Remove rw from dax_{do_,}io()
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
24c40b32 31#include <linux/blkdev.h>
e2e40f2c 32#include <linux/uio.h>
ccd979bd 33
ccd979bd
MF
34#include <cluster/masklog.h>
35
36#include "ocfs2.h"
37
38#include "alloc.h"
39#include "aops.h"
40#include "dlmglue.h"
41#include "extent_map.h"
42#include "file.h"
43#include "inode.h"
44#include "journal.h"
9517bac6 45#include "suballoc.h"
ccd979bd
MF
46#include "super.h"
47#include "symlink.h"
293b2f70 48#include "refcounttree.h"
9558156b 49#include "ocfs2_trace.h"
ccd979bd
MF
50
51#include "buffer_head_io.h"
24c40b32
JQ
52#include "dir.h"
53#include "namei.h"
54#include "sysfile.h"
ccd979bd
MF
55
56static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57 struct buffer_head *bh_result, int create)
58{
59 int err = -EIO;
60 int status;
61 struct ocfs2_dinode *fe = NULL;
62 struct buffer_head *bh = NULL;
63 struct buffer_head *buffer_cache_bh = NULL;
64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65 void *kaddr;
66
9558156b
TM
67 trace_ocfs2_symlink_get_block(
68 (unsigned long long)OCFS2_I(inode)->ip_blkno,
69 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
70
71 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75 (unsigned long long)iblock);
76 goto bail;
77 }
78
b657c95c 79 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
80 if (status < 0) {
81 mlog_errno(status);
82 goto bail;
83 }
84 fe = (struct ocfs2_dinode *) bh->b_data;
85
ccd979bd
MF
86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 le32_to_cpu(fe->i_clusters))) {
7391a294 88 err = -ENOMEM;
ccd979bd
MF
89 mlog(ML_ERROR, "block offset is outside the allocated size: "
90 "%llu\n", (unsigned long long)iblock);
91 goto bail;
92 }
93
94 /* We don't use the page cache to create symlink data, so if
95 * need be, copy it over from the buffer cache. */
96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 iblock;
99 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 if (!buffer_cache_bh) {
7391a294 101 err = -ENOMEM;
ccd979bd
MF
102 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 goto bail;
104 }
105
106 /* we haven't locked out transactions, so a commit
107 * could've happened. Since we've got a reference on
108 * the bh, even if it commits while we're doing the
109 * copy, the data is still good. */
110 if (buffer_jbd(buffer_cache_bh)
111 && ocfs2_inode_is_new(inode)) {
c4bc8dcb 112 kaddr = kmap_atomic(bh_result->b_page);
ccd979bd
MF
113 if (!kaddr) {
114 mlog(ML_ERROR, "couldn't kmap!\n");
115 goto bail;
116 }
117 memcpy(kaddr + (bh_result->b_size * iblock),
118 buffer_cache_bh->b_data,
119 bh_result->b_size);
c4bc8dcb 120 kunmap_atomic(kaddr);
ccd979bd
MF
121 set_buffer_uptodate(bh_result);
122 }
123 brelse(buffer_cache_bh);
124 }
125
126 map_bh(bh_result, inode->i_sb,
127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129 err = 0;
130
131bail:
a81cb88b 132 brelse(bh);
ccd979bd 133
ccd979bd
MF
134 return err;
135}
136
6f70fa51
TM
137int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
ccd979bd
MF
139{
140 int err = 0;
49cb8d2d 141 unsigned int ext_flags;
628a24f5
MF
142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143 u64 p_blkno, count, past_eof;
25baf2da 144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd 145
9558156b
TM
146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
148
149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151 inode, inode->i_ino);
152
153 if (S_ISLNK(inode->i_mode)) {
154 /* this always does I/O for some reason. */
155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 goto bail;
157 }
158
628a24f5 159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 160 &ext_flags);
ccd979bd
MF
161 if (err) {
162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164 (unsigned long long)p_blkno);
ccd979bd
MF
165 goto bail;
166 }
167
628a24f5
MF
168 if (max_blocks < count)
169 count = max_blocks;
170
25baf2da
MF
171 /*
172 * ocfs2 never allocates in this function - the only time we
173 * need to use BH_New is when we're extending i_size on a file
174 * system which doesn't support holes, in which case BH_New
ebdec241 175 * allows __block_write_begin() to zero.
c0420ad2
CL
176 *
177 * If we see this on a sparse file system, then a truncate has
178 * raced us and removed the cluster. In this case, we clear
179 * the buffers dirty and uptodate bits and let the buffer code
180 * ignore it as a hole.
25baf2da 181 */
c0420ad2
CL
182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183 clear_buffer_dirty(bh_result);
184 clear_buffer_uptodate(bh_result);
185 goto bail;
186 }
25baf2da 187
49cb8d2d
MF
188 /* Treat the unwritten extent as a hole for zeroing purposes. */
189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
190 map_bh(bh_result, inode->i_sb, p_blkno);
191
628a24f5
MF
192 bh_result->b_size = count << inode->i_blkbits;
193
25baf2da
MF
194 if (!ocfs2_sparse_alloc(osb)) {
195 if (p_blkno == 0) {
196 err = -EIO;
197 mlog(ML_ERROR,
198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 (unsigned long long)iblock,
200 (unsigned long long)p_blkno,
201 (unsigned long long)OCFS2_I(inode)->ip_blkno);
202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203 dump_stack();
1f4cea37 204 goto bail;
25baf2da 205 }
25baf2da 206 }
ccd979bd 207
5693486b 208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
9558156b
TM
209
210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211 (unsigned long long)past_eof);
5693486b
JB
212 if (create && (iblock >= past_eof))
213 set_buffer_new(bh_result);
214
ccd979bd
MF
215bail:
216 if (err < 0)
217 err = -EIO;
218
ccd979bd
MF
219 return err;
220}
221
1afc32b9
MF
222int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223 struct buffer_head *di_bh)
6798d35a
MF
224{
225 void *kaddr;
d2849fb2 226 loff_t size;
6798d35a
MF
227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
231 (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 return -EROFS;
233 }
234
235 size = i_size_read(inode);
236
237 if (size > PAGE_CACHE_SIZE ||
d9ae49d6 238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 239 ocfs2_error(inode->i_sb,
d2849fb2
JK
240 "Inode %llu has with inline data has bad size: %Lu",
241 (unsigned long long)OCFS2_I(inode)->ip_blkno,
242 (unsigned long long)size);
6798d35a
MF
243 return -EROFS;
244 }
245
c4bc8dcb 246 kaddr = kmap_atomic(page);
6798d35a
MF
247 if (size)
248 memcpy(kaddr, di->id2.i_data.id_data, size);
249 /* Clear the remaining part of the page */
250 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251 flush_dcache_page(page);
c4bc8dcb 252 kunmap_atomic(kaddr);
6798d35a
MF
253
254 SetPageUptodate(page);
255
256 return 0;
257}
258
259static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260{
261 int ret;
262 struct buffer_head *di_bh = NULL;
6798d35a
MF
263
264 BUG_ON(!PageLocked(page));
86c838b0 265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 266
b657c95c 267 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
268 if (ret) {
269 mlog_errno(ret);
270 goto out;
271 }
272
273 ret = ocfs2_read_inline_data(inode, page, di_bh);
274out:
275 unlock_page(page);
276
277 brelse(di_bh);
278 return ret;
279}
280
ccd979bd
MF
281static int ocfs2_readpage(struct file *file, struct page *page)
282{
283 struct inode *inode = page->mapping->host;
6798d35a 284 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
285 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286 int ret, unlock = 1;
287
9558156b
TM
288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289 (page ? page->index : 0));
ccd979bd 290
e63aecb6 291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
292 if (ret != 0) {
293 if (ret == AOP_TRUNCATED_PAGE)
294 unlock = 0;
295 mlog_errno(ret);
296 goto out;
297 }
298
6798d35a 299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
c7e25e6e
JK
300 /*
301 * Unlock the page and cycle ip_alloc_sem so that we don't
302 * busyloop waiting for ip_alloc_sem to unlock
303 */
e9dfc0b2 304 ret = AOP_TRUNCATED_PAGE;
c7e25e6e
JK
305 unlock_page(page);
306 unlock = 0;
307 down_read(&oi->ip_alloc_sem);
308 up_read(&oi->ip_alloc_sem);
e63aecb6 309 goto out_inode_unlock;
e9dfc0b2 310 }
ccd979bd
MF
311
312 /*
313 * i_size might have just been updated as we grabed the meta lock. We
314 * might now be discovering a truncate that hit on another node.
315 * block_read_full_page->get_block freaks out if it is asked to read
316 * beyond the end of a file, so we check here. Callers
54cb8821 317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
318 * and notice that the page they just read isn't needed.
319 *
320 * XXX sys_readahead() seems to get that wrong?
321 */
322 if (start >= i_size_read(inode)) {
eebd2aa3 323 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
324 SetPageUptodate(page);
325 ret = 0;
326 goto out_alloc;
327 }
328
6798d35a
MF
329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330 ret = ocfs2_readpage_inline(inode, page);
331 else
332 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
333 unlock = 0;
334
ccd979bd
MF
335out_alloc:
336 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
337out_inode_unlock:
338 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
339out:
340 if (unlock)
341 unlock_page(page);
ccd979bd
MF
342 return ret;
343}
344
628a24f5
MF
345/*
346 * This is used only for read-ahead. Failures or difficult to handle
347 * situations are safe to ignore.
348 *
349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
350 * are quite large (243 extents on 4k blocks), so most inodes don't
351 * grow out to a tree. If need be, detecting boundary extents could
352 * trivially be added in a future version of ocfs2_get_block().
353 */
354static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355 struct list_head *pages, unsigned nr_pages)
356{
357 int ret, err = -EIO;
358 struct inode *inode = mapping->host;
359 struct ocfs2_inode_info *oi = OCFS2_I(inode);
360 loff_t start;
361 struct page *last;
362
363 /*
364 * Use the nonblocking flag for the dlm code to avoid page
365 * lock inversion, but don't bother with retrying.
366 */
367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368 if (ret)
369 return err;
370
371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372 ocfs2_inode_unlock(inode, 0);
373 return err;
374 }
375
376 /*
377 * Don't bother with inline-data. There isn't anything
378 * to read-ahead in that case anyway...
379 */
380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381 goto out_unlock;
382
383 /*
384 * Check whether a remote node truncated this file - we just
385 * drop out in that case as it's not worth handling here.
386 */
387 last = list_entry(pages->prev, struct page, lru);
388 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389 if (start >= i_size_read(inode))
390 goto out_unlock;
391
392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394out_unlock:
395 up_read(&oi->ip_alloc_sem);
396 ocfs2_inode_unlock(inode, 0);
397
398 return err;
399}
400
ccd979bd
MF
401/* Note: Because we don't support holes, our allocation has
402 * already happened (allocation writes zeros to the file data)
403 * so we don't have to worry about ordered writes in
404 * ocfs2_writepage.
405 *
406 * ->writepage is called during the process of invalidating the page cache
407 * during blocked lock processing. It can't block on any cluster locks
408 * to during block mapping. It's relying on the fact that the block
409 * mapping can't have disappeared under the dirty pages that it is
410 * being asked to write back.
411 */
412static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413{
9558156b
TM
414 trace_ocfs2_writepage(
415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416 page->index);
ccd979bd 417
9558156b 418 return block_write_full_page(page, ocfs2_get_block, wbc);
ccd979bd
MF
419}
420
ccd979bd
MF
421/* Taken from ext3. We don't necessarily need the full blown
422 * functionality yet, but IMHO it's better to cut and paste the whole
423 * thing so we can avoid introducing our own bugs (and easily pick up
424 * their fixes when they happen) --Mark */
60b11392
MF
425int walk_page_buffers( handle_t *handle,
426 struct buffer_head *head,
427 unsigned from,
428 unsigned to,
429 int *partial,
430 int (*fn)( handle_t *handle,
431 struct buffer_head *bh))
ccd979bd
MF
432{
433 struct buffer_head *bh;
434 unsigned block_start, block_end;
435 unsigned blocksize = head->b_size;
436 int err, ret = 0;
437 struct buffer_head *next;
438
439 for ( bh = head, block_start = 0;
440 ret == 0 && (bh != head || !block_start);
441 block_start = block_end, bh = next)
442 {
443 next = bh->b_this_page;
444 block_end = block_start + blocksize;
445 if (block_end <= from || block_start >= to) {
446 if (partial && !buffer_uptodate(bh))
447 *partial = 1;
448 continue;
449 }
450 err = (*fn)(handle, bh);
451 if (!ret)
452 ret = err;
453 }
454 return ret;
455}
456
ccd979bd
MF
457static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458{
459 sector_t status;
460 u64 p_blkno = 0;
461 int err = 0;
462 struct inode *inode = mapping->host;
463
9558156b
TM
464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465 (unsigned long long)block);
ccd979bd
MF
466
467 /* We don't need to lock journal system files, since they aren't
468 * accessed concurrently from multiple nodes.
469 */
470 if (!INODE_JOURNAL(inode)) {
e63aecb6 471 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
472 if (err) {
473 if (err != -ENOENT)
474 mlog_errno(err);
475 goto bail;
476 }
477 down_read(&OCFS2_I(inode)->ip_alloc_sem);
478 }
479
6798d35a
MF
480 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482 NULL);
ccd979bd
MF
483
484 if (!INODE_JOURNAL(inode)) {
485 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 486 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
487 }
488
489 if (err) {
490 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491 (unsigned long long)block);
492 mlog_errno(err);
493 goto bail;
494 }
495
ccd979bd
MF
496bail:
497 status = err ? 0 : p_blkno;
498
ccd979bd
MF
499 return status;
500}
501
502/*
503 * TODO: Make this into a generic get_blocks function.
504 *
505 * From do_direct_io in direct-io.c:
506 * "So what we do is to permit the ->get_blocks function to populate
507 * bh.b_size with the size of IO which is permitted at this offset and
508 * this i_blkbits."
509 *
510 * This function is called directly from get_more_blocks in direct-io.c.
511 *
512 * called like this: dio->get_blocks(dio->inode, fs_startblk,
513 * fs_count, map_bh, dio->rw == WRITE);
514 */
515static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
516 struct buffer_head *bh_result, int create)
517{
518 int ret;
49255dce
JQ
519 u32 cpos = 0;
520 int alloc_locked = 0;
4f902c37 521 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 522 unsigned int ext_flags;
184d7d20 523 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 524 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
49255dce
JQ
525 unsigned long len = bh_result->b_size;
526 unsigned int clusters_to_alloc = 0;
527
528 cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
ccd979bd 529
ccd979bd
MF
530 /* This function won't even be called if the request isn't all
531 * nicely aligned and of the right size, so there's no need
532 * for us to check any of that. */
533
25baf2da 534 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32 535
ccd979bd
MF
536 /* This figures out the size of the next contiguous block, and
537 * our logical offset */
363041a5 538 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 539 &contig_blocks, &ext_flags);
ccd979bd
MF
540 if (ret) {
541 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
542 (unsigned long long)iblock);
543 ret = -EIO;
544 goto bail;
545 }
546
cbaee472
TM
547 /* We should already CoW the refcounted extent in case of create. */
548 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
549
49255dce
JQ
550 /* allocate blocks if no p_blkno is found, and create == 1 */
551 if (!p_blkno && create) {
552 ret = ocfs2_inode_lock(inode, NULL, 1);
553 if (ret < 0) {
554 mlog_errno(ret);
555 goto bail;
556 }
557
558 alloc_locked = 1;
559
560 /* fill hole, allocate blocks can't be larger than the size
561 * of the hole */
562 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
563 if (clusters_to_alloc > contig_blocks)
564 clusters_to_alloc = contig_blocks;
565
566 /* allocate extent and insert them into the extent tree */
567 ret = ocfs2_extend_allocation(inode, cpos,
568 clusters_to_alloc, 0);
569 if (ret < 0) {
570 mlog_errno(ret);
571 goto bail;
572 }
573
574 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
575 &contig_blocks, &ext_flags);
576 if (ret < 0) {
577 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
578 (unsigned long long)iblock);
579 ret = -EIO;
580 goto bail;
581 }
582 }
583
25baf2da
MF
584 /*
585 * get_more_blocks() expects us to describe a hole by clearing
586 * the mapped bit on bh_result().
49cb8d2d
MF
587 *
588 * Consider an unwritten extent as a hole.
25baf2da 589 */
49cb8d2d 590 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da 591 map_bh(bh_result, inode->i_sb, p_blkno);
5fe878ae 592 else
25baf2da 593 clear_buffer_mapped(bh_result);
ccd979bd
MF
594
595 /* make sure we don't map more than max_blocks blocks here as
596 that's all the kernel will handle at this point. */
597 if (max_blocks < contig_blocks)
598 contig_blocks = max_blocks;
599 bh_result->b_size = contig_blocks << blocksize_bits;
600bail:
49255dce
JQ
601 if (alloc_locked)
602 ocfs2_inode_unlock(inode, 1);
ccd979bd
MF
603 return ret;
604}
605
2bd63216 606/*
ccd979bd 607 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
bd5fe6c5
CH
608 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
609 * to protect io on one node from truncation on another.
ccd979bd
MF
610 */
611static void ocfs2_dio_end_io(struct kiocb *iocb,
612 loff_t offset,
613 ssize_t bytes,
7b7a8665 614 void *private)
ccd979bd 615{
496ad9aa 616 struct inode *inode = file_inode(iocb->ki_filp);
7cdfc3a1 617 int level;
ccd979bd
MF
618
619 /* this io's submitter should not have unlocked this before we could */
620 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 621
df2d6f26 622 if (ocfs2_iocb_is_sem_locked(iocb))
39c99f12 623 ocfs2_iocb_clear_sem_locked(iocb);
39c99f12 624
a11f7e63
MF
625 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
626 ocfs2_iocb_clear_unaligned_aio(iocb);
627
c18ceab0 628 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
a11f7e63
MF
629 }
630
ccd979bd 631 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
632
633 level = ocfs2_iocb_rw_locked_level(iocb);
7cdfc3a1 634 ocfs2_rw_unlock(inode, level);
ccd979bd
MF
635}
636
03f981cf
JB
637static int ocfs2_releasepage(struct page *page, gfp_t wait)
638{
03f981cf
JB
639 if (!page_has_buffers(page))
640 return 0;
41ecc345 641 return try_to_free_buffers(page);
03f981cf
JB
642}
643
24c40b32
JQ
644static int ocfs2_is_overwrite(struct ocfs2_super *osb,
645 struct inode *inode, loff_t offset)
646{
647 int ret = 0;
648 u32 v_cpos = 0;
649 u32 p_cpos = 0;
650 unsigned int num_clusters = 0;
651 unsigned int ext_flags = 0;
652
653 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
654 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
655 &num_clusters, &ext_flags);
656 if (ret < 0) {
657 mlog_errno(ret);
658 return ret;
659 }
660
661 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
662 return 1;
663
664 return 0;
665}
666
667static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
668 struct iov_iter *iter,
669 loff_t offset)
670{
671 ssize_t ret = 0;
672 ssize_t written = 0;
673 bool orphaned = false;
674 int is_overwrite = 0;
675 struct file *file = iocb->ki_filp;
676 struct inode *inode = file_inode(file)->i_mapping->host;
677 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
678 struct buffer_head *di_bh = NULL;
679 size_t count = iter->count;
680 journal_t *journal = osb->journal->j_journal;
681 u32 zero_len;
682 int cluster_align;
683 loff_t final_size = offset + count;
684 int append_write = offset >= i_size_read(inode) ? 1 : 0;
685 unsigned int num_clusters = 0;
686 unsigned int ext_flags = 0;
687
688 {
689 u64 o = offset;
690
691 zero_len = do_div(o, 1 << osb->s_clustersize_bits);
692 cluster_align = !zero_len;
693 }
694
695 /*
696 * when final_size > inode->i_size, inode->i_size will be
697 * updated after direct write, so add the inode to orphan
698 * dir first.
699 */
700 if (final_size > i_size_read(inode)) {
701 ret = ocfs2_add_inode_to_orphan(osb, inode);
702 if (ret < 0) {
703 mlog_errno(ret);
704 goto out;
705 }
706 orphaned = true;
707 }
708
709 if (append_write) {
710 ret = ocfs2_inode_lock(inode, &di_bh, 1);
711 if (ret < 0) {
712 mlog_errno(ret);
713 goto clean_orphan;
714 }
715
716 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
717 ret = ocfs2_zero_extend(inode, di_bh, offset);
718 else
719 ret = ocfs2_extend_no_holes(inode, di_bh, offset,
720 offset);
721 if (ret < 0) {
722 mlog_errno(ret);
723 ocfs2_inode_unlock(inode, 1);
724 brelse(di_bh);
725 goto clean_orphan;
726 }
727
728 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
729 if (is_overwrite < 0) {
730 mlog_errno(is_overwrite);
731 ocfs2_inode_unlock(inode, 1);
732 brelse(di_bh);
733 goto clean_orphan;
734 }
735
736 ocfs2_inode_unlock(inode, 1);
737 brelse(di_bh);
738 di_bh = NULL;
739 }
740
17f8c842
OS
741 written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
742 offset, ocfs2_direct_IO_get_blocks,
743 ocfs2_dio_end_io, NULL, 0);
24c40b32
JQ
744 if (unlikely(written < 0)) {
745 loff_t i_size = i_size_read(inode);
746
747 if (offset + count > i_size) {
748 ret = ocfs2_inode_lock(inode, &di_bh, 1);
749 if (ret < 0) {
750 mlog_errno(ret);
751 goto clean_orphan;
752 }
753
754 if (i_size == i_size_read(inode)) {
755 ret = ocfs2_truncate_file(inode, di_bh,
756 i_size);
757 if (ret < 0) {
758 if (ret != -ENOSPC)
759 mlog_errno(ret);
760
761 ocfs2_inode_unlock(inode, 1);
762 brelse(di_bh);
763 goto clean_orphan;
764 }
765 }
766
767 ocfs2_inode_unlock(inode, 1);
768 brelse(di_bh);
769
770 ret = jbd2_journal_force_commit(journal);
771 if (ret < 0)
772 mlog_errno(ret);
773 }
774 } else if (written < 0 && append_write && !is_overwrite &&
775 !cluster_align) {
776 u32 p_cpos = 0;
777 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
778
779 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
780 &num_clusters, &ext_flags);
781 if (ret < 0) {
782 mlog_errno(ret);
783 goto clean_orphan;
784 }
785
786 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
787
788 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
789 p_cpos << (osb->s_clustersize_bits - 9),
790 zero_len >> 9, GFP_KERNEL, false);
791 if (ret < 0)
792 mlog_errno(ret);
793 }
794
795clean_orphan:
796 if (orphaned) {
797 int tmp_ret;
798 int update_isize = written > 0 ? 1 : 0;
799 loff_t end = update_isize ? offset + written : 0;
800
801 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode,
802 update_isize, end);
803 if (tmp_ret < 0) {
804 ret = tmp_ret;
805 goto out;
806 }
807
808 tmp_ret = jbd2_journal_force_commit(journal);
809 if (tmp_ret < 0) {
810 ret = tmp_ret;
811 mlog_errno(tmp_ret);
812 }
813 }
814
815out:
816 if (ret >= 0)
817 ret = written;
818 return ret;
819}
820
ccd979bd
MF
821static ssize_t ocfs2_direct_IO(int rw,
822 struct kiocb *iocb,
d8d3d94b
AV
823 struct iov_iter *iter,
824 loff_t offset)
ccd979bd
MF
825{
826 struct file *file = iocb->ki_filp;
496ad9aa 827 struct inode *inode = file_inode(file)->i_mapping->host;
24c40b32
JQ
828 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
829 int full_coherency = !(osb->s_mount_opt &
830 OCFS2_MOUNT_COHERENCY_BUFFERED);
53013cba 831
6798d35a
MF
832 /*
833 * Fallback to buffered I/O if we see an inode without
834 * extents.
835 */
836 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
837 return 0;
838
24c40b32
JQ
839 /* Fallback to buffered I/O if we are appending and
840 * concurrent O_DIRECT writes are allowed.
841 */
842 if (i_size_read(inode) <= offset && !full_coherency)
b80474b4
TM
843 return 0;
844
24c40b32 845 if (rw == READ)
17f8c842
OS
846 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
847 iter, offset,
848 ocfs2_direct_IO_get_blocks,
849 ocfs2_dio_end_io, NULL, 0);
24c40b32
JQ
850 else
851 return ocfs2_direct_IO_write(iocb, iter, offset);
ccd979bd
MF
852}
853
9517bac6
MF
854static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
855 u32 cpos,
856 unsigned int *start,
857 unsigned int *end)
858{
859 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
860
861 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
862 unsigned int cpp;
863
864 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
865
866 cluster_start = cpos % cpp;
867 cluster_start = cluster_start << osb->s_clustersize_bits;
868
869 cluster_end = cluster_start + osb->s_clustersize;
870 }
871
872 BUG_ON(cluster_start > PAGE_SIZE);
873 BUG_ON(cluster_end > PAGE_SIZE);
874
875 if (start)
876 *start = cluster_start;
877 if (end)
878 *end = cluster_end;
879}
880
881/*
882 * 'from' and 'to' are the region in the page to avoid zeroing.
883 *
884 * If pagesize > clustersize, this function will avoid zeroing outside
885 * of the cluster boundary.
886 *
887 * from == to == 0 is code for "zero the entire cluster region"
888 */
889static void ocfs2_clear_page_regions(struct page *page,
890 struct ocfs2_super *osb, u32 cpos,
891 unsigned from, unsigned to)
892{
893 void *kaddr;
894 unsigned int cluster_start, cluster_end;
895
896 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
897
c4bc8dcb 898 kaddr = kmap_atomic(page);
9517bac6
MF
899
900 if (from || to) {
901 if (from > cluster_start)
902 memset(kaddr + cluster_start, 0, from - cluster_start);
903 if (to < cluster_end)
904 memset(kaddr + to, 0, cluster_end - to);
905 } else {
906 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
907 }
908
c4bc8dcb 909 kunmap_atomic(kaddr);
9517bac6
MF
910}
911
4e9563fd
MF
912/*
913 * Nonsparse file systems fully allocate before we get to the write
914 * code. This prevents ocfs2_write() from tagging the write as an
915 * allocating one, which means ocfs2_map_page_blocks() might try to
916 * read-in the blocks at the tail of our file. Avoid reading them by
917 * testing i_size against each block offset.
918 */
919static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
920 unsigned int block_start)
921{
922 u64 offset = page_offset(page) + block_start;
923
924 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
925 return 1;
926
927 if (i_size_read(inode) > offset)
928 return 1;
929
930 return 0;
931}
932
9517bac6 933/*
ebdec241 934 * Some of this taken from __block_write_begin(). We already have our
9517bac6
MF
935 * mapping by now though, and the entire write will be allocating or
936 * it won't, so not much need to use BH_New.
937 *
938 * This will also skip zeroing, which is handled externally.
939 */
60b11392
MF
940int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
941 struct inode *inode, unsigned int from,
942 unsigned int to, int new)
9517bac6
MF
943{
944 int ret = 0;
945 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
946 unsigned int block_end, block_start;
947 unsigned int bsize = 1 << inode->i_blkbits;
948
949 if (!page_has_buffers(page))
950 create_empty_buffers(page, bsize, 0);
951
952 head = page_buffers(page);
953 for (bh = head, block_start = 0; bh != head || !block_start;
954 bh = bh->b_this_page, block_start += bsize) {
955 block_end = block_start + bsize;
956
3a307ffc
MF
957 clear_buffer_new(bh);
958
9517bac6
MF
959 /*
960 * Ignore blocks outside of our i/o range -
961 * they may belong to unallocated clusters.
962 */
60b11392 963 if (block_start >= to || block_end <= from) {
9517bac6
MF
964 if (PageUptodate(page))
965 set_buffer_uptodate(bh);
966 continue;
967 }
968
969 /*
970 * For an allocating write with cluster size >= page
971 * size, we always write the entire page.
972 */
3a307ffc
MF
973 if (new)
974 set_buffer_new(bh);
9517bac6
MF
975
976 if (!buffer_mapped(bh)) {
977 map_bh(bh, inode->i_sb, *p_blkno);
978 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
979 }
980
981 if (PageUptodate(page)) {
982 if (!buffer_uptodate(bh))
983 set_buffer_uptodate(bh);
984 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 985 !buffer_new(bh) &&
4e9563fd 986 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 987 (block_start < from || block_end > to)) {
9517bac6
MF
988 ll_rw_block(READ, 1, &bh);
989 *wait_bh++=bh;
990 }
991
992 *p_blkno = *p_blkno + 1;
993 }
994
995 /*
996 * If we issued read requests - let them complete.
997 */
998 while(wait_bh > wait) {
999 wait_on_buffer(*--wait_bh);
1000 if (!buffer_uptodate(*wait_bh))
1001 ret = -EIO;
1002 }
1003
1004 if (ret == 0 || !new)
1005 return ret;
1006
1007 /*
1008 * If we get -EIO above, zero out any newly allocated blocks
1009 * to avoid exposing stale data.
1010 */
1011 bh = head;
1012 block_start = 0;
1013 do {
9517bac6
MF
1014 block_end = block_start + bsize;
1015 if (block_end <= from)
1016 goto next_bh;
1017 if (block_start >= to)
1018 break;
1019
eebd2aa3 1020 zero_user(page, block_start, bh->b_size);
9517bac6
MF
1021 set_buffer_uptodate(bh);
1022 mark_buffer_dirty(bh);
1023
1024next_bh:
1025 block_start = block_end;
1026 bh = bh->b_this_page;
1027 } while (bh != head);
1028
1029 return ret;
1030}
1031
3a307ffc
MF
1032#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1033#define OCFS2_MAX_CTXT_PAGES 1
1034#else
1035#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1036#endif
1037
1038#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1039
6af67d82 1040/*
3a307ffc 1041 * Describe the state of a single cluster to be written to.
6af67d82 1042 */
3a307ffc
MF
1043struct ocfs2_write_cluster_desc {
1044 u32 c_cpos;
1045 u32 c_phys;
1046 /*
1047 * Give this a unique field because c_phys eventually gets
1048 * filled.
1049 */
1050 unsigned c_new;
b27b7cbc 1051 unsigned c_unwritten;
e7432675 1052 unsigned c_needs_zero;
3a307ffc 1053};
6af67d82 1054
3a307ffc
MF
1055struct ocfs2_write_ctxt {
1056 /* Logical cluster position / len of write */
1057 u32 w_cpos;
1058 u32 w_clen;
6af67d82 1059
e7432675
SM
1060 /* First cluster allocated in a nonsparse extend */
1061 u32 w_first_new_cpos;
1062
3a307ffc 1063 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 1064
3a307ffc
MF
1065 /*
1066 * This is true if page_size > cluster_size.
1067 *
1068 * It triggers a set of special cases during write which might
1069 * have to deal with allocating writes to partial pages.
1070 */
1071 unsigned int w_large_pages;
6af67d82 1072
3a307ffc
MF
1073 /*
1074 * Pages involved in this write.
1075 *
1076 * w_target_page is the page being written to by the user.
1077 *
1078 * w_pages is an array of pages which always contains
1079 * w_target_page, and in the case of an allocating write with
1080 * page_size < cluster size, it will contain zero'd and mapped
1081 * pages adjacent to w_target_page which need to be written
1082 * out in so that future reads from that region will get
1083 * zero's.
1084 */
3a307ffc 1085 unsigned int w_num_pages;
83fd9c7f 1086 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
3a307ffc 1087 struct page *w_target_page;
eeb47d12 1088
5cffff9e
WW
1089 /*
1090 * w_target_locked is used for page_mkwrite path indicating no unlocking
1091 * against w_target_page in ocfs2_write_end_nolock.
1092 */
1093 unsigned int w_target_locked:1;
1094
3a307ffc
MF
1095 /*
1096 * ocfs2_write_end() uses this to know what the real range to
1097 * write in the target should be.
1098 */
1099 unsigned int w_target_from;
1100 unsigned int w_target_to;
1101
1102 /*
1103 * We could use journal_current_handle() but this is cleaner,
1104 * IMHO -Mark
1105 */
1106 handle_t *w_handle;
1107
1108 struct buffer_head *w_di_bh;
b27b7cbc
MF
1109
1110 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
1111};
1112
1d410a6e 1113void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
1114{
1115 int i;
1116
1d410a6e
MF
1117 for(i = 0; i < num_pages; i++) {
1118 if (pages[i]) {
1119 unlock_page(pages[i]);
1120 mark_page_accessed(pages[i]);
1121 page_cache_release(pages[i]);
1122 }
6af67d82 1123 }
1d410a6e
MF
1124}
1125
136f49b9 1126static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1d410a6e 1127{
5cffff9e
WW
1128 int i;
1129
1130 /*
1131 * w_target_locked is only set to true in the page_mkwrite() case.
1132 * The intent is to allow us to lock the target page from write_begin()
1133 * to write_end(). The caller must hold a ref on w_target_page.
1134 */
1135 if (wc->w_target_locked) {
1136 BUG_ON(!wc->w_target_page);
1137 for (i = 0; i < wc->w_num_pages; i++) {
1138 if (wc->w_target_page == wc->w_pages[i]) {
1139 wc->w_pages[i] = NULL;
1140 break;
1141 }
1142 }
1143 mark_page_accessed(wc->w_target_page);
1144 page_cache_release(wc->w_target_page);
1145 }
1d410a6e 1146 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
136f49b9 1147}
6af67d82 1148
136f49b9
JB
1149static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1150{
1151 ocfs2_unlock_pages(wc);
3a307ffc
MF
1152 brelse(wc->w_di_bh);
1153 kfree(wc);
1154}
1155
1156static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1157 struct ocfs2_super *osb, loff_t pos,
607d44aa 1158 unsigned len, struct buffer_head *di_bh)
3a307ffc 1159{
30b8548f 1160 u32 cend;
3a307ffc
MF
1161 struct ocfs2_write_ctxt *wc;
1162
1163 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1164 if (!wc)
1165 return -ENOMEM;
6af67d82 1166
3a307ffc 1167 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 1168 wc->w_first_new_cpos = UINT_MAX;
30b8548f 1169 cend = (pos + len - 1) >> osb->s_clustersize_bits;
1170 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
1171 get_bh(di_bh);
1172 wc->w_di_bh = di_bh;
6af67d82 1173
3a307ffc
MF
1174 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1175 wc->w_large_pages = 1;
1176 else
1177 wc->w_large_pages = 0;
1178
b27b7cbc
MF
1179 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1180
3a307ffc 1181 *wcp = wc;
6af67d82 1182
3a307ffc 1183 return 0;
6af67d82
MF
1184}
1185
9517bac6 1186/*
3a307ffc
MF
1187 * If a page has any new buffers, zero them out here, and mark them uptodate
1188 * and dirty so they'll be written out (in order to prevent uninitialised
1189 * block data from leaking). And clear the new bit.
9517bac6 1190 */
3a307ffc 1191static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 1192{
3a307ffc
MF
1193 unsigned int block_start, block_end;
1194 struct buffer_head *head, *bh;
9517bac6 1195
3a307ffc
MF
1196 BUG_ON(!PageLocked(page));
1197 if (!page_has_buffers(page))
1198 return;
9517bac6 1199
3a307ffc
MF
1200 bh = head = page_buffers(page);
1201 block_start = 0;
1202 do {
1203 block_end = block_start + bh->b_size;
1204
1205 if (buffer_new(bh)) {
1206 if (block_end > from && block_start < to) {
1207 if (!PageUptodate(page)) {
1208 unsigned start, end;
3a307ffc
MF
1209
1210 start = max(from, block_start);
1211 end = min(to, block_end);
1212
eebd2aa3 1213 zero_user_segment(page, start, end);
3a307ffc
MF
1214 set_buffer_uptodate(bh);
1215 }
1216
1217 clear_buffer_new(bh);
1218 mark_buffer_dirty(bh);
1219 }
1220 }
9517bac6 1221
3a307ffc
MF
1222 block_start = block_end;
1223 bh = bh->b_this_page;
1224 } while (bh != head);
1225}
1226
1227/*
1228 * Only called when we have a failure during allocating write to write
1229 * zero's to the newly allocated region.
1230 */
1231static void ocfs2_write_failure(struct inode *inode,
1232 struct ocfs2_write_ctxt *wc,
1233 loff_t user_pos, unsigned user_len)
1234{
1235 int i;
5c26a7b7
MF
1236 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1237 to = user_pos + user_len;
3a307ffc
MF
1238 struct page *tmppage;
1239
5c26a7b7 1240 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1241
3a307ffc
MF
1242 for(i = 0; i < wc->w_num_pages; i++) {
1243 tmppage = wc->w_pages[i];
9517bac6 1244
961cecbe 1245 if (page_has_buffers(tmppage)) {
53ef99ca 1246 if (ocfs2_should_order_data(inode))
2b4e30fb 1247 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1248
1249 block_commit_write(tmppage, from, to);
1250 }
9517bac6 1251 }
9517bac6
MF
1252}
1253
3a307ffc
MF
1254static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1255 struct ocfs2_write_ctxt *wc,
1256 struct page *page, u32 cpos,
1257 loff_t user_pos, unsigned user_len,
1258 int new)
9517bac6 1259{
3a307ffc
MF
1260 int ret;
1261 unsigned int map_from = 0, map_to = 0;
9517bac6 1262 unsigned int cluster_start, cluster_end;
3a307ffc 1263 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1264
3a307ffc 1265 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1266 &cluster_start, &cluster_end);
1267
272b62c1
GR
1268 /* treat the write as new if the a hole/lseek spanned across
1269 * the page boundary.
1270 */
1271 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1272 (page_offset(page) <= user_pos));
1273
3a307ffc
MF
1274 if (page == wc->w_target_page) {
1275 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1276 map_to = map_from + user_len;
1277
1278 if (new)
1279 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1280 cluster_start, cluster_end,
1281 new);
1282 else
1283 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1284 map_from, map_to, new);
1285 if (ret) {
9517bac6
MF
1286 mlog_errno(ret);
1287 goto out;
1288 }
1289
3a307ffc
MF
1290 user_data_from = map_from;
1291 user_data_to = map_to;
9517bac6 1292 if (new) {
3a307ffc
MF
1293 map_from = cluster_start;
1294 map_to = cluster_end;
9517bac6
MF
1295 }
1296 } else {
1297 /*
1298 * If we haven't allocated the new page yet, we
1299 * shouldn't be writing it out without copying user
1300 * data. This is likely a math error from the caller.
1301 */
1302 BUG_ON(!new);
1303
3a307ffc
MF
1304 map_from = cluster_start;
1305 map_to = cluster_end;
9517bac6
MF
1306
1307 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1308 cluster_start, cluster_end, new);
9517bac6
MF
1309 if (ret) {
1310 mlog_errno(ret);
1311 goto out;
1312 }
1313 }
1314
1315 /*
1316 * Parts of newly allocated pages need to be zero'd.
1317 *
1318 * Above, we have also rewritten 'to' and 'from' - as far as
1319 * the rest of the function is concerned, the entire cluster
1320 * range inside of a page needs to be written.
1321 *
1322 * We can skip this if the page is up to date - it's already
1323 * been zero'd from being read in as a hole.
1324 */
1325 if (new && !PageUptodate(page))
1326 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1327 cpos, user_data_from, user_data_to);
9517bac6
MF
1328
1329 flush_dcache_page(page);
1330
9517bac6 1331out:
3a307ffc 1332 return ret;
9517bac6
MF
1333}
1334
1335/*
3a307ffc 1336 * This function will only grab one clusters worth of pages.
9517bac6 1337 */
3a307ffc
MF
1338static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1339 struct ocfs2_write_ctxt *wc,
693c241a
JB
1340 u32 cpos, loff_t user_pos,
1341 unsigned user_len, int new,
7307de80 1342 struct page *mmap_page)
9517bac6 1343{
3a307ffc 1344 int ret = 0, i;
693c241a 1345 unsigned long start, target_index, end_index, index;
9517bac6 1346 struct inode *inode = mapping->host;
693c241a 1347 loff_t last_byte;
9517bac6 1348
3a307ffc 1349 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1350
1351 /*
1352 * Figure out how many pages we'll be manipulating here. For
60b11392 1353 * non allocating write, we just change the one
693c241a
JB
1354 * page. Otherwise, we'll need a whole clusters worth. If we're
1355 * writing past i_size, we only need enough pages to cover the
1356 * last page of the write.
9517bac6 1357 */
9517bac6 1358 if (new) {
3a307ffc
MF
1359 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1360 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1361 /*
1362 * We need the index *past* the last page we could possibly
1363 * touch. This is the page past the end of the write or
1364 * i_size, whichever is greater.
1365 */
1366 last_byte = max(user_pos + user_len, i_size_read(inode));
1367 BUG_ON(last_byte < 1);
1368 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1369 if ((start + wc->w_num_pages) > end_index)
1370 wc->w_num_pages = end_index - start;
9517bac6 1371 } else {
3a307ffc
MF
1372 wc->w_num_pages = 1;
1373 start = target_index;
9517bac6
MF
1374 }
1375
3a307ffc 1376 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1377 index = start + i;
1378
7307de80
MF
1379 if (index == target_index && mmap_page) {
1380 /*
1381 * ocfs2_pagemkwrite() is a little different
1382 * and wants us to directly use the page
1383 * passed in.
1384 */
1385 lock_page(mmap_page);
1386
5cffff9e 1387 /* Exit and let the caller retry */
7307de80 1388 if (mmap_page->mapping != mapping) {
5cffff9e 1389 WARN_ON(mmap_page->mapping);
7307de80 1390 unlock_page(mmap_page);
5cffff9e 1391 ret = -EAGAIN;
7307de80
MF
1392 goto out;
1393 }
1394
1395 page_cache_get(mmap_page);
1396 wc->w_pages[i] = mmap_page;
5cffff9e 1397 wc->w_target_locked = true;
7307de80
MF
1398 } else {
1399 wc->w_pages[i] = find_or_create_page(mapping, index,
1400 GFP_NOFS);
1401 if (!wc->w_pages[i]) {
1402 ret = -ENOMEM;
1403 mlog_errno(ret);
1404 goto out;
1405 }
9517bac6 1406 }
1269529b 1407 wait_for_stable_page(wc->w_pages[i]);
3a307ffc
MF
1408
1409 if (index == target_index)
1410 wc->w_target_page = wc->w_pages[i];
9517bac6 1411 }
3a307ffc 1412out:
5cffff9e
WW
1413 if (ret)
1414 wc->w_target_locked = false;
3a307ffc
MF
1415 return ret;
1416}
1417
1418/*
1419 * Prepare a single cluster for write one cluster into the file.
1420 */
1421static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc 1422 u32 phys, unsigned int unwritten,
e7432675 1423 unsigned int should_zero,
b27b7cbc 1424 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1425 struct ocfs2_alloc_context *meta_ac,
1426 struct ocfs2_write_ctxt *wc, u32 cpos,
1427 loff_t user_pos, unsigned user_len)
1428{
e7432675 1429 int ret, i, new;
3a307ffc
MF
1430 u64 v_blkno, p_blkno;
1431 struct inode *inode = mapping->host;
f99b9b7c 1432 struct ocfs2_extent_tree et;
3a307ffc
MF
1433
1434 new = phys == 0 ? 1 : 0;
9517bac6 1435 if (new) {
3a307ffc
MF
1436 u32 tmp_pos;
1437
9517bac6
MF
1438 /*
1439 * This is safe to call with the page locks - it won't take
1440 * any additional semaphores or cluster locks.
1441 */
3a307ffc 1442 tmp_pos = cpos;
0eb8d47e
TM
1443 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1444 &tmp_pos, 1, 0, wc->w_di_bh,
1445 wc->w_handle, data_ac,
1446 meta_ac, NULL);
9517bac6
MF
1447 /*
1448 * This shouldn't happen because we must have already
1449 * calculated the correct meta data allocation required. The
1450 * internal tree allocation code should know how to increase
1451 * transaction credits itself.
1452 *
1453 * If need be, we could handle -EAGAIN for a
1454 * RESTART_TRANS here.
1455 */
1456 mlog_bug_on_msg(ret == -EAGAIN,
1457 "Inode %llu: EAGAIN return during allocation.\n",
1458 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1459 if (ret < 0) {
1460 mlog_errno(ret);
1461 goto out;
1462 }
b27b7cbc 1463 } else if (unwritten) {
5e404e9e
JB
1464 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1465 wc->w_di_bh);
f99b9b7c 1466 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1467 wc->w_handle, cpos, 1, phys,
f99b9b7c 1468 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1469 if (ret < 0) {
1470 mlog_errno(ret);
1471 goto out;
1472 }
1473 }
3a307ffc 1474
b27b7cbc 1475 if (should_zero)
3a307ffc 1476 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1477 else
3a307ffc 1478 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1479
3a307ffc
MF
1480 /*
1481 * The only reason this should fail is due to an inability to
1482 * find the extent added.
1483 */
49cb8d2d
MF
1484 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1485 NULL);
9517bac6 1486 if (ret < 0) {
61fb9ea4 1487 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
3a307ffc
MF
1488 "at logical block %llu",
1489 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1490 (unsigned long long)v_blkno);
9517bac6
MF
1491 goto out;
1492 }
1493
1494 BUG_ON(p_blkno == 0);
1495
3a307ffc
MF
1496 for(i = 0; i < wc->w_num_pages; i++) {
1497 int tmpret;
9517bac6 1498
3a307ffc
MF
1499 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1500 wc->w_pages[i], cpos,
b27b7cbc
MF
1501 user_pos, user_len,
1502 should_zero);
3a307ffc
MF
1503 if (tmpret) {
1504 mlog_errno(tmpret);
1505 if (ret == 0)
cbfa9639 1506 ret = tmpret;
3a307ffc 1507 }
9517bac6
MF
1508 }
1509
3a307ffc
MF
1510 /*
1511 * We only have cleanup to do in case of allocating write.
1512 */
1513 if (ret && new)
1514 ocfs2_write_failure(inode, wc, user_pos, user_len);
1515
9517bac6 1516out:
9517bac6 1517
3a307ffc 1518 return ret;
9517bac6
MF
1519}
1520
0d172baa
MF
1521static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1522 struct ocfs2_alloc_context *data_ac,
1523 struct ocfs2_alloc_context *meta_ac,
1524 struct ocfs2_write_ctxt *wc,
1525 loff_t pos, unsigned len)
1526{
1527 int ret, i;
db56246c
MF
1528 loff_t cluster_off;
1529 unsigned int local_len = len;
0d172baa 1530 struct ocfs2_write_cluster_desc *desc;
db56246c 1531 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1532
1533 for (i = 0; i < wc->w_clen; i++) {
1534 desc = &wc->w_desc[i];
1535
db56246c
MF
1536 /*
1537 * We have to make sure that the total write passed in
1538 * doesn't extend past a single cluster.
1539 */
1540 local_len = len;
1541 cluster_off = pos & (osb->s_clustersize - 1);
1542 if ((cluster_off + local_len) > osb->s_clustersize)
1543 local_len = osb->s_clustersize - cluster_off;
1544
b27b7cbc 1545 ret = ocfs2_write_cluster(mapping, desc->c_phys,
e7432675
SM
1546 desc->c_unwritten,
1547 desc->c_needs_zero,
1548 data_ac, meta_ac,
db56246c 1549 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1550 if (ret) {
1551 mlog_errno(ret);
1552 goto out;
1553 }
db56246c
MF
1554
1555 len -= local_len;
1556 pos += local_len;
0d172baa
MF
1557 }
1558
1559 ret = 0;
1560out:
1561 return ret;
1562}
1563
3a307ffc
MF
1564/*
1565 * ocfs2_write_end() wants to know which parts of the target page it
1566 * should complete the write on. It's easiest to compute them ahead of
1567 * time when a more complete view of the write is available.
1568 */
1569static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1570 struct ocfs2_write_ctxt *wc,
1571 loff_t pos, unsigned len, int alloc)
9517bac6 1572{
3a307ffc 1573 struct ocfs2_write_cluster_desc *desc;
9517bac6 1574
3a307ffc
MF
1575 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1576 wc->w_target_to = wc->w_target_from + len;
1577
1578 if (alloc == 0)
1579 return;
1580
1581 /*
1582 * Allocating write - we may have different boundaries based
1583 * on page size and cluster size.
1584 *
1585 * NOTE: We can no longer compute one value from the other as
1586 * the actual write length and user provided length may be
1587 * different.
1588 */
9517bac6 1589
3a307ffc
MF
1590 if (wc->w_large_pages) {
1591 /*
1592 * We only care about the 1st and last cluster within
b27b7cbc 1593 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1594 * value may be extended out to the start/end of a
1595 * newly allocated cluster.
1596 */
1597 desc = &wc->w_desc[0];
e7432675 1598 if (desc->c_needs_zero)
3a307ffc
MF
1599 ocfs2_figure_cluster_boundaries(osb,
1600 desc->c_cpos,
1601 &wc->w_target_from,
1602 NULL);
1603
1604 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1605 if (desc->c_needs_zero)
3a307ffc
MF
1606 ocfs2_figure_cluster_boundaries(osb,
1607 desc->c_cpos,
1608 NULL,
1609 &wc->w_target_to);
1610 } else {
1611 wc->w_target_from = 0;
1612 wc->w_target_to = PAGE_CACHE_SIZE;
1613 }
9517bac6
MF
1614}
1615
0d172baa
MF
1616/*
1617 * Populate each single-cluster write descriptor in the write context
1618 * with information about the i/o to be done.
b27b7cbc
MF
1619 *
1620 * Returns the number of clusters that will have to be allocated, as
1621 * well as a worst case estimate of the number of extent records that
1622 * would have to be created during a write to an unwritten region.
0d172baa
MF
1623 */
1624static int ocfs2_populate_write_desc(struct inode *inode,
1625 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1626 unsigned int *clusters_to_alloc,
1627 unsigned int *extents_to_split)
9517bac6 1628{
0d172baa 1629 int ret;
3a307ffc 1630 struct ocfs2_write_cluster_desc *desc;
0d172baa 1631 unsigned int num_clusters = 0;
b27b7cbc 1632 unsigned int ext_flags = 0;
0d172baa
MF
1633 u32 phys = 0;
1634 int i;
9517bac6 1635
b27b7cbc
MF
1636 *clusters_to_alloc = 0;
1637 *extents_to_split = 0;
1638
3a307ffc
MF
1639 for (i = 0; i < wc->w_clen; i++) {
1640 desc = &wc->w_desc[i];
1641 desc->c_cpos = wc->w_cpos + i;
1642
1643 if (num_clusters == 0) {
b27b7cbc
MF
1644 /*
1645 * Need to look up the next extent record.
1646 */
3a307ffc 1647 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1648 &num_clusters, &ext_flags);
3a307ffc
MF
1649 if (ret) {
1650 mlog_errno(ret);
607d44aa 1651 goto out;
3a307ffc 1652 }
b27b7cbc 1653
293b2f70
TM
1654 /* We should already CoW the refcountd extent. */
1655 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1656
b27b7cbc
MF
1657 /*
1658 * Assume worst case - that we're writing in
1659 * the middle of the extent.
1660 *
1661 * We can assume that the write proceeds from
1662 * left to right, in which case the extent
1663 * insert code is smart enough to coalesce the
1664 * next splits into the previous records created.
1665 */
1666 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1667 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1668 } else if (phys) {
1669 /*
1670 * Only increment phys if it doesn't describe
1671 * a hole.
1672 */
1673 phys++;
1674 }
1675
e7432675
SM
1676 /*
1677 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1678 * file that got extended. w_first_new_cpos tells us
1679 * where the newly allocated clusters are so we can
1680 * zero them.
1681 */
1682 if (desc->c_cpos >= wc->w_first_new_cpos) {
1683 BUG_ON(phys == 0);
1684 desc->c_needs_zero = 1;
1685 }
1686
3a307ffc
MF
1687 desc->c_phys = phys;
1688 if (phys == 0) {
1689 desc->c_new = 1;
e7432675 1690 desc->c_needs_zero = 1;
0d172baa 1691 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1692 }
e7432675
SM
1693
1694 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b27b7cbc 1695 desc->c_unwritten = 1;
e7432675
SM
1696 desc->c_needs_zero = 1;
1697 }
3a307ffc
MF
1698
1699 num_clusters--;
9517bac6
MF
1700 }
1701
0d172baa
MF
1702 ret = 0;
1703out:
1704 return ret;
1705}
1706
1afc32b9
MF
1707static int ocfs2_write_begin_inline(struct address_space *mapping,
1708 struct inode *inode,
1709 struct ocfs2_write_ctxt *wc)
1710{
1711 int ret;
1712 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1713 struct page *page;
1714 handle_t *handle;
1715 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1716
f775da2f
JB
1717 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1718 if (IS_ERR(handle)) {
1719 ret = PTR_ERR(handle);
1720 mlog_errno(ret);
1721 goto out;
1722 }
1723
1afc32b9
MF
1724 page = find_or_create_page(mapping, 0, GFP_NOFS);
1725 if (!page) {
f775da2f 1726 ocfs2_commit_trans(osb, handle);
1afc32b9
MF
1727 ret = -ENOMEM;
1728 mlog_errno(ret);
1729 goto out;
1730 }
1731 /*
1732 * If we don't set w_num_pages then this page won't get unlocked
1733 * and freed on cleanup of the write context.
1734 */
1735 wc->w_pages[0] = wc->w_target_page = page;
1736 wc->w_num_pages = 1;
1737
0cf2f763 1738 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1739 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1740 if (ret) {
1741 ocfs2_commit_trans(osb, handle);
1742
1743 mlog_errno(ret);
1744 goto out;
1745 }
1746
1747 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1748 ocfs2_set_inode_data_inline(inode, di);
1749
1750 if (!PageUptodate(page)) {
1751 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1752 if (ret) {
1753 ocfs2_commit_trans(osb, handle);
1754
1755 goto out;
1756 }
1757 }
1758
1759 wc->w_handle = handle;
1760out:
1761 return ret;
1762}
1763
1764int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1765{
1766 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1767
0d8a4e0c 1768 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1769 return 1;
1770 return 0;
1771}
1772
1773static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1774 struct inode *inode, loff_t pos,
1775 unsigned len, struct page *mmap_page,
1776 struct ocfs2_write_ctxt *wc)
1777{
1778 int ret, written = 0;
1779 loff_t end = pos + len;
1780 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1781 struct ocfs2_dinode *di = NULL;
1afc32b9 1782
9558156b
TM
1783 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1784 len, (unsigned long long)pos,
1785 oi->ip_dyn_features);
1afc32b9
MF
1786
1787 /*
1788 * Handle inodes which already have inline data 1st.
1789 */
1790 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1791 if (mmap_page == NULL &&
1792 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1793 goto do_inline_write;
1794
1795 /*
1796 * The write won't fit - we have to give this inode an
1797 * inline extent list now.
1798 */
1799 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1800 if (ret)
1801 mlog_errno(ret);
1802 goto out;
1803 }
1804
1805 /*
1806 * Check whether the inode can accept inline data.
1807 */
1808 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1809 return 0;
1810
1811 /*
1812 * Check whether the write can fit.
1813 */
d9ae49d6
TY
1814 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1815 if (mmap_page ||
1816 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1817 return 0;
1818
1819do_inline_write:
1820 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1821 if (ret) {
1822 mlog_errno(ret);
1823 goto out;
1824 }
1825
1826 /*
1827 * This signals to the caller that the data can be written
1828 * inline.
1829 */
1830 written = 1;
1831out:
1832 return written ? written : ret;
1833}
1834
65ed39d6
MF
1835/*
1836 * This function only does anything for file systems which can't
1837 * handle sparse files.
1838 *
1839 * What we want to do here is fill in any hole between the current end
1840 * of allocation and the end of our write. That way the rest of the
1841 * write path can treat it as an non-allocating write, which has no
1842 * special case code for sparse/nonsparse files.
1843 */
5693486b
JB
1844static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1845 struct buffer_head *di_bh,
1846 loff_t pos, unsigned len,
65ed39d6
MF
1847 struct ocfs2_write_ctxt *wc)
1848{
1849 int ret;
65ed39d6
MF
1850 loff_t newsize = pos + len;
1851
5693486b 1852 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
1853
1854 if (newsize <= i_size_read(inode))
1855 return 0;
1856
5693486b 1857 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
1858 if (ret)
1859 mlog_errno(ret);
1860
e7432675
SM
1861 wc->w_first_new_cpos =
1862 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1863
65ed39d6
MF
1864 return ret;
1865}
1866
5693486b
JB
1867static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1868 loff_t pos)
1869{
1870 int ret = 0;
1871
1872 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1873 if (pos > i_size_read(inode))
1874 ret = ocfs2_zero_extend(inode, di_bh, pos);
1875
1876 return ret;
1877}
1878
50308d81
TM
1879/*
1880 * Try to flush truncate logs if we can free enough clusters from it.
1881 * As for return value, "< 0" means error, "0" no space and "1" means
1882 * we have freed enough spaces and let the caller try to allocate again.
1883 */
1884static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1885 unsigned int needed)
1886{
1887 tid_t target;
1888 int ret = 0;
1889 unsigned int truncated_clusters;
1890
1891 mutex_lock(&osb->osb_tl_inode->i_mutex);
1892 truncated_clusters = osb->truncated_clusters;
1893 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1894
1895 /*
1896 * Check whether we can succeed in allocating if we free
1897 * the truncate log.
1898 */
1899 if (truncated_clusters < needed)
1900 goto out;
1901
1902 ret = ocfs2_flush_truncate_log(osb);
1903 if (ret) {
1904 mlog_errno(ret);
1905 goto out;
1906 }
1907
1908 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1909 jbd2_log_wait_commit(osb->journal->j_journal, target);
1910 ret = 1;
1911 }
1912out:
1913 return ret;
1914}
1915
0378da0f
TM
1916int ocfs2_write_begin_nolock(struct file *filp,
1917 struct address_space *mapping,
0d172baa
MF
1918 loff_t pos, unsigned len, unsigned flags,
1919 struct page **pagep, void **fsdata,
1920 struct buffer_head *di_bh, struct page *mmap_page)
1921{
e7432675 1922 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
50308d81 1923 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
0d172baa
MF
1924 struct ocfs2_write_ctxt *wc;
1925 struct inode *inode = mapping->host;
1926 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1927 struct ocfs2_dinode *di;
1928 struct ocfs2_alloc_context *data_ac = NULL;
1929 struct ocfs2_alloc_context *meta_ac = NULL;
1930 handle_t *handle;
f99b9b7c 1931 struct ocfs2_extent_tree et;
50308d81 1932 int try_free = 1, ret1;
0d172baa 1933
50308d81 1934try_again:
0d172baa
MF
1935 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1936 if (ret) {
1937 mlog_errno(ret);
1938 return ret;
1939 }
1940
1afc32b9
MF
1941 if (ocfs2_supports_inline_data(osb)) {
1942 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1943 mmap_page, wc);
1944 if (ret == 1) {
1945 ret = 0;
1946 goto success;
1947 }
1948 if (ret < 0) {
1949 mlog_errno(ret);
1950 goto out;
1951 }
1952 }
1953
5693486b
JB
1954 if (ocfs2_sparse_alloc(osb))
1955 ret = ocfs2_zero_tail(inode, di_bh, pos);
1956 else
1957 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1958 wc);
65ed39d6
MF
1959 if (ret) {
1960 mlog_errno(ret);
1961 goto out;
1962 }
1963
293b2f70
TM
1964 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1965 if (ret < 0) {
1966 mlog_errno(ret);
1967 goto out;
1968 } else if (ret == 1) {
50308d81 1969 clusters_need = wc->w_clen;
c7dd3392 1970 ret = ocfs2_refcount_cow(inode, di_bh,
37f8a2bf 1971 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
1972 if (ret) {
1973 mlog_errno(ret);
1974 goto out;
1975 }
1976 }
1977
b27b7cbc
MF
1978 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1979 &extents_to_split);
0d172baa
MF
1980 if (ret) {
1981 mlog_errno(ret);
1982 goto out;
1983 }
50308d81 1984 clusters_need += clusters_to_alloc;
0d172baa
MF
1985
1986 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1987
9558156b
TM
1988 trace_ocfs2_write_begin_nolock(
1989 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1990 (long long)i_size_read(inode),
1991 le32_to_cpu(di->i_clusters),
1992 pos, len, flags, mmap_page,
1993 clusters_to_alloc, extents_to_split);
1994
3a307ffc
MF
1995 /*
1996 * We set w_target_from, w_target_to here so that
1997 * ocfs2_write_end() knows which range in the target page to
1998 * write out. An allocation requires that we write the entire
1999 * cluster range.
2000 */
b27b7cbc 2001 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
2002 /*
2003 * XXX: We are stretching the limits of
b27b7cbc 2004 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
2005 * the work to be done.
2006 */
5e404e9e
JB
2007 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2008 wc->w_di_bh);
f99b9b7c 2009 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 2010 clusters_to_alloc, extents_to_split,
f99b9b7c 2011 &data_ac, &meta_ac);
9517bac6
MF
2012 if (ret) {
2013 mlog_errno(ret);
607d44aa 2014 goto out;
9517bac6
MF
2015 }
2016
4fe370af
MF
2017 if (data_ac)
2018 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2019
811f933d 2020 credits = ocfs2_calc_extend_credits(inode->i_sb,
06f9da6e 2021 &di->id2.i_list);
3a307ffc 2022
9517bac6
MF
2023 }
2024
e7432675
SM
2025 /*
2026 * We have to zero sparse allocated clusters, unwritten extent clusters,
2027 * and non-sparse clusters we just extended. For non-sparse writes,
2028 * we know zeros will only be needed in the first and/or last cluster.
2029 */
2030 if (clusters_to_alloc || extents_to_split ||
8379e7c4
SM
2031 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2032 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
e7432675
SM
2033 cluster_of_pages = 1;
2034 else
2035 cluster_of_pages = 0;
2036
2037 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 2038
9517bac6
MF
2039 handle = ocfs2_start_trans(osb, credits);
2040 if (IS_ERR(handle)) {
2041 ret = PTR_ERR(handle);
2042 mlog_errno(ret);
607d44aa 2043 goto out;
9517bac6
MF
2044 }
2045
3a307ffc
MF
2046 wc->w_handle = handle;
2047
5dd4056d
CH
2048 if (clusters_to_alloc) {
2049 ret = dquot_alloc_space_nodirty(inode,
2050 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2051 if (ret)
2052 goto out_commit;
a90714c1 2053 }
3a307ffc
MF
2054 /*
2055 * We don't want this to fail in ocfs2_write_end(), so do it
2056 * here.
2057 */
0cf2f763 2058 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 2059 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 2060 if (ret) {
9517bac6 2061 mlog_errno(ret);
a90714c1 2062 goto out_quota;
9517bac6
MF
2063 }
2064
3a307ffc
MF
2065 /*
2066 * Fill our page array first. That way we've grabbed enough so
2067 * that we can zero and flush if we error after adding the
2068 * extent.
2069 */
693c241a 2070 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 2071 cluster_of_pages, mmap_page);
5cffff9e 2072 if (ret && ret != -EAGAIN) {
9517bac6 2073 mlog_errno(ret);
a90714c1 2074 goto out_quota;
9517bac6
MF
2075 }
2076
5cffff9e
WW
2077 /*
2078 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2079 * the target page. In this case, we exit with no error and no target
2080 * page. This will trigger the caller, page_mkwrite(), to re-try
2081 * the operation.
2082 */
2083 if (ret == -EAGAIN) {
2084 BUG_ON(wc->w_target_page);
2085 ret = 0;
2086 goto out_quota;
2087 }
2088
0d172baa
MF
2089 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2090 len);
2091 if (ret) {
2092 mlog_errno(ret);
a90714c1 2093 goto out_quota;
9517bac6 2094 }
9517bac6 2095
3a307ffc
MF
2096 if (data_ac)
2097 ocfs2_free_alloc_context(data_ac);
2098 if (meta_ac)
2099 ocfs2_free_alloc_context(meta_ac);
9517bac6 2100
1afc32b9 2101success:
3a307ffc
MF
2102 *pagep = wc->w_target_page;
2103 *fsdata = wc;
2104 return 0;
a90714c1
JK
2105out_quota:
2106 if (clusters_to_alloc)
5dd4056d 2107 dquot_free_space(inode,
a90714c1 2108 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
2109out_commit:
2110 ocfs2_commit_trans(osb, handle);
2111
9517bac6 2112out:
3a307ffc
MF
2113 ocfs2_free_write_ctxt(wc);
2114
b1214e47 2115 if (data_ac) {
9517bac6 2116 ocfs2_free_alloc_context(data_ac);
b1214e47
X
2117 data_ac = NULL;
2118 }
2119 if (meta_ac) {
9517bac6 2120 ocfs2_free_alloc_context(meta_ac);
b1214e47
X
2121 meta_ac = NULL;
2122 }
50308d81
TM
2123
2124 if (ret == -ENOSPC && try_free) {
2125 /*
2126 * Try to free some truncate log so that we can have enough
2127 * clusters to allocate.
2128 */
2129 try_free = 0;
2130
2131 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2132 if (ret1 == 1)
2133 goto try_again;
2134
2135 if (ret1 < 0)
2136 mlog_errno(ret1);
2137 }
2138
3a307ffc
MF
2139 return ret;
2140}
2141
b6af1bcd
NP
2142static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2143 loff_t pos, unsigned len, unsigned flags,
2144 struct page **pagep, void **fsdata)
607d44aa
MF
2145{
2146 int ret;
2147 struct buffer_head *di_bh = NULL;
2148 struct inode *inode = mapping->host;
2149
e63aecb6 2150 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
2151 if (ret) {
2152 mlog_errno(ret);
2153 return ret;
2154 }
2155
2156 /*
2157 * Take alloc sem here to prevent concurrent lookups. That way
2158 * the mapping, zeroing and tree manipulation within
2159 * ocfs2_write() will be safe against ->readpage(). This
2160 * should also serve to lock out allocation from a shared
2161 * writeable region.
2162 */
2163 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2164
0378da0f 2165 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
7307de80 2166 fsdata, di_bh, NULL);
607d44aa
MF
2167 if (ret) {
2168 mlog_errno(ret);
c934a92d 2169 goto out_fail;
607d44aa
MF
2170 }
2171
2172 brelse(di_bh);
2173
2174 return 0;
2175
607d44aa
MF
2176out_fail:
2177 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2178
2179 brelse(di_bh);
e63aecb6 2180 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
2181
2182 return ret;
2183}
2184
1afc32b9
MF
2185static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2186 unsigned len, unsigned *copied,
2187 struct ocfs2_dinode *di,
2188 struct ocfs2_write_ctxt *wc)
2189{
2190 void *kaddr;
2191
2192 if (unlikely(*copied < len)) {
2193 if (!PageUptodate(wc->w_target_page)) {
2194 *copied = 0;
2195 return;
2196 }
2197 }
2198
c4bc8dcb 2199 kaddr = kmap_atomic(wc->w_target_page);
1afc32b9 2200 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
c4bc8dcb 2201 kunmap_atomic(kaddr);
1afc32b9 2202
9558156b
TM
2203 trace_ocfs2_write_end_inline(
2204 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1afc32b9
MF
2205 (unsigned long long)pos, *copied,
2206 le16_to_cpu(di->id2.i_data.id_count),
2207 le16_to_cpu(di->i_dyn_features));
2208}
2209
7307de80
MF
2210int ocfs2_write_end_nolock(struct address_space *mapping,
2211 loff_t pos, unsigned len, unsigned copied,
2212 struct page *page, void *fsdata)
3a307ffc
MF
2213{
2214 int i;
2215 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2216 struct inode *inode = mapping->host;
2217 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2218 struct ocfs2_write_ctxt *wc = fsdata;
2219 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2220 handle_t *handle = wc->w_handle;
2221 struct page *tmppage;
2222
1afc32b9
MF
2223 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2224 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2225 goto out_write_size;
2226 }
2227
3a307ffc
MF
2228 if (unlikely(copied < len)) {
2229 if (!PageUptodate(wc->w_target_page))
2230 copied = 0;
2231
2232 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2233 start+len);
2234 }
2235 flush_dcache_page(wc->w_target_page);
2236
2237 for(i = 0; i < wc->w_num_pages; i++) {
2238 tmppage = wc->w_pages[i];
2239
2240 if (tmppage == wc->w_target_page) {
2241 from = wc->w_target_from;
2242 to = wc->w_target_to;
2243
2244 BUG_ON(from > PAGE_CACHE_SIZE ||
2245 to > PAGE_CACHE_SIZE ||
2246 to < from);
2247 } else {
2248 /*
2249 * Pages adjacent to the target (if any) imply
2250 * a hole-filling write in which case we want
2251 * to flush their entire range.
2252 */
2253 from = 0;
2254 to = PAGE_CACHE_SIZE;
2255 }
2256
961cecbe 2257 if (page_has_buffers(tmppage)) {
53ef99ca 2258 if (ocfs2_should_order_data(inode))
2b4e30fb 2259 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
2260 block_commit_write(tmppage, from, to);
2261 }
3a307ffc
MF
2262 }
2263
1afc32b9 2264out_write_size:
3a307ffc 2265 pos += copied;
f17c20dd 2266 if (pos > i_size_read(inode)) {
3a307ffc
MF
2267 i_size_write(inode, pos);
2268 mark_inode_dirty(inode);
2269 }
2270 inode->i_blocks = ocfs2_inode_sector_count(inode);
2271 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2272 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2273 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2274 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2931cdcb 2275 ocfs2_update_inode_fsync_trans(handle, inode, 1);
3a307ffc
MF
2276 ocfs2_journal_dirty(handle, wc->w_di_bh);
2277
136f49b9
JB
2278 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2279 * lock, or it will cause a deadlock since journal commit threads holds
2280 * this lock and will ask for the page lock when flushing the data.
2281 * put it here to preserve the unlock order.
2282 */
2283 ocfs2_unlock_pages(wc);
2284
3a307ffc 2285 ocfs2_commit_trans(osb, handle);
59a5e416 2286
b27b7cbc
MF
2287 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2288
136f49b9
JB
2289 brelse(wc->w_di_bh);
2290 kfree(wc);
607d44aa
MF
2291
2292 return copied;
2293}
2294
b6af1bcd
NP
2295static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2296 loff_t pos, unsigned len, unsigned copied,
2297 struct page *page, void *fsdata)
607d44aa
MF
2298{
2299 int ret;
2300 struct inode *inode = mapping->host;
2301
2302 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2303
3a307ffc 2304 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 2305 ocfs2_inode_unlock(inode, 1);
9517bac6 2306
607d44aa 2307 return ret;
9517bac6
MF
2308}
2309
f5e54d6e 2310const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
2311 .readpage = ocfs2_readpage,
2312 .readpages = ocfs2_readpages,
2313 .writepage = ocfs2_writepage,
2314 .write_begin = ocfs2_write_begin,
2315 .write_end = ocfs2_write_end,
2316 .bmap = ocfs2_bmap,
1fca3a05 2317 .direct_IO = ocfs2_direct_IO,
41ecc345 2318 .invalidatepage = block_invalidatepage,
1fca3a05
HH
2319 .releasepage = ocfs2_releasepage,
2320 .migratepage = buffer_migrate_page,
2321 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2322 .error_remove_page = generic_error_remove_page,
ccd979bd 2323};