static inline void setup_nr_node_ids(void) {}
2233#endif
2234
1da177e4
LT
2235#endif /* __KERNEL__ */
2236#endif /* _LINUX_MM_H */