mm: drop support of non-linear mapping from unmap/zap codepath
[linux-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
1da177e4
LT
23
24struct mempolicy;
25struct anon_vma;
bf181b9f 26struct anon_vma_chain;
4e950f6f 27struct file_ra_state;
e8edc6e0 28struct user_struct;
4e950f6f 29struct writeback_control;
1da177e4 30
fccc9987 31#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 32extern unsigned long max_mapnr;
fccc9987
JL
33
34static inline void set_max_mapnr(unsigned long limit)
35{
36 max_mapnr = limit;
37}
38#else
39static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
40#endif
41
4481374c 42extern unsigned long totalram_pages;
1da177e4 43extern void * high_memory;
1da177e4
LT
44extern int page_cluster;
45
46#ifdef CONFIG_SYSCTL
47extern int sysctl_legacy_va_layout;
48#else
49#define sysctl_legacy_va_layout 0
50#endif
51
52#include <asm/page.h>
53#include <asm/pgtable.h>
54#include <asm/processor.h>
1da177e4 55
79442ed1
TC
56#ifndef __pa_symbol
57#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
58#endif
59
593befa6
DD
60/*
61 * To prevent common memory management code establishing
62 * a zero page mapping on a read fault.
63 * This macro should be defined within <asm/pgtable.h>.
64 * s390 does this to prevent multiplexing of hardware bits
65 * related to the physical page in case of virtualization.
66 */
67#ifndef mm_forbids_zeropage
68#define mm_forbids_zeropage(X) (0)
69#endif
70
c9b1d098 71extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 72extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 73
49f0ce5f
JM
74extern int sysctl_overcommit_memory;
75extern int sysctl_overcommit_ratio;
76extern unsigned long sysctl_overcommit_kbytes;
77
78extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
79 size_t *, loff_t *);
80extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
81 size_t *, loff_t *);
82
1da177e4
LT
83#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
84
27ac792c
AR
85/* to align the pointer to the (next) page boundary */
86#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
87
0fa73b86
AM
88/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
89#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
90
1da177e4
LT
91/*
92 * Linux kernel virtual memory manager primitives.
93 * The idea being to have a "virtual" mm in the same way
94 * we have a virtual fs - giving a cleaner interface to the
95 * mm details, and allowing different kinds of memory mappings
96 * (from shared memory to executable loading to arbitrary
97 * mmap() functions).
98 */
99
c43692e8
CL
100extern struct kmem_cache *vm_area_cachep;
101
1da177e4 102#ifndef CONFIG_MMU
8feae131
DH
103extern struct rb_root nommu_region_tree;
104extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
105
106extern unsigned int kobjsize(const void *objp);
107#endif
108
109/*
605d9288 110 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 111 */
cc2383ec
KK
112#define VM_NONE 0x00000000
113
1da177e4
LT
114#define VM_READ 0x00000001 /* currently active flags */
115#define VM_WRITE 0x00000002
116#define VM_EXEC 0x00000004
117#define VM_SHARED 0x00000008
118
7e2cff42 119/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
120#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
121#define VM_MAYWRITE 0x00000020
122#define VM_MAYEXEC 0x00000040
123#define VM_MAYSHARE 0x00000080
124
125#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 126#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
127#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
128
1da177e4
LT
129#define VM_LOCKED 0x00002000
130#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
131
132 /* Used by sys_madvise() */
133#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
134#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
135
136#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
137#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 138#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 139#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
140#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
141#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
cc2383ec 142#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 143#define VM_ARCH_2 0x02000000
0103bd16 144#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 145
d9104d1c
CG
146#ifdef CONFIG_MEM_SOFT_DIRTY
147# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
148#else
149# define VM_SOFTDIRTY 0
150#endif
151
b379d790 152#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
153#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
154#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 155#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 156
cc2383ec
KK
157#if defined(CONFIG_X86)
158# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
159#elif defined(CONFIG_PPC)
160# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
161#elif defined(CONFIG_PARISC)
162# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
163#elif defined(CONFIG_METAG)
164# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
165#elif defined(CONFIG_IA64)
166# define VM_GROWSUP VM_ARCH_1
167#elif !defined(CONFIG_MMU)
168# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
169#endif
170
4aae7e43
QR
171#if defined(CONFIG_X86)
172/* MPX specific bounds table or bounds directory */
173# define VM_MPX VM_ARCH_2
174#endif
175
cc2383ec
KK
176#ifndef VM_GROWSUP
177# define VM_GROWSUP VM_NONE
178#endif
179
a8bef8ff
MG
180/* Bits set in the VMA until the stack is in its final location */
181#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
182
1da177e4
LT
183#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
184#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
185#endif
186
187#ifdef CONFIG_STACK_GROWSUP
188#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
189#else
190#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
191#endif
192
b291f000 193/*
78f11a25
AA
194 * Special vmas that are non-mergable, non-mlock()able.
195 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 196 */
9050d7eb 197#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 198
a0715cc2
AT
199/* This mask defines which mm->def_flags a process can inherit its parent */
200#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
201
1da177e4
LT
202/*
203 * mapping from the currently active vm_flags protection bits (the
204 * low four bits) to a page protection mask..
205 */
206extern pgprot_t protection_map[16];
207
d0217ac0
NP
208#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
209#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 210#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 211#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 212#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 213#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
45cac65b 214#define FAULT_FLAG_TRIED 0x40 /* second try */
759496ba 215#define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
d0217ac0 216
54cb8821 217/*
d0217ac0 218 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
219 * ->fault function. The vma's ->fault is responsible for returning a bitmask
220 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 221 *
d0217ac0 222 * pgoff should be used in favour of virtual_address, if possible. If pgoff
0b173bc4 223 * is used, one may implement ->remap_pages to get nonlinear mapping support.
54cb8821 224 */
d0217ac0
NP
225struct vm_fault {
226 unsigned int flags; /* FAULT_FLAG_xxx flags */
227 pgoff_t pgoff; /* Logical page offset based on vma */
228 void __user *virtual_address; /* Faulting virtual address */
229
230 struct page *page; /* ->fault handlers should return a
83c54070 231 * page here, unless VM_FAULT_NOPAGE
d0217ac0 232 * is set (which is also implied by
83c54070 233 * VM_FAULT_ERROR).
d0217ac0 234 */
8c6e50b0
KS
235 /* for ->map_pages() only */
236 pgoff_t max_pgoff; /* map pages for offset from pgoff till
237 * max_pgoff inclusive */
238 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 239};
1da177e4
LT
240
241/*
242 * These are the virtual MM functions - opening of an area, closing and
243 * unmapping it (needed to keep files on disk up-to-date etc), pointer
244 * to the functions called when a no-page or a wp-page exception occurs.
245 */
246struct vm_operations_struct {
247 void (*open)(struct vm_area_struct * area);
248 void (*close)(struct vm_area_struct * area);
d0217ac0 249 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
8c6e50b0 250 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
251
252 /* notification that a previously read-only page is about to become
253 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 254 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
255
256 /* called by access_process_vm when get_user_pages() fails, typically
257 * for use by special VMAs that can switch between memory and hardware
258 */
259 int (*access)(struct vm_area_struct *vma, unsigned long addr,
260 void *buf, int len, int write);
78d683e8
AL
261
262 /* Called by the /proc/PID/maps code to ask the vma whether it
263 * has a special name. Returning non-NULL will also cause this
264 * vma to be dumped unconditionally. */
265 const char *(*name)(struct vm_area_struct *vma);
266
1da177e4 267#ifdef CONFIG_NUMA
a6020ed7
LS
268 /*
269 * set_policy() op must add a reference to any non-NULL @new mempolicy
270 * to hold the policy upon return. Caller should pass NULL @new to
271 * remove a policy and fall back to surrounding context--i.e. do not
272 * install a MPOL_DEFAULT policy, nor the task or system default
273 * mempolicy.
274 */
1da177e4 275 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
276
277 /*
278 * get_policy() op must add reference [mpol_get()] to any policy at
279 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
280 * in mm/mempolicy.c will do this automatically.
281 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
282 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
283 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
284 * must return NULL--i.e., do not "fallback" to task or system default
285 * policy.
286 */
1da177e4
LT
287 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
288 unsigned long addr);
289#endif
0b173bc4
KK
290 /* called by sys_remap_file_pages() to populate non-linear mapping */
291 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
292 unsigned long size, pgoff_t pgoff);
1da177e4
LT
293};
294
295struct mmu_gather;
296struct inode;
297
349aef0b
AM
298#define page_private(page) ((page)->private)
299#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 300
b12c4ad1
MK
301/* It's valid only if the page is free path or free_list */
302static inline void set_freepage_migratetype(struct page *page, int migratetype)
303{
95e34412 304 page->index = migratetype;
b12c4ad1
MK
305}
306
307/* It's valid only if the page is free path or free_list */
308static inline int get_freepage_migratetype(struct page *page)
309{
95e34412 310 return page->index;
b12c4ad1
MK
311}
312
1da177e4
LT
313/*
314 * FIXME: take this include out, include page-flags.h in
315 * files which need it (119 of them)
316 */
317#include <linux/page-flags.h>
71e3aac0 318#include <linux/huge_mm.h>
1da177e4
LT
319
320/*
321 * Methods to modify the page usage count.
322 *
323 * What counts for a page usage:
324 * - cache mapping (page->mapping)
325 * - private data (page->private)
326 * - page mapped in a task's page tables, each mapping
327 * is counted separately
328 *
329 * Also, many kernel routines increase the page count before a critical
330 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
331 */
332
333/*
da6052f7 334 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 335 */
7c8ee9a8
NP
336static inline int put_page_testzero(struct page *page)
337{
309381fe 338 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 339 return atomic_dec_and_test(&page->_count);
7c8ee9a8 340}
1da177e4
LT
341
342/*
7c8ee9a8
NP
343 * Try to grab a ref unless the page has a refcount of zero, return false if
344 * that is the case.
8e0861fa
AK
345 * This can be called when MMU is off so it must not access
346 * any of the virtual mappings.
1da177e4 347 */
7c8ee9a8
NP
348static inline int get_page_unless_zero(struct page *page)
349{
8dc04efb 350 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 351}
1da177e4 352
8e0861fa
AK
353/*
354 * Try to drop a ref unless the page has a refcount of one, return false if
355 * that is the case.
356 * This is to make sure that the refcount won't become zero after this drop.
357 * This can be called when MMU is off so it must not access
358 * any of the virtual mappings.
359 */
360static inline int put_page_unless_one(struct page *page)
361{
362 return atomic_add_unless(&page->_count, -1, 1);
363}
364
53df8fdc 365extern int page_is_ram(unsigned long pfn);
67cf13ce 366extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
53df8fdc 367
48667e7a 368/* Support for virtually mapped pages */
b3bdda02
CL
369struct page *vmalloc_to_page(const void *addr);
370unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 371
0738c4bb
PM
372/*
373 * Determine if an address is within the vmalloc range
374 *
375 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
376 * is no special casing required.
377 */
9e2779fa
CL
378static inline int is_vmalloc_addr(const void *x)
379{
0738c4bb 380#ifdef CONFIG_MMU
9e2779fa
CL
381 unsigned long addr = (unsigned long)x;
382
383 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
384#else
385 return 0;
8ca3ed87 386#endif
0738c4bb 387}
81ac3ad9
KH
388#ifdef CONFIG_MMU
389extern int is_vmalloc_or_module_addr(const void *x);
390#else
934831d0 391static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
392{
393 return 0;
394}
395#endif
9e2779fa 396
39f1f78d
AV
397extern void kvfree(const void *addr);
398
e9da73d6
AA
399static inline void compound_lock(struct page *page)
400{
401#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 402 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
403 bit_spin_lock(PG_compound_lock, &page->flags);
404#endif
405}
406
407static inline void compound_unlock(struct page *page)
408{
409#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 410 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
411 bit_spin_unlock(PG_compound_lock, &page->flags);
412#endif
413}
414
415static inline unsigned long compound_lock_irqsave(struct page *page)
416{
417 unsigned long uninitialized_var(flags);
418#ifdef CONFIG_TRANSPARENT_HUGEPAGE
419 local_irq_save(flags);
420 compound_lock(page);
421#endif
422 return flags;
423}
424
425static inline void compound_unlock_irqrestore(struct page *page,
426 unsigned long flags)
427{
428#ifdef CONFIG_TRANSPARENT_HUGEPAGE
429 compound_unlock(page);
430 local_irq_restore(flags);
431#endif
432}
433
d2ee40ea
JZ
434static inline struct page *compound_head_by_tail(struct page *tail)
435{
436 struct page *head = tail->first_page;
437
438 /*
439 * page->first_page may be a dangling pointer to an old
440 * compound page, so recheck that it is still a tail
441 * page before returning.
442 */
443 smp_rmb();
444 if (likely(PageTail(tail)))
445 return head;
446 return tail;
447}
448
ccaafd7f
JK
449/*
450 * Since either compound page could be dismantled asynchronously in THP
451 * or we access asynchronously arbitrary positioned struct page, there
452 * would be tail flag race. To handle this race, we should call
453 * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
454 */
d85f3385
CL
455static inline struct page *compound_head(struct page *page)
456{
d2ee40ea
JZ
457 if (unlikely(PageTail(page)))
458 return compound_head_by_tail(page);
d85f3385
CL
459 return page;
460}
461
ccaafd7f
JK
462/*
463 * If we access compound page synchronously such as access to
464 * allocated page, there is no need to handle tail flag race, so we can
465 * check tail flag directly without any synchronization primitive.
466 */
467static inline struct page *compound_head_fast(struct page *page)
468{
469 if (unlikely(PageTail(page)))
470 return page->first_page;
471 return page;
472}
473
70b50f94
AA
474/*
475 * The atomic page->_mapcount, starts from -1: so that transitions
476 * both from it and to it can be tracked, using atomic_inc_and_test
477 * and atomic_add_negative(-1).
478 */
22b751c3 479static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
480{
481 atomic_set(&(page)->_mapcount, -1);
482}
483
484static inline int page_mapcount(struct page *page)
485{
486 return atomic_read(&(page)->_mapcount) + 1;
487}
488
4c21e2f2 489static inline int page_count(struct page *page)
1da177e4 490{
d85f3385 491 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
492}
493
44518d2b
AA
494#ifdef CONFIG_HUGETLB_PAGE
495extern int PageHeadHuge(struct page *page_head);
496#else /* CONFIG_HUGETLB_PAGE */
497static inline int PageHeadHuge(struct page *page_head)
498{
499 return 0;
500}
501#endif /* CONFIG_HUGETLB_PAGE */
502
503static inline bool __compound_tail_refcounted(struct page *page)
504{
505 return !PageSlab(page) && !PageHeadHuge(page);
506}
507
508/*
509 * This takes a head page as parameter and tells if the
510 * tail page reference counting can be skipped.
511 *
512 * For this to be safe, PageSlab and PageHeadHuge must remain true on
513 * any given page where they return true here, until all tail pins
514 * have been released.
515 */
516static inline bool compound_tail_refcounted(struct page *page)
517{
309381fe 518 VM_BUG_ON_PAGE(!PageHead(page), page);
44518d2b
AA
519 return __compound_tail_refcounted(page);
520}
521
b35a35b5
AA
522static inline void get_huge_page_tail(struct page *page)
523{
524 /*
5eaf1a9e 525 * __split_huge_page_refcount() cannot run from under us.
b35a35b5 526 */
309381fe
SL
527 VM_BUG_ON_PAGE(!PageTail(page), page);
528 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
529 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
5eaf1a9e 530 if (compound_tail_refcounted(page->first_page))
44518d2b 531 atomic_inc(&page->_mapcount);
b35a35b5
AA
532}
533
70b50f94
AA
534extern bool __get_page_tail(struct page *page);
535
1da177e4
LT
536static inline void get_page(struct page *page)
537{
70b50f94
AA
538 if (unlikely(PageTail(page)))
539 if (likely(__get_page_tail(page)))
540 return;
91807063
AA
541 /*
542 * Getting a normal page or the head of a compound page
70b50f94 543 * requires to already have an elevated page->_count.
91807063 544 */
309381fe 545 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
1da177e4
LT
546 atomic_inc(&page->_count);
547}
548
b49af68f
CL
549static inline struct page *virt_to_head_page(const void *x)
550{
551 struct page *page = virt_to_page(x);
ccaafd7f
JK
552
553 /*
554 * We don't need to worry about synchronization of tail flag
555 * when we call virt_to_head_page() since it is only called for
556 * already allocated page and this page won't be freed until
557 * this virt_to_head_page() is finished. So use _fast variant.
558 */
559 return compound_head_fast(page);
b49af68f
CL
560}
561
7835e98b
NP
562/*
563 * Setup the page count before being freed into the page allocator for
564 * the first time (boot or memory hotplug)
565 */
566static inline void init_page_count(struct page *page)
567{
568 atomic_set(&page->_count, 1);
569}
570
5f24ce5f
AA
571/*
572 * PageBuddy() indicate that the page is free and in the buddy system
573 * (see mm/page_alloc.c).
ef2b4b95
AA
574 *
575 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
576 * -2 so that an underflow of the page_mapcount() won't be mistaken
577 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
578 * efficiently by most CPU architectures.
5f24ce5f 579 */
ef2b4b95
AA
580#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
581
5f24ce5f
AA
582static inline int PageBuddy(struct page *page)
583{
ef2b4b95 584 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
585}
586
587static inline void __SetPageBuddy(struct page *page)
588{
309381fe 589 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
ef2b4b95 590 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
591}
592
593static inline void __ClearPageBuddy(struct page *page)
594{
309381fe 595 VM_BUG_ON_PAGE(!PageBuddy(page), page);
5f24ce5f
AA
596 atomic_set(&page->_mapcount, -1);
597}
598
d6d86c0a
KK
599#define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
600
601static inline int PageBalloon(struct page *page)
602{
603 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
604}
605
606static inline void __SetPageBalloon(struct page *page)
607{
608 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
609 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
610}
611
612static inline void __ClearPageBalloon(struct page *page)
613{
614 VM_BUG_ON_PAGE(!PageBalloon(page), page);
615 atomic_set(&page->_mapcount, -1);
616}
617
1da177e4 618void put_page(struct page *page);
1d7ea732 619void put_pages_list(struct list_head *pages);
1da177e4 620
8dfcc9ba 621void split_page(struct page *page, unsigned int order);
748446bb 622int split_free_page(struct page *page);
8dfcc9ba 623
33f2ef89
AW
624/*
625 * Compound pages have a destructor function. Provide a
626 * prototype for that function and accessor functions.
627 * These are _only_ valid on the head of a PG_compound page.
628 */
629typedef void compound_page_dtor(struct page *);
630
631static inline void set_compound_page_dtor(struct page *page,
632 compound_page_dtor *dtor)
633{
634 page[1].lru.next = (void *)dtor;
635}
636
637static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
638{
639 return (compound_page_dtor *)page[1].lru.next;
640}
641
d85f3385
CL
642static inline int compound_order(struct page *page)
643{
6d777953 644 if (!PageHead(page))
d85f3385
CL
645 return 0;
646 return (unsigned long)page[1].lru.prev;
647}
648
649static inline void set_compound_order(struct page *page, unsigned long order)
650{
651 page[1].lru.prev = (void *)order;
652}
653
3dece370 654#ifdef CONFIG_MMU
14fd403f
AA
655/*
656 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
657 * servicing faults for write access. In the normal case, do always want
658 * pte_mkwrite. But get_user_pages can cause write faults for mappings
659 * that do not have writing enabled, when used by access_process_vm.
660 */
661static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
662{
663 if (likely(vma->vm_flags & VM_WRITE))
664 pte = pte_mkwrite(pte);
665 return pte;
666}
8c6e50b0
KS
667
668void do_set_pte(struct vm_area_struct *vma, unsigned long address,
669 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 670#endif
14fd403f 671
1da177e4
LT
672/*
673 * Multiple processes may "see" the same page. E.g. for untouched
674 * mappings of /dev/null, all processes see the same page full of
675 * zeroes, and text pages of executables and shared libraries have
676 * only one copy in memory, at most, normally.
677 *
678 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
679 * page_count() == 0 means the page is free. page->lru is then used for
680 * freelist management in the buddy allocator.
da6052f7 681 * page_count() > 0 means the page has been allocated.
1da177e4 682 *
da6052f7
NP
683 * Pages are allocated by the slab allocator in order to provide memory
684 * to kmalloc and kmem_cache_alloc. In this case, the management of the
685 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
686 * unless a particular usage is carefully commented. (the responsibility of
687 * freeing the kmalloc memory is the caller's, of course).
1da177e4 688 *
da6052f7
NP
689 * A page may be used by anyone else who does a __get_free_page().
690 * In this case, page_count still tracks the references, and should only
691 * be used through the normal accessor functions. The top bits of page->flags
692 * and page->virtual store page management information, but all other fields
693 * are unused and could be used privately, carefully. The management of this
694 * page is the responsibility of the one who allocated it, and those who have
695 * subsequently been given references to it.
696 *
697 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
698 * managed by the Linux memory manager: I/O, buffers, swapping etc.
699 * The following discussion applies only to them.
700 *
da6052f7
NP
701 * A pagecache page contains an opaque `private' member, which belongs to the
702 * page's address_space. Usually, this is the address of a circular list of
703 * the page's disk buffers. PG_private must be set to tell the VM to call
704 * into the filesystem to release these pages.
1da177e4 705 *
da6052f7
NP
706 * A page may belong to an inode's memory mapping. In this case, page->mapping
707 * is the pointer to the inode, and page->index is the file offset of the page,
708 * in units of PAGE_CACHE_SIZE.
1da177e4 709 *
da6052f7
NP
710 * If pagecache pages are not associated with an inode, they are said to be
711 * anonymous pages. These may become associated with the swapcache, and in that
712 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 713 *
da6052f7
NP
714 * In either case (swapcache or inode backed), the pagecache itself holds one
715 * reference to the page. Setting PG_private should also increment the
716 * refcount. The each user mapping also has a reference to the page.
1da177e4 717 *
da6052f7
NP
718 * The pagecache pages are stored in a per-mapping radix tree, which is
719 * rooted at mapping->page_tree, and indexed by offset.
720 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
721 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 722 *
da6052f7 723 * All pagecache pages may be subject to I/O:
1da177e4
LT
724 * - inode pages may need to be read from disk,
725 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
726 * to be written back to the inode on disk,
727 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
728 * modified may need to be swapped out to swap space and (later) to be read
729 * back into memory.
1da177e4
LT
730 */
731
732/*
733 * The zone field is never updated after free_area_init_core()
734 * sets it, so none of the operations on it need to be atomic.
1da177e4 735 */
348f8b6c 736
90572890 737/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 738#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
739#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
740#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 741#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 742
348f8b6c 743/*
25985edc 744 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
745 * sections we define the shift as 0; that plus a 0 mask ensures
746 * the compiler will optimise away reference to them.
747 */
d41dee36
AW
748#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
749#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
750#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 751#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 752
bce54bbf
WD
753/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
754#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 755#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
756#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
757 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 758#else
89689ae7 759#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
760#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
761 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
762#endif
763
bd8029b6 764#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 765
9223b419
CL
766#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
767#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
768#endif
769
d41dee36
AW
770#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
771#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
772#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 773#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 774#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 775
33dd4e0e 776static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 777{
348f8b6c 778 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 779}
1da177e4 780
9127ab4f
CS
781#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
782#define SECTION_IN_PAGE_FLAGS
783#endif
784
89689ae7 785/*
7a8010cd
VB
786 * The identification function is mainly used by the buddy allocator for
787 * determining if two pages could be buddies. We are not really identifying
788 * the zone since we could be using the section number id if we do not have
789 * node id available in page flags.
790 * We only guarantee that it will return the same value for two combinable
791 * pages in a zone.
89689ae7 792 */
cb2b95e1
AW
793static inline int page_zone_id(struct page *page)
794{
89689ae7 795 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
796}
797
25ba77c1 798static inline int zone_to_nid(struct zone *zone)
89fa3024 799{
d5f541ed
CL
800#ifdef CONFIG_NUMA
801 return zone->node;
802#else
803 return 0;
804#endif
89fa3024
CL
805}
806
89689ae7 807#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 808extern int page_to_nid(const struct page *page);
89689ae7 809#else
33dd4e0e 810static inline int page_to_nid(const struct page *page)
d41dee36 811{
89689ae7 812 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 813}
89689ae7
CL
814#endif
815
57e0a030 816#ifdef CONFIG_NUMA_BALANCING
90572890 817static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 818{
90572890 819 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
820}
821
90572890 822static inline int cpupid_to_pid(int cpupid)
57e0a030 823{
90572890 824 return cpupid & LAST__PID_MASK;
57e0a030 825}
b795854b 826
90572890 827static inline int cpupid_to_cpu(int cpupid)
b795854b 828{
90572890 829 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
830}
831
90572890 832static inline int cpupid_to_nid(int cpupid)
b795854b 833{
90572890 834 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
835}
836
90572890 837static inline bool cpupid_pid_unset(int cpupid)
57e0a030 838{
90572890 839 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
840}
841
90572890 842static inline bool cpupid_cpu_unset(int cpupid)
b795854b 843{
90572890 844 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
845}
846
8c8a743c
PZ
847static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
848{
849 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
850}
851
852#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
853#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
854static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 855{
1ae71d03 856 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 857}
90572890
PZ
858
859static inline int page_cpupid_last(struct page *page)
860{
861 return page->_last_cpupid;
862}
863static inline void page_cpupid_reset_last(struct page *page)
b795854b 864{
1ae71d03 865 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
866}
867#else
90572890 868static inline int page_cpupid_last(struct page *page)
75980e97 869{
90572890 870 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
871}
872
90572890 873extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 874
90572890 875static inline void page_cpupid_reset_last(struct page *page)
75980e97 876{
90572890 877 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 878
90572890
PZ
879 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
880 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 881}
90572890
PZ
882#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
883#else /* !CONFIG_NUMA_BALANCING */
884static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 885{
90572890 886 return page_to_nid(page); /* XXX */
57e0a030
MG
887}
888
90572890 889static inline int page_cpupid_last(struct page *page)
57e0a030 890{
90572890 891 return page_to_nid(page); /* XXX */
57e0a030
MG
892}
893
90572890 894static inline int cpupid_to_nid(int cpupid)
b795854b
MG
895{
896 return -1;
897}
898
90572890 899static inline int cpupid_to_pid(int cpupid)
b795854b
MG
900{
901 return -1;
902}
903
90572890 904static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
905{
906 return -1;
907}
908
90572890
PZ
909static inline int cpu_pid_to_cpupid(int nid, int pid)
910{
911 return -1;
912}
913
914static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
915{
916 return 1;
917}
918
90572890 919static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
920{
921}
8c8a743c
PZ
922
923static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
924{
925 return false;
926}
90572890 927#endif /* CONFIG_NUMA_BALANCING */
57e0a030 928
33dd4e0e 929static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
930{
931 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
932}
933
9127ab4f 934#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
935static inline void set_page_section(struct page *page, unsigned long section)
936{
937 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
938 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
939}
940
aa462abe 941static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
942{
943 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
944}
308c05e3 945#endif
d41dee36 946
2f1b6248 947static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
948{
949 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
950 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
951}
2f1b6248 952
348f8b6c
DH
953static inline void set_page_node(struct page *page, unsigned long node)
954{
955 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
956 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 957}
89689ae7 958
2f1b6248 959static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 960 unsigned long node, unsigned long pfn)
1da177e4 961{
348f8b6c
DH
962 set_page_zone(page, zone);
963 set_page_node(page, node);
9127ab4f 964#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 965 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 966#endif
1da177e4
LT
967}
968
f6ac2354
CL
969/*
970 * Some inline functions in vmstat.h depend on page_zone()
971 */
972#include <linux/vmstat.h>
973
33dd4e0e 974static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 975{
aa462abe 976 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
977}
978
979#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
980#define HASHED_PAGE_VIRTUAL
981#endif
982
983#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
984static inline void *page_address(const struct page *page)
985{
986 return page->virtual;
987}
988static inline void set_page_address(struct page *page, void *address)
989{
990 page->virtual = address;
991}
1da177e4
LT
992#define page_address_init() do { } while(0)
993#endif
994
995#if defined(HASHED_PAGE_VIRTUAL)
f9918794 996void *page_address(const struct page *page);
1da177e4
LT
997void set_page_address(struct page *page, void *virtual);
998void page_address_init(void);
999#endif
1000
1001#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1002#define page_address(page) lowmem_page_address(page)
1003#define set_page_address(page, address) do { } while(0)
1004#define page_address_init() do { } while(0)
1005#endif
1006
1007/*
1008 * On an anonymous page mapped into a user virtual memory area,
1009 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
1010 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
1011 *
1012 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
1013 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
1014 * and then page->mapping points, not to an anon_vma, but to a private
1015 * structure which KSM associates with that merged page. See ksm.h.
1016 *
1017 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
1018 *
1019 * Please note that, confusingly, "page_mapping" refers to the inode
1020 * address_space which maps the page from disk; whereas "page_mapped"
1021 * refers to user virtual address space into which the page is mapped.
1022 */
1023#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
1024#define PAGE_MAPPING_KSM 2
1025#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4 1026
9800339b 1027extern struct address_space *page_mapping(struct page *page);
1da177e4 1028
3ca7b3c5
HD
1029/* Neutral page->mapping pointer to address_space or anon_vma or other */
1030static inline void *page_rmapping(struct page *page)
1031{
1032 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
1033}
1034
f981c595
MG
1035extern struct address_space *__page_file_mapping(struct page *);
1036
1037static inline
1038struct address_space *page_file_mapping(struct page *page)
1039{
1040 if (unlikely(PageSwapCache(page)))
1041 return __page_file_mapping(page);
1042
1043 return page->mapping;
1044}
1045
1da177e4
LT
1046static inline int PageAnon(struct page *page)
1047{
1048 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
1049}
1050
1051/*
1052 * Return the pagecache index of the passed page. Regular pagecache pages
1053 * use ->index whereas swapcache pages use ->private
1054 */
1055static inline pgoff_t page_index(struct page *page)
1056{
1057 if (unlikely(PageSwapCache(page)))
4c21e2f2 1058 return page_private(page);
1da177e4
LT
1059 return page->index;
1060}
1061
f981c595
MG
1062extern pgoff_t __page_file_index(struct page *page);
1063
1064/*
1065 * Return the file index of the page. Regular pagecache pages use ->index
1066 * whereas swapcache pages use swp_offset(->private)
1067 */
1068static inline pgoff_t page_file_index(struct page *page)
1069{
1070 if (unlikely(PageSwapCache(page)))
1071 return __page_file_index(page);
1072
1073 return page->index;
1074}
1075
1da177e4
LT
1076/*
1077 * Return true if this page is mapped into pagetables.
1078 */
1079static inline int page_mapped(struct page *page)
1080{
1081 return atomic_read(&(page)->_mapcount) >= 0;
1082}
1083
1da177e4
LT
1084/*
1085 * Different kinds of faults, as returned by handle_mm_fault().
1086 * Used to decide whether a process gets delivered SIGBUS or
1087 * just gets major/minor fault counters bumped up.
1088 */
d0217ac0 1089
83c54070 1090#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1091
83c54070
NP
1092#define VM_FAULT_OOM 0x0001
1093#define VM_FAULT_SIGBUS 0x0002
1094#define VM_FAULT_MAJOR 0x0004
1095#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1096#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1097#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1098#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1099
83c54070
NP
1100#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1101#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1102#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1103#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1104
aa50d3a7
AK
1105#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1106
33692f27
LT
1107#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1108 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1109 VM_FAULT_FALLBACK)
aa50d3a7
AK
1110
1111/* Encode hstate index for a hwpoisoned large page */
1112#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1113#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1114
1c0fe6e3
NP
1115/*
1116 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1117 */
1118extern void pagefault_out_of_memory(void);
1119
1da177e4
LT
1120#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1121
ddd588b5 1122/*
7bf02ea2 1123 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1124 * various contexts.
1125 */
4b59e6c4 1126#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1127
7bf02ea2
DR
1128extern void show_free_areas(unsigned int flags);
1129extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1130
1da177e4 1131int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1132#ifdef CONFIG_SHMEM
1133bool shmem_mapping(struct address_space *mapping);
1134#else
1135static inline bool shmem_mapping(struct address_space *mapping)
1136{
1137 return false;
1138}
1139#endif
1da177e4 1140
e8edc6e0 1141extern int can_do_mlock(void);
1da177e4
LT
1142extern int user_shm_lock(size_t, struct user_struct *);
1143extern void user_shm_unlock(size_t, struct user_struct *);
1144
1145/*
1146 * Parameter block passed down to zap_pte_range in exceptional cases.
1147 */
1148struct zap_details {
1da177e4
LT
1149 struct address_space *check_mapping; /* Check page->mapping if set */
1150 pgoff_t first_index; /* Lowest page->index to unmap */
1151 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1152};
1153
7e675137
NP
1154struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1155 pte_t pte);
1156
c627f9cc
JS
1157int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1158 unsigned long size);
14f5ff5d 1159void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1160 unsigned long size, struct zap_details *);
4f74d2c8
LT
1161void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1162 unsigned long start, unsigned long end);
e6473092
MM
1163
1164/**
1165 * mm_walk - callbacks for walk_page_range
1166 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1167 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1168 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1169 * this handler is required to be able to handle
1170 * pmd_trans_huge() pmds. They may simply choose to
1171 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1172 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1173 * @pte_hole: if set, called for each hole at all levels
5dc37642 1174 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
1175 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1176 * is used.
e6473092
MM
1177 *
1178 * (see walk_page_range for more details)
1179 */
1180struct mm_walk {
0f157a5b
AM
1181 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1182 unsigned long next, struct mm_walk *walk);
1183 int (*pud_entry)(pud_t *pud, unsigned long addr,
1184 unsigned long next, struct mm_walk *walk);
1185 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1186 unsigned long next, struct mm_walk *walk);
1187 int (*pte_entry)(pte_t *pte, unsigned long addr,
1188 unsigned long next, struct mm_walk *walk);
1189 int (*pte_hole)(unsigned long addr, unsigned long next,
1190 struct mm_walk *walk);
1191 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1192 unsigned long addr, unsigned long next,
1193 struct mm_walk *walk);
2165009b
DH
1194 struct mm_struct *mm;
1195 void *private;
e6473092
MM
1196};
1197
2165009b
DH
1198int walk_page_range(unsigned long addr, unsigned long end,
1199 struct mm_walk *walk);
42b77728 1200void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1201 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1202int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1203 struct vm_area_struct *vma);
1da177e4
LT
1204void unmap_mapping_range(struct address_space *mapping,
1205 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1206int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1207 unsigned long *pfn);
d87fe660 1208int follow_phys(struct vm_area_struct *vma, unsigned long address,
1209 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1210int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1211 void *buf, int len, int write);
1da177e4
LT
1212
1213static inline void unmap_shared_mapping_range(struct address_space *mapping,
1214 loff_t const holebegin, loff_t const holelen)
1215{
1216 unmap_mapping_range(mapping, holebegin, holelen, 0);
1217}
1218
7caef267 1219extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1220extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1221void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1222void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1223int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1224int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1225int invalidate_inode_page(struct page *page);
1226
7ee1dd3f 1227#ifdef CONFIG_MMU
83c54070 1228extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1229 unsigned long address, unsigned int flags);
5c723ba5
PZ
1230extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1231 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1232#else
1233static inline int handle_mm_fault(struct mm_struct *mm,
1234 struct vm_area_struct *vma, unsigned long address,
d06063cc 1235 unsigned int flags)
7ee1dd3f
DH
1236{
1237 /* should never happen if there's no MMU */
1238 BUG();
1239 return VM_FAULT_SIGBUS;
1240}
5c723ba5
PZ
1241static inline int fixup_user_fault(struct task_struct *tsk,
1242 struct mm_struct *mm, unsigned long address,
1243 unsigned int fault_flags)
1244{
1245 /* should never happen if there's no MMU */
1246 BUG();
1247 return -EFAULT;
1248}
7ee1dd3f 1249#endif
f33ea7f4 1250
1da177e4 1251extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1252extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1253 void *buf, int len, int write);
1da177e4 1254
28a35716
ML
1255long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1256 unsigned long start, unsigned long nr_pages,
1257 unsigned int foll_flags, struct page **pages,
1258 struct vm_area_struct **vmas, int *nonblocking);
1259long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1260 unsigned long start, unsigned long nr_pages,
1261 int write, int force, struct page **pages,
1262 struct vm_area_struct **vmas);
d2bf6be8
NP
1263int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1264 struct page **pages);
18022c5d
MG
1265struct kvec;
1266int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1267 struct page **pages);
1268int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1269struct page *get_dump_page(unsigned long addr);
1da177e4 1270
cf9a2ae8 1271extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1272extern void do_invalidatepage(struct page *page, unsigned int offset,
1273 unsigned int length);
cf9a2ae8 1274
1da177e4 1275int __set_page_dirty_nobuffers(struct page *page);
76719325 1276int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1277int redirty_page_for_writepage(struct writeback_control *wbc,
1278 struct page *page);
e3a7cca1 1279void account_page_dirtied(struct page *page, struct address_space *mapping);
b3c97528 1280int set_page_dirty(struct page *page);
1da177e4
LT
1281int set_page_dirty_lock(struct page *page);
1282int clear_page_dirty_for_io(struct page *page);
a9090253 1283int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1284
39aa3cb3 1285/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1286static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1287{
1288 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1289}
1290
a09a79f6
MP
1291static inline int stack_guard_page_start(struct vm_area_struct *vma,
1292 unsigned long addr)
1293{
1294 return (vma->vm_flags & VM_GROWSDOWN) &&
1295 (vma->vm_start == addr) &&
1296 !vma_growsdown(vma->vm_prev, addr);
1297}
1298
1299/* Is the vma a continuation of the stack vma below it? */
1300static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1301{
1302 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1303}
1304
1305static inline int stack_guard_page_end(struct vm_area_struct *vma,
1306 unsigned long addr)
1307{
1308 return (vma->vm_flags & VM_GROWSUP) &&
1309 (vma->vm_end == addr) &&
1310 !vma_growsup(vma->vm_next, addr);
1311}
1312
58cb6548
ON
1313extern struct task_struct *task_of_stack(struct task_struct *task,
1314 struct vm_area_struct *vma, bool in_group);
b7643757 1315
b6a2fea3
OW
1316extern unsigned long move_page_tables(struct vm_area_struct *vma,
1317 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1318 unsigned long new_addr, unsigned long len,
1319 bool need_rmap_locks);
7da4d641
PZ
1320extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1321 unsigned long end, pgprot_t newprot,
4b10e7d5 1322 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1323extern int mprotect_fixup(struct vm_area_struct *vma,
1324 struct vm_area_struct **pprev, unsigned long start,
1325 unsigned long end, unsigned long newflags);
1da177e4 1326
465a454f
PZ
1327/*
1328 * doesn't attempt to fault and will return short.
1329 */
1330int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1331 struct page **pages);
d559db08
KH
1332/*
1333 * per-process(per-mm_struct) statistics.
1334 */
d559db08
KH
1335static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1336{
69c97823
KK
1337 long val = atomic_long_read(&mm->rss_stat.count[member]);
1338
1339#ifdef SPLIT_RSS_COUNTING
1340 /*
1341 * counter is updated in asynchronous manner and may go to minus.
1342 * But it's never be expected number for users.
1343 */
1344 if (val < 0)
1345 val = 0;
172703b0 1346#endif
69c97823
KK
1347 return (unsigned long)val;
1348}
d559db08
KH
1349
1350static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1351{
172703b0 1352 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1353}
1354
1355static inline void inc_mm_counter(struct mm_struct *mm, int member)
1356{
172703b0 1357 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1358}
1359
1360static inline void dec_mm_counter(struct mm_struct *mm, int member)
1361{
172703b0 1362 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1363}
1364
d559db08
KH
1365static inline unsigned long get_mm_rss(struct mm_struct *mm)
1366{
1367 return get_mm_counter(mm, MM_FILEPAGES) +
1368 get_mm_counter(mm, MM_ANONPAGES);
1369}
1370
1371static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1372{
1373 return max(mm->hiwater_rss, get_mm_rss(mm));
1374}
1375
1376static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1377{
1378 return max(mm->hiwater_vm, mm->total_vm);
1379}
1380
1381static inline void update_hiwater_rss(struct mm_struct *mm)
1382{
1383 unsigned long _rss = get_mm_rss(mm);
1384
1385 if ((mm)->hiwater_rss < _rss)
1386 (mm)->hiwater_rss = _rss;
1387}
1388
1389static inline void update_hiwater_vm(struct mm_struct *mm)
1390{
1391 if (mm->hiwater_vm < mm->total_vm)
1392 mm->hiwater_vm = mm->total_vm;
1393}
1394
1395static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1396 struct mm_struct *mm)
1397{
1398 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1399
1400 if (*maxrss < hiwater_rss)
1401 *maxrss = hiwater_rss;
1402}
1403
53bddb4e 1404#if defined(SPLIT_RSS_COUNTING)
05af2e10 1405void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1406#else
05af2e10 1407static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1408{
1409}
1410#endif
465a454f 1411
4e950f6f 1412int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1413
25ca1d6c
NK
1414extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1415 spinlock_t **ptl);
1416static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1417 spinlock_t **ptl)
1418{
1419 pte_t *ptep;
1420 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1421 return ptep;
1422}
c9cfcddf 1423
5f22df00
NP
1424#ifdef __PAGETABLE_PUD_FOLDED
1425static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1426 unsigned long address)
1427{
1428 return 0;
1429}
1430#else
1bb3630e 1431int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1432#endif
1433
1434#ifdef __PAGETABLE_PMD_FOLDED
1435static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1436 unsigned long address)
1437{
1438 return 0;
1439}
1440#else
1bb3630e 1441int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1442#endif
1443
8ac1f832
AA
1444int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1445 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1446int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1447
1da177e4
LT
1448/*
1449 * The following ifdef needed to get the 4level-fixup.h header to work.
1450 * Remove it when 4level-fixup.h has been removed.
1451 */
1bb3630e 1452#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1453static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1454{
1bb3630e
HD
1455 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1456 NULL: pud_offset(pgd, address);
1da177e4
LT
1457}
1458
1459static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1460{
1bb3630e
HD
1461 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1462 NULL: pmd_offset(pud, address);
1da177e4 1463}
1bb3630e
HD
1464#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1465
57c1ffce 1466#if USE_SPLIT_PTE_PTLOCKS
597d795a 1467#if ALLOC_SPLIT_PTLOCKS
b35f1819 1468void __init ptlock_cache_init(void);
539edb58
PZ
1469extern bool ptlock_alloc(struct page *page);
1470extern void ptlock_free(struct page *page);
1471
1472static inline spinlock_t *ptlock_ptr(struct page *page)
1473{
1474 return page->ptl;
1475}
597d795a 1476#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1477static inline void ptlock_cache_init(void)
1478{
1479}
1480
49076ec2
KS
1481static inline bool ptlock_alloc(struct page *page)
1482{
49076ec2
KS
1483 return true;
1484}
539edb58 1485
49076ec2
KS
1486static inline void ptlock_free(struct page *page)
1487{
49076ec2
KS
1488}
1489
1490static inline spinlock_t *ptlock_ptr(struct page *page)
1491{
539edb58 1492 return &page->ptl;
49076ec2 1493}
597d795a 1494#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1495
1496static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1497{
1498 return ptlock_ptr(pmd_page(*pmd));
1499}
1500
1501static inline bool ptlock_init(struct page *page)
1502{
1503 /*
1504 * prep_new_page() initialize page->private (and therefore page->ptl)
1505 * with 0. Make sure nobody took it in use in between.
1506 *
1507 * It can happen if arch try to use slab for page table allocation:
1508 * slab code uses page->slab_cache and page->first_page (for tail
1509 * pages), which share storage with page->ptl.
1510 */
309381fe 1511 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1512 if (!ptlock_alloc(page))
1513 return false;
1514 spin_lock_init(ptlock_ptr(page));
1515 return true;
1516}
1517
1518/* Reset page->mapping so free_pages_check won't complain. */
1519static inline void pte_lock_deinit(struct page *page)
1520{
1521 page->mapping = NULL;
1522 ptlock_free(page);
1523}
1524
57c1ffce 1525#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1526/*
1527 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1528 */
49076ec2
KS
1529static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1530{
1531 return &mm->page_table_lock;
1532}
b35f1819 1533static inline void ptlock_cache_init(void) {}
49076ec2
KS
1534static inline bool ptlock_init(struct page *page) { return true; }
1535static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1536#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1537
b35f1819
KS
1538static inline void pgtable_init(void)
1539{
1540 ptlock_cache_init();
1541 pgtable_cache_init();
1542}
1543
390f44e2 1544static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1545{
2f569afd 1546 inc_zone_page_state(page, NR_PAGETABLE);
49076ec2 1547 return ptlock_init(page);
2f569afd
MS
1548}
1549
1550static inline void pgtable_page_dtor(struct page *page)
1551{
1552 pte_lock_deinit(page);
1553 dec_zone_page_state(page, NR_PAGETABLE);
1554}
1555
c74df32c
HD
1556#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1557({ \
4c21e2f2 1558 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1559 pte_t *__pte = pte_offset_map(pmd, address); \
1560 *(ptlp) = __ptl; \
1561 spin_lock(__ptl); \
1562 __pte; \
1563})
1564
1565#define pte_unmap_unlock(pte, ptl) do { \
1566 spin_unlock(ptl); \
1567 pte_unmap(pte); \
1568} while (0)
1569
8ac1f832
AA
1570#define pte_alloc_map(mm, vma, pmd, address) \
1571 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1572 pmd, address))? \
1573 NULL: pte_offset_map(pmd, address))
1bb3630e 1574
c74df32c 1575#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1576 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1577 pmd, address))? \
c74df32c
HD
1578 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1579
1bb3630e 1580#define pte_alloc_kernel(pmd, address) \
8ac1f832 1581 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1582 NULL: pte_offset_kernel(pmd, address))
1da177e4 1583
e009bb30
KS
1584#if USE_SPLIT_PMD_PTLOCKS
1585
634391ac
MS
1586static struct page *pmd_to_page(pmd_t *pmd)
1587{
1588 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1589 return virt_to_page((void *)((unsigned long) pmd & mask));
1590}
1591
e009bb30
KS
1592static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1593{
634391ac 1594 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1595}
1596
1597static inline bool pgtable_pmd_page_ctor(struct page *page)
1598{
e009bb30
KS
1599#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1600 page->pmd_huge_pte = NULL;
1601#endif
49076ec2 1602 return ptlock_init(page);
e009bb30
KS
1603}
1604
1605static inline void pgtable_pmd_page_dtor(struct page *page)
1606{
1607#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1608 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1609#endif
49076ec2 1610 ptlock_free(page);
e009bb30
KS
1611}
1612
634391ac 1613#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1614
1615#else
1616
9a86cb7b
KS
1617static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1618{
1619 return &mm->page_table_lock;
1620}
1621
e009bb30
KS
1622static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1623static inline void pgtable_pmd_page_dtor(struct page *page) {}
1624
c389a250 1625#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1626
e009bb30
KS
1627#endif
1628
9a86cb7b
KS
1629static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1630{
1631 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1632 spin_lock(ptl);
1633 return ptl;
1634}
1635
1da177e4 1636extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1637extern void free_area_init_node(int nid, unsigned long * zones_size,
1638 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1639extern void free_initmem(void);
1640
69afade7
JL
1641/*
1642 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1643 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1644 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1645 * Return pages freed into the buddy system.
1646 */
11199692 1647extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1648 int poison, char *s);
c3d5f5f0 1649
cfa11e08
JL
1650#ifdef CONFIG_HIGHMEM
1651/*
1652 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1653 * and totalram_pages.
1654 */
1655extern void free_highmem_page(struct page *page);
1656#endif
69afade7 1657
c3d5f5f0 1658extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1659extern void mem_init_print_info(const char *str);
69afade7
JL
1660
1661/* Free the reserved page into the buddy system, so it gets managed. */
1662static inline void __free_reserved_page(struct page *page)
1663{
1664 ClearPageReserved(page);
1665 init_page_count(page);
1666 __free_page(page);
1667}
1668
1669static inline void free_reserved_page(struct page *page)
1670{
1671 __free_reserved_page(page);
1672 adjust_managed_page_count(page, 1);
1673}
1674
1675static inline void mark_page_reserved(struct page *page)
1676{
1677 SetPageReserved(page);
1678 adjust_managed_page_count(page, -1);
1679}
1680
1681/*
1682 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1683 * The freed pages will be poisoned with pattern "poison" if it's within
1684 * range [0, UCHAR_MAX].
1685 * Return pages freed into the buddy system.
69afade7
JL
1686 */
1687static inline unsigned long free_initmem_default(int poison)
1688{
1689 extern char __init_begin[], __init_end[];
1690
11199692 1691 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1692 poison, "unused kernel");
1693}
1694
7ee3d4e8
JL
1695static inline unsigned long get_num_physpages(void)
1696{
1697 int nid;
1698 unsigned long phys_pages = 0;
1699
1700 for_each_online_node(nid)
1701 phys_pages += node_present_pages(nid);
1702
1703 return phys_pages;
1704}
1705
0ee332c1 1706#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1707/*
0ee332c1 1708 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1709 * zones, allocate the backing mem_map and account for memory holes in a more
1710 * architecture independent manner. This is a substitute for creating the
1711 * zone_sizes[] and zholes_size[] arrays and passing them to
1712 * free_area_init_node()
1713 *
1714 * An architecture is expected to register range of page frames backed by
0ee332c1 1715 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1716 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1717 * usage, an architecture is expected to do something like
1718 *
1719 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1720 * max_highmem_pfn};
1721 * for_each_valid_physical_page_range()
0ee332c1 1722 * memblock_add_node(base, size, nid)
c713216d
MG
1723 * free_area_init_nodes(max_zone_pfns);
1724 *
0ee332c1
TH
1725 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1726 * registered physical page range. Similarly
1727 * sparse_memory_present_with_active_regions() calls memory_present() for
1728 * each range when SPARSEMEM is enabled.
c713216d
MG
1729 *
1730 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1731 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1732 */
1733extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1734unsigned long node_map_pfn_alignment(void);
32996250
YL
1735unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1736 unsigned long end_pfn);
c713216d
MG
1737extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1738 unsigned long end_pfn);
1739extern void get_pfn_range_for_nid(unsigned int nid,
1740 unsigned long *start_pfn, unsigned long *end_pfn);
1741extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1742extern void free_bootmem_with_active_regions(int nid,
1743 unsigned long max_low_pfn);
1744extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1745
0ee332c1 1746#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1747
0ee332c1 1748#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1749 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1750static inline int __early_pfn_to_nid(unsigned long pfn)
1751{
1752 return 0;
1753}
1754#else
1755/* please see mm/page_alloc.c */
1756extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
1757/* there is a per-arch backend function. */
1758extern int __meminit __early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
1759#endif
1760
0e0b864e 1761extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1762extern void memmap_init_zone(unsigned long, int, unsigned long,
1763 unsigned long, enum memmap_context);
bc75d33f 1764extern void setup_per_zone_wmarks(void);
1b79acc9 1765extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1766extern void mem_init(void);
8feae131 1767extern void __init mmap_init(void);
b2b755b5 1768extern void show_mem(unsigned int flags);
1da177e4
LT
1769extern void si_meminfo(struct sysinfo * val);
1770extern void si_meminfo_node(struct sysinfo *val, int nid);
1771
3ee9a4f0
JP
1772extern __printf(3, 4)
1773void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1774
e7c8d5c9 1775extern void setup_per_cpu_pageset(void);
e7c8d5c9 1776
112067f0 1777extern void zone_pcp_update(struct zone *zone);
340175b7 1778extern void zone_pcp_reset(struct zone *zone);
112067f0 1779
75f7ad8e
PS
1780/* page_alloc.c */
1781extern int min_free_kbytes;
1782
8feae131 1783/* nommu.c */
33e5d769 1784extern atomic_long_t mmap_pages_allocated;
7e660872 1785extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1786
6b2dbba8 1787/* interval_tree.c */
6b2dbba8
ML
1788void vma_interval_tree_insert(struct vm_area_struct *node,
1789 struct rb_root *root);
9826a516
ML
1790void vma_interval_tree_insert_after(struct vm_area_struct *node,
1791 struct vm_area_struct *prev,
1792 struct rb_root *root);
6b2dbba8
ML
1793void vma_interval_tree_remove(struct vm_area_struct *node,
1794 struct rb_root *root);
1795struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1796 unsigned long start, unsigned long last);
1797struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1798 unsigned long start, unsigned long last);
1799
1800#define vma_interval_tree_foreach(vma, root, start, last) \
1801 for (vma = vma_interval_tree_iter_first(root, start, last); \
1802 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4
LT
1803
1804static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1805 struct list_head *list)
1806{
6b2dbba8 1807 list_add_tail(&vma->shared.nonlinear, list);
1da177e4
LT
1808}
1809
bf181b9f
ML
1810void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1811 struct rb_root *root);
1812void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1813 struct rb_root *root);
1814struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1815 struct rb_root *root, unsigned long start, unsigned long last);
1816struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1817 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1818#ifdef CONFIG_DEBUG_VM_RB
1819void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1820#endif
bf181b9f
ML
1821
1822#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1823 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1824 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1825
1da177e4 1826/* mmap.c */
34b4e4aa 1827extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1828extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1829 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1830extern struct vm_area_struct *vma_merge(struct mm_struct *,
1831 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1832 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1833 struct mempolicy *);
1834extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1835extern int split_vma(struct mm_struct *,
1836 struct vm_area_struct *, unsigned long addr, int new_below);
1837extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1838extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1839 struct rb_node **, struct rb_node *);
a8fb5618 1840extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1841extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1842 unsigned long addr, unsigned long len, pgoff_t pgoff,
1843 bool *need_rmap_locks);
1da177e4 1844extern void exit_mmap(struct mm_struct *);
925d1c40 1845
9c599024
CG
1846static inline int check_data_rlimit(unsigned long rlim,
1847 unsigned long new,
1848 unsigned long start,
1849 unsigned long end_data,
1850 unsigned long start_data)
1851{
1852 if (rlim < RLIM_INFINITY) {
1853 if (((new - start) + (end_data - start_data)) > rlim)
1854 return -ENOSPC;
1855 }
1856
1857 return 0;
1858}
1859
7906d00c
AA
1860extern int mm_take_all_locks(struct mm_struct *mm);
1861extern void mm_drop_all_locks(struct mm_struct *mm);
1862
38646013
JS
1863extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1864extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1865
119f657c 1866extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
3935ed6a
SS
1867extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1868 unsigned long addr, unsigned long len,
a62c34bd
AL
1869 unsigned long flags,
1870 const struct vm_special_mapping *spec);
1871/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
1872extern int install_special_mapping(struct mm_struct *mm,
1873 unsigned long addr, unsigned long len,
1874 unsigned long flags, struct page **pages);
1da177e4
LT
1875
1876extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1877
0165ab44 1878extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1879 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1880extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1881 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1882 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1883extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1884
bebeb3d6
ML
1885#ifdef CONFIG_MMU
1886extern int __mm_populate(unsigned long addr, unsigned long len,
1887 int ignore_errors);
1888static inline void mm_populate(unsigned long addr, unsigned long len)
1889{
1890 /* Ignore errors */
1891 (void) __mm_populate(addr, len, 1);
1892}
1893#else
1894static inline void mm_populate(unsigned long addr, unsigned long len) {}
1895#endif
1896
e4eb1ff6
LT
1897/* These take the mm semaphore themselves */
1898extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1899extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1900extern unsigned long vm_mmap(struct file *, unsigned long,
1901 unsigned long, unsigned long,
1902 unsigned long, unsigned long);
1da177e4 1903
db4fbfb9
ML
1904struct vm_unmapped_area_info {
1905#define VM_UNMAPPED_AREA_TOPDOWN 1
1906 unsigned long flags;
1907 unsigned long length;
1908 unsigned long low_limit;
1909 unsigned long high_limit;
1910 unsigned long align_mask;
1911 unsigned long align_offset;
1912};
1913
1914extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1915extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1916
1917/*
1918 * Search for an unmapped address range.
1919 *
1920 * We are looking for a range that:
1921 * - does not intersect with any VMA;
1922 * - is contained within the [low_limit, high_limit) interval;
1923 * - is at least the desired size.
1924 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1925 */
1926static inline unsigned long
1927vm_unmapped_area(struct vm_unmapped_area_info *info)
1928{
1929 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1930 return unmapped_area(info);
1931 else
1932 return unmapped_area_topdown(info);
1933}
1934
85821aab 1935/* truncate.c */
1da177e4 1936extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1937extern void truncate_inode_pages_range(struct address_space *,
1938 loff_t lstart, loff_t lend);
91b0abe3 1939extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
1940
1941/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1942extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 1943extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 1944extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1945
1946/* mm/page-writeback.c */
1947int write_one_page(struct page *page, int wait);
1cf6e7d8 1948void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1949
1950/* readahead.c */
1951#define VM_MAX_READAHEAD 128 /* kbytes */
1952#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1953
1da177e4 1954int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1955 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1956
1957void page_cache_sync_readahead(struct address_space *mapping,
1958 struct file_ra_state *ra,
1959 struct file *filp,
1960 pgoff_t offset,
1961 unsigned long size);
1962
1963void page_cache_async_readahead(struct address_space *mapping,
1964 struct file_ra_state *ra,
1965 struct file *filp,
1966 struct page *pg,
1967 pgoff_t offset,
1968 unsigned long size);
1969
1da177e4
LT
1970unsigned long max_sane_readahead(unsigned long nr);
1971
d05f3169 1972/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1973extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1974
1975/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1976extern int expand_downwards(struct vm_area_struct *vma,
1977 unsigned long address);
8ca3eb08 1978#if VM_GROWSUP
46dea3d0 1979extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 1980#else
fee7e49d 1981 #define expand_upwards(vma, address) (0)
9ab88515 1982#endif
1da177e4
LT
1983
1984/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1985extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1986extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1987 struct vm_area_struct **pprev);
1988
1989/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1990 NULL if none. Assume start_addr < end_addr. */
1991static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1992{
1993 struct vm_area_struct * vma = find_vma(mm,start_addr);
1994
1995 if (vma && end_addr <= vma->vm_start)
1996 vma = NULL;
1997 return vma;
1998}
1999
2000static inline unsigned long vma_pages(struct vm_area_struct *vma)
2001{
2002 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2003}
2004
640708a2
PE
2005/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2006static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2007 unsigned long vm_start, unsigned long vm_end)
2008{
2009 struct vm_area_struct *vma = find_vma(mm, vm_start);
2010
2011 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2012 vma = NULL;
2013
2014 return vma;
2015}
2016
bad849b3 2017#ifdef CONFIG_MMU
804af2cf 2018pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2019void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2020#else
2021static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2022{
2023 return __pgprot(0);
2024}
64e45507
PF
2025static inline void vma_set_page_prot(struct vm_area_struct *vma)
2026{
2027 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2028}
bad849b3
DH
2029#endif
2030
5877231f 2031#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2032unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2033 unsigned long start, unsigned long end);
2034#endif
2035
deceb6cd 2036struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2037int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2038 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2039int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2040int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2041 unsigned long pfn);
423bad60
NP
2042int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2043 unsigned long pfn);
b4cbb197
LT
2044int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2045
deceb6cd 2046
240aadee
ML
2047struct page *follow_page_mask(struct vm_area_struct *vma,
2048 unsigned long address, unsigned int foll_flags,
2049 unsigned int *page_mask);
2050
2051static inline struct page *follow_page(struct vm_area_struct *vma,
2052 unsigned long address, unsigned int foll_flags)
2053{
2054 unsigned int unused_page_mask;
2055 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2056}
2057
deceb6cd
HD
2058#define FOLL_WRITE 0x01 /* check pte is writable */
2059#define FOLL_TOUCH 0x02 /* mark page accessed */
2060#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2061#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2062#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2063#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2064 * and return without waiting upon it */
110d74a9 2065#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 2066#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2067#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2068#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2069#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2070#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
1da177e4 2071
2f569afd 2072typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2073 void *data);
2074extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2075 unsigned long size, pte_fn_t fn, void *data);
2076
1da177e4 2077#ifdef CONFIG_PROC_FS
ab50b8ed 2078void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 2079#else
ab50b8ed 2080static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
2081 unsigned long flags, struct file *file, long pages)
2082{
44de9d0c 2083 mm->total_vm += pages;
1da177e4
LT
2084}
2085#endif /* CONFIG_PROC_FS */
2086
12d6f21e 2087#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2088extern bool _debug_pagealloc_enabled;
2089extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2090
2091static inline bool debug_pagealloc_enabled(void)
2092{
2093 return _debug_pagealloc_enabled;
2094}
2095
2096static inline void
2097kernel_map_pages(struct page *page, int numpages, int enable)
2098{
2099 if (!debug_pagealloc_enabled())
2100 return;
2101
2102 __kernel_map_pages(page, numpages, enable);
2103}
8a235efa
RW
2104#ifdef CONFIG_HIBERNATION
2105extern bool kernel_page_present(struct page *page);
2106#endif /* CONFIG_HIBERNATION */
12d6f21e 2107#else
1da177e4 2108static inline void
9858db50 2109kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2110#ifdef CONFIG_HIBERNATION
2111static inline bool kernel_page_present(struct page *page) { return true; }
2112#endif /* CONFIG_HIBERNATION */
1da177e4
LT
2113#endif
2114
a6c19dfe 2115#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2116extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2117extern int in_gate_area_no_mm(unsigned long addr);
2118extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2119#else
a6c19dfe
AL
2120static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2121{
2122 return NULL;
2123}
2124static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2125static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2126{
2127 return 0;
2128}
1da177e4
LT
2129#endif /* __HAVE_ARCH_GATE_AREA */
2130
146732ce
JT
2131#ifdef CONFIG_SYSCTL
2132extern int sysctl_drop_caches;
8d65af78 2133int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2134 void __user *, size_t *, loff_t *);
146732ce
JT
2135#endif
2136
6b4f7799
JW
2137unsigned long shrink_node_slabs(gfp_t gfp_mask, int nid,
2138 unsigned long nr_scanned,
2139 unsigned long nr_eligible);
9d0243bc 2140
7a9166e3
LY
2141#ifndef CONFIG_MMU
2142#define randomize_va_space 0
2143#else
a62eaf15 2144extern int randomize_va_space;
7a9166e3 2145#endif
a62eaf15 2146
045e72ac 2147const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2148void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2149
9bdac914
YL
2150void sparse_mem_maps_populate_node(struct page **map_map,
2151 unsigned long pnum_begin,
2152 unsigned long pnum_end,
2153 unsigned long map_count,
2154 int nodeid);
2155
98f3cfc1 2156struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2157pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2158pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2159pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2160pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2161void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 2162void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 2163void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2164int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2165 int node);
2166int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2167void vmemmap_populate_print_last(void);
0197518c 2168#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2169void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2170#endif
46723bfa
YI
2171void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2172 unsigned long size);
6a46079c 2173
82ba011b
AK
2174enum mf_flags {
2175 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2176 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2177 MF_MUST_KILL = 1 << 2,
cf870c70 2178 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2179};
cd42f4a3 2180extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2181extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2182extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
2183extern int sysctl_memory_failure_early_kill;
2184extern int sysctl_memory_failure_recovery;
facb6011 2185extern void shake_page(struct page *p, int access);
293c07e3 2186extern atomic_long_t num_poisoned_pages;
facb6011 2187extern int soft_offline_page(struct page *page, int flags);
6a46079c 2188
47ad8475
AA
2189#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2190extern void clear_huge_page(struct page *page,
2191 unsigned long addr,
2192 unsigned int pages_per_huge_page);
2193extern void copy_user_huge_page(struct page *dst, struct page *src,
2194 unsigned long addr, struct vm_area_struct *vma,
2195 unsigned int pages_per_huge_page);
2196#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2197
e30825f1
JK
2198extern struct page_ext_operations debug_guardpage_ops;
2199extern struct page_ext_operations page_poisoning_ops;
2200
c0a32fc5
SG
2201#ifdef CONFIG_DEBUG_PAGEALLOC
2202extern unsigned int _debug_guardpage_minorder;
e30825f1 2203extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2204
2205static inline unsigned int debug_guardpage_minorder(void)
2206{
2207 return _debug_guardpage_minorder;
2208}
2209
e30825f1
JK
2210static inline bool debug_guardpage_enabled(void)
2211{
2212 return _debug_guardpage_enabled;
2213}
2214
c0a32fc5
SG
2215static inline bool page_is_guard(struct page *page)
2216{
e30825f1
JK
2217 struct page_ext *page_ext;
2218
2219 if (!debug_guardpage_enabled())
2220 return false;
2221
2222 page_ext = lookup_page_ext(page);
2223 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2224}
2225#else
2226static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2227static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2228static inline bool page_is_guard(struct page *page) { return false; }
2229#endif /* CONFIG_DEBUG_PAGEALLOC */
2230
f9872caf
CS
2231#if MAX_NUMNODES > 1
2232void __init setup_nr_node_ids(void);
2233#else
2234static inline void setup_nr_node_ids(void) {}
2235#endif
2236
1da177e4
LT
2237#endif /* __KERNEL__ */
2238#endif /* _LINUX_MM_H */