ocfs2: clear the rest of the buffers on error
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
24c40b32 31#include <linux/blkdev.h>
e2e40f2c 32#include <linux/uio.h>
ccd979bd 33
ccd979bd
MF
34#include <cluster/masklog.h>
35
36#include "ocfs2.h"
37
38#include "alloc.h"
39#include "aops.h"
40#include "dlmglue.h"
41#include "extent_map.h"
42#include "file.h"
43#include "inode.h"
44#include "journal.h"
9517bac6 45#include "suballoc.h"
ccd979bd
MF
46#include "super.h"
47#include "symlink.h"
293b2f70 48#include "refcounttree.h"
9558156b 49#include "ocfs2_trace.h"
ccd979bd
MF
50
51#include "buffer_head_io.h"
24c40b32
JQ
52#include "dir.h"
53#include "namei.h"
54#include "sysfile.h"
ccd979bd
MF
55
56static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57 struct buffer_head *bh_result, int create)
58{
59 int err = -EIO;
60 int status;
61 struct ocfs2_dinode *fe = NULL;
62 struct buffer_head *bh = NULL;
63 struct buffer_head *buffer_cache_bh = NULL;
64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65 void *kaddr;
66
9558156b
TM
67 trace_ocfs2_symlink_get_block(
68 (unsigned long long)OCFS2_I(inode)->ip_blkno,
69 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
70
71 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75 (unsigned long long)iblock);
76 goto bail;
77 }
78
b657c95c 79 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
80 if (status < 0) {
81 mlog_errno(status);
82 goto bail;
83 }
84 fe = (struct ocfs2_dinode *) bh->b_data;
85
ccd979bd
MF
86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 le32_to_cpu(fe->i_clusters))) {
7391a294 88 err = -ENOMEM;
ccd979bd
MF
89 mlog(ML_ERROR, "block offset is outside the allocated size: "
90 "%llu\n", (unsigned long long)iblock);
91 goto bail;
92 }
93
94 /* We don't use the page cache to create symlink data, so if
95 * need be, copy it over from the buffer cache. */
96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 iblock;
99 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 if (!buffer_cache_bh) {
7391a294 101 err = -ENOMEM;
ccd979bd
MF
102 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 goto bail;
104 }
105
106 /* we haven't locked out transactions, so a commit
107 * could've happened. Since we've got a reference on
108 * the bh, even if it commits while we're doing the
109 * copy, the data is still good. */
110 if (buffer_jbd(buffer_cache_bh)
111 && ocfs2_inode_is_new(inode)) {
c4bc8dcb 112 kaddr = kmap_atomic(bh_result->b_page);
ccd979bd
MF
113 if (!kaddr) {
114 mlog(ML_ERROR, "couldn't kmap!\n");
115 goto bail;
116 }
117 memcpy(kaddr + (bh_result->b_size * iblock),
118 buffer_cache_bh->b_data,
119 bh_result->b_size);
c4bc8dcb 120 kunmap_atomic(kaddr);
ccd979bd
MF
121 set_buffer_uptodate(bh_result);
122 }
123 brelse(buffer_cache_bh);
124 }
125
126 map_bh(bh_result, inode->i_sb,
127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129 err = 0;
130
131bail:
a81cb88b 132 brelse(bh);
ccd979bd 133
ccd979bd
MF
134 return err;
135}
136
6f70fa51
TM
137int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
ccd979bd
MF
139{
140 int err = 0;
49cb8d2d 141 unsigned int ext_flags;
628a24f5
MF
142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143 u64 p_blkno, count, past_eof;
25baf2da 144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd 145
9558156b
TM
146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
148
149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151 inode, inode->i_ino);
152
153 if (S_ISLNK(inode->i_mode)) {
154 /* this always does I/O for some reason. */
155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 goto bail;
157 }
158
628a24f5 159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 160 &ext_flags);
ccd979bd
MF
161 if (err) {
162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164 (unsigned long long)p_blkno);
ccd979bd
MF
165 goto bail;
166 }
167
628a24f5
MF
168 if (max_blocks < count)
169 count = max_blocks;
170
25baf2da
MF
171 /*
172 * ocfs2 never allocates in this function - the only time we
173 * need to use BH_New is when we're extending i_size on a file
174 * system which doesn't support holes, in which case BH_New
ebdec241 175 * allows __block_write_begin() to zero.
c0420ad2
CL
176 *
177 * If we see this on a sparse file system, then a truncate has
178 * raced us and removed the cluster. In this case, we clear
179 * the buffers dirty and uptodate bits and let the buffer code
180 * ignore it as a hole.
25baf2da 181 */
c0420ad2
CL
182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183 clear_buffer_dirty(bh_result);
184 clear_buffer_uptodate(bh_result);
185 goto bail;
186 }
25baf2da 187
49cb8d2d
MF
188 /* Treat the unwritten extent as a hole for zeroing purposes. */
189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
190 map_bh(bh_result, inode->i_sb, p_blkno);
191
628a24f5
MF
192 bh_result->b_size = count << inode->i_blkbits;
193
25baf2da
MF
194 if (!ocfs2_sparse_alloc(osb)) {
195 if (p_blkno == 0) {
196 err = -EIO;
197 mlog(ML_ERROR,
198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 (unsigned long long)iblock,
200 (unsigned long long)p_blkno,
201 (unsigned long long)OCFS2_I(inode)->ip_blkno);
202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203 dump_stack();
1f4cea37 204 goto bail;
25baf2da 205 }
25baf2da 206 }
ccd979bd 207
5693486b 208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
9558156b
TM
209
210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211 (unsigned long long)past_eof);
5693486b
JB
212 if (create && (iblock >= past_eof))
213 set_buffer_new(bh_result);
214
ccd979bd
MF
215bail:
216 if (err < 0)
217 err = -EIO;
218
ccd979bd
MF
219 return err;
220}
221
1afc32b9
MF
222int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223 struct buffer_head *di_bh)
6798d35a
MF
224{
225 void *kaddr;
d2849fb2 226 loff_t size;
6798d35a
MF
227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
231 (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 return -EROFS;
233 }
234
235 size = i_size_read(inode);
236
237 if (size > PAGE_CACHE_SIZE ||
d9ae49d6 238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 239 ocfs2_error(inode->i_sb,
d2849fb2
JK
240 "Inode %llu has with inline data has bad size: %Lu",
241 (unsigned long long)OCFS2_I(inode)->ip_blkno,
242 (unsigned long long)size);
6798d35a
MF
243 return -EROFS;
244 }
245
c4bc8dcb 246 kaddr = kmap_atomic(page);
6798d35a
MF
247 if (size)
248 memcpy(kaddr, di->id2.i_data.id_data, size);
249 /* Clear the remaining part of the page */
250 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251 flush_dcache_page(page);
c4bc8dcb 252 kunmap_atomic(kaddr);
6798d35a
MF
253
254 SetPageUptodate(page);
255
256 return 0;
257}
258
259static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260{
261 int ret;
262 struct buffer_head *di_bh = NULL;
6798d35a
MF
263
264 BUG_ON(!PageLocked(page));
86c838b0 265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 266
b657c95c 267 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
268 if (ret) {
269 mlog_errno(ret);
270 goto out;
271 }
272
273 ret = ocfs2_read_inline_data(inode, page, di_bh);
274out:
275 unlock_page(page);
276
277 brelse(di_bh);
278 return ret;
279}
280
ccd979bd
MF
281static int ocfs2_readpage(struct file *file, struct page *page)
282{
283 struct inode *inode = page->mapping->host;
6798d35a 284 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
285 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286 int ret, unlock = 1;
287
9558156b
TM
288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289 (page ? page->index : 0));
ccd979bd 290
e63aecb6 291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
292 if (ret != 0) {
293 if (ret == AOP_TRUNCATED_PAGE)
294 unlock = 0;
295 mlog_errno(ret);
296 goto out;
297 }
298
6798d35a 299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
c7e25e6e
JK
300 /*
301 * Unlock the page and cycle ip_alloc_sem so that we don't
302 * busyloop waiting for ip_alloc_sem to unlock
303 */
e9dfc0b2 304 ret = AOP_TRUNCATED_PAGE;
c7e25e6e
JK
305 unlock_page(page);
306 unlock = 0;
307 down_read(&oi->ip_alloc_sem);
308 up_read(&oi->ip_alloc_sem);
e63aecb6 309 goto out_inode_unlock;
e9dfc0b2 310 }
ccd979bd
MF
311
312 /*
313 * i_size might have just been updated as we grabed the meta lock. We
314 * might now be discovering a truncate that hit on another node.
315 * block_read_full_page->get_block freaks out if it is asked to read
316 * beyond the end of a file, so we check here. Callers
54cb8821 317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
318 * and notice that the page they just read isn't needed.
319 *
320 * XXX sys_readahead() seems to get that wrong?
321 */
322 if (start >= i_size_read(inode)) {
eebd2aa3 323 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
324 SetPageUptodate(page);
325 ret = 0;
326 goto out_alloc;
327 }
328
6798d35a
MF
329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330 ret = ocfs2_readpage_inline(inode, page);
331 else
332 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
333 unlock = 0;
334
ccd979bd
MF
335out_alloc:
336 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
337out_inode_unlock:
338 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
339out:
340 if (unlock)
341 unlock_page(page);
ccd979bd
MF
342 return ret;
343}
344
628a24f5
MF
345/*
346 * This is used only for read-ahead. Failures or difficult to handle
347 * situations are safe to ignore.
348 *
349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
350 * are quite large (243 extents on 4k blocks), so most inodes don't
351 * grow out to a tree. If need be, detecting boundary extents could
352 * trivially be added in a future version of ocfs2_get_block().
353 */
354static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355 struct list_head *pages, unsigned nr_pages)
356{
357 int ret, err = -EIO;
358 struct inode *inode = mapping->host;
359 struct ocfs2_inode_info *oi = OCFS2_I(inode);
360 loff_t start;
361 struct page *last;
362
363 /*
364 * Use the nonblocking flag for the dlm code to avoid page
365 * lock inversion, but don't bother with retrying.
366 */
367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368 if (ret)
369 return err;
370
371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372 ocfs2_inode_unlock(inode, 0);
373 return err;
374 }
375
376 /*
377 * Don't bother with inline-data. There isn't anything
378 * to read-ahead in that case anyway...
379 */
380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381 goto out_unlock;
382
383 /*
384 * Check whether a remote node truncated this file - we just
385 * drop out in that case as it's not worth handling here.
386 */
387 last = list_entry(pages->prev, struct page, lru);
388 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389 if (start >= i_size_read(inode))
390 goto out_unlock;
391
392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394out_unlock:
395 up_read(&oi->ip_alloc_sem);
396 ocfs2_inode_unlock(inode, 0);
397
398 return err;
399}
400
ccd979bd
MF
401/* Note: Because we don't support holes, our allocation has
402 * already happened (allocation writes zeros to the file data)
403 * so we don't have to worry about ordered writes in
404 * ocfs2_writepage.
405 *
406 * ->writepage is called during the process of invalidating the page cache
407 * during blocked lock processing. It can't block on any cluster locks
408 * to during block mapping. It's relying on the fact that the block
409 * mapping can't have disappeared under the dirty pages that it is
410 * being asked to write back.
411 */
412static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413{
9558156b
TM
414 trace_ocfs2_writepage(
415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416 page->index);
ccd979bd 417
9558156b 418 return block_write_full_page(page, ocfs2_get_block, wbc);
ccd979bd
MF
419}
420
ccd979bd
MF
421/* Taken from ext3. We don't necessarily need the full blown
422 * functionality yet, but IMHO it's better to cut and paste the whole
423 * thing so we can avoid introducing our own bugs (and easily pick up
424 * their fixes when they happen) --Mark */
60b11392
MF
425int walk_page_buffers( handle_t *handle,
426 struct buffer_head *head,
427 unsigned from,
428 unsigned to,
429 int *partial,
430 int (*fn)( handle_t *handle,
431 struct buffer_head *bh))
ccd979bd
MF
432{
433 struct buffer_head *bh;
434 unsigned block_start, block_end;
435 unsigned blocksize = head->b_size;
436 int err, ret = 0;
437 struct buffer_head *next;
438
439 for ( bh = head, block_start = 0;
440 ret == 0 && (bh != head || !block_start);
441 block_start = block_end, bh = next)
442 {
443 next = bh->b_this_page;
444 block_end = block_start + blocksize;
445 if (block_end <= from || block_start >= to) {
446 if (partial && !buffer_uptodate(bh))
447 *partial = 1;
448 continue;
449 }
450 err = (*fn)(handle, bh);
451 if (!ret)
452 ret = err;
453 }
454 return ret;
455}
456
ccd979bd
MF
457static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458{
459 sector_t status;
460 u64 p_blkno = 0;
461 int err = 0;
462 struct inode *inode = mapping->host;
463
9558156b
TM
464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465 (unsigned long long)block);
ccd979bd
MF
466
467 /* We don't need to lock journal system files, since they aren't
468 * accessed concurrently from multiple nodes.
469 */
470 if (!INODE_JOURNAL(inode)) {
e63aecb6 471 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
472 if (err) {
473 if (err != -ENOENT)
474 mlog_errno(err);
475 goto bail;
476 }
477 down_read(&OCFS2_I(inode)->ip_alloc_sem);
478 }
479
6798d35a
MF
480 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482 NULL);
ccd979bd
MF
483
484 if (!INODE_JOURNAL(inode)) {
485 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 486 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
487 }
488
489 if (err) {
490 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491 (unsigned long long)block);
492 mlog_errno(err);
493 goto bail;
494 }
495
ccd979bd
MF
496bail:
497 status = err ? 0 : p_blkno;
498
ccd979bd
MF
499 return status;
500}
501
502/*
503 * TODO: Make this into a generic get_blocks function.
504 *
505 * From do_direct_io in direct-io.c:
506 * "So what we do is to permit the ->get_blocks function to populate
507 * bh.b_size with the size of IO which is permitted at this offset and
508 * this i_blkbits."
509 *
510 * This function is called directly from get_more_blocks in direct-io.c.
511 *
512 * called like this: dio->get_blocks(dio->inode, fs_startblk,
513 * fs_count, map_bh, dio->rw == WRITE);
514 */
515static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
516 struct buffer_head *bh_result, int create)
517{
518 int ret;
49255dce
JQ
519 u32 cpos = 0;
520 int alloc_locked = 0;
4f902c37 521 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 522 unsigned int ext_flags;
184d7d20 523 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 524 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
49255dce 525 unsigned long len = bh_result->b_size;
ae1f0814 526 unsigned int clusters_to_alloc = 0, contig_clusters = 0;
49255dce
JQ
527
528 cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
ccd979bd 529
ccd979bd
MF
530 /* This function won't even be called if the request isn't all
531 * nicely aligned and of the right size, so there's no need
532 * for us to check any of that. */
533
25baf2da 534 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32 535
ccd979bd
MF
536 /* This figures out the size of the next contiguous block, and
537 * our logical offset */
363041a5 538 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 539 &contig_blocks, &ext_flags);
ccd979bd
MF
540 if (ret) {
541 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
542 (unsigned long long)iblock);
543 ret = -EIO;
544 goto bail;
545 }
546
cbaee472
TM
547 /* We should already CoW the refcounted extent in case of create. */
548 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
549
49255dce
JQ
550 /* allocate blocks if no p_blkno is found, and create == 1 */
551 if (!p_blkno && create) {
552 ret = ocfs2_inode_lock(inode, NULL, 1);
553 if (ret < 0) {
554 mlog_errno(ret);
555 goto bail;
556 }
557
558 alloc_locked = 1;
559
560 /* fill hole, allocate blocks can't be larger than the size
561 * of the hole */
562 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
ae1f0814
JQ
563 contig_clusters = ocfs2_clusters_for_blocks(inode->i_sb,
564 contig_blocks);
565 if (clusters_to_alloc > contig_clusters)
566 clusters_to_alloc = contig_clusters;
49255dce
JQ
567
568 /* allocate extent and insert them into the extent tree */
569 ret = ocfs2_extend_allocation(inode, cpos,
570 clusters_to_alloc, 0);
571 if (ret < 0) {
572 mlog_errno(ret);
573 goto bail;
574 }
575
576 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
577 &contig_blocks, &ext_flags);
578 if (ret < 0) {
579 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
580 (unsigned long long)iblock);
581 ret = -EIO;
582 goto bail;
583 }
584 }
585
25baf2da
MF
586 /*
587 * get_more_blocks() expects us to describe a hole by clearing
588 * the mapped bit on bh_result().
49cb8d2d
MF
589 *
590 * Consider an unwritten extent as a hole.
25baf2da 591 */
49cb8d2d 592 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da 593 map_bh(bh_result, inode->i_sb, p_blkno);
5fe878ae 594 else
25baf2da 595 clear_buffer_mapped(bh_result);
ccd979bd
MF
596
597 /* make sure we don't map more than max_blocks blocks here as
598 that's all the kernel will handle at this point. */
599 if (max_blocks < contig_blocks)
600 contig_blocks = max_blocks;
601 bh_result->b_size = contig_blocks << blocksize_bits;
602bail:
49255dce
JQ
603 if (alloc_locked)
604 ocfs2_inode_unlock(inode, 1);
ccd979bd
MF
605 return ret;
606}
607
2bd63216 608/*
ccd979bd 609 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
bd5fe6c5
CH
610 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
611 * to protect io on one node from truncation on another.
ccd979bd
MF
612 */
613static void ocfs2_dio_end_io(struct kiocb *iocb,
614 loff_t offset,
615 ssize_t bytes,
7b7a8665 616 void *private)
ccd979bd 617{
496ad9aa 618 struct inode *inode = file_inode(iocb->ki_filp);
7cdfc3a1 619 int level;
ccd979bd
MF
620
621 /* this io's submitter should not have unlocked this before we could */
622 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 623
a11f7e63
MF
624 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
625 ocfs2_iocb_clear_unaligned_aio(iocb);
626
c18ceab0 627 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
a11f7e63
MF
628 }
629
512f62ac
JQ
630 /* Let rw unlock to be done later to protect append direct io write */
631 if (offset + bytes <= i_size_read(inode)) {
632 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1 633
512f62ac
JQ
634 level = ocfs2_iocb_rw_locked_level(iocb);
635 ocfs2_rw_unlock(inode, level);
636 }
ccd979bd
MF
637}
638
03f981cf
JB
639static int ocfs2_releasepage(struct page *page, gfp_t wait)
640{
03f981cf
JB
641 if (!page_has_buffers(page))
642 return 0;
41ecc345 643 return try_to_free_buffers(page);
03f981cf
JB
644}
645
24c40b32
JQ
646static int ocfs2_is_overwrite(struct ocfs2_super *osb,
647 struct inode *inode, loff_t offset)
648{
649 int ret = 0;
650 u32 v_cpos = 0;
651 u32 p_cpos = 0;
652 unsigned int num_clusters = 0;
653 unsigned int ext_flags = 0;
654
655 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
656 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
657 &num_clusters, &ext_flags);
658 if (ret < 0) {
659 mlog_errno(ret);
660 return ret;
661 }
662
663 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
664 return 1;
665
666 return 0;
667}
668
14a5275d
JQ
669static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
670 struct inode *inode, loff_t offset,
671 u64 zero_len, int cluster_align)
672{
673 u32 p_cpos = 0;
674 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
675 unsigned int num_clusters = 0;
676 unsigned int ext_flags = 0;
677 int ret = 0;
678
679 if (offset <= i_size_read(inode) || cluster_align)
680 return 0;
681
682 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
683 &ext_flags);
684 if (ret < 0) {
685 mlog_errno(ret);
686 return ret;
687 }
688
689 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
690 u64 s = i_size_read(inode);
32e5a2a2 691 sector_t sector = ((u64)p_cpos << (osb->s_clustersize_bits - 9)) +
14a5275d
JQ
692 (do_div(s, osb->s_clustersize) >> 9);
693
694 ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
695 zero_len >> 9, GFP_NOFS, false);
696 if (ret < 0)
697 mlog_errno(ret);
698 }
699
700 return ret;
701}
702
703static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
704 struct inode *inode, loff_t offset)
705{
706 u64 zero_start, zero_len, total_zero_len;
707 u32 p_cpos = 0, clusters_to_add;
708 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
709 unsigned int num_clusters = 0;
710 unsigned int ext_flags = 0;
711 u32 size_div, offset_div;
712 int ret = 0;
713
714 {
715 u64 o = offset;
716 u64 s = i_size_read(inode);
717
718 offset_div = do_div(o, osb->s_clustersize);
719 size_div = do_div(s, osb->s_clustersize);
720 }
721
722 if (offset <= i_size_read(inode))
723 return 0;
724
725 clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
726 ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
727 total_zero_len = offset - i_size_read(inode);
728 if (clusters_to_add)
729 total_zero_len -= offset_div;
730
731 /* Allocate clusters to fill out holes, and this is only needed
732 * when we add more than one clusters. Otherwise the cluster will
733 * be allocated during direct IO */
734 if (clusters_to_add > 1) {
735 ret = ocfs2_extend_allocation(inode,
736 OCFS2_I(inode)->ip_clusters,
737 clusters_to_add - 1, 0);
738 if (ret) {
739 mlog_errno(ret);
740 goto out;
741 }
742 }
743
744 while (total_zero_len) {
745 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
746 &ext_flags);
747 if (ret < 0) {
748 mlog_errno(ret);
749 goto out;
750 }
751
752 zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
753 size_div;
754 zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
755 size_div;
756 zero_len = min(total_zero_len, zero_len);
757
758 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
759 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
760 zero_start >> 9, zero_len >> 9,
761 GFP_NOFS, false);
762 if (ret < 0) {
763 mlog_errno(ret);
764 goto out;
765 }
766 }
767
768 total_zero_len -= zero_len;
769 v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
770
771 /* Only at first iteration can be cluster not aligned.
772 * So set size_div to 0 for the rest */
773 size_div = 0;
774 }
775
776out:
777 return ret;
778}
779
24c40b32
JQ
780static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
781 struct iov_iter *iter,
782 loff_t offset)
783{
784 ssize_t ret = 0;
785 ssize_t written = 0;
786 bool orphaned = false;
787 int is_overwrite = 0;
788 struct file *file = iocb->ki_filp;
789 struct inode *inode = file_inode(file)->i_mapping->host;
790 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
791 struct buffer_head *di_bh = NULL;
792 size_t count = iter->count;
793 journal_t *journal = osb->journal->j_journal;
14a5275d
JQ
794 u64 zero_len_head, zero_len_tail;
795 int cluster_align_head, cluster_align_tail;
24c40b32
JQ
796 loff_t final_size = offset + count;
797 int append_write = offset >= i_size_read(inode) ? 1 : 0;
798 unsigned int num_clusters = 0;
799 unsigned int ext_flags = 0;
800
801 {
802 u64 o = offset;
14a5275d
JQ
803 u64 s = i_size_read(inode);
804
805 zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
806 cluster_align_head = !zero_len_head;
24c40b32 807
14a5275d
JQ
808 zero_len_tail = osb->s_clustersize -
809 do_div(s, osb->s_clustersize);
810 if ((offset - i_size_read(inode)) < zero_len_tail)
811 zero_len_tail = offset - i_size_read(inode);
812 cluster_align_tail = !zero_len_tail;
24c40b32
JQ
813 }
814
815 /*
816 * when final_size > inode->i_size, inode->i_size will be
817 * updated after direct write, so add the inode to orphan
818 * dir first.
819 */
820 if (final_size > i_size_read(inode)) {
821 ret = ocfs2_add_inode_to_orphan(osb, inode);
822 if (ret < 0) {
823 mlog_errno(ret);
824 goto out;
825 }
826 orphaned = true;
827 }
828
829 if (append_write) {
7e9b1955 830 ret = ocfs2_inode_lock(inode, NULL, 1);
24c40b32
JQ
831 if (ret < 0) {
832 mlog_errno(ret);
833 goto clean_orphan;
834 }
835
14a5275d
JQ
836 /* zeroing out the previously allocated cluster tail
837 * that but not zeroed */
24c40b32 838 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
14a5275d
JQ
839 ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
840 zero_len_tail, cluster_align_tail);
24c40b32 841 else
14a5275d 842 ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
24c40b32
JQ
843 offset);
844 if (ret < 0) {
845 mlog_errno(ret);
846 ocfs2_inode_unlock(inode, 1);
24c40b32
JQ
847 goto clean_orphan;
848 }
849
850 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
851 if (is_overwrite < 0) {
852 mlog_errno(is_overwrite);
853 ocfs2_inode_unlock(inode, 1);
24c40b32
JQ
854 goto clean_orphan;
855 }
856
857 ocfs2_inode_unlock(inode, 1);
24c40b32
JQ
858 }
859
17f8c842
OS
860 written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
861 offset, ocfs2_direct_IO_get_blocks,
862 ocfs2_dio_end_io, NULL, 0);
faaebf18
JQ
863 /* overwrite aio may return -EIOCBQUEUED, and it is not an error */
864 if ((written < 0) && (written != -EIOCBQUEUED)) {
24c40b32
JQ
865 loff_t i_size = i_size_read(inode);
866
867 if (offset + count > i_size) {
868 ret = ocfs2_inode_lock(inode, &di_bh, 1);
869 if (ret < 0) {
870 mlog_errno(ret);
871 goto clean_orphan;
872 }
873
874 if (i_size == i_size_read(inode)) {
875 ret = ocfs2_truncate_file(inode, di_bh,
876 i_size);
877 if (ret < 0) {
878 if (ret != -ENOSPC)
879 mlog_errno(ret);
880
881 ocfs2_inode_unlock(inode, 1);
882 brelse(di_bh);
faaebf18 883 di_bh = NULL;
24c40b32
JQ
884 goto clean_orphan;
885 }
886 }
887
888 ocfs2_inode_unlock(inode, 1);
889 brelse(di_bh);
faaebf18 890 di_bh = NULL;
24c40b32
JQ
891
892 ret = jbd2_journal_force_commit(journal);
893 if (ret < 0)
894 mlog_errno(ret);
895 }
bdd86215 896 } else if (written > 0 && append_write && !is_overwrite &&
14a5275d
JQ
897 !cluster_align_head) {
898 /* zeroing out the allocated cluster head */
24c40b32
JQ
899 u32 p_cpos = 0;
900 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
901
37a8d89a
JQ
902 ret = ocfs2_inode_lock(inode, NULL, 0);
903 if (ret < 0) {
904 mlog_errno(ret);
905 goto clean_orphan;
906 }
907
24c40b32
JQ
908 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
909 &num_clusters, &ext_flags);
910 if (ret < 0) {
911 mlog_errno(ret);
37a8d89a 912 ocfs2_inode_unlock(inode, 0);
24c40b32
JQ
913 goto clean_orphan;
914 }
915
916 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
917
918 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
32e5a2a2 919 (u64)p_cpos << (osb->s_clustersize_bits - 9),
14a5275d 920 zero_len_head >> 9, GFP_NOFS, false);
24c40b32
JQ
921 if (ret < 0)
922 mlog_errno(ret);
37a8d89a
JQ
923
924 ocfs2_inode_unlock(inode, 0);
24c40b32
JQ
925 }
926
927clean_orphan:
928 if (orphaned) {
929 int tmp_ret;
930 int update_isize = written > 0 ? 1 : 0;
931 loff_t end = update_isize ? offset + written : 0;
932
cf1776a9
JQ
933 tmp_ret = ocfs2_inode_lock(inode, &di_bh, 1);
934 if (tmp_ret < 0) {
935 ret = tmp_ret;
936 mlog_errno(ret);
937 goto out;
938 }
939
940 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
24c40b32
JQ
941 update_isize, end);
942 if (tmp_ret < 0) {
943 ret = tmp_ret;
cf1776a9 944 mlog_errno(ret);
faaebf18 945 brelse(di_bh);
24c40b32
JQ
946 goto out;
947 }
948
cf1776a9 949 ocfs2_inode_unlock(inode, 1);
faaebf18 950 brelse(di_bh);
cf1776a9 951
24c40b32
JQ
952 tmp_ret = jbd2_journal_force_commit(journal);
953 if (tmp_ret < 0) {
954 ret = tmp_ret;
955 mlog_errno(tmp_ret);
956 }
957 }
958
959out:
960 if (ret >= 0)
961 ret = written;
962 return ret;
963}
964
22c6186e 965static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
d8d3d94b 966 loff_t offset)
ccd979bd
MF
967{
968 struct file *file = iocb->ki_filp;
496ad9aa 969 struct inode *inode = file_inode(file)->i_mapping->host;
24c40b32
JQ
970 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
971 int full_coherency = !(osb->s_mount_opt &
972 OCFS2_MOUNT_COHERENCY_BUFFERED);
53013cba 973
6798d35a
MF
974 /*
975 * Fallback to buffered I/O if we see an inode without
976 * extents.
977 */
978 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
979 return 0;
980
24c40b32
JQ
981 /* Fallback to buffered I/O if we are appending and
982 * concurrent O_DIRECT writes are allowed.
983 */
984 if (i_size_read(inode) <= offset && !full_coherency)
b80474b4
TM
985 return 0;
986
6f673763 987 if (iov_iter_rw(iter) == READ)
17f8c842
OS
988 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
989 iter, offset,
990 ocfs2_direct_IO_get_blocks,
991 ocfs2_dio_end_io, NULL, 0);
24c40b32
JQ
992 else
993 return ocfs2_direct_IO_write(iocb, iter, offset);
ccd979bd
MF
994}
995
9517bac6
MF
996static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
997 u32 cpos,
998 unsigned int *start,
999 unsigned int *end)
1000{
1001 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
1002
1003 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
1004 unsigned int cpp;
1005
1006 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
1007
1008 cluster_start = cpos % cpp;
1009 cluster_start = cluster_start << osb->s_clustersize_bits;
1010
1011 cluster_end = cluster_start + osb->s_clustersize;
1012 }
1013
1014 BUG_ON(cluster_start > PAGE_SIZE);
1015 BUG_ON(cluster_end > PAGE_SIZE);
1016
1017 if (start)
1018 *start = cluster_start;
1019 if (end)
1020 *end = cluster_end;
1021}
1022
1023/*
1024 * 'from' and 'to' are the region in the page to avoid zeroing.
1025 *
1026 * If pagesize > clustersize, this function will avoid zeroing outside
1027 * of the cluster boundary.
1028 *
1029 * from == to == 0 is code for "zero the entire cluster region"
1030 */
1031static void ocfs2_clear_page_regions(struct page *page,
1032 struct ocfs2_super *osb, u32 cpos,
1033 unsigned from, unsigned to)
1034{
1035 void *kaddr;
1036 unsigned int cluster_start, cluster_end;
1037
1038 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1039
c4bc8dcb 1040 kaddr = kmap_atomic(page);
9517bac6
MF
1041
1042 if (from || to) {
1043 if (from > cluster_start)
1044 memset(kaddr + cluster_start, 0, from - cluster_start);
1045 if (to < cluster_end)
1046 memset(kaddr + to, 0, cluster_end - to);
1047 } else {
1048 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1049 }
1050
c4bc8dcb 1051 kunmap_atomic(kaddr);
9517bac6
MF
1052}
1053
4e9563fd
MF
1054/*
1055 * Nonsparse file systems fully allocate before we get to the write
1056 * code. This prevents ocfs2_write() from tagging the write as an
1057 * allocating one, which means ocfs2_map_page_blocks() might try to
1058 * read-in the blocks at the tail of our file. Avoid reading them by
1059 * testing i_size against each block offset.
1060 */
1061static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1062 unsigned int block_start)
1063{
1064 u64 offset = page_offset(page) + block_start;
1065
1066 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1067 return 1;
1068
1069 if (i_size_read(inode) > offset)
1070 return 1;
1071
1072 return 0;
1073}
1074
9517bac6 1075/*
ebdec241 1076 * Some of this taken from __block_write_begin(). We already have our
9517bac6
MF
1077 * mapping by now though, and the entire write will be allocating or
1078 * it won't, so not much need to use BH_New.
1079 *
1080 * This will also skip zeroing, which is handled externally.
1081 */
60b11392
MF
1082int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1083 struct inode *inode, unsigned int from,
1084 unsigned int to, int new)
9517bac6
MF
1085{
1086 int ret = 0;
1087 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1088 unsigned int block_end, block_start;
1089 unsigned int bsize = 1 << inode->i_blkbits;
1090
1091 if (!page_has_buffers(page))
1092 create_empty_buffers(page, bsize, 0);
1093
1094 head = page_buffers(page);
1095 for (bh = head, block_start = 0; bh != head || !block_start;
1096 bh = bh->b_this_page, block_start += bsize) {
1097 block_end = block_start + bsize;
1098
3a307ffc
MF
1099 clear_buffer_new(bh);
1100
9517bac6
MF
1101 /*
1102 * Ignore blocks outside of our i/o range -
1103 * they may belong to unallocated clusters.
1104 */
60b11392 1105 if (block_start >= to || block_end <= from) {
9517bac6
MF
1106 if (PageUptodate(page))
1107 set_buffer_uptodate(bh);
1108 continue;
1109 }
1110
1111 /*
1112 * For an allocating write with cluster size >= page
1113 * size, we always write the entire page.
1114 */
3a307ffc
MF
1115 if (new)
1116 set_buffer_new(bh);
9517bac6
MF
1117
1118 if (!buffer_mapped(bh)) {
1119 map_bh(bh, inode->i_sb, *p_blkno);
1120 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1121 }
1122
1123 if (PageUptodate(page)) {
1124 if (!buffer_uptodate(bh))
1125 set_buffer_uptodate(bh);
1126 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 1127 !buffer_new(bh) &&
4e9563fd 1128 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 1129 (block_start < from || block_end > to)) {
9517bac6
MF
1130 ll_rw_block(READ, 1, &bh);
1131 *wait_bh++=bh;
1132 }
1133
1134 *p_blkno = *p_blkno + 1;
1135 }
1136
1137 /*
1138 * If we issued read requests - let them complete.
1139 */
1140 while(wait_bh > wait) {
1141 wait_on_buffer(*--wait_bh);
1142 if (!buffer_uptodate(*wait_bh))
1143 ret = -EIO;
1144 }
1145
1146 if (ret == 0 || !new)
1147 return ret;
1148
1149 /*
1150 * If we get -EIO above, zero out any newly allocated blocks
1151 * to avoid exposing stale data.
1152 */
1153 bh = head;
1154 block_start = 0;
1155 do {
9517bac6
MF
1156 block_end = block_start + bsize;
1157 if (block_end <= from)
1158 goto next_bh;
1159 if (block_start >= to)
1160 break;
1161
eebd2aa3 1162 zero_user(page, block_start, bh->b_size);
9517bac6
MF
1163 set_buffer_uptodate(bh);
1164 mark_buffer_dirty(bh);
1165
1166next_bh:
1167 block_start = block_end;
1168 bh = bh->b_this_page;
1169 } while (bh != head);
1170
1171 return ret;
1172}
1173
3a307ffc
MF
1174#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1175#define OCFS2_MAX_CTXT_PAGES 1
1176#else
1177#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1178#endif
1179
1180#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1181
6af67d82 1182/*
3a307ffc 1183 * Describe the state of a single cluster to be written to.
6af67d82 1184 */
3a307ffc
MF
1185struct ocfs2_write_cluster_desc {
1186 u32 c_cpos;
1187 u32 c_phys;
1188 /*
1189 * Give this a unique field because c_phys eventually gets
1190 * filled.
1191 */
1192 unsigned c_new;
b27b7cbc 1193 unsigned c_unwritten;
e7432675 1194 unsigned c_needs_zero;
3a307ffc 1195};
6af67d82 1196
3a307ffc
MF
1197struct ocfs2_write_ctxt {
1198 /* Logical cluster position / len of write */
1199 u32 w_cpos;
1200 u32 w_clen;
6af67d82 1201
e7432675
SM
1202 /* First cluster allocated in a nonsparse extend */
1203 u32 w_first_new_cpos;
1204
3a307ffc 1205 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 1206
3a307ffc
MF
1207 /*
1208 * This is true if page_size > cluster_size.
1209 *
1210 * It triggers a set of special cases during write which might
1211 * have to deal with allocating writes to partial pages.
1212 */
1213 unsigned int w_large_pages;
6af67d82 1214
3a307ffc
MF
1215 /*
1216 * Pages involved in this write.
1217 *
1218 * w_target_page is the page being written to by the user.
1219 *
1220 * w_pages is an array of pages which always contains
1221 * w_target_page, and in the case of an allocating write with
1222 * page_size < cluster size, it will contain zero'd and mapped
1223 * pages adjacent to w_target_page which need to be written
1224 * out in so that future reads from that region will get
1225 * zero's.
1226 */
3a307ffc 1227 unsigned int w_num_pages;
83fd9c7f 1228 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
3a307ffc 1229 struct page *w_target_page;
eeb47d12 1230
5cffff9e
WW
1231 /*
1232 * w_target_locked is used for page_mkwrite path indicating no unlocking
1233 * against w_target_page in ocfs2_write_end_nolock.
1234 */
1235 unsigned int w_target_locked:1;
1236
3a307ffc
MF
1237 /*
1238 * ocfs2_write_end() uses this to know what the real range to
1239 * write in the target should be.
1240 */
1241 unsigned int w_target_from;
1242 unsigned int w_target_to;
1243
1244 /*
1245 * We could use journal_current_handle() but this is cleaner,
1246 * IMHO -Mark
1247 */
1248 handle_t *w_handle;
1249
1250 struct buffer_head *w_di_bh;
b27b7cbc
MF
1251
1252 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
1253};
1254
1d410a6e 1255void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
1256{
1257 int i;
1258
1d410a6e
MF
1259 for(i = 0; i < num_pages; i++) {
1260 if (pages[i]) {
1261 unlock_page(pages[i]);
1262 mark_page_accessed(pages[i]);
1263 page_cache_release(pages[i]);
1264 }
6af67d82 1265 }
1d410a6e
MF
1266}
1267
136f49b9 1268static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1d410a6e 1269{
5cffff9e
WW
1270 int i;
1271
1272 /*
1273 * w_target_locked is only set to true in the page_mkwrite() case.
1274 * The intent is to allow us to lock the target page from write_begin()
1275 * to write_end(). The caller must hold a ref on w_target_page.
1276 */
1277 if (wc->w_target_locked) {
1278 BUG_ON(!wc->w_target_page);
1279 for (i = 0; i < wc->w_num_pages; i++) {
1280 if (wc->w_target_page == wc->w_pages[i]) {
1281 wc->w_pages[i] = NULL;
1282 break;
1283 }
1284 }
1285 mark_page_accessed(wc->w_target_page);
1286 page_cache_release(wc->w_target_page);
1287 }
1d410a6e 1288 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
136f49b9 1289}
6af67d82 1290
136f49b9
JB
1291static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1292{
1293 ocfs2_unlock_pages(wc);
3a307ffc
MF
1294 brelse(wc->w_di_bh);
1295 kfree(wc);
1296}
1297
1298static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1299 struct ocfs2_super *osb, loff_t pos,
607d44aa 1300 unsigned len, struct buffer_head *di_bh)
3a307ffc 1301{
30b8548f 1302 u32 cend;
3a307ffc
MF
1303 struct ocfs2_write_ctxt *wc;
1304
1305 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1306 if (!wc)
1307 return -ENOMEM;
6af67d82 1308
3a307ffc 1309 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 1310 wc->w_first_new_cpos = UINT_MAX;
30b8548f 1311 cend = (pos + len - 1) >> osb->s_clustersize_bits;
1312 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
1313 get_bh(di_bh);
1314 wc->w_di_bh = di_bh;
6af67d82 1315
3a307ffc
MF
1316 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1317 wc->w_large_pages = 1;
1318 else
1319 wc->w_large_pages = 0;
1320
b27b7cbc
MF
1321 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1322
3a307ffc 1323 *wcp = wc;
6af67d82 1324
3a307ffc 1325 return 0;
6af67d82
MF
1326}
1327
9517bac6 1328/*
3a307ffc
MF
1329 * If a page has any new buffers, zero them out here, and mark them uptodate
1330 * and dirty so they'll be written out (in order to prevent uninitialised
1331 * block data from leaking). And clear the new bit.
9517bac6 1332 */
3a307ffc 1333static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 1334{
3a307ffc
MF
1335 unsigned int block_start, block_end;
1336 struct buffer_head *head, *bh;
9517bac6 1337
3a307ffc
MF
1338 BUG_ON(!PageLocked(page));
1339 if (!page_has_buffers(page))
1340 return;
9517bac6 1341
3a307ffc
MF
1342 bh = head = page_buffers(page);
1343 block_start = 0;
1344 do {
1345 block_end = block_start + bh->b_size;
1346
1347 if (buffer_new(bh)) {
1348 if (block_end > from && block_start < to) {
1349 if (!PageUptodate(page)) {
1350 unsigned start, end;
3a307ffc
MF
1351
1352 start = max(from, block_start);
1353 end = min(to, block_end);
1354
eebd2aa3 1355 zero_user_segment(page, start, end);
3a307ffc
MF
1356 set_buffer_uptodate(bh);
1357 }
1358
1359 clear_buffer_new(bh);
1360 mark_buffer_dirty(bh);
1361 }
1362 }
9517bac6 1363
3a307ffc
MF
1364 block_start = block_end;
1365 bh = bh->b_this_page;
1366 } while (bh != head);
1367}
1368
1369/*
1370 * Only called when we have a failure during allocating write to write
1371 * zero's to the newly allocated region.
1372 */
1373static void ocfs2_write_failure(struct inode *inode,
1374 struct ocfs2_write_ctxt *wc,
1375 loff_t user_pos, unsigned user_len)
1376{
1377 int i;
5c26a7b7
MF
1378 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1379 to = user_pos + user_len;
3a307ffc
MF
1380 struct page *tmppage;
1381
5c26a7b7 1382 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1383
3a307ffc
MF
1384 for(i = 0; i < wc->w_num_pages; i++) {
1385 tmppage = wc->w_pages[i];
9517bac6 1386
961cecbe 1387 if (page_has_buffers(tmppage)) {
53ef99ca 1388 if (ocfs2_should_order_data(inode))
2b4e30fb 1389 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1390
1391 block_commit_write(tmppage, from, to);
1392 }
9517bac6 1393 }
9517bac6
MF
1394}
1395
3a307ffc
MF
1396static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1397 struct ocfs2_write_ctxt *wc,
1398 struct page *page, u32 cpos,
1399 loff_t user_pos, unsigned user_len,
1400 int new)
9517bac6 1401{
3a307ffc
MF
1402 int ret;
1403 unsigned int map_from = 0, map_to = 0;
9517bac6 1404 unsigned int cluster_start, cluster_end;
3a307ffc 1405 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1406
3a307ffc 1407 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1408 &cluster_start, &cluster_end);
1409
272b62c1
GR
1410 /* treat the write as new if the a hole/lseek spanned across
1411 * the page boundary.
1412 */
1413 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1414 (page_offset(page) <= user_pos));
1415
3a307ffc
MF
1416 if (page == wc->w_target_page) {
1417 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1418 map_to = map_from + user_len;
1419
1420 if (new)
1421 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1422 cluster_start, cluster_end,
1423 new);
1424 else
1425 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1426 map_from, map_to, new);
1427 if (ret) {
9517bac6
MF
1428 mlog_errno(ret);
1429 goto out;
1430 }
1431
3a307ffc
MF
1432 user_data_from = map_from;
1433 user_data_to = map_to;
9517bac6 1434 if (new) {
3a307ffc
MF
1435 map_from = cluster_start;
1436 map_to = cluster_end;
9517bac6
MF
1437 }
1438 } else {
1439 /*
1440 * If we haven't allocated the new page yet, we
1441 * shouldn't be writing it out without copying user
1442 * data. This is likely a math error from the caller.
1443 */
1444 BUG_ON(!new);
1445
3a307ffc
MF
1446 map_from = cluster_start;
1447 map_to = cluster_end;
9517bac6
MF
1448
1449 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1450 cluster_start, cluster_end, new);
9517bac6
MF
1451 if (ret) {
1452 mlog_errno(ret);
1453 goto out;
1454 }
1455 }
1456
1457 /*
1458 * Parts of newly allocated pages need to be zero'd.
1459 *
1460 * Above, we have also rewritten 'to' and 'from' - as far as
1461 * the rest of the function is concerned, the entire cluster
1462 * range inside of a page needs to be written.
1463 *
1464 * We can skip this if the page is up to date - it's already
1465 * been zero'd from being read in as a hole.
1466 */
1467 if (new && !PageUptodate(page))
1468 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1469 cpos, user_data_from, user_data_to);
9517bac6
MF
1470
1471 flush_dcache_page(page);
1472
9517bac6 1473out:
3a307ffc 1474 return ret;
9517bac6
MF
1475}
1476
1477/*
3a307ffc 1478 * This function will only grab one clusters worth of pages.
9517bac6 1479 */
3a307ffc
MF
1480static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1481 struct ocfs2_write_ctxt *wc,
693c241a
JB
1482 u32 cpos, loff_t user_pos,
1483 unsigned user_len, int new,
7307de80 1484 struct page *mmap_page)
9517bac6 1485{
3a307ffc 1486 int ret = 0, i;
693c241a 1487 unsigned long start, target_index, end_index, index;
9517bac6 1488 struct inode *inode = mapping->host;
693c241a 1489 loff_t last_byte;
9517bac6 1490
3a307ffc 1491 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1492
1493 /*
1494 * Figure out how many pages we'll be manipulating here. For
60b11392 1495 * non allocating write, we just change the one
693c241a
JB
1496 * page. Otherwise, we'll need a whole clusters worth. If we're
1497 * writing past i_size, we only need enough pages to cover the
1498 * last page of the write.
9517bac6 1499 */
9517bac6 1500 if (new) {
3a307ffc
MF
1501 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1502 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1503 /*
1504 * We need the index *past* the last page we could possibly
1505 * touch. This is the page past the end of the write or
1506 * i_size, whichever is greater.
1507 */
1508 last_byte = max(user_pos + user_len, i_size_read(inode));
1509 BUG_ON(last_byte < 1);
1510 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1511 if ((start + wc->w_num_pages) > end_index)
1512 wc->w_num_pages = end_index - start;
9517bac6 1513 } else {
3a307ffc
MF
1514 wc->w_num_pages = 1;
1515 start = target_index;
9517bac6
MF
1516 }
1517
3a307ffc 1518 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1519 index = start + i;
1520
7307de80
MF
1521 if (index == target_index && mmap_page) {
1522 /*
1523 * ocfs2_pagemkwrite() is a little different
1524 * and wants us to directly use the page
1525 * passed in.
1526 */
1527 lock_page(mmap_page);
1528
5cffff9e 1529 /* Exit and let the caller retry */
7307de80 1530 if (mmap_page->mapping != mapping) {
5cffff9e 1531 WARN_ON(mmap_page->mapping);
7307de80 1532 unlock_page(mmap_page);
5cffff9e 1533 ret = -EAGAIN;
7307de80
MF
1534 goto out;
1535 }
1536
1537 page_cache_get(mmap_page);
1538 wc->w_pages[i] = mmap_page;
5cffff9e 1539 wc->w_target_locked = true;
7307de80
MF
1540 } else {
1541 wc->w_pages[i] = find_or_create_page(mapping, index,
1542 GFP_NOFS);
1543 if (!wc->w_pages[i]) {
1544 ret = -ENOMEM;
1545 mlog_errno(ret);
1546 goto out;
1547 }
9517bac6 1548 }
1269529b 1549 wait_for_stable_page(wc->w_pages[i]);
3a307ffc
MF
1550
1551 if (index == target_index)
1552 wc->w_target_page = wc->w_pages[i];
9517bac6 1553 }
3a307ffc 1554out:
5cffff9e
WW
1555 if (ret)
1556 wc->w_target_locked = false;
3a307ffc
MF
1557 return ret;
1558}
1559
1560/*
1561 * Prepare a single cluster for write one cluster into the file.
1562 */
1563static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc 1564 u32 phys, unsigned int unwritten,
e7432675 1565 unsigned int should_zero,
b27b7cbc 1566 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1567 struct ocfs2_alloc_context *meta_ac,
1568 struct ocfs2_write_ctxt *wc, u32 cpos,
1569 loff_t user_pos, unsigned user_len)
1570{
e7432675 1571 int ret, i, new;
3a307ffc
MF
1572 u64 v_blkno, p_blkno;
1573 struct inode *inode = mapping->host;
f99b9b7c 1574 struct ocfs2_extent_tree et;
3a307ffc
MF
1575
1576 new = phys == 0 ? 1 : 0;
9517bac6 1577 if (new) {
3a307ffc
MF
1578 u32 tmp_pos;
1579
9517bac6
MF
1580 /*
1581 * This is safe to call with the page locks - it won't take
1582 * any additional semaphores or cluster locks.
1583 */
3a307ffc 1584 tmp_pos = cpos;
0eb8d47e
TM
1585 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1586 &tmp_pos, 1, 0, wc->w_di_bh,
1587 wc->w_handle, data_ac,
1588 meta_ac, NULL);
9517bac6
MF
1589 /*
1590 * This shouldn't happen because we must have already
1591 * calculated the correct meta data allocation required. The
1592 * internal tree allocation code should know how to increase
1593 * transaction credits itself.
1594 *
1595 * If need be, we could handle -EAGAIN for a
1596 * RESTART_TRANS here.
1597 */
1598 mlog_bug_on_msg(ret == -EAGAIN,
1599 "Inode %llu: EAGAIN return during allocation.\n",
1600 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1601 if (ret < 0) {
1602 mlog_errno(ret);
1603 goto out;
1604 }
b27b7cbc 1605 } else if (unwritten) {
5e404e9e
JB
1606 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1607 wc->w_di_bh);
f99b9b7c 1608 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1609 wc->w_handle, cpos, 1, phys,
f99b9b7c 1610 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1611 if (ret < 0) {
1612 mlog_errno(ret);
1613 goto out;
1614 }
1615 }
3a307ffc 1616
b27b7cbc 1617 if (should_zero)
3a307ffc 1618 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1619 else
3a307ffc 1620 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1621
3a307ffc
MF
1622 /*
1623 * The only reason this should fail is due to an inability to
1624 * find the extent added.
1625 */
49cb8d2d
MF
1626 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1627 NULL);
9517bac6 1628 if (ret < 0) {
61fb9ea4 1629 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
3a307ffc
MF
1630 "at logical block %llu",
1631 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1632 (unsigned long long)v_blkno);
9517bac6
MF
1633 goto out;
1634 }
1635
1636 BUG_ON(p_blkno == 0);
1637
3a307ffc
MF
1638 for(i = 0; i < wc->w_num_pages; i++) {
1639 int tmpret;
9517bac6 1640
3a307ffc
MF
1641 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1642 wc->w_pages[i], cpos,
b27b7cbc
MF
1643 user_pos, user_len,
1644 should_zero);
3a307ffc
MF
1645 if (tmpret) {
1646 mlog_errno(tmpret);
1647 if (ret == 0)
cbfa9639 1648 ret = tmpret;
3a307ffc 1649 }
9517bac6
MF
1650 }
1651
3a307ffc
MF
1652 /*
1653 * We only have cleanup to do in case of allocating write.
1654 */
1655 if (ret && new)
1656 ocfs2_write_failure(inode, wc, user_pos, user_len);
1657
9517bac6 1658out:
9517bac6 1659
3a307ffc 1660 return ret;
9517bac6
MF
1661}
1662
0d172baa
MF
1663static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1664 struct ocfs2_alloc_context *data_ac,
1665 struct ocfs2_alloc_context *meta_ac,
1666 struct ocfs2_write_ctxt *wc,
1667 loff_t pos, unsigned len)
1668{
1669 int ret, i;
db56246c
MF
1670 loff_t cluster_off;
1671 unsigned int local_len = len;
0d172baa 1672 struct ocfs2_write_cluster_desc *desc;
db56246c 1673 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1674
1675 for (i = 0; i < wc->w_clen; i++) {
1676 desc = &wc->w_desc[i];
1677
db56246c
MF
1678 /*
1679 * We have to make sure that the total write passed in
1680 * doesn't extend past a single cluster.
1681 */
1682 local_len = len;
1683 cluster_off = pos & (osb->s_clustersize - 1);
1684 if ((cluster_off + local_len) > osb->s_clustersize)
1685 local_len = osb->s_clustersize - cluster_off;
1686
b27b7cbc 1687 ret = ocfs2_write_cluster(mapping, desc->c_phys,
e7432675
SM
1688 desc->c_unwritten,
1689 desc->c_needs_zero,
1690 data_ac, meta_ac,
db56246c 1691 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1692 if (ret) {
1693 mlog_errno(ret);
1694 goto out;
1695 }
db56246c
MF
1696
1697 len -= local_len;
1698 pos += local_len;
0d172baa
MF
1699 }
1700
1701 ret = 0;
1702out:
1703 return ret;
1704}
1705
3a307ffc
MF
1706/*
1707 * ocfs2_write_end() wants to know which parts of the target page it
1708 * should complete the write on. It's easiest to compute them ahead of
1709 * time when a more complete view of the write is available.
1710 */
1711static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1712 struct ocfs2_write_ctxt *wc,
1713 loff_t pos, unsigned len, int alloc)
9517bac6 1714{
3a307ffc 1715 struct ocfs2_write_cluster_desc *desc;
9517bac6 1716
3a307ffc
MF
1717 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1718 wc->w_target_to = wc->w_target_from + len;
1719
1720 if (alloc == 0)
1721 return;
1722
1723 /*
1724 * Allocating write - we may have different boundaries based
1725 * on page size and cluster size.
1726 *
1727 * NOTE: We can no longer compute one value from the other as
1728 * the actual write length and user provided length may be
1729 * different.
1730 */
9517bac6 1731
3a307ffc
MF
1732 if (wc->w_large_pages) {
1733 /*
1734 * We only care about the 1st and last cluster within
b27b7cbc 1735 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1736 * value may be extended out to the start/end of a
1737 * newly allocated cluster.
1738 */
1739 desc = &wc->w_desc[0];
e7432675 1740 if (desc->c_needs_zero)
3a307ffc
MF
1741 ocfs2_figure_cluster_boundaries(osb,
1742 desc->c_cpos,
1743 &wc->w_target_from,
1744 NULL);
1745
1746 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1747 if (desc->c_needs_zero)
3a307ffc
MF
1748 ocfs2_figure_cluster_boundaries(osb,
1749 desc->c_cpos,
1750 NULL,
1751 &wc->w_target_to);
1752 } else {
1753 wc->w_target_from = 0;
1754 wc->w_target_to = PAGE_CACHE_SIZE;
1755 }
9517bac6
MF
1756}
1757
0d172baa
MF
1758/*
1759 * Populate each single-cluster write descriptor in the write context
1760 * with information about the i/o to be done.
b27b7cbc
MF
1761 *
1762 * Returns the number of clusters that will have to be allocated, as
1763 * well as a worst case estimate of the number of extent records that
1764 * would have to be created during a write to an unwritten region.
0d172baa
MF
1765 */
1766static int ocfs2_populate_write_desc(struct inode *inode,
1767 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1768 unsigned int *clusters_to_alloc,
1769 unsigned int *extents_to_split)
9517bac6 1770{
0d172baa 1771 int ret;
3a307ffc 1772 struct ocfs2_write_cluster_desc *desc;
0d172baa 1773 unsigned int num_clusters = 0;
b27b7cbc 1774 unsigned int ext_flags = 0;
0d172baa
MF
1775 u32 phys = 0;
1776 int i;
9517bac6 1777
b27b7cbc
MF
1778 *clusters_to_alloc = 0;
1779 *extents_to_split = 0;
1780
3a307ffc
MF
1781 for (i = 0; i < wc->w_clen; i++) {
1782 desc = &wc->w_desc[i];
1783 desc->c_cpos = wc->w_cpos + i;
1784
1785 if (num_clusters == 0) {
b27b7cbc
MF
1786 /*
1787 * Need to look up the next extent record.
1788 */
3a307ffc 1789 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1790 &num_clusters, &ext_flags);
3a307ffc
MF
1791 if (ret) {
1792 mlog_errno(ret);
607d44aa 1793 goto out;
3a307ffc 1794 }
b27b7cbc 1795
293b2f70
TM
1796 /* We should already CoW the refcountd extent. */
1797 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1798
b27b7cbc
MF
1799 /*
1800 * Assume worst case - that we're writing in
1801 * the middle of the extent.
1802 *
1803 * We can assume that the write proceeds from
1804 * left to right, in which case the extent
1805 * insert code is smart enough to coalesce the
1806 * next splits into the previous records created.
1807 */
1808 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1809 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1810 } else if (phys) {
1811 /*
1812 * Only increment phys if it doesn't describe
1813 * a hole.
1814 */
1815 phys++;
1816 }
1817
e7432675
SM
1818 /*
1819 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1820 * file that got extended. w_first_new_cpos tells us
1821 * where the newly allocated clusters are so we can
1822 * zero them.
1823 */
1824 if (desc->c_cpos >= wc->w_first_new_cpos) {
1825 BUG_ON(phys == 0);
1826 desc->c_needs_zero = 1;
1827 }
1828
3a307ffc
MF
1829 desc->c_phys = phys;
1830 if (phys == 0) {
1831 desc->c_new = 1;
e7432675 1832 desc->c_needs_zero = 1;
0d172baa 1833 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1834 }
e7432675
SM
1835
1836 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b27b7cbc 1837 desc->c_unwritten = 1;
e7432675
SM
1838 desc->c_needs_zero = 1;
1839 }
3a307ffc
MF
1840
1841 num_clusters--;
9517bac6
MF
1842 }
1843
0d172baa
MF
1844 ret = 0;
1845out:
1846 return ret;
1847}
1848
1afc32b9
MF
1849static int ocfs2_write_begin_inline(struct address_space *mapping,
1850 struct inode *inode,
1851 struct ocfs2_write_ctxt *wc)
1852{
1853 int ret;
1854 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1855 struct page *page;
1856 handle_t *handle;
1857 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1858
f775da2f
JB
1859 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1860 if (IS_ERR(handle)) {
1861 ret = PTR_ERR(handle);
1862 mlog_errno(ret);
1863 goto out;
1864 }
1865
1afc32b9
MF
1866 page = find_or_create_page(mapping, 0, GFP_NOFS);
1867 if (!page) {
f775da2f 1868 ocfs2_commit_trans(osb, handle);
1afc32b9
MF
1869 ret = -ENOMEM;
1870 mlog_errno(ret);
1871 goto out;
1872 }
1873 /*
1874 * If we don't set w_num_pages then this page won't get unlocked
1875 * and freed on cleanup of the write context.
1876 */
1877 wc->w_pages[0] = wc->w_target_page = page;
1878 wc->w_num_pages = 1;
1879
0cf2f763 1880 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1881 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1882 if (ret) {
1883 ocfs2_commit_trans(osb, handle);
1884
1885 mlog_errno(ret);
1886 goto out;
1887 }
1888
1889 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1890 ocfs2_set_inode_data_inline(inode, di);
1891
1892 if (!PageUptodate(page)) {
1893 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1894 if (ret) {
1895 ocfs2_commit_trans(osb, handle);
1896
1897 goto out;
1898 }
1899 }
1900
1901 wc->w_handle = handle;
1902out:
1903 return ret;
1904}
1905
1906int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1907{
1908 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1909
0d8a4e0c 1910 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1911 return 1;
1912 return 0;
1913}
1914
1915static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1916 struct inode *inode, loff_t pos,
1917 unsigned len, struct page *mmap_page,
1918 struct ocfs2_write_ctxt *wc)
1919{
1920 int ret, written = 0;
1921 loff_t end = pos + len;
1922 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1923 struct ocfs2_dinode *di = NULL;
1afc32b9 1924
9558156b
TM
1925 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1926 len, (unsigned long long)pos,
1927 oi->ip_dyn_features);
1afc32b9
MF
1928
1929 /*
1930 * Handle inodes which already have inline data 1st.
1931 */
1932 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1933 if (mmap_page == NULL &&
1934 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1935 goto do_inline_write;
1936
1937 /*
1938 * The write won't fit - we have to give this inode an
1939 * inline extent list now.
1940 */
1941 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1942 if (ret)
1943 mlog_errno(ret);
1944 goto out;
1945 }
1946
1947 /*
1948 * Check whether the inode can accept inline data.
1949 */
1950 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1951 return 0;
1952
1953 /*
1954 * Check whether the write can fit.
1955 */
d9ae49d6
TY
1956 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1957 if (mmap_page ||
1958 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1959 return 0;
1960
1961do_inline_write:
1962 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1963 if (ret) {
1964 mlog_errno(ret);
1965 goto out;
1966 }
1967
1968 /*
1969 * This signals to the caller that the data can be written
1970 * inline.
1971 */
1972 written = 1;
1973out:
1974 return written ? written : ret;
1975}
1976
65ed39d6
MF
1977/*
1978 * This function only does anything for file systems which can't
1979 * handle sparse files.
1980 *
1981 * What we want to do here is fill in any hole between the current end
1982 * of allocation and the end of our write. That way the rest of the
1983 * write path can treat it as an non-allocating write, which has no
1984 * special case code for sparse/nonsparse files.
1985 */
5693486b
JB
1986static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1987 struct buffer_head *di_bh,
1988 loff_t pos, unsigned len,
65ed39d6
MF
1989 struct ocfs2_write_ctxt *wc)
1990{
1991 int ret;
65ed39d6
MF
1992 loff_t newsize = pos + len;
1993
5693486b 1994 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
1995
1996 if (newsize <= i_size_read(inode))
1997 return 0;
1998
5693486b 1999 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
2000 if (ret)
2001 mlog_errno(ret);
2002
e7432675
SM
2003 wc->w_first_new_cpos =
2004 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
2005
65ed39d6
MF
2006 return ret;
2007}
2008
5693486b
JB
2009static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
2010 loff_t pos)
2011{
2012 int ret = 0;
2013
2014 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2015 if (pos > i_size_read(inode))
2016 ret = ocfs2_zero_extend(inode, di_bh, pos);
2017
2018 return ret;
2019}
2020
50308d81
TM
2021/*
2022 * Try to flush truncate logs if we can free enough clusters from it.
2023 * As for return value, "< 0" means error, "0" no space and "1" means
2024 * we have freed enough spaces and let the caller try to allocate again.
2025 */
2026static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2027 unsigned int needed)
2028{
2029 tid_t target;
2030 int ret = 0;
2031 unsigned int truncated_clusters;
2032
2033 mutex_lock(&osb->osb_tl_inode->i_mutex);
2034 truncated_clusters = osb->truncated_clusters;
2035 mutex_unlock(&osb->osb_tl_inode->i_mutex);
2036
2037 /*
2038 * Check whether we can succeed in allocating if we free
2039 * the truncate log.
2040 */
2041 if (truncated_clusters < needed)
2042 goto out;
2043
2044 ret = ocfs2_flush_truncate_log(osb);
2045 if (ret) {
2046 mlog_errno(ret);
2047 goto out;
2048 }
2049
2050 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2051 jbd2_log_wait_commit(osb->journal->j_journal, target);
2052 ret = 1;
2053 }
2054out:
2055 return ret;
2056}
2057
0378da0f
TM
2058int ocfs2_write_begin_nolock(struct file *filp,
2059 struct address_space *mapping,
0d172baa
MF
2060 loff_t pos, unsigned len, unsigned flags,
2061 struct page **pagep, void **fsdata,
2062 struct buffer_head *di_bh, struct page *mmap_page)
2063{
e7432675 2064 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
50308d81 2065 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
0d172baa
MF
2066 struct ocfs2_write_ctxt *wc;
2067 struct inode *inode = mapping->host;
2068 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2069 struct ocfs2_dinode *di;
2070 struct ocfs2_alloc_context *data_ac = NULL;
2071 struct ocfs2_alloc_context *meta_ac = NULL;
2072 handle_t *handle;
f99b9b7c 2073 struct ocfs2_extent_tree et;
50308d81 2074 int try_free = 1, ret1;
0d172baa 2075
50308d81 2076try_again:
0d172baa
MF
2077 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2078 if (ret) {
2079 mlog_errno(ret);
2080 return ret;
2081 }
2082
1afc32b9
MF
2083 if (ocfs2_supports_inline_data(osb)) {
2084 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2085 mmap_page, wc);
2086 if (ret == 1) {
2087 ret = 0;
2088 goto success;
2089 }
2090 if (ret < 0) {
2091 mlog_errno(ret);
2092 goto out;
2093 }
2094 }
2095
5693486b
JB
2096 if (ocfs2_sparse_alloc(osb))
2097 ret = ocfs2_zero_tail(inode, di_bh, pos);
2098 else
2099 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2100 wc);
65ed39d6
MF
2101 if (ret) {
2102 mlog_errno(ret);
2103 goto out;
2104 }
2105
293b2f70
TM
2106 ret = ocfs2_check_range_for_refcount(inode, pos, len);
2107 if (ret < 0) {
2108 mlog_errno(ret);
2109 goto out;
2110 } else if (ret == 1) {
50308d81 2111 clusters_need = wc->w_clen;
c7dd3392 2112 ret = ocfs2_refcount_cow(inode, di_bh,
37f8a2bf 2113 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
2114 if (ret) {
2115 mlog_errno(ret);
2116 goto out;
2117 }
2118 }
2119
b27b7cbc
MF
2120 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2121 &extents_to_split);
0d172baa
MF
2122 if (ret) {
2123 mlog_errno(ret);
2124 goto out;
2125 }
50308d81 2126 clusters_need += clusters_to_alloc;
0d172baa
MF
2127
2128 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2129
9558156b
TM
2130 trace_ocfs2_write_begin_nolock(
2131 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2132 (long long)i_size_read(inode),
2133 le32_to_cpu(di->i_clusters),
2134 pos, len, flags, mmap_page,
2135 clusters_to_alloc, extents_to_split);
2136
3a307ffc
MF
2137 /*
2138 * We set w_target_from, w_target_to here so that
2139 * ocfs2_write_end() knows which range in the target page to
2140 * write out. An allocation requires that we write the entire
2141 * cluster range.
2142 */
b27b7cbc 2143 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
2144 /*
2145 * XXX: We are stretching the limits of
b27b7cbc 2146 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
2147 * the work to be done.
2148 */
5e404e9e
JB
2149 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2150 wc->w_di_bh);
f99b9b7c 2151 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 2152 clusters_to_alloc, extents_to_split,
f99b9b7c 2153 &data_ac, &meta_ac);
9517bac6
MF
2154 if (ret) {
2155 mlog_errno(ret);
607d44aa 2156 goto out;
9517bac6
MF
2157 }
2158
4fe370af
MF
2159 if (data_ac)
2160 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2161
811f933d 2162 credits = ocfs2_calc_extend_credits(inode->i_sb,
06f9da6e 2163 &di->id2.i_list);
3a307ffc 2164
9517bac6
MF
2165 }
2166
e7432675
SM
2167 /*
2168 * We have to zero sparse allocated clusters, unwritten extent clusters,
2169 * and non-sparse clusters we just extended. For non-sparse writes,
2170 * we know zeros will only be needed in the first and/or last cluster.
2171 */
2172 if (clusters_to_alloc || extents_to_split ||
8379e7c4
SM
2173 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2174 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
e7432675
SM
2175 cluster_of_pages = 1;
2176 else
2177 cluster_of_pages = 0;
2178
2179 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 2180
9517bac6
MF
2181 handle = ocfs2_start_trans(osb, credits);
2182 if (IS_ERR(handle)) {
2183 ret = PTR_ERR(handle);
2184 mlog_errno(ret);
607d44aa 2185 goto out;
9517bac6
MF
2186 }
2187
3a307ffc
MF
2188 wc->w_handle = handle;
2189
5dd4056d
CH
2190 if (clusters_to_alloc) {
2191 ret = dquot_alloc_space_nodirty(inode,
2192 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2193 if (ret)
2194 goto out_commit;
a90714c1 2195 }
3a307ffc
MF
2196 /*
2197 * We don't want this to fail in ocfs2_write_end(), so do it
2198 * here.
2199 */
0cf2f763 2200 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 2201 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 2202 if (ret) {
9517bac6 2203 mlog_errno(ret);
a90714c1 2204 goto out_quota;
9517bac6
MF
2205 }
2206
3a307ffc
MF
2207 /*
2208 * Fill our page array first. That way we've grabbed enough so
2209 * that we can zero and flush if we error after adding the
2210 * extent.
2211 */
693c241a 2212 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 2213 cluster_of_pages, mmap_page);
5cffff9e 2214 if (ret && ret != -EAGAIN) {
9517bac6 2215 mlog_errno(ret);
a90714c1 2216 goto out_quota;
9517bac6
MF
2217 }
2218
5cffff9e
WW
2219 /*
2220 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2221 * the target page. In this case, we exit with no error and no target
2222 * page. This will trigger the caller, page_mkwrite(), to re-try
2223 * the operation.
2224 */
2225 if (ret == -EAGAIN) {
2226 BUG_ON(wc->w_target_page);
2227 ret = 0;
2228 goto out_quota;
2229 }
2230
0d172baa
MF
2231 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2232 len);
2233 if (ret) {
2234 mlog_errno(ret);
a90714c1 2235 goto out_quota;
9517bac6 2236 }
9517bac6 2237
3a307ffc
MF
2238 if (data_ac)
2239 ocfs2_free_alloc_context(data_ac);
2240 if (meta_ac)
2241 ocfs2_free_alloc_context(meta_ac);
9517bac6 2242
1afc32b9 2243success:
3a307ffc
MF
2244 *pagep = wc->w_target_page;
2245 *fsdata = wc;
2246 return 0;
a90714c1
JK
2247out_quota:
2248 if (clusters_to_alloc)
5dd4056d 2249 dquot_free_space(inode,
a90714c1 2250 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
2251out_commit:
2252 ocfs2_commit_trans(osb, handle);
2253
9517bac6 2254out:
3a307ffc
MF
2255 ocfs2_free_write_ctxt(wc);
2256
b1214e47 2257 if (data_ac) {
9517bac6 2258 ocfs2_free_alloc_context(data_ac);
b1214e47
X
2259 data_ac = NULL;
2260 }
2261 if (meta_ac) {
9517bac6 2262 ocfs2_free_alloc_context(meta_ac);
b1214e47
X
2263 meta_ac = NULL;
2264 }
50308d81
TM
2265
2266 if (ret == -ENOSPC && try_free) {
2267 /*
2268 * Try to free some truncate log so that we can have enough
2269 * clusters to allocate.
2270 */
2271 try_free = 0;
2272
2273 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2274 if (ret1 == 1)
2275 goto try_again;
2276
2277 if (ret1 < 0)
2278 mlog_errno(ret1);
2279 }
2280
3a307ffc
MF
2281 return ret;
2282}
2283
b6af1bcd
NP
2284static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2285 loff_t pos, unsigned len, unsigned flags,
2286 struct page **pagep, void **fsdata)
607d44aa
MF
2287{
2288 int ret;
2289 struct buffer_head *di_bh = NULL;
2290 struct inode *inode = mapping->host;
2291
e63aecb6 2292 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
2293 if (ret) {
2294 mlog_errno(ret);
2295 return ret;
2296 }
2297
2298 /*
2299 * Take alloc sem here to prevent concurrent lookups. That way
2300 * the mapping, zeroing and tree manipulation within
2301 * ocfs2_write() will be safe against ->readpage(). This
2302 * should also serve to lock out allocation from a shared
2303 * writeable region.
2304 */
2305 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2306
0378da0f 2307 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
7307de80 2308 fsdata, di_bh, NULL);
607d44aa
MF
2309 if (ret) {
2310 mlog_errno(ret);
c934a92d 2311 goto out_fail;
607d44aa
MF
2312 }
2313
2314 brelse(di_bh);
2315
2316 return 0;
2317
607d44aa
MF
2318out_fail:
2319 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2320
2321 brelse(di_bh);
e63aecb6 2322 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
2323
2324 return ret;
2325}
2326
1afc32b9
MF
2327static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2328 unsigned len, unsigned *copied,
2329 struct ocfs2_dinode *di,
2330 struct ocfs2_write_ctxt *wc)
2331{
2332 void *kaddr;
2333
2334 if (unlikely(*copied < len)) {
2335 if (!PageUptodate(wc->w_target_page)) {
2336 *copied = 0;
2337 return;
2338 }
2339 }
2340
c4bc8dcb 2341 kaddr = kmap_atomic(wc->w_target_page);
1afc32b9 2342 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
c4bc8dcb 2343 kunmap_atomic(kaddr);
1afc32b9 2344
9558156b
TM
2345 trace_ocfs2_write_end_inline(
2346 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1afc32b9
MF
2347 (unsigned long long)pos, *copied,
2348 le16_to_cpu(di->id2.i_data.id_count),
2349 le16_to_cpu(di->i_dyn_features));
2350}
2351
7307de80
MF
2352int ocfs2_write_end_nolock(struct address_space *mapping,
2353 loff_t pos, unsigned len, unsigned copied,
2354 struct page *page, void *fsdata)
3a307ffc
MF
2355{
2356 int i;
2357 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2358 struct inode *inode = mapping->host;
2359 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2360 struct ocfs2_write_ctxt *wc = fsdata;
2361 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2362 handle_t *handle = wc->w_handle;
2363 struct page *tmppage;
2364
1afc32b9
MF
2365 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2366 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2367 goto out_write_size;
2368 }
2369
3a307ffc
MF
2370 if (unlikely(copied < len)) {
2371 if (!PageUptodate(wc->w_target_page))
2372 copied = 0;
2373
2374 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2375 start+len);
2376 }
2377 flush_dcache_page(wc->w_target_page);
2378
2379 for(i = 0; i < wc->w_num_pages; i++) {
2380 tmppage = wc->w_pages[i];
2381
2382 if (tmppage == wc->w_target_page) {
2383 from = wc->w_target_from;
2384 to = wc->w_target_to;
2385
2386 BUG_ON(from > PAGE_CACHE_SIZE ||
2387 to > PAGE_CACHE_SIZE ||
2388 to < from);
2389 } else {
2390 /*
2391 * Pages adjacent to the target (if any) imply
2392 * a hole-filling write in which case we want
2393 * to flush their entire range.
2394 */
2395 from = 0;
2396 to = PAGE_CACHE_SIZE;
2397 }
2398
961cecbe 2399 if (page_has_buffers(tmppage)) {
53ef99ca 2400 if (ocfs2_should_order_data(inode))
2b4e30fb 2401 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
2402 block_commit_write(tmppage, from, to);
2403 }
3a307ffc
MF
2404 }
2405
1afc32b9 2406out_write_size:
3a307ffc 2407 pos += copied;
f17c20dd 2408 if (pos > i_size_read(inode)) {
3a307ffc
MF
2409 i_size_write(inode, pos);
2410 mark_inode_dirty(inode);
2411 }
2412 inode->i_blocks = ocfs2_inode_sector_count(inode);
2413 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2414 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2415 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2416 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2931cdcb 2417 ocfs2_update_inode_fsync_trans(handle, inode, 1);
3a307ffc
MF
2418 ocfs2_journal_dirty(handle, wc->w_di_bh);
2419
136f49b9
JB
2420 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2421 * lock, or it will cause a deadlock since journal commit threads holds
2422 * this lock and will ask for the page lock when flushing the data.
2423 * put it here to preserve the unlock order.
2424 */
2425 ocfs2_unlock_pages(wc);
2426
3a307ffc 2427 ocfs2_commit_trans(osb, handle);
59a5e416 2428
b27b7cbc
MF
2429 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2430
136f49b9
JB
2431 brelse(wc->w_di_bh);
2432 kfree(wc);
607d44aa
MF
2433
2434 return copied;
2435}
2436
b6af1bcd
NP
2437static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2438 loff_t pos, unsigned len, unsigned copied,
2439 struct page *page, void *fsdata)
607d44aa
MF
2440{
2441 int ret;
2442 struct inode *inode = mapping->host;
2443
2444 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2445
3a307ffc 2446 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 2447 ocfs2_inode_unlock(inode, 1);
9517bac6 2448
607d44aa 2449 return ret;
9517bac6
MF
2450}
2451
f5e54d6e 2452const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
2453 .readpage = ocfs2_readpage,
2454 .readpages = ocfs2_readpages,
2455 .writepage = ocfs2_writepage,
2456 .write_begin = ocfs2_write_begin,
2457 .write_end = ocfs2_write_end,
2458 .bmap = ocfs2_bmap,
1fca3a05 2459 .direct_IO = ocfs2_direct_IO,
41ecc345 2460 .invalidatepage = block_invalidatepage,
1fca3a05
HH
2461 .releasepage = ocfs2_releasepage,
2462 .migratepage = buffer_migrate_page,
2463 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2464 .error_remove_page = generic_error_remove_page,
ccd979bd 2465};