thp: prepare for DAX huge pages
[linux-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
1da177e4
LT
23
24struct mempolicy;
25struct anon_vma;
bf181b9f 26struct anon_vma_chain;
4e950f6f 27struct file_ra_state;
e8edc6e0 28struct user_struct;
4e950f6f 29struct writeback_control;
682aa8e1 30struct bdi_writeback;
1da177e4 31
fccc9987 32#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 33extern unsigned long max_mapnr;
fccc9987
JL
34
35static inline void set_max_mapnr(unsigned long limit)
36{
37 max_mapnr = limit;
38}
39#else
40static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
41#endif
42
4481374c 43extern unsigned long totalram_pages;
1da177e4 44extern void * high_memory;
1da177e4
LT
45extern int page_cluster;
46
47#ifdef CONFIG_SYSCTL
48extern int sysctl_legacy_va_layout;
49#else
50#define sysctl_legacy_va_layout 0
51#endif
52
53#include <asm/page.h>
54#include <asm/pgtable.h>
55#include <asm/processor.h>
1da177e4 56
79442ed1
TC
57#ifndef __pa_symbol
58#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
59#endif
60
593befa6
DD
61/*
62 * To prevent common memory management code establishing
63 * a zero page mapping on a read fault.
64 * This macro should be defined within <asm/pgtable.h>.
65 * s390 does this to prevent multiplexing of hardware bits
66 * related to the physical page in case of virtualization.
67 */
68#ifndef mm_forbids_zeropage
69#define mm_forbids_zeropage(X) (0)
70#endif
71
c9b1d098 72extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 73extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 74
49f0ce5f
JM
75extern int sysctl_overcommit_memory;
76extern int sysctl_overcommit_ratio;
77extern unsigned long sysctl_overcommit_kbytes;
78
79extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
80 size_t *, loff_t *);
81extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
82 size_t *, loff_t *);
83
1da177e4
LT
84#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
85
27ac792c
AR
86/* to align the pointer to the (next) page boundary */
87#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
88
0fa73b86
AM
89/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
90#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
91
1da177e4
LT
92/*
93 * Linux kernel virtual memory manager primitives.
94 * The idea being to have a "virtual" mm in the same way
95 * we have a virtual fs - giving a cleaner interface to the
96 * mm details, and allowing different kinds of memory mappings
97 * (from shared memory to executable loading to arbitrary
98 * mmap() functions).
99 */
100
c43692e8
CL
101extern struct kmem_cache *vm_area_cachep;
102
1da177e4 103#ifndef CONFIG_MMU
8feae131
DH
104extern struct rb_root nommu_region_tree;
105extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
106
107extern unsigned int kobjsize(const void *objp);
108#endif
109
110/*
605d9288 111 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 112 */
cc2383ec
KK
113#define VM_NONE 0x00000000
114
1da177e4
LT
115#define VM_READ 0x00000001 /* currently active flags */
116#define VM_WRITE 0x00000002
117#define VM_EXEC 0x00000004
118#define VM_SHARED 0x00000008
119
7e2cff42 120/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
121#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
122#define VM_MAYWRITE 0x00000020
123#define VM_MAYEXEC 0x00000040
124#define VM_MAYSHARE 0x00000080
125
126#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 127#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 128#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 129#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 130#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 131
1da177e4
LT
132#define VM_LOCKED 0x00002000
133#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
134
135 /* Used by sys_madvise() */
136#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
137#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
138
139#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
140#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 141#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 142#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 143#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 144#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 145#define VM_ARCH_2 0x02000000
0103bd16 146#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 147
d9104d1c
CG
148#ifdef CONFIG_MEM_SOFT_DIRTY
149# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
150#else
151# define VM_SOFTDIRTY 0
152#endif
153
b379d790 154#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
155#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
156#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 157#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 158
cc2383ec
KK
159#if defined(CONFIG_X86)
160# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
161#elif defined(CONFIG_PPC)
162# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
163#elif defined(CONFIG_PARISC)
164# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
165#elif defined(CONFIG_METAG)
166# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
167#elif defined(CONFIG_IA64)
168# define VM_GROWSUP VM_ARCH_1
169#elif !defined(CONFIG_MMU)
170# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
171#endif
172
4aae7e43
QR
173#if defined(CONFIG_X86)
174/* MPX specific bounds table or bounds directory */
175# define VM_MPX VM_ARCH_2
176#endif
177
cc2383ec
KK
178#ifndef VM_GROWSUP
179# define VM_GROWSUP VM_NONE
180#endif
181
a8bef8ff
MG
182/* Bits set in the VMA until the stack is in its final location */
183#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
184
1da177e4
LT
185#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
186#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
187#endif
188
189#ifdef CONFIG_STACK_GROWSUP
190#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
191#else
192#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
193#endif
194
b291f000 195/*
78f11a25
AA
196 * Special vmas that are non-mergable, non-mlock()able.
197 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 198 */
9050d7eb 199#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 200
a0715cc2
AT
201/* This mask defines which mm->def_flags a process can inherit its parent */
202#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
203
1da177e4
LT
204/*
205 * mapping from the currently active vm_flags protection bits (the
206 * low four bits) to a page protection mask..
207 */
208extern pgprot_t protection_map[16];
209
d0217ac0 210#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
211#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
212#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
213#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
214#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
215#define FAULT_FLAG_TRIED 0x20 /* Second try */
216#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
d0217ac0 217
54cb8821 218/*
d0217ac0 219 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
220 * ->fault function. The vma's ->fault is responsible for returning a bitmask
221 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 222 *
9b4bdd2f 223 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 224 */
d0217ac0
NP
225struct vm_fault {
226 unsigned int flags; /* FAULT_FLAG_xxx flags */
227 pgoff_t pgoff; /* Logical page offset based on vma */
228 void __user *virtual_address; /* Faulting virtual address */
229
2e4cdab0 230 struct page *cow_page; /* Handler may choose to COW */
d0217ac0 231 struct page *page; /* ->fault handlers should return a
83c54070 232 * page here, unless VM_FAULT_NOPAGE
d0217ac0 233 * is set (which is also implied by
83c54070 234 * VM_FAULT_ERROR).
d0217ac0 235 */
8c6e50b0
KS
236 /* for ->map_pages() only */
237 pgoff_t max_pgoff; /* map pages for offset from pgoff till
238 * max_pgoff inclusive */
239 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 240};
1da177e4
LT
241
242/*
243 * These are the virtual MM functions - opening of an area, closing and
244 * unmapping it (needed to keep files on disk up-to-date etc), pointer
245 * to the functions called when a no-page or a wp-page exception occurs.
246 */
247struct vm_operations_struct {
248 void (*open)(struct vm_area_struct * area);
249 void (*close)(struct vm_area_struct * area);
5477e70a 250 int (*mremap)(struct vm_area_struct * area);
d0217ac0 251 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
8c6e50b0 252 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
253
254 /* notification that a previously read-only page is about to become
255 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 256 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20 257
dd906184
BH
258 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
259 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
260
28b2ee20
RR
261 /* called by access_process_vm when get_user_pages() fails, typically
262 * for use by special VMAs that can switch between memory and hardware
263 */
264 int (*access)(struct vm_area_struct *vma, unsigned long addr,
265 void *buf, int len, int write);
78d683e8
AL
266
267 /* Called by the /proc/PID/maps code to ask the vma whether it
268 * has a special name. Returning non-NULL will also cause this
269 * vma to be dumped unconditionally. */
270 const char *(*name)(struct vm_area_struct *vma);
271
1da177e4 272#ifdef CONFIG_NUMA
a6020ed7
LS
273 /*
274 * set_policy() op must add a reference to any non-NULL @new mempolicy
275 * to hold the policy upon return. Caller should pass NULL @new to
276 * remove a policy and fall back to surrounding context--i.e. do not
277 * install a MPOL_DEFAULT policy, nor the task or system default
278 * mempolicy.
279 */
1da177e4 280 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
281
282 /*
283 * get_policy() op must add reference [mpol_get()] to any policy at
284 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
285 * in mm/mempolicy.c will do this automatically.
286 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
287 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
288 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
289 * must return NULL--i.e., do not "fallback" to task or system default
290 * policy.
291 */
1da177e4
LT
292 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
293 unsigned long addr);
294#endif
667a0a06
DV
295 /*
296 * Called by vm_normal_page() for special PTEs to find the
297 * page for @addr. This is useful if the default behavior
298 * (using pte_page()) would not find the correct page.
299 */
300 struct page *(*find_special_page)(struct vm_area_struct *vma,
301 unsigned long addr);
1da177e4
LT
302};
303
304struct mmu_gather;
305struct inode;
306
349aef0b
AM
307#define page_private(page) ((page)->private)
308#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 309
b12c4ad1
MK
310/* It's valid only if the page is free path or free_list */
311static inline void set_freepage_migratetype(struct page *page, int migratetype)
312{
95e34412 313 page->index = migratetype;
b12c4ad1
MK
314}
315
316/* It's valid only if the page is free path or free_list */
317static inline int get_freepage_migratetype(struct page *page)
318{
95e34412 319 return page->index;
b12c4ad1
MK
320}
321
1da177e4
LT
322/*
323 * FIXME: take this include out, include page-flags.h in
324 * files which need it (119 of them)
325 */
326#include <linux/page-flags.h>
71e3aac0 327#include <linux/huge_mm.h>
1da177e4
LT
328
329/*
330 * Methods to modify the page usage count.
331 *
332 * What counts for a page usage:
333 * - cache mapping (page->mapping)
334 * - private data (page->private)
335 * - page mapped in a task's page tables, each mapping
336 * is counted separately
337 *
338 * Also, many kernel routines increase the page count before a critical
339 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
340 */
341
342/*
da6052f7 343 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 344 */
7c8ee9a8
NP
345static inline int put_page_testzero(struct page *page)
346{
309381fe 347 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 348 return atomic_dec_and_test(&page->_count);
7c8ee9a8 349}
1da177e4
LT
350
351/*
7c8ee9a8
NP
352 * Try to grab a ref unless the page has a refcount of zero, return false if
353 * that is the case.
8e0861fa
AK
354 * This can be called when MMU is off so it must not access
355 * any of the virtual mappings.
1da177e4 356 */
7c8ee9a8
NP
357static inline int get_page_unless_zero(struct page *page)
358{
8dc04efb 359 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 360}
1da177e4 361
8e0861fa
AK
362/*
363 * Try to drop a ref unless the page has a refcount of one, return false if
364 * that is the case.
365 * This is to make sure that the refcount won't become zero after this drop.
366 * This can be called when MMU is off so it must not access
367 * any of the virtual mappings.
368 */
369static inline int put_page_unless_one(struct page *page)
370{
371 return atomic_add_unless(&page->_count, -1, 1);
372}
373
53df8fdc 374extern int page_is_ram(unsigned long pfn);
67cf13ce 375extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
53df8fdc 376
48667e7a 377/* Support for virtually mapped pages */
b3bdda02
CL
378struct page *vmalloc_to_page(const void *addr);
379unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 380
0738c4bb
PM
381/*
382 * Determine if an address is within the vmalloc range
383 *
384 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
385 * is no special casing required.
386 */
9e2779fa
CL
387static inline int is_vmalloc_addr(const void *x)
388{
0738c4bb 389#ifdef CONFIG_MMU
9e2779fa
CL
390 unsigned long addr = (unsigned long)x;
391
392 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
393#else
394 return 0;
8ca3ed87 395#endif
0738c4bb 396}
81ac3ad9
KH
397#ifdef CONFIG_MMU
398extern int is_vmalloc_or_module_addr(const void *x);
399#else
934831d0 400static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
401{
402 return 0;
403}
404#endif
9e2779fa 405
39f1f78d
AV
406extern void kvfree(const void *addr);
407
e9da73d6
AA
408static inline void compound_lock(struct page *page)
409{
410#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 411 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
412 bit_spin_lock(PG_compound_lock, &page->flags);
413#endif
414}
415
416static inline void compound_unlock(struct page *page)
417{
418#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 419 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
420 bit_spin_unlock(PG_compound_lock, &page->flags);
421#endif
422}
423
424static inline unsigned long compound_lock_irqsave(struct page *page)
425{
426 unsigned long uninitialized_var(flags);
427#ifdef CONFIG_TRANSPARENT_HUGEPAGE
428 local_irq_save(flags);
429 compound_lock(page);
430#endif
431 return flags;
432}
433
434static inline void compound_unlock_irqrestore(struct page *page,
435 unsigned long flags)
436{
437#ifdef CONFIG_TRANSPARENT_HUGEPAGE
438 compound_unlock(page);
439 local_irq_restore(flags);
440#endif
441}
442
d2ee40ea
JZ
443static inline struct page *compound_head_by_tail(struct page *tail)
444{
445 struct page *head = tail->first_page;
446
447 /*
448 * page->first_page may be a dangling pointer to an old
449 * compound page, so recheck that it is still a tail
450 * page before returning.
451 */
452 smp_rmb();
453 if (likely(PageTail(tail)))
454 return head;
455 return tail;
456}
457
ccaafd7f
JK
458/*
459 * Since either compound page could be dismantled asynchronously in THP
460 * or we access asynchronously arbitrary positioned struct page, there
461 * would be tail flag race. To handle this race, we should call
462 * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
463 */
d85f3385
CL
464static inline struct page *compound_head(struct page *page)
465{
d2ee40ea
JZ
466 if (unlikely(PageTail(page)))
467 return compound_head_by_tail(page);
d85f3385
CL
468 return page;
469}
470
ccaafd7f
JK
471/*
472 * If we access compound page synchronously such as access to
473 * allocated page, there is no need to handle tail flag race, so we can
474 * check tail flag directly without any synchronization primitive.
475 */
476static inline struct page *compound_head_fast(struct page *page)
477{
478 if (unlikely(PageTail(page)))
479 return page->first_page;
480 return page;
481}
482
70b50f94
AA
483/*
484 * The atomic page->_mapcount, starts from -1: so that transitions
485 * both from it and to it can be tracked, using atomic_inc_and_test
486 * and atomic_add_negative(-1).
487 */
22b751c3 488static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
489{
490 atomic_set(&(page)->_mapcount, -1);
491}
492
493static inline int page_mapcount(struct page *page)
494{
1d148e21
WY
495 VM_BUG_ON_PAGE(PageSlab(page), page);
496 return atomic_read(&page->_mapcount) + 1;
70b50f94
AA
497}
498
4c21e2f2 499static inline int page_count(struct page *page)
1da177e4 500{
d85f3385 501 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
502}
503
44518d2b
AA
504static inline bool __compound_tail_refcounted(struct page *page)
505{
c761471b 506 return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page);
44518d2b
AA
507}
508
509/*
510 * This takes a head page as parameter and tells if the
511 * tail page reference counting can be skipped.
512 *
513 * For this to be safe, PageSlab and PageHeadHuge must remain true on
514 * any given page where they return true here, until all tail pins
515 * have been released.
516 */
517static inline bool compound_tail_refcounted(struct page *page)
518{
309381fe 519 VM_BUG_ON_PAGE(!PageHead(page), page);
44518d2b
AA
520 return __compound_tail_refcounted(page);
521}
522
b35a35b5
AA
523static inline void get_huge_page_tail(struct page *page)
524{
525 /*
5eaf1a9e 526 * __split_huge_page_refcount() cannot run from under us.
b35a35b5 527 */
309381fe
SL
528 VM_BUG_ON_PAGE(!PageTail(page), page);
529 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
530 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
5eaf1a9e 531 if (compound_tail_refcounted(page->first_page))
44518d2b 532 atomic_inc(&page->_mapcount);
b35a35b5
AA
533}
534
70b50f94
AA
535extern bool __get_page_tail(struct page *page);
536
1da177e4
LT
537static inline void get_page(struct page *page)
538{
70b50f94
AA
539 if (unlikely(PageTail(page)))
540 if (likely(__get_page_tail(page)))
541 return;
91807063
AA
542 /*
543 * Getting a normal page or the head of a compound page
70b50f94 544 * requires to already have an elevated page->_count.
91807063 545 */
309381fe 546 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
1da177e4
LT
547 atomic_inc(&page->_count);
548}
549
b49af68f
CL
550static inline struct page *virt_to_head_page(const void *x)
551{
552 struct page *page = virt_to_page(x);
ccaafd7f
JK
553
554 /*
555 * We don't need to worry about synchronization of tail flag
556 * when we call virt_to_head_page() since it is only called for
557 * already allocated page and this page won't be freed until
558 * this virt_to_head_page() is finished. So use _fast variant.
559 */
560 return compound_head_fast(page);
b49af68f
CL
561}
562
7835e98b
NP
563/*
564 * Setup the page count before being freed into the page allocator for
565 * the first time (boot or memory hotplug)
566 */
567static inline void init_page_count(struct page *page)
568{
569 atomic_set(&page->_count, 1);
570}
571
1da177e4 572void put_page(struct page *page);
1d7ea732 573void put_pages_list(struct list_head *pages);
1da177e4 574
8dfcc9ba 575void split_page(struct page *page, unsigned int order);
748446bb 576int split_free_page(struct page *page);
8dfcc9ba 577
33f2ef89
AW
578/*
579 * Compound pages have a destructor function. Provide a
580 * prototype for that function and accessor functions.
581 * These are _only_ valid on the head of a PG_compound page.
582 */
33f2ef89
AW
583
584static inline void set_compound_page_dtor(struct page *page,
585 compound_page_dtor *dtor)
586{
e4b294c2 587 page[1].compound_dtor = dtor;
33f2ef89
AW
588}
589
590static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
591{
e4b294c2 592 return page[1].compound_dtor;
33f2ef89
AW
593}
594
d85f3385
CL
595static inline int compound_order(struct page *page)
596{
6d777953 597 if (!PageHead(page))
d85f3385 598 return 0;
e4b294c2 599 return page[1].compound_order;
d85f3385
CL
600}
601
602static inline void set_compound_order(struct page *page, unsigned long order)
603{
e4b294c2 604 page[1].compound_order = order;
d85f3385
CL
605}
606
3dece370 607#ifdef CONFIG_MMU
14fd403f
AA
608/*
609 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
610 * servicing faults for write access. In the normal case, do always want
611 * pte_mkwrite. But get_user_pages can cause write faults for mappings
612 * that do not have writing enabled, when used by access_process_vm.
613 */
614static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
615{
616 if (likely(vma->vm_flags & VM_WRITE))
617 pte = pte_mkwrite(pte);
618 return pte;
619}
8c6e50b0
KS
620
621void do_set_pte(struct vm_area_struct *vma, unsigned long address,
622 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 623#endif
14fd403f 624
1da177e4
LT
625/*
626 * Multiple processes may "see" the same page. E.g. for untouched
627 * mappings of /dev/null, all processes see the same page full of
628 * zeroes, and text pages of executables and shared libraries have
629 * only one copy in memory, at most, normally.
630 *
631 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
632 * page_count() == 0 means the page is free. page->lru is then used for
633 * freelist management in the buddy allocator.
da6052f7 634 * page_count() > 0 means the page has been allocated.
1da177e4 635 *
da6052f7
NP
636 * Pages are allocated by the slab allocator in order to provide memory
637 * to kmalloc and kmem_cache_alloc. In this case, the management of the
638 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
639 * unless a particular usage is carefully commented. (the responsibility of
640 * freeing the kmalloc memory is the caller's, of course).
1da177e4 641 *
da6052f7
NP
642 * A page may be used by anyone else who does a __get_free_page().
643 * In this case, page_count still tracks the references, and should only
644 * be used through the normal accessor functions. The top bits of page->flags
645 * and page->virtual store page management information, but all other fields
646 * are unused and could be used privately, carefully. The management of this
647 * page is the responsibility of the one who allocated it, and those who have
648 * subsequently been given references to it.
649 *
650 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
651 * managed by the Linux memory manager: I/O, buffers, swapping etc.
652 * The following discussion applies only to them.
653 *
da6052f7
NP
654 * A pagecache page contains an opaque `private' member, which belongs to the
655 * page's address_space. Usually, this is the address of a circular list of
656 * the page's disk buffers. PG_private must be set to tell the VM to call
657 * into the filesystem to release these pages.
1da177e4 658 *
da6052f7
NP
659 * A page may belong to an inode's memory mapping. In this case, page->mapping
660 * is the pointer to the inode, and page->index is the file offset of the page,
661 * in units of PAGE_CACHE_SIZE.
1da177e4 662 *
da6052f7
NP
663 * If pagecache pages are not associated with an inode, they are said to be
664 * anonymous pages. These may become associated with the swapcache, and in that
665 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 666 *
da6052f7
NP
667 * In either case (swapcache or inode backed), the pagecache itself holds one
668 * reference to the page. Setting PG_private should also increment the
669 * refcount. The each user mapping also has a reference to the page.
1da177e4 670 *
da6052f7
NP
671 * The pagecache pages are stored in a per-mapping radix tree, which is
672 * rooted at mapping->page_tree, and indexed by offset.
673 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
674 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 675 *
da6052f7 676 * All pagecache pages may be subject to I/O:
1da177e4
LT
677 * - inode pages may need to be read from disk,
678 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
679 * to be written back to the inode on disk,
680 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
681 * modified may need to be swapped out to swap space and (later) to be read
682 * back into memory.
1da177e4
LT
683 */
684
685/*
686 * The zone field is never updated after free_area_init_core()
687 * sets it, so none of the operations on it need to be atomic.
1da177e4 688 */
348f8b6c 689
90572890 690/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 691#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
692#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
693#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 694#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 695
348f8b6c 696/*
25985edc 697 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
698 * sections we define the shift as 0; that plus a 0 mask ensures
699 * the compiler will optimise away reference to them.
700 */
d41dee36
AW
701#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
702#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
703#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 704#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 705
bce54bbf
WD
706/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
707#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 708#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
709#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
710 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 711#else
89689ae7 712#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
713#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
714 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
715#endif
716
bd8029b6 717#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 718
9223b419
CL
719#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
720#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
721#endif
722
d41dee36
AW
723#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
724#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
725#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 726#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 727#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 728
33dd4e0e 729static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 730{
348f8b6c 731 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 732}
1da177e4 733
9127ab4f
CS
734#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
735#define SECTION_IN_PAGE_FLAGS
736#endif
737
89689ae7 738/*
7a8010cd
VB
739 * The identification function is mainly used by the buddy allocator for
740 * determining if two pages could be buddies. We are not really identifying
741 * the zone since we could be using the section number id if we do not have
742 * node id available in page flags.
743 * We only guarantee that it will return the same value for two combinable
744 * pages in a zone.
89689ae7 745 */
cb2b95e1
AW
746static inline int page_zone_id(struct page *page)
747{
89689ae7 748 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
749}
750
25ba77c1 751static inline int zone_to_nid(struct zone *zone)
89fa3024 752{
d5f541ed
CL
753#ifdef CONFIG_NUMA
754 return zone->node;
755#else
756 return 0;
757#endif
89fa3024
CL
758}
759
89689ae7 760#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 761extern int page_to_nid(const struct page *page);
89689ae7 762#else
33dd4e0e 763static inline int page_to_nid(const struct page *page)
d41dee36 764{
89689ae7 765 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 766}
89689ae7
CL
767#endif
768
57e0a030 769#ifdef CONFIG_NUMA_BALANCING
90572890 770static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 771{
90572890 772 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
773}
774
90572890 775static inline int cpupid_to_pid(int cpupid)
57e0a030 776{
90572890 777 return cpupid & LAST__PID_MASK;
57e0a030 778}
b795854b 779
90572890 780static inline int cpupid_to_cpu(int cpupid)
b795854b 781{
90572890 782 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
783}
784
90572890 785static inline int cpupid_to_nid(int cpupid)
b795854b 786{
90572890 787 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
788}
789
90572890 790static inline bool cpupid_pid_unset(int cpupid)
57e0a030 791{
90572890 792 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
793}
794
90572890 795static inline bool cpupid_cpu_unset(int cpupid)
b795854b 796{
90572890 797 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
798}
799
8c8a743c
PZ
800static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
801{
802 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
803}
804
805#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
806#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
807static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 808{
1ae71d03 809 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 810}
90572890
PZ
811
812static inline int page_cpupid_last(struct page *page)
813{
814 return page->_last_cpupid;
815}
816static inline void page_cpupid_reset_last(struct page *page)
b795854b 817{
1ae71d03 818 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
819}
820#else
90572890 821static inline int page_cpupid_last(struct page *page)
75980e97 822{
90572890 823 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
824}
825
90572890 826extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 827
90572890 828static inline void page_cpupid_reset_last(struct page *page)
75980e97 829{
90572890 830 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 831
90572890
PZ
832 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
833 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 834}
90572890
PZ
835#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
836#else /* !CONFIG_NUMA_BALANCING */
837static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 838{
90572890 839 return page_to_nid(page); /* XXX */
57e0a030
MG
840}
841
90572890 842static inline int page_cpupid_last(struct page *page)
57e0a030 843{
90572890 844 return page_to_nid(page); /* XXX */
57e0a030
MG
845}
846
90572890 847static inline int cpupid_to_nid(int cpupid)
b795854b
MG
848{
849 return -1;
850}
851
90572890 852static inline int cpupid_to_pid(int cpupid)
b795854b
MG
853{
854 return -1;
855}
856
90572890 857static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
858{
859 return -1;
860}
861
90572890
PZ
862static inline int cpu_pid_to_cpupid(int nid, int pid)
863{
864 return -1;
865}
866
867static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
868{
869 return 1;
870}
871
90572890 872static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
873{
874}
8c8a743c
PZ
875
876static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
877{
878 return false;
879}
90572890 880#endif /* CONFIG_NUMA_BALANCING */
57e0a030 881
33dd4e0e 882static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
883{
884 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
885}
886
9127ab4f 887#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
888static inline void set_page_section(struct page *page, unsigned long section)
889{
890 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
891 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
892}
893
aa462abe 894static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
895{
896 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
897}
308c05e3 898#endif
d41dee36 899
2f1b6248 900static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
901{
902 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
903 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
904}
2f1b6248 905
348f8b6c
DH
906static inline void set_page_node(struct page *page, unsigned long node)
907{
908 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
909 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 910}
89689ae7 911
2f1b6248 912static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 913 unsigned long node, unsigned long pfn)
1da177e4 914{
348f8b6c
DH
915 set_page_zone(page, zone);
916 set_page_node(page, node);
9127ab4f 917#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 918 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 919#endif
1da177e4
LT
920}
921
f6ac2354
CL
922/*
923 * Some inline functions in vmstat.h depend on page_zone()
924 */
925#include <linux/vmstat.h>
926
33dd4e0e 927static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 928{
aa462abe 929 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
930}
931
932#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
933#define HASHED_PAGE_VIRTUAL
934#endif
935
936#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
937static inline void *page_address(const struct page *page)
938{
939 return page->virtual;
940}
941static inline void set_page_address(struct page *page, void *address)
942{
943 page->virtual = address;
944}
1da177e4
LT
945#define page_address_init() do { } while(0)
946#endif
947
948#if defined(HASHED_PAGE_VIRTUAL)
f9918794 949void *page_address(const struct page *page);
1da177e4
LT
950void set_page_address(struct page *page, void *virtual);
951void page_address_init(void);
952#endif
953
954#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
955#define page_address(page) lowmem_page_address(page)
956#define set_page_address(page, address) do { } while(0)
957#define page_address_init() do { } while(0)
958#endif
959
e39155ea
KS
960extern void *page_rmapping(struct page *page);
961extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 962extern struct address_space *page_mapping(struct page *page);
1da177e4 963
f981c595
MG
964extern struct address_space *__page_file_mapping(struct page *);
965
966static inline
967struct address_space *page_file_mapping(struct page *page)
968{
969 if (unlikely(PageSwapCache(page)))
970 return __page_file_mapping(page);
971
972 return page->mapping;
973}
974
1da177e4
LT
975/*
976 * Return the pagecache index of the passed page. Regular pagecache pages
977 * use ->index whereas swapcache pages use ->private
978 */
979static inline pgoff_t page_index(struct page *page)
980{
981 if (unlikely(PageSwapCache(page)))
4c21e2f2 982 return page_private(page);
1da177e4
LT
983 return page->index;
984}
985
f981c595
MG
986extern pgoff_t __page_file_index(struct page *page);
987
988/*
989 * Return the file index of the page. Regular pagecache pages use ->index
990 * whereas swapcache pages use swp_offset(->private)
991 */
992static inline pgoff_t page_file_index(struct page *page)
993{
994 if (unlikely(PageSwapCache(page)))
995 return __page_file_index(page);
996
997 return page->index;
998}
999
1da177e4
LT
1000/*
1001 * Return true if this page is mapped into pagetables.
1002 */
1003static inline int page_mapped(struct page *page)
1004{
1005 return atomic_read(&(page)->_mapcount) >= 0;
1006}
1007
2f064f34
MH
1008/*
1009 * Return true only if the page has been allocated with
1010 * ALLOC_NO_WATERMARKS and the low watermark was not
1011 * met implying that the system is under some pressure.
1012 */
1013static inline bool page_is_pfmemalloc(struct page *page)
1014{
1015 /*
1016 * Page index cannot be this large so this must be
1017 * a pfmemalloc page.
1018 */
1019 return page->index == -1UL;
1020}
1021
1022/*
1023 * Only to be called by the page allocator on a freshly allocated
1024 * page.
1025 */
1026static inline void set_page_pfmemalloc(struct page *page)
1027{
1028 page->index = -1UL;
1029}
1030
1031static inline void clear_page_pfmemalloc(struct page *page)
1032{
1033 page->index = 0;
1034}
1035
1da177e4
LT
1036/*
1037 * Different kinds of faults, as returned by handle_mm_fault().
1038 * Used to decide whether a process gets delivered SIGBUS or
1039 * just gets major/minor fault counters bumped up.
1040 */
d0217ac0 1041
83c54070 1042#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1043
83c54070
NP
1044#define VM_FAULT_OOM 0x0001
1045#define VM_FAULT_SIGBUS 0x0002
1046#define VM_FAULT_MAJOR 0x0004
1047#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1048#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1049#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1050#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1051
83c54070
NP
1052#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1053#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1054#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1055#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1056
aa50d3a7
AK
1057#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1058
33692f27
LT
1059#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1060 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1061 VM_FAULT_FALLBACK)
aa50d3a7
AK
1062
1063/* Encode hstate index for a hwpoisoned large page */
1064#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1065#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1066
1c0fe6e3
NP
1067/*
1068 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1069 */
1070extern void pagefault_out_of_memory(void);
1071
1da177e4
LT
1072#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1073
ddd588b5 1074/*
7bf02ea2 1075 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1076 * various contexts.
1077 */
4b59e6c4 1078#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1079
7bf02ea2
DR
1080extern void show_free_areas(unsigned int flags);
1081extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1082
1da177e4 1083int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1084#ifdef CONFIG_SHMEM
1085bool shmem_mapping(struct address_space *mapping);
1086#else
1087static inline bool shmem_mapping(struct address_space *mapping)
1088{
1089 return false;
1090}
1091#endif
1da177e4 1092
e8edc6e0 1093extern int can_do_mlock(void);
1da177e4
LT
1094extern int user_shm_lock(size_t, struct user_struct *);
1095extern void user_shm_unlock(size_t, struct user_struct *);
1096
1097/*
1098 * Parameter block passed down to zap_pte_range in exceptional cases.
1099 */
1100struct zap_details {
1da177e4
LT
1101 struct address_space *check_mapping; /* Check page->mapping if set */
1102 pgoff_t first_index; /* Lowest page->index to unmap */
1103 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1104};
1105
7e675137
NP
1106struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1107 pte_t pte);
1108
c627f9cc
JS
1109int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1110 unsigned long size);
14f5ff5d 1111void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1112 unsigned long size, struct zap_details *);
4f74d2c8
LT
1113void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1114 unsigned long start, unsigned long end);
e6473092
MM
1115
1116/**
1117 * mm_walk - callbacks for walk_page_range
e6473092 1118 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1119 * this handler is required to be able to handle
1120 * pmd_trans_huge() pmds. They may simply choose to
1121 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1122 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1123 * @pte_hole: if set, called for each hole at all levels
5dc37642 1124 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426
NH
1125 * @test_walk: caller specific callback function to determine whether
1126 * we walk over the current vma or not. A positive returned
1127 * value means "do page table walk over the current vma,"
1128 * and a negative one means "abort current page table walk
1129 * right now." 0 means "skip the current vma."
1130 * @mm: mm_struct representing the target process of page table walk
1131 * @vma: vma currently walked (NULL if walking outside vmas)
1132 * @private: private data for callbacks' usage
e6473092 1133 *
fafaa426 1134 * (see the comment on walk_page_range() for more details)
e6473092
MM
1135 */
1136struct mm_walk {
0f157a5b
AM
1137 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1138 unsigned long next, struct mm_walk *walk);
1139 int (*pte_entry)(pte_t *pte, unsigned long addr,
1140 unsigned long next, struct mm_walk *walk);
1141 int (*pte_hole)(unsigned long addr, unsigned long next,
1142 struct mm_walk *walk);
1143 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1144 unsigned long addr, unsigned long next,
1145 struct mm_walk *walk);
fafaa426
NH
1146 int (*test_walk)(unsigned long addr, unsigned long next,
1147 struct mm_walk *walk);
2165009b 1148 struct mm_struct *mm;
fafaa426 1149 struct vm_area_struct *vma;
2165009b 1150 void *private;
e6473092
MM
1151};
1152
2165009b
DH
1153int walk_page_range(unsigned long addr, unsigned long end,
1154 struct mm_walk *walk);
900fc5f1 1155int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1156void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1157 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1158int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1159 struct vm_area_struct *vma);
1da177e4
LT
1160void unmap_mapping_range(struct address_space *mapping,
1161 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1162int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1163 unsigned long *pfn);
d87fe660 1164int follow_phys(struct vm_area_struct *vma, unsigned long address,
1165 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1166int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1167 void *buf, int len, int write);
1da177e4
LT
1168
1169static inline void unmap_shared_mapping_range(struct address_space *mapping,
1170 loff_t const holebegin, loff_t const holelen)
1171{
1172 unmap_mapping_range(mapping, holebegin, holelen, 0);
1173}
1174
7caef267 1175extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1176extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1177void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1178void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1179int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1180int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1181int invalidate_inode_page(struct page *page);
1182
7ee1dd3f 1183#ifdef CONFIG_MMU
83c54070 1184extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1185 unsigned long address, unsigned int flags);
5c723ba5
PZ
1186extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1187 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1188#else
1189static inline int handle_mm_fault(struct mm_struct *mm,
1190 struct vm_area_struct *vma, unsigned long address,
d06063cc 1191 unsigned int flags)
7ee1dd3f
DH
1192{
1193 /* should never happen if there's no MMU */
1194 BUG();
1195 return VM_FAULT_SIGBUS;
1196}
5c723ba5
PZ
1197static inline int fixup_user_fault(struct task_struct *tsk,
1198 struct mm_struct *mm, unsigned long address,
1199 unsigned int fault_flags)
1200{
1201 /* should never happen if there's no MMU */
1202 BUG();
1203 return -EFAULT;
1204}
7ee1dd3f 1205#endif
f33ea7f4 1206
1da177e4 1207extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1208extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1209 void *buf, int len, int write);
1da177e4 1210
28a35716
ML
1211long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1212 unsigned long start, unsigned long nr_pages,
1213 unsigned int foll_flags, struct page **pages,
1214 struct vm_area_struct **vmas, int *nonblocking);
1215long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1216 unsigned long start, unsigned long nr_pages,
1217 int write, int force, struct page **pages,
1218 struct vm_area_struct **vmas);
f0818f47
AA
1219long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1220 unsigned long start, unsigned long nr_pages,
1221 int write, int force, struct page **pages,
1222 int *locked);
0fd71a56
AA
1223long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1224 unsigned long start, unsigned long nr_pages,
1225 int write, int force, struct page **pages,
1226 unsigned int gup_flags);
f0818f47
AA
1227long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1228 unsigned long start, unsigned long nr_pages,
1229 int write, int force, struct page **pages);
d2bf6be8
NP
1230int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1231 struct page **pages);
18022c5d
MG
1232struct kvec;
1233int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1234 struct page **pages);
1235int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1236struct page *get_dump_page(unsigned long addr);
1da177e4 1237
cf9a2ae8 1238extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1239extern void do_invalidatepage(struct page *page, unsigned int offset,
1240 unsigned int length);
cf9a2ae8 1241
1da177e4 1242int __set_page_dirty_nobuffers(struct page *page);
76719325 1243int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1244int redirty_page_for_writepage(struct writeback_control *wbc,
1245 struct page *page);
c4843a75
GT
1246void account_page_dirtied(struct page *page, struct address_space *mapping,
1247 struct mem_cgroup *memcg);
1248void account_page_cleaned(struct page *page, struct address_space *mapping,
682aa8e1 1249 struct mem_cgroup *memcg, struct bdi_writeback *wb);
b3c97528 1250int set_page_dirty(struct page *page);
1da177e4 1251int set_page_dirty_lock(struct page *page);
11f81bec 1252void cancel_dirty_page(struct page *page);
1da177e4 1253int clear_page_dirty_for_io(struct page *page);
b9ea2515 1254
a9090253 1255int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1256
39aa3cb3 1257/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1258static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1259{
1260 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1261}
1262
b5330628
ON
1263static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1264{
1265 return !vma->vm_ops;
1266}
1267
a09a79f6
MP
1268static inline int stack_guard_page_start(struct vm_area_struct *vma,
1269 unsigned long addr)
1270{
1271 return (vma->vm_flags & VM_GROWSDOWN) &&
1272 (vma->vm_start == addr) &&
1273 !vma_growsdown(vma->vm_prev, addr);
1274}
1275
1276/* Is the vma a continuation of the stack vma below it? */
1277static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1278{
1279 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1280}
1281
1282static inline int stack_guard_page_end(struct vm_area_struct *vma,
1283 unsigned long addr)
1284{
1285 return (vma->vm_flags & VM_GROWSUP) &&
1286 (vma->vm_end == addr) &&
1287 !vma_growsup(vma->vm_next, addr);
1288}
1289
58cb6548
ON
1290extern struct task_struct *task_of_stack(struct task_struct *task,
1291 struct vm_area_struct *vma, bool in_group);
b7643757 1292
b6a2fea3
OW
1293extern unsigned long move_page_tables(struct vm_area_struct *vma,
1294 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1295 unsigned long new_addr, unsigned long len,
1296 bool need_rmap_locks);
7da4d641
PZ
1297extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1298 unsigned long end, pgprot_t newprot,
4b10e7d5 1299 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1300extern int mprotect_fixup(struct vm_area_struct *vma,
1301 struct vm_area_struct **pprev, unsigned long start,
1302 unsigned long end, unsigned long newflags);
1da177e4 1303
465a454f
PZ
1304/*
1305 * doesn't attempt to fault and will return short.
1306 */
1307int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1308 struct page **pages);
d559db08
KH
1309/*
1310 * per-process(per-mm_struct) statistics.
1311 */
d559db08
KH
1312static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1313{
69c97823
KK
1314 long val = atomic_long_read(&mm->rss_stat.count[member]);
1315
1316#ifdef SPLIT_RSS_COUNTING
1317 /*
1318 * counter is updated in asynchronous manner and may go to minus.
1319 * But it's never be expected number for users.
1320 */
1321 if (val < 0)
1322 val = 0;
172703b0 1323#endif
69c97823
KK
1324 return (unsigned long)val;
1325}
d559db08
KH
1326
1327static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1328{
172703b0 1329 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1330}
1331
1332static inline void inc_mm_counter(struct mm_struct *mm, int member)
1333{
172703b0 1334 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1335}
1336
1337static inline void dec_mm_counter(struct mm_struct *mm, int member)
1338{
172703b0 1339 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1340}
1341
d559db08
KH
1342static inline unsigned long get_mm_rss(struct mm_struct *mm)
1343{
1344 return get_mm_counter(mm, MM_FILEPAGES) +
1345 get_mm_counter(mm, MM_ANONPAGES);
1346}
1347
1348static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1349{
1350 return max(mm->hiwater_rss, get_mm_rss(mm));
1351}
1352
1353static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1354{
1355 return max(mm->hiwater_vm, mm->total_vm);
1356}
1357
1358static inline void update_hiwater_rss(struct mm_struct *mm)
1359{
1360 unsigned long _rss = get_mm_rss(mm);
1361
1362 if ((mm)->hiwater_rss < _rss)
1363 (mm)->hiwater_rss = _rss;
1364}
1365
1366static inline void update_hiwater_vm(struct mm_struct *mm)
1367{
1368 if (mm->hiwater_vm < mm->total_vm)
1369 mm->hiwater_vm = mm->total_vm;
1370}
1371
695f0559
PC
1372static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1373{
1374 mm->hiwater_rss = get_mm_rss(mm);
1375}
1376
d559db08
KH
1377static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1378 struct mm_struct *mm)
1379{
1380 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1381
1382 if (*maxrss < hiwater_rss)
1383 *maxrss = hiwater_rss;
1384}
1385
53bddb4e 1386#if defined(SPLIT_RSS_COUNTING)
05af2e10 1387void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1388#else
05af2e10 1389static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1390{
1391}
1392#endif
465a454f 1393
4e950f6f 1394int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1395
25ca1d6c
NK
1396extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1397 spinlock_t **ptl);
1398static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1399 spinlock_t **ptl)
1400{
1401 pte_t *ptep;
1402 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1403 return ptep;
1404}
c9cfcddf 1405
5f22df00
NP
1406#ifdef __PAGETABLE_PUD_FOLDED
1407static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1408 unsigned long address)
1409{
1410 return 0;
1411}
1412#else
1bb3630e 1413int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1414#endif
1415
2d2f5119 1416#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1417static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1418 unsigned long address)
1419{
1420 return 0;
1421}
dc6c9a35 1422
2d2f5119
KS
1423static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1424
dc6c9a35
KS
1425static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1426{
1427 return 0;
1428}
1429
1430static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1431static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1432
5f22df00 1433#else
1bb3630e 1434int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1435
2d2f5119
KS
1436static inline void mm_nr_pmds_init(struct mm_struct *mm)
1437{
1438 atomic_long_set(&mm->nr_pmds, 0);
1439}
1440
dc6c9a35
KS
1441static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1442{
1443 return atomic_long_read(&mm->nr_pmds);
1444}
1445
1446static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1447{
1448 atomic_long_inc(&mm->nr_pmds);
1449}
1450
1451static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1452{
1453 atomic_long_dec(&mm->nr_pmds);
1454}
5f22df00
NP
1455#endif
1456
8ac1f832
AA
1457int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1458 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1459int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1460
1da177e4
LT
1461/*
1462 * The following ifdef needed to get the 4level-fixup.h header to work.
1463 * Remove it when 4level-fixup.h has been removed.
1464 */
1bb3630e 1465#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1466static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1467{
1bb3630e
HD
1468 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1469 NULL: pud_offset(pgd, address);
1da177e4
LT
1470}
1471
1472static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1473{
1bb3630e
HD
1474 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1475 NULL: pmd_offset(pud, address);
1da177e4 1476}
1bb3630e
HD
1477#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1478
57c1ffce 1479#if USE_SPLIT_PTE_PTLOCKS
597d795a 1480#if ALLOC_SPLIT_PTLOCKS
b35f1819 1481void __init ptlock_cache_init(void);
539edb58
PZ
1482extern bool ptlock_alloc(struct page *page);
1483extern void ptlock_free(struct page *page);
1484
1485static inline spinlock_t *ptlock_ptr(struct page *page)
1486{
1487 return page->ptl;
1488}
597d795a 1489#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1490static inline void ptlock_cache_init(void)
1491{
1492}
1493
49076ec2
KS
1494static inline bool ptlock_alloc(struct page *page)
1495{
49076ec2
KS
1496 return true;
1497}
539edb58 1498
49076ec2
KS
1499static inline void ptlock_free(struct page *page)
1500{
49076ec2
KS
1501}
1502
1503static inline spinlock_t *ptlock_ptr(struct page *page)
1504{
539edb58 1505 return &page->ptl;
49076ec2 1506}
597d795a 1507#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1508
1509static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1510{
1511 return ptlock_ptr(pmd_page(*pmd));
1512}
1513
1514static inline bool ptlock_init(struct page *page)
1515{
1516 /*
1517 * prep_new_page() initialize page->private (and therefore page->ptl)
1518 * with 0. Make sure nobody took it in use in between.
1519 *
1520 * It can happen if arch try to use slab for page table allocation:
1521 * slab code uses page->slab_cache and page->first_page (for tail
1522 * pages), which share storage with page->ptl.
1523 */
309381fe 1524 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1525 if (!ptlock_alloc(page))
1526 return false;
1527 spin_lock_init(ptlock_ptr(page));
1528 return true;
1529}
1530
1531/* Reset page->mapping so free_pages_check won't complain. */
1532static inline void pte_lock_deinit(struct page *page)
1533{
1534 page->mapping = NULL;
1535 ptlock_free(page);
1536}
1537
57c1ffce 1538#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1539/*
1540 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1541 */
49076ec2
KS
1542static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1543{
1544 return &mm->page_table_lock;
1545}
b35f1819 1546static inline void ptlock_cache_init(void) {}
49076ec2
KS
1547static inline bool ptlock_init(struct page *page) { return true; }
1548static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1549#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1550
b35f1819
KS
1551static inline void pgtable_init(void)
1552{
1553 ptlock_cache_init();
1554 pgtable_cache_init();
1555}
1556
390f44e2 1557static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1558{
2f569afd 1559 inc_zone_page_state(page, NR_PAGETABLE);
49076ec2 1560 return ptlock_init(page);
2f569afd
MS
1561}
1562
1563static inline void pgtable_page_dtor(struct page *page)
1564{
1565 pte_lock_deinit(page);
1566 dec_zone_page_state(page, NR_PAGETABLE);
1567}
1568
c74df32c
HD
1569#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1570({ \
4c21e2f2 1571 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1572 pte_t *__pte = pte_offset_map(pmd, address); \
1573 *(ptlp) = __ptl; \
1574 spin_lock(__ptl); \
1575 __pte; \
1576})
1577
1578#define pte_unmap_unlock(pte, ptl) do { \
1579 spin_unlock(ptl); \
1580 pte_unmap(pte); \
1581} while (0)
1582
8ac1f832
AA
1583#define pte_alloc_map(mm, vma, pmd, address) \
1584 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1585 pmd, address))? \
1586 NULL: pte_offset_map(pmd, address))
1bb3630e 1587
c74df32c 1588#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1589 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1590 pmd, address))? \
c74df32c
HD
1591 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1592
1bb3630e 1593#define pte_alloc_kernel(pmd, address) \
8ac1f832 1594 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1595 NULL: pte_offset_kernel(pmd, address))
1da177e4 1596
e009bb30
KS
1597#if USE_SPLIT_PMD_PTLOCKS
1598
634391ac
MS
1599static struct page *pmd_to_page(pmd_t *pmd)
1600{
1601 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1602 return virt_to_page((void *)((unsigned long) pmd & mask));
1603}
1604
e009bb30
KS
1605static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1606{
634391ac 1607 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1608}
1609
1610static inline bool pgtable_pmd_page_ctor(struct page *page)
1611{
e009bb30
KS
1612#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1613 page->pmd_huge_pte = NULL;
1614#endif
49076ec2 1615 return ptlock_init(page);
e009bb30
KS
1616}
1617
1618static inline void pgtable_pmd_page_dtor(struct page *page)
1619{
1620#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1621 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1622#endif
49076ec2 1623 ptlock_free(page);
e009bb30
KS
1624}
1625
634391ac 1626#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1627
1628#else
1629
9a86cb7b
KS
1630static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1631{
1632 return &mm->page_table_lock;
1633}
1634
e009bb30
KS
1635static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1636static inline void pgtable_pmd_page_dtor(struct page *page) {}
1637
c389a250 1638#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1639
e009bb30
KS
1640#endif
1641
9a86cb7b
KS
1642static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1643{
1644 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1645 spin_lock(ptl);
1646 return ptl;
1647}
1648
1da177e4 1649extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1650extern void free_area_init_node(int nid, unsigned long * zones_size,
1651 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1652extern void free_initmem(void);
1653
69afade7
JL
1654/*
1655 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1656 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1657 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1658 * Return pages freed into the buddy system.
1659 */
11199692 1660extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1661 int poison, char *s);
c3d5f5f0 1662
cfa11e08
JL
1663#ifdef CONFIG_HIGHMEM
1664/*
1665 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1666 * and totalram_pages.
1667 */
1668extern void free_highmem_page(struct page *page);
1669#endif
69afade7 1670
c3d5f5f0 1671extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1672extern void mem_init_print_info(const char *str);
69afade7 1673
92923ca3
NZ
1674extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1675
69afade7
JL
1676/* Free the reserved page into the buddy system, so it gets managed. */
1677static inline void __free_reserved_page(struct page *page)
1678{
1679 ClearPageReserved(page);
1680 init_page_count(page);
1681 __free_page(page);
1682}
1683
1684static inline void free_reserved_page(struct page *page)
1685{
1686 __free_reserved_page(page);
1687 adjust_managed_page_count(page, 1);
1688}
1689
1690static inline void mark_page_reserved(struct page *page)
1691{
1692 SetPageReserved(page);
1693 adjust_managed_page_count(page, -1);
1694}
1695
1696/*
1697 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1698 * The freed pages will be poisoned with pattern "poison" if it's within
1699 * range [0, UCHAR_MAX].
1700 * Return pages freed into the buddy system.
69afade7
JL
1701 */
1702static inline unsigned long free_initmem_default(int poison)
1703{
1704 extern char __init_begin[], __init_end[];
1705
11199692 1706 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1707 poison, "unused kernel");
1708}
1709
7ee3d4e8
JL
1710static inline unsigned long get_num_physpages(void)
1711{
1712 int nid;
1713 unsigned long phys_pages = 0;
1714
1715 for_each_online_node(nid)
1716 phys_pages += node_present_pages(nid);
1717
1718 return phys_pages;
1719}
1720
0ee332c1 1721#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1722/*
0ee332c1 1723 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1724 * zones, allocate the backing mem_map and account for memory holes in a more
1725 * architecture independent manner. This is a substitute for creating the
1726 * zone_sizes[] and zholes_size[] arrays and passing them to
1727 * free_area_init_node()
1728 *
1729 * An architecture is expected to register range of page frames backed by
0ee332c1 1730 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1731 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1732 * usage, an architecture is expected to do something like
1733 *
1734 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1735 * max_highmem_pfn};
1736 * for_each_valid_physical_page_range()
0ee332c1 1737 * memblock_add_node(base, size, nid)
c713216d
MG
1738 * free_area_init_nodes(max_zone_pfns);
1739 *
0ee332c1
TH
1740 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1741 * registered physical page range. Similarly
1742 * sparse_memory_present_with_active_regions() calls memory_present() for
1743 * each range when SPARSEMEM is enabled.
c713216d
MG
1744 *
1745 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1746 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1747 */
1748extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1749unsigned long node_map_pfn_alignment(void);
32996250
YL
1750unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1751 unsigned long end_pfn);
c713216d
MG
1752extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1753 unsigned long end_pfn);
1754extern void get_pfn_range_for_nid(unsigned int nid,
1755 unsigned long *start_pfn, unsigned long *end_pfn);
1756extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1757extern void free_bootmem_with_active_regions(int nid,
1758 unsigned long max_low_pfn);
1759extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1760
0ee332c1 1761#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1762
0ee332c1 1763#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1764 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1765static inline int __early_pfn_to_nid(unsigned long pfn,
1766 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1767{
1768 return 0;
1769}
1770#else
1771/* please see mm/page_alloc.c */
1772extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1773/* there is a per-arch backend function. */
8a942fde
MG
1774extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1775 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1776#endif
1777
0e0b864e 1778extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1779extern void memmap_init_zone(unsigned long, int, unsigned long,
1780 unsigned long, enum memmap_context);
bc75d33f 1781extern void setup_per_zone_wmarks(void);
1b79acc9 1782extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1783extern void mem_init(void);
8feae131 1784extern void __init mmap_init(void);
b2b755b5 1785extern void show_mem(unsigned int flags);
1da177e4
LT
1786extern void si_meminfo(struct sysinfo * val);
1787extern void si_meminfo_node(struct sysinfo *val, int nid);
1788
3ee9a4f0
JP
1789extern __printf(3, 4)
1790void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1791
e7c8d5c9 1792extern void setup_per_cpu_pageset(void);
e7c8d5c9 1793
112067f0 1794extern void zone_pcp_update(struct zone *zone);
340175b7 1795extern void zone_pcp_reset(struct zone *zone);
112067f0 1796
75f7ad8e
PS
1797/* page_alloc.c */
1798extern int min_free_kbytes;
1799
8feae131 1800/* nommu.c */
33e5d769 1801extern atomic_long_t mmap_pages_allocated;
7e660872 1802extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1803
6b2dbba8 1804/* interval_tree.c */
6b2dbba8
ML
1805void vma_interval_tree_insert(struct vm_area_struct *node,
1806 struct rb_root *root);
9826a516
ML
1807void vma_interval_tree_insert_after(struct vm_area_struct *node,
1808 struct vm_area_struct *prev,
1809 struct rb_root *root);
6b2dbba8
ML
1810void vma_interval_tree_remove(struct vm_area_struct *node,
1811 struct rb_root *root);
1812struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1813 unsigned long start, unsigned long last);
1814struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1815 unsigned long start, unsigned long last);
1816
1817#define vma_interval_tree_foreach(vma, root, start, last) \
1818 for (vma = vma_interval_tree_iter_first(root, start, last); \
1819 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 1820
bf181b9f
ML
1821void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1822 struct rb_root *root);
1823void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1824 struct rb_root *root);
1825struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1826 struct rb_root *root, unsigned long start, unsigned long last);
1827struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1828 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1829#ifdef CONFIG_DEBUG_VM_RB
1830void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1831#endif
bf181b9f
ML
1832
1833#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1834 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1835 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1836
1da177e4 1837/* mmap.c */
34b4e4aa 1838extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1839extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1840 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1841extern struct vm_area_struct *vma_merge(struct mm_struct *,
1842 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1843 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 1844 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4
LT
1845extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1846extern int split_vma(struct mm_struct *,
1847 struct vm_area_struct *, unsigned long addr, int new_below);
1848extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1849extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1850 struct rb_node **, struct rb_node *);
a8fb5618 1851extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1852extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1853 unsigned long addr, unsigned long len, pgoff_t pgoff,
1854 bool *need_rmap_locks);
1da177e4 1855extern void exit_mmap(struct mm_struct *);
925d1c40 1856
9c599024
CG
1857static inline int check_data_rlimit(unsigned long rlim,
1858 unsigned long new,
1859 unsigned long start,
1860 unsigned long end_data,
1861 unsigned long start_data)
1862{
1863 if (rlim < RLIM_INFINITY) {
1864 if (((new - start) + (end_data - start_data)) > rlim)
1865 return -ENOSPC;
1866 }
1867
1868 return 0;
1869}
1870
7906d00c
AA
1871extern int mm_take_all_locks(struct mm_struct *mm);
1872extern void mm_drop_all_locks(struct mm_struct *mm);
1873
38646013
JS
1874extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1875extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1876
119f657c 1877extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
3935ed6a
SS
1878extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1879 unsigned long addr, unsigned long len,
a62c34bd
AL
1880 unsigned long flags,
1881 const struct vm_special_mapping *spec);
1882/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
1883extern int install_special_mapping(struct mm_struct *mm,
1884 unsigned long addr, unsigned long len,
1885 unsigned long flags, struct page **pages);
1da177e4
LT
1886
1887extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1888
0165ab44 1889extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1890 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1891extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1892 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1893 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1894extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1895
bebeb3d6
ML
1896#ifdef CONFIG_MMU
1897extern int __mm_populate(unsigned long addr, unsigned long len,
1898 int ignore_errors);
1899static inline void mm_populate(unsigned long addr, unsigned long len)
1900{
1901 /* Ignore errors */
1902 (void) __mm_populate(addr, len, 1);
1903}
1904#else
1905static inline void mm_populate(unsigned long addr, unsigned long len) {}
1906#endif
1907
e4eb1ff6
LT
1908/* These take the mm semaphore themselves */
1909extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1910extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1911extern unsigned long vm_mmap(struct file *, unsigned long,
1912 unsigned long, unsigned long,
1913 unsigned long, unsigned long);
1da177e4 1914
db4fbfb9
ML
1915struct vm_unmapped_area_info {
1916#define VM_UNMAPPED_AREA_TOPDOWN 1
1917 unsigned long flags;
1918 unsigned long length;
1919 unsigned long low_limit;
1920 unsigned long high_limit;
1921 unsigned long align_mask;
1922 unsigned long align_offset;
1923};
1924
1925extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1926extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1927
1928/*
1929 * Search for an unmapped address range.
1930 *
1931 * We are looking for a range that:
1932 * - does not intersect with any VMA;
1933 * - is contained within the [low_limit, high_limit) interval;
1934 * - is at least the desired size.
1935 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1936 */
1937static inline unsigned long
1938vm_unmapped_area(struct vm_unmapped_area_info *info)
1939{
cdd7875e 1940 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 1941 return unmapped_area_topdown(info);
cdd7875e
BP
1942 else
1943 return unmapped_area(info);
db4fbfb9
ML
1944}
1945
85821aab 1946/* truncate.c */
1da177e4 1947extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1948extern void truncate_inode_pages_range(struct address_space *,
1949 loff_t lstart, loff_t lend);
91b0abe3 1950extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
1951
1952/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1953extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 1954extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 1955extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1956
1957/* mm/page-writeback.c */
1958int write_one_page(struct page *page, int wait);
1cf6e7d8 1959void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1960
1961/* readahead.c */
1962#define VM_MAX_READAHEAD 128 /* kbytes */
1963#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1964
1da177e4 1965int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1966 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1967
1968void page_cache_sync_readahead(struct address_space *mapping,
1969 struct file_ra_state *ra,
1970 struct file *filp,
1971 pgoff_t offset,
1972 unsigned long size);
1973
1974void page_cache_async_readahead(struct address_space *mapping,
1975 struct file_ra_state *ra,
1976 struct file *filp,
1977 struct page *pg,
1978 pgoff_t offset,
1979 unsigned long size);
1980
1da177e4
LT
1981unsigned long max_sane_readahead(unsigned long nr);
1982
d05f3169 1983/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1984extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1985
1986/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1987extern int expand_downwards(struct vm_area_struct *vma,
1988 unsigned long address);
8ca3eb08 1989#if VM_GROWSUP
46dea3d0 1990extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 1991#else
fee7e49d 1992 #define expand_upwards(vma, address) (0)
9ab88515 1993#endif
1da177e4
LT
1994
1995/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1996extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1997extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1998 struct vm_area_struct **pprev);
1999
2000/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2001 NULL if none. Assume start_addr < end_addr. */
2002static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2003{
2004 struct vm_area_struct * vma = find_vma(mm,start_addr);
2005
2006 if (vma && end_addr <= vma->vm_start)
2007 vma = NULL;
2008 return vma;
2009}
2010
2011static inline unsigned long vma_pages(struct vm_area_struct *vma)
2012{
2013 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2014}
2015
640708a2
PE
2016/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2017static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2018 unsigned long vm_start, unsigned long vm_end)
2019{
2020 struct vm_area_struct *vma = find_vma(mm, vm_start);
2021
2022 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2023 vma = NULL;
2024
2025 return vma;
2026}
2027
bad849b3 2028#ifdef CONFIG_MMU
804af2cf 2029pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2030void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2031#else
2032static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2033{
2034 return __pgprot(0);
2035}
64e45507
PF
2036static inline void vma_set_page_prot(struct vm_area_struct *vma)
2037{
2038 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2039}
bad849b3
DH
2040#endif
2041
5877231f 2042#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2043unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2044 unsigned long start, unsigned long end);
2045#endif
2046
deceb6cd 2047struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2048int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2049 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2050int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2051int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2052 unsigned long pfn);
423bad60
NP
2053int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2054 unsigned long pfn);
b4cbb197
LT
2055int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2056
deceb6cd 2057
240aadee
ML
2058struct page *follow_page_mask(struct vm_area_struct *vma,
2059 unsigned long address, unsigned int foll_flags,
2060 unsigned int *page_mask);
2061
2062static inline struct page *follow_page(struct vm_area_struct *vma,
2063 unsigned long address, unsigned int foll_flags)
2064{
2065 unsigned int unused_page_mask;
2066 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2067}
2068
deceb6cd
HD
2069#define FOLL_WRITE 0x01 /* check pte is writable */
2070#define FOLL_TOUCH 0x02 /* mark page accessed */
2071#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2072#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2073#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2074#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2075 * and return without waiting upon it */
84d33df2 2076#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2077#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2078#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2079#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2080#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2081#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
1da177e4 2082
2f569afd 2083typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2084 void *data);
2085extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2086 unsigned long size, pte_fn_t fn, void *data);
2087
1da177e4 2088#ifdef CONFIG_PROC_FS
ab50b8ed 2089void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 2090#else
ab50b8ed 2091static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
2092 unsigned long flags, struct file *file, long pages)
2093{
44de9d0c 2094 mm->total_vm += pages;
1da177e4
LT
2095}
2096#endif /* CONFIG_PROC_FS */
2097
12d6f21e 2098#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2099extern bool _debug_pagealloc_enabled;
2100extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2101
2102static inline bool debug_pagealloc_enabled(void)
2103{
2104 return _debug_pagealloc_enabled;
2105}
2106
2107static inline void
2108kernel_map_pages(struct page *page, int numpages, int enable)
2109{
2110 if (!debug_pagealloc_enabled())
2111 return;
2112
2113 __kernel_map_pages(page, numpages, enable);
2114}
8a235efa
RW
2115#ifdef CONFIG_HIBERNATION
2116extern bool kernel_page_present(struct page *page);
2117#endif /* CONFIG_HIBERNATION */
12d6f21e 2118#else
1da177e4 2119static inline void
9858db50 2120kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2121#ifdef CONFIG_HIBERNATION
2122static inline bool kernel_page_present(struct page *page) { return true; }
2123#endif /* CONFIG_HIBERNATION */
1da177e4
LT
2124#endif
2125
a6c19dfe 2126#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2127extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2128extern int in_gate_area_no_mm(unsigned long addr);
2129extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2130#else
a6c19dfe
AL
2131static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2132{
2133 return NULL;
2134}
2135static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2136static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2137{
2138 return 0;
2139}
1da177e4
LT
2140#endif /* __HAVE_ARCH_GATE_AREA */
2141
146732ce
JT
2142#ifdef CONFIG_SYSCTL
2143extern int sysctl_drop_caches;
8d65af78 2144int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2145 void __user *, size_t *, loff_t *);
146732ce
JT
2146#endif
2147
cb731d6c
VD
2148void drop_slab(void);
2149void drop_slab_node(int nid);
9d0243bc 2150
7a9166e3
LY
2151#ifndef CONFIG_MMU
2152#define randomize_va_space 0
2153#else
a62eaf15 2154extern int randomize_va_space;
7a9166e3 2155#endif
a62eaf15 2156
045e72ac 2157const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2158void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2159
9bdac914
YL
2160void sparse_mem_maps_populate_node(struct page **map_map,
2161 unsigned long pnum_begin,
2162 unsigned long pnum_end,
2163 unsigned long map_count,
2164 int nodeid);
2165
98f3cfc1 2166struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2167pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2168pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2169pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2170pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2171void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 2172void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 2173void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2174int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2175 int node);
2176int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2177void vmemmap_populate_print_last(void);
0197518c 2178#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2179void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2180#endif
46723bfa
YI
2181void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2182 unsigned long size);
6a46079c 2183
82ba011b
AK
2184enum mf_flags {
2185 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2186 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2187 MF_MUST_KILL = 1 << 2,
cf870c70 2188 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2189};
cd42f4a3 2190extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2191extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2192extern int unpoison_memory(unsigned long pfn);
ead07f6a 2193extern int get_hwpoison_page(struct page *page);
6a46079c
AK
2194extern int sysctl_memory_failure_early_kill;
2195extern int sysctl_memory_failure_recovery;
facb6011 2196extern void shake_page(struct page *p, int access);
293c07e3 2197extern atomic_long_t num_poisoned_pages;
facb6011 2198extern int soft_offline_page(struct page *page, int flags);
6a46079c 2199
cc637b17
XX
2200
2201/*
2202 * Error handlers for various types of pages.
2203 */
cc3e2af4 2204enum mf_result {
cc637b17
XX
2205 MF_IGNORED, /* Error: cannot be handled */
2206 MF_FAILED, /* Error: handling failed */
2207 MF_DELAYED, /* Will be handled later */
2208 MF_RECOVERED, /* Successfully recovered */
2209};
2210
2211enum mf_action_page_type {
2212 MF_MSG_KERNEL,
2213 MF_MSG_KERNEL_HIGH_ORDER,
2214 MF_MSG_SLAB,
2215 MF_MSG_DIFFERENT_COMPOUND,
2216 MF_MSG_POISONED_HUGE,
2217 MF_MSG_HUGE,
2218 MF_MSG_FREE_HUGE,
2219 MF_MSG_UNMAP_FAILED,
2220 MF_MSG_DIRTY_SWAPCACHE,
2221 MF_MSG_CLEAN_SWAPCACHE,
2222 MF_MSG_DIRTY_MLOCKED_LRU,
2223 MF_MSG_CLEAN_MLOCKED_LRU,
2224 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2225 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2226 MF_MSG_DIRTY_LRU,
2227 MF_MSG_CLEAN_LRU,
2228 MF_MSG_TRUNCATED_LRU,
2229 MF_MSG_BUDDY,
2230 MF_MSG_BUDDY_2ND,
2231 MF_MSG_UNKNOWN,
2232};
2233
47ad8475
AA
2234#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2235extern void clear_huge_page(struct page *page,
2236 unsigned long addr,
2237 unsigned int pages_per_huge_page);
2238extern void copy_user_huge_page(struct page *dst, struct page *src,
2239 unsigned long addr, struct vm_area_struct *vma,
2240 unsigned int pages_per_huge_page);
2241#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2242
e30825f1
JK
2243extern struct page_ext_operations debug_guardpage_ops;
2244extern struct page_ext_operations page_poisoning_ops;
2245
c0a32fc5
SG
2246#ifdef CONFIG_DEBUG_PAGEALLOC
2247extern unsigned int _debug_guardpage_minorder;
e30825f1 2248extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2249
2250static inline unsigned int debug_guardpage_minorder(void)
2251{
2252 return _debug_guardpage_minorder;
2253}
2254
e30825f1
JK
2255static inline bool debug_guardpage_enabled(void)
2256{
2257 return _debug_guardpage_enabled;
2258}
2259
c0a32fc5
SG
2260static inline bool page_is_guard(struct page *page)
2261{
e30825f1
JK
2262 struct page_ext *page_ext;
2263
2264 if (!debug_guardpage_enabled())
2265 return false;
2266
2267 page_ext = lookup_page_ext(page);
2268 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2269}
2270#else
2271static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2272static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2273static inline bool page_is_guard(struct page *page) { return false; }
2274#endif /* CONFIG_DEBUG_PAGEALLOC */
2275
f9872caf
CS
2276#if MAX_NUMNODES > 1
2277void __init setup_nr_node_ids(void);
2278#else
2279static inline void setup_nr_node_ids(void) {}
2280#endif
2281
1da177e4
LT
2282#endif /* __KERNEL__ */
2283#endif /* _LINUX_MM_H */