ocfs2: do not set fs read-only if rec[0] is empty while committing truncate
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
24c40b32 31#include <linux/blkdev.h>
e2e40f2c 32#include <linux/uio.h>
ccd979bd 33
ccd979bd
MF
34#include <cluster/masklog.h>
35
36#include "ocfs2.h"
37
38#include "alloc.h"
39#include "aops.h"
40#include "dlmglue.h"
41#include "extent_map.h"
42#include "file.h"
43#include "inode.h"
44#include "journal.h"
9517bac6 45#include "suballoc.h"
ccd979bd
MF
46#include "super.h"
47#include "symlink.h"
293b2f70 48#include "refcounttree.h"
9558156b 49#include "ocfs2_trace.h"
ccd979bd
MF
50
51#include "buffer_head_io.h"
24c40b32
JQ
52#include "dir.h"
53#include "namei.h"
54#include "sysfile.h"
ccd979bd
MF
55
56static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57 struct buffer_head *bh_result, int create)
58{
59 int err = -EIO;
60 int status;
61 struct ocfs2_dinode *fe = NULL;
62 struct buffer_head *bh = NULL;
63 struct buffer_head *buffer_cache_bh = NULL;
64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65 void *kaddr;
66
9558156b
TM
67 trace_ocfs2_symlink_get_block(
68 (unsigned long long)OCFS2_I(inode)->ip_blkno,
69 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
70
71 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75 (unsigned long long)iblock);
76 goto bail;
77 }
78
b657c95c 79 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
80 if (status < 0) {
81 mlog_errno(status);
82 goto bail;
83 }
84 fe = (struct ocfs2_dinode *) bh->b_data;
85
ccd979bd
MF
86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 le32_to_cpu(fe->i_clusters))) {
7391a294 88 err = -ENOMEM;
ccd979bd
MF
89 mlog(ML_ERROR, "block offset is outside the allocated size: "
90 "%llu\n", (unsigned long long)iblock);
91 goto bail;
92 }
93
94 /* We don't use the page cache to create symlink data, so if
95 * need be, copy it over from the buffer cache. */
96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 iblock;
99 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 if (!buffer_cache_bh) {
7391a294 101 err = -ENOMEM;
ccd979bd
MF
102 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 goto bail;
104 }
105
106 /* we haven't locked out transactions, so a commit
107 * could've happened. Since we've got a reference on
108 * the bh, even if it commits while we're doing the
109 * copy, the data is still good. */
110 if (buffer_jbd(buffer_cache_bh)
111 && ocfs2_inode_is_new(inode)) {
c4bc8dcb 112 kaddr = kmap_atomic(bh_result->b_page);
ccd979bd
MF
113 if (!kaddr) {
114 mlog(ML_ERROR, "couldn't kmap!\n");
115 goto bail;
116 }
117 memcpy(kaddr + (bh_result->b_size * iblock),
118 buffer_cache_bh->b_data,
119 bh_result->b_size);
c4bc8dcb 120 kunmap_atomic(kaddr);
ccd979bd
MF
121 set_buffer_uptodate(bh_result);
122 }
123 brelse(buffer_cache_bh);
124 }
125
126 map_bh(bh_result, inode->i_sb,
127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129 err = 0;
130
131bail:
a81cb88b 132 brelse(bh);
ccd979bd 133
ccd979bd
MF
134 return err;
135}
136
6f70fa51
TM
137int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
ccd979bd
MF
139{
140 int err = 0;
49cb8d2d 141 unsigned int ext_flags;
628a24f5
MF
142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143 u64 p_blkno, count, past_eof;
25baf2da 144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd 145
9558156b
TM
146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
148
149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151 inode, inode->i_ino);
152
153 if (S_ISLNK(inode->i_mode)) {
154 /* this always does I/O for some reason. */
155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 goto bail;
157 }
158
628a24f5 159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 160 &ext_flags);
ccd979bd
MF
161 if (err) {
162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164 (unsigned long long)p_blkno);
ccd979bd
MF
165 goto bail;
166 }
167
628a24f5
MF
168 if (max_blocks < count)
169 count = max_blocks;
170
25baf2da
MF
171 /*
172 * ocfs2 never allocates in this function - the only time we
173 * need to use BH_New is when we're extending i_size on a file
174 * system which doesn't support holes, in which case BH_New
ebdec241 175 * allows __block_write_begin() to zero.
c0420ad2
CL
176 *
177 * If we see this on a sparse file system, then a truncate has
178 * raced us and removed the cluster. In this case, we clear
179 * the buffers dirty and uptodate bits and let the buffer code
180 * ignore it as a hole.
25baf2da 181 */
c0420ad2
CL
182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183 clear_buffer_dirty(bh_result);
184 clear_buffer_uptodate(bh_result);
185 goto bail;
186 }
25baf2da 187
49cb8d2d
MF
188 /* Treat the unwritten extent as a hole for zeroing purposes. */
189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
190 map_bh(bh_result, inode->i_sb, p_blkno);
191
628a24f5
MF
192 bh_result->b_size = count << inode->i_blkbits;
193
25baf2da
MF
194 if (!ocfs2_sparse_alloc(osb)) {
195 if (p_blkno == 0) {
196 err = -EIO;
197 mlog(ML_ERROR,
198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 (unsigned long long)iblock,
200 (unsigned long long)p_blkno,
201 (unsigned long long)OCFS2_I(inode)->ip_blkno);
202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203 dump_stack();
1f4cea37 204 goto bail;
25baf2da 205 }
25baf2da 206 }
ccd979bd 207
5693486b 208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
9558156b
TM
209
210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211 (unsigned long long)past_eof);
5693486b
JB
212 if (create && (iblock >= past_eof))
213 set_buffer_new(bh_result);
214
ccd979bd
MF
215bail:
216 if (err < 0)
217 err = -EIO;
218
ccd979bd
MF
219 return err;
220}
221
1afc32b9
MF
222int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223 struct buffer_head *di_bh)
6798d35a
MF
224{
225 void *kaddr;
d2849fb2 226 loff_t size;
6798d35a
MF
227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
231 (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 return -EROFS;
233 }
234
235 size = i_size_read(inode);
236
237 if (size > PAGE_CACHE_SIZE ||
d9ae49d6 238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 239 ocfs2_error(inode->i_sb,
d2849fb2
JK
240 "Inode %llu has with inline data has bad size: %Lu",
241 (unsigned long long)OCFS2_I(inode)->ip_blkno,
242 (unsigned long long)size);
6798d35a
MF
243 return -EROFS;
244 }
245
c4bc8dcb 246 kaddr = kmap_atomic(page);
6798d35a
MF
247 if (size)
248 memcpy(kaddr, di->id2.i_data.id_data, size);
249 /* Clear the remaining part of the page */
250 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251 flush_dcache_page(page);
c4bc8dcb 252 kunmap_atomic(kaddr);
6798d35a
MF
253
254 SetPageUptodate(page);
255
256 return 0;
257}
258
259static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260{
261 int ret;
262 struct buffer_head *di_bh = NULL;
6798d35a
MF
263
264 BUG_ON(!PageLocked(page));
86c838b0 265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 266
b657c95c 267 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
268 if (ret) {
269 mlog_errno(ret);
270 goto out;
271 }
272
273 ret = ocfs2_read_inline_data(inode, page, di_bh);
274out:
275 unlock_page(page);
276
277 brelse(di_bh);
278 return ret;
279}
280
ccd979bd
MF
281static int ocfs2_readpage(struct file *file, struct page *page)
282{
283 struct inode *inode = page->mapping->host;
6798d35a 284 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
285 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286 int ret, unlock = 1;
287
9558156b
TM
288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289 (page ? page->index : 0));
ccd979bd 290
e63aecb6 291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
292 if (ret != 0) {
293 if (ret == AOP_TRUNCATED_PAGE)
294 unlock = 0;
295 mlog_errno(ret);
296 goto out;
297 }
298
6798d35a 299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
c7e25e6e
JK
300 /*
301 * Unlock the page and cycle ip_alloc_sem so that we don't
302 * busyloop waiting for ip_alloc_sem to unlock
303 */
e9dfc0b2 304 ret = AOP_TRUNCATED_PAGE;
c7e25e6e
JK
305 unlock_page(page);
306 unlock = 0;
307 down_read(&oi->ip_alloc_sem);
308 up_read(&oi->ip_alloc_sem);
e63aecb6 309 goto out_inode_unlock;
e9dfc0b2 310 }
ccd979bd
MF
311
312 /*
313 * i_size might have just been updated as we grabed the meta lock. We
314 * might now be discovering a truncate that hit on another node.
315 * block_read_full_page->get_block freaks out if it is asked to read
316 * beyond the end of a file, so we check here. Callers
54cb8821 317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
318 * and notice that the page they just read isn't needed.
319 *
320 * XXX sys_readahead() seems to get that wrong?
321 */
322 if (start >= i_size_read(inode)) {
eebd2aa3 323 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
324 SetPageUptodate(page);
325 ret = 0;
326 goto out_alloc;
327 }
328
6798d35a
MF
329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330 ret = ocfs2_readpage_inline(inode, page);
331 else
332 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
333 unlock = 0;
334
ccd979bd
MF
335out_alloc:
336 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
337out_inode_unlock:
338 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
339out:
340 if (unlock)
341 unlock_page(page);
ccd979bd
MF
342 return ret;
343}
344
628a24f5
MF
345/*
346 * This is used only for read-ahead. Failures or difficult to handle
347 * situations are safe to ignore.
348 *
349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
350 * are quite large (243 extents on 4k blocks), so most inodes don't
351 * grow out to a tree. If need be, detecting boundary extents could
352 * trivially be added in a future version of ocfs2_get_block().
353 */
354static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355 struct list_head *pages, unsigned nr_pages)
356{
357 int ret, err = -EIO;
358 struct inode *inode = mapping->host;
359 struct ocfs2_inode_info *oi = OCFS2_I(inode);
360 loff_t start;
361 struct page *last;
362
363 /*
364 * Use the nonblocking flag for the dlm code to avoid page
365 * lock inversion, but don't bother with retrying.
366 */
367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368 if (ret)
369 return err;
370
371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372 ocfs2_inode_unlock(inode, 0);
373 return err;
374 }
375
376 /*
377 * Don't bother with inline-data. There isn't anything
378 * to read-ahead in that case anyway...
379 */
380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381 goto out_unlock;
382
383 /*
384 * Check whether a remote node truncated this file - we just
385 * drop out in that case as it's not worth handling here.
386 */
387 last = list_entry(pages->prev, struct page, lru);
388 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389 if (start >= i_size_read(inode))
390 goto out_unlock;
391
392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394out_unlock:
395 up_read(&oi->ip_alloc_sem);
396 ocfs2_inode_unlock(inode, 0);
397
398 return err;
399}
400
ccd979bd
MF
401/* Note: Because we don't support holes, our allocation has
402 * already happened (allocation writes zeros to the file data)
403 * so we don't have to worry about ordered writes in
404 * ocfs2_writepage.
405 *
406 * ->writepage is called during the process of invalidating the page cache
407 * during blocked lock processing. It can't block on any cluster locks
408 * to during block mapping. It's relying on the fact that the block
409 * mapping can't have disappeared under the dirty pages that it is
410 * being asked to write back.
411 */
412static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413{
9558156b
TM
414 trace_ocfs2_writepage(
415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416 page->index);
ccd979bd 417
9558156b 418 return block_write_full_page(page, ocfs2_get_block, wbc);
ccd979bd
MF
419}
420
ccd979bd
MF
421/* Taken from ext3. We don't necessarily need the full blown
422 * functionality yet, but IMHO it's better to cut and paste the whole
423 * thing so we can avoid introducing our own bugs (and easily pick up
424 * their fixes when they happen) --Mark */
60b11392
MF
425int walk_page_buffers( handle_t *handle,
426 struct buffer_head *head,
427 unsigned from,
428 unsigned to,
429 int *partial,
430 int (*fn)( handle_t *handle,
431 struct buffer_head *bh))
ccd979bd
MF
432{
433 struct buffer_head *bh;
434 unsigned block_start, block_end;
435 unsigned blocksize = head->b_size;
436 int err, ret = 0;
437 struct buffer_head *next;
438
439 for ( bh = head, block_start = 0;
440 ret == 0 && (bh != head || !block_start);
441 block_start = block_end, bh = next)
442 {
443 next = bh->b_this_page;
444 block_end = block_start + blocksize;
445 if (block_end <= from || block_start >= to) {
446 if (partial && !buffer_uptodate(bh))
447 *partial = 1;
448 continue;
449 }
450 err = (*fn)(handle, bh);
451 if (!ret)
452 ret = err;
453 }
454 return ret;
455}
456
ccd979bd
MF
457static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458{
459 sector_t status;
460 u64 p_blkno = 0;
461 int err = 0;
462 struct inode *inode = mapping->host;
463
9558156b
TM
464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465 (unsigned long long)block);
ccd979bd
MF
466
467 /* We don't need to lock journal system files, since they aren't
468 * accessed concurrently from multiple nodes.
469 */
470 if (!INODE_JOURNAL(inode)) {
e63aecb6 471 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
472 if (err) {
473 if (err != -ENOENT)
474 mlog_errno(err);
475 goto bail;
476 }
477 down_read(&OCFS2_I(inode)->ip_alloc_sem);
478 }
479
6798d35a
MF
480 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482 NULL);
ccd979bd
MF
483
484 if (!INODE_JOURNAL(inode)) {
485 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 486 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
487 }
488
489 if (err) {
490 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491 (unsigned long long)block);
492 mlog_errno(err);
493 goto bail;
494 }
495
ccd979bd
MF
496bail:
497 status = err ? 0 : p_blkno;
498
ccd979bd
MF
499 return status;
500}
501
502/*
503 * TODO: Make this into a generic get_blocks function.
504 *
505 * From do_direct_io in direct-io.c:
506 * "So what we do is to permit the ->get_blocks function to populate
507 * bh.b_size with the size of IO which is permitted at this offset and
508 * this i_blkbits."
509 *
510 * This function is called directly from get_more_blocks in direct-io.c.
511 *
512 * called like this: dio->get_blocks(dio->inode, fs_startblk,
513 * fs_count, map_bh, dio->rw == WRITE);
514 */
515static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
516 struct buffer_head *bh_result, int create)
517{
518 int ret;
49255dce
JQ
519 u32 cpos = 0;
520 int alloc_locked = 0;
4f902c37 521 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 522 unsigned int ext_flags;
184d7d20 523 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 524 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
49255dce 525 unsigned long len = bh_result->b_size;
ae1f0814 526 unsigned int clusters_to_alloc = 0, contig_clusters = 0;
49255dce
JQ
527
528 cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
ccd979bd 529
ccd979bd
MF
530 /* This function won't even be called if the request isn't all
531 * nicely aligned and of the right size, so there's no need
532 * for us to check any of that. */
533
25baf2da 534 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32 535
6ab855a9
WW
536 down_read(&OCFS2_I(inode)->ip_alloc_sem);
537
ccd979bd
MF
538 /* This figures out the size of the next contiguous block, and
539 * our logical offset */
363041a5 540 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 541 &contig_blocks, &ext_flags);
6ab855a9
WW
542 up_read(&OCFS2_I(inode)->ip_alloc_sem);
543
ccd979bd
MF
544 if (ret) {
545 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
546 (unsigned long long)iblock);
547 ret = -EIO;
548 goto bail;
549 }
550
cbaee472
TM
551 /* We should already CoW the refcounted extent in case of create. */
552 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
553
49255dce
JQ
554 /* allocate blocks if no p_blkno is found, and create == 1 */
555 if (!p_blkno && create) {
556 ret = ocfs2_inode_lock(inode, NULL, 1);
557 if (ret < 0) {
558 mlog_errno(ret);
559 goto bail;
560 }
561
562 alloc_locked = 1;
563
6ab855a9
WW
564 down_write(&OCFS2_I(inode)->ip_alloc_sem);
565
49255dce
JQ
566 /* fill hole, allocate blocks can't be larger than the size
567 * of the hole */
568 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
ae1f0814
JQ
569 contig_clusters = ocfs2_clusters_for_blocks(inode->i_sb,
570 contig_blocks);
571 if (clusters_to_alloc > contig_clusters)
572 clusters_to_alloc = contig_clusters;
49255dce
JQ
573
574 /* allocate extent and insert them into the extent tree */
575 ret = ocfs2_extend_allocation(inode, cpos,
576 clusters_to_alloc, 0);
577 if (ret < 0) {
6ab855a9 578 up_write(&OCFS2_I(inode)->ip_alloc_sem);
49255dce
JQ
579 mlog_errno(ret);
580 goto bail;
581 }
582
583 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
584 &contig_blocks, &ext_flags);
585 if (ret < 0) {
6ab855a9 586 up_write(&OCFS2_I(inode)->ip_alloc_sem);
49255dce
JQ
587 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
588 (unsigned long long)iblock);
589 ret = -EIO;
590 goto bail;
591 }
6ab855a9 592 up_write(&OCFS2_I(inode)->ip_alloc_sem);
49255dce
JQ
593 }
594
25baf2da
MF
595 /*
596 * get_more_blocks() expects us to describe a hole by clearing
597 * the mapped bit on bh_result().
49cb8d2d
MF
598 *
599 * Consider an unwritten extent as a hole.
25baf2da 600 */
49cb8d2d 601 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da 602 map_bh(bh_result, inode->i_sb, p_blkno);
5fe878ae 603 else
25baf2da 604 clear_buffer_mapped(bh_result);
ccd979bd
MF
605
606 /* make sure we don't map more than max_blocks blocks here as
607 that's all the kernel will handle at this point. */
608 if (max_blocks < contig_blocks)
609 contig_blocks = max_blocks;
610 bh_result->b_size = contig_blocks << blocksize_bits;
611bail:
49255dce
JQ
612 if (alloc_locked)
613 ocfs2_inode_unlock(inode, 1);
ccd979bd
MF
614 return ret;
615}
616
2bd63216 617/*
ccd979bd 618 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
bd5fe6c5
CH
619 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
620 * to protect io on one node from truncation on another.
ccd979bd
MF
621 */
622static void ocfs2_dio_end_io(struct kiocb *iocb,
623 loff_t offset,
624 ssize_t bytes,
7b7a8665 625 void *private)
ccd979bd 626{
496ad9aa 627 struct inode *inode = file_inode(iocb->ki_filp);
7cdfc3a1 628 int level;
ccd979bd
MF
629
630 /* this io's submitter should not have unlocked this before we could */
631 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 632
a11f7e63
MF
633 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
634 ocfs2_iocb_clear_unaligned_aio(iocb);
635
c18ceab0 636 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
a11f7e63
MF
637 }
638
512f62ac
JQ
639 /* Let rw unlock to be done later to protect append direct io write */
640 if (offset + bytes <= i_size_read(inode)) {
641 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1 642
512f62ac
JQ
643 level = ocfs2_iocb_rw_locked_level(iocb);
644 ocfs2_rw_unlock(inode, level);
645 }
ccd979bd
MF
646}
647
03f981cf
JB
648static int ocfs2_releasepage(struct page *page, gfp_t wait)
649{
03f981cf
JB
650 if (!page_has_buffers(page))
651 return 0;
41ecc345 652 return try_to_free_buffers(page);
03f981cf
JB
653}
654
24c40b32
JQ
655static int ocfs2_is_overwrite(struct ocfs2_super *osb,
656 struct inode *inode, loff_t offset)
657{
658 int ret = 0;
659 u32 v_cpos = 0;
660 u32 p_cpos = 0;
661 unsigned int num_clusters = 0;
662 unsigned int ext_flags = 0;
663
664 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
665 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
666 &num_clusters, &ext_flags);
667 if (ret < 0) {
668 mlog_errno(ret);
669 return ret;
670 }
671
672 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
673 return 1;
674
675 return 0;
676}
677
14a5275d
JQ
678static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
679 struct inode *inode, loff_t offset,
680 u64 zero_len, int cluster_align)
681{
682 u32 p_cpos = 0;
683 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
684 unsigned int num_clusters = 0;
685 unsigned int ext_flags = 0;
686 int ret = 0;
687
688 if (offset <= i_size_read(inode) || cluster_align)
689 return 0;
690
691 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
692 &ext_flags);
693 if (ret < 0) {
694 mlog_errno(ret);
695 return ret;
696 }
697
698 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
699 u64 s = i_size_read(inode);
32e5a2a2 700 sector_t sector = ((u64)p_cpos << (osb->s_clustersize_bits - 9)) +
14a5275d
JQ
701 (do_div(s, osb->s_clustersize) >> 9);
702
703 ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
704 zero_len >> 9, GFP_NOFS, false);
705 if (ret < 0)
706 mlog_errno(ret);
707 }
708
709 return ret;
710}
711
712static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
713 struct inode *inode, loff_t offset)
714{
715 u64 zero_start, zero_len, total_zero_len;
716 u32 p_cpos = 0, clusters_to_add;
717 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
718 unsigned int num_clusters = 0;
719 unsigned int ext_flags = 0;
720 u32 size_div, offset_div;
721 int ret = 0;
722
723 {
724 u64 o = offset;
725 u64 s = i_size_read(inode);
726
727 offset_div = do_div(o, osb->s_clustersize);
728 size_div = do_div(s, osb->s_clustersize);
729 }
730
731 if (offset <= i_size_read(inode))
732 return 0;
733
734 clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
735 ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
736 total_zero_len = offset - i_size_read(inode);
737 if (clusters_to_add)
738 total_zero_len -= offset_div;
739
740 /* Allocate clusters to fill out holes, and this is only needed
741 * when we add more than one clusters. Otherwise the cluster will
742 * be allocated during direct IO */
743 if (clusters_to_add > 1) {
744 ret = ocfs2_extend_allocation(inode,
745 OCFS2_I(inode)->ip_clusters,
746 clusters_to_add - 1, 0);
747 if (ret) {
748 mlog_errno(ret);
749 goto out;
750 }
751 }
752
753 while (total_zero_len) {
754 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
755 &ext_flags);
756 if (ret < 0) {
757 mlog_errno(ret);
758 goto out;
759 }
760
761 zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
762 size_div;
763 zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
764 size_div;
765 zero_len = min(total_zero_len, zero_len);
766
767 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
768 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
769 zero_start >> 9, zero_len >> 9,
770 GFP_NOFS, false);
771 if (ret < 0) {
772 mlog_errno(ret);
773 goto out;
774 }
775 }
776
777 total_zero_len -= zero_len;
778 v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
779
780 /* Only at first iteration can be cluster not aligned.
781 * So set size_div to 0 for the rest */
782 size_div = 0;
783 }
784
785out:
786 return ret;
787}
788
24c40b32
JQ
789static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
790 struct iov_iter *iter,
791 loff_t offset)
792{
793 ssize_t ret = 0;
794 ssize_t written = 0;
795 bool orphaned = false;
796 int is_overwrite = 0;
797 struct file *file = iocb->ki_filp;
798 struct inode *inode = file_inode(file)->i_mapping->host;
799 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
800 struct buffer_head *di_bh = NULL;
801 size_t count = iter->count;
802 journal_t *journal = osb->journal->j_journal;
14a5275d
JQ
803 u64 zero_len_head, zero_len_tail;
804 int cluster_align_head, cluster_align_tail;
24c40b32
JQ
805 loff_t final_size = offset + count;
806 int append_write = offset >= i_size_read(inode) ? 1 : 0;
807 unsigned int num_clusters = 0;
808 unsigned int ext_flags = 0;
809
810 {
811 u64 o = offset;
14a5275d
JQ
812 u64 s = i_size_read(inode);
813
814 zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
815 cluster_align_head = !zero_len_head;
24c40b32 816
14a5275d
JQ
817 zero_len_tail = osb->s_clustersize -
818 do_div(s, osb->s_clustersize);
819 if ((offset - i_size_read(inode)) < zero_len_tail)
820 zero_len_tail = offset - i_size_read(inode);
821 cluster_align_tail = !zero_len_tail;
24c40b32
JQ
822 }
823
824 /*
825 * when final_size > inode->i_size, inode->i_size will be
826 * updated after direct write, so add the inode to orphan
827 * dir first.
828 */
829 if (final_size > i_size_read(inode)) {
830 ret = ocfs2_add_inode_to_orphan(osb, inode);
831 if (ret < 0) {
832 mlog_errno(ret);
833 goto out;
834 }
835 orphaned = true;
836 }
837
838 if (append_write) {
7e9b1955 839 ret = ocfs2_inode_lock(inode, NULL, 1);
24c40b32
JQ
840 if (ret < 0) {
841 mlog_errno(ret);
842 goto clean_orphan;
843 }
844
14a5275d
JQ
845 /* zeroing out the previously allocated cluster tail
846 * that but not zeroed */
6ab855a9
WW
847 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
848 down_read(&OCFS2_I(inode)->ip_alloc_sem);
14a5275d
JQ
849 ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
850 zero_len_tail, cluster_align_tail);
6ab855a9
WW
851 up_read(&OCFS2_I(inode)->ip_alloc_sem);
852 } else {
853 down_write(&OCFS2_I(inode)->ip_alloc_sem);
14a5275d 854 ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
24c40b32 855 offset);
6ab855a9
WW
856 up_write(&OCFS2_I(inode)->ip_alloc_sem);
857 }
24c40b32
JQ
858 if (ret < 0) {
859 mlog_errno(ret);
860 ocfs2_inode_unlock(inode, 1);
24c40b32
JQ
861 goto clean_orphan;
862 }
863
864 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
865 if (is_overwrite < 0) {
866 mlog_errno(is_overwrite);
867 ocfs2_inode_unlock(inode, 1);
24c40b32
JQ
868 goto clean_orphan;
869 }
870
871 ocfs2_inode_unlock(inode, 1);
24c40b32
JQ
872 }
873
17f8c842
OS
874 written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
875 offset, ocfs2_direct_IO_get_blocks,
876 ocfs2_dio_end_io, NULL, 0);
faaebf18
JQ
877 /* overwrite aio may return -EIOCBQUEUED, and it is not an error */
878 if ((written < 0) && (written != -EIOCBQUEUED)) {
24c40b32
JQ
879 loff_t i_size = i_size_read(inode);
880
881 if (offset + count > i_size) {
882 ret = ocfs2_inode_lock(inode, &di_bh, 1);
883 if (ret < 0) {
884 mlog_errno(ret);
885 goto clean_orphan;
886 }
887
888 if (i_size == i_size_read(inode)) {
889 ret = ocfs2_truncate_file(inode, di_bh,
890 i_size);
891 if (ret < 0) {
892 if (ret != -ENOSPC)
893 mlog_errno(ret);
894
895 ocfs2_inode_unlock(inode, 1);
896 brelse(di_bh);
faaebf18 897 di_bh = NULL;
24c40b32
JQ
898 goto clean_orphan;
899 }
900 }
901
902 ocfs2_inode_unlock(inode, 1);
903 brelse(di_bh);
faaebf18 904 di_bh = NULL;
24c40b32
JQ
905
906 ret = jbd2_journal_force_commit(journal);
907 if (ret < 0)
908 mlog_errno(ret);
909 }
bdd86215 910 } else if (written > 0 && append_write && !is_overwrite &&
14a5275d
JQ
911 !cluster_align_head) {
912 /* zeroing out the allocated cluster head */
24c40b32
JQ
913 u32 p_cpos = 0;
914 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
915
37a8d89a
JQ
916 ret = ocfs2_inode_lock(inode, NULL, 0);
917 if (ret < 0) {
918 mlog_errno(ret);
919 goto clean_orphan;
920 }
921
24c40b32
JQ
922 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
923 &num_clusters, &ext_flags);
924 if (ret < 0) {
925 mlog_errno(ret);
37a8d89a 926 ocfs2_inode_unlock(inode, 0);
24c40b32
JQ
927 goto clean_orphan;
928 }
929
930 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
931
932 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
32e5a2a2 933 (u64)p_cpos << (osb->s_clustersize_bits - 9),
14a5275d 934 zero_len_head >> 9, GFP_NOFS, false);
24c40b32
JQ
935 if (ret < 0)
936 mlog_errno(ret);
37a8d89a
JQ
937
938 ocfs2_inode_unlock(inode, 0);
24c40b32
JQ
939 }
940
941clean_orphan:
942 if (orphaned) {
943 int tmp_ret;
944 int update_isize = written > 0 ? 1 : 0;
945 loff_t end = update_isize ? offset + written : 0;
946
cf1776a9
JQ
947 tmp_ret = ocfs2_inode_lock(inode, &di_bh, 1);
948 if (tmp_ret < 0) {
949 ret = tmp_ret;
950 mlog_errno(ret);
951 goto out;
952 }
953
954 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
24c40b32
JQ
955 update_isize, end);
956 if (tmp_ret < 0) {
957 ret = tmp_ret;
cf1776a9 958 mlog_errno(ret);
faaebf18 959 brelse(di_bh);
24c40b32
JQ
960 goto out;
961 }
962
cf1776a9 963 ocfs2_inode_unlock(inode, 1);
faaebf18 964 brelse(di_bh);
cf1776a9 965
24c40b32
JQ
966 tmp_ret = jbd2_journal_force_commit(journal);
967 if (tmp_ret < 0) {
968 ret = tmp_ret;
969 mlog_errno(tmp_ret);
970 }
971 }
972
973out:
974 if (ret >= 0)
975 ret = written;
976 return ret;
977}
978
22c6186e 979static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
d8d3d94b 980 loff_t offset)
ccd979bd
MF
981{
982 struct file *file = iocb->ki_filp;
496ad9aa 983 struct inode *inode = file_inode(file)->i_mapping->host;
24c40b32
JQ
984 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
985 int full_coherency = !(osb->s_mount_opt &
986 OCFS2_MOUNT_COHERENCY_BUFFERED);
53013cba 987
6798d35a
MF
988 /*
989 * Fallback to buffered I/O if we see an inode without
990 * extents.
991 */
992 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
993 return 0;
994
24c40b32
JQ
995 /* Fallback to buffered I/O if we are appending and
996 * concurrent O_DIRECT writes are allowed.
997 */
998 if (i_size_read(inode) <= offset && !full_coherency)
b80474b4
TM
999 return 0;
1000
6f673763 1001 if (iov_iter_rw(iter) == READ)
17f8c842
OS
1002 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
1003 iter, offset,
1004 ocfs2_direct_IO_get_blocks,
1005 ocfs2_dio_end_io, NULL, 0);
24c40b32
JQ
1006 else
1007 return ocfs2_direct_IO_write(iocb, iter, offset);
ccd979bd
MF
1008}
1009
9517bac6
MF
1010static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
1011 u32 cpos,
1012 unsigned int *start,
1013 unsigned int *end)
1014{
1015 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
1016
1017 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
1018 unsigned int cpp;
1019
1020 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
1021
1022 cluster_start = cpos % cpp;
1023 cluster_start = cluster_start << osb->s_clustersize_bits;
1024
1025 cluster_end = cluster_start + osb->s_clustersize;
1026 }
1027
1028 BUG_ON(cluster_start > PAGE_SIZE);
1029 BUG_ON(cluster_end > PAGE_SIZE);
1030
1031 if (start)
1032 *start = cluster_start;
1033 if (end)
1034 *end = cluster_end;
1035}
1036
1037/*
1038 * 'from' and 'to' are the region in the page to avoid zeroing.
1039 *
1040 * If pagesize > clustersize, this function will avoid zeroing outside
1041 * of the cluster boundary.
1042 *
1043 * from == to == 0 is code for "zero the entire cluster region"
1044 */
1045static void ocfs2_clear_page_regions(struct page *page,
1046 struct ocfs2_super *osb, u32 cpos,
1047 unsigned from, unsigned to)
1048{
1049 void *kaddr;
1050 unsigned int cluster_start, cluster_end;
1051
1052 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1053
c4bc8dcb 1054 kaddr = kmap_atomic(page);
9517bac6
MF
1055
1056 if (from || to) {
1057 if (from > cluster_start)
1058 memset(kaddr + cluster_start, 0, from - cluster_start);
1059 if (to < cluster_end)
1060 memset(kaddr + to, 0, cluster_end - to);
1061 } else {
1062 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1063 }
1064
c4bc8dcb 1065 kunmap_atomic(kaddr);
9517bac6
MF
1066}
1067
4e9563fd
MF
1068/*
1069 * Nonsparse file systems fully allocate before we get to the write
1070 * code. This prevents ocfs2_write() from tagging the write as an
1071 * allocating one, which means ocfs2_map_page_blocks() might try to
1072 * read-in the blocks at the tail of our file. Avoid reading them by
1073 * testing i_size against each block offset.
1074 */
1075static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1076 unsigned int block_start)
1077{
1078 u64 offset = page_offset(page) + block_start;
1079
1080 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1081 return 1;
1082
1083 if (i_size_read(inode) > offset)
1084 return 1;
1085
1086 return 0;
1087}
1088
9517bac6 1089/*
ebdec241 1090 * Some of this taken from __block_write_begin(). We already have our
9517bac6
MF
1091 * mapping by now though, and the entire write will be allocating or
1092 * it won't, so not much need to use BH_New.
1093 *
1094 * This will also skip zeroing, which is handled externally.
1095 */
60b11392
MF
1096int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1097 struct inode *inode, unsigned int from,
1098 unsigned int to, int new)
9517bac6
MF
1099{
1100 int ret = 0;
1101 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1102 unsigned int block_end, block_start;
1103 unsigned int bsize = 1 << inode->i_blkbits;
1104
1105 if (!page_has_buffers(page))
1106 create_empty_buffers(page, bsize, 0);
1107
1108 head = page_buffers(page);
1109 for (bh = head, block_start = 0; bh != head || !block_start;
1110 bh = bh->b_this_page, block_start += bsize) {
1111 block_end = block_start + bsize;
1112
3a307ffc
MF
1113 clear_buffer_new(bh);
1114
9517bac6
MF
1115 /*
1116 * Ignore blocks outside of our i/o range -
1117 * they may belong to unallocated clusters.
1118 */
60b11392 1119 if (block_start >= to || block_end <= from) {
9517bac6
MF
1120 if (PageUptodate(page))
1121 set_buffer_uptodate(bh);
1122 continue;
1123 }
1124
1125 /*
1126 * For an allocating write with cluster size >= page
1127 * size, we always write the entire page.
1128 */
3a307ffc
MF
1129 if (new)
1130 set_buffer_new(bh);
9517bac6
MF
1131
1132 if (!buffer_mapped(bh)) {
1133 map_bh(bh, inode->i_sb, *p_blkno);
1134 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1135 }
1136
1137 if (PageUptodate(page)) {
1138 if (!buffer_uptodate(bh))
1139 set_buffer_uptodate(bh);
1140 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 1141 !buffer_new(bh) &&
4e9563fd 1142 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 1143 (block_start < from || block_end > to)) {
9517bac6
MF
1144 ll_rw_block(READ, 1, &bh);
1145 *wait_bh++=bh;
1146 }
1147
1148 *p_blkno = *p_blkno + 1;
1149 }
1150
1151 /*
1152 * If we issued read requests - let them complete.
1153 */
1154 while(wait_bh > wait) {
1155 wait_on_buffer(*--wait_bh);
1156 if (!buffer_uptodate(*wait_bh))
1157 ret = -EIO;
1158 }
1159
1160 if (ret == 0 || !new)
1161 return ret;
1162
1163 /*
1164 * If we get -EIO above, zero out any newly allocated blocks
1165 * to avoid exposing stale data.
1166 */
1167 bh = head;
1168 block_start = 0;
1169 do {
9517bac6
MF
1170 block_end = block_start + bsize;
1171 if (block_end <= from)
1172 goto next_bh;
1173 if (block_start >= to)
1174 break;
1175
eebd2aa3 1176 zero_user(page, block_start, bh->b_size);
9517bac6
MF
1177 set_buffer_uptodate(bh);
1178 mark_buffer_dirty(bh);
1179
1180next_bh:
1181 block_start = block_end;
1182 bh = bh->b_this_page;
1183 } while (bh != head);
1184
1185 return ret;
1186}
1187
3a307ffc
MF
1188#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1189#define OCFS2_MAX_CTXT_PAGES 1
1190#else
1191#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1192#endif
1193
1194#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1195
6af67d82 1196/*
3a307ffc 1197 * Describe the state of a single cluster to be written to.
6af67d82 1198 */
3a307ffc
MF
1199struct ocfs2_write_cluster_desc {
1200 u32 c_cpos;
1201 u32 c_phys;
1202 /*
1203 * Give this a unique field because c_phys eventually gets
1204 * filled.
1205 */
1206 unsigned c_new;
b27b7cbc 1207 unsigned c_unwritten;
e7432675 1208 unsigned c_needs_zero;
3a307ffc 1209};
6af67d82 1210
3a307ffc
MF
1211struct ocfs2_write_ctxt {
1212 /* Logical cluster position / len of write */
1213 u32 w_cpos;
1214 u32 w_clen;
6af67d82 1215
e7432675
SM
1216 /* First cluster allocated in a nonsparse extend */
1217 u32 w_first_new_cpos;
1218
3a307ffc 1219 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 1220
3a307ffc
MF
1221 /*
1222 * This is true if page_size > cluster_size.
1223 *
1224 * It triggers a set of special cases during write which might
1225 * have to deal with allocating writes to partial pages.
1226 */
1227 unsigned int w_large_pages;
6af67d82 1228
3a307ffc
MF
1229 /*
1230 * Pages involved in this write.
1231 *
1232 * w_target_page is the page being written to by the user.
1233 *
1234 * w_pages is an array of pages which always contains
1235 * w_target_page, and in the case of an allocating write with
1236 * page_size < cluster size, it will contain zero'd and mapped
1237 * pages adjacent to w_target_page which need to be written
1238 * out in so that future reads from that region will get
1239 * zero's.
1240 */
3a307ffc 1241 unsigned int w_num_pages;
83fd9c7f 1242 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
3a307ffc 1243 struct page *w_target_page;
eeb47d12 1244
5cffff9e
WW
1245 /*
1246 * w_target_locked is used for page_mkwrite path indicating no unlocking
1247 * against w_target_page in ocfs2_write_end_nolock.
1248 */
1249 unsigned int w_target_locked:1;
1250
3a307ffc
MF
1251 /*
1252 * ocfs2_write_end() uses this to know what the real range to
1253 * write in the target should be.
1254 */
1255 unsigned int w_target_from;
1256 unsigned int w_target_to;
1257
1258 /*
1259 * We could use journal_current_handle() but this is cleaner,
1260 * IMHO -Mark
1261 */
1262 handle_t *w_handle;
1263
1264 struct buffer_head *w_di_bh;
b27b7cbc
MF
1265
1266 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
1267};
1268
1d410a6e 1269void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
1270{
1271 int i;
1272
1d410a6e
MF
1273 for(i = 0; i < num_pages; i++) {
1274 if (pages[i]) {
1275 unlock_page(pages[i]);
1276 mark_page_accessed(pages[i]);
1277 page_cache_release(pages[i]);
1278 }
6af67d82 1279 }
1d410a6e
MF
1280}
1281
136f49b9 1282static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1d410a6e 1283{
5cffff9e
WW
1284 int i;
1285
1286 /*
1287 * w_target_locked is only set to true in the page_mkwrite() case.
1288 * The intent is to allow us to lock the target page from write_begin()
1289 * to write_end(). The caller must hold a ref on w_target_page.
1290 */
1291 if (wc->w_target_locked) {
1292 BUG_ON(!wc->w_target_page);
1293 for (i = 0; i < wc->w_num_pages; i++) {
1294 if (wc->w_target_page == wc->w_pages[i]) {
1295 wc->w_pages[i] = NULL;
1296 break;
1297 }
1298 }
1299 mark_page_accessed(wc->w_target_page);
1300 page_cache_release(wc->w_target_page);
1301 }
1d410a6e 1302 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
136f49b9 1303}
6af67d82 1304
136f49b9
JB
1305static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1306{
1307 ocfs2_unlock_pages(wc);
3a307ffc
MF
1308 brelse(wc->w_di_bh);
1309 kfree(wc);
1310}
1311
1312static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1313 struct ocfs2_super *osb, loff_t pos,
607d44aa 1314 unsigned len, struct buffer_head *di_bh)
3a307ffc 1315{
30b8548f 1316 u32 cend;
3a307ffc
MF
1317 struct ocfs2_write_ctxt *wc;
1318
1319 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1320 if (!wc)
1321 return -ENOMEM;
6af67d82 1322
3a307ffc 1323 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 1324 wc->w_first_new_cpos = UINT_MAX;
30b8548f 1325 cend = (pos + len - 1) >> osb->s_clustersize_bits;
1326 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
1327 get_bh(di_bh);
1328 wc->w_di_bh = di_bh;
6af67d82 1329
3a307ffc
MF
1330 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1331 wc->w_large_pages = 1;
1332 else
1333 wc->w_large_pages = 0;
1334
b27b7cbc
MF
1335 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1336
3a307ffc 1337 *wcp = wc;
6af67d82 1338
3a307ffc 1339 return 0;
6af67d82
MF
1340}
1341
9517bac6 1342/*
3a307ffc
MF
1343 * If a page has any new buffers, zero them out here, and mark them uptodate
1344 * and dirty so they'll be written out (in order to prevent uninitialised
1345 * block data from leaking). And clear the new bit.
9517bac6 1346 */
3a307ffc 1347static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 1348{
3a307ffc
MF
1349 unsigned int block_start, block_end;
1350 struct buffer_head *head, *bh;
9517bac6 1351
3a307ffc
MF
1352 BUG_ON(!PageLocked(page));
1353 if (!page_has_buffers(page))
1354 return;
9517bac6 1355
3a307ffc
MF
1356 bh = head = page_buffers(page);
1357 block_start = 0;
1358 do {
1359 block_end = block_start + bh->b_size;
1360
1361 if (buffer_new(bh)) {
1362 if (block_end > from && block_start < to) {
1363 if (!PageUptodate(page)) {
1364 unsigned start, end;
3a307ffc
MF
1365
1366 start = max(from, block_start);
1367 end = min(to, block_end);
1368
eebd2aa3 1369 zero_user_segment(page, start, end);
3a307ffc
MF
1370 set_buffer_uptodate(bh);
1371 }
1372
1373 clear_buffer_new(bh);
1374 mark_buffer_dirty(bh);
1375 }
1376 }
9517bac6 1377
3a307ffc
MF
1378 block_start = block_end;
1379 bh = bh->b_this_page;
1380 } while (bh != head);
1381}
1382
1383/*
1384 * Only called when we have a failure during allocating write to write
1385 * zero's to the newly allocated region.
1386 */
1387static void ocfs2_write_failure(struct inode *inode,
1388 struct ocfs2_write_ctxt *wc,
1389 loff_t user_pos, unsigned user_len)
1390{
1391 int i;
5c26a7b7
MF
1392 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1393 to = user_pos + user_len;
3a307ffc
MF
1394 struct page *tmppage;
1395
5c26a7b7 1396 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1397
3a307ffc
MF
1398 for(i = 0; i < wc->w_num_pages; i++) {
1399 tmppage = wc->w_pages[i];
9517bac6 1400
961cecbe 1401 if (page_has_buffers(tmppage)) {
53ef99ca 1402 if (ocfs2_should_order_data(inode))
2b4e30fb 1403 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1404
1405 block_commit_write(tmppage, from, to);
1406 }
9517bac6 1407 }
9517bac6
MF
1408}
1409
3a307ffc
MF
1410static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1411 struct ocfs2_write_ctxt *wc,
1412 struct page *page, u32 cpos,
1413 loff_t user_pos, unsigned user_len,
1414 int new)
9517bac6 1415{
3a307ffc
MF
1416 int ret;
1417 unsigned int map_from = 0, map_to = 0;
9517bac6 1418 unsigned int cluster_start, cluster_end;
3a307ffc 1419 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1420
3a307ffc 1421 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1422 &cluster_start, &cluster_end);
1423
272b62c1
GR
1424 /* treat the write as new if the a hole/lseek spanned across
1425 * the page boundary.
1426 */
1427 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1428 (page_offset(page) <= user_pos));
1429
3a307ffc
MF
1430 if (page == wc->w_target_page) {
1431 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1432 map_to = map_from + user_len;
1433
1434 if (new)
1435 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1436 cluster_start, cluster_end,
1437 new);
1438 else
1439 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1440 map_from, map_to, new);
1441 if (ret) {
9517bac6
MF
1442 mlog_errno(ret);
1443 goto out;
1444 }
1445
3a307ffc
MF
1446 user_data_from = map_from;
1447 user_data_to = map_to;
9517bac6 1448 if (new) {
3a307ffc
MF
1449 map_from = cluster_start;
1450 map_to = cluster_end;
9517bac6
MF
1451 }
1452 } else {
1453 /*
1454 * If we haven't allocated the new page yet, we
1455 * shouldn't be writing it out without copying user
1456 * data. This is likely a math error from the caller.
1457 */
1458 BUG_ON(!new);
1459
3a307ffc
MF
1460 map_from = cluster_start;
1461 map_to = cluster_end;
9517bac6
MF
1462
1463 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1464 cluster_start, cluster_end, new);
9517bac6
MF
1465 if (ret) {
1466 mlog_errno(ret);
1467 goto out;
1468 }
1469 }
1470
1471 /*
1472 * Parts of newly allocated pages need to be zero'd.
1473 *
1474 * Above, we have also rewritten 'to' and 'from' - as far as
1475 * the rest of the function is concerned, the entire cluster
1476 * range inside of a page needs to be written.
1477 *
1478 * We can skip this if the page is up to date - it's already
1479 * been zero'd from being read in as a hole.
1480 */
1481 if (new && !PageUptodate(page))
1482 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1483 cpos, user_data_from, user_data_to);
9517bac6
MF
1484
1485 flush_dcache_page(page);
1486
9517bac6 1487out:
3a307ffc 1488 return ret;
9517bac6
MF
1489}
1490
1491/*
3a307ffc 1492 * This function will only grab one clusters worth of pages.
9517bac6 1493 */
3a307ffc
MF
1494static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1495 struct ocfs2_write_ctxt *wc,
693c241a
JB
1496 u32 cpos, loff_t user_pos,
1497 unsigned user_len, int new,
7307de80 1498 struct page *mmap_page)
9517bac6 1499{
3a307ffc 1500 int ret = 0, i;
693c241a 1501 unsigned long start, target_index, end_index, index;
9517bac6 1502 struct inode *inode = mapping->host;
693c241a 1503 loff_t last_byte;
9517bac6 1504
3a307ffc 1505 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1506
1507 /*
1508 * Figure out how many pages we'll be manipulating here. For
60b11392 1509 * non allocating write, we just change the one
693c241a
JB
1510 * page. Otherwise, we'll need a whole clusters worth. If we're
1511 * writing past i_size, we only need enough pages to cover the
1512 * last page of the write.
9517bac6 1513 */
9517bac6 1514 if (new) {
3a307ffc
MF
1515 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1516 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1517 /*
1518 * We need the index *past* the last page we could possibly
1519 * touch. This is the page past the end of the write or
1520 * i_size, whichever is greater.
1521 */
1522 last_byte = max(user_pos + user_len, i_size_read(inode));
1523 BUG_ON(last_byte < 1);
1524 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1525 if ((start + wc->w_num_pages) > end_index)
1526 wc->w_num_pages = end_index - start;
9517bac6 1527 } else {
3a307ffc
MF
1528 wc->w_num_pages = 1;
1529 start = target_index;
9517bac6
MF
1530 }
1531
3a307ffc 1532 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1533 index = start + i;
1534
7307de80
MF
1535 if (index == target_index && mmap_page) {
1536 /*
1537 * ocfs2_pagemkwrite() is a little different
1538 * and wants us to directly use the page
1539 * passed in.
1540 */
1541 lock_page(mmap_page);
1542
5cffff9e 1543 /* Exit and let the caller retry */
7307de80 1544 if (mmap_page->mapping != mapping) {
5cffff9e 1545 WARN_ON(mmap_page->mapping);
7307de80 1546 unlock_page(mmap_page);
5cffff9e 1547 ret = -EAGAIN;
7307de80
MF
1548 goto out;
1549 }
1550
1551 page_cache_get(mmap_page);
1552 wc->w_pages[i] = mmap_page;
5cffff9e 1553 wc->w_target_locked = true;
7307de80
MF
1554 } else {
1555 wc->w_pages[i] = find_or_create_page(mapping, index,
1556 GFP_NOFS);
1557 if (!wc->w_pages[i]) {
1558 ret = -ENOMEM;
1559 mlog_errno(ret);
1560 goto out;
1561 }
9517bac6 1562 }
1269529b 1563 wait_for_stable_page(wc->w_pages[i]);
3a307ffc
MF
1564
1565 if (index == target_index)
1566 wc->w_target_page = wc->w_pages[i];
9517bac6 1567 }
3a307ffc 1568out:
5cffff9e
WW
1569 if (ret)
1570 wc->w_target_locked = false;
3a307ffc
MF
1571 return ret;
1572}
1573
1574/*
1575 * Prepare a single cluster for write one cluster into the file.
1576 */
1577static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc 1578 u32 phys, unsigned int unwritten,
e7432675 1579 unsigned int should_zero,
b27b7cbc 1580 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1581 struct ocfs2_alloc_context *meta_ac,
1582 struct ocfs2_write_ctxt *wc, u32 cpos,
1583 loff_t user_pos, unsigned user_len)
1584{
e7432675 1585 int ret, i, new;
3a307ffc
MF
1586 u64 v_blkno, p_blkno;
1587 struct inode *inode = mapping->host;
f99b9b7c 1588 struct ocfs2_extent_tree et;
3a307ffc
MF
1589
1590 new = phys == 0 ? 1 : 0;
9517bac6 1591 if (new) {
3a307ffc
MF
1592 u32 tmp_pos;
1593
9517bac6
MF
1594 /*
1595 * This is safe to call with the page locks - it won't take
1596 * any additional semaphores or cluster locks.
1597 */
3a307ffc 1598 tmp_pos = cpos;
0eb8d47e
TM
1599 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1600 &tmp_pos, 1, 0, wc->w_di_bh,
1601 wc->w_handle, data_ac,
1602 meta_ac, NULL);
9517bac6
MF
1603 /*
1604 * This shouldn't happen because we must have already
1605 * calculated the correct meta data allocation required. The
1606 * internal tree allocation code should know how to increase
1607 * transaction credits itself.
1608 *
1609 * If need be, we could handle -EAGAIN for a
1610 * RESTART_TRANS here.
1611 */
1612 mlog_bug_on_msg(ret == -EAGAIN,
1613 "Inode %llu: EAGAIN return during allocation.\n",
1614 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1615 if (ret < 0) {
1616 mlog_errno(ret);
1617 goto out;
1618 }
b27b7cbc 1619 } else if (unwritten) {
5e404e9e
JB
1620 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1621 wc->w_di_bh);
f99b9b7c 1622 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1623 wc->w_handle, cpos, 1, phys,
f99b9b7c 1624 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1625 if (ret < 0) {
1626 mlog_errno(ret);
1627 goto out;
1628 }
1629 }
3a307ffc 1630
b27b7cbc 1631 if (should_zero)
3a307ffc 1632 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1633 else
3a307ffc 1634 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1635
3a307ffc
MF
1636 /*
1637 * The only reason this should fail is due to an inability to
1638 * find the extent added.
1639 */
49cb8d2d
MF
1640 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1641 NULL);
9517bac6 1642 if (ret < 0) {
61fb9ea4 1643 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
3a307ffc
MF
1644 "at logical block %llu",
1645 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1646 (unsigned long long)v_blkno);
9517bac6
MF
1647 goto out;
1648 }
1649
1650 BUG_ON(p_blkno == 0);
1651
3a307ffc
MF
1652 for(i = 0; i < wc->w_num_pages; i++) {
1653 int tmpret;
9517bac6 1654
3a307ffc
MF
1655 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1656 wc->w_pages[i], cpos,
b27b7cbc
MF
1657 user_pos, user_len,
1658 should_zero);
3a307ffc
MF
1659 if (tmpret) {
1660 mlog_errno(tmpret);
1661 if (ret == 0)
cbfa9639 1662 ret = tmpret;
3a307ffc 1663 }
9517bac6
MF
1664 }
1665
3a307ffc
MF
1666 /*
1667 * We only have cleanup to do in case of allocating write.
1668 */
1669 if (ret && new)
1670 ocfs2_write_failure(inode, wc, user_pos, user_len);
1671
9517bac6 1672out:
9517bac6 1673
3a307ffc 1674 return ret;
9517bac6
MF
1675}
1676
0d172baa
MF
1677static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1678 struct ocfs2_alloc_context *data_ac,
1679 struct ocfs2_alloc_context *meta_ac,
1680 struct ocfs2_write_ctxt *wc,
1681 loff_t pos, unsigned len)
1682{
1683 int ret, i;
db56246c
MF
1684 loff_t cluster_off;
1685 unsigned int local_len = len;
0d172baa 1686 struct ocfs2_write_cluster_desc *desc;
db56246c 1687 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1688
1689 for (i = 0; i < wc->w_clen; i++) {
1690 desc = &wc->w_desc[i];
1691
db56246c
MF
1692 /*
1693 * We have to make sure that the total write passed in
1694 * doesn't extend past a single cluster.
1695 */
1696 local_len = len;
1697 cluster_off = pos & (osb->s_clustersize - 1);
1698 if ((cluster_off + local_len) > osb->s_clustersize)
1699 local_len = osb->s_clustersize - cluster_off;
1700
b27b7cbc 1701 ret = ocfs2_write_cluster(mapping, desc->c_phys,
e7432675
SM
1702 desc->c_unwritten,
1703 desc->c_needs_zero,
1704 data_ac, meta_ac,
db56246c 1705 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1706 if (ret) {
1707 mlog_errno(ret);
1708 goto out;
1709 }
db56246c
MF
1710
1711 len -= local_len;
1712 pos += local_len;
0d172baa
MF
1713 }
1714
1715 ret = 0;
1716out:
1717 return ret;
1718}
1719
3a307ffc
MF
1720/*
1721 * ocfs2_write_end() wants to know which parts of the target page it
1722 * should complete the write on. It's easiest to compute them ahead of
1723 * time when a more complete view of the write is available.
1724 */
1725static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1726 struct ocfs2_write_ctxt *wc,
1727 loff_t pos, unsigned len, int alloc)
9517bac6 1728{
3a307ffc 1729 struct ocfs2_write_cluster_desc *desc;
9517bac6 1730
3a307ffc
MF
1731 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1732 wc->w_target_to = wc->w_target_from + len;
1733
1734 if (alloc == 0)
1735 return;
1736
1737 /*
1738 * Allocating write - we may have different boundaries based
1739 * on page size and cluster size.
1740 *
1741 * NOTE: We can no longer compute one value from the other as
1742 * the actual write length and user provided length may be
1743 * different.
1744 */
9517bac6 1745
3a307ffc
MF
1746 if (wc->w_large_pages) {
1747 /*
1748 * We only care about the 1st and last cluster within
b27b7cbc 1749 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1750 * value may be extended out to the start/end of a
1751 * newly allocated cluster.
1752 */
1753 desc = &wc->w_desc[0];
e7432675 1754 if (desc->c_needs_zero)
3a307ffc
MF
1755 ocfs2_figure_cluster_boundaries(osb,
1756 desc->c_cpos,
1757 &wc->w_target_from,
1758 NULL);
1759
1760 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1761 if (desc->c_needs_zero)
3a307ffc
MF
1762 ocfs2_figure_cluster_boundaries(osb,
1763 desc->c_cpos,
1764 NULL,
1765 &wc->w_target_to);
1766 } else {
1767 wc->w_target_from = 0;
1768 wc->w_target_to = PAGE_CACHE_SIZE;
1769 }
9517bac6
MF
1770}
1771
0d172baa
MF
1772/*
1773 * Populate each single-cluster write descriptor in the write context
1774 * with information about the i/o to be done.
b27b7cbc
MF
1775 *
1776 * Returns the number of clusters that will have to be allocated, as
1777 * well as a worst case estimate of the number of extent records that
1778 * would have to be created during a write to an unwritten region.
0d172baa
MF
1779 */
1780static int ocfs2_populate_write_desc(struct inode *inode,
1781 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1782 unsigned int *clusters_to_alloc,
1783 unsigned int *extents_to_split)
9517bac6 1784{
0d172baa 1785 int ret;
3a307ffc 1786 struct ocfs2_write_cluster_desc *desc;
0d172baa 1787 unsigned int num_clusters = 0;
b27b7cbc 1788 unsigned int ext_flags = 0;
0d172baa
MF
1789 u32 phys = 0;
1790 int i;
9517bac6 1791
b27b7cbc
MF
1792 *clusters_to_alloc = 0;
1793 *extents_to_split = 0;
1794
3a307ffc
MF
1795 for (i = 0; i < wc->w_clen; i++) {
1796 desc = &wc->w_desc[i];
1797 desc->c_cpos = wc->w_cpos + i;
1798
1799 if (num_clusters == 0) {
b27b7cbc
MF
1800 /*
1801 * Need to look up the next extent record.
1802 */
3a307ffc 1803 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1804 &num_clusters, &ext_flags);
3a307ffc
MF
1805 if (ret) {
1806 mlog_errno(ret);
607d44aa 1807 goto out;
3a307ffc 1808 }
b27b7cbc 1809
293b2f70
TM
1810 /* We should already CoW the refcountd extent. */
1811 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1812
b27b7cbc
MF
1813 /*
1814 * Assume worst case - that we're writing in
1815 * the middle of the extent.
1816 *
1817 * We can assume that the write proceeds from
1818 * left to right, in which case the extent
1819 * insert code is smart enough to coalesce the
1820 * next splits into the previous records created.
1821 */
1822 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1823 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1824 } else if (phys) {
1825 /*
1826 * Only increment phys if it doesn't describe
1827 * a hole.
1828 */
1829 phys++;
1830 }
1831
e7432675
SM
1832 /*
1833 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1834 * file that got extended. w_first_new_cpos tells us
1835 * where the newly allocated clusters are so we can
1836 * zero them.
1837 */
1838 if (desc->c_cpos >= wc->w_first_new_cpos) {
1839 BUG_ON(phys == 0);
1840 desc->c_needs_zero = 1;
1841 }
1842
3a307ffc
MF
1843 desc->c_phys = phys;
1844 if (phys == 0) {
1845 desc->c_new = 1;
e7432675 1846 desc->c_needs_zero = 1;
0d172baa 1847 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1848 }
e7432675
SM
1849
1850 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b27b7cbc 1851 desc->c_unwritten = 1;
e7432675
SM
1852 desc->c_needs_zero = 1;
1853 }
3a307ffc
MF
1854
1855 num_clusters--;
9517bac6
MF
1856 }
1857
0d172baa
MF
1858 ret = 0;
1859out:
1860 return ret;
1861}
1862
1afc32b9
MF
1863static int ocfs2_write_begin_inline(struct address_space *mapping,
1864 struct inode *inode,
1865 struct ocfs2_write_ctxt *wc)
1866{
1867 int ret;
1868 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1869 struct page *page;
1870 handle_t *handle;
1871 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1872
f775da2f
JB
1873 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1874 if (IS_ERR(handle)) {
1875 ret = PTR_ERR(handle);
1876 mlog_errno(ret);
1877 goto out;
1878 }
1879
1afc32b9
MF
1880 page = find_or_create_page(mapping, 0, GFP_NOFS);
1881 if (!page) {
f775da2f 1882 ocfs2_commit_trans(osb, handle);
1afc32b9
MF
1883 ret = -ENOMEM;
1884 mlog_errno(ret);
1885 goto out;
1886 }
1887 /*
1888 * If we don't set w_num_pages then this page won't get unlocked
1889 * and freed on cleanup of the write context.
1890 */
1891 wc->w_pages[0] = wc->w_target_page = page;
1892 wc->w_num_pages = 1;
1893
0cf2f763 1894 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1895 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1896 if (ret) {
1897 ocfs2_commit_trans(osb, handle);
1898
1899 mlog_errno(ret);
1900 goto out;
1901 }
1902
1903 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1904 ocfs2_set_inode_data_inline(inode, di);
1905
1906 if (!PageUptodate(page)) {
1907 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1908 if (ret) {
1909 ocfs2_commit_trans(osb, handle);
1910
1911 goto out;
1912 }
1913 }
1914
1915 wc->w_handle = handle;
1916out:
1917 return ret;
1918}
1919
1920int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1921{
1922 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1923
0d8a4e0c 1924 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1925 return 1;
1926 return 0;
1927}
1928
1929static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1930 struct inode *inode, loff_t pos,
1931 unsigned len, struct page *mmap_page,
1932 struct ocfs2_write_ctxt *wc)
1933{
1934 int ret, written = 0;
1935 loff_t end = pos + len;
1936 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1937 struct ocfs2_dinode *di = NULL;
1afc32b9 1938
9558156b
TM
1939 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1940 len, (unsigned long long)pos,
1941 oi->ip_dyn_features);
1afc32b9
MF
1942
1943 /*
1944 * Handle inodes which already have inline data 1st.
1945 */
1946 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1947 if (mmap_page == NULL &&
1948 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1949 goto do_inline_write;
1950
1951 /*
1952 * The write won't fit - we have to give this inode an
1953 * inline extent list now.
1954 */
1955 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1956 if (ret)
1957 mlog_errno(ret);
1958 goto out;
1959 }
1960
1961 /*
1962 * Check whether the inode can accept inline data.
1963 */
1964 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1965 return 0;
1966
1967 /*
1968 * Check whether the write can fit.
1969 */
d9ae49d6
TY
1970 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1971 if (mmap_page ||
1972 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1973 return 0;
1974
1975do_inline_write:
1976 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1977 if (ret) {
1978 mlog_errno(ret);
1979 goto out;
1980 }
1981
1982 /*
1983 * This signals to the caller that the data can be written
1984 * inline.
1985 */
1986 written = 1;
1987out:
1988 return written ? written : ret;
1989}
1990
65ed39d6
MF
1991/*
1992 * This function only does anything for file systems which can't
1993 * handle sparse files.
1994 *
1995 * What we want to do here is fill in any hole between the current end
1996 * of allocation and the end of our write. That way the rest of the
1997 * write path can treat it as an non-allocating write, which has no
1998 * special case code for sparse/nonsparse files.
1999 */
5693486b
JB
2000static int ocfs2_expand_nonsparse_inode(struct inode *inode,
2001 struct buffer_head *di_bh,
2002 loff_t pos, unsigned len,
65ed39d6
MF
2003 struct ocfs2_write_ctxt *wc)
2004{
2005 int ret;
65ed39d6
MF
2006 loff_t newsize = pos + len;
2007
5693486b 2008 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
2009
2010 if (newsize <= i_size_read(inode))
2011 return 0;
2012
5693486b 2013 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
2014 if (ret)
2015 mlog_errno(ret);
2016
e7432675
SM
2017 wc->w_first_new_cpos =
2018 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
2019
65ed39d6
MF
2020 return ret;
2021}
2022
5693486b
JB
2023static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
2024 loff_t pos)
2025{
2026 int ret = 0;
2027
2028 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2029 if (pos > i_size_read(inode))
2030 ret = ocfs2_zero_extend(inode, di_bh, pos);
2031
2032 return ret;
2033}
2034
50308d81
TM
2035/*
2036 * Try to flush truncate logs if we can free enough clusters from it.
2037 * As for return value, "< 0" means error, "0" no space and "1" means
2038 * we have freed enough spaces and let the caller try to allocate again.
2039 */
2040static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2041 unsigned int needed)
2042{
2043 tid_t target;
2044 int ret = 0;
2045 unsigned int truncated_clusters;
2046
2047 mutex_lock(&osb->osb_tl_inode->i_mutex);
2048 truncated_clusters = osb->truncated_clusters;
2049 mutex_unlock(&osb->osb_tl_inode->i_mutex);
2050
2051 /*
2052 * Check whether we can succeed in allocating if we free
2053 * the truncate log.
2054 */
2055 if (truncated_clusters < needed)
2056 goto out;
2057
2058 ret = ocfs2_flush_truncate_log(osb);
2059 if (ret) {
2060 mlog_errno(ret);
2061 goto out;
2062 }
2063
2064 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2065 jbd2_log_wait_commit(osb->journal->j_journal, target);
2066 ret = 1;
2067 }
2068out:
2069 return ret;
2070}
2071
0378da0f
TM
2072int ocfs2_write_begin_nolock(struct file *filp,
2073 struct address_space *mapping,
0d172baa
MF
2074 loff_t pos, unsigned len, unsigned flags,
2075 struct page **pagep, void **fsdata,
2076 struct buffer_head *di_bh, struct page *mmap_page)
2077{
e7432675 2078 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
50308d81 2079 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
0d172baa
MF
2080 struct ocfs2_write_ctxt *wc;
2081 struct inode *inode = mapping->host;
2082 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2083 struct ocfs2_dinode *di;
2084 struct ocfs2_alloc_context *data_ac = NULL;
2085 struct ocfs2_alloc_context *meta_ac = NULL;
2086 handle_t *handle;
f99b9b7c 2087 struct ocfs2_extent_tree et;
50308d81 2088 int try_free = 1, ret1;
0d172baa 2089
50308d81 2090try_again:
0d172baa
MF
2091 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2092 if (ret) {
2093 mlog_errno(ret);
2094 return ret;
2095 }
2096
1afc32b9
MF
2097 if (ocfs2_supports_inline_data(osb)) {
2098 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2099 mmap_page, wc);
2100 if (ret == 1) {
2101 ret = 0;
2102 goto success;
2103 }
2104 if (ret < 0) {
2105 mlog_errno(ret);
2106 goto out;
2107 }
2108 }
2109
5693486b
JB
2110 if (ocfs2_sparse_alloc(osb))
2111 ret = ocfs2_zero_tail(inode, di_bh, pos);
2112 else
2113 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2114 wc);
65ed39d6
MF
2115 if (ret) {
2116 mlog_errno(ret);
2117 goto out;
2118 }
2119
293b2f70
TM
2120 ret = ocfs2_check_range_for_refcount(inode, pos, len);
2121 if (ret < 0) {
2122 mlog_errno(ret);
2123 goto out;
2124 } else if (ret == 1) {
50308d81 2125 clusters_need = wc->w_clen;
c7dd3392 2126 ret = ocfs2_refcount_cow(inode, di_bh,
37f8a2bf 2127 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
2128 if (ret) {
2129 mlog_errno(ret);
2130 goto out;
2131 }
2132 }
2133
b27b7cbc
MF
2134 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2135 &extents_to_split);
0d172baa
MF
2136 if (ret) {
2137 mlog_errno(ret);
2138 goto out;
2139 }
50308d81 2140 clusters_need += clusters_to_alloc;
0d172baa
MF
2141
2142 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2143
9558156b
TM
2144 trace_ocfs2_write_begin_nolock(
2145 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2146 (long long)i_size_read(inode),
2147 le32_to_cpu(di->i_clusters),
2148 pos, len, flags, mmap_page,
2149 clusters_to_alloc, extents_to_split);
2150
3a307ffc
MF
2151 /*
2152 * We set w_target_from, w_target_to here so that
2153 * ocfs2_write_end() knows which range in the target page to
2154 * write out. An allocation requires that we write the entire
2155 * cluster range.
2156 */
b27b7cbc 2157 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
2158 /*
2159 * XXX: We are stretching the limits of
b27b7cbc 2160 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
2161 * the work to be done.
2162 */
5e404e9e
JB
2163 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2164 wc->w_di_bh);
f99b9b7c 2165 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 2166 clusters_to_alloc, extents_to_split,
f99b9b7c 2167 &data_ac, &meta_ac);
9517bac6
MF
2168 if (ret) {
2169 mlog_errno(ret);
607d44aa 2170 goto out;
9517bac6
MF
2171 }
2172
4fe370af
MF
2173 if (data_ac)
2174 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2175
811f933d 2176 credits = ocfs2_calc_extend_credits(inode->i_sb,
06f9da6e 2177 &di->id2.i_list);
3a307ffc 2178
9517bac6
MF
2179 }
2180
e7432675
SM
2181 /*
2182 * We have to zero sparse allocated clusters, unwritten extent clusters,
2183 * and non-sparse clusters we just extended. For non-sparse writes,
2184 * we know zeros will only be needed in the first and/or last cluster.
2185 */
2186 if (clusters_to_alloc || extents_to_split ||
8379e7c4
SM
2187 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2188 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
e7432675
SM
2189 cluster_of_pages = 1;
2190 else
2191 cluster_of_pages = 0;
2192
2193 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 2194
9517bac6
MF
2195 handle = ocfs2_start_trans(osb, credits);
2196 if (IS_ERR(handle)) {
2197 ret = PTR_ERR(handle);
2198 mlog_errno(ret);
607d44aa 2199 goto out;
9517bac6
MF
2200 }
2201
3a307ffc
MF
2202 wc->w_handle = handle;
2203
5dd4056d
CH
2204 if (clusters_to_alloc) {
2205 ret = dquot_alloc_space_nodirty(inode,
2206 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2207 if (ret)
2208 goto out_commit;
a90714c1 2209 }
7f27ec97 2210
0cf2f763 2211 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 2212 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 2213 if (ret) {
9517bac6 2214 mlog_errno(ret);
a90714c1 2215 goto out_quota;
9517bac6
MF
2216 }
2217
3a307ffc
MF
2218 /*
2219 * Fill our page array first. That way we've grabbed enough so
2220 * that we can zero and flush if we error after adding the
2221 * extent.
2222 */
693c241a 2223 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 2224 cluster_of_pages, mmap_page);
5cffff9e 2225 if (ret && ret != -EAGAIN) {
9517bac6 2226 mlog_errno(ret);
a90714c1 2227 goto out_quota;
9517bac6
MF
2228 }
2229
5cffff9e
WW
2230 /*
2231 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2232 * the target page. In this case, we exit with no error and no target
2233 * page. This will trigger the caller, page_mkwrite(), to re-try
2234 * the operation.
2235 */
2236 if (ret == -EAGAIN) {
2237 BUG_ON(wc->w_target_page);
2238 ret = 0;
2239 goto out_quota;
2240 }
2241
0d172baa
MF
2242 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2243 len);
2244 if (ret) {
2245 mlog_errno(ret);
a90714c1 2246 goto out_quota;
9517bac6 2247 }
9517bac6 2248
3a307ffc
MF
2249 if (data_ac)
2250 ocfs2_free_alloc_context(data_ac);
2251 if (meta_ac)
2252 ocfs2_free_alloc_context(meta_ac);
9517bac6 2253
1afc32b9 2254success:
3a307ffc
MF
2255 *pagep = wc->w_target_page;
2256 *fsdata = wc;
2257 return 0;
a90714c1
JK
2258out_quota:
2259 if (clusters_to_alloc)
5dd4056d 2260 dquot_free_space(inode,
a90714c1 2261 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
2262out_commit:
2263 ocfs2_commit_trans(osb, handle);
2264
9517bac6 2265out:
3a307ffc
MF
2266 ocfs2_free_write_ctxt(wc);
2267
b1214e47 2268 if (data_ac) {
9517bac6 2269 ocfs2_free_alloc_context(data_ac);
b1214e47
X
2270 data_ac = NULL;
2271 }
2272 if (meta_ac) {
9517bac6 2273 ocfs2_free_alloc_context(meta_ac);
b1214e47
X
2274 meta_ac = NULL;
2275 }
50308d81
TM
2276
2277 if (ret == -ENOSPC && try_free) {
2278 /*
2279 * Try to free some truncate log so that we can have enough
2280 * clusters to allocate.
2281 */
2282 try_free = 0;
2283
2284 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2285 if (ret1 == 1)
2286 goto try_again;
2287
2288 if (ret1 < 0)
2289 mlog_errno(ret1);
2290 }
2291
3a307ffc
MF
2292 return ret;
2293}
2294
b6af1bcd
NP
2295static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2296 loff_t pos, unsigned len, unsigned flags,
2297 struct page **pagep, void **fsdata)
607d44aa
MF
2298{
2299 int ret;
2300 struct buffer_head *di_bh = NULL;
2301 struct inode *inode = mapping->host;
2302
e63aecb6 2303 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
2304 if (ret) {
2305 mlog_errno(ret);
2306 return ret;
2307 }
2308
2309 /*
2310 * Take alloc sem here to prevent concurrent lookups. That way
2311 * the mapping, zeroing and tree manipulation within
2312 * ocfs2_write() will be safe against ->readpage(). This
2313 * should also serve to lock out allocation from a shared
2314 * writeable region.
2315 */
2316 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2317
0378da0f 2318 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
7307de80 2319 fsdata, di_bh, NULL);
607d44aa
MF
2320 if (ret) {
2321 mlog_errno(ret);
c934a92d 2322 goto out_fail;
607d44aa
MF
2323 }
2324
2325 brelse(di_bh);
2326
2327 return 0;
2328
607d44aa
MF
2329out_fail:
2330 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2331
2332 brelse(di_bh);
e63aecb6 2333 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
2334
2335 return ret;
2336}
2337
1afc32b9
MF
2338static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2339 unsigned len, unsigned *copied,
2340 struct ocfs2_dinode *di,
2341 struct ocfs2_write_ctxt *wc)
2342{
2343 void *kaddr;
2344
2345 if (unlikely(*copied < len)) {
2346 if (!PageUptodate(wc->w_target_page)) {
2347 *copied = 0;
2348 return;
2349 }
2350 }
2351
c4bc8dcb 2352 kaddr = kmap_atomic(wc->w_target_page);
1afc32b9 2353 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
c4bc8dcb 2354 kunmap_atomic(kaddr);
1afc32b9 2355
9558156b
TM
2356 trace_ocfs2_write_end_inline(
2357 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1afc32b9
MF
2358 (unsigned long long)pos, *copied,
2359 le16_to_cpu(di->id2.i_data.id_count),
2360 le16_to_cpu(di->i_dyn_features));
2361}
2362
7307de80
MF
2363int ocfs2_write_end_nolock(struct address_space *mapping,
2364 loff_t pos, unsigned len, unsigned copied,
2365 struct page *page, void *fsdata)
3a307ffc 2366{
7f27ec97 2367 int i, ret;
3a307ffc
MF
2368 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2369 struct inode *inode = mapping->host;
2370 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2371 struct ocfs2_write_ctxt *wc = fsdata;
2372 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2373 handle_t *handle = wc->w_handle;
2374 struct page *tmppage;
2375
7f27ec97 2376 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2377 OCFS2_JOURNAL_ACCESS_WRITE);
2378 if (ret) {
2379 copied = ret;
2380 mlog_errno(ret);
2381 goto out;
2382 }
2383
1afc32b9
MF
2384 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2385 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2386 goto out_write_size;
2387 }
2388
3a307ffc
MF
2389 if (unlikely(copied < len)) {
2390 if (!PageUptodate(wc->w_target_page))
2391 copied = 0;
2392
2393 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2394 start+len);
2395 }
2396 flush_dcache_page(wc->w_target_page);
2397
2398 for(i = 0; i < wc->w_num_pages; i++) {
2399 tmppage = wc->w_pages[i];
2400
2401 if (tmppage == wc->w_target_page) {
2402 from = wc->w_target_from;
2403 to = wc->w_target_to;
2404
2405 BUG_ON(from > PAGE_CACHE_SIZE ||
2406 to > PAGE_CACHE_SIZE ||
2407 to < from);
2408 } else {
2409 /*
2410 * Pages adjacent to the target (if any) imply
2411 * a hole-filling write in which case we want
2412 * to flush their entire range.
2413 */
2414 from = 0;
2415 to = PAGE_CACHE_SIZE;
2416 }
2417
961cecbe 2418 if (page_has_buffers(tmppage)) {
53ef99ca 2419 if (ocfs2_should_order_data(inode))
2b4e30fb 2420 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
2421 block_commit_write(tmppage, from, to);
2422 }
3a307ffc
MF
2423 }
2424
1afc32b9 2425out_write_size:
3a307ffc 2426 pos += copied;
f17c20dd 2427 if (pos > i_size_read(inode)) {
3a307ffc
MF
2428 i_size_write(inode, pos);
2429 mark_inode_dirty(inode);
2430 }
2431 inode->i_blocks = ocfs2_inode_sector_count(inode);
2432 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2433 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2434 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2435 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2931cdcb 2436 ocfs2_update_inode_fsync_trans(handle, inode, 1);
3a307ffc
MF
2437 ocfs2_journal_dirty(handle, wc->w_di_bh);
2438
7f27ec97 2439out:
136f49b9
JB
2440 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2441 * lock, or it will cause a deadlock since journal commit threads holds
2442 * this lock and will ask for the page lock when flushing the data.
2443 * put it here to preserve the unlock order.
2444 */
2445 ocfs2_unlock_pages(wc);
2446
3a307ffc 2447 ocfs2_commit_trans(osb, handle);
59a5e416 2448
b27b7cbc
MF
2449 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2450
136f49b9
JB
2451 brelse(wc->w_di_bh);
2452 kfree(wc);
607d44aa
MF
2453
2454 return copied;
2455}
2456
b6af1bcd
NP
2457static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2458 loff_t pos, unsigned len, unsigned copied,
2459 struct page *page, void *fsdata)
607d44aa
MF
2460{
2461 int ret;
2462 struct inode *inode = mapping->host;
2463
2464 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2465
3a307ffc 2466 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 2467 ocfs2_inode_unlock(inode, 1);
9517bac6 2468
607d44aa 2469 return ret;
9517bac6
MF
2470}
2471
f5e54d6e 2472const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
2473 .readpage = ocfs2_readpage,
2474 .readpages = ocfs2_readpages,
2475 .writepage = ocfs2_writepage,
2476 .write_begin = ocfs2_write_begin,
2477 .write_end = ocfs2_write_end,
2478 .bmap = ocfs2_bmap,
1fca3a05 2479 .direct_IO = ocfs2_direct_IO,
41ecc345 2480 .invalidatepage = block_invalidatepage,
1fca3a05
HH
2481 .releasepage = ocfs2_releasepage,
2482 .migratepage = buffer_migrate_page,
2483 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2484 .error_remove_page = generic_error_remove_page,
ccd979bd 2485};