ocfs2: return the physical address in ocfs2_write_cluster
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
24c40b32 31#include <linux/blkdev.h>
e2e40f2c 32#include <linux/uio.h>
ccd979bd 33
ccd979bd
MF
34#include <cluster/masklog.h>
35
36#include "ocfs2.h"
37
38#include "alloc.h"
39#include "aops.h"
40#include "dlmglue.h"
41#include "extent_map.h"
42#include "file.h"
43#include "inode.h"
44#include "journal.h"
9517bac6 45#include "suballoc.h"
ccd979bd
MF
46#include "super.h"
47#include "symlink.h"
293b2f70 48#include "refcounttree.h"
9558156b 49#include "ocfs2_trace.h"
ccd979bd
MF
50
51#include "buffer_head_io.h"
24c40b32
JQ
52#include "dir.h"
53#include "namei.h"
54#include "sysfile.h"
ccd979bd
MF
55
56static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57 struct buffer_head *bh_result, int create)
58{
59 int err = -EIO;
60 int status;
61 struct ocfs2_dinode *fe = NULL;
62 struct buffer_head *bh = NULL;
63 struct buffer_head *buffer_cache_bh = NULL;
64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65 void *kaddr;
66
9558156b
TM
67 trace_ocfs2_symlink_get_block(
68 (unsigned long long)OCFS2_I(inode)->ip_blkno,
69 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
70
71 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75 (unsigned long long)iblock);
76 goto bail;
77 }
78
b657c95c 79 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
80 if (status < 0) {
81 mlog_errno(status);
82 goto bail;
83 }
84 fe = (struct ocfs2_dinode *) bh->b_data;
85
ccd979bd
MF
86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 le32_to_cpu(fe->i_clusters))) {
7391a294 88 err = -ENOMEM;
ccd979bd
MF
89 mlog(ML_ERROR, "block offset is outside the allocated size: "
90 "%llu\n", (unsigned long long)iblock);
91 goto bail;
92 }
93
94 /* We don't use the page cache to create symlink data, so if
95 * need be, copy it over from the buffer cache. */
96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 iblock;
99 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 if (!buffer_cache_bh) {
7391a294 101 err = -ENOMEM;
ccd979bd
MF
102 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 goto bail;
104 }
105
106 /* we haven't locked out transactions, so a commit
107 * could've happened. Since we've got a reference on
108 * the bh, even if it commits while we're doing the
109 * copy, the data is still good. */
110 if (buffer_jbd(buffer_cache_bh)
111 && ocfs2_inode_is_new(inode)) {
c4bc8dcb 112 kaddr = kmap_atomic(bh_result->b_page);
ccd979bd
MF
113 if (!kaddr) {
114 mlog(ML_ERROR, "couldn't kmap!\n");
115 goto bail;
116 }
117 memcpy(kaddr + (bh_result->b_size * iblock),
118 buffer_cache_bh->b_data,
119 bh_result->b_size);
c4bc8dcb 120 kunmap_atomic(kaddr);
ccd979bd
MF
121 set_buffer_uptodate(bh_result);
122 }
123 brelse(buffer_cache_bh);
124 }
125
126 map_bh(bh_result, inode->i_sb,
127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129 err = 0;
130
131bail:
a81cb88b 132 brelse(bh);
ccd979bd 133
ccd979bd
MF
134 return err;
135}
136
6f70fa51
TM
137int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
ccd979bd
MF
139{
140 int err = 0;
49cb8d2d 141 unsigned int ext_flags;
628a24f5
MF
142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143 u64 p_blkno, count, past_eof;
25baf2da 144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd 145
9558156b
TM
146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
148
149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151 inode, inode->i_ino);
152
153 if (S_ISLNK(inode->i_mode)) {
154 /* this always does I/O for some reason. */
155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 goto bail;
157 }
158
628a24f5 159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 160 &ext_flags);
ccd979bd
MF
161 if (err) {
162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164 (unsigned long long)p_blkno);
ccd979bd
MF
165 goto bail;
166 }
167
628a24f5
MF
168 if (max_blocks < count)
169 count = max_blocks;
170
25baf2da
MF
171 /*
172 * ocfs2 never allocates in this function - the only time we
173 * need to use BH_New is when we're extending i_size on a file
174 * system which doesn't support holes, in which case BH_New
ebdec241 175 * allows __block_write_begin() to zero.
c0420ad2
CL
176 *
177 * If we see this on a sparse file system, then a truncate has
178 * raced us and removed the cluster. In this case, we clear
179 * the buffers dirty and uptodate bits and let the buffer code
180 * ignore it as a hole.
25baf2da 181 */
c0420ad2
CL
182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183 clear_buffer_dirty(bh_result);
184 clear_buffer_uptodate(bh_result);
185 goto bail;
186 }
25baf2da 187
49cb8d2d
MF
188 /* Treat the unwritten extent as a hole for zeroing purposes. */
189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
190 map_bh(bh_result, inode->i_sb, p_blkno);
191
628a24f5
MF
192 bh_result->b_size = count << inode->i_blkbits;
193
25baf2da
MF
194 if (!ocfs2_sparse_alloc(osb)) {
195 if (p_blkno == 0) {
196 err = -EIO;
197 mlog(ML_ERROR,
198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 (unsigned long long)iblock,
200 (unsigned long long)p_blkno,
201 (unsigned long long)OCFS2_I(inode)->ip_blkno);
202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203 dump_stack();
1f4cea37 204 goto bail;
25baf2da 205 }
25baf2da 206 }
ccd979bd 207
5693486b 208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
9558156b
TM
209
210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211 (unsigned long long)past_eof);
5693486b
JB
212 if (create && (iblock >= past_eof))
213 set_buffer_new(bh_result);
214
ccd979bd
MF
215bail:
216 if (err < 0)
217 err = -EIO;
218
ccd979bd
MF
219 return err;
220}
221
1afc32b9
MF
222int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223 struct buffer_head *di_bh)
6798d35a
MF
224{
225 void *kaddr;
d2849fb2 226 loff_t size;
6798d35a
MF
227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
7ecef14a 230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
6798d35a
MF
231 (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 return -EROFS;
233 }
234
235 size = i_size_read(inode);
236
237 if (size > PAGE_CACHE_SIZE ||
d9ae49d6 238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 239 ocfs2_error(inode->i_sb,
7ecef14a 240 "Inode %llu has with inline data has bad size: %Lu\n",
d2849fb2
JK
241 (unsigned long long)OCFS2_I(inode)->ip_blkno,
242 (unsigned long long)size);
6798d35a
MF
243 return -EROFS;
244 }
245
c4bc8dcb 246 kaddr = kmap_atomic(page);
6798d35a
MF
247 if (size)
248 memcpy(kaddr, di->id2.i_data.id_data, size);
249 /* Clear the remaining part of the page */
250 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251 flush_dcache_page(page);
c4bc8dcb 252 kunmap_atomic(kaddr);
6798d35a
MF
253
254 SetPageUptodate(page);
255
256 return 0;
257}
258
259static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260{
261 int ret;
262 struct buffer_head *di_bh = NULL;
6798d35a
MF
263
264 BUG_ON(!PageLocked(page));
86c838b0 265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 266
b657c95c 267 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
268 if (ret) {
269 mlog_errno(ret);
270 goto out;
271 }
272
273 ret = ocfs2_read_inline_data(inode, page, di_bh);
274out:
275 unlock_page(page);
276
277 brelse(di_bh);
278 return ret;
279}
280
ccd979bd
MF
281static int ocfs2_readpage(struct file *file, struct page *page)
282{
283 struct inode *inode = page->mapping->host;
6798d35a 284 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
285 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286 int ret, unlock = 1;
287
9558156b
TM
288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289 (page ? page->index : 0));
ccd979bd 290
e63aecb6 291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
292 if (ret != 0) {
293 if (ret == AOP_TRUNCATED_PAGE)
294 unlock = 0;
295 mlog_errno(ret);
296 goto out;
297 }
298
6798d35a 299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
c7e25e6e
JK
300 /*
301 * Unlock the page and cycle ip_alloc_sem so that we don't
302 * busyloop waiting for ip_alloc_sem to unlock
303 */
e9dfc0b2 304 ret = AOP_TRUNCATED_PAGE;
c7e25e6e
JK
305 unlock_page(page);
306 unlock = 0;
307 down_read(&oi->ip_alloc_sem);
308 up_read(&oi->ip_alloc_sem);
e63aecb6 309 goto out_inode_unlock;
e9dfc0b2 310 }
ccd979bd
MF
311
312 /*
313 * i_size might have just been updated as we grabed the meta lock. We
314 * might now be discovering a truncate that hit on another node.
315 * block_read_full_page->get_block freaks out if it is asked to read
316 * beyond the end of a file, so we check here. Callers
54cb8821 317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
318 * and notice that the page they just read isn't needed.
319 *
320 * XXX sys_readahead() seems to get that wrong?
321 */
322 if (start >= i_size_read(inode)) {
eebd2aa3 323 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
324 SetPageUptodate(page);
325 ret = 0;
326 goto out_alloc;
327 }
328
6798d35a
MF
329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330 ret = ocfs2_readpage_inline(inode, page);
331 else
332 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
333 unlock = 0;
334
ccd979bd
MF
335out_alloc:
336 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
337out_inode_unlock:
338 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
339out:
340 if (unlock)
341 unlock_page(page);
ccd979bd
MF
342 return ret;
343}
344
628a24f5
MF
345/*
346 * This is used only for read-ahead. Failures or difficult to handle
347 * situations are safe to ignore.
348 *
349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
350 * are quite large (243 extents on 4k blocks), so most inodes don't
351 * grow out to a tree. If need be, detecting boundary extents could
352 * trivially be added in a future version of ocfs2_get_block().
353 */
354static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355 struct list_head *pages, unsigned nr_pages)
356{
357 int ret, err = -EIO;
358 struct inode *inode = mapping->host;
359 struct ocfs2_inode_info *oi = OCFS2_I(inode);
360 loff_t start;
361 struct page *last;
362
363 /*
364 * Use the nonblocking flag for the dlm code to avoid page
365 * lock inversion, but don't bother with retrying.
366 */
367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368 if (ret)
369 return err;
370
371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372 ocfs2_inode_unlock(inode, 0);
373 return err;
374 }
375
376 /*
377 * Don't bother with inline-data. There isn't anything
378 * to read-ahead in that case anyway...
379 */
380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381 goto out_unlock;
382
383 /*
384 * Check whether a remote node truncated this file - we just
385 * drop out in that case as it's not worth handling here.
386 */
387 last = list_entry(pages->prev, struct page, lru);
388 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389 if (start >= i_size_read(inode))
390 goto out_unlock;
391
392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394out_unlock:
395 up_read(&oi->ip_alloc_sem);
396 ocfs2_inode_unlock(inode, 0);
397
398 return err;
399}
400
ccd979bd
MF
401/* Note: Because we don't support holes, our allocation has
402 * already happened (allocation writes zeros to the file data)
403 * so we don't have to worry about ordered writes in
404 * ocfs2_writepage.
405 *
406 * ->writepage is called during the process of invalidating the page cache
407 * during blocked lock processing. It can't block on any cluster locks
408 * to during block mapping. It's relying on the fact that the block
409 * mapping can't have disappeared under the dirty pages that it is
410 * being asked to write back.
411 */
412static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413{
9558156b
TM
414 trace_ocfs2_writepage(
415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416 page->index);
ccd979bd 417
9558156b 418 return block_write_full_page(page, ocfs2_get_block, wbc);
ccd979bd
MF
419}
420
ccd979bd
MF
421/* Taken from ext3. We don't necessarily need the full blown
422 * functionality yet, but IMHO it's better to cut and paste the whole
423 * thing so we can avoid introducing our own bugs (and easily pick up
424 * their fixes when they happen) --Mark */
60b11392
MF
425int walk_page_buffers( handle_t *handle,
426 struct buffer_head *head,
427 unsigned from,
428 unsigned to,
429 int *partial,
430 int (*fn)( handle_t *handle,
431 struct buffer_head *bh))
ccd979bd
MF
432{
433 struct buffer_head *bh;
434 unsigned block_start, block_end;
435 unsigned blocksize = head->b_size;
436 int err, ret = 0;
437 struct buffer_head *next;
438
439 for ( bh = head, block_start = 0;
440 ret == 0 && (bh != head || !block_start);
441 block_start = block_end, bh = next)
442 {
443 next = bh->b_this_page;
444 block_end = block_start + blocksize;
445 if (block_end <= from || block_start >= to) {
446 if (partial && !buffer_uptodate(bh))
447 *partial = 1;
448 continue;
449 }
450 err = (*fn)(handle, bh);
451 if (!ret)
452 ret = err;
453 }
454 return ret;
455}
456
ccd979bd
MF
457static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458{
459 sector_t status;
460 u64 p_blkno = 0;
461 int err = 0;
462 struct inode *inode = mapping->host;
463
9558156b
TM
464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465 (unsigned long long)block);
ccd979bd
MF
466
467 /* We don't need to lock journal system files, since they aren't
468 * accessed concurrently from multiple nodes.
469 */
470 if (!INODE_JOURNAL(inode)) {
e63aecb6 471 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
472 if (err) {
473 if (err != -ENOENT)
474 mlog_errno(err);
475 goto bail;
476 }
477 down_read(&OCFS2_I(inode)->ip_alloc_sem);
478 }
479
6798d35a
MF
480 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482 NULL);
ccd979bd
MF
483
484 if (!INODE_JOURNAL(inode)) {
485 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 486 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
487 }
488
489 if (err) {
490 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491 (unsigned long long)block);
492 mlog_errno(err);
493 goto bail;
494 }
495
ccd979bd
MF
496bail:
497 status = err ? 0 : p_blkno;
498
ccd979bd
MF
499 return status;
500}
501
502/*
503 * TODO: Make this into a generic get_blocks function.
504 *
505 * From do_direct_io in direct-io.c:
506 * "So what we do is to permit the ->get_blocks function to populate
507 * bh.b_size with the size of IO which is permitted at this offset and
508 * this i_blkbits."
509 *
510 * This function is called directly from get_more_blocks in direct-io.c.
511 *
512 * called like this: dio->get_blocks(dio->inode, fs_startblk,
513 * fs_count, map_bh, dio->rw == WRITE);
514 */
515static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
516 struct buffer_head *bh_result, int create)
517{
518 int ret;
49255dce
JQ
519 u32 cpos = 0;
520 int alloc_locked = 0;
4f902c37 521 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 522 unsigned int ext_flags;
184d7d20 523 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 524 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
49255dce 525 unsigned long len = bh_result->b_size;
ae1f0814 526 unsigned int clusters_to_alloc = 0, contig_clusters = 0;
49255dce
JQ
527
528 cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
ccd979bd 529
ccd979bd
MF
530 /* This function won't even be called if the request isn't all
531 * nicely aligned and of the right size, so there's no need
532 * for us to check any of that. */
533
25baf2da 534 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32 535
6ab855a9
WW
536 down_read(&OCFS2_I(inode)->ip_alloc_sem);
537
ccd979bd
MF
538 /* This figures out the size of the next contiguous block, and
539 * our logical offset */
363041a5 540 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 541 &contig_blocks, &ext_flags);
6ab855a9
WW
542 up_read(&OCFS2_I(inode)->ip_alloc_sem);
543
ccd979bd
MF
544 if (ret) {
545 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
546 (unsigned long long)iblock);
547 ret = -EIO;
548 goto bail;
549 }
550
cbaee472
TM
551 /* We should already CoW the refcounted extent in case of create. */
552 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
553
49255dce
JQ
554 /* allocate blocks if no p_blkno is found, and create == 1 */
555 if (!p_blkno && create) {
556 ret = ocfs2_inode_lock(inode, NULL, 1);
557 if (ret < 0) {
558 mlog_errno(ret);
559 goto bail;
560 }
561
562 alloc_locked = 1;
563
6ab855a9
WW
564 down_write(&OCFS2_I(inode)->ip_alloc_sem);
565
49255dce
JQ
566 /* fill hole, allocate blocks can't be larger than the size
567 * of the hole */
568 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
ae1f0814
JQ
569 contig_clusters = ocfs2_clusters_for_blocks(inode->i_sb,
570 contig_blocks);
571 if (clusters_to_alloc > contig_clusters)
572 clusters_to_alloc = contig_clusters;
49255dce
JQ
573
574 /* allocate extent and insert them into the extent tree */
575 ret = ocfs2_extend_allocation(inode, cpos,
576 clusters_to_alloc, 0);
577 if (ret < 0) {
6ab855a9 578 up_write(&OCFS2_I(inode)->ip_alloc_sem);
49255dce
JQ
579 mlog_errno(ret);
580 goto bail;
581 }
582
583 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
584 &contig_blocks, &ext_flags);
585 if (ret < 0) {
6ab855a9 586 up_write(&OCFS2_I(inode)->ip_alloc_sem);
49255dce
JQ
587 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
588 (unsigned long long)iblock);
589 ret = -EIO;
590 goto bail;
591 }
4e357b93 592 set_buffer_new(bh_result);
6ab855a9 593 up_write(&OCFS2_I(inode)->ip_alloc_sem);
49255dce
JQ
594 }
595
25baf2da
MF
596 /*
597 * get_more_blocks() expects us to describe a hole by clearing
598 * the mapped bit on bh_result().
49cb8d2d
MF
599 *
600 * Consider an unwritten extent as a hole.
25baf2da 601 */
49cb8d2d 602 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da 603 map_bh(bh_result, inode->i_sb, p_blkno);
5fe878ae 604 else
25baf2da 605 clear_buffer_mapped(bh_result);
ccd979bd
MF
606
607 /* make sure we don't map more than max_blocks blocks here as
608 that's all the kernel will handle at this point. */
609 if (max_blocks < contig_blocks)
610 contig_blocks = max_blocks;
611 bh_result->b_size = contig_blocks << blocksize_bits;
612bail:
49255dce
JQ
613 if (alloc_locked)
614 ocfs2_inode_unlock(inode, 1);
ccd979bd
MF
615 return ret;
616}
617
2bd63216 618/*
ccd979bd 619 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
bd5fe6c5
CH
620 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
621 * to protect io on one node from truncation on another.
ccd979bd 622 */
187372a3 623static int ocfs2_dio_end_io(struct kiocb *iocb,
ccd979bd
MF
624 loff_t offset,
625 ssize_t bytes,
7b7a8665 626 void *private)
ccd979bd 627{
496ad9aa 628 struct inode *inode = file_inode(iocb->ki_filp);
7cdfc3a1 629 int level;
ccd979bd 630
187372a3
CH
631 if (bytes <= 0)
632 return 0;
633
ccd979bd
MF
634 /* this io's submitter should not have unlocked this before we could */
635 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 636
a11f7e63
MF
637 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
638 ocfs2_iocb_clear_unaligned_aio(iocb);
639
c18ceab0 640 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
a11f7e63
MF
641 }
642
512f62ac
JQ
643 /* Let rw unlock to be done later to protect append direct io write */
644 if (offset + bytes <= i_size_read(inode)) {
645 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1 646
512f62ac
JQ
647 level = ocfs2_iocb_rw_locked_level(iocb);
648 ocfs2_rw_unlock(inode, level);
649 }
187372a3
CH
650
651 return 0;
ccd979bd
MF
652}
653
03f981cf
JB
654static int ocfs2_releasepage(struct page *page, gfp_t wait)
655{
03f981cf
JB
656 if (!page_has_buffers(page))
657 return 0;
41ecc345 658 return try_to_free_buffers(page);
03f981cf
JB
659}
660
24c40b32
JQ
661static int ocfs2_is_overwrite(struct ocfs2_super *osb,
662 struct inode *inode, loff_t offset)
663{
664 int ret = 0;
665 u32 v_cpos = 0;
666 u32 p_cpos = 0;
667 unsigned int num_clusters = 0;
668 unsigned int ext_flags = 0;
669
670 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
671 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
672 &num_clusters, &ext_flags);
673 if (ret < 0) {
674 mlog_errno(ret);
675 return ret;
676 }
677
678 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
679 return 1;
680
681 return 0;
682}
683
14a5275d
JQ
684static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
685 struct inode *inode, loff_t offset,
686 u64 zero_len, int cluster_align)
687{
688 u32 p_cpos = 0;
689 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
690 unsigned int num_clusters = 0;
691 unsigned int ext_flags = 0;
692 int ret = 0;
693
694 if (offset <= i_size_read(inode) || cluster_align)
695 return 0;
696
697 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
698 &ext_flags);
699 if (ret < 0) {
700 mlog_errno(ret);
701 return ret;
702 }
703
704 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
705 u64 s = i_size_read(inode);
32e5a2a2 706 sector_t sector = ((u64)p_cpos << (osb->s_clustersize_bits - 9)) +
14a5275d
JQ
707 (do_div(s, osb->s_clustersize) >> 9);
708
709 ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
710 zero_len >> 9, GFP_NOFS, false);
711 if (ret < 0)
712 mlog_errno(ret);
713 }
714
715 return ret;
716}
717
718static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
719 struct inode *inode, loff_t offset)
720{
721 u64 zero_start, zero_len, total_zero_len;
722 u32 p_cpos = 0, clusters_to_add;
723 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
724 unsigned int num_clusters = 0;
725 unsigned int ext_flags = 0;
726 u32 size_div, offset_div;
727 int ret = 0;
728
729 {
730 u64 o = offset;
731 u64 s = i_size_read(inode);
732
733 offset_div = do_div(o, osb->s_clustersize);
734 size_div = do_div(s, osb->s_clustersize);
735 }
736
737 if (offset <= i_size_read(inode))
738 return 0;
739
740 clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
741 ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
742 total_zero_len = offset - i_size_read(inode);
743 if (clusters_to_add)
744 total_zero_len -= offset_div;
745
746 /* Allocate clusters to fill out holes, and this is only needed
747 * when we add more than one clusters. Otherwise the cluster will
748 * be allocated during direct IO */
749 if (clusters_to_add > 1) {
750 ret = ocfs2_extend_allocation(inode,
751 OCFS2_I(inode)->ip_clusters,
752 clusters_to_add - 1, 0);
753 if (ret) {
754 mlog_errno(ret);
755 goto out;
756 }
757 }
758
759 while (total_zero_len) {
760 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
761 &ext_flags);
762 if (ret < 0) {
763 mlog_errno(ret);
764 goto out;
765 }
766
767 zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
768 size_div;
769 zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
770 size_div;
771 zero_len = min(total_zero_len, zero_len);
772
773 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
774 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
775 zero_start >> 9, zero_len >> 9,
776 GFP_NOFS, false);
777 if (ret < 0) {
778 mlog_errno(ret);
779 goto out;
780 }
781 }
782
783 total_zero_len -= zero_len;
784 v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
785
786 /* Only at first iteration can be cluster not aligned.
787 * So set size_div to 0 for the rest */
788 size_div = 0;
789 }
790
791out:
792 return ret;
793}
794
24c40b32
JQ
795static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
796 struct iov_iter *iter,
797 loff_t offset)
798{
799 ssize_t ret = 0;
800 ssize_t written = 0;
801 bool orphaned = false;
802 int is_overwrite = 0;
803 struct file *file = iocb->ki_filp;
804 struct inode *inode = file_inode(file)->i_mapping->host;
805 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
806 struct buffer_head *di_bh = NULL;
807 size_t count = iter->count;
808 journal_t *journal = osb->journal->j_journal;
14a5275d
JQ
809 u64 zero_len_head, zero_len_tail;
810 int cluster_align_head, cluster_align_tail;
24c40b32
JQ
811 loff_t final_size = offset + count;
812 int append_write = offset >= i_size_read(inode) ? 1 : 0;
813 unsigned int num_clusters = 0;
814 unsigned int ext_flags = 0;
815
816 {
817 u64 o = offset;
14a5275d
JQ
818 u64 s = i_size_read(inode);
819
820 zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
821 cluster_align_head = !zero_len_head;
24c40b32 822
14a5275d
JQ
823 zero_len_tail = osb->s_clustersize -
824 do_div(s, osb->s_clustersize);
825 if ((offset - i_size_read(inode)) < zero_len_tail)
826 zero_len_tail = offset - i_size_read(inode);
827 cluster_align_tail = !zero_len_tail;
24c40b32
JQ
828 }
829
830 /*
831 * when final_size > inode->i_size, inode->i_size will be
832 * updated after direct write, so add the inode to orphan
833 * dir first.
834 */
835 if (final_size > i_size_read(inode)) {
836 ret = ocfs2_add_inode_to_orphan(osb, inode);
837 if (ret < 0) {
838 mlog_errno(ret);
839 goto out;
840 }
841 orphaned = true;
842 }
843
844 if (append_write) {
7e9b1955 845 ret = ocfs2_inode_lock(inode, NULL, 1);
24c40b32
JQ
846 if (ret < 0) {
847 mlog_errno(ret);
848 goto clean_orphan;
849 }
850
14a5275d
JQ
851 /* zeroing out the previously allocated cluster tail
852 * that but not zeroed */
6ab855a9
WW
853 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
854 down_read(&OCFS2_I(inode)->ip_alloc_sem);
14a5275d
JQ
855 ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
856 zero_len_tail, cluster_align_tail);
6ab855a9
WW
857 up_read(&OCFS2_I(inode)->ip_alloc_sem);
858 } else {
859 down_write(&OCFS2_I(inode)->ip_alloc_sem);
14a5275d 860 ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
24c40b32 861 offset);
6ab855a9
WW
862 up_write(&OCFS2_I(inode)->ip_alloc_sem);
863 }
24c40b32
JQ
864 if (ret < 0) {
865 mlog_errno(ret);
866 ocfs2_inode_unlock(inode, 1);
24c40b32
JQ
867 goto clean_orphan;
868 }
869
870 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
871 if (is_overwrite < 0) {
872 mlog_errno(is_overwrite);
d162eaad 873 ret = is_overwrite;
24c40b32 874 ocfs2_inode_unlock(inode, 1);
24c40b32
JQ
875 goto clean_orphan;
876 }
877
878 ocfs2_inode_unlock(inode, 1);
24c40b32
JQ
879 }
880
17f8c842
OS
881 written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
882 offset, ocfs2_direct_IO_get_blocks,
883 ocfs2_dio_end_io, NULL, 0);
faaebf18
JQ
884 /* overwrite aio may return -EIOCBQUEUED, and it is not an error */
885 if ((written < 0) && (written != -EIOCBQUEUED)) {
24c40b32
JQ
886 loff_t i_size = i_size_read(inode);
887
888 if (offset + count > i_size) {
889 ret = ocfs2_inode_lock(inode, &di_bh, 1);
890 if (ret < 0) {
891 mlog_errno(ret);
892 goto clean_orphan;
893 }
894
895 if (i_size == i_size_read(inode)) {
896 ret = ocfs2_truncate_file(inode, di_bh,
897 i_size);
898 if (ret < 0) {
899 if (ret != -ENOSPC)
900 mlog_errno(ret);
901
902 ocfs2_inode_unlock(inode, 1);
903 brelse(di_bh);
faaebf18 904 di_bh = NULL;
24c40b32
JQ
905 goto clean_orphan;
906 }
907 }
908
909 ocfs2_inode_unlock(inode, 1);
910 brelse(di_bh);
faaebf18 911 di_bh = NULL;
24c40b32
JQ
912
913 ret = jbd2_journal_force_commit(journal);
914 if (ret < 0)
915 mlog_errno(ret);
916 }
bdd86215 917 } else if (written > 0 && append_write && !is_overwrite &&
14a5275d
JQ
918 !cluster_align_head) {
919 /* zeroing out the allocated cluster head */
24c40b32
JQ
920 u32 p_cpos = 0;
921 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
922
37a8d89a
JQ
923 ret = ocfs2_inode_lock(inode, NULL, 0);
924 if (ret < 0) {
925 mlog_errno(ret);
926 goto clean_orphan;
927 }
928
24c40b32
JQ
929 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
930 &num_clusters, &ext_flags);
931 if (ret < 0) {
932 mlog_errno(ret);
37a8d89a 933 ocfs2_inode_unlock(inode, 0);
24c40b32
JQ
934 goto clean_orphan;
935 }
936
937 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
938
939 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
32e5a2a2 940 (u64)p_cpos << (osb->s_clustersize_bits - 9),
14a5275d 941 zero_len_head >> 9, GFP_NOFS, false);
24c40b32
JQ
942 if (ret < 0)
943 mlog_errno(ret);
37a8d89a
JQ
944
945 ocfs2_inode_unlock(inode, 0);
24c40b32
JQ
946 }
947
948clean_orphan:
949 if (orphaned) {
950 int tmp_ret;
951 int update_isize = written > 0 ? 1 : 0;
952 loff_t end = update_isize ? offset + written : 0;
953
cf1776a9
JQ
954 tmp_ret = ocfs2_inode_lock(inode, &di_bh, 1);
955 if (tmp_ret < 0) {
956 ret = tmp_ret;
957 mlog_errno(ret);
958 goto out;
959 }
960
961 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
24c40b32
JQ
962 update_isize, end);
963 if (tmp_ret < 0) {
a4a8481f 964 ocfs2_inode_unlock(inode, 1);
24c40b32 965 ret = tmp_ret;
cf1776a9 966 mlog_errno(ret);
faaebf18 967 brelse(di_bh);
24c40b32
JQ
968 goto out;
969 }
970
cf1776a9 971 ocfs2_inode_unlock(inode, 1);
faaebf18 972 brelse(di_bh);
cf1776a9 973
24c40b32
JQ
974 tmp_ret = jbd2_journal_force_commit(journal);
975 if (tmp_ret < 0) {
976 ret = tmp_ret;
977 mlog_errno(tmp_ret);
978 }
979 }
980
981out:
982 if (ret >= 0)
983 ret = written;
984 return ret;
985}
986
22c6186e 987static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
d8d3d94b 988 loff_t offset)
ccd979bd
MF
989{
990 struct file *file = iocb->ki_filp;
496ad9aa 991 struct inode *inode = file_inode(file)->i_mapping->host;
24c40b32
JQ
992 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
993 int full_coherency = !(osb->s_mount_opt &
994 OCFS2_MOUNT_COHERENCY_BUFFERED);
53013cba 995
6798d35a
MF
996 /*
997 * Fallback to buffered I/O if we see an inode without
998 * extents.
999 */
1000 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
1001 return 0;
1002
24c40b32
JQ
1003 /* Fallback to buffered I/O if we are appending and
1004 * concurrent O_DIRECT writes are allowed.
1005 */
1006 if (i_size_read(inode) <= offset && !full_coherency)
b80474b4
TM
1007 return 0;
1008
6f673763 1009 if (iov_iter_rw(iter) == READ)
17f8c842
OS
1010 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
1011 iter, offset,
1012 ocfs2_direct_IO_get_blocks,
1013 ocfs2_dio_end_io, NULL, 0);
24c40b32
JQ
1014 else
1015 return ocfs2_direct_IO_write(iocb, iter, offset);
ccd979bd
MF
1016}
1017
9517bac6
MF
1018static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
1019 u32 cpos,
1020 unsigned int *start,
1021 unsigned int *end)
1022{
1023 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
1024
1025 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
1026 unsigned int cpp;
1027
1028 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
1029
1030 cluster_start = cpos % cpp;
1031 cluster_start = cluster_start << osb->s_clustersize_bits;
1032
1033 cluster_end = cluster_start + osb->s_clustersize;
1034 }
1035
1036 BUG_ON(cluster_start > PAGE_SIZE);
1037 BUG_ON(cluster_end > PAGE_SIZE);
1038
1039 if (start)
1040 *start = cluster_start;
1041 if (end)
1042 *end = cluster_end;
1043}
1044
1045/*
1046 * 'from' and 'to' are the region in the page to avoid zeroing.
1047 *
1048 * If pagesize > clustersize, this function will avoid zeroing outside
1049 * of the cluster boundary.
1050 *
1051 * from == to == 0 is code for "zero the entire cluster region"
1052 */
1053static void ocfs2_clear_page_regions(struct page *page,
1054 struct ocfs2_super *osb, u32 cpos,
1055 unsigned from, unsigned to)
1056{
1057 void *kaddr;
1058 unsigned int cluster_start, cluster_end;
1059
1060 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1061
c4bc8dcb 1062 kaddr = kmap_atomic(page);
9517bac6
MF
1063
1064 if (from || to) {
1065 if (from > cluster_start)
1066 memset(kaddr + cluster_start, 0, from - cluster_start);
1067 if (to < cluster_end)
1068 memset(kaddr + to, 0, cluster_end - to);
1069 } else {
1070 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1071 }
1072
c4bc8dcb 1073 kunmap_atomic(kaddr);
9517bac6
MF
1074}
1075
4e9563fd
MF
1076/*
1077 * Nonsparse file systems fully allocate before we get to the write
1078 * code. This prevents ocfs2_write() from tagging the write as an
1079 * allocating one, which means ocfs2_map_page_blocks() might try to
1080 * read-in the blocks at the tail of our file. Avoid reading them by
1081 * testing i_size against each block offset.
1082 */
1083static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1084 unsigned int block_start)
1085{
1086 u64 offset = page_offset(page) + block_start;
1087
1088 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1089 return 1;
1090
1091 if (i_size_read(inode) > offset)
1092 return 1;
1093
1094 return 0;
1095}
1096
9517bac6 1097/*
ebdec241 1098 * Some of this taken from __block_write_begin(). We already have our
9517bac6
MF
1099 * mapping by now though, and the entire write will be allocating or
1100 * it won't, so not much need to use BH_New.
1101 *
1102 * This will also skip zeroing, which is handled externally.
1103 */
60b11392
MF
1104int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1105 struct inode *inode, unsigned int from,
1106 unsigned int to, int new)
9517bac6
MF
1107{
1108 int ret = 0;
1109 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1110 unsigned int block_end, block_start;
1111 unsigned int bsize = 1 << inode->i_blkbits;
1112
1113 if (!page_has_buffers(page))
1114 create_empty_buffers(page, bsize, 0);
1115
1116 head = page_buffers(page);
1117 for (bh = head, block_start = 0; bh != head || !block_start;
1118 bh = bh->b_this_page, block_start += bsize) {
1119 block_end = block_start + bsize;
1120
3a307ffc
MF
1121 clear_buffer_new(bh);
1122
9517bac6
MF
1123 /*
1124 * Ignore blocks outside of our i/o range -
1125 * they may belong to unallocated clusters.
1126 */
60b11392 1127 if (block_start >= to || block_end <= from) {
9517bac6
MF
1128 if (PageUptodate(page))
1129 set_buffer_uptodate(bh);
1130 continue;
1131 }
1132
1133 /*
1134 * For an allocating write with cluster size >= page
1135 * size, we always write the entire page.
1136 */
3a307ffc
MF
1137 if (new)
1138 set_buffer_new(bh);
9517bac6
MF
1139
1140 if (!buffer_mapped(bh)) {
1141 map_bh(bh, inode->i_sb, *p_blkno);
1142 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1143 }
1144
1145 if (PageUptodate(page)) {
1146 if (!buffer_uptodate(bh))
1147 set_buffer_uptodate(bh);
1148 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 1149 !buffer_new(bh) &&
4e9563fd 1150 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 1151 (block_start < from || block_end > to)) {
9517bac6
MF
1152 ll_rw_block(READ, 1, &bh);
1153 *wait_bh++=bh;
1154 }
1155
1156 *p_blkno = *p_blkno + 1;
1157 }
1158
1159 /*
1160 * If we issued read requests - let them complete.
1161 */
1162 while(wait_bh > wait) {
1163 wait_on_buffer(*--wait_bh);
1164 if (!buffer_uptodate(*wait_bh))
1165 ret = -EIO;
1166 }
1167
1168 if (ret == 0 || !new)
1169 return ret;
1170
1171 /*
1172 * If we get -EIO above, zero out any newly allocated blocks
1173 * to avoid exposing stale data.
1174 */
1175 bh = head;
1176 block_start = 0;
1177 do {
9517bac6
MF
1178 block_end = block_start + bsize;
1179 if (block_end <= from)
1180 goto next_bh;
1181 if (block_start >= to)
1182 break;
1183
eebd2aa3 1184 zero_user(page, block_start, bh->b_size);
9517bac6
MF
1185 set_buffer_uptodate(bh);
1186 mark_buffer_dirty(bh);
1187
1188next_bh:
1189 block_start = block_end;
1190 bh = bh->b_this_page;
1191 } while (bh != head);
1192
1193 return ret;
1194}
1195
3a307ffc
MF
1196#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1197#define OCFS2_MAX_CTXT_PAGES 1
1198#else
1199#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1200#endif
1201
1202#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1203
6af67d82 1204/*
3a307ffc 1205 * Describe the state of a single cluster to be written to.
6af67d82 1206 */
3a307ffc
MF
1207struct ocfs2_write_cluster_desc {
1208 u32 c_cpos;
1209 u32 c_phys;
1210 /*
1211 * Give this a unique field because c_phys eventually gets
1212 * filled.
1213 */
1214 unsigned c_new;
b46637d5 1215 unsigned c_clear_unwritten;
e7432675 1216 unsigned c_needs_zero;
3a307ffc 1217};
6af67d82 1218
3a307ffc
MF
1219struct ocfs2_write_ctxt {
1220 /* Logical cluster position / len of write */
1221 u32 w_cpos;
1222 u32 w_clen;
6af67d82 1223
e7432675
SM
1224 /* First cluster allocated in a nonsparse extend */
1225 u32 w_first_new_cpos;
1226
c1ad1e3c
RD
1227 /* Type of caller. Must be one of buffer, mmap, direct. */
1228 ocfs2_write_type_t w_type;
1229
3a307ffc 1230 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 1231
3a307ffc
MF
1232 /*
1233 * This is true if page_size > cluster_size.
1234 *
1235 * It triggers a set of special cases during write which might
1236 * have to deal with allocating writes to partial pages.
1237 */
1238 unsigned int w_large_pages;
6af67d82 1239
3a307ffc
MF
1240 /*
1241 * Pages involved in this write.
1242 *
1243 * w_target_page is the page being written to by the user.
1244 *
1245 * w_pages is an array of pages which always contains
1246 * w_target_page, and in the case of an allocating write with
1247 * page_size < cluster size, it will contain zero'd and mapped
1248 * pages adjacent to w_target_page which need to be written
1249 * out in so that future reads from that region will get
1250 * zero's.
1251 */
3a307ffc 1252 unsigned int w_num_pages;
83fd9c7f 1253 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
3a307ffc 1254 struct page *w_target_page;
eeb47d12 1255
5cffff9e
WW
1256 /*
1257 * w_target_locked is used for page_mkwrite path indicating no unlocking
1258 * against w_target_page in ocfs2_write_end_nolock.
1259 */
1260 unsigned int w_target_locked:1;
1261
3a307ffc
MF
1262 /*
1263 * ocfs2_write_end() uses this to know what the real range to
1264 * write in the target should be.
1265 */
1266 unsigned int w_target_from;
1267 unsigned int w_target_to;
1268
1269 /*
1270 * We could use journal_current_handle() but this is cleaner,
1271 * IMHO -Mark
1272 */
1273 handle_t *w_handle;
1274
1275 struct buffer_head *w_di_bh;
b27b7cbc
MF
1276
1277 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
1278};
1279
1d410a6e 1280void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
1281{
1282 int i;
1283
1d410a6e
MF
1284 for(i = 0; i < num_pages; i++) {
1285 if (pages[i]) {
1286 unlock_page(pages[i]);
1287 mark_page_accessed(pages[i]);
1288 page_cache_release(pages[i]);
1289 }
6af67d82 1290 }
1d410a6e
MF
1291}
1292
136f49b9 1293static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1d410a6e 1294{
5cffff9e
WW
1295 int i;
1296
1297 /*
1298 * w_target_locked is only set to true in the page_mkwrite() case.
1299 * The intent is to allow us to lock the target page from write_begin()
1300 * to write_end(). The caller must hold a ref on w_target_page.
1301 */
1302 if (wc->w_target_locked) {
1303 BUG_ON(!wc->w_target_page);
1304 for (i = 0; i < wc->w_num_pages; i++) {
1305 if (wc->w_target_page == wc->w_pages[i]) {
1306 wc->w_pages[i] = NULL;
1307 break;
1308 }
1309 }
1310 mark_page_accessed(wc->w_target_page);
1311 page_cache_release(wc->w_target_page);
1312 }
1d410a6e 1313 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
136f49b9 1314}
6af67d82 1315
136f49b9
JB
1316static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1317{
1318 ocfs2_unlock_pages(wc);
3a307ffc
MF
1319 brelse(wc->w_di_bh);
1320 kfree(wc);
1321}
1322
1323static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1324 struct ocfs2_super *osb, loff_t pos,
c1ad1e3c
RD
1325 unsigned len, ocfs2_write_type_t type,
1326 struct buffer_head *di_bh)
3a307ffc 1327{
30b8548f 1328 u32 cend;
3a307ffc
MF
1329 struct ocfs2_write_ctxt *wc;
1330
1331 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1332 if (!wc)
1333 return -ENOMEM;
6af67d82 1334
3a307ffc 1335 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 1336 wc->w_first_new_cpos = UINT_MAX;
30b8548f 1337 cend = (pos + len - 1) >> osb->s_clustersize_bits;
1338 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
1339 get_bh(di_bh);
1340 wc->w_di_bh = di_bh;
c1ad1e3c 1341 wc->w_type = type;
6af67d82 1342
3a307ffc
MF
1343 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1344 wc->w_large_pages = 1;
1345 else
1346 wc->w_large_pages = 0;
1347
b27b7cbc
MF
1348 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1349
3a307ffc 1350 *wcp = wc;
6af67d82 1351
3a307ffc 1352 return 0;
6af67d82
MF
1353}
1354
9517bac6 1355/*
3a307ffc
MF
1356 * If a page has any new buffers, zero them out here, and mark them uptodate
1357 * and dirty so they'll be written out (in order to prevent uninitialised
1358 * block data from leaking). And clear the new bit.
9517bac6 1359 */
3a307ffc 1360static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 1361{
3a307ffc
MF
1362 unsigned int block_start, block_end;
1363 struct buffer_head *head, *bh;
9517bac6 1364
3a307ffc
MF
1365 BUG_ON(!PageLocked(page));
1366 if (!page_has_buffers(page))
1367 return;
9517bac6 1368
3a307ffc
MF
1369 bh = head = page_buffers(page);
1370 block_start = 0;
1371 do {
1372 block_end = block_start + bh->b_size;
1373
1374 if (buffer_new(bh)) {
1375 if (block_end > from && block_start < to) {
1376 if (!PageUptodate(page)) {
1377 unsigned start, end;
3a307ffc
MF
1378
1379 start = max(from, block_start);
1380 end = min(to, block_end);
1381
eebd2aa3 1382 zero_user_segment(page, start, end);
3a307ffc
MF
1383 set_buffer_uptodate(bh);
1384 }
1385
1386 clear_buffer_new(bh);
1387 mark_buffer_dirty(bh);
1388 }
1389 }
9517bac6 1390
3a307ffc
MF
1391 block_start = block_end;
1392 bh = bh->b_this_page;
1393 } while (bh != head);
1394}
1395
1396/*
1397 * Only called when we have a failure during allocating write to write
1398 * zero's to the newly allocated region.
1399 */
1400static void ocfs2_write_failure(struct inode *inode,
1401 struct ocfs2_write_ctxt *wc,
1402 loff_t user_pos, unsigned user_len)
1403{
1404 int i;
5c26a7b7
MF
1405 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1406 to = user_pos + user_len;
3a307ffc
MF
1407 struct page *tmppage;
1408
65c4db8c
RD
1409 if (wc->w_target_page)
1410 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1411
3a307ffc
MF
1412 for(i = 0; i < wc->w_num_pages; i++) {
1413 tmppage = wc->w_pages[i];
9517bac6 1414
65c4db8c 1415 if (tmppage && page_has_buffers(tmppage)) {
53ef99ca 1416 if (ocfs2_should_order_data(inode))
2b4e30fb 1417 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1418
1419 block_commit_write(tmppage, from, to);
1420 }
9517bac6 1421 }
9517bac6
MF
1422}
1423
3a307ffc
MF
1424static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1425 struct ocfs2_write_ctxt *wc,
1426 struct page *page, u32 cpos,
1427 loff_t user_pos, unsigned user_len,
1428 int new)
9517bac6 1429{
3a307ffc
MF
1430 int ret;
1431 unsigned int map_from = 0, map_to = 0;
9517bac6 1432 unsigned int cluster_start, cluster_end;
3a307ffc 1433 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1434
3a307ffc 1435 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1436 &cluster_start, &cluster_end);
1437
272b62c1
GR
1438 /* treat the write as new if the a hole/lseek spanned across
1439 * the page boundary.
1440 */
1441 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1442 (page_offset(page) <= user_pos));
1443
3a307ffc
MF
1444 if (page == wc->w_target_page) {
1445 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1446 map_to = map_from + user_len;
1447
1448 if (new)
1449 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1450 cluster_start, cluster_end,
1451 new);
1452 else
1453 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1454 map_from, map_to, new);
1455 if (ret) {
9517bac6
MF
1456 mlog_errno(ret);
1457 goto out;
1458 }
1459
3a307ffc
MF
1460 user_data_from = map_from;
1461 user_data_to = map_to;
9517bac6 1462 if (new) {
3a307ffc
MF
1463 map_from = cluster_start;
1464 map_to = cluster_end;
9517bac6
MF
1465 }
1466 } else {
1467 /*
1468 * If we haven't allocated the new page yet, we
1469 * shouldn't be writing it out without copying user
1470 * data. This is likely a math error from the caller.
1471 */
1472 BUG_ON(!new);
1473
3a307ffc
MF
1474 map_from = cluster_start;
1475 map_to = cluster_end;
9517bac6
MF
1476
1477 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1478 cluster_start, cluster_end, new);
9517bac6
MF
1479 if (ret) {
1480 mlog_errno(ret);
1481 goto out;
1482 }
1483 }
1484
1485 /*
1486 * Parts of newly allocated pages need to be zero'd.
1487 *
1488 * Above, we have also rewritten 'to' and 'from' - as far as
1489 * the rest of the function is concerned, the entire cluster
1490 * range inside of a page needs to be written.
1491 *
1492 * We can skip this if the page is up to date - it's already
1493 * been zero'd from being read in as a hole.
1494 */
1495 if (new && !PageUptodate(page))
1496 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1497 cpos, user_data_from, user_data_to);
9517bac6
MF
1498
1499 flush_dcache_page(page);
1500
9517bac6 1501out:
3a307ffc 1502 return ret;
9517bac6
MF
1503}
1504
1505/*
3a307ffc 1506 * This function will only grab one clusters worth of pages.
9517bac6 1507 */
3a307ffc
MF
1508static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1509 struct ocfs2_write_ctxt *wc,
693c241a
JB
1510 u32 cpos, loff_t user_pos,
1511 unsigned user_len, int new,
7307de80 1512 struct page *mmap_page)
9517bac6 1513{
3a307ffc 1514 int ret = 0, i;
693c241a 1515 unsigned long start, target_index, end_index, index;
9517bac6 1516 struct inode *inode = mapping->host;
693c241a 1517 loff_t last_byte;
9517bac6 1518
3a307ffc 1519 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1520
1521 /*
1522 * Figure out how many pages we'll be manipulating here. For
60b11392 1523 * non allocating write, we just change the one
693c241a
JB
1524 * page. Otherwise, we'll need a whole clusters worth. If we're
1525 * writing past i_size, we only need enough pages to cover the
1526 * last page of the write.
9517bac6 1527 */
9517bac6 1528 if (new) {
3a307ffc
MF
1529 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1530 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1531 /*
1532 * We need the index *past* the last page we could possibly
1533 * touch. This is the page past the end of the write or
1534 * i_size, whichever is greater.
1535 */
1536 last_byte = max(user_pos + user_len, i_size_read(inode));
1537 BUG_ON(last_byte < 1);
1538 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1539 if ((start + wc->w_num_pages) > end_index)
1540 wc->w_num_pages = end_index - start;
9517bac6 1541 } else {
3a307ffc
MF
1542 wc->w_num_pages = 1;
1543 start = target_index;
9517bac6 1544 }
65c4db8c 1545 end_index = (user_pos + user_len - 1) >> PAGE_CACHE_SHIFT;
9517bac6 1546
3a307ffc 1547 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1548 index = start + i;
1549
65c4db8c
RD
1550 if (index >= target_index && index <= end_index &&
1551 wc->w_type == OCFS2_WRITE_MMAP) {
7307de80
MF
1552 /*
1553 * ocfs2_pagemkwrite() is a little different
1554 * and wants us to directly use the page
1555 * passed in.
1556 */
1557 lock_page(mmap_page);
1558
5cffff9e 1559 /* Exit and let the caller retry */
7307de80 1560 if (mmap_page->mapping != mapping) {
5cffff9e 1561 WARN_ON(mmap_page->mapping);
7307de80 1562 unlock_page(mmap_page);
5cffff9e 1563 ret = -EAGAIN;
7307de80
MF
1564 goto out;
1565 }
1566
1567 page_cache_get(mmap_page);
1568 wc->w_pages[i] = mmap_page;
5cffff9e 1569 wc->w_target_locked = true;
65c4db8c
RD
1570 } else if (index >= target_index && index <= end_index &&
1571 wc->w_type == OCFS2_WRITE_DIRECT) {
1572 /* Direct write has no mapping page. */
1573 wc->w_pages[i] = NULL;
1574 continue;
7307de80
MF
1575 } else {
1576 wc->w_pages[i] = find_or_create_page(mapping, index,
1577 GFP_NOFS);
1578 if (!wc->w_pages[i]) {
1579 ret = -ENOMEM;
1580 mlog_errno(ret);
1581 goto out;
1582 }
9517bac6 1583 }
1269529b 1584 wait_for_stable_page(wc->w_pages[i]);
3a307ffc
MF
1585
1586 if (index == target_index)
1587 wc->w_target_page = wc->w_pages[i];
9517bac6 1588 }
3a307ffc 1589out:
5cffff9e
WW
1590 if (ret)
1591 wc->w_target_locked = false;
3a307ffc
MF
1592 return ret;
1593}
1594
1595/*
1596 * Prepare a single cluster for write one cluster into the file.
1597 */
1598static int ocfs2_write_cluster(struct address_space *mapping,
2de6a3c7 1599 u32 *phys, unsigned int new,
b46637d5 1600 unsigned int clear_unwritten,
e7432675 1601 unsigned int should_zero,
b27b7cbc 1602 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1603 struct ocfs2_alloc_context *meta_ac,
1604 struct ocfs2_write_ctxt *wc, u32 cpos,
1605 loff_t user_pos, unsigned user_len)
1606{
b46637d5 1607 int ret, i;
2de6a3c7 1608 u64 p_blkno;
3a307ffc 1609 struct inode *inode = mapping->host;
f99b9b7c 1610 struct ocfs2_extent_tree et;
2de6a3c7 1611 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
3a307ffc 1612
9517bac6 1613 if (new) {
3a307ffc
MF
1614 u32 tmp_pos;
1615
9517bac6
MF
1616 /*
1617 * This is safe to call with the page locks - it won't take
1618 * any additional semaphores or cluster locks.
1619 */
3a307ffc 1620 tmp_pos = cpos;
0eb8d47e 1621 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
b46637d5
RD
1622 &tmp_pos, 1, !clear_unwritten,
1623 wc->w_di_bh, wc->w_handle,
1624 data_ac, meta_ac, NULL);
9517bac6
MF
1625 /*
1626 * This shouldn't happen because we must have already
1627 * calculated the correct meta data allocation required. The
1628 * internal tree allocation code should know how to increase
1629 * transaction credits itself.
1630 *
1631 * If need be, we could handle -EAGAIN for a
1632 * RESTART_TRANS here.
1633 */
1634 mlog_bug_on_msg(ret == -EAGAIN,
1635 "Inode %llu: EAGAIN return during allocation.\n",
1636 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1637 if (ret < 0) {
1638 mlog_errno(ret);
1639 goto out;
1640 }
b46637d5 1641 } else if (clear_unwritten) {
5e404e9e
JB
1642 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1643 wc->w_di_bh);
f99b9b7c 1644 ret = ocfs2_mark_extent_written(inode, &et,
2de6a3c7 1645 wc->w_handle, cpos, 1, *phys,
f99b9b7c 1646 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1647 if (ret < 0) {
1648 mlog_errno(ret);
1649 goto out;
1650 }
1651 }
3a307ffc 1652
3a307ffc
MF
1653 /*
1654 * The only reason this should fail is due to an inability to
1655 * find the extent added.
1656 */
2de6a3c7 1657 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
9517bac6 1658 if (ret < 0) {
61fb9ea4 1659 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
2de6a3c7
RD
1660 "at logical cluster %u",
1661 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
9517bac6
MF
1662 goto out;
1663 }
1664
2de6a3c7
RD
1665 BUG_ON(*phys == 0);
1666
1667 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1668 if (!should_zero)
1669 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
9517bac6 1670
3a307ffc
MF
1671 for(i = 0; i < wc->w_num_pages; i++) {
1672 int tmpret;
9517bac6 1673
65c4db8c
RD
1674 /* This is the direct io target page. */
1675 if (wc->w_pages[i] == NULL) {
1676 p_blkno++;
1677 continue;
1678 }
1679
3a307ffc
MF
1680 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1681 wc->w_pages[i], cpos,
b27b7cbc
MF
1682 user_pos, user_len,
1683 should_zero);
3a307ffc
MF
1684 if (tmpret) {
1685 mlog_errno(tmpret);
1686 if (ret == 0)
cbfa9639 1687 ret = tmpret;
3a307ffc 1688 }
9517bac6
MF
1689 }
1690
3a307ffc
MF
1691 /*
1692 * We only have cleanup to do in case of allocating write.
1693 */
1694 if (ret && new)
1695 ocfs2_write_failure(inode, wc, user_pos, user_len);
1696
9517bac6 1697out:
9517bac6 1698
3a307ffc 1699 return ret;
9517bac6
MF
1700}
1701
0d172baa
MF
1702static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1703 struct ocfs2_alloc_context *data_ac,
1704 struct ocfs2_alloc_context *meta_ac,
1705 struct ocfs2_write_ctxt *wc,
1706 loff_t pos, unsigned len)
1707{
1708 int ret, i;
db56246c
MF
1709 loff_t cluster_off;
1710 unsigned int local_len = len;
0d172baa 1711 struct ocfs2_write_cluster_desc *desc;
db56246c 1712 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1713
1714 for (i = 0; i < wc->w_clen; i++) {
1715 desc = &wc->w_desc[i];
1716
db56246c
MF
1717 /*
1718 * We have to make sure that the total write passed in
1719 * doesn't extend past a single cluster.
1720 */
1721 local_len = len;
1722 cluster_off = pos & (osb->s_clustersize - 1);
1723 if ((cluster_off + local_len) > osb->s_clustersize)
1724 local_len = osb->s_clustersize - cluster_off;
1725
2de6a3c7 1726 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
b46637d5
RD
1727 desc->c_new,
1728 desc->c_clear_unwritten,
e7432675
SM
1729 desc->c_needs_zero,
1730 data_ac, meta_ac,
db56246c 1731 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1732 if (ret) {
1733 mlog_errno(ret);
1734 goto out;
1735 }
db56246c
MF
1736
1737 len -= local_len;
1738 pos += local_len;
0d172baa
MF
1739 }
1740
1741 ret = 0;
1742out:
1743 return ret;
1744}
1745
3a307ffc
MF
1746/*
1747 * ocfs2_write_end() wants to know which parts of the target page it
1748 * should complete the write on. It's easiest to compute them ahead of
1749 * time when a more complete view of the write is available.
1750 */
1751static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1752 struct ocfs2_write_ctxt *wc,
1753 loff_t pos, unsigned len, int alloc)
9517bac6 1754{
3a307ffc 1755 struct ocfs2_write_cluster_desc *desc;
9517bac6 1756
3a307ffc
MF
1757 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1758 wc->w_target_to = wc->w_target_from + len;
1759
1760 if (alloc == 0)
1761 return;
1762
1763 /*
1764 * Allocating write - we may have different boundaries based
1765 * on page size and cluster size.
1766 *
1767 * NOTE: We can no longer compute one value from the other as
1768 * the actual write length and user provided length may be
1769 * different.
1770 */
9517bac6 1771
3a307ffc
MF
1772 if (wc->w_large_pages) {
1773 /*
1774 * We only care about the 1st and last cluster within
b27b7cbc 1775 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1776 * value may be extended out to the start/end of a
1777 * newly allocated cluster.
1778 */
1779 desc = &wc->w_desc[0];
e7432675 1780 if (desc->c_needs_zero)
3a307ffc
MF
1781 ocfs2_figure_cluster_boundaries(osb,
1782 desc->c_cpos,
1783 &wc->w_target_from,
1784 NULL);
1785
1786 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1787 if (desc->c_needs_zero)
3a307ffc
MF
1788 ocfs2_figure_cluster_boundaries(osb,
1789 desc->c_cpos,
1790 NULL,
1791 &wc->w_target_to);
1792 } else {
1793 wc->w_target_from = 0;
1794 wc->w_target_to = PAGE_CACHE_SIZE;
1795 }
9517bac6
MF
1796}
1797
0d172baa
MF
1798/*
1799 * Populate each single-cluster write descriptor in the write context
1800 * with information about the i/o to be done.
b27b7cbc
MF
1801 *
1802 * Returns the number of clusters that will have to be allocated, as
1803 * well as a worst case estimate of the number of extent records that
1804 * would have to be created during a write to an unwritten region.
0d172baa
MF
1805 */
1806static int ocfs2_populate_write_desc(struct inode *inode,
1807 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1808 unsigned int *clusters_to_alloc,
1809 unsigned int *extents_to_split)
9517bac6 1810{
0d172baa 1811 int ret;
3a307ffc 1812 struct ocfs2_write_cluster_desc *desc;
0d172baa 1813 unsigned int num_clusters = 0;
b27b7cbc 1814 unsigned int ext_flags = 0;
0d172baa
MF
1815 u32 phys = 0;
1816 int i;
9517bac6 1817
b27b7cbc
MF
1818 *clusters_to_alloc = 0;
1819 *extents_to_split = 0;
1820
3a307ffc
MF
1821 for (i = 0; i < wc->w_clen; i++) {
1822 desc = &wc->w_desc[i];
1823 desc->c_cpos = wc->w_cpos + i;
1824
1825 if (num_clusters == 0) {
b27b7cbc
MF
1826 /*
1827 * Need to look up the next extent record.
1828 */
3a307ffc 1829 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1830 &num_clusters, &ext_flags);
3a307ffc
MF
1831 if (ret) {
1832 mlog_errno(ret);
607d44aa 1833 goto out;
3a307ffc 1834 }
b27b7cbc 1835
293b2f70
TM
1836 /* We should already CoW the refcountd extent. */
1837 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1838
b27b7cbc
MF
1839 /*
1840 * Assume worst case - that we're writing in
1841 * the middle of the extent.
1842 *
1843 * We can assume that the write proceeds from
1844 * left to right, in which case the extent
1845 * insert code is smart enough to coalesce the
1846 * next splits into the previous records created.
1847 */
1848 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1849 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1850 } else if (phys) {
1851 /*
1852 * Only increment phys if it doesn't describe
1853 * a hole.
1854 */
1855 phys++;
1856 }
1857
e7432675
SM
1858 /*
1859 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1860 * file that got extended. w_first_new_cpos tells us
1861 * where the newly allocated clusters are so we can
1862 * zero them.
1863 */
1864 if (desc->c_cpos >= wc->w_first_new_cpos) {
1865 BUG_ON(phys == 0);
1866 desc->c_needs_zero = 1;
1867 }
1868
3a307ffc
MF
1869 desc->c_phys = phys;
1870 if (phys == 0) {
1871 desc->c_new = 1;
e7432675 1872 desc->c_needs_zero = 1;
b46637d5 1873 desc->c_clear_unwritten = 1;
0d172baa 1874 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1875 }
e7432675
SM
1876
1877 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b46637d5 1878 desc->c_clear_unwritten = 1;
e7432675
SM
1879 desc->c_needs_zero = 1;
1880 }
3a307ffc
MF
1881
1882 num_clusters--;
9517bac6
MF
1883 }
1884
0d172baa
MF
1885 ret = 0;
1886out:
1887 return ret;
1888}
1889
1afc32b9
MF
1890static int ocfs2_write_begin_inline(struct address_space *mapping,
1891 struct inode *inode,
1892 struct ocfs2_write_ctxt *wc)
1893{
1894 int ret;
1895 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1896 struct page *page;
1897 handle_t *handle;
1898 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1899
f775da2f
JB
1900 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1901 if (IS_ERR(handle)) {
1902 ret = PTR_ERR(handle);
1903 mlog_errno(ret);
1904 goto out;
1905 }
1906
1afc32b9
MF
1907 page = find_or_create_page(mapping, 0, GFP_NOFS);
1908 if (!page) {
f775da2f 1909 ocfs2_commit_trans(osb, handle);
1afc32b9
MF
1910 ret = -ENOMEM;
1911 mlog_errno(ret);
1912 goto out;
1913 }
1914 /*
1915 * If we don't set w_num_pages then this page won't get unlocked
1916 * and freed on cleanup of the write context.
1917 */
1918 wc->w_pages[0] = wc->w_target_page = page;
1919 wc->w_num_pages = 1;
1920
0cf2f763 1921 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1922 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1923 if (ret) {
1924 ocfs2_commit_trans(osb, handle);
1925
1926 mlog_errno(ret);
1927 goto out;
1928 }
1929
1930 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1931 ocfs2_set_inode_data_inline(inode, di);
1932
1933 if (!PageUptodate(page)) {
1934 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1935 if (ret) {
1936 ocfs2_commit_trans(osb, handle);
1937
1938 goto out;
1939 }
1940 }
1941
1942 wc->w_handle = handle;
1943out:
1944 return ret;
1945}
1946
1947int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1948{
1949 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1950
0d8a4e0c 1951 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1952 return 1;
1953 return 0;
1954}
1955
1956static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1957 struct inode *inode, loff_t pos,
1958 unsigned len, struct page *mmap_page,
1959 struct ocfs2_write_ctxt *wc)
1960{
1961 int ret, written = 0;
1962 loff_t end = pos + len;
1963 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1964 struct ocfs2_dinode *di = NULL;
1afc32b9 1965
9558156b
TM
1966 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1967 len, (unsigned long long)pos,
1968 oi->ip_dyn_features);
1afc32b9
MF
1969
1970 /*
1971 * Handle inodes which already have inline data 1st.
1972 */
1973 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1974 if (mmap_page == NULL &&
1975 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1976 goto do_inline_write;
1977
1978 /*
1979 * The write won't fit - we have to give this inode an
1980 * inline extent list now.
1981 */
1982 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1983 if (ret)
1984 mlog_errno(ret);
1985 goto out;
1986 }
1987
1988 /*
1989 * Check whether the inode can accept inline data.
1990 */
1991 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1992 return 0;
1993
1994 /*
1995 * Check whether the write can fit.
1996 */
d9ae49d6
TY
1997 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1998 if (mmap_page ||
1999 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
2000 return 0;
2001
2002do_inline_write:
2003 ret = ocfs2_write_begin_inline(mapping, inode, wc);
2004 if (ret) {
2005 mlog_errno(ret);
2006 goto out;
2007 }
2008
2009 /*
2010 * This signals to the caller that the data can be written
2011 * inline.
2012 */
2013 written = 1;
2014out:
2015 return written ? written : ret;
2016}
2017
65ed39d6
MF
2018/*
2019 * This function only does anything for file systems which can't
2020 * handle sparse files.
2021 *
2022 * What we want to do here is fill in any hole between the current end
2023 * of allocation and the end of our write. That way the rest of the
2024 * write path can treat it as an non-allocating write, which has no
2025 * special case code for sparse/nonsparse files.
2026 */
5693486b
JB
2027static int ocfs2_expand_nonsparse_inode(struct inode *inode,
2028 struct buffer_head *di_bh,
2029 loff_t pos, unsigned len,
65ed39d6
MF
2030 struct ocfs2_write_ctxt *wc)
2031{
2032 int ret;
65ed39d6
MF
2033 loff_t newsize = pos + len;
2034
5693486b 2035 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
2036
2037 if (newsize <= i_size_read(inode))
2038 return 0;
2039
5693486b 2040 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
2041 if (ret)
2042 mlog_errno(ret);
2043
46e62556
RD
2044 /* There is no wc if this is call from direct. */
2045 if (wc)
2046 wc->w_first_new_cpos =
2047 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
e7432675 2048
65ed39d6
MF
2049 return ret;
2050}
2051
5693486b
JB
2052static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
2053 loff_t pos)
2054{
2055 int ret = 0;
2056
2057 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2058 if (pos > i_size_read(inode))
2059 ret = ocfs2_zero_extend(inode, di_bh, pos);
2060
2061 return ret;
2062}
2063
50308d81
TM
2064/*
2065 * Try to flush truncate logs if we can free enough clusters from it.
2066 * As for return value, "< 0" means error, "0" no space and "1" means
2067 * we have freed enough spaces and let the caller try to allocate again.
2068 */
2069static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2070 unsigned int needed)
2071{
2072 tid_t target;
2073 int ret = 0;
2074 unsigned int truncated_clusters;
2075
5955102c 2076 inode_lock(osb->osb_tl_inode);
50308d81 2077 truncated_clusters = osb->truncated_clusters;
5955102c 2078 inode_unlock(osb->osb_tl_inode);
50308d81
TM
2079
2080 /*
2081 * Check whether we can succeed in allocating if we free
2082 * the truncate log.
2083 */
2084 if (truncated_clusters < needed)
2085 goto out;
2086
2087 ret = ocfs2_flush_truncate_log(osb);
2088 if (ret) {
2089 mlog_errno(ret);
2090 goto out;
2091 }
2092
2093 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2094 jbd2_log_wait_commit(osb->journal->j_journal, target);
2095 ret = 1;
2096 }
2097out:
2098 return ret;
2099}
2100
c1ad1e3c
RD
2101int ocfs2_write_begin_nolock(struct address_space *mapping,
2102 loff_t pos, unsigned len, ocfs2_write_type_t type,
0d172baa
MF
2103 struct page **pagep, void **fsdata,
2104 struct buffer_head *di_bh, struct page *mmap_page)
2105{
e7432675 2106 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
50308d81 2107 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
0d172baa
MF
2108 struct ocfs2_write_ctxt *wc;
2109 struct inode *inode = mapping->host;
2110 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2111 struct ocfs2_dinode *di;
2112 struct ocfs2_alloc_context *data_ac = NULL;
2113 struct ocfs2_alloc_context *meta_ac = NULL;
2114 handle_t *handle;
f99b9b7c 2115 struct ocfs2_extent_tree et;
50308d81 2116 int try_free = 1, ret1;
0d172baa 2117
50308d81 2118try_again:
c1ad1e3c 2119 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
0d172baa
MF
2120 if (ret) {
2121 mlog_errno(ret);
2122 return ret;
2123 }
2124
1afc32b9
MF
2125 if (ocfs2_supports_inline_data(osb)) {
2126 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2127 mmap_page, wc);
2128 if (ret == 1) {
2129 ret = 0;
2130 goto success;
2131 }
2132 if (ret < 0) {
2133 mlog_errno(ret);
2134 goto out;
2135 }
2136 }
2137
46e62556
RD
2138 /* Direct io change i_size late, should not zero tail here. */
2139 if (type != OCFS2_WRITE_DIRECT) {
2140 if (ocfs2_sparse_alloc(osb))
2141 ret = ocfs2_zero_tail(inode, di_bh, pos);
2142 else
2143 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2144 len, wc);
2145 if (ret) {
2146 mlog_errno(ret);
2147 goto out;
2148 }
65ed39d6
MF
2149 }
2150
293b2f70
TM
2151 ret = ocfs2_check_range_for_refcount(inode, pos, len);
2152 if (ret < 0) {
2153 mlog_errno(ret);
2154 goto out;
2155 } else if (ret == 1) {
50308d81 2156 clusters_need = wc->w_clen;
c7dd3392 2157 ret = ocfs2_refcount_cow(inode, di_bh,
37f8a2bf 2158 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
2159 if (ret) {
2160 mlog_errno(ret);
2161 goto out;
2162 }
2163 }
2164
b27b7cbc
MF
2165 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2166 &extents_to_split);
0d172baa
MF
2167 if (ret) {
2168 mlog_errno(ret);
2169 goto out;
2170 }
50308d81 2171 clusters_need += clusters_to_alloc;
0d172baa
MF
2172
2173 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2174
9558156b
TM
2175 trace_ocfs2_write_begin_nolock(
2176 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2177 (long long)i_size_read(inode),
2178 le32_to_cpu(di->i_clusters),
c1ad1e3c 2179 pos, len, type, mmap_page,
9558156b
TM
2180 clusters_to_alloc, extents_to_split);
2181
3a307ffc
MF
2182 /*
2183 * We set w_target_from, w_target_to here so that
2184 * ocfs2_write_end() knows which range in the target page to
2185 * write out. An allocation requires that we write the entire
2186 * cluster range.
2187 */
b27b7cbc 2188 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
2189 /*
2190 * XXX: We are stretching the limits of
b27b7cbc 2191 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
2192 * the work to be done.
2193 */
5e404e9e
JB
2194 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2195 wc->w_di_bh);
f99b9b7c 2196 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 2197 clusters_to_alloc, extents_to_split,
f99b9b7c 2198 &data_ac, &meta_ac);
9517bac6
MF
2199 if (ret) {
2200 mlog_errno(ret);
607d44aa 2201 goto out;
9517bac6
MF
2202 }
2203
4fe370af
MF
2204 if (data_ac)
2205 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2206
811f933d 2207 credits = ocfs2_calc_extend_credits(inode->i_sb,
06f9da6e 2208 &di->id2.i_list);
46e62556
RD
2209 } else if (type == OCFS2_WRITE_DIRECT)
2210 /* direct write needs not to start trans if no extents alloc. */
2211 goto success;
9517bac6 2212
e7432675
SM
2213 /*
2214 * We have to zero sparse allocated clusters, unwritten extent clusters,
2215 * and non-sparse clusters we just extended. For non-sparse writes,
2216 * we know zeros will only be needed in the first and/or last cluster.
2217 */
2218 if (clusters_to_alloc || extents_to_split ||
8379e7c4
SM
2219 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2220 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
e7432675
SM
2221 cluster_of_pages = 1;
2222 else
2223 cluster_of_pages = 0;
2224
2225 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 2226
9517bac6
MF
2227 handle = ocfs2_start_trans(osb, credits);
2228 if (IS_ERR(handle)) {
2229 ret = PTR_ERR(handle);
2230 mlog_errno(ret);
607d44aa 2231 goto out;
9517bac6
MF
2232 }
2233
3a307ffc
MF
2234 wc->w_handle = handle;
2235
5dd4056d
CH
2236 if (clusters_to_alloc) {
2237 ret = dquot_alloc_space_nodirty(inode,
2238 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2239 if (ret)
2240 goto out_commit;
a90714c1 2241 }
7f27ec97 2242
0cf2f763 2243 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 2244 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 2245 if (ret) {
9517bac6 2246 mlog_errno(ret);
a90714c1 2247 goto out_quota;
9517bac6
MF
2248 }
2249
3a307ffc
MF
2250 /*
2251 * Fill our page array first. That way we've grabbed enough so
2252 * that we can zero and flush if we error after adding the
2253 * extent.
2254 */
693c241a 2255 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 2256 cluster_of_pages, mmap_page);
5cffff9e 2257 if (ret && ret != -EAGAIN) {
9517bac6 2258 mlog_errno(ret);
a90714c1 2259 goto out_quota;
9517bac6
MF
2260 }
2261
5cffff9e
WW
2262 /*
2263 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2264 * the target page. In this case, we exit with no error and no target
2265 * page. This will trigger the caller, page_mkwrite(), to re-try
2266 * the operation.
2267 */
2268 if (ret == -EAGAIN) {
2269 BUG_ON(wc->w_target_page);
2270 ret = 0;
2271 goto out_quota;
2272 }
2273
0d172baa
MF
2274 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2275 len);
2276 if (ret) {
2277 mlog_errno(ret);
a90714c1 2278 goto out_quota;
9517bac6 2279 }
9517bac6 2280
3a307ffc
MF
2281 if (data_ac)
2282 ocfs2_free_alloc_context(data_ac);
2283 if (meta_ac)
2284 ocfs2_free_alloc_context(meta_ac);
9517bac6 2285
1afc32b9 2286success:
65c4db8c
RD
2287 if (pagep)
2288 *pagep = wc->w_target_page;
3a307ffc
MF
2289 *fsdata = wc;
2290 return 0;
a90714c1
JK
2291out_quota:
2292 if (clusters_to_alloc)
5dd4056d 2293 dquot_free_space(inode,
a90714c1 2294 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
2295out_commit:
2296 ocfs2_commit_trans(osb, handle);
2297
9517bac6 2298out:
3a307ffc
MF
2299 ocfs2_free_write_ctxt(wc);
2300
b1214e47 2301 if (data_ac) {
9517bac6 2302 ocfs2_free_alloc_context(data_ac);
b1214e47
X
2303 data_ac = NULL;
2304 }
2305 if (meta_ac) {
9517bac6 2306 ocfs2_free_alloc_context(meta_ac);
b1214e47
X
2307 meta_ac = NULL;
2308 }
50308d81
TM
2309
2310 if (ret == -ENOSPC && try_free) {
2311 /*
2312 * Try to free some truncate log so that we can have enough
2313 * clusters to allocate.
2314 */
2315 try_free = 0;
2316
2317 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2318 if (ret1 == 1)
2319 goto try_again;
2320
2321 if (ret1 < 0)
2322 mlog_errno(ret1);
2323 }
2324
3a307ffc
MF
2325 return ret;
2326}
2327
b6af1bcd
NP
2328static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2329 loff_t pos, unsigned len, unsigned flags,
2330 struct page **pagep, void **fsdata)
607d44aa
MF
2331{
2332 int ret;
2333 struct buffer_head *di_bh = NULL;
2334 struct inode *inode = mapping->host;
2335
e63aecb6 2336 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
2337 if (ret) {
2338 mlog_errno(ret);
2339 return ret;
2340 }
2341
2342 /*
2343 * Take alloc sem here to prevent concurrent lookups. That way
2344 * the mapping, zeroing and tree manipulation within
2345 * ocfs2_write() will be safe against ->readpage(). This
2346 * should also serve to lock out allocation from a shared
2347 * writeable region.
2348 */
2349 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2350
c1ad1e3c
RD
2351 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
2352 pagep, fsdata, di_bh, NULL);
607d44aa
MF
2353 if (ret) {
2354 mlog_errno(ret);
c934a92d 2355 goto out_fail;
607d44aa
MF
2356 }
2357
2358 brelse(di_bh);
2359
2360 return 0;
2361
607d44aa
MF
2362out_fail:
2363 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2364
2365 brelse(di_bh);
e63aecb6 2366 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
2367
2368 return ret;
2369}
2370
1afc32b9
MF
2371static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2372 unsigned len, unsigned *copied,
2373 struct ocfs2_dinode *di,
2374 struct ocfs2_write_ctxt *wc)
2375{
2376 void *kaddr;
2377
2378 if (unlikely(*copied < len)) {
2379 if (!PageUptodate(wc->w_target_page)) {
2380 *copied = 0;
2381 return;
2382 }
2383 }
2384
c4bc8dcb 2385 kaddr = kmap_atomic(wc->w_target_page);
1afc32b9 2386 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
c4bc8dcb 2387 kunmap_atomic(kaddr);
1afc32b9 2388
9558156b
TM
2389 trace_ocfs2_write_end_inline(
2390 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1afc32b9
MF
2391 (unsigned long long)pos, *copied,
2392 le16_to_cpu(di->id2.i_data.id_count),
2393 le16_to_cpu(di->i_dyn_features));
2394}
2395
7307de80
MF
2396int ocfs2_write_end_nolock(struct address_space *mapping,
2397 loff_t pos, unsigned len, unsigned copied,
2398 struct page *page, void *fsdata)
3a307ffc 2399{
7f27ec97 2400 int i, ret;
3a307ffc
MF
2401 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2402 struct inode *inode = mapping->host;
2403 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2404 struct ocfs2_write_ctxt *wc = fsdata;
2405 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2406 handle_t *handle = wc->w_handle;
2407 struct page *tmppage;
2408
46e62556
RD
2409 if (handle) {
2410 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
2411 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
2412 if (ret) {
2413 copied = ret;
2414 mlog_errno(ret);
2415 goto out;
2416 }
7f27ec97 2417 }
2418
1afc32b9
MF
2419 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2420 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2421 goto out_write_size;
2422 }
2423
65c4db8c 2424 if (unlikely(copied < len) && wc->w_target_page) {
3a307ffc
MF
2425 if (!PageUptodate(wc->w_target_page))
2426 copied = 0;
2427
2428 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2429 start+len);
2430 }
65c4db8c
RD
2431 if (wc->w_target_page)
2432 flush_dcache_page(wc->w_target_page);
3a307ffc
MF
2433
2434 for(i = 0; i < wc->w_num_pages; i++) {
2435 tmppage = wc->w_pages[i];
2436
65c4db8c
RD
2437 /* This is the direct io target page. */
2438 if (tmppage == NULL)
2439 continue;
2440
3a307ffc
MF
2441 if (tmppage == wc->w_target_page) {
2442 from = wc->w_target_from;
2443 to = wc->w_target_to;
2444
2445 BUG_ON(from > PAGE_CACHE_SIZE ||
2446 to > PAGE_CACHE_SIZE ||
2447 to < from);
2448 } else {
2449 /*
2450 * Pages adjacent to the target (if any) imply
2451 * a hole-filling write in which case we want
2452 * to flush their entire range.
2453 */
2454 from = 0;
2455 to = PAGE_CACHE_SIZE;
2456 }
2457
961cecbe 2458 if (page_has_buffers(tmppage)) {
46e62556
RD
2459 if (handle && ocfs2_should_order_data(inode))
2460 ocfs2_jbd2_file_inode(handle, inode);
961cecbe
SM
2461 block_commit_write(tmppage, from, to);
2462 }
3a307ffc
MF
2463 }
2464
1afc32b9 2465out_write_size:
46e62556
RD
2466 /* Direct io do not update i_size here. */
2467 if (wc->w_type != OCFS2_WRITE_DIRECT) {
2468 pos += copied;
2469 if (pos > i_size_read(inode)) {
2470 i_size_write(inode, pos);
2471 mark_inode_dirty(inode);
2472 }
2473 inode->i_blocks = ocfs2_inode_sector_count(inode);
2474 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2475 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2476 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2477 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2478 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2479 }
2480 if (handle)
2481 ocfs2_journal_dirty(handle, wc->w_di_bh);
3a307ffc 2482
7f27ec97 2483out:
136f49b9
JB
2484 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2485 * lock, or it will cause a deadlock since journal commit threads holds
2486 * this lock and will ask for the page lock when flushing the data.
2487 * put it here to preserve the unlock order.
2488 */
2489 ocfs2_unlock_pages(wc);
2490
46e62556
RD
2491 if (handle)
2492 ocfs2_commit_trans(osb, handle);
59a5e416 2493
b27b7cbc
MF
2494 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2495
136f49b9
JB
2496 brelse(wc->w_di_bh);
2497 kfree(wc);
607d44aa
MF
2498
2499 return copied;
2500}
2501
b6af1bcd
NP
2502static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2503 loff_t pos, unsigned len, unsigned copied,
2504 struct page *page, void *fsdata)
607d44aa
MF
2505{
2506 int ret;
2507 struct inode *inode = mapping->host;
2508
2509 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2510
3a307ffc 2511 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 2512 ocfs2_inode_unlock(inode, 1);
9517bac6 2513
607d44aa 2514 return ret;
9517bac6
MF
2515}
2516
f5e54d6e 2517const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
2518 .readpage = ocfs2_readpage,
2519 .readpages = ocfs2_readpages,
2520 .writepage = ocfs2_writepage,
2521 .write_begin = ocfs2_write_begin,
2522 .write_end = ocfs2_write_end,
2523 .bmap = ocfs2_bmap,
1fca3a05 2524 .direct_IO = ocfs2_direct_IO,
41ecc345 2525 .invalidatepage = block_invalidatepage,
1fca3a05
HH
2526 .releasepage = ocfs2_releasepage,
2527 .migratepage = buffer_migrate_page,
2528 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2529 .error_remove_page = generic_error_remove_page,
ccd979bd 2530};