ocfs2: record UNWRITTEN extents when populate write desc
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
24c40b32 31#include <linux/blkdev.h>
e2e40f2c 32#include <linux/uio.h>
ccd979bd 33
ccd979bd
MF
34#include <cluster/masklog.h>
35
36#include "ocfs2.h"
37
38#include "alloc.h"
39#include "aops.h"
40#include "dlmglue.h"
41#include "extent_map.h"
42#include "file.h"
43#include "inode.h"
44#include "journal.h"
9517bac6 45#include "suballoc.h"
ccd979bd
MF
46#include "super.h"
47#include "symlink.h"
293b2f70 48#include "refcounttree.h"
9558156b 49#include "ocfs2_trace.h"
ccd979bd
MF
50
51#include "buffer_head_io.h"
24c40b32
JQ
52#include "dir.h"
53#include "namei.h"
54#include "sysfile.h"
ccd979bd
MF
55
56static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57 struct buffer_head *bh_result, int create)
58{
59 int err = -EIO;
60 int status;
61 struct ocfs2_dinode *fe = NULL;
62 struct buffer_head *bh = NULL;
63 struct buffer_head *buffer_cache_bh = NULL;
64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65 void *kaddr;
66
9558156b
TM
67 trace_ocfs2_symlink_get_block(
68 (unsigned long long)OCFS2_I(inode)->ip_blkno,
69 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
70
71 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75 (unsigned long long)iblock);
76 goto bail;
77 }
78
b657c95c 79 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
80 if (status < 0) {
81 mlog_errno(status);
82 goto bail;
83 }
84 fe = (struct ocfs2_dinode *) bh->b_data;
85
ccd979bd
MF
86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 le32_to_cpu(fe->i_clusters))) {
7391a294 88 err = -ENOMEM;
ccd979bd
MF
89 mlog(ML_ERROR, "block offset is outside the allocated size: "
90 "%llu\n", (unsigned long long)iblock);
91 goto bail;
92 }
93
94 /* We don't use the page cache to create symlink data, so if
95 * need be, copy it over from the buffer cache. */
96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 iblock;
99 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 if (!buffer_cache_bh) {
7391a294 101 err = -ENOMEM;
ccd979bd
MF
102 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 goto bail;
104 }
105
106 /* we haven't locked out transactions, so a commit
107 * could've happened. Since we've got a reference on
108 * the bh, even if it commits while we're doing the
109 * copy, the data is still good. */
110 if (buffer_jbd(buffer_cache_bh)
111 && ocfs2_inode_is_new(inode)) {
c4bc8dcb 112 kaddr = kmap_atomic(bh_result->b_page);
ccd979bd
MF
113 if (!kaddr) {
114 mlog(ML_ERROR, "couldn't kmap!\n");
115 goto bail;
116 }
117 memcpy(kaddr + (bh_result->b_size * iblock),
118 buffer_cache_bh->b_data,
119 bh_result->b_size);
c4bc8dcb 120 kunmap_atomic(kaddr);
ccd979bd
MF
121 set_buffer_uptodate(bh_result);
122 }
123 brelse(buffer_cache_bh);
124 }
125
126 map_bh(bh_result, inode->i_sb,
127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129 err = 0;
130
131bail:
a81cb88b 132 brelse(bh);
ccd979bd 133
ccd979bd
MF
134 return err;
135}
136
6f70fa51
TM
137int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
ccd979bd
MF
139{
140 int err = 0;
49cb8d2d 141 unsigned int ext_flags;
628a24f5
MF
142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143 u64 p_blkno, count, past_eof;
25baf2da 144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd 145
9558156b
TM
146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
148
149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151 inode, inode->i_ino);
152
153 if (S_ISLNK(inode->i_mode)) {
154 /* this always does I/O for some reason. */
155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 goto bail;
157 }
158
628a24f5 159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 160 &ext_flags);
ccd979bd
MF
161 if (err) {
162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164 (unsigned long long)p_blkno);
ccd979bd
MF
165 goto bail;
166 }
167
628a24f5
MF
168 if (max_blocks < count)
169 count = max_blocks;
170
25baf2da
MF
171 /*
172 * ocfs2 never allocates in this function - the only time we
173 * need to use BH_New is when we're extending i_size on a file
174 * system which doesn't support holes, in which case BH_New
ebdec241 175 * allows __block_write_begin() to zero.
c0420ad2
CL
176 *
177 * If we see this on a sparse file system, then a truncate has
178 * raced us and removed the cluster. In this case, we clear
179 * the buffers dirty and uptodate bits and let the buffer code
180 * ignore it as a hole.
25baf2da 181 */
c0420ad2
CL
182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183 clear_buffer_dirty(bh_result);
184 clear_buffer_uptodate(bh_result);
185 goto bail;
186 }
25baf2da 187
49cb8d2d
MF
188 /* Treat the unwritten extent as a hole for zeroing purposes. */
189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
190 map_bh(bh_result, inode->i_sb, p_blkno);
191
628a24f5
MF
192 bh_result->b_size = count << inode->i_blkbits;
193
25baf2da
MF
194 if (!ocfs2_sparse_alloc(osb)) {
195 if (p_blkno == 0) {
196 err = -EIO;
197 mlog(ML_ERROR,
198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 (unsigned long long)iblock,
200 (unsigned long long)p_blkno,
201 (unsigned long long)OCFS2_I(inode)->ip_blkno);
202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203 dump_stack();
1f4cea37 204 goto bail;
25baf2da 205 }
25baf2da 206 }
ccd979bd 207
5693486b 208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
9558156b
TM
209
210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211 (unsigned long long)past_eof);
5693486b
JB
212 if (create && (iblock >= past_eof))
213 set_buffer_new(bh_result);
214
ccd979bd
MF
215bail:
216 if (err < 0)
217 err = -EIO;
218
ccd979bd
MF
219 return err;
220}
221
1afc32b9
MF
222int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223 struct buffer_head *di_bh)
6798d35a
MF
224{
225 void *kaddr;
d2849fb2 226 loff_t size;
6798d35a
MF
227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
7ecef14a 230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
6798d35a
MF
231 (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 return -EROFS;
233 }
234
235 size = i_size_read(inode);
236
237 if (size > PAGE_CACHE_SIZE ||
d9ae49d6 238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 239 ocfs2_error(inode->i_sb,
7ecef14a 240 "Inode %llu has with inline data has bad size: %Lu\n",
d2849fb2
JK
241 (unsigned long long)OCFS2_I(inode)->ip_blkno,
242 (unsigned long long)size);
6798d35a
MF
243 return -EROFS;
244 }
245
c4bc8dcb 246 kaddr = kmap_atomic(page);
6798d35a
MF
247 if (size)
248 memcpy(kaddr, di->id2.i_data.id_data, size);
249 /* Clear the remaining part of the page */
250 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251 flush_dcache_page(page);
c4bc8dcb 252 kunmap_atomic(kaddr);
6798d35a
MF
253
254 SetPageUptodate(page);
255
256 return 0;
257}
258
259static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260{
261 int ret;
262 struct buffer_head *di_bh = NULL;
6798d35a
MF
263
264 BUG_ON(!PageLocked(page));
86c838b0 265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 266
b657c95c 267 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
268 if (ret) {
269 mlog_errno(ret);
270 goto out;
271 }
272
273 ret = ocfs2_read_inline_data(inode, page, di_bh);
274out:
275 unlock_page(page);
276
277 brelse(di_bh);
278 return ret;
279}
280
ccd979bd
MF
281static int ocfs2_readpage(struct file *file, struct page *page)
282{
283 struct inode *inode = page->mapping->host;
6798d35a 284 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
285 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286 int ret, unlock = 1;
287
9558156b
TM
288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289 (page ? page->index : 0));
ccd979bd 290
e63aecb6 291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
292 if (ret != 0) {
293 if (ret == AOP_TRUNCATED_PAGE)
294 unlock = 0;
295 mlog_errno(ret);
296 goto out;
297 }
298
6798d35a 299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
c7e25e6e
JK
300 /*
301 * Unlock the page and cycle ip_alloc_sem so that we don't
302 * busyloop waiting for ip_alloc_sem to unlock
303 */
e9dfc0b2 304 ret = AOP_TRUNCATED_PAGE;
c7e25e6e
JK
305 unlock_page(page);
306 unlock = 0;
307 down_read(&oi->ip_alloc_sem);
308 up_read(&oi->ip_alloc_sem);
e63aecb6 309 goto out_inode_unlock;
e9dfc0b2 310 }
ccd979bd
MF
311
312 /*
313 * i_size might have just been updated as we grabed the meta lock. We
314 * might now be discovering a truncate that hit on another node.
315 * block_read_full_page->get_block freaks out if it is asked to read
316 * beyond the end of a file, so we check here. Callers
54cb8821 317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
318 * and notice that the page they just read isn't needed.
319 *
320 * XXX sys_readahead() seems to get that wrong?
321 */
322 if (start >= i_size_read(inode)) {
eebd2aa3 323 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
324 SetPageUptodate(page);
325 ret = 0;
326 goto out_alloc;
327 }
328
6798d35a
MF
329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330 ret = ocfs2_readpage_inline(inode, page);
331 else
332 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
333 unlock = 0;
334
ccd979bd
MF
335out_alloc:
336 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
337out_inode_unlock:
338 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
339out:
340 if (unlock)
341 unlock_page(page);
ccd979bd
MF
342 return ret;
343}
344
628a24f5
MF
345/*
346 * This is used only for read-ahead. Failures or difficult to handle
347 * situations are safe to ignore.
348 *
349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
350 * are quite large (243 extents on 4k blocks), so most inodes don't
351 * grow out to a tree. If need be, detecting boundary extents could
352 * trivially be added in a future version of ocfs2_get_block().
353 */
354static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355 struct list_head *pages, unsigned nr_pages)
356{
357 int ret, err = -EIO;
358 struct inode *inode = mapping->host;
359 struct ocfs2_inode_info *oi = OCFS2_I(inode);
360 loff_t start;
361 struct page *last;
362
363 /*
364 * Use the nonblocking flag for the dlm code to avoid page
365 * lock inversion, but don't bother with retrying.
366 */
367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368 if (ret)
369 return err;
370
371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372 ocfs2_inode_unlock(inode, 0);
373 return err;
374 }
375
376 /*
377 * Don't bother with inline-data. There isn't anything
378 * to read-ahead in that case anyway...
379 */
380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381 goto out_unlock;
382
383 /*
384 * Check whether a remote node truncated this file - we just
385 * drop out in that case as it's not worth handling here.
386 */
387 last = list_entry(pages->prev, struct page, lru);
388 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389 if (start >= i_size_read(inode))
390 goto out_unlock;
391
392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394out_unlock:
395 up_read(&oi->ip_alloc_sem);
396 ocfs2_inode_unlock(inode, 0);
397
398 return err;
399}
400
ccd979bd
MF
401/* Note: Because we don't support holes, our allocation has
402 * already happened (allocation writes zeros to the file data)
403 * so we don't have to worry about ordered writes in
404 * ocfs2_writepage.
405 *
406 * ->writepage is called during the process of invalidating the page cache
407 * during blocked lock processing. It can't block on any cluster locks
408 * to during block mapping. It's relying on the fact that the block
409 * mapping can't have disappeared under the dirty pages that it is
410 * being asked to write back.
411 */
412static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413{
9558156b
TM
414 trace_ocfs2_writepage(
415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416 page->index);
ccd979bd 417
9558156b 418 return block_write_full_page(page, ocfs2_get_block, wbc);
ccd979bd
MF
419}
420
ccd979bd
MF
421/* Taken from ext3. We don't necessarily need the full blown
422 * functionality yet, but IMHO it's better to cut and paste the whole
423 * thing so we can avoid introducing our own bugs (and easily pick up
424 * their fixes when they happen) --Mark */
60b11392
MF
425int walk_page_buffers( handle_t *handle,
426 struct buffer_head *head,
427 unsigned from,
428 unsigned to,
429 int *partial,
430 int (*fn)( handle_t *handle,
431 struct buffer_head *bh))
ccd979bd
MF
432{
433 struct buffer_head *bh;
434 unsigned block_start, block_end;
435 unsigned blocksize = head->b_size;
436 int err, ret = 0;
437 struct buffer_head *next;
438
439 for ( bh = head, block_start = 0;
440 ret == 0 && (bh != head || !block_start);
441 block_start = block_end, bh = next)
442 {
443 next = bh->b_this_page;
444 block_end = block_start + blocksize;
445 if (block_end <= from || block_start >= to) {
446 if (partial && !buffer_uptodate(bh))
447 *partial = 1;
448 continue;
449 }
450 err = (*fn)(handle, bh);
451 if (!ret)
452 ret = err;
453 }
454 return ret;
455}
456
ccd979bd
MF
457static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458{
459 sector_t status;
460 u64 p_blkno = 0;
461 int err = 0;
462 struct inode *inode = mapping->host;
463
9558156b
TM
464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465 (unsigned long long)block);
ccd979bd
MF
466
467 /* We don't need to lock journal system files, since they aren't
468 * accessed concurrently from multiple nodes.
469 */
470 if (!INODE_JOURNAL(inode)) {
e63aecb6 471 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
472 if (err) {
473 if (err != -ENOENT)
474 mlog_errno(err);
475 goto bail;
476 }
477 down_read(&OCFS2_I(inode)->ip_alloc_sem);
478 }
479
6798d35a
MF
480 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482 NULL);
ccd979bd
MF
483
484 if (!INODE_JOURNAL(inode)) {
485 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 486 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
487 }
488
489 if (err) {
490 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491 (unsigned long long)block);
492 mlog_errno(err);
493 goto bail;
494 }
495
ccd979bd
MF
496bail:
497 status = err ? 0 : p_blkno;
498
ccd979bd
MF
499 return status;
500}
501
502/*
503 * TODO: Make this into a generic get_blocks function.
504 *
505 * From do_direct_io in direct-io.c:
506 * "So what we do is to permit the ->get_blocks function to populate
507 * bh.b_size with the size of IO which is permitted at this offset and
508 * this i_blkbits."
509 *
510 * This function is called directly from get_more_blocks in direct-io.c.
511 *
512 * called like this: dio->get_blocks(dio->inode, fs_startblk,
513 * fs_count, map_bh, dio->rw == WRITE);
514 */
515static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
516 struct buffer_head *bh_result, int create)
517{
518 int ret;
49255dce
JQ
519 u32 cpos = 0;
520 int alloc_locked = 0;
4f902c37 521 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 522 unsigned int ext_flags;
184d7d20 523 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 524 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
49255dce 525 unsigned long len = bh_result->b_size;
ae1f0814 526 unsigned int clusters_to_alloc = 0, contig_clusters = 0;
49255dce
JQ
527
528 cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
ccd979bd 529
ccd979bd
MF
530 /* This function won't even be called if the request isn't all
531 * nicely aligned and of the right size, so there's no need
532 * for us to check any of that. */
533
25baf2da 534 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32 535
6ab855a9
WW
536 down_read(&OCFS2_I(inode)->ip_alloc_sem);
537
ccd979bd
MF
538 /* This figures out the size of the next contiguous block, and
539 * our logical offset */
363041a5 540 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 541 &contig_blocks, &ext_flags);
6ab855a9
WW
542 up_read(&OCFS2_I(inode)->ip_alloc_sem);
543
ccd979bd
MF
544 if (ret) {
545 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
546 (unsigned long long)iblock);
547 ret = -EIO;
548 goto bail;
549 }
550
cbaee472
TM
551 /* We should already CoW the refcounted extent in case of create. */
552 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
553
49255dce
JQ
554 /* allocate blocks if no p_blkno is found, and create == 1 */
555 if (!p_blkno && create) {
556 ret = ocfs2_inode_lock(inode, NULL, 1);
557 if (ret < 0) {
558 mlog_errno(ret);
559 goto bail;
560 }
561
562 alloc_locked = 1;
563
6ab855a9
WW
564 down_write(&OCFS2_I(inode)->ip_alloc_sem);
565
49255dce
JQ
566 /* fill hole, allocate blocks can't be larger than the size
567 * of the hole */
568 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
ae1f0814
JQ
569 contig_clusters = ocfs2_clusters_for_blocks(inode->i_sb,
570 contig_blocks);
571 if (clusters_to_alloc > contig_clusters)
572 clusters_to_alloc = contig_clusters;
49255dce
JQ
573
574 /* allocate extent and insert them into the extent tree */
575 ret = ocfs2_extend_allocation(inode, cpos,
576 clusters_to_alloc, 0);
577 if (ret < 0) {
6ab855a9 578 up_write(&OCFS2_I(inode)->ip_alloc_sem);
49255dce
JQ
579 mlog_errno(ret);
580 goto bail;
581 }
582
583 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
584 &contig_blocks, &ext_flags);
585 if (ret < 0) {
6ab855a9 586 up_write(&OCFS2_I(inode)->ip_alloc_sem);
49255dce
JQ
587 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
588 (unsigned long long)iblock);
589 ret = -EIO;
590 goto bail;
591 }
4e357b93 592 set_buffer_new(bh_result);
6ab855a9 593 up_write(&OCFS2_I(inode)->ip_alloc_sem);
49255dce
JQ
594 }
595
25baf2da
MF
596 /*
597 * get_more_blocks() expects us to describe a hole by clearing
598 * the mapped bit on bh_result().
49cb8d2d
MF
599 *
600 * Consider an unwritten extent as a hole.
25baf2da 601 */
49cb8d2d 602 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da 603 map_bh(bh_result, inode->i_sb, p_blkno);
5fe878ae 604 else
25baf2da 605 clear_buffer_mapped(bh_result);
ccd979bd
MF
606
607 /* make sure we don't map more than max_blocks blocks here as
608 that's all the kernel will handle at this point. */
609 if (max_blocks < contig_blocks)
610 contig_blocks = max_blocks;
611 bh_result->b_size = contig_blocks << blocksize_bits;
612bail:
49255dce
JQ
613 if (alloc_locked)
614 ocfs2_inode_unlock(inode, 1);
ccd979bd
MF
615 return ret;
616}
617
2bd63216 618/*
ccd979bd 619 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
bd5fe6c5
CH
620 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
621 * to protect io on one node from truncation on another.
ccd979bd 622 */
187372a3 623static int ocfs2_dio_end_io(struct kiocb *iocb,
ccd979bd
MF
624 loff_t offset,
625 ssize_t bytes,
7b7a8665 626 void *private)
ccd979bd 627{
496ad9aa 628 struct inode *inode = file_inode(iocb->ki_filp);
7cdfc3a1 629 int level;
ccd979bd 630
187372a3
CH
631 if (bytes <= 0)
632 return 0;
633
ccd979bd
MF
634 /* this io's submitter should not have unlocked this before we could */
635 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 636
a11f7e63
MF
637 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
638 ocfs2_iocb_clear_unaligned_aio(iocb);
639
c18ceab0 640 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
a11f7e63
MF
641 }
642
512f62ac
JQ
643 /* Let rw unlock to be done later to protect append direct io write */
644 if (offset + bytes <= i_size_read(inode)) {
645 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1 646
512f62ac
JQ
647 level = ocfs2_iocb_rw_locked_level(iocb);
648 ocfs2_rw_unlock(inode, level);
649 }
187372a3
CH
650
651 return 0;
ccd979bd
MF
652}
653
03f981cf
JB
654static int ocfs2_releasepage(struct page *page, gfp_t wait)
655{
03f981cf
JB
656 if (!page_has_buffers(page))
657 return 0;
41ecc345 658 return try_to_free_buffers(page);
03f981cf
JB
659}
660
24c40b32
JQ
661static int ocfs2_is_overwrite(struct ocfs2_super *osb,
662 struct inode *inode, loff_t offset)
663{
664 int ret = 0;
665 u32 v_cpos = 0;
666 u32 p_cpos = 0;
667 unsigned int num_clusters = 0;
668 unsigned int ext_flags = 0;
669
670 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
671 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
672 &num_clusters, &ext_flags);
673 if (ret < 0) {
674 mlog_errno(ret);
675 return ret;
676 }
677
678 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
679 return 1;
680
681 return 0;
682}
683
14a5275d
JQ
684static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
685 struct inode *inode, loff_t offset,
686 u64 zero_len, int cluster_align)
687{
688 u32 p_cpos = 0;
689 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
690 unsigned int num_clusters = 0;
691 unsigned int ext_flags = 0;
692 int ret = 0;
693
694 if (offset <= i_size_read(inode) || cluster_align)
695 return 0;
696
697 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
698 &ext_flags);
699 if (ret < 0) {
700 mlog_errno(ret);
701 return ret;
702 }
703
704 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
705 u64 s = i_size_read(inode);
32e5a2a2 706 sector_t sector = ((u64)p_cpos << (osb->s_clustersize_bits - 9)) +
14a5275d
JQ
707 (do_div(s, osb->s_clustersize) >> 9);
708
709 ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
710 zero_len >> 9, GFP_NOFS, false);
711 if (ret < 0)
712 mlog_errno(ret);
713 }
714
715 return ret;
716}
717
718static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
719 struct inode *inode, loff_t offset)
720{
721 u64 zero_start, zero_len, total_zero_len;
722 u32 p_cpos = 0, clusters_to_add;
723 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
724 unsigned int num_clusters = 0;
725 unsigned int ext_flags = 0;
726 u32 size_div, offset_div;
727 int ret = 0;
728
729 {
730 u64 o = offset;
731 u64 s = i_size_read(inode);
732
733 offset_div = do_div(o, osb->s_clustersize);
734 size_div = do_div(s, osb->s_clustersize);
735 }
736
737 if (offset <= i_size_read(inode))
738 return 0;
739
740 clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
741 ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
742 total_zero_len = offset - i_size_read(inode);
743 if (clusters_to_add)
744 total_zero_len -= offset_div;
745
746 /* Allocate clusters to fill out holes, and this is only needed
747 * when we add more than one clusters. Otherwise the cluster will
748 * be allocated during direct IO */
749 if (clusters_to_add > 1) {
750 ret = ocfs2_extend_allocation(inode,
751 OCFS2_I(inode)->ip_clusters,
752 clusters_to_add - 1, 0);
753 if (ret) {
754 mlog_errno(ret);
755 goto out;
756 }
757 }
758
759 while (total_zero_len) {
760 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
761 &ext_flags);
762 if (ret < 0) {
763 mlog_errno(ret);
764 goto out;
765 }
766
767 zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
768 size_div;
769 zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
770 size_div;
771 zero_len = min(total_zero_len, zero_len);
772
773 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
774 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
775 zero_start >> 9, zero_len >> 9,
776 GFP_NOFS, false);
777 if (ret < 0) {
778 mlog_errno(ret);
779 goto out;
780 }
781 }
782
783 total_zero_len -= zero_len;
784 v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
785
786 /* Only at first iteration can be cluster not aligned.
787 * So set size_div to 0 for the rest */
788 size_div = 0;
789 }
790
791out:
792 return ret;
793}
794
24c40b32
JQ
795static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
796 struct iov_iter *iter,
797 loff_t offset)
798{
799 ssize_t ret = 0;
800 ssize_t written = 0;
801 bool orphaned = false;
802 int is_overwrite = 0;
803 struct file *file = iocb->ki_filp;
804 struct inode *inode = file_inode(file)->i_mapping->host;
805 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
806 struct buffer_head *di_bh = NULL;
807 size_t count = iter->count;
808 journal_t *journal = osb->journal->j_journal;
14a5275d
JQ
809 u64 zero_len_head, zero_len_tail;
810 int cluster_align_head, cluster_align_tail;
24c40b32
JQ
811 loff_t final_size = offset + count;
812 int append_write = offset >= i_size_read(inode) ? 1 : 0;
813 unsigned int num_clusters = 0;
814 unsigned int ext_flags = 0;
815
816 {
817 u64 o = offset;
14a5275d
JQ
818 u64 s = i_size_read(inode);
819
820 zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
821 cluster_align_head = !zero_len_head;
24c40b32 822
14a5275d
JQ
823 zero_len_tail = osb->s_clustersize -
824 do_div(s, osb->s_clustersize);
825 if ((offset - i_size_read(inode)) < zero_len_tail)
826 zero_len_tail = offset - i_size_read(inode);
827 cluster_align_tail = !zero_len_tail;
24c40b32
JQ
828 }
829
830 /*
831 * when final_size > inode->i_size, inode->i_size will be
832 * updated after direct write, so add the inode to orphan
833 * dir first.
834 */
835 if (final_size > i_size_read(inode)) {
836 ret = ocfs2_add_inode_to_orphan(osb, inode);
837 if (ret < 0) {
838 mlog_errno(ret);
839 goto out;
840 }
841 orphaned = true;
842 }
843
844 if (append_write) {
7e9b1955 845 ret = ocfs2_inode_lock(inode, NULL, 1);
24c40b32
JQ
846 if (ret < 0) {
847 mlog_errno(ret);
848 goto clean_orphan;
849 }
850
14a5275d
JQ
851 /* zeroing out the previously allocated cluster tail
852 * that but not zeroed */
6ab855a9
WW
853 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
854 down_read(&OCFS2_I(inode)->ip_alloc_sem);
14a5275d
JQ
855 ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
856 zero_len_tail, cluster_align_tail);
6ab855a9
WW
857 up_read(&OCFS2_I(inode)->ip_alloc_sem);
858 } else {
859 down_write(&OCFS2_I(inode)->ip_alloc_sem);
14a5275d 860 ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
24c40b32 861 offset);
6ab855a9
WW
862 up_write(&OCFS2_I(inode)->ip_alloc_sem);
863 }
24c40b32
JQ
864 if (ret < 0) {
865 mlog_errno(ret);
866 ocfs2_inode_unlock(inode, 1);
24c40b32
JQ
867 goto clean_orphan;
868 }
869
870 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
871 if (is_overwrite < 0) {
872 mlog_errno(is_overwrite);
d162eaad 873 ret = is_overwrite;
24c40b32 874 ocfs2_inode_unlock(inode, 1);
24c40b32
JQ
875 goto clean_orphan;
876 }
877
878 ocfs2_inode_unlock(inode, 1);
24c40b32
JQ
879 }
880
17f8c842
OS
881 written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
882 offset, ocfs2_direct_IO_get_blocks,
883 ocfs2_dio_end_io, NULL, 0);
faaebf18
JQ
884 /* overwrite aio may return -EIOCBQUEUED, and it is not an error */
885 if ((written < 0) && (written != -EIOCBQUEUED)) {
24c40b32
JQ
886 loff_t i_size = i_size_read(inode);
887
888 if (offset + count > i_size) {
889 ret = ocfs2_inode_lock(inode, &di_bh, 1);
890 if (ret < 0) {
891 mlog_errno(ret);
892 goto clean_orphan;
893 }
894
895 if (i_size == i_size_read(inode)) {
896 ret = ocfs2_truncate_file(inode, di_bh,
897 i_size);
898 if (ret < 0) {
899 if (ret != -ENOSPC)
900 mlog_errno(ret);
901
902 ocfs2_inode_unlock(inode, 1);
903 brelse(di_bh);
faaebf18 904 di_bh = NULL;
24c40b32
JQ
905 goto clean_orphan;
906 }
907 }
908
909 ocfs2_inode_unlock(inode, 1);
910 brelse(di_bh);
faaebf18 911 di_bh = NULL;
24c40b32
JQ
912
913 ret = jbd2_journal_force_commit(journal);
914 if (ret < 0)
915 mlog_errno(ret);
916 }
bdd86215 917 } else if (written > 0 && append_write && !is_overwrite &&
14a5275d
JQ
918 !cluster_align_head) {
919 /* zeroing out the allocated cluster head */
24c40b32
JQ
920 u32 p_cpos = 0;
921 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
922
37a8d89a
JQ
923 ret = ocfs2_inode_lock(inode, NULL, 0);
924 if (ret < 0) {
925 mlog_errno(ret);
926 goto clean_orphan;
927 }
928
24c40b32
JQ
929 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
930 &num_clusters, &ext_flags);
931 if (ret < 0) {
932 mlog_errno(ret);
37a8d89a 933 ocfs2_inode_unlock(inode, 0);
24c40b32
JQ
934 goto clean_orphan;
935 }
936
937 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
938
939 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
32e5a2a2 940 (u64)p_cpos << (osb->s_clustersize_bits - 9),
14a5275d 941 zero_len_head >> 9, GFP_NOFS, false);
24c40b32
JQ
942 if (ret < 0)
943 mlog_errno(ret);
37a8d89a
JQ
944
945 ocfs2_inode_unlock(inode, 0);
24c40b32
JQ
946 }
947
948clean_orphan:
949 if (orphaned) {
950 int tmp_ret;
951 int update_isize = written > 0 ? 1 : 0;
952 loff_t end = update_isize ? offset + written : 0;
953
cf1776a9
JQ
954 tmp_ret = ocfs2_inode_lock(inode, &di_bh, 1);
955 if (tmp_ret < 0) {
956 ret = tmp_ret;
957 mlog_errno(ret);
958 goto out;
959 }
960
961 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
24c40b32
JQ
962 update_isize, end);
963 if (tmp_ret < 0) {
a4a8481f 964 ocfs2_inode_unlock(inode, 1);
24c40b32 965 ret = tmp_ret;
cf1776a9 966 mlog_errno(ret);
faaebf18 967 brelse(di_bh);
24c40b32
JQ
968 goto out;
969 }
970
cf1776a9 971 ocfs2_inode_unlock(inode, 1);
faaebf18 972 brelse(di_bh);
cf1776a9 973
24c40b32
JQ
974 tmp_ret = jbd2_journal_force_commit(journal);
975 if (tmp_ret < 0) {
976 ret = tmp_ret;
977 mlog_errno(tmp_ret);
978 }
979 }
980
981out:
982 if (ret >= 0)
983 ret = written;
984 return ret;
985}
986
22c6186e 987static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
d8d3d94b 988 loff_t offset)
ccd979bd
MF
989{
990 struct file *file = iocb->ki_filp;
496ad9aa 991 struct inode *inode = file_inode(file)->i_mapping->host;
24c40b32
JQ
992 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
993 int full_coherency = !(osb->s_mount_opt &
994 OCFS2_MOUNT_COHERENCY_BUFFERED);
53013cba 995
6798d35a
MF
996 /*
997 * Fallback to buffered I/O if we see an inode without
998 * extents.
999 */
1000 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
1001 return 0;
1002
24c40b32
JQ
1003 /* Fallback to buffered I/O if we are appending and
1004 * concurrent O_DIRECT writes are allowed.
1005 */
1006 if (i_size_read(inode) <= offset && !full_coherency)
b80474b4
TM
1007 return 0;
1008
6f673763 1009 if (iov_iter_rw(iter) == READ)
17f8c842
OS
1010 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
1011 iter, offset,
1012 ocfs2_direct_IO_get_blocks,
1013 ocfs2_dio_end_io, NULL, 0);
24c40b32
JQ
1014 else
1015 return ocfs2_direct_IO_write(iocb, iter, offset);
ccd979bd
MF
1016}
1017
9517bac6
MF
1018static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
1019 u32 cpos,
1020 unsigned int *start,
1021 unsigned int *end)
1022{
1023 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
1024
1025 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
1026 unsigned int cpp;
1027
1028 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
1029
1030 cluster_start = cpos % cpp;
1031 cluster_start = cluster_start << osb->s_clustersize_bits;
1032
1033 cluster_end = cluster_start + osb->s_clustersize;
1034 }
1035
1036 BUG_ON(cluster_start > PAGE_SIZE);
1037 BUG_ON(cluster_end > PAGE_SIZE);
1038
1039 if (start)
1040 *start = cluster_start;
1041 if (end)
1042 *end = cluster_end;
1043}
1044
1045/*
1046 * 'from' and 'to' are the region in the page to avoid zeroing.
1047 *
1048 * If pagesize > clustersize, this function will avoid zeroing outside
1049 * of the cluster boundary.
1050 *
1051 * from == to == 0 is code for "zero the entire cluster region"
1052 */
1053static void ocfs2_clear_page_regions(struct page *page,
1054 struct ocfs2_super *osb, u32 cpos,
1055 unsigned from, unsigned to)
1056{
1057 void *kaddr;
1058 unsigned int cluster_start, cluster_end;
1059
1060 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1061
c4bc8dcb 1062 kaddr = kmap_atomic(page);
9517bac6
MF
1063
1064 if (from || to) {
1065 if (from > cluster_start)
1066 memset(kaddr + cluster_start, 0, from - cluster_start);
1067 if (to < cluster_end)
1068 memset(kaddr + to, 0, cluster_end - to);
1069 } else {
1070 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1071 }
1072
c4bc8dcb 1073 kunmap_atomic(kaddr);
9517bac6
MF
1074}
1075
4e9563fd
MF
1076/*
1077 * Nonsparse file systems fully allocate before we get to the write
1078 * code. This prevents ocfs2_write() from tagging the write as an
1079 * allocating one, which means ocfs2_map_page_blocks() might try to
1080 * read-in the blocks at the tail of our file. Avoid reading them by
1081 * testing i_size against each block offset.
1082 */
1083static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1084 unsigned int block_start)
1085{
1086 u64 offset = page_offset(page) + block_start;
1087
1088 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1089 return 1;
1090
1091 if (i_size_read(inode) > offset)
1092 return 1;
1093
1094 return 0;
1095}
1096
9517bac6 1097/*
ebdec241 1098 * Some of this taken from __block_write_begin(). We already have our
9517bac6
MF
1099 * mapping by now though, and the entire write will be allocating or
1100 * it won't, so not much need to use BH_New.
1101 *
1102 * This will also skip zeroing, which is handled externally.
1103 */
60b11392
MF
1104int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1105 struct inode *inode, unsigned int from,
1106 unsigned int to, int new)
9517bac6
MF
1107{
1108 int ret = 0;
1109 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1110 unsigned int block_end, block_start;
1111 unsigned int bsize = 1 << inode->i_blkbits;
1112
1113 if (!page_has_buffers(page))
1114 create_empty_buffers(page, bsize, 0);
1115
1116 head = page_buffers(page);
1117 for (bh = head, block_start = 0; bh != head || !block_start;
1118 bh = bh->b_this_page, block_start += bsize) {
1119 block_end = block_start + bsize;
1120
3a307ffc
MF
1121 clear_buffer_new(bh);
1122
9517bac6
MF
1123 /*
1124 * Ignore blocks outside of our i/o range -
1125 * they may belong to unallocated clusters.
1126 */
60b11392 1127 if (block_start >= to || block_end <= from) {
9517bac6
MF
1128 if (PageUptodate(page))
1129 set_buffer_uptodate(bh);
1130 continue;
1131 }
1132
1133 /*
1134 * For an allocating write with cluster size >= page
1135 * size, we always write the entire page.
1136 */
3a307ffc
MF
1137 if (new)
1138 set_buffer_new(bh);
9517bac6
MF
1139
1140 if (!buffer_mapped(bh)) {
1141 map_bh(bh, inode->i_sb, *p_blkno);
1142 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1143 }
1144
1145 if (PageUptodate(page)) {
1146 if (!buffer_uptodate(bh))
1147 set_buffer_uptodate(bh);
1148 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 1149 !buffer_new(bh) &&
4e9563fd 1150 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 1151 (block_start < from || block_end > to)) {
9517bac6
MF
1152 ll_rw_block(READ, 1, &bh);
1153 *wait_bh++=bh;
1154 }
1155
1156 *p_blkno = *p_blkno + 1;
1157 }
1158
1159 /*
1160 * If we issued read requests - let them complete.
1161 */
1162 while(wait_bh > wait) {
1163 wait_on_buffer(*--wait_bh);
1164 if (!buffer_uptodate(*wait_bh))
1165 ret = -EIO;
1166 }
1167
1168 if (ret == 0 || !new)
1169 return ret;
1170
1171 /*
1172 * If we get -EIO above, zero out any newly allocated blocks
1173 * to avoid exposing stale data.
1174 */
1175 bh = head;
1176 block_start = 0;
1177 do {
9517bac6
MF
1178 block_end = block_start + bsize;
1179 if (block_end <= from)
1180 goto next_bh;
1181 if (block_start >= to)
1182 break;
1183
eebd2aa3 1184 zero_user(page, block_start, bh->b_size);
9517bac6
MF
1185 set_buffer_uptodate(bh);
1186 mark_buffer_dirty(bh);
1187
1188next_bh:
1189 block_start = block_end;
1190 bh = bh->b_this_page;
1191 } while (bh != head);
1192
1193 return ret;
1194}
1195
3a307ffc
MF
1196#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1197#define OCFS2_MAX_CTXT_PAGES 1
1198#else
1199#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1200#endif
1201
1202#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1203
4506cfb6
RD
1204struct ocfs2_unwritten_extent {
1205 struct list_head ue_node;
1206 struct list_head ue_ip_node;
1207 u32 ue_cpos;
1208 u32 ue_phys;
1209};
1210
6af67d82 1211/*
3a307ffc 1212 * Describe the state of a single cluster to be written to.
6af67d82 1213 */
3a307ffc
MF
1214struct ocfs2_write_cluster_desc {
1215 u32 c_cpos;
1216 u32 c_phys;
1217 /*
1218 * Give this a unique field because c_phys eventually gets
1219 * filled.
1220 */
1221 unsigned c_new;
b46637d5 1222 unsigned c_clear_unwritten;
e7432675 1223 unsigned c_needs_zero;
3a307ffc 1224};
6af67d82 1225
3a307ffc
MF
1226struct ocfs2_write_ctxt {
1227 /* Logical cluster position / len of write */
1228 u32 w_cpos;
1229 u32 w_clen;
6af67d82 1230
e7432675
SM
1231 /* First cluster allocated in a nonsparse extend */
1232 u32 w_first_new_cpos;
1233
c1ad1e3c
RD
1234 /* Type of caller. Must be one of buffer, mmap, direct. */
1235 ocfs2_write_type_t w_type;
1236
3a307ffc 1237 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 1238
3a307ffc
MF
1239 /*
1240 * This is true if page_size > cluster_size.
1241 *
1242 * It triggers a set of special cases during write which might
1243 * have to deal with allocating writes to partial pages.
1244 */
1245 unsigned int w_large_pages;
6af67d82 1246
3a307ffc
MF
1247 /*
1248 * Pages involved in this write.
1249 *
1250 * w_target_page is the page being written to by the user.
1251 *
1252 * w_pages is an array of pages which always contains
1253 * w_target_page, and in the case of an allocating write with
1254 * page_size < cluster size, it will contain zero'd and mapped
1255 * pages adjacent to w_target_page which need to be written
1256 * out in so that future reads from that region will get
1257 * zero's.
1258 */
3a307ffc 1259 unsigned int w_num_pages;
83fd9c7f 1260 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
3a307ffc 1261 struct page *w_target_page;
eeb47d12 1262
5cffff9e
WW
1263 /*
1264 * w_target_locked is used for page_mkwrite path indicating no unlocking
1265 * against w_target_page in ocfs2_write_end_nolock.
1266 */
1267 unsigned int w_target_locked:1;
1268
3a307ffc
MF
1269 /*
1270 * ocfs2_write_end() uses this to know what the real range to
1271 * write in the target should be.
1272 */
1273 unsigned int w_target_from;
1274 unsigned int w_target_to;
1275
1276 /*
1277 * We could use journal_current_handle() but this is cleaner,
1278 * IMHO -Mark
1279 */
1280 handle_t *w_handle;
1281
1282 struct buffer_head *w_di_bh;
b27b7cbc
MF
1283
1284 struct ocfs2_cached_dealloc_ctxt w_dealloc;
4506cfb6
RD
1285
1286 struct list_head w_unwritten_list;
3a307ffc
MF
1287};
1288
1d410a6e 1289void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
1290{
1291 int i;
1292
1d410a6e
MF
1293 for(i = 0; i < num_pages; i++) {
1294 if (pages[i]) {
1295 unlock_page(pages[i]);
1296 mark_page_accessed(pages[i]);
1297 page_cache_release(pages[i]);
1298 }
6af67d82 1299 }
1d410a6e
MF
1300}
1301
136f49b9 1302static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1d410a6e 1303{
5cffff9e
WW
1304 int i;
1305
1306 /*
1307 * w_target_locked is only set to true in the page_mkwrite() case.
1308 * The intent is to allow us to lock the target page from write_begin()
1309 * to write_end(). The caller must hold a ref on w_target_page.
1310 */
1311 if (wc->w_target_locked) {
1312 BUG_ON(!wc->w_target_page);
1313 for (i = 0; i < wc->w_num_pages; i++) {
1314 if (wc->w_target_page == wc->w_pages[i]) {
1315 wc->w_pages[i] = NULL;
1316 break;
1317 }
1318 }
1319 mark_page_accessed(wc->w_target_page);
1320 page_cache_release(wc->w_target_page);
1321 }
1d410a6e 1322 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
136f49b9 1323}
6af67d82 1324
4506cfb6
RD
1325static void ocfs2_free_unwritten_list(struct inode *inode,
1326 struct list_head *head)
1327{
1328 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1329 struct ocfs2_unwritten_extent *dz = NULL, *tmp = NULL;
1330
1331 list_for_each_entry_safe(dz, tmp, head, ue_node) {
1332 list_del(&dz->ue_node);
1333 spin_lock(&oi->ip_lock);
1334 list_del(&dz->ue_ip_node);
1335 spin_unlock(&oi->ip_lock);
1336 kfree(dz);
1337 }
1338}
1339
1340static void ocfs2_free_write_ctxt(struct inode *inode,
1341 struct ocfs2_write_ctxt *wc)
136f49b9 1342{
4506cfb6 1343 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
136f49b9 1344 ocfs2_unlock_pages(wc);
3a307ffc
MF
1345 brelse(wc->w_di_bh);
1346 kfree(wc);
1347}
1348
1349static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1350 struct ocfs2_super *osb, loff_t pos,
c1ad1e3c
RD
1351 unsigned len, ocfs2_write_type_t type,
1352 struct buffer_head *di_bh)
3a307ffc 1353{
30b8548f 1354 u32 cend;
3a307ffc
MF
1355 struct ocfs2_write_ctxt *wc;
1356
1357 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1358 if (!wc)
1359 return -ENOMEM;
6af67d82 1360
3a307ffc 1361 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 1362 wc->w_first_new_cpos = UINT_MAX;
30b8548f 1363 cend = (pos + len - 1) >> osb->s_clustersize_bits;
1364 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
1365 get_bh(di_bh);
1366 wc->w_di_bh = di_bh;
c1ad1e3c 1367 wc->w_type = type;
6af67d82 1368
3a307ffc
MF
1369 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1370 wc->w_large_pages = 1;
1371 else
1372 wc->w_large_pages = 0;
1373
b27b7cbc 1374 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
4506cfb6 1375 INIT_LIST_HEAD(&wc->w_unwritten_list);
b27b7cbc 1376
3a307ffc 1377 *wcp = wc;
6af67d82 1378
3a307ffc 1379 return 0;
6af67d82
MF
1380}
1381
9517bac6 1382/*
3a307ffc
MF
1383 * If a page has any new buffers, zero them out here, and mark them uptodate
1384 * and dirty so they'll be written out (in order to prevent uninitialised
1385 * block data from leaking). And clear the new bit.
9517bac6 1386 */
3a307ffc 1387static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 1388{
3a307ffc
MF
1389 unsigned int block_start, block_end;
1390 struct buffer_head *head, *bh;
9517bac6 1391
3a307ffc
MF
1392 BUG_ON(!PageLocked(page));
1393 if (!page_has_buffers(page))
1394 return;
9517bac6 1395
3a307ffc
MF
1396 bh = head = page_buffers(page);
1397 block_start = 0;
1398 do {
1399 block_end = block_start + bh->b_size;
1400
1401 if (buffer_new(bh)) {
1402 if (block_end > from && block_start < to) {
1403 if (!PageUptodate(page)) {
1404 unsigned start, end;
3a307ffc
MF
1405
1406 start = max(from, block_start);
1407 end = min(to, block_end);
1408
eebd2aa3 1409 zero_user_segment(page, start, end);
3a307ffc
MF
1410 set_buffer_uptodate(bh);
1411 }
1412
1413 clear_buffer_new(bh);
1414 mark_buffer_dirty(bh);
1415 }
1416 }
9517bac6 1417
3a307ffc
MF
1418 block_start = block_end;
1419 bh = bh->b_this_page;
1420 } while (bh != head);
1421}
1422
1423/*
1424 * Only called when we have a failure during allocating write to write
1425 * zero's to the newly allocated region.
1426 */
1427static void ocfs2_write_failure(struct inode *inode,
1428 struct ocfs2_write_ctxt *wc,
1429 loff_t user_pos, unsigned user_len)
1430{
1431 int i;
5c26a7b7
MF
1432 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1433 to = user_pos + user_len;
3a307ffc
MF
1434 struct page *tmppage;
1435
65c4db8c
RD
1436 if (wc->w_target_page)
1437 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1438
3a307ffc
MF
1439 for(i = 0; i < wc->w_num_pages; i++) {
1440 tmppage = wc->w_pages[i];
9517bac6 1441
65c4db8c 1442 if (tmppage && page_has_buffers(tmppage)) {
53ef99ca 1443 if (ocfs2_should_order_data(inode))
2b4e30fb 1444 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1445
1446 block_commit_write(tmppage, from, to);
1447 }
9517bac6 1448 }
9517bac6
MF
1449}
1450
3a307ffc
MF
1451static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1452 struct ocfs2_write_ctxt *wc,
1453 struct page *page, u32 cpos,
1454 loff_t user_pos, unsigned user_len,
1455 int new)
9517bac6 1456{
3a307ffc
MF
1457 int ret;
1458 unsigned int map_from = 0, map_to = 0;
9517bac6 1459 unsigned int cluster_start, cluster_end;
3a307ffc 1460 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1461
3a307ffc 1462 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1463 &cluster_start, &cluster_end);
1464
272b62c1
GR
1465 /* treat the write as new if the a hole/lseek spanned across
1466 * the page boundary.
1467 */
1468 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1469 (page_offset(page) <= user_pos));
1470
3a307ffc
MF
1471 if (page == wc->w_target_page) {
1472 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1473 map_to = map_from + user_len;
1474
1475 if (new)
1476 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1477 cluster_start, cluster_end,
1478 new);
1479 else
1480 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1481 map_from, map_to, new);
1482 if (ret) {
9517bac6
MF
1483 mlog_errno(ret);
1484 goto out;
1485 }
1486
3a307ffc
MF
1487 user_data_from = map_from;
1488 user_data_to = map_to;
9517bac6 1489 if (new) {
3a307ffc
MF
1490 map_from = cluster_start;
1491 map_to = cluster_end;
9517bac6
MF
1492 }
1493 } else {
1494 /*
1495 * If we haven't allocated the new page yet, we
1496 * shouldn't be writing it out without copying user
1497 * data. This is likely a math error from the caller.
1498 */
1499 BUG_ON(!new);
1500
3a307ffc
MF
1501 map_from = cluster_start;
1502 map_to = cluster_end;
9517bac6
MF
1503
1504 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1505 cluster_start, cluster_end, new);
9517bac6
MF
1506 if (ret) {
1507 mlog_errno(ret);
1508 goto out;
1509 }
1510 }
1511
1512 /*
1513 * Parts of newly allocated pages need to be zero'd.
1514 *
1515 * Above, we have also rewritten 'to' and 'from' - as far as
1516 * the rest of the function is concerned, the entire cluster
1517 * range inside of a page needs to be written.
1518 *
1519 * We can skip this if the page is up to date - it's already
1520 * been zero'd from being read in as a hole.
1521 */
1522 if (new && !PageUptodate(page))
1523 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1524 cpos, user_data_from, user_data_to);
9517bac6
MF
1525
1526 flush_dcache_page(page);
1527
9517bac6 1528out:
3a307ffc 1529 return ret;
9517bac6
MF
1530}
1531
1532/*
3a307ffc 1533 * This function will only grab one clusters worth of pages.
9517bac6 1534 */
3a307ffc
MF
1535static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1536 struct ocfs2_write_ctxt *wc,
693c241a
JB
1537 u32 cpos, loff_t user_pos,
1538 unsigned user_len, int new,
7307de80 1539 struct page *mmap_page)
9517bac6 1540{
3a307ffc 1541 int ret = 0, i;
693c241a 1542 unsigned long start, target_index, end_index, index;
9517bac6 1543 struct inode *inode = mapping->host;
693c241a 1544 loff_t last_byte;
9517bac6 1545
3a307ffc 1546 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1547
1548 /*
1549 * Figure out how many pages we'll be manipulating here. For
60b11392 1550 * non allocating write, we just change the one
693c241a
JB
1551 * page. Otherwise, we'll need a whole clusters worth. If we're
1552 * writing past i_size, we only need enough pages to cover the
1553 * last page of the write.
9517bac6 1554 */
9517bac6 1555 if (new) {
3a307ffc
MF
1556 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1557 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1558 /*
1559 * We need the index *past* the last page we could possibly
1560 * touch. This is the page past the end of the write or
1561 * i_size, whichever is greater.
1562 */
1563 last_byte = max(user_pos + user_len, i_size_read(inode));
1564 BUG_ON(last_byte < 1);
1565 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1566 if ((start + wc->w_num_pages) > end_index)
1567 wc->w_num_pages = end_index - start;
9517bac6 1568 } else {
3a307ffc
MF
1569 wc->w_num_pages = 1;
1570 start = target_index;
9517bac6 1571 }
65c4db8c 1572 end_index = (user_pos + user_len - 1) >> PAGE_CACHE_SHIFT;
9517bac6 1573
3a307ffc 1574 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1575 index = start + i;
1576
65c4db8c
RD
1577 if (index >= target_index && index <= end_index &&
1578 wc->w_type == OCFS2_WRITE_MMAP) {
7307de80
MF
1579 /*
1580 * ocfs2_pagemkwrite() is a little different
1581 * and wants us to directly use the page
1582 * passed in.
1583 */
1584 lock_page(mmap_page);
1585
5cffff9e 1586 /* Exit and let the caller retry */
7307de80 1587 if (mmap_page->mapping != mapping) {
5cffff9e 1588 WARN_ON(mmap_page->mapping);
7307de80 1589 unlock_page(mmap_page);
5cffff9e 1590 ret = -EAGAIN;
7307de80
MF
1591 goto out;
1592 }
1593
1594 page_cache_get(mmap_page);
1595 wc->w_pages[i] = mmap_page;
5cffff9e 1596 wc->w_target_locked = true;
65c4db8c
RD
1597 } else if (index >= target_index && index <= end_index &&
1598 wc->w_type == OCFS2_WRITE_DIRECT) {
1599 /* Direct write has no mapping page. */
1600 wc->w_pages[i] = NULL;
1601 continue;
7307de80
MF
1602 } else {
1603 wc->w_pages[i] = find_or_create_page(mapping, index,
1604 GFP_NOFS);
1605 if (!wc->w_pages[i]) {
1606 ret = -ENOMEM;
1607 mlog_errno(ret);
1608 goto out;
1609 }
9517bac6 1610 }
1269529b 1611 wait_for_stable_page(wc->w_pages[i]);
3a307ffc
MF
1612
1613 if (index == target_index)
1614 wc->w_target_page = wc->w_pages[i];
9517bac6 1615 }
3a307ffc 1616out:
5cffff9e
WW
1617 if (ret)
1618 wc->w_target_locked = false;
3a307ffc
MF
1619 return ret;
1620}
1621
1622/*
1623 * Prepare a single cluster for write one cluster into the file.
1624 */
1625static int ocfs2_write_cluster(struct address_space *mapping,
2de6a3c7 1626 u32 *phys, unsigned int new,
b46637d5 1627 unsigned int clear_unwritten,
e7432675 1628 unsigned int should_zero,
b27b7cbc 1629 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1630 struct ocfs2_alloc_context *meta_ac,
1631 struct ocfs2_write_ctxt *wc, u32 cpos,
1632 loff_t user_pos, unsigned user_len)
1633{
b46637d5 1634 int ret, i;
2de6a3c7 1635 u64 p_blkno;
3a307ffc 1636 struct inode *inode = mapping->host;
f99b9b7c 1637 struct ocfs2_extent_tree et;
2de6a3c7 1638 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
3a307ffc 1639
9517bac6 1640 if (new) {
3a307ffc
MF
1641 u32 tmp_pos;
1642
9517bac6
MF
1643 /*
1644 * This is safe to call with the page locks - it won't take
1645 * any additional semaphores or cluster locks.
1646 */
3a307ffc 1647 tmp_pos = cpos;
0eb8d47e 1648 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
b46637d5
RD
1649 &tmp_pos, 1, !clear_unwritten,
1650 wc->w_di_bh, wc->w_handle,
1651 data_ac, meta_ac, NULL);
9517bac6
MF
1652 /*
1653 * This shouldn't happen because we must have already
1654 * calculated the correct meta data allocation required. The
1655 * internal tree allocation code should know how to increase
1656 * transaction credits itself.
1657 *
1658 * If need be, we could handle -EAGAIN for a
1659 * RESTART_TRANS here.
1660 */
1661 mlog_bug_on_msg(ret == -EAGAIN,
1662 "Inode %llu: EAGAIN return during allocation.\n",
1663 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1664 if (ret < 0) {
1665 mlog_errno(ret);
1666 goto out;
1667 }
b46637d5 1668 } else if (clear_unwritten) {
5e404e9e
JB
1669 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1670 wc->w_di_bh);
f99b9b7c 1671 ret = ocfs2_mark_extent_written(inode, &et,
2de6a3c7 1672 wc->w_handle, cpos, 1, *phys,
f99b9b7c 1673 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1674 if (ret < 0) {
1675 mlog_errno(ret);
1676 goto out;
1677 }
1678 }
3a307ffc 1679
3a307ffc
MF
1680 /*
1681 * The only reason this should fail is due to an inability to
1682 * find the extent added.
1683 */
2de6a3c7 1684 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
9517bac6 1685 if (ret < 0) {
61fb9ea4 1686 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
2de6a3c7
RD
1687 "at logical cluster %u",
1688 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
9517bac6
MF
1689 goto out;
1690 }
1691
2de6a3c7
RD
1692 BUG_ON(*phys == 0);
1693
1694 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1695 if (!should_zero)
1696 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
9517bac6 1697
3a307ffc
MF
1698 for(i = 0; i < wc->w_num_pages; i++) {
1699 int tmpret;
9517bac6 1700
65c4db8c
RD
1701 /* This is the direct io target page. */
1702 if (wc->w_pages[i] == NULL) {
1703 p_blkno++;
1704 continue;
1705 }
1706
3a307ffc
MF
1707 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1708 wc->w_pages[i], cpos,
b27b7cbc
MF
1709 user_pos, user_len,
1710 should_zero);
3a307ffc
MF
1711 if (tmpret) {
1712 mlog_errno(tmpret);
1713 if (ret == 0)
cbfa9639 1714 ret = tmpret;
3a307ffc 1715 }
9517bac6
MF
1716 }
1717
3a307ffc
MF
1718 /*
1719 * We only have cleanup to do in case of allocating write.
1720 */
1721 if (ret && new)
1722 ocfs2_write_failure(inode, wc, user_pos, user_len);
1723
9517bac6 1724out:
9517bac6 1725
3a307ffc 1726 return ret;
9517bac6
MF
1727}
1728
0d172baa
MF
1729static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1730 struct ocfs2_alloc_context *data_ac,
1731 struct ocfs2_alloc_context *meta_ac,
1732 struct ocfs2_write_ctxt *wc,
1733 loff_t pos, unsigned len)
1734{
1735 int ret, i;
db56246c
MF
1736 loff_t cluster_off;
1737 unsigned int local_len = len;
0d172baa 1738 struct ocfs2_write_cluster_desc *desc;
db56246c 1739 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1740
1741 for (i = 0; i < wc->w_clen; i++) {
1742 desc = &wc->w_desc[i];
1743
db56246c
MF
1744 /*
1745 * We have to make sure that the total write passed in
1746 * doesn't extend past a single cluster.
1747 */
1748 local_len = len;
1749 cluster_off = pos & (osb->s_clustersize - 1);
1750 if ((cluster_off + local_len) > osb->s_clustersize)
1751 local_len = osb->s_clustersize - cluster_off;
1752
2de6a3c7 1753 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
b46637d5
RD
1754 desc->c_new,
1755 desc->c_clear_unwritten,
e7432675
SM
1756 desc->c_needs_zero,
1757 data_ac, meta_ac,
db56246c 1758 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1759 if (ret) {
1760 mlog_errno(ret);
1761 goto out;
1762 }
db56246c
MF
1763
1764 len -= local_len;
1765 pos += local_len;
0d172baa
MF
1766 }
1767
1768 ret = 0;
1769out:
1770 return ret;
1771}
1772
3a307ffc
MF
1773/*
1774 * ocfs2_write_end() wants to know which parts of the target page it
1775 * should complete the write on. It's easiest to compute them ahead of
1776 * time when a more complete view of the write is available.
1777 */
1778static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1779 struct ocfs2_write_ctxt *wc,
1780 loff_t pos, unsigned len, int alloc)
9517bac6 1781{
3a307ffc 1782 struct ocfs2_write_cluster_desc *desc;
9517bac6 1783
3a307ffc
MF
1784 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1785 wc->w_target_to = wc->w_target_from + len;
1786
1787 if (alloc == 0)
1788 return;
1789
1790 /*
1791 * Allocating write - we may have different boundaries based
1792 * on page size and cluster size.
1793 *
1794 * NOTE: We can no longer compute one value from the other as
1795 * the actual write length and user provided length may be
1796 * different.
1797 */
9517bac6 1798
3a307ffc
MF
1799 if (wc->w_large_pages) {
1800 /*
1801 * We only care about the 1st and last cluster within
b27b7cbc 1802 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1803 * value may be extended out to the start/end of a
1804 * newly allocated cluster.
1805 */
1806 desc = &wc->w_desc[0];
e7432675 1807 if (desc->c_needs_zero)
3a307ffc
MF
1808 ocfs2_figure_cluster_boundaries(osb,
1809 desc->c_cpos,
1810 &wc->w_target_from,
1811 NULL);
1812
1813 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1814 if (desc->c_needs_zero)
3a307ffc
MF
1815 ocfs2_figure_cluster_boundaries(osb,
1816 desc->c_cpos,
1817 NULL,
1818 &wc->w_target_to);
1819 } else {
1820 wc->w_target_from = 0;
1821 wc->w_target_to = PAGE_CACHE_SIZE;
1822 }
9517bac6
MF
1823}
1824
4506cfb6
RD
1825/*
1826 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1827 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1828 * by the direct io procedure.
1829 * If this is a new extent that allocated by direct io, we should mark it in
1830 * the ip_unwritten_list.
1831 */
1832static int ocfs2_unwritten_check(struct inode *inode,
1833 struct ocfs2_write_ctxt *wc,
1834 struct ocfs2_write_cluster_desc *desc)
1835{
1836 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1837 struct ocfs2_unwritten_extent *dz = NULL, *new = NULL;
1838 int ret = 0;
1839
1840 if (!desc->c_needs_zero)
1841 return 0;
1842
1843retry:
1844 spin_lock(&oi->ip_lock);
1845 /* Needs not to zero no metter buffer or direct. The one who is zero
1846 * the cluster is doing zero. And he will clear unwritten after all
1847 * cluster io finished. */
1848 list_for_each_entry(dz, &oi->ip_unwritten_list, ue_ip_node) {
1849 if (desc->c_cpos == dz->ue_cpos) {
1850 BUG_ON(desc->c_new);
1851 desc->c_needs_zero = 0;
1852 desc->c_clear_unwritten = 0;
1853 goto unlock;
1854 }
1855 }
1856
1857 if (wc->w_type != OCFS2_WRITE_DIRECT)
1858 goto unlock;
1859
1860 if (new == NULL) {
1861 spin_unlock(&oi->ip_lock);
1862 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1863 GFP_NOFS);
1864 if (new == NULL) {
1865 ret = -ENOMEM;
1866 goto out;
1867 }
1868 goto retry;
1869 }
1870 /* This direct write will doing zero. */
1871 new->ue_cpos = desc->c_cpos;
1872 new->ue_phys = desc->c_phys;
1873 desc->c_clear_unwritten = 0;
1874 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1875 list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1876 new = NULL;
1877unlock:
1878 spin_unlock(&oi->ip_lock);
1879out:
1880 if (new)
1881 kfree(new);
1882 return ret;
1883}
1884
0d172baa
MF
1885/*
1886 * Populate each single-cluster write descriptor in the write context
1887 * with information about the i/o to be done.
b27b7cbc
MF
1888 *
1889 * Returns the number of clusters that will have to be allocated, as
1890 * well as a worst case estimate of the number of extent records that
1891 * would have to be created during a write to an unwritten region.
0d172baa
MF
1892 */
1893static int ocfs2_populate_write_desc(struct inode *inode,
1894 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1895 unsigned int *clusters_to_alloc,
1896 unsigned int *extents_to_split)
9517bac6 1897{
0d172baa 1898 int ret;
3a307ffc 1899 struct ocfs2_write_cluster_desc *desc;
0d172baa 1900 unsigned int num_clusters = 0;
b27b7cbc 1901 unsigned int ext_flags = 0;
0d172baa
MF
1902 u32 phys = 0;
1903 int i;
9517bac6 1904
b27b7cbc
MF
1905 *clusters_to_alloc = 0;
1906 *extents_to_split = 0;
1907
3a307ffc
MF
1908 for (i = 0; i < wc->w_clen; i++) {
1909 desc = &wc->w_desc[i];
1910 desc->c_cpos = wc->w_cpos + i;
1911
1912 if (num_clusters == 0) {
b27b7cbc
MF
1913 /*
1914 * Need to look up the next extent record.
1915 */
3a307ffc 1916 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1917 &num_clusters, &ext_flags);
3a307ffc
MF
1918 if (ret) {
1919 mlog_errno(ret);
607d44aa 1920 goto out;
3a307ffc 1921 }
b27b7cbc 1922
293b2f70
TM
1923 /* We should already CoW the refcountd extent. */
1924 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1925
b27b7cbc
MF
1926 /*
1927 * Assume worst case - that we're writing in
1928 * the middle of the extent.
1929 *
1930 * We can assume that the write proceeds from
1931 * left to right, in which case the extent
1932 * insert code is smart enough to coalesce the
1933 * next splits into the previous records created.
1934 */
1935 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1936 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1937 } else if (phys) {
1938 /*
1939 * Only increment phys if it doesn't describe
1940 * a hole.
1941 */
1942 phys++;
1943 }
1944
e7432675
SM
1945 /*
1946 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1947 * file that got extended. w_first_new_cpos tells us
1948 * where the newly allocated clusters are so we can
1949 * zero them.
1950 */
1951 if (desc->c_cpos >= wc->w_first_new_cpos) {
1952 BUG_ON(phys == 0);
1953 desc->c_needs_zero = 1;
1954 }
1955
3a307ffc
MF
1956 desc->c_phys = phys;
1957 if (phys == 0) {
1958 desc->c_new = 1;
e7432675 1959 desc->c_needs_zero = 1;
b46637d5 1960 desc->c_clear_unwritten = 1;
0d172baa 1961 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1962 }
e7432675
SM
1963
1964 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b46637d5 1965 desc->c_clear_unwritten = 1;
e7432675
SM
1966 desc->c_needs_zero = 1;
1967 }
3a307ffc 1968
4506cfb6
RD
1969 ret = ocfs2_unwritten_check(inode, wc, desc);
1970 if (ret) {
1971 mlog_errno(ret);
1972 goto out;
1973 }
1974
3a307ffc 1975 num_clusters--;
9517bac6
MF
1976 }
1977
0d172baa
MF
1978 ret = 0;
1979out:
1980 return ret;
1981}
1982
1afc32b9
MF
1983static int ocfs2_write_begin_inline(struct address_space *mapping,
1984 struct inode *inode,
1985 struct ocfs2_write_ctxt *wc)
1986{
1987 int ret;
1988 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1989 struct page *page;
1990 handle_t *handle;
1991 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1992
f775da2f
JB
1993 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1994 if (IS_ERR(handle)) {
1995 ret = PTR_ERR(handle);
1996 mlog_errno(ret);
1997 goto out;
1998 }
1999
1afc32b9
MF
2000 page = find_or_create_page(mapping, 0, GFP_NOFS);
2001 if (!page) {
f775da2f 2002 ocfs2_commit_trans(osb, handle);
1afc32b9
MF
2003 ret = -ENOMEM;
2004 mlog_errno(ret);
2005 goto out;
2006 }
2007 /*
2008 * If we don't set w_num_pages then this page won't get unlocked
2009 * and freed on cleanup of the write context.
2010 */
2011 wc->w_pages[0] = wc->w_target_page = page;
2012 wc->w_num_pages = 1;
2013
0cf2f763 2014 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 2015 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
2016 if (ret) {
2017 ocfs2_commit_trans(osb, handle);
2018
2019 mlog_errno(ret);
2020 goto out;
2021 }
2022
2023 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
2024 ocfs2_set_inode_data_inline(inode, di);
2025
2026 if (!PageUptodate(page)) {
2027 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
2028 if (ret) {
2029 ocfs2_commit_trans(osb, handle);
2030
2031 goto out;
2032 }
2033 }
2034
2035 wc->w_handle = handle;
2036out:
2037 return ret;
2038}
2039
2040int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
2041{
2042 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
2043
0d8a4e0c 2044 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
2045 return 1;
2046 return 0;
2047}
2048
2049static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
2050 struct inode *inode, loff_t pos,
2051 unsigned len, struct page *mmap_page,
2052 struct ocfs2_write_ctxt *wc)
2053{
2054 int ret, written = 0;
2055 loff_t end = pos + len;
2056 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 2057 struct ocfs2_dinode *di = NULL;
1afc32b9 2058
9558156b
TM
2059 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
2060 len, (unsigned long long)pos,
2061 oi->ip_dyn_features);
1afc32b9
MF
2062
2063 /*
2064 * Handle inodes which already have inline data 1st.
2065 */
2066 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2067 if (mmap_page == NULL &&
2068 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
2069 goto do_inline_write;
2070
2071 /*
2072 * The write won't fit - we have to give this inode an
2073 * inline extent list now.
2074 */
2075 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
2076 if (ret)
2077 mlog_errno(ret);
2078 goto out;
2079 }
2080
2081 /*
2082 * Check whether the inode can accept inline data.
2083 */
2084 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
2085 return 0;
2086
2087 /*
2088 * Check whether the write can fit.
2089 */
d9ae49d6
TY
2090 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2091 if (mmap_page ||
2092 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
2093 return 0;
2094
2095do_inline_write:
2096 ret = ocfs2_write_begin_inline(mapping, inode, wc);
2097 if (ret) {
2098 mlog_errno(ret);
2099 goto out;
2100 }
2101
2102 /*
2103 * This signals to the caller that the data can be written
2104 * inline.
2105 */
2106 written = 1;
2107out:
2108 return written ? written : ret;
2109}
2110
65ed39d6
MF
2111/*
2112 * This function only does anything for file systems which can't
2113 * handle sparse files.
2114 *
2115 * What we want to do here is fill in any hole between the current end
2116 * of allocation and the end of our write. That way the rest of the
2117 * write path can treat it as an non-allocating write, which has no
2118 * special case code for sparse/nonsparse files.
2119 */
5693486b
JB
2120static int ocfs2_expand_nonsparse_inode(struct inode *inode,
2121 struct buffer_head *di_bh,
2122 loff_t pos, unsigned len,
65ed39d6
MF
2123 struct ocfs2_write_ctxt *wc)
2124{
2125 int ret;
65ed39d6
MF
2126 loff_t newsize = pos + len;
2127
5693486b 2128 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
2129
2130 if (newsize <= i_size_read(inode))
2131 return 0;
2132
5693486b 2133 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
2134 if (ret)
2135 mlog_errno(ret);
2136
46e62556
RD
2137 /* There is no wc if this is call from direct. */
2138 if (wc)
2139 wc->w_first_new_cpos =
2140 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
e7432675 2141
65ed39d6
MF
2142 return ret;
2143}
2144
5693486b
JB
2145static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
2146 loff_t pos)
2147{
2148 int ret = 0;
2149
2150 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2151 if (pos > i_size_read(inode))
2152 ret = ocfs2_zero_extend(inode, di_bh, pos);
2153
2154 return ret;
2155}
2156
50308d81
TM
2157/*
2158 * Try to flush truncate logs if we can free enough clusters from it.
2159 * As for return value, "< 0" means error, "0" no space and "1" means
2160 * we have freed enough spaces and let the caller try to allocate again.
2161 */
2162static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2163 unsigned int needed)
2164{
2165 tid_t target;
2166 int ret = 0;
2167 unsigned int truncated_clusters;
2168
5955102c 2169 inode_lock(osb->osb_tl_inode);
50308d81 2170 truncated_clusters = osb->truncated_clusters;
5955102c 2171 inode_unlock(osb->osb_tl_inode);
50308d81
TM
2172
2173 /*
2174 * Check whether we can succeed in allocating if we free
2175 * the truncate log.
2176 */
2177 if (truncated_clusters < needed)
2178 goto out;
2179
2180 ret = ocfs2_flush_truncate_log(osb);
2181 if (ret) {
2182 mlog_errno(ret);
2183 goto out;
2184 }
2185
2186 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2187 jbd2_log_wait_commit(osb->journal->j_journal, target);
2188 ret = 1;
2189 }
2190out:
2191 return ret;
2192}
2193
c1ad1e3c
RD
2194int ocfs2_write_begin_nolock(struct address_space *mapping,
2195 loff_t pos, unsigned len, ocfs2_write_type_t type,
0d172baa
MF
2196 struct page **pagep, void **fsdata,
2197 struct buffer_head *di_bh, struct page *mmap_page)
2198{
e7432675 2199 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
50308d81 2200 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
0d172baa
MF
2201 struct ocfs2_write_ctxt *wc;
2202 struct inode *inode = mapping->host;
2203 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2204 struct ocfs2_dinode *di;
2205 struct ocfs2_alloc_context *data_ac = NULL;
2206 struct ocfs2_alloc_context *meta_ac = NULL;
2207 handle_t *handle;
f99b9b7c 2208 struct ocfs2_extent_tree et;
50308d81 2209 int try_free = 1, ret1;
0d172baa 2210
50308d81 2211try_again:
c1ad1e3c 2212 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
0d172baa
MF
2213 if (ret) {
2214 mlog_errno(ret);
2215 return ret;
2216 }
2217
1afc32b9
MF
2218 if (ocfs2_supports_inline_data(osb)) {
2219 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2220 mmap_page, wc);
2221 if (ret == 1) {
2222 ret = 0;
2223 goto success;
2224 }
2225 if (ret < 0) {
2226 mlog_errno(ret);
2227 goto out;
2228 }
2229 }
2230
46e62556
RD
2231 /* Direct io change i_size late, should not zero tail here. */
2232 if (type != OCFS2_WRITE_DIRECT) {
2233 if (ocfs2_sparse_alloc(osb))
2234 ret = ocfs2_zero_tail(inode, di_bh, pos);
2235 else
2236 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2237 len, wc);
2238 if (ret) {
2239 mlog_errno(ret);
2240 goto out;
2241 }
65ed39d6
MF
2242 }
2243
293b2f70
TM
2244 ret = ocfs2_check_range_for_refcount(inode, pos, len);
2245 if (ret < 0) {
2246 mlog_errno(ret);
2247 goto out;
2248 } else if (ret == 1) {
50308d81 2249 clusters_need = wc->w_clen;
c7dd3392 2250 ret = ocfs2_refcount_cow(inode, di_bh,
37f8a2bf 2251 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
2252 if (ret) {
2253 mlog_errno(ret);
2254 goto out;
2255 }
2256 }
2257
b27b7cbc
MF
2258 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2259 &extents_to_split);
0d172baa
MF
2260 if (ret) {
2261 mlog_errno(ret);
2262 goto out;
2263 }
50308d81 2264 clusters_need += clusters_to_alloc;
0d172baa
MF
2265
2266 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2267
9558156b
TM
2268 trace_ocfs2_write_begin_nolock(
2269 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2270 (long long)i_size_read(inode),
2271 le32_to_cpu(di->i_clusters),
c1ad1e3c 2272 pos, len, type, mmap_page,
9558156b
TM
2273 clusters_to_alloc, extents_to_split);
2274
3a307ffc
MF
2275 /*
2276 * We set w_target_from, w_target_to here so that
2277 * ocfs2_write_end() knows which range in the target page to
2278 * write out. An allocation requires that we write the entire
2279 * cluster range.
2280 */
b27b7cbc 2281 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
2282 /*
2283 * XXX: We are stretching the limits of
b27b7cbc 2284 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
2285 * the work to be done.
2286 */
5e404e9e
JB
2287 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2288 wc->w_di_bh);
f99b9b7c 2289 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 2290 clusters_to_alloc, extents_to_split,
f99b9b7c 2291 &data_ac, &meta_ac);
9517bac6
MF
2292 if (ret) {
2293 mlog_errno(ret);
607d44aa 2294 goto out;
9517bac6
MF
2295 }
2296
4fe370af
MF
2297 if (data_ac)
2298 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2299
811f933d 2300 credits = ocfs2_calc_extend_credits(inode->i_sb,
06f9da6e 2301 &di->id2.i_list);
46e62556
RD
2302 } else if (type == OCFS2_WRITE_DIRECT)
2303 /* direct write needs not to start trans if no extents alloc. */
2304 goto success;
9517bac6 2305
e7432675
SM
2306 /*
2307 * We have to zero sparse allocated clusters, unwritten extent clusters,
2308 * and non-sparse clusters we just extended. For non-sparse writes,
2309 * we know zeros will only be needed in the first and/or last cluster.
2310 */
4506cfb6
RD
2311 if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2312 wc->w_desc[wc->w_clen - 1].c_needs_zero))
e7432675
SM
2313 cluster_of_pages = 1;
2314 else
2315 cluster_of_pages = 0;
2316
2317 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 2318
9517bac6
MF
2319 handle = ocfs2_start_trans(osb, credits);
2320 if (IS_ERR(handle)) {
2321 ret = PTR_ERR(handle);
2322 mlog_errno(ret);
607d44aa 2323 goto out;
9517bac6
MF
2324 }
2325
3a307ffc
MF
2326 wc->w_handle = handle;
2327
5dd4056d
CH
2328 if (clusters_to_alloc) {
2329 ret = dquot_alloc_space_nodirty(inode,
2330 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2331 if (ret)
2332 goto out_commit;
a90714c1 2333 }
7f27ec97 2334
0cf2f763 2335 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 2336 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 2337 if (ret) {
9517bac6 2338 mlog_errno(ret);
a90714c1 2339 goto out_quota;
9517bac6
MF
2340 }
2341
3a307ffc
MF
2342 /*
2343 * Fill our page array first. That way we've grabbed enough so
2344 * that we can zero and flush if we error after adding the
2345 * extent.
2346 */
693c241a 2347 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 2348 cluster_of_pages, mmap_page);
5cffff9e 2349 if (ret && ret != -EAGAIN) {
9517bac6 2350 mlog_errno(ret);
a90714c1 2351 goto out_quota;
9517bac6
MF
2352 }
2353
5cffff9e
WW
2354 /*
2355 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2356 * the target page. In this case, we exit with no error and no target
2357 * page. This will trigger the caller, page_mkwrite(), to re-try
2358 * the operation.
2359 */
2360 if (ret == -EAGAIN) {
2361 BUG_ON(wc->w_target_page);
2362 ret = 0;
2363 goto out_quota;
2364 }
2365
0d172baa
MF
2366 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2367 len);
2368 if (ret) {
2369 mlog_errno(ret);
a90714c1 2370 goto out_quota;
9517bac6 2371 }
9517bac6 2372
3a307ffc
MF
2373 if (data_ac)
2374 ocfs2_free_alloc_context(data_ac);
2375 if (meta_ac)
2376 ocfs2_free_alloc_context(meta_ac);
9517bac6 2377
1afc32b9 2378success:
65c4db8c
RD
2379 if (pagep)
2380 *pagep = wc->w_target_page;
3a307ffc
MF
2381 *fsdata = wc;
2382 return 0;
a90714c1
JK
2383out_quota:
2384 if (clusters_to_alloc)
5dd4056d 2385 dquot_free_space(inode,
a90714c1 2386 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
2387out_commit:
2388 ocfs2_commit_trans(osb, handle);
2389
9517bac6 2390out:
4506cfb6 2391 ocfs2_free_write_ctxt(inode, wc);
3a307ffc 2392
b1214e47 2393 if (data_ac) {
9517bac6 2394 ocfs2_free_alloc_context(data_ac);
b1214e47
X
2395 data_ac = NULL;
2396 }
2397 if (meta_ac) {
9517bac6 2398 ocfs2_free_alloc_context(meta_ac);
b1214e47
X
2399 meta_ac = NULL;
2400 }
50308d81
TM
2401
2402 if (ret == -ENOSPC && try_free) {
2403 /*
2404 * Try to free some truncate log so that we can have enough
2405 * clusters to allocate.
2406 */
2407 try_free = 0;
2408
2409 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2410 if (ret1 == 1)
2411 goto try_again;
2412
2413 if (ret1 < 0)
2414 mlog_errno(ret1);
2415 }
2416
3a307ffc
MF
2417 return ret;
2418}
2419
b6af1bcd
NP
2420static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2421 loff_t pos, unsigned len, unsigned flags,
2422 struct page **pagep, void **fsdata)
607d44aa
MF
2423{
2424 int ret;
2425 struct buffer_head *di_bh = NULL;
2426 struct inode *inode = mapping->host;
2427
e63aecb6 2428 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
2429 if (ret) {
2430 mlog_errno(ret);
2431 return ret;
2432 }
2433
2434 /*
2435 * Take alloc sem here to prevent concurrent lookups. That way
2436 * the mapping, zeroing and tree manipulation within
2437 * ocfs2_write() will be safe against ->readpage(). This
2438 * should also serve to lock out allocation from a shared
2439 * writeable region.
2440 */
2441 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2442
c1ad1e3c
RD
2443 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
2444 pagep, fsdata, di_bh, NULL);
607d44aa
MF
2445 if (ret) {
2446 mlog_errno(ret);
c934a92d 2447 goto out_fail;
607d44aa
MF
2448 }
2449
2450 brelse(di_bh);
2451
2452 return 0;
2453
607d44aa
MF
2454out_fail:
2455 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2456
2457 brelse(di_bh);
e63aecb6 2458 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
2459
2460 return ret;
2461}
2462
1afc32b9
MF
2463static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2464 unsigned len, unsigned *copied,
2465 struct ocfs2_dinode *di,
2466 struct ocfs2_write_ctxt *wc)
2467{
2468 void *kaddr;
2469
2470 if (unlikely(*copied < len)) {
2471 if (!PageUptodate(wc->w_target_page)) {
2472 *copied = 0;
2473 return;
2474 }
2475 }
2476
c4bc8dcb 2477 kaddr = kmap_atomic(wc->w_target_page);
1afc32b9 2478 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
c4bc8dcb 2479 kunmap_atomic(kaddr);
1afc32b9 2480
9558156b
TM
2481 trace_ocfs2_write_end_inline(
2482 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1afc32b9
MF
2483 (unsigned long long)pos, *copied,
2484 le16_to_cpu(di->id2.i_data.id_count),
2485 le16_to_cpu(di->i_dyn_features));
2486}
2487
7307de80
MF
2488int ocfs2_write_end_nolock(struct address_space *mapping,
2489 loff_t pos, unsigned len, unsigned copied,
2490 struct page *page, void *fsdata)
3a307ffc 2491{
7f27ec97 2492 int i, ret;
3a307ffc
MF
2493 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2494 struct inode *inode = mapping->host;
2495 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2496 struct ocfs2_write_ctxt *wc = fsdata;
2497 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2498 handle_t *handle = wc->w_handle;
2499 struct page *tmppage;
2500
4506cfb6
RD
2501 BUG_ON(!list_empty(&wc->w_unwritten_list));
2502
46e62556
RD
2503 if (handle) {
2504 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
2505 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
2506 if (ret) {
2507 copied = ret;
2508 mlog_errno(ret);
2509 goto out;
2510 }
7f27ec97 2511 }
2512
1afc32b9
MF
2513 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2514 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2515 goto out_write_size;
2516 }
2517
65c4db8c 2518 if (unlikely(copied < len) && wc->w_target_page) {
3a307ffc
MF
2519 if (!PageUptodate(wc->w_target_page))
2520 copied = 0;
2521
2522 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2523 start+len);
2524 }
65c4db8c
RD
2525 if (wc->w_target_page)
2526 flush_dcache_page(wc->w_target_page);
3a307ffc
MF
2527
2528 for(i = 0; i < wc->w_num_pages; i++) {
2529 tmppage = wc->w_pages[i];
2530
65c4db8c
RD
2531 /* This is the direct io target page. */
2532 if (tmppage == NULL)
2533 continue;
2534
3a307ffc
MF
2535 if (tmppage == wc->w_target_page) {
2536 from = wc->w_target_from;
2537 to = wc->w_target_to;
2538
2539 BUG_ON(from > PAGE_CACHE_SIZE ||
2540 to > PAGE_CACHE_SIZE ||
2541 to < from);
2542 } else {
2543 /*
2544 * Pages adjacent to the target (if any) imply
2545 * a hole-filling write in which case we want
2546 * to flush their entire range.
2547 */
2548 from = 0;
2549 to = PAGE_CACHE_SIZE;
2550 }
2551
961cecbe 2552 if (page_has_buffers(tmppage)) {
46e62556
RD
2553 if (handle && ocfs2_should_order_data(inode))
2554 ocfs2_jbd2_file_inode(handle, inode);
961cecbe
SM
2555 block_commit_write(tmppage, from, to);
2556 }
3a307ffc
MF
2557 }
2558
1afc32b9 2559out_write_size:
46e62556
RD
2560 /* Direct io do not update i_size here. */
2561 if (wc->w_type != OCFS2_WRITE_DIRECT) {
2562 pos += copied;
2563 if (pos > i_size_read(inode)) {
2564 i_size_write(inode, pos);
2565 mark_inode_dirty(inode);
2566 }
2567 inode->i_blocks = ocfs2_inode_sector_count(inode);
2568 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2569 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2570 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2571 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2572 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2573 }
2574 if (handle)
2575 ocfs2_journal_dirty(handle, wc->w_di_bh);
3a307ffc 2576
7f27ec97 2577out:
136f49b9
JB
2578 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2579 * lock, or it will cause a deadlock since journal commit threads holds
2580 * this lock and will ask for the page lock when flushing the data.
2581 * put it here to preserve the unlock order.
2582 */
2583 ocfs2_unlock_pages(wc);
2584
46e62556
RD
2585 if (handle)
2586 ocfs2_commit_trans(osb, handle);
59a5e416 2587
b27b7cbc
MF
2588 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2589
136f49b9
JB
2590 brelse(wc->w_di_bh);
2591 kfree(wc);
607d44aa
MF
2592
2593 return copied;
2594}
2595
b6af1bcd
NP
2596static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2597 loff_t pos, unsigned len, unsigned copied,
2598 struct page *page, void *fsdata)
607d44aa
MF
2599{
2600 int ret;
2601 struct inode *inode = mapping->host;
2602
2603 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2604
3a307ffc 2605 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 2606 ocfs2_inode_unlock(inode, 1);
9517bac6 2607
607d44aa 2608 return ret;
9517bac6
MF
2609}
2610
f5e54d6e 2611const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
2612 .readpage = ocfs2_readpage,
2613 .readpages = ocfs2_readpages,
2614 .writepage = ocfs2_writepage,
2615 .write_begin = ocfs2_write_begin,
2616 .write_end = ocfs2_write_end,
2617 .bmap = ocfs2_bmap,
1fca3a05 2618 .direct_IO = ocfs2_direct_IO,
41ecc345 2619 .invalidatepage = block_invalidatepage,
1fca3a05
HH
2620 .releasepage = ocfs2_releasepage,
2621 .migratepage = buffer_migrate_page,
2622 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2623 .error_remove_page = generic_error_remove_page,
ccd979bd 2624};