Merge branch 'fix-randtrimwrite' of https://github.com/minwooim/fio
[fio.git] / stat.c
1 #include <stdio.h>
2 #include <string.h>
3 #include <stdlib.h>
4 #include <sys/time.h>
5 #include <sys/stat.h>
6 #include <math.h>
7
8 #include "fio.h"
9 #include "diskutil.h"
10 #include "lib/ieee754.h"
11 #include "json.h"
12 #include "lib/getrusage.h"
13 #include "idletime.h"
14 #include "lib/pow2.h"
15 #include "lib/output_buffer.h"
16 #include "helper_thread.h"
17 #include "smalloc.h"
18 #include "zbd.h"
19 #include "oslib/asprintf.h"
20
21 #ifdef WIN32
22 #define LOG_MSEC_SLACK  2
23 #else
24 #define LOG_MSEC_SLACK  1
25 #endif
26
27 struct log_sample {
28         union io_sample_data data;
29         uint32_t ddir;
30         uint64_t bs;
31         uint64_t offset;
32         uint16_t priority;
33         uint64_t issue_time;
34 };
35
36 struct fio_sem *stat_sem;
37
38 void clear_rusage_stat(struct thread_data *td)
39 {
40         struct thread_stat *ts = &td->ts;
41
42         fio_getrusage(&td->ru_start);
43         ts->usr_time = ts->sys_time = 0;
44         ts->ctx = 0;
45         ts->minf = ts->majf = 0;
46 }
47
48 void update_rusage_stat(struct thread_data *td)
49 {
50         struct thread_stat *ts = &td->ts;
51
52         fio_getrusage(&td->ru_end);
53         ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
54                                         &td->ru_end.ru_utime);
55         ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
56                                         &td->ru_end.ru_stime);
57         ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
58                         - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
59         ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
60         ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
61
62         memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
63 }
64
65 /*
66  * Given a latency, return the index of the corresponding bucket in
67  * the structure tracking percentiles.
68  *
69  * (1) find the group (and error bits) that the value (latency)
70  * belongs to by looking at its MSB. (2) find the bucket number in the
71  * group by looking at the index bits.
72  *
73  */
74 static unsigned int plat_val_to_idx(unsigned long long val)
75 {
76         unsigned int msb, error_bits, base, offset, idx;
77
78         /* Find MSB starting from bit 0 */
79         if (val == 0)
80                 msb = 0;
81         else
82                 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
83
84         /*
85          * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
86          * all bits of the sample as index
87          */
88         if (msb <= FIO_IO_U_PLAT_BITS)
89                 return val;
90
91         /* Compute the number of error bits to discard*/
92         error_bits = msb - FIO_IO_U_PLAT_BITS;
93
94         /* Compute the number of buckets before the group */
95         base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
96
97         /*
98          * Discard the error bits and apply the mask to find the
99          * index for the buckets in the group
100          */
101         offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
102
103         /* Make sure the index does not exceed (array size - 1) */
104         idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
105                 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
106
107         return idx;
108 }
109
110 /*
111  * Convert the given index of the bucket array to the value
112  * represented by the bucket
113  */
114 static unsigned long long plat_idx_to_val(unsigned int idx)
115 {
116         unsigned int error_bits;
117         unsigned long long k, base;
118
119         assert(idx < FIO_IO_U_PLAT_NR);
120
121         /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
122          * all bits of the sample as index */
123         if (idx < (FIO_IO_U_PLAT_VAL << 1))
124                 return idx;
125
126         /* Find the group and compute the minimum value of that group */
127         error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
128         base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
129
130         /* Find its bucket number of the group */
131         k = idx % FIO_IO_U_PLAT_VAL;
132
133         /* Return the mean of the range of the bucket */
134         return base + ((k + 0.5) * (1 << error_bits));
135 }
136
137 static int double_cmp(const void *a, const void *b)
138 {
139         const fio_fp64_t fa = *(const fio_fp64_t *) a;
140         const fio_fp64_t fb = *(const fio_fp64_t *) b;
141         int cmp = 0;
142
143         if (fa.u.f > fb.u.f)
144                 cmp = 1;
145         else if (fa.u.f < fb.u.f)
146                 cmp = -1;
147
148         return cmp;
149 }
150
151 unsigned int calc_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
152                                    fio_fp64_t *plist, unsigned long long **output,
153                                    unsigned long long *maxv, unsigned long long *minv)
154 {
155         unsigned long long sum = 0;
156         unsigned int len, i, j = 0;
157         unsigned long long *ovals = NULL;
158         bool is_last;
159
160         *minv = -1ULL;
161         *maxv = 0;
162
163         len = 0;
164         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
165                 len++;
166
167         if (!len)
168                 return 0;
169
170         /*
171          * Sort the percentile list. Note that it may already be sorted if
172          * we are using the default values, but since it's a short list this
173          * isn't a worry. Also note that this does not work for NaN values.
174          */
175         if (len > 1)
176                 qsort(plist, len, sizeof(plist[0]), double_cmp);
177
178         ovals = malloc(len * sizeof(*ovals));
179         if (!ovals)
180                 return 0;
181
182         /*
183          * Calculate bucket values, note down max and min values
184          */
185         is_last = false;
186         for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
187                 sum += io_u_plat[i];
188                 while (sum >= ((long double) plist[j].u.f / 100.0 * nr)) {
189                         assert(plist[j].u.f <= 100.0);
190
191                         ovals[j] = plat_idx_to_val(i);
192                         if (ovals[j] < *minv)
193                                 *minv = ovals[j];
194                         if (ovals[j] > *maxv)
195                                 *maxv = ovals[j];
196
197                         is_last = (j == len - 1) != 0;
198                         if (is_last)
199                                 break;
200
201                         j++;
202                 }
203         }
204
205         if (!is_last)
206                 log_err("fio: error calculating latency percentiles\n");
207
208         *output = ovals;
209         return len;
210 }
211
212 /*
213  * Find and display the p-th percentile of clat
214  */
215 static void show_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
216                                   fio_fp64_t *plist, unsigned int precision,
217                                   const char *pre, struct buf_output *out)
218 {
219         unsigned int divisor, len, i, j = 0;
220         unsigned long long minv, maxv;
221         unsigned long long *ovals;
222         int per_line, scale_down, time_width;
223         bool is_last;
224         char fmt[32];
225
226         len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
227         if (!len || !ovals)
228                 return;
229
230         /*
231          * We default to nsecs, but if the value range is such that we
232          * should scale down to usecs or msecs, do that.
233          */
234         if (minv > 2000000 && maxv > 99999999ULL) {
235                 scale_down = 2;
236                 divisor = 1000000;
237                 log_buf(out, "    %s percentiles (msec):\n     |", pre);
238         } else if (minv > 2000 && maxv > 99999) {
239                 scale_down = 1;
240                 divisor = 1000;
241                 log_buf(out, "    %s percentiles (usec):\n     |", pre);
242         } else {
243                 scale_down = 0;
244                 divisor = 1;
245                 log_buf(out, "    %s percentiles (nsec):\n     |", pre);
246         }
247
248
249         time_width = max(5, (int) (log10(maxv / divisor) + 1));
250         snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
251                         precision, time_width);
252         /* fmt will be something like " %5.2fth=[%4llu]%c" */
253         per_line = (80 - 7) / (precision + 10 + time_width);
254
255         for (j = 0; j < len; j++) {
256                 /* for formatting */
257                 if (j != 0 && (j % per_line) == 0)
258                         log_buf(out, "     |");
259
260                 /* end of the list */
261                 is_last = (j == len - 1) != 0;
262
263                 for (i = 0; i < scale_down; i++)
264                         ovals[j] = (ovals[j] + 999) / 1000;
265
266                 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
267
268                 if (is_last)
269                         break;
270
271                 if ((j % per_line) == per_line - 1)     /* for formatting */
272                         log_buf(out, "\n");
273         }
274
275         free(ovals);
276 }
277
278 static int get_nr_prios_with_samples(struct thread_stat *ts, enum fio_ddir ddir)
279 {
280         int i, nr_prios_with_samples = 0;
281
282         for (i = 0; i < ts->nr_clat_prio[ddir]; i++) {
283                 if (ts->clat_prio[ddir][i].clat_stat.samples)
284                         nr_prios_with_samples++;
285         }
286
287         return nr_prios_with_samples;
288 }
289
290 bool calc_lat(struct io_stat *is, unsigned long long *min,
291               unsigned long long *max, double *mean, double *dev)
292 {
293         double n = (double) is->samples;
294
295         if (n == 0)
296                 return false;
297
298         *min = is->min_val;
299         *max = is->max_val;
300         *mean = is->mean.u.f;
301
302         if (n > 1.0)
303                 *dev = sqrt(is->S.u.f / (n - 1.0));
304         else
305                 *dev = 0;
306
307         return true;
308 }
309
310 void show_mixed_group_stats(struct group_run_stats *rs, struct buf_output *out) 
311 {
312         char *io, *agg, *min, *max;
313         char *ioalt, *aggalt, *minalt, *maxalt;
314         uint64_t io_mix = 0, agg_mix = 0, min_mix = -1, max_mix = 0;
315         uint64_t min_run = -1, max_run = 0;
316         const int i2p = is_power_of_2(rs->kb_base);
317         int i;
318
319         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
320                 if (!rs->max_run[i])
321                         continue;
322                 io_mix += rs->iobytes[i];
323                 agg_mix += rs->agg[i];
324                 min_mix = min_mix < rs->min_bw[i] ? min_mix : rs->min_bw[i];
325                 max_mix = max_mix > rs->max_bw[i] ? max_mix : rs->max_bw[i];
326                 min_run = min_run < rs->min_run[i] ? min_run : rs->min_run[i];
327                 max_run = max_run > rs->max_run[i] ? max_run : rs->max_run[i];
328         }
329         io = num2str(io_mix, rs->sig_figs, 1, i2p, N2S_BYTE);
330         ioalt = num2str(io_mix, rs->sig_figs, 1, !i2p, N2S_BYTE);
331         agg = num2str(agg_mix, rs->sig_figs, 1, i2p, rs->unit_base);
332         aggalt = num2str(agg_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
333         min = num2str(min_mix, rs->sig_figs, 1, i2p, rs->unit_base);
334         minalt = num2str(min_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
335         max = num2str(max_mix, rs->sig_figs, 1, i2p, rs->unit_base);
336         maxalt = num2str(max_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
337         log_buf(out, "  MIXED: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
338                         agg, aggalt, min, max, minalt, maxalt, io, ioalt,
339                         (unsigned long long) min_run,
340                         (unsigned long long) max_run);
341         free(io);
342         free(agg);
343         free(min);
344         free(max);
345         free(ioalt);
346         free(aggalt);
347         free(minalt);
348         free(maxalt);
349 }
350
351 void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
352 {
353         char *io, *agg, *min, *max;
354         char *ioalt, *aggalt, *minalt, *maxalt;
355         const char *str[] = { "   READ", "  WRITE" , "   TRIM"};
356         int i;
357
358         log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
359
360         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
361                 const int i2p = is_power_of_2(rs->kb_base);
362
363                 if (!rs->max_run[i])
364                         continue;
365
366                 io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE);
367                 ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE);
368                 agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base);
369                 aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base);
370                 min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
371                 minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
372                 max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
373                 maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
374                 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
375                                 (rs->unified_rw_rep == UNIFIED_MIXED) ? "  MIXED" : str[i],
376                                 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
377                                 (unsigned long long) rs->min_run[i],
378                                 (unsigned long long) rs->max_run[i]);
379
380                 free(io);
381                 free(agg);
382                 free(min);
383                 free(max);
384                 free(ioalt);
385                 free(aggalt);
386                 free(minalt);
387                 free(maxalt);
388         }
389
390         /* Need to aggregate statistics to show mixed values */
391         if (rs->unified_rw_rep == UNIFIED_BOTH)
392                 show_mixed_group_stats(rs, out);
393 }
394
395 void stat_calc_dist(uint64_t *map, unsigned long total, double *io_u_dist)
396 {
397         int i;
398
399         /*
400          * Do depth distribution calculations
401          */
402         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
403                 if (total) {
404                         io_u_dist[i] = (double) map[i] / (double) total;
405                         io_u_dist[i] *= 100.0;
406                         if (io_u_dist[i] < 0.1 && map[i])
407                                 io_u_dist[i] = 0.1;
408                 } else
409                         io_u_dist[i] = 0.0;
410         }
411 }
412
413 static void stat_calc_lat(struct thread_stat *ts, double *dst,
414                           uint64_t *src, int nr)
415 {
416         unsigned long total = ddir_rw_sum(ts->total_io_u);
417         int i;
418
419         /*
420          * Do latency distribution calculations
421          */
422         for (i = 0; i < nr; i++) {
423                 if (total) {
424                         dst[i] = (double) src[i] / (double) total;
425                         dst[i] *= 100.0;
426                         if (dst[i] < 0.01 && src[i])
427                                 dst[i] = 0.01;
428                 } else
429                         dst[i] = 0.0;
430         }
431 }
432
433 /*
434  * To keep the terse format unaltered, add all of the ns latency
435  * buckets to the first us latency bucket
436  */
437 static void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
438 {
439         unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
440         int i;
441
442         stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
443
444         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
445                 ntotal += ts->io_u_lat_n[i];
446
447         io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
448 }
449
450 void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
451 {
452         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
453 }
454
455 void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
456 {
457         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
458 }
459
460 void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
461 {
462         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
463 }
464
465 static void display_lat(const char *name, unsigned long long min,
466                         unsigned long long max, double mean, double dev,
467                         struct buf_output *out)
468 {
469         const char *base = "(nsec)";
470         char *minp, *maxp;
471
472         if (nsec_to_msec(&min, &max, &mean, &dev))
473                 base = "(msec)";
474         else if (nsec_to_usec(&min, &max, &mean, &dev))
475                 base = "(usec)";
476
477         minp = num2str(min, 6, 1, 0, N2S_NONE);
478         maxp = num2str(max, 6, 1, 0, N2S_NONE);
479
480         log_buf(out, "    %s %s: min=%s, max=%s, avg=%5.02f,"
481                  " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
482
483         free(minp);
484         free(maxp);
485 }
486
487 static struct thread_stat *gen_mixed_ddir_stats_from_ts(struct thread_stat *ts)
488 {
489         struct thread_stat *ts_lcl;
490
491         /*
492          * Handle aggregation of Reads (ddir = 0), Writes (ddir = 1), and
493          * Trims (ddir = 2)
494          */
495         ts_lcl = malloc(sizeof(struct thread_stat));
496         if (!ts_lcl) {
497                 log_err("fio: failed to allocate local thread stat\n");
498                 return NULL;
499         }
500
501         init_thread_stat(ts_lcl);
502
503         /* calculate mixed stats  */
504         ts_lcl->unified_rw_rep = UNIFIED_MIXED;
505         ts_lcl->lat_percentiles = ts->lat_percentiles;
506         ts_lcl->clat_percentiles = ts->clat_percentiles;
507         ts_lcl->slat_percentiles = ts->slat_percentiles;
508         ts_lcl->percentile_precision = ts->percentile_precision;
509         memcpy(ts_lcl->percentile_list, ts->percentile_list, sizeof(ts->percentile_list));
510         ts_lcl->sig_figs = ts->sig_figs;
511
512         sum_thread_stats(ts_lcl, ts);
513
514         return ts_lcl;
515 }
516
517 static double convert_agg_kbytes_percent(struct group_run_stats *rs,
518                                          enum fio_ddir ddir, int mean)
519 {
520         double p_of_agg = 100.0;
521         if (rs && rs->agg[ddir] > 1024) {
522                 p_of_agg = mean * 100.0 / (double) (rs->agg[ddir] / 1024.0);
523
524                 if (p_of_agg > 100.0)
525                         p_of_agg = 100.0;
526         }
527         return p_of_agg;
528 }
529
530 static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
531                              enum fio_ddir ddir, struct buf_output *out)
532 {
533         unsigned long runt;
534         unsigned long long min, max, bw, iops;
535         double mean, dev;
536         char *io_p, *bw_p, *bw_p_alt, *iops_p, *post_st = NULL;
537         int i2p, i;
538         const char *clat_type = ts->lat_percentiles ? "lat" : "clat";
539
540         if (ddir_sync(ddir)) {
541                 if (calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
542                         log_buf(out, "  %s:\n", "fsync/fdatasync/sync_file_range");
543                         display_lat(io_ddir_name(ddir), min, max, mean, dev, out);
544                         show_clat_percentiles(ts->io_u_sync_plat,
545                                                 ts->sync_stat.samples,
546                                                 ts->percentile_list,
547                                                 ts->percentile_precision,
548                                                 io_ddir_name(ddir), out);
549                 }
550                 return;
551         }
552
553         assert(ddir_rw(ddir));
554
555         if (!ts->runtime[ddir])
556                 return;
557
558         i2p = is_power_of_2(rs->kb_base);
559         runt = ts->runtime[ddir];
560
561         bw = (1000 * ts->io_bytes[ddir]) / runt;
562         io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
563         bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
564         bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
565
566         iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
567         iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
568         if (ddir == DDIR_WRITE || ddir == DDIR_TRIM)
569                 post_st = zbd_write_status(ts);
570         else if (ddir == DDIR_READ && ts->cachehit && ts->cachemiss) {
571                 uint64_t total;
572                 double hit;
573
574                 total = ts->cachehit + ts->cachemiss;
575                 hit = (double) ts->cachehit / (double) total;
576                 hit *= 100.0;
577                 if (asprintf(&post_st, "; Cachehit=%0.2f%%", hit) < 0)
578                         post_st = NULL;
579         }
580
581         log_buf(out, "  %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)%s\n",
582                         (ts->unified_rw_rep == UNIFIED_MIXED) ? "mixed" : io_ddir_name(ddir),
583                         iops_p, bw_p, bw_p_alt, io_p,
584                         (unsigned long long) ts->runtime[ddir],
585                         post_st ? : "");
586
587         free(post_st);
588         free(io_p);
589         free(bw_p);
590         free(bw_p_alt);
591         free(iops_p);
592
593         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
594                 display_lat("slat", min, max, mean, dev, out);
595         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
596                 display_lat("clat", min, max, mean, dev, out);
597         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
598                 display_lat(" lat", min, max, mean, dev, out);
599
600         /* Only print per prio stats if there are >= 2 prios with samples */
601         if (get_nr_prios_with_samples(ts, ddir) >= 2) {
602                 for (i = 0; i < ts->nr_clat_prio[ddir]; i++) {
603                         char buf[64];
604
605                         if (!calc_lat(&ts->clat_prio[ddir][i].clat_stat, &min,
606                                       &max, &mean, &dev))
607                                 continue;
608
609                         snprintf(buf, sizeof(buf),
610                                  "%s prio %u/%u/%u",
611                                  clat_type,
612                                  ioprio_class(ts->clat_prio[ddir][i].ioprio),
613                                  ioprio(ts->clat_prio[ddir][i].ioprio),
614                                  ioprio_hint(ts->clat_prio[ddir][i].ioprio));
615                         display_lat(buf, min, max, mean, dev, out);
616                 }
617         }
618
619         if (ts->slat_percentiles && ts->slat_stat[ddir].samples > 0)
620                 show_clat_percentiles(ts->io_u_plat[FIO_SLAT][ddir],
621                                         ts->slat_stat[ddir].samples,
622                                         ts->percentile_list,
623                                         ts->percentile_precision, "slat", out);
624         if (ts->clat_percentiles && ts->clat_stat[ddir].samples > 0)
625                 show_clat_percentiles(ts->io_u_plat[FIO_CLAT][ddir],
626                                         ts->clat_stat[ddir].samples,
627                                         ts->percentile_list,
628                                         ts->percentile_precision, "clat", out);
629         if (ts->lat_percentiles && ts->lat_stat[ddir].samples > 0)
630                 show_clat_percentiles(ts->io_u_plat[FIO_LAT][ddir],
631                                         ts->lat_stat[ddir].samples,
632                                         ts->percentile_list,
633                                         ts->percentile_precision, "lat", out);
634
635         if (ts->clat_percentiles || ts->lat_percentiles) {
636                 char prio_name[64];
637                 uint64_t samples;
638
639                 if (ts->lat_percentiles)
640                         samples = ts->lat_stat[ddir].samples;
641                 else
642                         samples = ts->clat_stat[ddir].samples;
643
644                 /* Only print per prio stats if there are >= 2 prios with samples */
645                 if (get_nr_prios_with_samples(ts, ddir) >= 2) {
646                         for (i = 0; i < ts->nr_clat_prio[ddir]; i++) {
647                                 uint64_t prio_samples =
648                                         ts->clat_prio[ddir][i].clat_stat.samples;
649
650                                 if (!prio_samples)
651                                         continue;
652
653                                 snprintf(prio_name, sizeof(prio_name),
654                                          "%s prio %u/%u/%u (%.2f%% of IOs)",
655                                          clat_type,
656                                          ioprio_class(ts->clat_prio[ddir][i].ioprio),
657                                          ioprio(ts->clat_prio[ddir][i].ioprio),
658                                          ioprio_hint(ts->clat_prio[ddir][i].ioprio),
659                                          100. * (double) prio_samples / (double) samples);
660                                 show_clat_percentiles(ts->clat_prio[ddir][i].io_u_plat,
661                                                 prio_samples, ts->percentile_list,
662                                                 ts->percentile_precision,
663                                                 prio_name, out);
664                         }
665                 }
666         }
667
668         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
669                 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
670                 const char *bw_str;
671
672                 if ((rs->unit_base == 1) && i2p)
673                         bw_str = "Kibit";
674                 else if (rs->unit_base == 1)
675                         bw_str = "kbit";
676                 else if (i2p)
677                         bw_str = "KiB";
678                 else
679                         bw_str = "kB";
680
681                 p_of_agg = convert_agg_kbytes_percent(rs, ddir, mean);
682
683                 if (rs->unit_base == 1) {
684                         min *= 8.0;
685                         max *= 8.0;
686                         mean *= 8.0;
687                         dev *= 8.0;
688                 }
689
690                 if (mean > fkb_base * fkb_base) {
691                         min /= fkb_base;
692                         max /= fkb_base;
693                         mean /= fkb_base;
694                         dev /= fkb_base;
695                         bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
696                 }
697
698                 log_buf(out, "   bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
699                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
700                         bw_str, min, max, p_of_agg, mean, dev,
701                         (&ts->bw_stat[ddir])->samples);
702         }
703         if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
704                 log_buf(out, "   iops        : min=%5llu, max=%5llu, "
705                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
706                         min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
707         }
708 }
709
710 static void show_mixed_ddir_status(struct group_run_stats *rs,
711                                    struct thread_stat *ts,
712                                    struct buf_output *out)
713 {
714         struct thread_stat *ts_lcl = gen_mixed_ddir_stats_from_ts(ts);
715
716         if (ts_lcl)
717                 show_ddir_status(rs, ts_lcl, DDIR_READ, out);
718
719         free_clat_prio_stats(ts_lcl);
720         free(ts_lcl);
721 }
722
723 static bool show_lat(double *io_u_lat, int nr, const char **ranges,
724                      const char *msg, struct buf_output *out)
725 {
726         bool new_line = true, shown = false;
727         int i, line = 0;
728
729         for (i = 0; i < nr; i++) {
730                 if (io_u_lat[i] <= 0.0)
731                         continue;
732                 shown = true;
733                 if (new_line) {
734                         if (line)
735                                 log_buf(out, "\n");
736                         log_buf(out, "  lat (%s)   : ", msg);
737                         new_line = false;
738                         line = 0;
739                 }
740                 if (line)
741                         log_buf(out, ", ");
742                 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
743                 line++;
744                 if (line == 5)
745                         new_line = true;
746         }
747
748         if (shown)
749                 log_buf(out, "\n");
750
751         return true;
752 }
753
754 static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
755 {
756         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
757                                  "250=", "500=", "750=", "1000=", };
758
759         show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
760 }
761
762 static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
763 {
764         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
765                                  "250=", "500=", "750=", "1000=", };
766
767         show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
768 }
769
770 static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
771 {
772         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
773                                  "250=", "500=", "750=", "1000=", "2000=",
774                                  ">=2000=", };
775
776         show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
777 }
778
779 static void show_latencies(struct thread_stat *ts, struct buf_output *out)
780 {
781         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
782         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
783         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
784
785         stat_calc_lat_n(ts, io_u_lat_n);
786         stat_calc_lat_u(ts, io_u_lat_u);
787         stat_calc_lat_m(ts, io_u_lat_m);
788
789         show_lat_n(io_u_lat_n, out);
790         show_lat_u(io_u_lat_u, out);
791         show_lat_m(io_u_lat_m, out);
792 }
793
794 static int block_state_category(int block_state)
795 {
796         switch (block_state) {
797         case BLOCK_STATE_UNINIT:
798                 return 0;
799         case BLOCK_STATE_TRIMMED:
800         case BLOCK_STATE_WRITTEN:
801                 return 1;
802         case BLOCK_STATE_WRITE_FAILURE:
803         case BLOCK_STATE_TRIM_FAILURE:
804                 return 2;
805         default:
806                 /* Silence compile warning on some BSDs and have a return */
807                 assert(0);
808                 return -1;
809         }
810 }
811
812 static int compare_block_infos(const void *bs1, const void *bs2)
813 {
814         uint64_t block1 = *(uint64_t *)bs1;
815         uint64_t block2 = *(uint64_t *)bs2;
816         int state1 = BLOCK_INFO_STATE(block1);
817         int state2 = BLOCK_INFO_STATE(block2);
818         int bscat1 = block_state_category(state1);
819         int bscat2 = block_state_category(state2);
820         int cycles1 = BLOCK_INFO_TRIMS(block1);
821         int cycles2 = BLOCK_INFO_TRIMS(block2);
822
823         if (bscat1 < bscat2)
824                 return -1;
825         if (bscat1 > bscat2)
826                 return 1;
827
828         if (cycles1 < cycles2)
829                 return -1;
830         if (cycles1 > cycles2)
831                 return 1;
832
833         if (state1 < state2)
834                 return -1;
835         if (state1 > state2)
836                 return 1;
837
838         assert(block1 == block2);
839         return 0;
840 }
841
842 static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
843                                   fio_fp64_t *plist, unsigned int **percentiles,
844                                   unsigned int *types)
845 {
846         int len = 0;
847         int i, nr_uninit;
848
849         qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
850
851         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
852                 len++;
853
854         if (!len)
855                 return 0;
856
857         /*
858          * Sort the percentile list. Note that it may already be sorted if
859          * we are using the default values, but since it's a short list this
860          * isn't a worry. Also note that this does not work for NaN values.
861          */
862         if (len > 1)
863                 qsort(plist, len, sizeof(plist[0]), double_cmp);
864
865         /* Start only after the uninit entries end */
866         for (nr_uninit = 0;
867              nr_uninit < nr_block_infos
868                 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
869              nr_uninit ++)
870                 ;
871
872         if (nr_uninit == nr_block_infos)
873                 return 0;
874
875         *percentiles = calloc(len, sizeof(**percentiles));
876
877         for (i = 0; i < len; i++) {
878                 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
879                                 + nr_uninit;
880                 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
881         }
882
883         memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
884         for (i = 0; i < nr_block_infos; i++)
885                 types[BLOCK_INFO_STATE(block_infos[i])]++;
886
887         return len;
888 }
889
890 static const char *block_state_names[] = {
891         [BLOCK_STATE_UNINIT] = "unwritten",
892         [BLOCK_STATE_TRIMMED] = "trimmed",
893         [BLOCK_STATE_WRITTEN] = "written",
894         [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
895         [BLOCK_STATE_WRITE_FAILURE] = "write failure",
896 };
897
898 static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
899                              fio_fp64_t *plist, struct buf_output *out)
900 {
901         int len, pos, i;
902         unsigned int *percentiles = NULL;
903         unsigned int block_state_counts[BLOCK_STATE_COUNT];
904
905         len = calc_block_percentiles(nr_block_infos, block_infos, plist,
906                                      &percentiles, block_state_counts);
907
908         log_buf(out, "  block lifetime percentiles :\n   |");
909         pos = 0;
910         for (i = 0; i < len; i++) {
911                 uint32_t block_info = percentiles[i];
912 #define LINE_LENGTH     75
913                 char str[LINE_LENGTH];
914                 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
915                                      plist[i].u.f, block_info,
916                                      i == len - 1 ? '\n' : ',');
917                 assert(strln < LINE_LENGTH);
918                 if (pos + strln > LINE_LENGTH) {
919                         pos = 0;
920                         log_buf(out, "\n   |");
921                 }
922                 log_buf(out, "%s", str);
923                 pos += strln;
924 #undef LINE_LENGTH
925         }
926         if (percentiles)
927                 free(percentiles);
928
929         log_buf(out, "        states               :");
930         for (i = 0; i < BLOCK_STATE_COUNT; i++)
931                 log_buf(out, " %s=%u%c",
932                          block_state_names[i], block_state_counts[i],
933                          i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
934 }
935
936 static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
937 {
938         char *p1, *p1alt, *p2;
939         unsigned long long bw_mean, iops_mean;
940         const int i2p = is_power_of_2(ts->kb_base);
941
942         if (!ts->ss_dur)
943                 return;
944
945         bw_mean = steadystate_bw_mean(ts);
946         iops_mean = steadystate_iops_mean(ts);
947
948         p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base);
949         p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base);
950         p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE);
951
952         log_buf(out, "  steadystate  : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
953                 ts->ss_state & FIO_SS_ATTAINED ? "yes" : "no",
954                 p1, p1alt, p2,
955                 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
956                 ts->ss_state & FIO_SS_SLOPE ? " slope": " mean dev",
957                 ts->ss_criterion.u.f,
958                 ts->ss_state & FIO_SS_PCT ? "%" : "");
959
960         free(p1);
961         free(p1alt);
962         free(p2);
963 }
964
965 static void show_agg_stats(struct disk_util_agg *agg, int terse,
966                            struct buf_output *out)
967 {
968         if (!agg->slavecount)
969                 return;
970
971         if (!terse) {
972                 log_buf(out, ", aggrios=%llu/%llu, aggsectors=%llu/%llu, "
973                          "aggrmerge=%llu/%llu, aggrticks=%llu/%llu, "
974                          "aggrin_queue=%llu, aggrutil=%3.2f%%",
975                         (unsigned long long) agg->ios[0] / agg->slavecount,
976                         (unsigned long long) agg->ios[1] / agg->slavecount,
977                         (unsigned long long) agg->sectors[0] / agg->slavecount,
978                         (unsigned long long) agg->sectors[1] / agg->slavecount,
979                         (unsigned long long) agg->merges[0] / agg->slavecount,
980                         (unsigned long long) agg->merges[1] / agg->slavecount,
981                         (unsigned long long) agg->ticks[0] / agg->slavecount,
982                         (unsigned long long) agg->ticks[1] / agg->slavecount,
983                         (unsigned long long) agg->time_in_queue / agg->slavecount,
984                         agg->max_util.u.f);
985         } else {
986                 log_buf(out, ";slaves;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
987                         (unsigned long long) agg->ios[0] / agg->slavecount,
988                         (unsigned long long) agg->ios[1] / agg->slavecount,
989                         (unsigned long long) agg->merges[0] / agg->slavecount,
990                         (unsigned long long) agg->merges[1] / agg->slavecount,
991                         (unsigned long long) agg->ticks[0] / agg->slavecount,
992                         (unsigned long long) agg->ticks[1] / agg->slavecount,
993                         (unsigned long long) agg->time_in_queue / agg->slavecount,
994                         agg->max_util.u.f);
995         }
996 }
997
998 static void aggregate_slaves_stats(struct disk_util *masterdu)
999 {
1000         struct disk_util_agg *agg = &masterdu->agg;
1001         struct disk_util_stat *dus;
1002         struct flist_head *entry;
1003         struct disk_util *slavedu;
1004         double util;
1005
1006         flist_for_each(entry, &masterdu->slaves) {
1007                 slavedu = flist_entry(entry, struct disk_util, slavelist);
1008                 dus = &slavedu->dus;
1009                 agg->ios[0] += dus->s.ios[0];
1010                 agg->ios[1] += dus->s.ios[1];
1011                 agg->merges[0] += dus->s.merges[0];
1012                 agg->merges[1] += dus->s.merges[1];
1013                 agg->sectors[0] += dus->s.sectors[0];
1014                 agg->sectors[1] += dus->s.sectors[1];
1015                 agg->ticks[0] += dus->s.ticks[0];
1016                 agg->ticks[1] += dus->s.ticks[1];
1017                 agg->time_in_queue += dus->s.time_in_queue;
1018                 agg->slavecount++;
1019
1020                 util = (double) (100 * dus->s.io_ticks / (double) slavedu->dus.s.msec);
1021                 /* System utilization is the utilization of the
1022                  * component with the highest utilization.
1023                  */
1024                 if (util > agg->max_util.u.f)
1025                         agg->max_util.u.f = util;
1026
1027         }
1028
1029         if (agg->max_util.u.f > 100.0)
1030                 agg->max_util.u.f = 100.0;
1031 }
1032
1033 void print_disk_util(struct disk_util_stat *dus, struct disk_util_agg *agg,
1034                      int terse, struct buf_output *out)
1035 {
1036         double util = 0;
1037
1038         if (dus->s.msec)
1039                 util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
1040         if (util > 100.0)
1041                 util = 100.0;
1042
1043         if (!terse) {
1044                 if (agg->slavecount)
1045                         log_buf(out, "  ");
1046
1047                 log_buf(out, "  %s: ios=%llu/%llu, sectors=%llu/%llu, "
1048                         "merge=%llu/%llu, ticks=%llu/%llu, in_queue=%llu, "
1049                         "util=%3.2f%%",
1050                                 dus->name,
1051                                 (unsigned long long) dus->s.ios[0],
1052                                 (unsigned long long) dus->s.ios[1],
1053                                 (unsigned long long) dus->s.sectors[0],
1054                                 (unsigned long long) dus->s.sectors[1],
1055                                 (unsigned long long) dus->s.merges[0],
1056                                 (unsigned long long) dus->s.merges[1],
1057                                 (unsigned long long) dus->s.ticks[0],
1058                                 (unsigned long long) dus->s.ticks[1],
1059                                 (unsigned long long) dus->s.time_in_queue,
1060                                 util);
1061         } else {
1062                 log_buf(out, ";%s;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
1063                                 dus->name,
1064                                 (unsigned long long) dus->s.ios[0],
1065                                 (unsigned long long) dus->s.ios[1],
1066                                 (unsigned long long) dus->s.merges[0],
1067                                 (unsigned long long) dus->s.merges[1],
1068                                 (unsigned long long) dus->s.ticks[0],
1069                                 (unsigned long long) dus->s.ticks[1],
1070                                 (unsigned long long) dus->s.time_in_queue,
1071                                 util);
1072         }
1073
1074         /*
1075          * If the device has slaves, aggregate the stats for
1076          * those slave devices also.
1077          */
1078         show_agg_stats(agg, terse, out);
1079
1080         if (!terse)
1081                 log_buf(out, "\n");
1082 }
1083
1084 void json_array_add_disk_util(struct disk_util_stat *dus,
1085                 struct disk_util_agg *agg, struct json_array *array)
1086 {
1087         struct json_object *obj;
1088         double util = 0;
1089
1090         if (dus->s.msec)
1091                 util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
1092         if (util > 100.0)
1093                 util = 100.0;
1094
1095         obj = json_create_object();
1096         json_array_add_value_object(array, obj);
1097
1098         json_object_add_value_string(obj, "name", (const char *)dus->name);
1099         json_object_add_value_int(obj, "read_ios", dus->s.ios[0]);
1100         json_object_add_value_int(obj, "write_ios", dus->s.ios[1]);
1101         json_object_add_value_int(obj, "read_sectors", dus->s.sectors[0]);
1102         json_object_add_value_int(obj, "write_sectors", dus->s.sectors[1]);
1103         json_object_add_value_int(obj, "read_merges", dus->s.merges[0]);
1104         json_object_add_value_int(obj, "write_merges", dus->s.merges[1]);
1105         json_object_add_value_int(obj, "read_ticks", dus->s.ticks[0]);
1106         json_object_add_value_int(obj, "write_ticks", dus->s.ticks[1]);
1107         json_object_add_value_int(obj, "in_queue", dus->s.time_in_queue);
1108         json_object_add_value_float(obj, "util", util);
1109
1110         /*
1111          * If the device has slaves, aggregate the stats for
1112          * those slave devices also.
1113          */
1114         if (!agg->slavecount)
1115                 return;
1116         json_object_add_value_int(obj, "aggr_read_ios",
1117                                 agg->ios[0] / agg->slavecount);
1118         json_object_add_value_int(obj, "aggr_write_ios",
1119                                 agg->ios[1] / agg->slavecount);
1120         json_object_add_value_int(obj, "aggr_read_sectors",
1121                                 agg->sectors[0] / agg->slavecount);
1122         json_object_add_value_int(obj, "aggr_write_sectors",
1123                                 agg->sectors[1] / agg->slavecount);
1124         json_object_add_value_int(obj, "aggr_read_merges",
1125                                 agg->merges[0] / agg->slavecount);
1126         json_object_add_value_int(obj, "aggr_write_merge",
1127                                 agg->merges[1] / agg->slavecount);
1128         json_object_add_value_int(obj, "aggr_read_ticks",
1129                                 agg->ticks[0] / agg->slavecount);
1130         json_object_add_value_int(obj, "aggr_write_ticks",
1131                                 agg->ticks[1] / agg->slavecount);
1132         json_object_add_value_int(obj, "aggr_in_queue",
1133                                 agg->time_in_queue / agg->slavecount);
1134         json_object_add_value_float(obj, "aggr_util", agg->max_util.u.f);
1135 }
1136
1137 static void json_object_add_disk_utils(struct json_object *obj,
1138                                        struct flist_head *head)
1139 {
1140         struct json_array *array = json_create_array();
1141         struct flist_head *entry;
1142         struct disk_util *du;
1143
1144         json_object_add_value_array(obj, "disk_util", array);
1145
1146         flist_for_each(entry, head) {
1147                 du = flist_entry(entry, struct disk_util, list);
1148
1149                 aggregate_slaves_stats(du);
1150                 json_array_add_disk_util(&du->dus, &du->agg, array);
1151         }
1152 }
1153
1154 void show_disk_util(int terse, struct json_object *parent,
1155                     struct buf_output *out)
1156 {
1157         struct flist_head *entry;
1158         struct disk_util *du;
1159         bool do_json;
1160
1161         if (!is_running_backend())
1162                 return;
1163
1164         if (flist_empty(&disk_list))
1165                 return;
1166
1167         if ((output_format & FIO_OUTPUT_JSON) && parent)
1168                 do_json = true;
1169         else
1170                 do_json = false;
1171
1172         if (!terse && !do_json)
1173                 log_buf(out, "\nDisk stats (read/write):\n");
1174
1175         if (do_json) {
1176                 json_object_add_disk_utils(parent, &disk_list);
1177         } else if (output_format & ~(FIO_OUTPUT_JSON | FIO_OUTPUT_JSON_PLUS)) {
1178                 flist_for_each(entry, &disk_list) {
1179                         du = flist_entry(entry, struct disk_util, list);
1180
1181                         aggregate_slaves_stats(du);
1182                         print_disk_util(&du->dus, &du->agg, terse, out);
1183                 }
1184         }
1185 }
1186
1187 static void show_thread_status_normal(struct thread_stat *ts,
1188                                       struct group_run_stats *rs,
1189                                       struct buf_output *out)
1190 {
1191         double usr_cpu, sys_cpu;
1192         unsigned long runtime;
1193         double io_u_dist[FIO_IO_U_MAP_NR];
1194         time_t time_p;
1195         char time_buf[32];
1196
1197         if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
1198                 return;
1199
1200         memset(time_buf, 0, sizeof(time_buf));
1201
1202         time(&time_p);
1203         os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
1204
1205         if (!ts->error) {
1206                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
1207                                         ts->name, ts->groupid, ts->members,
1208                                         ts->error, (int) ts->pid, time_buf);
1209         } else {
1210                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
1211                                         ts->name, ts->groupid, ts->members,
1212                                         ts->error, ts->verror, (int) ts->pid,
1213                                         time_buf);
1214         }
1215
1216         if (strlen(ts->description))
1217                 log_buf(out, "  Description  : [%s]\n", ts->description);
1218
1219         for_each_rw_ddir(ddir) {
1220                 if (ts->io_bytes[ddir])
1221                         show_ddir_status(rs, ts, ddir, out);
1222         }
1223
1224         if (ts->unified_rw_rep == UNIFIED_BOTH)
1225                 show_mixed_ddir_status(rs, ts, out);
1226
1227         show_latencies(ts, out);
1228
1229         if (ts->sync_stat.samples)
1230                 show_ddir_status(rs, ts, DDIR_SYNC, out);
1231
1232         runtime = ts->total_run_time;
1233         if (runtime) {
1234                 double runt = (double) runtime;
1235
1236                 usr_cpu = (double) ts->usr_time * 100 / runt;
1237                 sys_cpu = (double) ts->sys_time * 100 / runt;
1238         } else {
1239                 usr_cpu = 0;
1240                 sys_cpu = 0;
1241         }
1242
1243         log_buf(out, "  cpu          : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
1244                  " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
1245                         (unsigned long long) ts->ctx,
1246                         (unsigned long long) ts->majf,
1247                         (unsigned long long) ts->minf);
1248
1249         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1250         log_buf(out, "  IO depths    : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
1251                  " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1252                                         io_u_dist[1], io_u_dist[2],
1253                                         io_u_dist[3], io_u_dist[4],
1254                                         io_u_dist[5], io_u_dist[6]);
1255
1256         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1257         log_buf(out, "     submit    : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1258                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1259                                         io_u_dist[1], io_u_dist[2],
1260                                         io_u_dist[3], io_u_dist[4],
1261                                         io_u_dist[5], io_u_dist[6]);
1262         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1263         log_buf(out, "     complete  : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1264                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1265                                         io_u_dist[1], io_u_dist[2],
1266                                         io_u_dist[3], io_u_dist[4],
1267                                         io_u_dist[5], io_u_dist[6]);
1268         log_buf(out, "     issued rwts: total=%llu,%llu,%llu,%llu"
1269                                  " short=%llu,%llu,%llu,0"
1270                                  " dropped=%llu,%llu,%llu,0\n",
1271                                         (unsigned long long) ts->total_io_u[0],
1272                                         (unsigned long long) ts->total_io_u[1],
1273                                         (unsigned long long) ts->total_io_u[2],
1274                                         (unsigned long long) ts->total_io_u[3],
1275                                         (unsigned long long) ts->short_io_u[0],
1276                                         (unsigned long long) ts->short_io_u[1],
1277                                         (unsigned long long) ts->short_io_u[2],
1278                                         (unsigned long long) ts->drop_io_u[0],
1279                                         (unsigned long long) ts->drop_io_u[1],
1280                                         (unsigned long long) ts->drop_io_u[2]);
1281         if (ts->continue_on_error) {
1282                 log_buf(out, "     errors    : total=%llu, first_error=%d/<%s>\n",
1283                                         (unsigned long long)ts->total_err_count,
1284                                         ts->first_error,
1285                                         strerror(ts->first_error));
1286         }
1287         if (ts->latency_depth) {
1288                 log_buf(out, "     latency   : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
1289                                         (unsigned long long)ts->latency_target,
1290                                         (unsigned long long)ts->latency_window,
1291                                         ts->latency_percentile.u.f,
1292                                         ts->latency_depth);
1293         }
1294
1295         if (ts->nr_block_infos)
1296                 show_block_infos(ts->nr_block_infos, ts->block_infos,
1297                                   ts->percentile_list, out);
1298
1299         if (ts->ss_dur)
1300                 show_ss_normal(ts, out);
1301 }
1302
1303 static void show_ddir_status_terse(struct thread_stat *ts,
1304                                    struct group_run_stats *rs,
1305                                    enum fio_ddir ddir, int ver,
1306                                    struct buf_output *out)
1307 {
1308         unsigned long long min, max, minv, maxv, bw, iops;
1309         unsigned long long *ovals = NULL;
1310         double mean, dev;
1311         unsigned int len;
1312         int i, bw_stat;
1313
1314         assert(ddir_rw(ddir));
1315
1316         iops = bw = 0;
1317         if (ts->runtime[ddir]) {
1318                 uint64_t runt = ts->runtime[ddir];
1319
1320                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
1321                 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
1322         }
1323
1324         log_buf(out, ";%llu;%llu;%llu;%llu",
1325                 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
1326                                         (unsigned long long) ts->runtime[ddir]);
1327
1328         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
1329                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1330         else
1331                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1332
1333         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
1334                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1335         else
1336                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1337
1338         if (ts->lat_percentiles) {
1339                 len = calc_clat_percentiles(ts->io_u_plat[FIO_LAT][ddir],
1340                                         ts->lat_stat[ddir].samples,
1341                                         ts->percentile_list, &ovals, &maxv,
1342                                         &minv);
1343         } else if (ts->clat_percentiles) {
1344                 len = calc_clat_percentiles(ts->io_u_plat[FIO_CLAT][ddir],
1345                                         ts->clat_stat[ddir].samples,
1346                                         ts->percentile_list, &ovals, &maxv,
1347                                         &minv);
1348         } else {
1349                 len = 0;
1350         }
1351
1352         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
1353                 if (i >= len) {
1354                         log_buf(out, ";0%%=0");
1355                         continue;
1356                 }
1357                 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
1358         }
1359
1360         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
1361                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1362         else
1363                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1364
1365         free(ovals);
1366
1367         bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
1368         if (bw_stat) {
1369                 double p_of_agg = 100.0;
1370
1371                 if (rs->agg[ddir]) {
1372                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1373                         if (p_of_agg > 100.0)
1374                                 p_of_agg = 100.0;
1375                 }
1376
1377                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
1378         } else {
1379                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
1380         }
1381
1382         if (ver == 5) {
1383                 if (bw_stat)
1384                         log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
1385                 else
1386                         log_buf(out, ";%lu", 0UL);
1387
1388                 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
1389                         log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
1390                                 mean, dev, (&ts->iops_stat[ddir])->samples);
1391                 else
1392                         log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
1393         }
1394 }
1395
1396 static void show_mixed_ddir_status_terse(struct thread_stat *ts,
1397                                    struct group_run_stats *rs,
1398                                    int ver, struct buf_output *out)
1399 {
1400         struct thread_stat *ts_lcl = gen_mixed_ddir_stats_from_ts(ts);
1401
1402         if (ts_lcl)
1403                 show_ddir_status_terse(ts_lcl, rs, DDIR_READ, ver, out);
1404
1405         free_clat_prio_stats(ts_lcl);
1406         free(ts_lcl);
1407 }
1408
1409 static struct json_object *add_ddir_lat_json(struct thread_stat *ts,
1410                                              uint32_t percentiles,
1411                                              struct io_stat *lat_stat,
1412                                              uint64_t *io_u_plat)
1413 {
1414         char buf[120];
1415         double mean, dev;
1416         unsigned int i, len;
1417         struct json_object *lat_object, *percentile_object, *clat_bins_object;
1418         unsigned long long min, max, maxv, minv, *ovals = NULL;
1419
1420         if (!calc_lat(lat_stat, &min, &max, &mean, &dev)) {
1421                 min = max = 0;
1422                 mean = dev = 0.0;
1423         }
1424         lat_object = json_create_object();
1425         json_object_add_value_int(lat_object, "min", min);
1426         json_object_add_value_int(lat_object, "max", max);
1427         json_object_add_value_float(lat_object, "mean", mean);
1428         json_object_add_value_float(lat_object, "stddev", dev);
1429         json_object_add_value_int(lat_object, "N", lat_stat->samples);
1430
1431         if (percentiles && lat_stat->samples) {
1432                 len = calc_clat_percentiles(io_u_plat, lat_stat->samples,
1433                                 ts->percentile_list, &ovals, &maxv, &minv);
1434
1435                 if (len > FIO_IO_U_LIST_MAX_LEN)
1436                         len = FIO_IO_U_LIST_MAX_LEN;
1437
1438                 percentile_object = json_create_object();
1439                 json_object_add_value_object(lat_object, "percentile", percentile_object);
1440                 for (i = 0; i < len; i++) {
1441                         snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1442                         json_object_add_value_int(percentile_object, buf, ovals[i]);
1443                 }
1444                 free(ovals);
1445
1446                 if (output_format & FIO_OUTPUT_JSON_PLUS) {
1447                         clat_bins_object = json_create_object();
1448                         json_object_add_value_object(lat_object, "bins", clat_bins_object);
1449
1450                         for(i = 0; i < FIO_IO_U_PLAT_NR; i++)
1451                                 if (io_u_plat[i]) {
1452                                         snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1453                                         json_object_add_value_int(clat_bins_object, buf, io_u_plat[i]);
1454                                 }
1455                 }
1456         }
1457
1458         return lat_object;
1459 }
1460
1461 static void add_ddir_status_json(struct thread_stat *ts,
1462                                  struct group_run_stats *rs, enum fio_ddir ddir,
1463                                  struct json_object *parent)
1464 {
1465         unsigned long long min, max;
1466         unsigned long long bw_bytes, bw;
1467         double mean, dev, iops;
1468         struct json_object *dir_object, *tmp_object;
1469         double p_of_agg = 100.0;
1470
1471         assert(ddir_rw(ddir) || ddir_sync(ddir));
1472
1473         if ((ts->unified_rw_rep == UNIFIED_MIXED) && ddir != DDIR_READ)
1474                 return;
1475
1476         dir_object = json_create_object();
1477         json_object_add_value_object(parent,
1478                 (ts->unified_rw_rep == UNIFIED_MIXED) ? "mixed" : io_ddir_name(ddir), dir_object);
1479
1480         if (ddir_rw(ddir)) {
1481                 bw_bytes = 0;
1482                 bw = 0;
1483                 iops = 0.0;
1484                 if (ts->runtime[ddir]) {
1485                         uint64_t runt = ts->runtime[ddir];
1486
1487                         bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */
1488                         bw = bw_bytes / 1024; /* KiB/s */
1489                         iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
1490                 }
1491
1492                 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
1493                 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
1494                 json_object_add_value_int(dir_object, "bw_bytes", bw_bytes);
1495                 json_object_add_value_int(dir_object, "bw", bw);
1496                 json_object_add_value_float(dir_object, "iops", iops);
1497                 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
1498                 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
1499                 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
1500                 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
1501
1502                 tmp_object = add_ddir_lat_json(ts, ts->slat_percentiles,
1503                                 &ts->slat_stat[ddir], ts->io_u_plat[FIO_SLAT][ddir]);
1504                 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1505
1506                 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles,
1507                                 &ts->clat_stat[ddir], ts->io_u_plat[FIO_CLAT][ddir]);
1508                 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1509
1510                 tmp_object = add_ddir_lat_json(ts, ts->lat_percentiles,
1511                                 &ts->lat_stat[ddir], ts->io_u_plat[FIO_LAT][ddir]);
1512                 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1513         } else {
1514                 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[DDIR_SYNC]);
1515                 tmp_object = add_ddir_lat_json(ts, ts->lat_percentiles | ts->clat_percentiles,
1516                                 &ts->sync_stat, ts->io_u_sync_plat);
1517                 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1518         }
1519
1520         if (!ddir_rw(ddir))
1521                 return;
1522
1523         /* Only include per prio stats if there are >= 2 prios with samples */
1524         if (get_nr_prios_with_samples(ts, ddir) >= 2) {
1525                 struct json_array *array = json_create_array();
1526                 const char *obj_name;
1527                 int i;
1528
1529                 if (ts->lat_percentiles)
1530                         obj_name = "lat_ns";
1531                 else
1532                         obj_name = "clat_ns";
1533
1534                 json_object_add_value_array(dir_object, "prios", array);
1535
1536                 for (i = 0; i < ts->nr_clat_prio[ddir]; i++) {
1537                         struct json_object *obj;
1538
1539                         if (!ts->clat_prio[ddir][i].clat_stat.samples)
1540                                 continue;
1541
1542                         obj = json_create_object();
1543
1544                         json_object_add_value_int(obj, "prioclass",
1545                                 ioprio_class(ts->clat_prio[ddir][i].ioprio));
1546                         json_object_add_value_int(obj, "prio",
1547                                 ioprio(ts->clat_prio[ddir][i].ioprio));
1548                         json_object_add_value_int(obj, "priohint",
1549                                 ioprio_hint(ts->clat_prio[ddir][i].ioprio));
1550
1551                         tmp_object = add_ddir_lat_json(ts,
1552                                         ts->clat_percentiles | ts->lat_percentiles,
1553                                         &ts->clat_prio[ddir][i].clat_stat,
1554                                         ts->clat_prio[ddir][i].io_u_plat);
1555                         json_object_add_value_object(obj, obj_name, tmp_object);
1556                         json_array_add_value_object(array, obj);
1557                 }
1558         }
1559
1560         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1561                 p_of_agg = convert_agg_kbytes_percent(rs, ddir, mean);
1562         } else {
1563                 min = max = 0;
1564                 p_of_agg = mean = dev = 0.0;
1565         }
1566
1567         json_object_add_value_int(dir_object, "bw_min", min);
1568         json_object_add_value_int(dir_object, "bw_max", max);
1569         json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1570         json_object_add_value_float(dir_object, "bw_mean", mean);
1571         json_object_add_value_float(dir_object, "bw_dev", dev);
1572         json_object_add_value_int(dir_object, "bw_samples",
1573                                 (&ts->bw_stat[ddir])->samples);
1574
1575         if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1576                 min = max = 0;
1577                 mean = dev = 0.0;
1578         }
1579         json_object_add_value_int(dir_object, "iops_min", min);
1580         json_object_add_value_int(dir_object, "iops_max", max);
1581         json_object_add_value_float(dir_object, "iops_mean", mean);
1582         json_object_add_value_float(dir_object, "iops_stddev", dev);
1583         json_object_add_value_int(dir_object, "iops_samples",
1584                                 (&ts->iops_stat[ddir])->samples);
1585
1586         if (ts->cachehit + ts->cachemiss) {
1587                 uint64_t total;
1588                 double hit;
1589
1590                 total = ts->cachehit + ts->cachemiss;
1591                 hit = (double) ts->cachehit / (double) total;
1592                 hit *= 100.0;
1593                 json_object_add_value_float(dir_object, "cachehit", hit);
1594         }
1595 }
1596
1597 static void add_mixed_ddir_status_json(struct thread_stat *ts,
1598                 struct group_run_stats *rs, struct json_object *parent)
1599 {
1600         struct thread_stat *ts_lcl = gen_mixed_ddir_stats_from_ts(ts);
1601
1602         /* add the aggregated stats to json parent */
1603         if (ts_lcl)
1604                 add_ddir_status_json(ts_lcl, rs, DDIR_READ, parent);
1605
1606         free_clat_prio_stats(ts_lcl);
1607         free(ts_lcl);
1608 }
1609
1610 static void show_thread_status_terse_all(struct thread_stat *ts,
1611                                          struct group_run_stats *rs, int ver,
1612                                          struct buf_output *out)
1613 {
1614         double io_u_dist[FIO_IO_U_MAP_NR];
1615         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1616         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1617         double usr_cpu, sys_cpu;
1618         int i;
1619
1620         /* General Info */
1621         if (ver == 2)
1622                 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1623         else
1624                 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1625                         ts->name, ts->groupid, ts->error);
1626
1627         /* Log Read Status, or mixed if unified_rw_rep = 1 */
1628         show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1629         if (ts->unified_rw_rep != UNIFIED_MIXED) {
1630                 /* Log Write Status */
1631                 show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1632                 /* Log Trim Status */
1633                 if (ver == 2 || ver == 4 || ver == 5)
1634                         show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1635         }
1636         if (ts->unified_rw_rep == UNIFIED_BOTH)
1637                 show_mixed_ddir_status_terse(ts, rs, ver, out);
1638         /* CPU Usage */
1639         if (ts->total_run_time) {
1640                 double runt = (double) ts->total_run_time;
1641
1642                 usr_cpu = (double) ts->usr_time * 100 / runt;
1643                 sys_cpu = (double) ts->sys_time * 100 / runt;
1644         } else {
1645                 usr_cpu = 0;
1646                 sys_cpu = 0;
1647         }
1648
1649         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1650                                                 (unsigned long long) ts->ctx,
1651                                                 (unsigned long long) ts->majf,
1652                                                 (unsigned long long) ts->minf);
1653
1654         /* Calc % distribution of IO depths, usecond, msecond latency */
1655         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1656         stat_calc_lat_nu(ts, io_u_lat_u);
1657         stat_calc_lat_m(ts, io_u_lat_m);
1658
1659         /* Only show fixed 7 I/O depth levels*/
1660         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1661                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1662                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1663
1664         /* Microsecond latency */
1665         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1666                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1667         /* Millisecond latency */
1668         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1669                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1670
1671         /* disk util stats, if any */
1672         if (ver >= 3 && is_running_backend())
1673                 show_disk_util(1, NULL, out);
1674
1675         /* Additional output if continue_on_error set - default off*/
1676         if (ts->continue_on_error)
1677                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1678
1679         /* Additional output if description is set */
1680         if (strlen(ts->description)) {
1681                 if (ver == 2)
1682                         log_buf(out, "\n");
1683                 log_buf(out, ";%s", ts->description);
1684         }
1685
1686         log_buf(out, "\n");
1687 }
1688
1689 static void json_add_job_opts(struct json_object *root, const char *name,
1690                               struct flist_head *opt_list)
1691 {
1692         struct json_object *dir_object;
1693         struct flist_head *entry;
1694         struct print_option *p;
1695
1696         if (flist_empty(opt_list))
1697                 return;
1698
1699         dir_object = json_create_object();
1700         json_object_add_value_object(root, name, dir_object);
1701
1702         flist_for_each(entry, opt_list) {
1703                 p = flist_entry(entry, struct print_option, list);
1704                 json_object_add_value_string(dir_object, p->name, p->value);
1705         }
1706 }
1707
1708 static struct json_object *show_thread_status_json(struct thread_stat *ts,
1709                                                    struct group_run_stats *rs,
1710                                                    struct flist_head *opt_list)
1711 {
1712         struct json_object *root, *tmp;
1713         struct jobs_eta *je;
1714         double io_u_dist[FIO_IO_U_MAP_NR];
1715         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1716         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1717         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1718         double usr_cpu, sys_cpu;
1719         int i;
1720         size_t size;
1721
1722         root = json_create_object();
1723         json_object_add_value_string(root, "jobname", ts->name);
1724         json_object_add_value_int(root, "groupid", ts->groupid);
1725         json_object_add_value_int(root, "job_start", ts->job_start);
1726         json_object_add_value_int(root, "error", ts->error);
1727
1728         /* ETA Info */
1729         je = get_jobs_eta(true, &size);
1730         if (je) {
1731                 json_object_add_value_int(root, "eta", je->eta_sec);
1732                 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1733                 free(je);
1734         }
1735
1736         if (opt_list)
1737                 json_add_job_opts(root, "job options", opt_list);
1738
1739         add_ddir_status_json(ts, rs, DDIR_READ, root);
1740         add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1741         add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1742         add_ddir_status_json(ts, rs, DDIR_SYNC, root);
1743
1744         if (ts->unified_rw_rep == UNIFIED_BOTH)
1745                 add_mixed_ddir_status_json(ts, rs, root);
1746
1747         /* CPU Usage */
1748         if (ts->total_run_time) {
1749                 double runt = (double) ts->total_run_time;
1750
1751                 usr_cpu = (double) ts->usr_time * 100 / runt;
1752                 sys_cpu = (double) ts->sys_time * 100 / runt;
1753         } else {
1754                 usr_cpu = 0;
1755                 sys_cpu = 0;
1756         }
1757         json_object_add_value_int(root, "job_runtime", ts->total_run_time);
1758         json_object_add_value_float(root, "usr_cpu", usr_cpu);
1759         json_object_add_value_float(root, "sys_cpu", sys_cpu);
1760         json_object_add_value_int(root, "ctx", ts->ctx);
1761         json_object_add_value_int(root, "majf", ts->majf);
1762         json_object_add_value_int(root, "minf", ts->minf);
1763
1764         /* Calc % distribution of IO depths */
1765         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1766         tmp = json_create_object();
1767         json_object_add_value_object(root, "iodepth_level", tmp);
1768         /* Only show fixed 7 I/O depth levels*/
1769         for (i = 0; i < 7; i++) {
1770                 char name[20];
1771                 if (i < 6)
1772                         snprintf(name, 20, "%d", 1 << i);
1773                 else
1774                         snprintf(name, 20, ">=%d", 1 << i);
1775                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1776         }
1777
1778         /* Calc % distribution of submit IO depths */
1779         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1780         tmp = json_create_object();
1781         json_object_add_value_object(root, "iodepth_submit", tmp);
1782         /* Only show fixed 7 I/O depth levels*/
1783         for (i = 0; i < 7; i++) {
1784                 char name[20];
1785                 if (i == 0)
1786                         snprintf(name, 20, "0");
1787                 else if (i < 6)
1788                         snprintf(name, 20, "%d", 1 << (i+1));
1789                 else
1790                         snprintf(name, 20, ">=%d", 1 << i);
1791                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1792         }
1793
1794         /* Calc % distribution of completion IO depths */
1795         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1796         tmp = json_create_object();
1797         json_object_add_value_object(root, "iodepth_complete", tmp);
1798         /* Only show fixed 7 I/O depth levels*/
1799         for (i = 0; i < 7; i++) {
1800                 char name[20];
1801                 if (i == 0)
1802                         snprintf(name, 20, "0");
1803                 else if (i < 6)
1804                         snprintf(name, 20, "%d", 1 << (i+1));
1805                 else
1806                         snprintf(name, 20, ">=%d", 1 << i);
1807                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1808         }
1809
1810         /* Calc % distribution of nsecond, usecond, msecond latency */
1811         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1812         stat_calc_lat_n(ts, io_u_lat_n);
1813         stat_calc_lat_u(ts, io_u_lat_u);
1814         stat_calc_lat_m(ts, io_u_lat_m);
1815
1816         /* Nanosecond latency */
1817         tmp = json_create_object();
1818         json_object_add_value_object(root, "latency_ns", tmp);
1819         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1820                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1821                                  "250", "500", "750", "1000", };
1822                 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1823         }
1824         /* Microsecond latency */
1825         tmp = json_create_object();
1826         json_object_add_value_object(root, "latency_us", tmp);
1827         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1828                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1829                                  "250", "500", "750", "1000", };
1830                 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1831         }
1832         /* Millisecond latency */
1833         tmp = json_create_object();
1834         json_object_add_value_object(root, "latency_ms", tmp);
1835         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1836                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1837                                  "250", "500", "750", "1000", "2000",
1838                                  ">=2000", };
1839                 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1840         }
1841
1842         /* Additional output if continue_on_error set - default off*/
1843         if (ts->continue_on_error) {
1844                 json_object_add_value_int(root, "total_err", ts->total_err_count);
1845                 json_object_add_value_int(root, "first_error", ts->first_error);
1846         }
1847
1848         if (ts->latency_depth) {
1849                 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1850                 json_object_add_value_int(root, "latency_target", ts->latency_target);
1851                 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1852                 json_object_add_value_int(root, "latency_window", ts->latency_window);
1853         }
1854
1855         /* Additional output if description is set */
1856         if (strlen(ts->description))
1857                 json_object_add_value_string(root, "desc", ts->description);
1858
1859         if (ts->nr_block_infos) {
1860                 /* Block error histogram and types */
1861                 int len;
1862                 unsigned int *percentiles = NULL;
1863                 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1864
1865                 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1866                                              ts->percentile_list,
1867                                              &percentiles, block_state_counts);
1868
1869                 if (len) {
1870                         struct json_object *block, *percentile_object, *states;
1871                         int state;
1872                         block = json_create_object();
1873                         json_object_add_value_object(root, "block", block);
1874
1875                         percentile_object = json_create_object();
1876                         json_object_add_value_object(block, "percentiles",
1877                                                      percentile_object);
1878                         for (i = 0; i < len; i++) {
1879                                 char buf[20];
1880                                 snprintf(buf, sizeof(buf), "%f",
1881                                          ts->percentile_list[i].u.f);
1882                                 json_object_add_value_int(percentile_object,
1883                                                           buf,
1884                                                           percentiles[i]);
1885                         }
1886
1887                         states = json_create_object();
1888                         json_object_add_value_object(block, "states", states);
1889                         for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1890                                 json_object_add_value_int(states,
1891                                         block_state_names[state],
1892                                         block_state_counts[state]);
1893                         }
1894                         free(percentiles);
1895                 }
1896         }
1897
1898         if (ts->ss_dur) {
1899                 struct json_object *data;
1900                 struct json_array *iops, *bw;
1901                 int j, k, l;
1902                 char ss_buf[64];
1903                 int intervals = ts->ss_dur / (ss_check_interval / 1000L);
1904
1905                 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1906                         ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1907                         ts->ss_state & FIO_SS_SLOPE ? "_slope" : "",
1908                         (float) ts->ss_limit.u.f,
1909                         ts->ss_state & FIO_SS_PCT ? "%" : "");
1910
1911                 tmp = json_create_object();
1912                 json_object_add_value_object(root, "steadystate", tmp);
1913                 json_object_add_value_string(tmp, "ss", ss_buf);
1914                 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1915                 json_object_add_value_int(tmp, "attained", (ts->ss_state & FIO_SS_ATTAINED) > 0);
1916
1917                 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1918                         ts->ss_state & FIO_SS_PCT ? "%" : "");
1919                 json_object_add_value_string(tmp, "criterion", ss_buf);
1920                 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1921                 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1922
1923                 data = json_create_object();
1924                 json_object_add_value_object(tmp, "data", data);
1925                 bw = json_create_array();
1926                 iops = json_create_array();
1927
1928                 /*
1929                 ** if ss was attained or the buffer is not full,
1930                 ** ss->head points to the first element in the list.
1931                 ** otherwise it actually points to the second element
1932                 ** in the list
1933                 */
1934                 if ((ts->ss_state & FIO_SS_ATTAINED) || !(ts->ss_state & FIO_SS_BUFFER_FULL))
1935                         j = ts->ss_head;
1936                 else
1937                         j = ts->ss_head == 0 ? intervals - 1 : ts->ss_head - 1;
1938                 for (l = 0; l < intervals; l++) {
1939                         k = (j + l) % intervals;
1940                         json_array_add_value_int(bw, ts->ss_bw_data[k]);
1941                         json_array_add_value_int(iops, ts->ss_iops_data[k]);
1942                 }
1943                 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1944                 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1945                 json_object_add_value_array(data, "iops", iops);
1946                 json_object_add_value_array(data, "bw", bw);
1947         }
1948
1949         return root;
1950 }
1951
1952 static void show_thread_status_terse(struct thread_stat *ts,
1953                                      struct group_run_stats *rs,
1954                                      struct buf_output *out)
1955 {
1956         if (terse_version >= 2 && terse_version <= 5)
1957                 show_thread_status_terse_all(ts, rs, terse_version, out);
1958         else
1959                 log_err("fio: bad terse version!? %d\n", terse_version);
1960 }
1961
1962 struct json_object *show_thread_status(struct thread_stat *ts,
1963                                        struct group_run_stats *rs,
1964                                        struct flist_head *opt_list,
1965                                        struct buf_output *out)
1966 {
1967         struct json_object *ret = NULL;
1968
1969         if (output_format & FIO_OUTPUT_TERSE)
1970                 show_thread_status_terse(ts, rs,  out);
1971         if (output_format & FIO_OUTPUT_JSON)
1972                 ret = show_thread_status_json(ts, rs, opt_list);
1973         if (output_format & FIO_OUTPUT_NORMAL)
1974                 show_thread_status_normal(ts, rs,  out);
1975
1976         return ret;
1977 }
1978
1979 static void __sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1980 {
1981         double mean, S;
1982
1983         dst->min_val = min(dst->min_val, src->min_val);
1984         dst->max_val = max(dst->max_val, src->max_val);
1985
1986         /*
1987          * Compute new mean and S after the merge
1988          * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1989          *  #Parallel_algorithm>
1990          */
1991         if (first) {
1992                 mean = src->mean.u.f;
1993                 S = src->S.u.f;
1994         } else {
1995                 double delta = src->mean.u.f - dst->mean.u.f;
1996
1997                 mean = ((src->mean.u.f * src->samples) +
1998                         (dst->mean.u.f * dst->samples)) /
1999                         (dst->samples + src->samples);
2000
2001                 S =  src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
2002                         (dst->samples * src->samples) /
2003                         (dst->samples + src->samples);
2004         }
2005
2006         dst->samples += src->samples;
2007         dst->mean.u.f = mean;
2008         dst->S.u.f = S;
2009
2010 }
2011
2012 /*
2013  * We sum two kinds of stats - one that is time based, in which case we
2014  * apply the proper summing technique, and then one that is iops/bw
2015  * numbers. For group_reporting, we should just add those up, not make
2016  * them the mean of everything.
2017  */
2018 static void sum_stat(struct io_stat *dst, struct io_stat *src, bool pure_sum)
2019 {
2020         bool first = dst->samples == 0;
2021
2022         if (src->samples == 0)
2023                 return;
2024
2025         if (!pure_sum) {
2026                 __sum_stat(dst, src, first);
2027                 return;
2028         }
2029
2030         if (first) {
2031                 dst->min_val = src->min_val;
2032                 dst->max_val = src->max_val;
2033                 dst->samples = src->samples;
2034                 dst->mean.u.f = src->mean.u.f;
2035                 dst->S.u.f = src->S.u.f;
2036         } else {
2037                 dst->min_val += src->min_val;
2038                 dst->max_val += src->max_val;
2039                 dst->samples += src->samples;
2040                 dst->mean.u.f += src->mean.u.f;
2041                 dst->S.u.f += src->S.u.f;
2042         }
2043 }
2044
2045 void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
2046 {
2047         int i;
2048
2049         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2050                 if (dst->max_run[i] < src->max_run[i])
2051                         dst->max_run[i] = src->max_run[i];
2052                 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
2053                         dst->min_run[i] = src->min_run[i];
2054                 if (dst->max_bw[i] < src->max_bw[i])
2055                         dst->max_bw[i] = src->max_bw[i];
2056                 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
2057                         dst->min_bw[i] = src->min_bw[i];
2058
2059                 dst->iobytes[i] += src->iobytes[i];
2060                 dst->agg[i] += src->agg[i];
2061         }
2062
2063         if (!dst->kb_base)
2064                 dst->kb_base = src->kb_base;
2065         if (!dst->unit_base)
2066                 dst->unit_base = src->unit_base;
2067         if (!dst->sig_figs)
2068                 dst->sig_figs = src->sig_figs;
2069 }
2070
2071 /*
2072  * Free the clat_prio_stat arrays allocated by alloc_clat_prio_stat_ddir().
2073  */
2074 void free_clat_prio_stats(struct thread_stat *ts)
2075 {
2076         enum fio_ddir ddir;
2077
2078         if (!ts)
2079                 return;
2080
2081         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2082                 sfree(ts->clat_prio[ddir]);
2083                 ts->clat_prio[ddir] = NULL;
2084                 ts->nr_clat_prio[ddir] = 0;
2085         }
2086 }
2087
2088 /*
2089  * Allocate a clat_prio_stat array. The array has to be allocated/freed using
2090  * smalloc/sfree, so that it is accessible by the process/thread summing the
2091  * thread_stats.
2092  */
2093 int alloc_clat_prio_stat_ddir(struct thread_stat *ts, enum fio_ddir ddir,
2094                               int nr_prios)
2095 {
2096         struct clat_prio_stat *clat_prio;
2097         int i;
2098
2099         clat_prio = scalloc(nr_prios, sizeof(*ts->clat_prio[ddir]));
2100         if (!clat_prio) {
2101                 log_err("fio: failed to allocate ts clat data\n");
2102                 return 1;
2103         }
2104
2105         for (i = 0; i < nr_prios; i++)
2106                 clat_prio[i].clat_stat.min_val = ULONG_MAX;
2107
2108         ts->clat_prio[ddir] = clat_prio;
2109         ts->nr_clat_prio[ddir] = nr_prios;
2110
2111         return 0;
2112 }
2113
2114 static int grow_clat_prio_stat(struct thread_stat *dst, enum fio_ddir ddir)
2115 {
2116         int curr_len = dst->nr_clat_prio[ddir];
2117         void *new_arr;
2118
2119         new_arr = scalloc(curr_len + 1, sizeof(*dst->clat_prio[ddir]));
2120         if (!new_arr) {
2121                 log_err("fio: failed to grow clat prio array\n");
2122                 return 1;
2123         }
2124
2125         memcpy(new_arr, dst->clat_prio[ddir],
2126                curr_len * sizeof(*dst->clat_prio[ddir]));
2127         sfree(dst->clat_prio[ddir]);
2128
2129         dst->clat_prio[ddir] = new_arr;
2130         dst->clat_prio[ddir][curr_len].clat_stat.min_val = ULONG_MAX;
2131         dst->nr_clat_prio[ddir]++;
2132
2133         return 0;
2134 }
2135
2136 static int find_clat_prio_index(struct thread_stat *dst, enum fio_ddir ddir,
2137                                 uint32_t ioprio)
2138 {
2139         int i, nr_prios = dst->nr_clat_prio[ddir];
2140
2141         for (i = 0; i < nr_prios; i++) {
2142                 if (dst->clat_prio[ddir][i].ioprio == ioprio)
2143                         return i;
2144         }
2145
2146         return -1;
2147 }
2148
2149 static int alloc_or_get_clat_prio_index(struct thread_stat *dst,
2150                                         enum fio_ddir ddir, uint32_t ioprio,
2151                                         int *idx)
2152 {
2153         int index = find_clat_prio_index(dst, ddir, ioprio);
2154
2155         if (index == -1) {
2156                 index = dst->nr_clat_prio[ddir];
2157
2158                 if (grow_clat_prio_stat(dst, ddir))
2159                         return 1;
2160
2161                 dst->clat_prio[ddir][index].ioprio = ioprio;
2162         }
2163
2164         *idx = index;
2165
2166         return 0;
2167 }
2168
2169 static int clat_prio_stats_copy(struct thread_stat *dst, struct thread_stat *src,
2170                                 enum fio_ddir dst_ddir, enum fio_ddir src_ddir)
2171 {
2172         size_t sz = sizeof(*src->clat_prio[src_ddir]) *
2173                 src->nr_clat_prio[src_ddir];
2174
2175         dst->clat_prio[dst_ddir] = smalloc(sz);
2176         if (!dst->clat_prio[dst_ddir]) {
2177                 log_err("fio: failed to alloc clat prio array\n");
2178                 return 1;
2179         }
2180
2181         memcpy(dst->clat_prio[dst_ddir], src->clat_prio[src_ddir], sz);
2182         dst->nr_clat_prio[dst_ddir] = src->nr_clat_prio[src_ddir];
2183
2184         return 0;
2185 }
2186
2187 static int clat_prio_stat_add_samples(struct thread_stat *dst,
2188                                       enum fio_ddir dst_ddir, uint32_t ioprio,
2189                                       struct io_stat *io_stat,
2190                                       uint64_t *io_u_plat)
2191 {
2192         int i, dst_index;
2193
2194         if (!io_stat->samples)
2195                 return 0;
2196
2197         if (alloc_or_get_clat_prio_index(dst, dst_ddir, ioprio, &dst_index))
2198                 return 1;
2199
2200         sum_stat(&dst->clat_prio[dst_ddir][dst_index].clat_stat, io_stat,
2201                  false);
2202
2203         for (i = 0; i < FIO_IO_U_PLAT_NR; i++)
2204                 dst->clat_prio[dst_ddir][dst_index].io_u_plat[i] += io_u_plat[i];
2205
2206         return 0;
2207 }
2208
2209 static int sum_clat_prio_stats_src_single_prio(struct thread_stat *dst,
2210                                                struct thread_stat *src,
2211                                                enum fio_ddir dst_ddir,
2212                                                enum fio_ddir src_ddir)
2213 {
2214         struct io_stat *io_stat;
2215         uint64_t *io_u_plat;
2216
2217         /*
2218          * If src ts has no clat_prio_stat array, then all I/Os were submitted
2219          * using src->ioprio. Thus, the global samples in src->clat_stat (or
2220          * src->lat_stat) can be used as the 'per prio' samples for src->ioprio.
2221          */
2222         assert(!src->clat_prio[src_ddir]);
2223         assert(src->nr_clat_prio[src_ddir] == 0);
2224
2225         if (src->lat_percentiles) {
2226                 io_u_plat = src->io_u_plat[FIO_LAT][src_ddir];
2227                 io_stat = &src->lat_stat[src_ddir];
2228         } else {
2229                 io_u_plat = src->io_u_plat[FIO_CLAT][src_ddir];
2230                 io_stat = &src->clat_stat[src_ddir];
2231         }
2232
2233         return clat_prio_stat_add_samples(dst, dst_ddir, src->ioprio, io_stat,
2234                                           io_u_plat);
2235 }
2236
2237 static int sum_clat_prio_stats_src_multi_prio(struct thread_stat *dst,
2238                                               struct thread_stat *src,
2239                                               enum fio_ddir dst_ddir,
2240                                               enum fio_ddir src_ddir)
2241 {
2242         int i;
2243
2244         /*
2245          * If src ts has a clat_prio_stat array, then there are multiple prios
2246          * in use (i.e. src ts had cmdprio_percentage or cmdprio_bssplit set).
2247          * The samples for the default prio will exist in the src->clat_prio
2248          * array, just like the samples for any other prio.
2249          */
2250         assert(src->clat_prio[src_ddir]);
2251         assert(src->nr_clat_prio[src_ddir]);
2252
2253         /* If the dst ts doesn't yet have a clat_prio array, simply memcpy. */
2254         if (!dst->clat_prio[dst_ddir])
2255                 return clat_prio_stats_copy(dst, src, dst_ddir, src_ddir);
2256
2257         /* The dst ts already has a clat_prio_array, add src stats into it. */
2258         for (i = 0; i < src->nr_clat_prio[src_ddir]; i++) {
2259                 struct io_stat *io_stat = &src->clat_prio[src_ddir][i].clat_stat;
2260                 uint64_t *io_u_plat = src->clat_prio[src_ddir][i].io_u_plat;
2261                 uint32_t ioprio = src->clat_prio[src_ddir][i].ioprio;
2262
2263                 if (clat_prio_stat_add_samples(dst, dst_ddir, ioprio, io_stat, io_u_plat))
2264                         return 1;
2265         }
2266
2267         return 0;
2268 }
2269
2270 static int sum_clat_prio_stats(struct thread_stat *dst, struct thread_stat *src,
2271                                enum fio_ddir dst_ddir, enum fio_ddir src_ddir)
2272 {
2273         if (dst->disable_prio_stat)
2274                 return 0;
2275
2276         if (!src->clat_prio[src_ddir])
2277                 return sum_clat_prio_stats_src_single_prio(dst, src, dst_ddir,
2278                                                            src_ddir);
2279
2280         return sum_clat_prio_stats_src_multi_prio(dst, src, dst_ddir, src_ddir);
2281 }
2282
2283 void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src)
2284 {
2285         int k, l, m;
2286
2287         for (l = 0; l < DDIR_RWDIR_CNT; l++) {
2288                 if (dst->unified_rw_rep != UNIFIED_MIXED) {
2289                         sum_stat(&dst->clat_stat[l], &src->clat_stat[l], false);
2290                         sum_stat(&dst->slat_stat[l], &src->slat_stat[l], false);
2291                         sum_stat(&dst->lat_stat[l], &src->lat_stat[l], false);
2292                         sum_stat(&dst->bw_stat[l], &src->bw_stat[l], true);
2293                         sum_stat(&dst->iops_stat[l], &src->iops_stat[l], true);
2294                         sum_clat_prio_stats(dst, src, l, l);
2295
2296                         dst->io_bytes[l] += src->io_bytes[l];
2297
2298                         if (dst->runtime[l] < src->runtime[l])
2299                                 dst->runtime[l] = src->runtime[l];
2300                 } else {
2301                         sum_stat(&dst->clat_stat[0], &src->clat_stat[l], false);
2302                         sum_stat(&dst->slat_stat[0], &src->slat_stat[l], false);
2303                         sum_stat(&dst->lat_stat[0], &src->lat_stat[l], false);
2304                         sum_stat(&dst->bw_stat[0], &src->bw_stat[l], true);
2305                         sum_stat(&dst->iops_stat[0], &src->iops_stat[l], true);
2306                         sum_clat_prio_stats(dst, src, 0, l);
2307
2308                         dst->io_bytes[0] += src->io_bytes[l];
2309
2310                         if (dst->runtime[0] < src->runtime[l])
2311                                 dst->runtime[0] = src->runtime[l];
2312                 }
2313         }
2314
2315         sum_stat(&dst->sync_stat, &src->sync_stat, false);
2316         dst->usr_time += src->usr_time;
2317         dst->sys_time += src->sys_time;
2318         dst->ctx += src->ctx;
2319         dst->majf += src->majf;
2320         dst->minf += src->minf;
2321
2322         for (k = 0; k < FIO_IO_U_MAP_NR; k++) {
2323                 dst->io_u_map[k] += src->io_u_map[k];
2324                 dst->io_u_submit[k] += src->io_u_submit[k];
2325                 dst->io_u_complete[k] += src->io_u_complete[k];
2326         }
2327
2328         for (k = 0; k < FIO_IO_U_LAT_N_NR; k++)
2329                 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
2330         for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
2331                 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
2332         for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
2333                 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
2334
2335         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
2336                 if (dst->unified_rw_rep != UNIFIED_MIXED) {
2337                         dst->total_io_u[k] += src->total_io_u[k];
2338                         dst->short_io_u[k] += src->short_io_u[k];
2339                         dst->drop_io_u[k] += src->drop_io_u[k];
2340                 } else {
2341                         dst->total_io_u[0] += src->total_io_u[k];
2342                         dst->short_io_u[0] += src->short_io_u[k];
2343                         dst->drop_io_u[0] += src->drop_io_u[k];
2344                 }
2345         }
2346
2347         dst->total_io_u[DDIR_SYNC] += src->total_io_u[DDIR_SYNC];
2348
2349         for (k = 0; k < FIO_LAT_CNT; k++)
2350                 for (l = 0; l < DDIR_RWDIR_CNT; l++)
2351                         for (m = 0; m < FIO_IO_U_PLAT_NR; m++)
2352                                 if (dst->unified_rw_rep != UNIFIED_MIXED)
2353                                         dst->io_u_plat[k][l][m] += src->io_u_plat[k][l][m];
2354                                 else
2355                                         dst->io_u_plat[k][0][m] += src->io_u_plat[k][l][m];
2356
2357         for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
2358                 dst->io_u_sync_plat[k] += src->io_u_sync_plat[k];
2359
2360         dst->total_run_time += src->total_run_time;
2361         dst->total_submit += src->total_submit;
2362         dst->total_complete += src->total_complete;
2363         dst->nr_zone_resets += src->nr_zone_resets;
2364         dst->cachehit += src->cachehit;
2365         dst->cachemiss += src->cachemiss;
2366 }
2367
2368 void init_group_run_stat(struct group_run_stats *gs)
2369 {
2370         int i;
2371         memset(gs, 0, sizeof(*gs));
2372
2373         for (i = 0; i < DDIR_RWDIR_CNT; i++)
2374                 gs->min_bw[i] = gs->min_run[i] = ~0UL;
2375 }
2376
2377 void init_thread_stat_min_vals(struct thread_stat *ts)
2378 {
2379         int i;
2380
2381         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2382                 ts->clat_stat[i].min_val = ULONG_MAX;
2383                 ts->slat_stat[i].min_val = ULONG_MAX;
2384                 ts->lat_stat[i].min_val = ULONG_MAX;
2385                 ts->bw_stat[i].min_val = ULONG_MAX;
2386                 ts->iops_stat[i].min_val = ULONG_MAX;
2387         }
2388         ts->sync_stat.min_val = ULONG_MAX;
2389 }
2390
2391 void init_thread_stat(struct thread_stat *ts)
2392 {
2393         memset(ts, 0, sizeof(*ts));
2394
2395         init_thread_stat_min_vals(ts);
2396         ts->groupid = -1;
2397 }
2398
2399 static void init_per_prio_stats(struct thread_stat *threadstats, int nr_ts)
2400 {
2401         struct thread_stat *ts;
2402         int i, j, last_ts, idx;
2403         enum fio_ddir ddir;
2404
2405         j = 0;
2406         last_ts = -1;
2407         idx = 0;
2408
2409         /*
2410          * Loop through all tds, if a td requires per prio stats, temporarily
2411          * store a 1 in ts->disable_prio_stat, and then do an additional
2412          * loop at the end where we invert the ts->disable_prio_stat values.
2413          */
2414         for_each_td(td) {
2415                 if (!td->o.stats)
2416                         continue;
2417                 if (idx &&
2418                     (!td->o.group_reporting ||
2419                      (td->o.group_reporting && last_ts != td->groupid))) {
2420                         idx = 0;
2421                         j++;
2422                 }
2423
2424                 last_ts = td->groupid;
2425                 ts = &threadstats[j];
2426
2427                 /* idx == 0 means first td in group, or td is not in a group. */
2428                 if (idx == 0)
2429                         ts->ioprio = td->ioprio;
2430                 else if (td->ioprio != ts->ioprio)
2431                         ts->disable_prio_stat = 1;
2432
2433                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2434                         if (td->ts.clat_prio[ddir]) {
2435                                 ts->disable_prio_stat = 1;
2436                                 break;
2437                         }
2438                 }
2439
2440                 idx++;
2441         } end_for_each();
2442
2443         /* Loop through all dst threadstats and fixup the values. */
2444         for (i = 0; i < nr_ts; i++) {
2445                 ts = &threadstats[i];
2446                 ts->disable_prio_stat = !ts->disable_prio_stat;
2447         }
2448 }
2449
2450 void __show_run_stats(void)
2451 {
2452         struct group_run_stats *runstats, *rs;
2453         struct thread_stat *threadstats, *ts;
2454         int i, j, k, nr_ts, last_ts, idx;
2455         bool kb_base_warned = false;
2456         bool unit_base_warned = false;
2457         struct json_object *root = NULL;
2458         struct json_array *array = NULL;
2459         struct buf_output output[FIO_OUTPUT_NR];
2460         struct flist_head **opt_lists;
2461
2462         runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
2463
2464         for (i = 0; i < groupid + 1; i++)
2465                 init_group_run_stat(&runstats[i]);
2466
2467         /*
2468          * find out how many threads stats we need. if group reporting isn't
2469          * enabled, it's one-per-td.
2470          */
2471         nr_ts = 0;
2472         last_ts = -1;
2473         for_each_td(td) {
2474                 if (!td->o.group_reporting) {
2475                         nr_ts++;
2476                         continue;
2477                 }
2478                 if (last_ts == td->groupid)
2479                         continue;
2480                 if (!td->o.stats)
2481                         continue;
2482
2483                 last_ts = td->groupid;
2484                 nr_ts++;
2485         } end_for_each();
2486
2487         threadstats = malloc(nr_ts * sizeof(struct thread_stat));
2488         opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
2489
2490         for (i = 0; i < nr_ts; i++) {
2491                 init_thread_stat(&threadstats[i]);
2492                 opt_lists[i] = NULL;
2493         }
2494
2495         init_per_prio_stats(threadstats, nr_ts);
2496
2497         j = 0;
2498         last_ts = -1;
2499         idx = 0;
2500         for_each_td(td) {
2501                 if (!td->o.stats)
2502                         continue;
2503                 if (idx && (!td->o.group_reporting ||
2504                     (td->o.group_reporting && last_ts != td->groupid))) {
2505                         idx = 0;
2506                         j++;
2507                 }
2508
2509                 last_ts = td->groupid;
2510
2511                 ts = &threadstats[j];
2512
2513                 ts->clat_percentiles = td->o.clat_percentiles;
2514                 ts->lat_percentiles = td->o.lat_percentiles;
2515                 ts->slat_percentiles = td->o.slat_percentiles;
2516                 ts->percentile_precision = td->o.percentile_precision;
2517                 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
2518                 opt_lists[j] = &td->opt_list;
2519
2520                 idx++;
2521
2522                 if (ts->groupid == -1) {
2523                         /*
2524                          * These are per-group shared already
2525                          */
2526                         snprintf(ts->name, sizeof(ts->name), "%s", td->o.name);
2527                         if (td->o.description)
2528                                 snprintf(ts->description,
2529                                          sizeof(ts->description), "%s",
2530                                          td->o.description);
2531                         else
2532                                 memset(ts->description, 0, FIO_JOBDESC_SIZE);
2533
2534                         /*
2535                          * If multiple entries in this group, this is
2536                          * the first member.
2537                          */
2538                         ts->thread_number = td->thread_number;
2539                         ts->groupid = td->groupid;
2540                         ts->job_start = td->job_start;
2541
2542                         /*
2543                          * first pid in group, not very useful...
2544                          */
2545                         ts->pid = td->pid;
2546
2547                         ts->kb_base = td->o.kb_base;
2548                         ts->unit_base = td->o.unit_base;
2549                         ts->sig_figs = td->o.sig_figs;
2550                         ts->unified_rw_rep = td->o.unified_rw_rep;
2551                 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
2552                         log_info("fio: kb_base differs for jobs in group, using"
2553                                  " %u as the base\n", ts->kb_base);
2554                         kb_base_warned = true;
2555                 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
2556                         log_info("fio: unit_base differs for jobs in group, using"
2557                                  " %u as the base\n", ts->unit_base);
2558                         unit_base_warned = true;
2559                 }
2560
2561                 ts->continue_on_error = td->o.continue_on_error;
2562                 ts->total_err_count += td->total_err_count;
2563                 ts->first_error = td->first_error;
2564                 if (!ts->error) {
2565                         if (!td->error && td->o.continue_on_error &&
2566                             td->first_error) {
2567                                 ts->error = td->first_error;
2568                                 snprintf(ts->verror, sizeof(ts->verror), "%s",
2569                                          td->verror);
2570                         } else  if (td->error) {
2571                                 ts->error = td->error;
2572                                 snprintf(ts->verror, sizeof(ts->verror), "%s",
2573                                          td->verror);
2574                         }
2575                 }
2576
2577                 ts->latency_depth = td->latency_qd;
2578                 ts->latency_target = td->o.latency_target;
2579                 ts->latency_percentile = td->o.latency_percentile;
2580                 ts->latency_window = td->o.latency_window;
2581
2582                 ts->nr_block_infos = td->ts.nr_block_infos;
2583                 for (k = 0; k < ts->nr_block_infos; k++)
2584                         ts->block_infos[k] = td->ts.block_infos[k];
2585
2586                 sum_thread_stats(ts, &td->ts);
2587
2588                 ts->members++;
2589
2590                 if (td->o.ss_dur) {
2591                         ts->ss_state = td->ss.state;
2592                         ts->ss_dur = td->ss.dur;
2593                         ts->ss_head = td->ss.head;
2594                         ts->ss_bw_data = td->ss.bw_data;
2595                         ts->ss_iops_data = td->ss.iops_data;
2596                         ts->ss_limit.u.f = td->ss.limit;
2597                         ts->ss_slope.u.f = td->ss.slope;
2598                         ts->ss_deviation.u.f = td->ss.deviation;
2599                         ts->ss_criterion.u.f = td->ss.criterion;
2600                 }
2601                 else
2602                         ts->ss_dur = ts->ss_state = 0;
2603         } end_for_each();
2604
2605         for (i = 0; i < nr_ts; i++) {
2606                 unsigned long long bw;
2607
2608                 ts = &threadstats[i];
2609                 if (ts->groupid == -1)
2610                         continue;
2611                 rs = &runstats[ts->groupid];
2612                 rs->kb_base = ts->kb_base;
2613                 rs->unit_base = ts->unit_base;
2614                 rs->sig_figs = ts->sig_figs;
2615                 rs->unified_rw_rep |= ts->unified_rw_rep;
2616
2617                 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
2618                         if (!ts->runtime[j])
2619                                 continue;
2620                         if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
2621                                 rs->min_run[j] = ts->runtime[j];
2622                         if (ts->runtime[j] > rs->max_run[j])
2623                                 rs->max_run[j] = ts->runtime[j];
2624
2625                         bw = 0;
2626                         if (ts->runtime[j])
2627                                 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
2628                         if (bw < rs->min_bw[j])
2629                                 rs->min_bw[j] = bw;
2630                         if (bw > rs->max_bw[j])
2631                                 rs->max_bw[j] = bw;
2632
2633                         rs->iobytes[j] += ts->io_bytes[j];
2634                 }
2635         }
2636
2637         for (i = 0; i < groupid + 1; i++) {
2638                 enum fio_ddir ddir;
2639
2640                 rs = &runstats[i];
2641
2642                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2643                         if (rs->max_run[ddir])
2644                                 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
2645                                                 rs->max_run[ddir];
2646                 }
2647         }
2648
2649         for (i = 0; i < FIO_OUTPUT_NR; i++)
2650                 buf_output_init(&output[i]);
2651
2652         /*
2653          * don't overwrite last signal output
2654          */
2655         if (output_format & FIO_OUTPUT_NORMAL)
2656                 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
2657         if (output_format & FIO_OUTPUT_JSON) {
2658                 struct thread_data *global;
2659                 char time_buf[32];
2660                 struct timeval now;
2661                 unsigned long long ms_since_epoch;
2662                 time_t tv_sec;
2663
2664                 gettimeofday(&now, NULL);
2665                 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
2666                                  (unsigned long long)(now.tv_usec) / 1000;
2667
2668                 tv_sec = now.tv_sec;
2669                 os_ctime_r(&tv_sec, time_buf, sizeof(time_buf));
2670                 if (time_buf[strlen(time_buf) - 1] == '\n')
2671                         time_buf[strlen(time_buf) - 1] = '\0';
2672
2673                 root = json_create_object();
2674                 json_object_add_value_string(root, "fio version", fio_version_string);
2675                 json_object_add_value_int(root, "timestamp", now.tv_sec);
2676                 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
2677                 json_object_add_value_string(root, "time", time_buf);
2678                 global = get_global_options();
2679                 json_add_job_opts(root, "global options", &global->opt_list);
2680                 array = json_create_array();
2681                 json_object_add_value_array(root, "jobs", array);
2682         }
2683
2684         if (is_backend)
2685                 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
2686
2687         for (i = 0; i < nr_ts; i++) {
2688                 ts = &threadstats[i];
2689                 rs = &runstats[ts->groupid];
2690
2691                 if (is_backend) {
2692                         fio_server_send_job_options(opt_lists[i], i);
2693                         fio_server_send_ts(ts, rs);
2694                 } else {
2695                         if (output_format & FIO_OUTPUT_TERSE)
2696                                 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
2697                         if (output_format & FIO_OUTPUT_JSON) {
2698                                 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
2699                                 json_array_add_value_object(array, tmp);
2700                         }
2701                         if (output_format & FIO_OUTPUT_NORMAL)
2702                                 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
2703                 }
2704         }
2705         if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
2706                 /* disk util stats, if any */
2707                 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
2708
2709                 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
2710
2711                 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
2712                 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
2713                 json_free_object(root);
2714         }
2715
2716         for (i = 0; i < groupid + 1; i++) {
2717                 rs = &runstats[i];
2718
2719                 rs->groupid = i;
2720                 if (is_backend)
2721                         fio_server_send_gs(rs);
2722                 else if (output_format & FIO_OUTPUT_NORMAL)
2723                         show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
2724         }
2725
2726         if (is_backend)
2727                 fio_server_send_du();
2728         else if (output_format & FIO_OUTPUT_NORMAL) {
2729                 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
2730                 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
2731         }
2732
2733         for (i = 0; i < FIO_OUTPUT_NR; i++) {
2734                 struct buf_output *out = &output[i];
2735
2736                 log_info_buf(out->buf, out->buflen);
2737                 buf_output_free(out);
2738         }
2739
2740         fio_idle_prof_cleanup();
2741
2742         log_info_flush();
2743         free(runstats);
2744
2745         /* free arrays allocated by sum_thread_stats(), if any */
2746         for (i = 0; i < nr_ts; i++) {
2747                 ts = &threadstats[i];
2748                 free_clat_prio_stats(ts);
2749         }
2750         free(threadstats);
2751         free(opt_lists);
2752 }
2753
2754 int __show_running_run_stats(void)
2755 {
2756         unsigned long long *rt;
2757         struct timespec ts;
2758
2759         fio_sem_down(stat_sem);
2760
2761         rt = malloc(thread_number * sizeof(unsigned long long));
2762         fio_gettime(&ts, NULL);
2763
2764         for_each_td(td) {
2765                 if (td->runstate >= TD_EXITED)
2766                         continue;
2767
2768                 td->update_rusage = 1;
2769                 for_each_rw_ddir(ddir) {
2770                         td->ts.io_bytes[ddir] = td->io_bytes[ddir];
2771                 }
2772                 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
2773
2774                 rt[__td_index] = mtime_since(&td->start, &ts);
2775                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2776                         td->ts.runtime[DDIR_READ] += rt[__td_index];
2777                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2778                         td->ts.runtime[DDIR_WRITE] += rt[__td_index];
2779                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2780                         td->ts.runtime[DDIR_TRIM] += rt[__td_index];
2781         } end_for_each();
2782
2783         for_each_td(td) {
2784                 if (td->runstate >= TD_EXITED)
2785                         continue;
2786                 if (td->rusage_sem) {
2787                         td->update_rusage = 1;
2788                         fio_sem_down(td->rusage_sem);
2789                 }
2790                 td->update_rusage = 0;
2791         } end_for_each();
2792
2793         __show_run_stats();
2794
2795         for_each_td(td) {
2796                 if (td->runstate >= TD_EXITED)
2797                         continue;
2798
2799                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2800                         td->ts.runtime[DDIR_READ] -= rt[__td_index];
2801                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2802                         td->ts.runtime[DDIR_WRITE] -= rt[__td_index];
2803                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2804                         td->ts.runtime[DDIR_TRIM] -= rt[__td_index];
2805         } end_for_each();
2806
2807         free(rt);
2808         fio_sem_up(stat_sem);
2809
2810         return 0;
2811 }
2812
2813 static bool status_file_disabled;
2814
2815 #define FIO_STATUS_FILE         "fio-dump-status"
2816
2817 static int check_status_file(void)
2818 {
2819         struct stat sb;
2820         const char *temp_dir;
2821         char fio_status_file_path[PATH_MAX];
2822
2823         if (status_file_disabled)
2824                 return 0;
2825
2826         temp_dir = getenv("TMPDIR");
2827         if (temp_dir == NULL) {
2828                 temp_dir = getenv("TEMP");
2829                 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
2830                         temp_dir = NULL;
2831         }
2832         if (temp_dir == NULL)
2833                 temp_dir = "/tmp";
2834 #ifdef __COVERITY__
2835         __coverity_tainted_data_sanitize__(temp_dir);
2836 #endif
2837
2838         snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
2839
2840         if (stat(fio_status_file_path, &sb))
2841                 return 0;
2842
2843         if (unlink(fio_status_file_path) < 0) {
2844                 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
2845                                                         strerror(errno));
2846                 log_err("fio: disabling status file updates\n");
2847                 status_file_disabled = true;
2848         }
2849
2850         return 1;
2851 }
2852
2853 void check_for_running_stats(void)
2854 {
2855         if (check_status_file()) {
2856                 show_running_run_stats();
2857                 return;
2858         }
2859 }
2860
2861 static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2862 {
2863         double val = data;
2864         double delta;
2865
2866         if (data > is->max_val)
2867                 is->max_val = data;
2868         if (data < is->min_val)
2869                 is->min_val = data;
2870
2871         delta = val - is->mean.u.f;
2872         if (delta) {
2873                 is->mean.u.f += delta / (is->samples + 1.0);
2874                 is->S.u.f += delta * (val - is->mean.u.f);
2875         }
2876
2877         is->samples++;
2878 }
2879
2880 static inline void add_stat_prio_sample(struct clat_prio_stat *clat_prio,
2881                                         unsigned short clat_prio_index,
2882                                         unsigned long long nsec)
2883 {
2884         if (clat_prio)
2885                 add_stat_sample(&clat_prio[clat_prio_index].clat_stat, nsec);
2886 }
2887
2888 /*
2889  * Return a struct io_logs, which is added to the tail of the log
2890  * list for 'iolog'.
2891  */
2892 static struct io_logs *get_new_log(struct io_log *iolog)
2893 {
2894         size_t new_samples;
2895         struct io_logs *cur_log;
2896
2897         /*
2898          * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2899          * forever
2900          */
2901         if (!iolog->cur_log_max) {
2902                 if (iolog->td)
2903                         new_samples = iolog->td->o.log_entries;
2904                 else
2905                         new_samples = DEF_LOG_ENTRIES;
2906         } else {
2907                 new_samples = iolog->cur_log_max * 2;
2908                 if (new_samples > MAX_LOG_ENTRIES)
2909                         new_samples = MAX_LOG_ENTRIES;
2910         }
2911
2912         cur_log = smalloc(sizeof(*cur_log));
2913         if (cur_log) {
2914                 INIT_FLIST_HEAD(&cur_log->list);
2915                 cur_log->log = calloc(new_samples, log_entry_sz(iolog));
2916                 if (cur_log->log) {
2917                         cur_log->nr_samples = 0;
2918                         cur_log->max_samples = new_samples;
2919                         flist_add_tail(&cur_log->list, &iolog->io_logs);
2920                         iolog->cur_log_max = new_samples;
2921                         return cur_log;
2922                 }
2923                 sfree(cur_log);
2924         }
2925
2926         return NULL;
2927 }
2928
2929 /*
2930  * Add and return a new log chunk, or return current log if big enough
2931  */
2932 static struct io_logs *regrow_log(struct io_log *iolog)
2933 {
2934         struct io_logs *cur_log;
2935         int i;
2936
2937         if (!iolog || iolog->disabled)
2938                 goto disable;
2939
2940         cur_log = iolog_cur_log(iolog);
2941         if (!cur_log) {
2942                 cur_log = get_new_log(iolog);
2943                 if (!cur_log)
2944                         return NULL;
2945         }
2946
2947         if (cur_log->nr_samples < cur_log->max_samples)
2948                 return cur_log;
2949
2950         /*
2951          * No room for a new sample. If we're compressing on the fly, flush
2952          * out the current chunk
2953          */
2954         if (iolog->log_gz) {
2955                 if (iolog_cur_flush(iolog, cur_log)) {
2956                         log_err("fio: failed flushing iolog! Will stop logging.\n");
2957                         return NULL;
2958                 }
2959         }
2960
2961         /*
2962          * Get a new log array, and add to our list
2963          */
2964         cur_log = get_new_log(iolog);
2965         if (!cur_log) {
2966                 log_err("fio: failed extending iolog! Will stop logging.\n");
2967                 return NULL;
2968         }
2969
2970         if (!iolog->pending || !iolog->pending->nr_samples)
2971                 return cur_log;
2972
2973         /*
2974          * Flush pending items to new log
2975          */
2976         for (i = 0; i < iolog->pending->nr_samples; i++) {
2977                 struct io_sample *src, *dst;
2978
2979                 src = get_sample(iolog, iolog->pending, i);
2980                 dst = get_sample(iolog, cur_log, i);
2981                 memcpy(dst, src, log_entry_sz(iolog));
2982         }
2983         cur_log->nr_samples = iolog->pending->nr_samples;
2984
2985         iolog->pending->nr_samples = 0;
2986         return cur_log;
2987 disable:
2988         if (iolog)
2989                 iolog->disabled = true;
2990         return NULL;
2991 }
2992
2993 void regrow_logs(struct thread_data *td)
2994 {
2995         regrow_log(td->slat_log);
2996         regrow_log(td->clat_log);
2997         regrow_log(td->clat_hist_log);
2998         regrow_log(td->lat_log);
2999         regrow_log(td->bw_log);
3000         regrow_log(td->iops_log);
3001         td->flags &= ~TD_F_REGROW_LOGS;
3002 }
3003
3004 void regrow_agg_logs(void)
3005 {
3006         enum fio_ddir ddir;
3007
3008         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
3009                 regrow_log(agg_io_log[ddir]);
3010 }
3011
3012 static struct io_logs *get_cur_log(struct io_log *iolog)
3013 {
3014         struct io_logs *cur_log;
3015
3016         cur_log = iolog_cur_log(iolog);
3017         if (!cur_log) {
3018                 cur_log = get_new_log(iolog);
3019                 if (!cur_log)
3020                         return NULL;
3021         }
3022
3023         if (cur_log->nr_samples < cur_log->max_samples)
3024                 return cur_log;
3025
3026         /*
3027          * Out of space. If we're in IO offload mode, or we're not doing
3028          * per unit logging (hence logging happens outside of the IO thread
3029          * as well), add a new log chunk inline. If we're doing inline
3030          * submissions, flag 'td' as needing a log regrow and we'll take
3031          * care of it on the submission side.
3032          */
3033         if ((iolog->td && iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD) ||
3034             !per_unit_log(iolog))
3035                 return regrow_log(iolog);
3036
3037         if (iolog->td)
3038                 iolog->td->flags |= TD_F_REGROW_LOGS;
3039         if (iolog->pending)
3040                 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
3041         return iolog->pending;
3042 }
3043
3044 static void __add_log_sample(struct io_log *iolog, unsigned long t,
3045                              struct log_sample *sample)
3046 {
3047         struct io_logs *cur_log;
3048
3049         if (iolog->disabled)
3050                 return;
3051         if (flist_empty(&iolog->io_logs))
3052                 iolog->avg_last[sample->ddir] = t;
3053
3054         cur_log = get_cur_log(iolog);
3055         if (cur_log) {
3056                 struct io_sample *s;
3057
3058                 s = get_sample(iolog, cur_log, cur_log->nr_samples);
3059
3060                 s->data = sample->data;
3061                 s->time = t;
3062                 if (iolog->td && iolog->td->o.log_alternate_epoch)
3063                         s->time += iolog->td->alternate_epoch;
3064                 io_sample_set_ddir(iolog, s, sample->ddir);
3065                 s->bs = sample->bs;
3066                 s->priority = sample->priority;
3067
3068                 if (iolog->log_offset)
3069                         s->aux[IOS_AUX_OFFSET_INDEX] = sample->offset;
3070
3071                 if (iolog->log_issue_time)
3072                         s->aux[IOS_AUX_ISSUE_TIME_INDEX] = sample->issue_time;
3073
3074                 cur_log->nr_samples++;
3075                 return;
3076         }
3077
3078         iolog->disabled = true;
3079 }
3080
3081 static inline void reset_io_stat(struct io_stat *ios)
3082 {
3083         ios->min_val = -1ULL;
3084         ios->max_val = ios->samples = 0;
3085         ios->mean.u.f = ios->S.u.f = 0;
3086 }
3087
3088 static inline void reset_io_u_plat(uint64_t *io_u_plat)
3089 {
3090         int i;
3091
3092         for (i = 0; i < FIO_IO_U_PLAT_NR; i++)
3093                 io_u_plat[i] = 0;
3094 }
3095
3096 static inline void reset_clat_prio_stats(struct thread_stat *ts)
3097 {
3098         enum fio_ddir ddir;
3099         int i;
3100
3101         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
3102                 if (!ts->clat_prio[ddir])
3103                         continue;
3104
3105                 for (i = 0; i < ts->nr_clat_prio[ddir]; i++) {
3106                         reset_io_stat(&ts->clat_prio[ddir][i].clat_stat);
3107                         reset_io_u_plat(ts->clat_prio[ddir][i].io_u_plat);
3108                 }
3109         }
3110 }
3111
3112 void reset_io_stats(struct thread_data *td)
3113 {
3114         struct thread_stat *ts = &td->ts;
3115         int i, j;
3116
3117         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
3118                 reset_io_stat(&ts->clat_stat[i]);
3119                 reset_io_stat(&ts->slat_stat[i]);
3120                 reset_io_stat(&ts->lat_stat[i]);
3121                 reset_io_stat(&ts->bw_stat[i]);
3122                 reset_io_stat(&ts->iops_stat[i]);
3123
3124                 ts->io_bytes[i] = 0;
3125                 ts->runtime[i] = 0;
3126                 ts->total_io_u[i] = 0;
3127                 ts->short_io_u[i] = 0;
3128                 ts->drop_io_u[i] = 0;
3129         }
3130
3131         for (i = 0; i < FIO_LAT_CNT; i++)
3132                 for (j = 0; j < DDIR_RWDIR_CNT; j++)
3133                         reset_io_u_plat(ts->io_u_plat[i][j]);
3134
3135         reset_clat_prio_stats(ts);
3136
3137         ts->total_io_u[DDIR_SYNC] = 0;
3138         reset_io_u_plat(ts->io_u_sync_plat);
3139
3140         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
3141                 ts->io_u_map[i] = 0;
3142                 ts->io_u_submit[i] = 0;
3143                 ts->io_u_complete[i] = 0;
3144         }
3145
3146         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
3147                 ts->io_u_lat_n[i] = 0;
3148         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
3149                 ts->io_u_lat_u[i] = 0;
3150         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
3151                 ts->io_u_lat_m[i] = 0;
3152
3153         ts->total_submit = 0;
3154         ts->total_complete = 0;
3155         ts->nr_zone_resets = 0;
3156         ts->cachehit = ts->cachemiss = 0;
3157 }
3158
3159 static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
3160                               unsigned long elapsed, int log_max)
3161 {
3162         /*
3163          * Note an entry in the log. Use the mean from the logged samples,
3164          * making sure to properly round up. Only write a log entry if we
3165          * had actual samples done.
3166          */
3167         if (iolog->avg_window[ddir].samples) {
3168                 struct log_sample sample = { {{ 0, 0 }}, ddir, 0, 0, 0, 0 };
3169                 union io_sample_data *d = &sample.data;
3170
3171                 if (log_max == IO_LOG_SAMPLE_AVG) {
3172                         d->val.val0 = iolog->avg_window[ddir].mean.u.f + 0.50;
3173                         d->val.val1 = 0;
3174                 } else if (log_max == IO_LOG_SAMPLE_MAX) {
3175                         d->val.val0 = iolog->avg_window[ddir].max_val;
3176                         d->val.val1 = 0;
3177                 } else {
3178                         d->val.val0 = iolog->avg_window[ddir].mean.u.f + 0.50;
3179                         d->val.val1 = iolog->avg_window[ddir].max_val;
3180                 }
3181
3182                 __add_log_sample(iolog, elapsed, &sample);
3183         }
3184
3185         reset_io_stat(&iolog->avg_window[ddir]);
3186 }
3187
3188 static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
3189                              int log_max)
3190 {
3191         enum fio_ddir ddir;
3192
3193         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
3194                 __add_stat_to_log(iolog, ddir, elapsed, log_max);
3195 }
3196
3197 static unsigned long add_log_sample(struct thread_data *td,
3198                                     struct io_log *iolog,
3199                                     struct log_sample *sample)
3200 {
3201         unsigned long elapsed, this_window;
3202         enum fio_ddir ddir = sample->ddir;
3203
3204         if (!ddir_rw(ddir))
3205                 return 0;
3206
3207         elapsed = mtime_since_now(&td->epoch);
3208
3209         /*
3210          * If no time averaging, just add the log sample.
3211          */
3212         if (!iolog->avg_msec) {
3213                 __add_log_sample(iolog, elapsed, sample);
3214                 return 0;
3215         }
3216
3217         /*
3218          * Add the sample. If the time period has passed, then
3219          * add that entry to the log and clear.
3220          */
3221         add_stat_sample(&iolog->avg_window[ddir], sample->data.val.val0);
3222
3223         /*
3224          * If period hasn't passed, adding the above sample is all we
3225          * need to do.
3226          */
3227         this_window = elapsed - iolog->avg_last[ddir];
3228         if (elapsed < iolog->avg_last[ddir])
3229                 return iolog->avg_last[ddir] - elapsed;
3230         else if (this_window < iolog->avg_msec) {
3231                 unsigned long diff = iolog->avg_msec - this_window;
3232
3233                 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
3234                         return diff;
3235         }
3236
3237         __add_stat_to_log(iolog, ddir, elapsed, td->o.log_max);
3238
3239         iolog->avg_last[ddir] = elapsed - (elapsed % iolog->avg_msec);
3240
3241         return iolog->avg_msec;
3242 }
3243
3244 void finalize_logs(struct thread_data *td, bool unit_logs)
3245 {
3246         unsigned long elapsed;
3247
3248         elapsed = mtime_since_now(&td->epoch);
3249
3250         if (td->clat_log && unit_logs)
3251                 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max);
3252         if (td->slat_log && unit_logs)
3253                 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max);
3254         if (td->lat_log && unit_logs)
3255                 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max);
3256         if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
3257                 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max);
3258         if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
3259                 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max);
3260 }
3261
3262 void add_agg_sample(union io_sample_data data, enum fio_ddir ddir,
3263                     unsigned long long bs)
3264 {
3265         struct io_log *iolog;
3266         struct log_sample sample = { data, ddir, bs, 0, 0, 0 };
3267
3268         if (!ddir_rw(ddir))
3269                 return;
3270
3271         iolog = agg_io_log[ddir];
3272         __add_log_sample(iolog, mtime_since_genesis(), &sample);
3273 }
3274
3275 void add_sync_clat_sample(struct thread_stat *ts, unsigned long long nsec)
3276 {
3277         unsigned int idx = plat_val_to_idx(nsec);
3278         assert(idx < FIO_IO_U_PLAT_NR);
3279
3280         ts->io_u_sync_plat[idx]++;
3281         add_stat_sample(&ts->sync_stat, nsec);
3282 }
3283
3284 static inline void add_lat_percentile_sample(struct thread_stat *ts,
3285                                              unsigned long long nsec,
3286                                              enum fio_ddir ddir,
3287                                              enum fio_lat lat)
3288 {
3289         unsigned int idx = plat_val_to_idx(nsec);
3290         assert(idx < FIO_IO_U_PLAT_NR);
3291
3292         ts->io_u_plat[lat][ddir][idx]++;
3293 }
3294
3295 static inline void
3296 add_lat_percentile_prio_sample(struct thread_stat *ts, unsigned long long nsec,
3297                                enum fio_ddir ddir,
3298                                unsigned short clat_prio_index)
3299 {
3300         unsigned int idx = plat_val_to_idx(nsec);
3301
3302         if (ts->clat_prio[ddir])
3303                 ts->clat_prio[ddir][clat_prio_index].io_u_plat[idx]++;
3304 }
3305
3306 void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
3307                      unsigned long long nsec, unsigned long long bs,
3308                      struct io_u *io_u)
3309 {
3310         const bool needs_lock = td_async_processing(td);
3311         unsigned long elapsed, this_window;
3312         struct thread_stat *ts = &td->ts;
3313         struct io_log *iolog = td->clat_hist_log;
3314         uint64_t offset = 0;
3315         unsigned int ioprio = 0;
3316         unsigned short clat_prio_index = 0;
3317
3318         if (needs_lock)
3319                 __td_io_u_lock(td);
3320
3321         if (io_u) {
3322                 offset = io_u->offset;
3323                 ioprio = io_u->ioprio;
3324                 clat_prio_index = io_u->clat_prio_index;
3325         }
3326
3327         add_stat_sample(&ts->clat_stat[ddir], nsec);
3328
3329         /*
3330          * When lat_percentiles=1 (default 0), the reported per priority
3331          * percentiles and stats are used for describing total latency values,
3332          * even though the variable names themselves start with clat_.
3333          *
3334          * Because of the above definition, add a prio stat sample only when
3335          * lat_percentiles=0. add_lat_sample() will add the prio stat sample
3336          * when lat_percentiles=1.
3337          */
3338         if (!ts->lat_percentiles)
3339                 add_stat_prio_sample(ts->clat_prio[ddir], clat_prio_index,
3340                                      nsec);
3341
3342         if (td->clat_log) {
3343                 struct log_sample sample = { sample_val(nsec), ddir, bs,
3344                         offset, ioprio, 0 };
3345
3346                 if (io_u)
3347                         sample.issue_time =
3348                                 ntime_since(&td->epoch, &io_u->issue_time);
3349
3350                 add_log_sample(td, td->clat_log, &sample);
3351         }
3352
3353         if (ts->clat_percentiles) {
3354                 /*
3355                  * Because of the above definition, add a prio lat percentile
3356                  * sample only when lat_percentiles=0. add_lat_sample() will add
3357                  * the prio lat percentile sample when lat_percentiles=1.
3358                  */
3359                 add_lat_percentile_sample(ts, nsec, ddir, FIO_CLAT);
3360                 if (!ts->lat_percentiles)
3361                         add_lat_percentile_prio_sample(ts, nsec, ddir,
3362                                                        clat_prio_index);
3363         }
3364
3365         if (iolog && iolog->hist_msec) {
3366                 struct io_hist *hw = &iolog->hist_window[ddir];
3367
3368                 hw->samples++;
3369                 elapsed = mtime_since_now(&td->epoch);
3370                 if (!hw->hist_last)
3371                         hw->hist_last = elapsed;
3372                 this_window = elapsed - hw->hist_last;
3373
3374                 if (this_window >= iolog->hist_msec) {
3375                         uint64_t *io_u_plat;
3376                         struct io_u_plat_entry *dst;
3377                         struct log_sample sample = { {{ 0, 0 }}, ddir, bs,
3378                                 offset, ioprio, 0 };
3379
3380                         /*
3381                          * Make a byte-for-byte copy of the latency histogram
3382                          * stored in td->ts.io_u_plat[ddir], recording it in a
3383                          * log sample. Note that the matching call to free() is
3384                          * located in iolog.c after printing this sample to the
3385                          * log file.
3386                          */
3387                         io_u_plat = (uint64_t *) td->ts.io_u_plat[FIO_CLAT][ddir];
3388                         dst = malloc(sizeof(struct io_u_plat_entry));
3389                         memcpy(&(dst->io_u_plat), io_u_plat,
3390                                 FIO_IO_U_PLAT_NR * sizeof(uint64_t));
3391                         flist_add(&dst->list, &hw->list);
3392
3393                         sample.data = sample_plat(dst);
3394                         __add_log_sample(iolog, elapsed, &sample);
3395
3396                         /*
3397                          * Update the last time we recorded as being now, minus
3398                          * any drift in time we encountered before actually
3399                          * making the record.
3400                          */
3401                         hw->hist_last = elapsed - (this_window - iolog->hist_msec);
3402                         hw->samples = 0;
3403                 }
3404         }
3405
3406         if (needs_lock)
3407                 __td_io_u_unlock(td);
3408 }
3409
3410 void add_slat_sample(struct thread_data *td, struct io_u *io_u)
3411 {
3412         const bool needs_lock = td_async_processing(td);
3413         struct thread_stat *ts = &td->ts;
3414         enum fio_ddir ddir;
3415         unsigned long long nsec;
3416
3417         ddir = io_u->ddir;
3418         if (!ddir_rw(ddir))
3419                 return;
3420
3421         if (needs_lock)
3422                 __td_io_u_lock(td);
3423
3424         nsec = ntime_since(&io_u->start_time, &io_u->issue_time);
3425
3426         add_stat_sample(&ts->slat_stat[ddir], nsec);
3427
3428         if (td->slat_log) {
3429                 struct log_sample sample = { sample_val(nsec), ddir,
3430                         io_u->xfer_buflen, io_u->offset, io_u->ioprio,
3431                         ntime_since(&td->epoch, &io_u->issue_time) };
3432
3433                 add_log_sample(td, td->slat_log, &sample);
3434         }
3435
3436         if (ts->slat_percentiles)
3437                 add_lat_percentile_sample(ts, nsec, ddir, FIO_SLAT);
3438
3439         if (needs_lock)
3440                 __td_io_u_unlock(td);
3441 }
3442
3443 void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
3444                     unsigned long long nsec, unsigned long long bs,
3445                     struct io_u * io_u)
3446 {
3447         const bool needs_lock = td_async_processing(td);
3448         struct thread_stat *ts = &td->ts;
3449
3450         if (!ddir_rw(ddir))
3451                 return;
3452
3453         if (needs_lock)
3454                 __td_io_u_lock(td);
3455
3456         add_stat_sample(&ts->lat_stat[ddir], nsec);
3457
3458         if (td->lat_log) {
3459                 struct log_sample sample = { sample_val(nsec), ddir, bs,
3460                         io_u->offset, io_u->ioprio, 0 };
3461
3462                 add_log_sample(td, td->lat_log, &sample);
3463         }
3464
3465         /*
3466          * When lat_percentiles=1 (default 0), the reported per priority
3467          * percentiles and stats are used for describing total latency values,
3468          * even though the variable names themselves start with clat_.
3469          *
3470          * Because of the above definition, add a prio stat and prio lat
3471          * percentile sample only when lat_percentiles=1. add_clat_sample() will
3472          * add the prio stat and prio lat percentile sample when
3473          * lat_percentiles=0.
3474          */
3475         if (ts->lat_percentiles) {
3476                 add_lat_percentile_sample(ts, nsec, ddir, FIO_LAT);
3477                 add_lat_percentile_prio_sample(ts, nsec, ddir,
3478                                                io_u->clat_prio_index);
3479                 add_stat_prio_sample(ts->clat_prio[ddir], io_u->clat_prio_index,
3480                                      nsec);
3481         }
3482         if (needs_lock)
3483                 __td_io_u_unlock(td);
3484 }
3485
3486 void add_bw_sample(struct thread_data *td, struct io_u *io_u,
3487                    unsigned int bytes, unsigned long long spent)
3488 {
3489         const bool needs_lock = td_async_processing(td);
3490         struct thread_stat *ts = &td->ts;
3491         unsigned long rate;
3492
3493         if (spent)
3494                 rate = (unsigned long) (bytes * 1000000ULL / spent);
3495         else
3496                 rate = 0;
3497
3498         if (needs_lock)
3499                 __td_io_u_lock(td);
3500
3501         add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
3502
3503         if (td->bw_log) {
3504                 struct log_sample sample = { sample_val(rate), io_u->ddir,
3505                         bytes, io_u->offset, io_u->ioprio, 0 };
3506
3507                 add_log_sample(td, td->bw_log, &sample);
3508         }
3509
3510         td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
3511
3512         if (needs_lock)
3513                 __td_io_u_unlock(td);
3514 }
3515
3516 static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
3517                          struct timespec *t, unsigned int avg_time,
3518                          uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
3519                          struct io_stat *stat, struct io_log *log,
3520                          bool is_kb)
3521 {
3522         const bool needs_lock = td_async_processing(td);
3523         unsigned long spent, rate;
3524         enum fio_ddir ddir;
3525         unsigned long next, next_log;
3526
3527         next_log = avg_time;
3528
3529         spent = mtime_since(parent_tv, t);
3530         if (spent < avg_time && avg_time - spent > LOG_MSEC_SLACK)
3531                 return avg_time - spent;
3532
3533         if (needs_lock)
3534                 __td_io_u_lock(td);
3535
3536         /*
3537          * Compute both read and write rates for the interval.
3538          */
3539         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
3540                 uint64_t delta;
3541
3542                 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
3543                 if (!delta)
3544                         continue; /* No entries for interval */
3545
3546                 if (spent) {
3547                         if (is_kb)
3548                                 rate = delta * 1000 / spent / 1024; /* KiB/s */
3549                         else
3550                                 rate = (delta * 1000) / spent;
3551                 } else
3552                         rate = 0;
3553
3554                 add_stat_sample(&stat[ddir], rate);
3555
3556                 if (log) {
3557                         struct log_sample sample = {
3558                                 sample_val(rate), ddir, 0, 0, 0, 0 };
3559
3560                         if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
3561                                 sample.bs = td->o.min_bs[ddir];
3562                         next = add_log_sample(td, log, &sample);
3563                         next_log = min(next_log, next);
3564                 }
3565
3566                 stat_io_bytes[ddir] = this_io_bytes[ddir];
3567         }
3568
3569         *parent_tv = *t;
3570
3571         if (needs_lock)
3572                 __td_io_u_unlock(td);
3573
3574         if (spent <= avg_time)
3575                 next = avg_time;
3576         else
3577                 next = avg_time - (1 + spent - avg_time);
3578
3579         return min(next, next_log);
3580 }
3581
3582 static int add_bw_samples(struct thread_data *td, struct timespec *t)
3583 {
3584         return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
3585                                 td->this_io_bytes, td->stat_io_bytes,
3586                                 td->ts.bw_stat, td->bw_log, true);
3587 }
3588
3589 void add_iops_sample(struct thread_data *td, struct io_u *io_u,
3590                      unsigned int bytes)
3591 {
3592         const bool needs_lock = td_async_processing(td);
3593         struct thread_stat *ts = &td->ts;
3594
3595         if (needs_lock)
3596                 __td_io_u_lock(td);
3597
3598         add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
3599
3600         if (td->iops_log) {
3601                 struct log_sample sample = { sample_val(1), io_u->ddir, bytes,
3602                         io_u->offset, io_u->ioprio, 0 };
3603
3604                 add_log_sample(td, td->iops_log, &sample);
3605         }
3606
3607         td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
3608
3609         if (needs_lock)
3610                 __td_io_u_unlock(td);
3611 }
3612
3613 static int add_iops_samples(struct thread_data *td, struct timespec *t)
3614 {
3615         return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
3616                                 td->this_io_blocks, td->stat_io_blocks,
3617                                 td->ts.iops_stat, td->iops_log, false);
3618 }
3619
3620 static bool td_in_logging_state(struct thread_data *td)
3621 {
3622         if (in_ramp_time(td))
3623                 return false;
3624
3625         switch(td->runstate) {
3626         case TD_RUNNING:
3627         case TD_VERIFYING:
3628         case TD_FINISHING:
3629         case TD_EXITED:
3630                 return true;
3631         default:
3632                 return false;
3633         }
3634 }
3635
3636 /*
3637  * Returns msecs to next event
3638  */
3639 int calc_log_samples(void)
3640 {
3641         unsigned int next = ~0U, tmp = 0, next_mod = 0, log_avg_msec_min = -1U;
3642         struct timespec now;
3643         long elapsed_time = 0;
3644
3645         for_each_td(td) {
3646                 fio_gettime(&now, NULL);
3647                 elapsed_time = mtime_since(&td->epoch, &now);
3648
3649                 if (!td->o.stats)
3650                         continue;
3651                 if (!td_in_logging_state(td)) {
3652                         next = min(td->o.iops_avg_time, td->o.bw_avg_time);
3653                         continue;
3654                 }
3655                 if (!td->bw_log ||
3656                         (td->bw_log && !per_unit_log(td->bw_log))) {
3657                         tmp = add_bw_samples(td, &now);
3658
3659                         if (td->bw_log)
3660                                 log_avg_msec_min = min(log_avg_msec_min, (unsigned int)td->bw_log->avg_msec);
3661                 }
3662                 if (!td->iops_log ||
3663                         (td->iops_log && !per_unit_log(td->iops_log))) {
3664                         tmp = add_iops_samples(td, &now);
3665
3666                         if (td->iops_log)
3667                                 log_avg_msec_min = min(log_avg_msec_min, (unsigned int)td->iops_log->avg_msec);
3668                 }
3669
3670                 if (tmp < next)
3671                         next = tmp;
3672         } end_for_each();
3673
3674         /* if log_avg_msec_min has not been changed, set it to 0 */
3675         if (log_avg_msec_min == -1U)
3676                 log_avg_msec_min = 0;
3677
3678         if (log_avg_msec_min == 0)
3679                 next_mod = elapsed_time;
3680         else
3681                 next_mod = elapsed_time % log_avg_msec_min;
3682
3683         /* correction to keep the time on the log avg msec boundary */
3684         next = min(next, (log_avg_msec_min - next_mod));
3685
3686         return next == ~0U ? 0 : next;
3687 }
3688
3689 void stat_init(void)
3690 {
3691         stat_sem = fio_sem_init(FIO_SEM_UNLOCKED);
3692 }
3693
3694 void stat_exit(void)
3695 {
3696         /*
3697          * When we have the mutex, we know out-of-band access to it
3698          * have ended.
3699          */
3700         fio_sem_down(stat_sem);
3701         fio_sem_remove(stat_sem);
3702 }
3703
3704 /*
3705  * Called from signal handler. Wake up status thread.
3706  */
3707 void show_running_run_stats(void)
3708 {
3709         helper_do_stat();
3710 }
3711
3712 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
3713 {
3714         /* Ignore io_u's which span multiple blocks--they will just get
3715          * inaccurate counts. */
3716         int idx = (io_u->offset - io_u->file->file_offset)
3717                         / td->o.bs[DDIR_TRIM];
3718         uint32_t *info = &td->ts.block_infos[idx];
3719         assert(idx < td->ts.nr_block_infos);
3720         return info;
3721 }
3722