stat: add helper for resetting the latency buckets
[fio.git] / stat.c
1 #include <stdio.h>
2 #include <string.h>
3 #include <sys/time.h>
4 #include <sys/stat.h>
5 #include <math.h>
6
7 #include "fio.h"
8 #include "diskutil.h"
9 #include "lib/ieee754.h"
10 #include "json.h"
11 #include "lib/getrusage.h"
12 #include "idletime.h"
13 #include "lib/pow2.h"
14 #include "lib/output_buffer.h"
15 #include "helper_thread.h"
16 #include "smalloc.h"
17 #include "zbd.h"
18 #include "oslib/asprintf.h"
19
20 #ifdef WIN32
21 #define LOG_MSEC_SLACK  2
22 #else
23 #define LOG_MSEC_SLACK  1
24 #endif
25
26 struct fio_sem *stat_sem;
27
28 void clear_rusage_stat(struct thread_data *td)
29 {
30         struct thread_stat *ts = &td->ts;
31
32         fio_getrusage(&td->ru_start);
33         ts->usr_time = ts->sys_time = 0;
34         ts->ctx = 0;
35         ts->minf = ts->majf = 0;
36 }
37
38 void update_rusage_stat(struct thread_data *td)
39 {
40         struct thread_stat *ts = &td->ts;
41
42         fio_getrusage(&td->ru_end);
43         ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
44                                         &td->ru_end.ru_utime);
45         ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
46                                         &td->ru_end.ru_stime);
47         ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
48                         - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
49         ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
50         ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
51
52         memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
53 }
54
55 /*
56  * Given a latency, return the index of the corresponding bucket in
57  * the structure tracking percentiles.
58  *
59  * (1) find the group (and error bits) that the value (latency)
60  * belongs to by looking at its MSB. (2) find the bucket number in the
61  * group by looking at the index bits.
62  *
63  */
64 static unsigned int plat_val_to_idx(unsigned long long val)
65 {
66         unsigned int msb, error_bits, base, offset, idx;
67
68         /* Find MSB starting from bit 0 */
69         if (val == 0)
70                 msb = 0;
71         else
72                 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
73
74         /*
75          * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
76          * all bits of the sample as index
77          */
78         if (msb <= FIO_IO_U_PLAT_BITS)
79                 return val;
80
81         /* Compute the number of error bits to discard*/
82         error_bits = msb - FIO_IO_U_PLAT_BITS;
83
84         /* Compute the number of buckets before the group */
85         base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
86
87         /*
88          * Discard the error bits and apply the mask to find the
89          * index for the buckets in the group
90          */
91         offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
92
93         /* Make sure the index does not exceed (array size - 1) */
94         idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
95                 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
96
97         return idx;
98 }
99
100 /*
101  * Convert the given index of the bucket array to the value
102  * represented by the bucket
103  */
104 static unsigned long long plat_idx_to_val(unsigned int idx)
105 {
106         unsigned int error_bits;
107         unsigned long long k, base;
108
109         assert(idx < FIO_IO_U_PLAT_NR);
110
111         /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
112          * all bits of the sample as index */
113         if (idx < (FIO_IO_U_PLAT_VAL << 1))
114                 return idx;
115
116         /* Find the group and compute the minimum value of that group */
117         error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
118         base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
119
120         /* Find its bucket number of the group */
121         k = idx % FIO_IO_U_PLAT_VAL;
122
123         /* Return the mean of the range of the bucket */
124         return base + ((k + 0.5) * (1 << error_bits));
125 }
126
127 static int double_cmp(const void *a, const void *b)
128 {
129         const fio_fp64_t fa = *(const fio_fp64_t *) a;
130         const fio_fp64_t fb = *(const fio_fp64_t *) b;
131         int cmp = 0;
132
133         if (fa.u.f > fb.u.f)
134                 cmp = 1;
135         else if (fa.u.f < fb.u.f)
136                 cmp = -1;
137
138         return cmp;
139 }
140
141 unsigned int calc_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
142                                    fio_fp64_t *plist, unsigned long long **output,
143                                    unsigned long long *maxv, unsigned long long *minv)
144 {
145         unsigned long long sum = 0;
146         unsigned int len, i, j = 0;
147         unsigned long long *ovals = NULL;
148         bool is_last;
149
150         *minv = -1ULL;
151         *maxv = 0;
152
153         len = 0;
154         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
155                 len++;
156
157         if (!len)
158                 return 0;
159
160         /*
161          * Sort the percentile list. Note that it may already be sorted if
162          * we are using the default values, but since it's a short list this
163          * isn't a worry. Also note that this does not work for NaN values.
164          */
165         if (len > 1)
166                 qsort(plist, len, sizeof(plist[0]), double_cmp);
167
168         ovals = malloc(len * sizeof(*ovals));
169         if (!ovals)
170                 return 0;
171
172         /*
173          * Calculate bucket values, note down max and min values
174          */
175         is_last = false;
176         for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
177                 sum += io_u_plat[i];
178                 while (sum >= ((long double) plist[j].u.f / 100.0 * nr)) {
179                         assert(plist[j].u.f <= 100.0);
180
181                         ovals[j] = plat_idx_to_val(i);
182                         if (ovals[j] < *minv)
183                                 *minv = ovals[j];
184                         if (ovals[j] > *maxv)
185                                 *maxv = ovals[j];
186
187                         is_last = (j == len - 1) != 0;
188                         if (is_last)
189                                 break;
190
191                         j++;
192                 }
193         }
194
195         if (!is_last)
196                 log_err("fio: error calculating latency percentiles\n");
197
198         *output = ovals;
199         return len;
200 }
201
202 /*
203  * Find and display the p-th percentile of clat
204  */
205 static void show_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
206                                   fio_fp64_t *plist, unsigned int precision,
207                                   const char *pre, struct buf_output *out)
208 {
209         unsigned int divisor, len, i, j = 0;
210         unsigned long long minv, maxv;
211         unsigned long long *ovals;
212         int per_line, scale_down, time_width;
213         bool is_last;
214         char fmt[32];
215
216         len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
217         if (!len || !ovals)
218                 return;
219
220         /*
221          * We default to nsecs, but if the value range is such that we
222          * should scale down to usecs or msecs, do that.
223          */
224         if (minv > 2000000 && maxv > 99999999ULL) {
225                 scale_down = 2;
226                 divisor = 1000000;
227                 log_buf(out, "    %s percentiles (msec):\n     |", pre);
228         } else if (minv > 2000 && maxv > 99999) {
229                 scale_down = 1;
230                 divisor = 1000;
231                 log_buf(out, "    %s percentiles (usec):\n     |", pre);
232         } else {
233                 scale_down = 0;
234                 divisor = 1;
235                 log_buf(out, "    %s percentiles (nsec):\n     |", pre);
236         }
237
238
239         time_width = max(5, (int) (log10(maxv / divisor) + 1));
240         snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
241                         precision, time_width);
242         /* fmt will be something like " %5.2fth=[%4llu]%c" */
243         per_line = (80 - 7) / (precision + 10 + time_width);
244
245         for (j = 0; j < len; j++) {
246                 /* for formatting */
247                 if (j != 0 && (j % per_line) == 0)
248                         log_buf(out, "     |");
249
250                 /* end of the list */
251                 is_last = (j == len - 1) != 0;
252
253                 for (i = 0; i < scale_down; i++)
254                         ovals[j] = (ovals[j] + 999) / 1000;
255
256                 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
257
258                 if (is_last)
259                         break;
260
261                 if ((j % per_line) == per_line - 1)     /* for formatting */
262                         log_buf(out, "\n");
263         }
264
265         free(ovals);
266 }
267
268 bool calc_lat(struct io_stat *is, unsigned long long *min,
269               unsigned long long *max, double *mean, double *dev)
270 {
271         double n = (double) is->samples;
272
273         if (n == 0)
274                 return false;
275
276         *min = is->min_val;
277         *max = is->max_val;
278         *mean = is->mean.u.f;
279
280         if (n > 1.0)
281                 *dev = sqrt(is->S.u.f / (n - 1.0));
282         else
283                 *dev = 0;
284
285         return true;
286 }
287
288 void show_mixed_group_stats(struct group_run_stats *rs, struct buf_output *out) 
289 {
290         char *io, *agg, *min, *max;
291         char *ioalt, *aggalt, *minalt, *maxalt;
292         uint64_t io_mix = 0, agg_mix = 0, min_mix = -1, max_mix = 0;
293         uint64_t min_run = -1, max_run = 0;
294         const int i2p = is_power_of_2(rs->kb_base);
295         int i;
296
297         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
298                 if (!rs->max_run[i])
299                         continue;
300                 io_mix += rs->iobytes[i];
301                 agg_mix += rs->agg[i];
302                 min_mix = min_mix < rs->min_bw[i] ? min_mix : rs->min_bw[i];
303                 max_mix = max_mix > rs->max_bw[i] ? max_mix : rs->max_bw[i];
304                 min_run = min_run < rs->min_run[i] ? min_run : rs->min_run[i];
305                 max_run = max_run > rs->max_run[i] ? max_run : rs->max_run[i];
306         }
307         io = num2str(io_mix, rs->sig_figs, 1, i2p, N2S_BYTE);
308         ioalt = num2str(io_mix, rs->sig_figs, 1, !i2p, N2S_BYTE);
309         agg = num2str(agg_mix, rs->sig_figs, 1, i2p, rs->unit_base);
310         aggalt = num2str(agg_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
311         min = num2str(min_mix, rs->sig_figs, 1, i2p, rs->unit_base);
312         minalt = num2str(min_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
313         max = num2str(max_mix, rs->sig_figs, 1, i2p, rs->unit_base);
314         maxalt = num2str(max_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
315         log_buf(out, "  MIXED: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
316                         agg, aggalt, min, max, minalt, maxalt, io, ioalt,
317                         (unsigned long long) min_run,
318                         (unsigned long long) max_run);
319         free(io);
320         free(agg);
321         free(min);
322         free(max);
323         free(ioalt);
324         free(aggalt);
325         free(minalt);
326         free(maxalt);
327 }
328
329 void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
330 {
331         char *io, *agg, *min, *max;
332         char *ioalt, *aggalt, *minalt, *maxalt;
333         const char *str[] = { "   READ", "  WRITE" , "   TRIM"};
334         int i;
335
336         log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
337
338         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
339                 const int i2p = is_power_of_2(rs->kb_base);
340
341                 if (!rs->max_run[i])
342                         continue;
343
344                 io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE);
345                 ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE);
346                 agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base);
347                 aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base);
348                 min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
349                 minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
350                 max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
351                 maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
352                 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
353                                 (rs->unified_rw_rep == UNIFIED_MIXED) ? "  MIXED" : str[i],
354                                 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
355                                 (unsigned long long) rs->min_run[i],
356                                 (unsigned long long) rs->max_run[i]);
357
358                 free(io);
359                 free(agg);
360                 free(min);
361                 free(max);
362                 free(ioalt);
363                 free(aggalt);
364                 free(minalt);
365                 free(maxalt);
366         }
367
368         /* Need to aggregate statisitics to show mixed values */
369         if (rs->unified_rw_rep == UNIFIED_BOTH)
370                 show_mixed_group_stats(rs, out);
371 }
372
373 void stat_calc_dist(uint64_t *map, unsigned long total, double *io_u_dist)
374 {
375         int i;
376
377         /*
378          * Do depth distribution calculations
379          */
380         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
381                 if (total) {
382                         io_u_dist[i] = (double) map[i] / (double) total;
383                         io_u_dist[i] *= 100.0;
384                         if (io_u_dist[i] < 0.1 && map[i])
385                                 io_u_dist[i] = 0.1;
386                 } else
387                         io_u_dist[i] = 0.0;
388         }
389 }
390
391 static void stat_calc_lat(struct thread_stat *ts, double *dst,
392                           uint64_t *src, int nr)
393 {
394         unsigned long total = ddir_rw_sum(ts->total_io_u);
395         int i;
396
397         /*
398          * Do latency distribution calculations
399          */
400         for (i = 0; i < nr; i++) {
401                 if (total) {
402                         dst[i] = (double) src[i] / (double) total;
403                         dst[i] *= 100.0;
404                         if (dst[i] < 0.01 && src[i])
405                                 dst[i] = 0.01;
406                 } else
407                         dst[i] = 0.0;
408         }
409 }
410
411 /*
412  * To keep the terse format unaltered, add all of the ns latency
413  * buckets to the first us latency bucket
414  */
415 static void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
416 {
417         unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
418         int i;
419
420         stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
421
422         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
423                 ntotal += ts->io_u_lat_n[i];
424
425         io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
426 }
427
428 void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
429 {
430         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
431 }
432
433 void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
434 {
435         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
436 }
437
438 void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
439 {
440         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
441 }
442
443 static void display_lat(const char *name, unsigned long long min,
444                         unsigned long long max, double mean, double dev,
445                         struct buf_output *out)
446 {
447         const char *base = "(nsec)";
448         char *minp, *maxp;
449
450         if (nsec_to_msec(&min, &max, &mean, &dev))
451                 base = "(msec)";
452         else if (nsec_to_usec(&min, &max, &mean, &dev))
453                 base = "(usec)";
454
455         minp = num2str(min, 6, 1, 0, N2S_NONE);
456         maxp = num2str(max, 6, 1, 0, N2S_NONE);
457
458         log_buf(out, "    %s %s: min=%s, max=%s, avg=%5.02f,"
459                  " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
460
461         free(minp);
462         free(maxp);
463 }
464
465 static struct thread_stat *gen_mixed_ddir_stats_from_ts(struct thread_stat *ts)
466 {
467         struct thread_stat *ts_lcl;
468
469         /*
470          * Handle aggregation of Reads (ddir = 0), Writes (ddir = 1), and
471          * Trims (ddir = 2)
472          */
473         ts_lcl = malloc(sizeof(struct thread_stat));
474         if (!ts_lcl) {
475                 log_err("fio: failed to allocate local thread stat\n");
476                 return NULL;
477         }
478
479         init_thread_stat(ts_lcl);
480
481         /* calculate mixed stats  */
482         ts_lcl->unified_rw_rep = UNIFIED_MIXED;
483         ts_lcl->lat_percentiles = ts->lat_percentiles;
484         ts_lcl->clat_percentiles = ts->clat_percentiles;
485         ts_lcl->slat_percentiles = ts->slat_percentiles;
486         ts_lcl->percentile_precision = ts->percentile_precision;
487         memcpy(ts_lcl->percentile_list, ts->percentile_list, sizeof(ts->percentile_list));
488
489         sum_thread_stats(ts_lcl, ts);
490
491         return ts_lcl;
492 }
493
494 static double convert_agg_kbytes_percent(struct group_run_stats *rs,
495                                          enum fio_ddir ddir, int mean)
496 {
497         double p_of_agg = 100.0;
498         if (rs && rs->agg[ddir] > 1024) {
499                 p_of_agg = mean * 100.0 / (double) (rs->agg[ddir] / 1024.0);
500
501                 if (p_of_agg > 100.0)
502                         p_of_agg = 100.0;
503         }
504         return p_of_agg;
505 }
506
507 static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
508                              enum fio_ddir ddir, struct buf_output *out)
509 {
510         unsigned long runt;
511         unsigned long long min, max, bw, iops;
512         double mean, dev;
513         char *io_p, *bw_p, *bw_p_alt, *iops_p, *post_st = NULL;
514         int i2p;
515
516         if (ddir_sync(ddir)) {
517                 if (calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
518                         log_buf(out, "  %s:\n", "fsync/fdatasync/sync_file_range");
519                         display_lat(io_ddir_name(ddir), min, max, mean, dev, out);
520                         show_clat_percentiles(ts->io_u_sync_plat,
521                                                 ts->sync_stat.samples,
522                                                 ts->percentile_list,
523                                                 ts->percentile_precision,
524                                                 io_ddir_name(ddir), out);
525                 }
526                 return;
527         }
528
529         assert(ddir_rw(ddir));
530
531         if (!ts->runtime[ddir])
532                 return;
533
534         i2p = is_power_of_2(rs->kb_base);
535         runt = ts->runtime[ddir];
536
537         bw = (1000 * ts->io_bytes[ddir]) / runt;
538         io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
539         bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
540         bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
541
542         iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
543         iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
544         if (ddir == DDIR_WRITE)
545                 post_st = zbd_write_status(ts);
546         else if (ddir == DDIR_READ && ts->cachehit && ts->cachemiss) {
547                 uint64_t total;
548                 double hit;
549
550                 total = ts->cachehit + ts->cachemiss;
551                 hit = (double) ts->cachehit / (double) total;
552                 hit *= 100.0;
553                 if (asprintf(&post_st, "; Cachehit=%0.2f%%", hit) < 0)
554                         post_st = NULL;
555         }
556
557         log_buf(out, "  %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)%s\n",
558                         (ts->unified_rw_rep == UNIFIED_MIXED) ? "mixed" : io_ddir_name(ddir),
559                         iops_p, bw_p, bw_p_alt, io_p,
560                         (unsigned long long) ts->runtime[ddir],
561                         post_st ? : "");
562
563         free(post_st);
564         free(io_p);
565         free(bw_p);
566         free(bw_p_alt);
567         free(iops_p);
568
569         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
570                 display_lat("slat", min, max, mean, dev, out);
571         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
572                 display_lat("clat", min, max, mean, dev, out);
573         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
574                 display_lat(" lat", min, max, mean, dev, out);
575         if (calc_lat(&ts->clat_high_prio_stat[ddir], &min, &max, &mean, &dev)) {
576                 display_lat(ts->lat_percentiles ? "high prio_lat" : "high prio_clat",
577                                 min, max, mean, dev, out);
578                 if (calc_lat(&ts->clat_low_prio_stat[ddir], &min, &max, &mean, &dev))
579                         display_lat(ts->lat_percentiles ? "low prio_lat" : "low prio_clat",
580                                         min, max, mean, dev, out);
581         }
582
583         if (ts->slat_percentiles && ts->slat_stat[ddir].samples > 0)
584                 show_clat_percentiles(ts->io_u_plat[FIO_SLAT][ddir],
585                                         ts->slat_stat[ddir].samples,
586                                         ts->percentile_list,
587                                         ts->percentile_precision, "slat", out);
588         if (ts->clat_percentiles && ts->clat_stat[ddir].samples > 0)
589                 show_clat_percentiles(ts->io_u_plat[FIO_CLAT][ddir],
590                                         ts->clat_stat[ddir].samples,
591                                         ts->percentile_list,
592                                         ts->percentile_precision, "clat", out);
593         if (ts->lat_percentiles && ts->lat_stat[ddir].samples > 0)
594                 show_clat_percentiles(ts->io_u_plat[FIO_LAT][ddir],
595                                         ts->lat_stat[ddir].samples,
596                                         ts->percentile_list,
597                                         ts->percentile_precision, "lat", out);
598
599         if (ts->clat_percentiles || ts->lat_percentiles) {
600                 const char *name = ts->lat_percentiles ? "lat" : "clat";
601                 char prio_name[32];
602                 uint64_t samples;
603
604                 if (ts->lat_percentiles)
605                         samples = ts->lat_stat[ddir].samples;
606                 else
607                         samples = ts->clat_stat[ddir].samples;
608
609                 /* Only print this if some high and low priority stats were collected */
610                 if (ts->clat_high_prio_stat[ddir].samples > 0 &&
611                         ts->clat_low_prio_stat[ddir].samples > 0)
612                 {
613                         sprintf(prio_name, "high prio (%.2f%%) %s",
614                                         100. * (double) ts->clat_high_prio_stat[ddir].samples / (double) samples,
615                                         name);
616                         show_clat_percentiles(ts->io_u_plat_high_prio[ddir],
617                                                 ts->clat_high_prio_stat[ddir].samples,
618                                                 ts->percentile_list,
619                                                 ts->percentile_precision, prio_name, out);
620
621                         sprintf(prio_name, "low prio (%.2f%%) %s",
622                                         100. * (double) ts->clat_low_prio_stat[ddir].samples / (double) samples,
623                                         name);
624                         show_clat_percentiles(ts->io_u_plat_low_prio[ddir],
625                                                 ts->clat_low_prio_stat[ddir].samples,
626                                                 ts->percentile_list,
627                                                 ts->percentile_precision, prio_name, out);
628                 }
629         }
630
631         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
632                 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
633                 const char *bw_str;
634
635                 if ((rs->unit_base == 1) && i2p)
636                         bw_str = "Kibit";
637                 else if (rs->unit_base == 1)
638                         bw_str = "kbit";
639                 else if (i2p)
640                         bw_str = "KiB";
641                 else
642                         bw_str = "kB";
643
644                 p_of_agg = convert_agg_kbytes_percent(rs, ddir, mean);
645
646                 if (rs->unit_base == 1) {
647                         min *= 8.0;
648                         max *= 8.0;
649                         mean *= 8.0;
650                         dev *= 8.0;
651                 }
652
653                 if (mean > fkb_base * fkb_base) {
654                         min /= fkb_base;
655                         max /= fkb_base;
656                         mean /= fkb_base;
657                         dev /= fkb_base;
658                         bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
659                 }
660
661                 log_buf(out, "   bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
662                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
663                         bw_str, min, max, p_of_agg, mean, dev,
664                         (&ts->bw_stat[ddir])->samples);
665         }
666         if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
667                 log_buf(out, "   iops        : min=%5llu, max=%5llu, "
668                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
669                         min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
670         }
671 }
672
673 static void show_mixed_ddir_status(struct group_run_stats *rs,
674                                    struct thread_stat *ts,
675                                    struct buf_output *out)
676 {
677         struct thread_stat *ts_lcl = gen_mixed_ddir_stats_from_ts(ts);
678
679         if (ts_lcl)
680                 show_ddir_status(rs, ts_lcl, DDIR_READ, out);
681
682         free(ts_lcl);
683 }
684
685 static bool show_lat(double *io_u_lat, int nr, const char **ranges,
686                      const char *msg, struct buf_output *out)
687 {
688         bool new_line = true, shown = false;
689         int i, line = 0;
690
691         for (i = 0; i < nr; i++) {
692                 if (io_u_lat[i] <= 0.0)
693                         continue;
694                 shown = true;
695                 if (new_line) {
696                         if (line)
697                                 log_buf(out, "\n");
698                         log_buf(out, "  lat (%s)   : ", msg);
699                         new_line = false;
700                         line = 0;
701                 }
702                 if (line)
703                         log_buf(out, ", ");
704                 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
705                 line++;
706                 if (line == 5)
707                         new_line = true;
708         }
709
710         if (shown)
711                 log_buf(out, "\n");
712
713         return true;
714 }
715
716 static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
717 {
718         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
719                                  "250=", "500=", "750=", "1000=", };
720
721         show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
722 }
723
724 static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
725 {
726         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
727                                  "250=", "500=", "750=", "1000=", };
728
729         show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
730 }
731
732 static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
733 {
734         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
735                                  "250=", "500=", "750=", "1000=", "2000=",
736                                  ">=2000=", };
737
738         show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
739 }
740
741 static void show_latencies(struct thread_stat *ts, struct buf_output *out)
742 {
743         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
744         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
745         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
746
747         stat_calc_lat_n(ts, io_u_lat_n);
748         stat_calc_lat_u(ts, io_u_lat_u);
749         stat_calc_lat_m(ts, io_u_lat_m);
750
751         show_lat_n(io_u_lat_n, out);
752         show_lat_u(io_u_lat_u, out);
753         show_lat_m(io_u_lat_m, out);
754 }
755
756 static int block_state_category(int block_state)
757 {
758         switch (block_state) {
759         case BLOCK_STATE_UNINIT:
760                 return 0;
761         case BLOCK_STATE_TRIMMED:
762         case BLOCK_STATE_WRITTEN:
763                 return 1;
764         case BLOCK_STATE_WRITE_FAILURE:
765         case BLOCK_STATE_TRIM_FAILURE:
766                 return 2;
767         default:
768                 /* Silence compile warning on some BSDs and have a return */
769                 assert(0);
770                 return -1;
771         }
772 }
773
774 static int compare_block_infos(const void *bs1, const void *bs2)
775 {
776         uint64_t block1 = *(uint64_t *)bs1;
777         uint64_t block2 = *(uint64_t *)bs2;
778         int state1 = BLOCK_INFO_STATE(block1);
779         int state2 = BLOCK_INFO_STATE(block2);
780         int bscat1 = block_state_category(state1);
781         int bscat2 = block_state_category(state2);
782         int cycles1 = BLOCK_INFO_TRIMS(block1);
783         int cycles2 = BLOCK_INFO_TRIMS(block2);
784
785         if (bscat1 < bscat2)
786                 return -1;
787         if (bscat1 > bscat2)
788                 return 1;
789
790         if (cycles1 < cycles2)
791                 return -1;
792         if (cycles1 > cycles2)
793                 return 1;
794
795         if (state1 < state2)
796                 return -1;
797         if (state1 > state2)
798                 return 1;
799
800         assert(block1 == block2);
801         return 0;
802 }
803
804 static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
805                                   fio_fp64_t *plist, unsigned int **percentiles,
806                                   unsigned int *types)
807 {
808         int len = 0;
809         int i, nr_uninit;
810
811         qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
812
813         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
814                 len++;
815
816         if (!len)
817                 return 0;
818
819         /*
820          * Sort the percentile list. Note that it may already be sorted if
821          * we are using the default values, but since it's a short list this
822          * isn't a worry. Also note that this does not work for NaN values.
823          */
824         if (len > 1)
825                 qsort(plist, len, sizeof(plist[0]), double_cmp);
826
827         /* Start only after the uninit entries end */
828         for (nr_uninit = 0;
829              nr_uninit < nr_block_infos
830                 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
831              nr_uninit ++)
832                 ;
833
834         if (nr_uninit == nr_block_infos)
835                 return 0;
836
837         *percentiles = calloc(len, sizeof(**percentiles));
838
839         for (i = 0; i < len; i++) {
840                 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
841                                 + nr_uninit;
842                 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
843         }
844
845         memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
846         for (i = 0; i < nr_block_infos; i++)
847                 types[BLOCK_INFO_STATE(block_infos[i])]++;
848
849         return len;
850 }
851
852 static const char *block_state_names[] = {
853         [BLOCK_STATE_UNINIT] = "unwritten",
854         [BLOCK_STATE_TRIMMED] = "trimmed",
855         [BLOCK_STATE_WRITTEN] = "written",
856         [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
857         [BLOCK_STATE_WRITE_FAILURE] = "write failure",
858 };
859
860 static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
861                              fio_fp64_t *plist, struct buf_output *out)
862 {
863         int len, pos, i;
864         unsigned int *percentiles = NULL;
865         unsigned int block_state_counts[BLOCK_STATE_COUNT];
866
867         len = calc_block_percentiles(nr_block_infos, block_infos, plist,
868                                      &percentiles, block_state_counts);
869
870         log_buf(out, "  block lifetime percentiles :\n   |");
871         pos = 0;
872         for (i = 0; i < len; i++) {
873                 uint32_t block_info = percentiles[i];
874 #define LINE_LENGTH     75
875                 char str[LINE_LENGTH];
876                 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
877                                      plist[i].u.f, block_info,
878                                      i == len - 1 ? '\n' : ',');
879                 assert(strln < LINE_LENGTH);
880                 if (pos + strln > LINE_LENGTH) {
881                         pos = 0;
882                         log_buf(out, "\n   |");
883                 }
884                 log_buf(out, "%s", str);
885                 pos += strln;
886 #undef LINE_LENGTH
887         }
888         if (percentiles)
889                 free(percentiles);
890
891         log_buf(out, "        states               :");
892         for (i = 0; i < BLOCK_STATE_COUNT; i++)
893                 log_buf(out, " %s=%u%c",
894                          block_state_names[i], block_state_counts[i],
895                          i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
896 }
897
898 static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
899 {
900         char *p1, *p1alt, *p2;
901         unsigned long long bw_mean, iops_mean;
902         const int i2p = is_power_of_2(ts->kb_base);
903
904         if (!ts->ss_dur)
905                 return;
906
907         bw_mean = steadystate_bw_mean(ts);
908         iops_mean = steadystate_iops_mean(ts);
909
910         p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base);
911         p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base);
912         p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE);
913
914         log_buf(out, "  steadystate  : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
915                 ts->ss_state & FIO_SS_ATTAINED ? "yes" : "no",
916                 p1, p1alt, p2,
917                 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
918                 ts->ss_state & FIO_SS_SLOPE ? " slope": " mean dev",
919                 ts->ss_criterion.u.f,
920                 ts->ss_state & FIO_SS_PCT ? "%" : "");
921
922         free(p1);
923         free(p1alt);
924         free(p2);
925 }
926
927 static void show_agg_stats(struct disk_util_agg *agg, int terse,
928                            struct buf_output *out)
929 {
930         if (!agg->slavecount)
931                 return;
932
933         if (!terse) {
934                 log_buf(out, ", aggrios=%llu/%llu, aggrmerge=%llu/%llu, "
935                          "aggrticks=%llu/%llu, aggrin_queue=%llu, "
936                          "aggrutil=%3.2f%%",
937                         (unsigned long long) agg->ios[0] / agg->slavecount,
938                         (unsigned long long) agg->ios[1] / agg->slavecount,
939                         (unsigned long long) agg->merges[0] / agg->slavecount,
940                         (unsigned long long) agg->merges[1] / agg->slavecount,
941                         (unsigned long long) agg->ticks[0] / agg->slavecount,
942                         (unsigned long long) agg->ticks[1] / agg->slavecount,
943                         (unsigned long long) agg->time_in_queue / agg->slavecount,
944                         agg->max_util.u.f);
945         } else {
946                 log_buf(out, ";slaves;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
947                         (unsigned long long) agg->ios[0] / agg->slavecount,
948                         (unsigned long long) agg->ios[1] / agg->slavecount,
949                         (unsigned long long) agg->merges[0] / agg->slavecount,
950                         (unsigned long long) agg->merges[1] / agg->slavecount,
951                         (unsigned long long) agg->ticks[0] / agg->slavecount,
952                         (unsigned long long) agg->ticks[1] / agg->slavecount,
953                         (unsigned long long) agg->time_in_queue / agg->slavecount,
954                         agg->max_util.u.f);
955         }
956 }
957
958 static void aggregate_slaves_stats(struct disk_util *masterdu)
959 {
960         struct disk_util_agg *agg = &masterdu->agg;
961         struct disk_util_stat *dus;
962         struct flist_head *entry;
963         struct disk_util *slavedu;
964         double util;
965
966         flist_for_each(entry, &masterdu->slaves) {
967                 slavedu = flist_entry(entry, struct disk_util, slavelist);
968                 dus = &slavedu->dus;
969                 agg->ios[0] += dus->s.ios[0];
970                 agg->ios[1] += dus->s.ios[1];
971                 agg->merges[0] += dus->s.merges[0];
972                 agg->merges[1] += dus->s.merges[1];
973                 agg->sectors[0] += dus->s.sectors[0];
974                 agg->sectors[1] += dus->s.sectors[1];
975                 agg->ticks[0] += dus->s.ticks[0];
976                 agg->ticks[1] += dus->s.ticks[1];
977                 agg->time_in_queue += dus->s.time_in_queue;
978                 agg->slavecount++;
979
980                 util = (double) (100 * dus->s.io_ticks / (double) slavedu->dus.s.msec);
981                 /* System utilization is the utilization of the
982                  * component with the highest utilization.
983                  */
984                 if (util > agg->max_util.u.f)
985                         agg->max_util.u.f = util;
986
987         }
988
989         if (agg->max_util.u.f > 100.0)
990                 agg->max_util.u.f = 100.0;
991 }
992
993 void print_disk_util(struct disk_util_stat *dus, struct disk_util_agg *agg,
994                      int terse, struct buf_output *out)
995 {
996         double util = 0;
997
998         if (dus->s.msec)
999                 util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
1000         if (util > 100.0)
1001                 util = 100.0;
1002
1003         if (!terse) {
1004                 if (agg->slavecount)
1005                         log_buf(out, "  ");
1006
1007                 log_buf(out, "  %s: ios=%llu/%llu, merge=%llu/%llu, "
1008                          "ticks=%llu/%llu, in_queue=%llu, util=%3.2f%%",
1009                                 dus->name,
1010                                 (unsigned long long) dus->s.ios[0],
1011                                 (unsigned long long) dus->s.ios[1],
1012                                 (unsigned long long) dus->s.merges[0],
1013                                 (unsigned long long) dus->s.merges[1],
1014                                 (unsigned long long) dus->s.ticks[0],
1015                                 (unsigned long long) dus->s.ticks[1],
1016                                 (unsigned long long) dus->s.time_in_queue,
1017                                 util);
1018         } else {
1019                 log_buf(out, ";%s;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
1020                                 dus->name,
1021                                 (unsigned long long) dus->s.ios[0],
1022                                 (unsigned long long) dus->s.ios[1],
1023                                 (unsigned long long) dus->s.merges[0],
1024                                 (unsigned long long) dus->s.merges[1],
1025                                 (unsigned long long) dus->s.ticks[0],
1026                                 (unsigned long long) dus->s.ticks[1],
1027                                 (unsigned long long) dus->s.time_in_queue,
1028                                 util);
1029         }
1030
1031         /*
1032          * If the device has slaves, aggregate the stats for
1033          * those slave devices also.
1034          */
1035         show_agg_stats(agg, terse, out);
1036
1037         if (!terse)
1038                 log_buf(out, "\n");
1039 }
1040
1041 void json_array_add_disk_util(struct disk_util_stat *dus,
1042                 struct disk_util_agg *agg, struct json_array *array)
1043 {
1044         struct json_object *obj;
1045         double util = 0;
1046
1047         if (dus->s.msec)
1048                 util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
1049         if (util > 100.0)
1050                 util = 100.0;
1051
1052         obj = json_create_object();
1053         json_array_add_value_object(array, obj);
1054
1055         json_object_add_value_string(obj, "name", (const char *)dus->name);
1056         json_object_add_value_int(obj, "read_ios", dus->s.ios[0]);
1057         json_object_add_value_int(obj, "write_ios", dus->s.ios[1]);
1058         json_object_add_value_int(obj, "read_merges", dus->s.merges[0]);
1059         json_object_add_value_int(obj, "write_merges", dus->s.merges[1]);
1060         json_object_add_value_int(obj, "read_ticks", dus->s.ticks[0]);
1061         json_object_add_value_int(obj, "write_ticks", dus->s.ticks[1]);
1062         json_object_add_value_int(obj, "in_queue", dus->s.time_in_queue);
1063         json_object_add_value_float(obj, "util", util);
1064
1065         /*
1066          * If the device has slaves, aggregate the stats for
1067          * those slave devices also.
1068          */
1069         if (!agg->slavecount)
1070                 return;
1071         json_object_add_value_int(obj, "aggr_read_ios",
1072                                 agg->ios[0] / agg->slavecount);
1073         json_object_add_value_int(obj, "aggr_write_ios",
1074                                 agg->ios[1] / agg->slavecount);
1075         json_object_add_value_int(obj, "aggr_read_merges",
1076                                 agg->merges[0] / agg->slavecount);
1077         json_object_add_value_int(obj, "aggr_write_merge",
1078                                 agg->merges[1] / agg->slavecount);
1079         json_object_add_value_int(obj, "aggr_read_ticks",
1080                                 agg->ticks[0] / agg->slavecount);
1081         json_object_add_value_int(obj, "aggr_write_ticks",
1082                                 agg->ticks[1] / agg->slavecount);
1083         json_object_add_value_int(obj, "aggr_in_queue",
1084                                 agg->time_in_queue / agg->slavecount);
1085         json_object_add_value_float(obj, "aggr_util", agg->max_util.u.f);
1086 }
1087
1088 static void json_object_add_disk_utils(struct json_object *obj,
1089                                        struct flist_head *head)
1090 {
1091         struct json_array *array = json_create_array();
1092         struct flist_head *entry;
1093         struct disk_util *du;
1094
1095         json_object_add_value_array(obj, "disk_util", array);
1096
1097         flist_for_each(entry, head) {
1098                 du = flist_entry(entry, struct disk_util, list);
1099
1100                 aggregate_slaves_stats(du);
1101                 json_array_add_disk_util(&du->dus, &du->agg, array);
1102         }
1103 }
1104
1105 void show_disk_util(int terse, struct json_object *parent,
1106                     struct buf_output *out)
1107 {
1108         struct flist_head *entry;
1109         struct disk_util *du;
1110         bool do_json;
1111
1112         if (!is_running_backend())
1113                 return;
1114
1115         if (flist_empty(&disk_list))
1116                 return;
1117
1118         if ((output_format & FIO_OUTPUT_JSON) && parent)
1119                 do_json = true;
1120         else
1121                 do_json = false;
1122
1123         if (!terse && !do_json)
1124                 log_buf(out, "\nDisk stats (read/write):\n");
1125
1126         if (do_json) {
1127                 json_object_add_disk_utils(parent, &disk_list);
1128         } else if (output_format & ~(FIO_OUTPUT_JSON | FIO_OUTPUT_JSON_PLUS)) {
1129                 flist_for_each(entry, &disk_list) {
1130                         du = flist_entry(entry, struct disk_util, list);
1131
1132                         aggregate_slaves_stats(du);
1133                         print_disk_util(&du->dus, &du->agg, terse, out);
1134                 }
1135         }
1136 }
1137
1138 static void show_thread_status_normal(struct thread_stat *ts,
1139                                       struct group_run_stats *rs,
1140                                       struct buf_output *out)
1141 {
1142         double usr_cpu, sys_cpu;
1143         unsigned long runtime;
1144         double io_u_dist[FIO_IO_U_MAP_NR];
1145         time_t time_p;
1146         char time_buf[32];
1147
1148         if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
1149                 return;
1150
1151         memset(time_buf, 0, sizeof(time_buf));
1152
1153         time(&time_p);
1154         os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
1155
1156         if (!ts->error) {
1157                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
1158                                         ts->name, ts->groupid, ts->members,
1159                                         ts->error, (int) ts->pid, time_buf);
1160         } else {
1161                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
1162                                         ts->name, ts->groupid, ts->members,
1163                                         ts->error, ts->verror, (int) ts->pid,
1164                                         time_buf);
1165         }
1166
1167         if (strlen(ts->description))
1168                 log_buf(out, "  Description  : [%s]\n", ts->description);
1169
1170         for_each_rw_ddir(ddir) {
1171                 if (ts->io_bytes[ddir])
1172                         show_ddir_status(rs, ts, ddir, out);
1173         }
1174
1175         if (ts->unified_rw_rep == UNIFIED_BOTH)
1176                 show_mixed_ddir_status(rs, ts, out);
1177
1178         show_latencies(ts, out);
1179
1180         if (ts->sync_stat.samples)
1181                 show_ddir_status(rs, ts, DDIR_SYNC, out);
1182
1183         runtime = ts->total_run_time;
1184         if (runtime) {
1185                 double runt = (double) runtime;
1186
1187                 usr_cpu = (double) ts->usr_time * 100 / runt;
1188                 sys_cpu = (double) ts->sys_time * 100 / runt;
1189         } else {
1190                 usr_cpu = 0;
1191                 sys_cpu = 0;
1192         }
1193
1194         log_buf(out, "  cpu          : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
1195                  " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
1196                         (unsigned long long) ts->ctx,
1197                         (unsigned long long) ts->majf,
1198                         (unsigned long long) ts->minf);
1199
1200         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1201         log_buf(out, "  IO depths    : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
1202                  " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1203                                         io_u_dist[1], io_u_dist[2],
1204                                         io_u_dist[3], io_u_dist[4],
1205                                         io_u_dist[5], io_u_dist[6]);
1206
1207         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1208         log_buf(out, "     submit    : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1209                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1210                                         io_u_dist[1], io_u_dist[2],
1211                                         io_u_dist[3], io_u_dist[4],
1212                                         io_u_dist[5], io_u_dist[6]);
1213         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1214         log_buf(out, "     complete  : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1215                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1216                                         io_u_dist[1], io_u_dist[2],
1217                                         io_u_dist[3], io_u_dist[4],
1218                                         io_u_dist[5], io_u_dist[6]);
1219         log_buf(out, "     issued rwts: total=%llu,%llu,%llu,%llu"
1220                                  " short=%llu,%llu,%llu,0"
1221                                  " dropped=%llu,%llu,%llu,0\n",
1222                                         (unsigned long long) ts->total_io_u[0],
1223                                         (unsigned long long) ts->total_io_u[1],
1224                                         (unsigned long long) ts->total_io_u[2],
1225                                         (unsigned long long) ts->total_io_u[3],
1226                                         (unsigned long long) ts->short_io_u[0],
1227                                         (unsigned long long) ts->short_io_u[1],
1228                                         (unsigned long long) ts->short_io_u[2],
1229                                         (unsigned long long) ts->drop_io_u[0],
1230                                         (unsigned long long) ts->drop_io_u[1],
1231                                         (unsigned long long) ts->drop_io_u[2]);
1232         if (ts->continue_on_error) {
1233                 log_buf(out, "     errors    : total=%llu, first_error=%d/<%s>\n",
1234                                         (unsigned long long)ts->total_err_count,
1235                                         ts->first_error,
1236                                         strerror(ts->first_error));
1237         }
1238         if (ts->latency_depth) {
1239                 log_buf(out, "     latency   : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
1240                                         (unsigned long long)ts->latency_target,
1241                                         (unsigned long long)ts->latency_window,
1242                                         ts->latency_percentile.u.f,
1243                                         ts->latency_depth);
1244         }
1245
1246         if (ts->nr_block_infos)
1247                 show_block_infos(ts->nr_block_infos, ts->block_infos,
1248                                   ts->percentile_list, out);
1249
1250         if (ts->ss_dur)
1251                 show_ss_normal(ts, out);
1252 }
1253
1254 static void show_ddir_status_terse(struct thread_stat *ts,
1255                                    struct group_run_stats *rs,
1256                                    enum fio_ddir ddir, int ver,
1257                                    struct buf_output *out)
1258 {
1259         unsigned long long min, max, minv, maxv, bw, iops;
1260         unsigned long long *ovals = NULL;
1261         double mean, dev;
1262         unsigned int len;
1263         int i, bw_stat;
1264
1265         assert(ddir_rw(ddir));
1266
1267         iops = bw = 0;
1268         if (ts->runtime[ddir]) {
1269                 uint64_t runt = ts->runtime[ddir];
1270
1271                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
1272                 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
1273         }
1274
1275         log_buf(out, ";%llu;%llu;%llu;%llu",
1276                 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
1277                                         (unsigned long long) ts->runtime[ddir]);
1278
1279         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
1280                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1281         else
1282                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1283
1284         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
1285                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1286         else
1287                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1288
1289         if (ts->lat_percentiles) {
1290                 len = calc_clat_percentiles(ts->io_u_plat[FIO_LAT][ddir],
1291                                         ts->lat_stat[ddir].samples,
1292                                         ts->percentile_list, &ovals, &maxv,
1293                                         &minv);
1294         } else if (ts->clat_percentiles) {
1295                 len = calc_clat_percentiles(ts->io_u_plat[FIO_CLAT][ddir],
1296                                         ts->clat_stat[ddir].samples,
1297                                         ts->percentile_list, &ovals, &maxv,
1298                                         &minv);
1299         } else {
1300                 len = 0;
1301         }
1302
1303         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
1304                 if (i >= len) {
1305                         log_buf(out, ";0%%=0");
1306                         continue;
1307                 }
1308                 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
1309         }
1310
1311         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
1312                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1313         else
1314                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1315
1316         free(ovals);
1317
1318         bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
1319         if (bw_stat) {
1320                 double p_of_agg = 100.0;
1321
1322                 if (rs->agg[ddir]) {
1323                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1324                         if (p_of_agg > 100.0)
1325                                 p_of_agg = 100.0;
1326                 }
1327
1328                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
1329         } else {
1330                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
1331         }
1332
1333         if (ver == 5) {
1334                 if (bw_stat)
1335                         log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
1336                 else
1337                         log_buf(out, ";%lu", 0UL);
1338
1339                 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
1340                         log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
1341                                 mean, dev, (&ts->iops_stat[ddir])->samples);
1342                 else
1343                         log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
1344         }
1345 }
1346
1347 static void show_mixed_ddir_status_terse(struct thread_stat *ts,
1348                                    struct group_run_stats *rs,
1349                                    int ver, struct buf_output *out)
1350 {
1351         struct thread_stat *ts_lcl = gen_mixed_ddir_stats_from_ts(ts);
1352
1353         if (ts_lcl)
1354                 show_ddir_status_terse(ts_lcl, rs, DDIR_READ, ver, out);
1355
1356         free(ts_lcl);
1357 }
1358
1359 static struct json_object *add_ddir_lat_json(struct thread_stat *ts,
1360                                              uint32_t percentiles,
1361                                              struct io_stat *lat_stat,
1362                                              uint64_t *io_u_plat)
1363 {
1364         char buf[120];
1365         double mean, dev;
1366         unsigned int i, len;
1367         struct json_object *lat_object, *percentile_object, *clat_bins_object;
1368         unsigned long long min, max, maxv, minv, *ovals = NULL;
1369
1370         if (!calc_lat(lat_stat, &min, &max, &mean, &dev)) {
1371                 min = max = 0;
1372                 mean = dev = 0.0;
1373         }
1374         lat_object = json_create_object();
1375         json_object_add_value_int(lat_object, "min", min);
1376         json_object_add_value_int(lat_object, "max", max);
1377         json_object_add_value_float(lat_object, "mean", mean);
1378         json_object_add_value_float(lat_object, "stddev", dev);
1379         json_object_add_value_int(lat_object, "N", lat_stat->samples);
1380
1381         if (percentiles && lat_stat->samples) {
1382                 len = calc_clat_percentiles(io_u_plat, lat_stat->samples,
1383                                 ts->percentile_list, &ovals, &maxv, &minv);
1384
1385                 if (len > FIO_IO_U_LIST_MAX_LEN)
1386                         len = FIO_IO_U_LIST_MAX_LEN;
1387
1388                 percentile_object = json_create_object();
1389                 json_object_add_value_object(lat_object, "percentile", percentile_object);
1390                 for (i = 0; i < len; i++) {
1391                         snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1392                         json_object_add_value_int(percentile_object, buf, ovals[i]);
1393                 }
1394                 free(ovals);
1395
1396                 if (output_format & FIO_OUTPUT_JSON_PLUS) {
1397                         clat_bins_object = json_create_object();
1398                         json_object_add_value_object(lat_object, "bins", clat_bins_object);
1399
1400                         for(i = 0; i < FIO_IO_U_PLAT_NR; i++)
1401                                 if (io_u_plat[i]) {
1402                                         snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1403                                         json_object_add_value_int(clat_bins_object, buf, io_u_plat[i]);
1404                                 }
1405                 }
1406         }
1407
1408         return lat_object;
1409 }
1410
1411 static void add_ddir_status_json(struct thread_stat *ts,
1412                                  struct group_run_stats *rs, enum fio_ddir ddir,
1413                                  struct json_object *parent)
1414 {
1415         unsigned long long min, max;
1416         unsigned long long bw_bytes, bw;
1417         double mean, dev, iops;
1418         struct json_object *dir_object, *tmp_object;
1419         double p_of_agg = 100.0;
1420
1421         assert(ddir_rw(ddir) || ddir_sync(ddir));
1422
1423         if ((ts->unified_rw_rep == UNIFIED_MIXED) && ddir != DDIR_READ)
1424                 return;
1425
1426         dir_object = json_create_object();
1427         json_object_add_value_object(parent,
1428                 (ts->unified_rw_rep == UNIFIED_MIXED) ? "mixed" : io_ddir_name(ddir), dir_object);
1429
1430         if (ddir_rw(ddir)) {
1431                 bw_bytes = 0;
1432                 bw = 0;
1433                 iops = 0.0;
1434                 if (ts->runtime[ddir]) {
1435                         uint64_t runt = ts->runtime[ddir];
1436
1437                         bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */
1438                         bw = bw_bytes / 1024; /* KiB/s */
1439                         iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
1440                 }
1441
1442                 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
1443                 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
1444                 json_object_add_value_int(dir_object, "bw_bytes", bw_bytes);
1445                 json_object_add_value_int(dir_object, "bw", bw);
1446                 json_object_add_value_float(dir_object, "iops", iops);
1447                 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
1448                 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
1449                 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
1450                 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
1451
1452                 tmp_object = add_ddir_lat_json(ts, ts->slat_percentiles,
1453                                 &ts->slat_stat[ddir], ts->io_u_plat[FIO_SLAT][ddir]);
1454                 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1455
1456                 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles,
1457                                 &ts->clat_stat[ddir], ts->io_u_plat[FIO_CLAT][ddir]);
1458                 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1459
1460                 tmp_object = add_ddir_lat_json(ts, ts->lat_percentiles,
1461                                 &ts->lat_stat[ddir], ts->io_u_plat[FIO_LAT][ddir]);
1462                 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1463         } else {
1464                 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[DDIR_SYNC]);
1465                 tmp_object = add_ddir_lat_json(ts, ts->lat_percentiles | ts->clat_percentiles,
1466                                 &ts->sync_stat, ts->io_u_sync_plat);
1467                 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1468         }
1469
1470         if (!ddir_rw(ddir))
1471                 return;
1472
1473         /* Only print PRIO latencies if some high priority samples were gathered */
1474         if (ts->clat_high_prio_stat[ddir].samples > 0) {
1475                 const char *high, *low;
1476
1477                 if (ts->lat_percentiles) {
1478                         high = "lat_high_prio";
1479                         low = "lat_low_prio";
1480                 } else {
1481                         high = "clat_high_prio";
1482                         low = "clat_low_prio";
1483                 }
1484
1485                 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles | ts->lat_percentiles,
1486                                 &ts->clat_high_prio_stat[ddir], ts->io_u_plat_high_prio[ddir]);
1487                 json_object_add_value_object(dir_object, high, tmp_object);
1488
1489                 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles | ts->lat_percentiles,
1490                                 &ts->clat_low_prio_stat[ddir], ts->io_u_plat_low_prio[ddir]);
1491                 json_object_add_value_object(dir_object, low, tmp_object);
1492         }
1493
1494         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1495                 p_of_agg = convert_agg_kbytes_percent(rs, ddir, mean);
1496         } else {
1497                 min = max = 0;
1498                 p_of_agg = mean = dev = 0.0;
1499         }
1500
1501         json_object_add_value_int(dir_object, "bw_min", min);
1502         json_object_add_value_int(dir_object, "bw_max", max);
1503         json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1504         json_object_add_value_float(dir_object, "bw_mean", mean);
1505         json_object_add_value_float(dir_object, "bw_dev", dev);
1506         json_object_add_value_int(dir_object, "bw_samples",
1507                                 (&ts->bw_stat[ddir])->samples);
1508
1509         if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1510                 min = max = 0;
1511                 mean = dev = 0.0;
1512         }
1513         json_object_add_value_int(dir_object, "iops_min", min);
1514         json_object_add_value_int(dir_object, "iops_max", max);
1515         json_object_add_value_float(dir_object, "iops_mean", mean);
1516         json_object_add_value_float(dir_object, "iops_stddev", dev);
1517         json_object_add_value_int(dir_object, "iops_samples",
1518                                 (&ts->iops_stat[ddir])->samples);
1519
1520         if (ts->cachehit + ts->cachemiss) {
1521                 uint64_t total;
1522                 double hit;
1523
1524                 total = ts->cachehit + ts->cachemiss;
1525                 hit = (double) ts->cachehit / (double) total;
1526                 hit *= 100.0;
1527                 json_object_add_value_float(dir_object, "cachehit", hit);
1528         }
1529 }
1530
1531 static void add_mixed_ddir_status_json(struct thread_stat *ts,
1532                 struct group_run_stats *rs, struct json_object *parent)
1533 {
1534         struct thread_stat *ts_lcl = gen_mixed_ddir_stats_from_ts(ts);
1535
1536         /* add the aggregated stats to json parent */
1537         if (ts_lcl)
1538                 add_ddir_status_json(ts_lcl, rs, DDIR_READ, parent);
1539
1540         free(ts_lcl);
1541 }
1542
1543 static void show_thread_status_terse_all(struct thread_stat *ts,
1544                                          struct group_run_stats *rs, int ver,
1545                                          struct buf_output *out)
1546 {
1547         double io_u_dist[FIO_IO_U_MAP_NR];
1548         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1549         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1550         double usr_cpu, sys_cpu;
1551         int i;
1552
1553         /* General Info */
1554         if (ver == 2)
1555                 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1556         else
1557                 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1558                         ts->name, ts->groupid, ts->error);
1559
1560         /* Log Read Status, or mixed if unified_rw_rep = 1 */
1561         show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1562         if (ts->unified_rw_rep != UNIFIED_MIXED) {
1563                 /* Log Write Status */
1564                 show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1565                 /* Log Trim Status */
1566                 if (ver == 2 || ver == 4 || ver == 5)
1567                         show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1568         }
1569         if (ts->unified_rw_rep == UNIFIED_BOTH)
1570                 show_mixed_ddir_status_terse(ts, rs, ver, out);
1571         /* CPU Usage */
1572         if (ts->total_run_time) {
1573                 double runt = (double) ts->total_run_time;
1574
1575                 usr_cpu = (double) ts->usr_time * 100 / runt;
1576                 sys_cpu = (double) ts->sys_time * 100 / runt;
1577         } else {
1578                 usr_cpu = 0;
1579                 sys_cpu = 0;
1580         }
1581
1582         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1583                                                 (unsigned long long) ts->ctx,
1584                                                 (unsigned long long) ts->majf,
1585                                                 (unsigned long long) ts->minf);
1586
1587         /* Calc % distribution of IO depths, usecond, msecond latency */
1588         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1589         stat_calc_lat_nu(ts, io_u_lat_u);
1590         stat_calc_lat_m(ts, io_u_lat_m);
1591
1592         /* Only show fixed 7 I/O depth levels*/
1593         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1594                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1595                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1596
1597         /* Microsecond latency */
1598         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1599                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1600         /* Millisecond latency */
1601         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1602                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1603
1604         /* disk util stats, if any */
1605         if (ver >= 3 && is_running_backend())
1606                 show_disk_util(1, NULL, out);
1607
1608         /* Additional output if continue_on_error set - default off*/
1609         if (ts->continue_on_error)
1610                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1611
1612         /* Additional output if description is set */
1613         if (strlen(ts->description)) {
1614                 if (ver == 2)
1615                         log_buf(out, "\n");
1616                 log_buf(out, ";%s", ts->description);
1617         }
1618
1619         log_buf(out, "\n");
1620 }
1621
1622 static void json_add_job_opts(struct json_object *root, const char *name,
1623                               struct flist_head *opt_list)
1624 {
1625         struct json_object *dir_object;
1626         struct flist_head *entry;
1627         struct print_option *p;
1628
1629         if (flist_empty(opt_list))
1630                 return;
1631
1632         dir_object = json_create_object();
1633         json_object_add_value_object(root, name, dir_object);
1634
1635         flist_for_each(entry, opt_list) {
1636                 p = flist_entry(entry, struct print_option, list);
1637                 json_object_add_value_string(dir_object, p->name, p->value);
1638         }
1639 }
1640
1641 static struct json_object *show_thread_status_json(struct thread_stat *ts,
1642                                                    struct group_run_stats *rs,
1643                                                    struct flist_head *opt_list)
1644 {
1645         struct json_object *root, *tmp;
1646         struct jobs_eta *je;
1647         double io_u_dist[FIO_IO_U_MAP_NR];
1648         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1649         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1650         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1651         double usr_cpu, sys_cpu;
1652         int i;
1653         size_t size;
1654
1655         root = json_create_object();
1656         json_object_add_value_string(root, "jobname", ts->name);
1657         json_object_add_value_int(root, "groupid", ts->groupid);
1658         json_object_add_value_int(root, "error", ts->error);
1659
1660         /* ETA Info */
1661         je = get_jobs_eta(true, &size);
1662         if (je) {
1663                 json_object_add_value_int(root, "eta", je->eta_sec);
1664                 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1665         }
1666
1667         if (opt_list)
1668                 json_add_job_opts(root, "job options", opt_list);
1669
1670         add_ddir_status_json(ts, rs, DDIR_READ, root);
1671         add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1672         add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1673         add_ddir_status_json(ts, rs, DDIR_SYNC, root);
1674
1675         if (ts->unified_rw_rep == UNIFIED_BOTH)
1676                 add_mixed_ddir_status_json(ts, rs, root);
1677
1678         /* CPU Usage */
1679         if (ts->total_run_time) {
1680                 double runt = (double) ts->total_run_time;
1681
1682                 usr_cpu = (double) ts->usr_time * 100 / runt;
1683                 sys_cpu = (double) ts->sys_time * 100 / runt;
1684         } else {
1685                 usr_cpu = 0;
1686                 sys_cpu = 0;
1687         }
1688         json_object_add_value_int(root, "job_runtime", ts->total_run_time);
1689         json_object_add_value_float(root, "usr_cpu", usr_cpu);
1690         json_object_add_value_float(root, "sys_cpu", sys_cpu);
1691         json_object_add_value_int(root, "ctx", ts->ctx);
1692         json_object_add_value_int(root, "majf", ts->majf);
1693         json_object_add_value_int(root, "minf", ts->minf);
1694
1695         /* Calc % distribution of IO depths */
1696         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1697         tmp = json_create_object();
1698         json_object_add_value_object(root, "iodepth_level", tmp);
1699         /* Only show fixed 7 I/O depth levels*/
1700         for (i = 0; i < 7; i++) {
1701                 char name[20];
1702                 if (i < 6)
1703                         snprintf(name, 20, "%d", 1 << i);
1704                 else
1705                         snprintf(name, 20, ">=%d", 1 << i);
1706                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1707         }
1708
1709         /* Calc % distribution of submit IO depths */
1710         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1711         tmp = json_create_object();
1712         json_object_add_value_object(root, "iodepth_submit", tmp);
1713         /* Only show fixed 7 I/O depth levels*/
1714         for (i = 0; i < 7; i++) {
1715                 char name[20];
1716                 if (i == 0)
1717                         snprintf(name, 20, "0");
1718                 else if (i < 6)
1719                         snprintf(name, 20, "%d", 1 << (i+1));
1720                 else
1721                         snprintf(name, 20, ">=%d", 1 << i);
1722                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1723         }
1724
1725         /* Calc % distribution of completion IO depths */
1726         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1727         tmp = json_create_object();
1728         json_object_add_value_object(root, "iodepth_complete", tmp);
1729         /* Only show fixed 7 I/O depth levels*/
1730         for (i = 0; i < 7; i++) {
1731                 char name[20];
1732                 if (i == 0)
1733                         snprintf(name, 20, "0");
1734                 else if (i < 6)
1735                         snprintf(name, 20, "%d", 1 << (i+1));
1736                 else
1737                         snprintf(name, 20, ">=%d", 1 << i);
1738                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1739         }
1740
1741         /* Calc % distribution of nsecond, usecond, msecond latency */
1742         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1743         stat_calc_lat_n(ts, io_u_lat_n);
1744         stat_calc_lat_u(ts, io_u_lat_u);
1745         stat_calc_lat_m(ts, io_u_lat_m);
1746
1747         /* Nanosecond latency */
1748         tmp = json_create_object();
1749         json_object_add_value_object(root, "latency_ns", tmp);
1750         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1751                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1752                                  "250", "500", "750", "1000", };
1753                 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1754         }
1755         /* Microsecond latency */
1756         tmp = json_create_object();
1757         json_object_add_value_object(root, "latency_us", tmp);
1758         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1759                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1760                                  "250", "500", "750", "1000", };
1761                 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1762         }
1763         /* Millisecond latency */
1764         tmp = json_create_object();
1765         json_object_add_value_object(root, "latency_ms", tmp);
1766         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1767                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1768                                  "250", "500", "750", "1000", "2000",
1769                                  ">=2000", };
1770                 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1771         }
1772
1773         /* Additional output if continue_on_error set - default off*/
1774         if (ts->continue_on_error) {
1775                 json_object_add_value_int(root, "total_err", ts->total_err_count);
1776                 json_object_add_value_int(root, "first_error", ts->first_error);
1777         }
1778
1779         if (ts->latency_depth) {
1780                 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1781                 json_object_add_value_int(root, "latency_target", ts->latency_target);
1782                 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1783                 json_object_add_value_int(root, "latency_window", ts->latency_window);
1784         }
1785
1786         /* Additional output if description is set */
1787         if (strlen(ts->description))
1788                 json_object_add_value_string(root, "desc", ts->description);
1789
1790         if (ts->nr_block_infos) {
1791                 /* Block error histogram and types */
1792                 int len;
1793                 unsigned int *percentiles = NULL;
1794                 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1795
1796                 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1797                                              ts->percentile_list,
1798                                              &percentiles, block_state_counts);
1799
1800                 if (len) {
1801                         struct json_object *block, *percentile_object, *states;
1802                         int state;
1803                         block = json_create_object();
1804                         json_object_add_value_object(root, "block", block);
1805
1806                         percentile_object = json_create_object();
1807                         json_object_add_value_object(block, "percentiles",
1808                                                      percentile_object);
1809                         for (i = 0; i < len; i++) {
1810                                 char buf[20];
1811                                 snprintf(buf, sizeof(buf), "%f",
1812                                          ts->percentile_list[i].u.f);
1813                                 json_object_add_value_int(percentile_object,
1814                                                           buf,
1815                                                           percentiles[i]);
1816                         }
1817
1818                         states = json_create_object();
1819                         json_object_add_value_object(block, "states", states);
1820                         for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1821                                 json_object_add_value_int(states,
1822                                         block_state_names[state],
1823                                         block_state_counts[state]);
1824                         }
1825                         free(percentiles);
1826                 }
1827         }
1828
1829         if (ts->ss_dur) {
1830                 struct json_object *data;
1831                 struct json_array *iops, *bw;
1832                 int j, k, l;
1833                 char ss_buf[64];
1834
1835                 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1836                         ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1837                         ts->ss_state & FIO_SS_SLOPE ? "_slope" : "",
1838                         (float) ts->ss_limit.u.f,
1839                         ts->ss_state & FIO_SS_PCT ? "%" : "");
1840
1841                 tmp = json_create_object();
1842                 json_object_add_value_object(root, "steadystate", tmp);
1843                 json_object_add_value_string(tmp, "ss", ss_buf);
1844                 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1845                 json_object_add_value_int(tmp, "attained", (ts->ss_state & FIO_SS_ATTAINED) > 0);
1846
1847                 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1848                         ts->ss_state & FIO_SS_PCT ? "%" : "");
1849                 json_object_add_value_string(tmp, "criterion", ss_buf);
1850                 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1851                 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1852
1853                 data = json_create_object();
1854                 json_object_add_value_object(tmp, "data", data);
1855                 bw = json_create_array();
1856                 iops = json_create_array();
1857
1858                 /*
1859                 ** if ss was attained or the buffer is not full,
1860                 ** ss->head points to the first element in the list.
1861                 ** otherwise it actually points to the second element
1862                 ** in the list
1863                 */
1864                 if ((ts->ss_state & FIO_SS_ATTAINED) || !(ts->ss_state & FIO_SS_BUFFER_FULL))
1865                         j = ts->ss_head;
1866                 else
1867                         j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1868                 for (l = 0; l < ts->ss_dur; l++) {
1869                         k = (j + l) % ts->ss_dur;
1870                         json_array_add_value_int(bw, ts->ss_bw_data[k]);
1871                         json_array_add_value_int(iops, ts->ss_iops_data[k]);
1872                 }
1873                 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1874                 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1875                 json_object_add_value_array(data, "iops", iops);
1876                 json_object_add_value_array(data, "bw", bw);
1877         }
1878
1879         return root;
1880 }
1881
1882 static void show_thread_status_terse(struct thread_stat *ts,
1883                                      struct group_run_stats *rs,
1884                                      struct buf_output *out)
1885 {
1886         if (terse_version >= 2 && terse_version <= 5)
1887                 show_thread_status_terse_all(ts, rs, terse_version, out);
1888         else
1889                 log_err("fio: bad terse version!? %d\n", terse_version);
1890 }
1891
1892 struct json_object *show_thread_status(struct thread_stat *ts,
1893                                        struct group_run_stats *rs,
1894                                        struct flist_head *opt_list,
1895                                        struct buf_output *out)
1896 {
1897         struct json_object *ret = NULL;
1898
1899         if (output_format & FIO_OUTPUT_TERSE)
1900                 show_thread_status_terse(ts, rs,  out);
1901         if (output_format & FIO_OUTPUT_JSON)
1902                 ret = show_thread_status_json(ts, rs, opt_list);
1903         if (output_format & FIO_OUTPUT_NORMAL)
1904                 show_thread_status_normal(ts, rs,  out);
1905
1906         return ret;
1907 }
1908
1909 static void __sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1910 {
1911         double mean, S;
1912
1913         dst->min_val = min(dst->min_val, src->min_val);
1914         dst->max_val = max(dst->max_val, src->max_val);
1915
1916         /*
1917          * Compute new mean and S after the merge
1918          * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1919          *  #Parallel_algorithm>
1920          */
1921         if (first) {
1922                 mean = src->mean.u.f;
1923                 S = src->S.u.f;
1924         } else {
1925                 double delta = src->mean.u.f - dst->mean.u.f;
1926
1927                 mean = ((src->mean.u.f * src->samples) +
1928                         (dst->mean.u.f * dst->samples)) /
1929                         (dst->samples + src->samples);
1930
1931                 S =  src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1932                         (dst->samples * src->samples) /
1933                         (dst->samples + src->samples);
1934         }
1935
1936         dst->samples += src->samples;
1937         dst->mean.u.f = mean;
1938         dst->S.u.f = S;
1939
1940 }
1941
1942 /*
1943  * We sum two kinds of stats - one that is time based, in which case we
1944  * apply the proper summing technique, and then one that is iops/bw
1945  * numbers. For group_reporting, we should just add those up, not make
1946  * them the mean of everything.
1947  */
1948 static void sum_stat(struct io_stat *dst, struct io_stat *src, bool pure_sum)
1949 {
1950         bool first = dst->samples == 0;
1951
1952         if (src->samples == 0)
1953                 return;
1954
1955         if (!pure_sum) {
1956                 __sum_stat(dst, src, first);
1957                 return;
1958         }
1959
1960         if (first) {
1961                 dst->min_val = src->min_val;
1962                 dst->max_val = src->max_val;
1963                 dst->samples = src->samples;
1964                 dst->mean.u.f = src->mean.u.f;
1965                 dst->S.u.f = src->S.u.f;
1966         } else {
1967                 dst->min_val += src->min_val;
1968                 dst->max_val += src->max_val;
1969                 dst->samples += src->samples;
1970                 dst->mean.u.f += src->mean.u.f;
1971                 dst->S.u.f += src->S.u.f;
1972         }
1973 }
1974
1975 void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1976 {
1977         int i;
1978
1979         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1980                 if (dst->max_run[i] < src->max_run[i])
1981                         dst->max_run[i] = src->max_run[i];
1982                 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1983                         dst->min_run[i] = src->min_run[i];
1984                 if (dst->max_bw[i] < src->max_bw[i])
1985                         dst->max_bw[i] = src->max_bw[i];
1986                 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1987                         dst->min_bw[i] = src->min_bw[i];
1988
1989                 dst->iobytes[i] += src->iobytes[i];
1990                 dst->agg[i] += src->agg[i];
1991         }
1992
1993         if (!dst->kb_base)
1994                 dst->kb_base = src->kb_base;
1995         if (!dst->unit_base)
1996                 dst->unit_base = src->unit_base;
1997         if (!dst->sig_figs)
1998                 dst->sig_figs = src->sig_figs;
1999 }
2000
2001 /*
2002  * Free the clat_prio_stat arrays allocated by alloc_clat_prio_stat_ddir().
2003  */
2004 void free_clat_prio_stats(struct thread_stat *ts)
2005 {
2006         enum fio_ddir ddir;
2007
2008         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2009                 sfree(ts->clat_prio[ddir]);
2010                 ts->clat_prio[ddir] = NULL;
2011                 ts->nr_clat_prio[ddir] = 0;
2012         }
2013 }
2014
2015 /*
2016  * Allocate a clat_prio_stat array. The array has to be allocated/freed using
2017  * smalloc/sfree, so that it is accessible by the process/thread summing the
2018  * thread_stats.
2019  */
2020 int alloc_clat_prio_stat_ddir(struct thread_stat *ts, enum fio_ddir ddir,
2021                               int nr_prios)
2022 {
2023         struct clat_prio_stat *clat_prio;
2024         int i;
2025
2026         clat_prio = scalloc(nr_prios, sizeof(*ts->clat_prio[ddir]));
2027         if (!clat_prio) {
2028                 log_err("fio: failed to allocate ts clat data\n");
2029                 return 1;
2030         }
2031
2032         for (i = 0; i < nr_prios; i++)
2033                 clat_prio[i].clat_stat.min_val = ULONG_MAX;
2034
2035         ts->clat_prio[ddir] = clat_prio;
2036         ts->nr_clat_prio[ddir] = nr_prios;
2037
2038         return 0;
2039 }
2040
2041 void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src)
2042 {
2043         int k, l, m;
2044
2045         for (l = 0; l < DDIR_RWDIR_CNT; l++) {
2046                 if (dst->unified_rw_rep != UNIFIED_MIXED) {
2047                         sum_stat(&dst->clat_stat[l], &src->clat_stat[l], false);
2048                         sum_stat(&dst->clat_high_prio_stat[l], &src->clat_high_prio_stat[l], false);
2049                         sum_stat(&dst->clat_low_prio_stat[l], &src->clat_low_prio_stat[l], false);
2050                         sum_stat(&dst->slat_stat[l], &src->slat_stat[l], false);
2051                         sum_stat(&dst->lat_stat[l], &src->lat_stat[l], false);
2052                         sum_stat(&dst->bw_stat[l], &src->bw_stat[l], true);
2053                         sum_stat(&dst->iops_stat[l], &src->iops_stat[l], true);
2054
2055                         dst->io_bytes[l] += src->io_bytes[l];
2056
2057                         if (dst->runtime[l] < src->runtime[l])
2058                                 dst->runtime[l] = src->runtime[l];
2059                 } else {
2060                         sum_stat(&dst->clat_stat[0], &src->clat_stat[l], false);
2061                         sum_stat(&dst->clat_high_prio_stat[0], &src->clat_high_prio_stat[l], false);
2062                         sum_stat(&dst->clat_low_prio_stat[0], &src->clat_low_prio_stat[l], false);
2063                         sum_stat(&dst->slat_stat[0], &src->slat_stat[l], false);
2064                         sum_stat(&dst->lat_stat[0], &src->lat_stat[l], false);
2065                         sum_stat(&dst->bw_stat[0], &src->bw_stat[l], true);
2066                         sum_stat(&dst->iops_stat[0], &src->iops_stat[l], true);
2067
2068                         dst->io_bytes[0] += src->io_bytes[l];
2069
2070                         if (dst->runtime[0] < src->runtime[l])
2071                                 dst->runtime[0] = src->runtime[l];
2072                 }
2073         }
2074
2075         sum_stat(&dst->sync_stat, &src->sync_stat, false);
2076         dst->usr_time += src->usr_time;
2077         dst->sys_time += src->sys_time;
2078         dst->ctx += src->ctx;
2079         dst->majf += src->majf;
2080         dst->minf += src->minf;
2081
2082         for (k = 0; k < FIO_IO_U_MAP_NR; k++) {
2083                 dst->io_u_map[k] += src->io_u_map[k];
2084                 dst->io_u_submit[k] += src->io_u_submit[k];
2085                 dst->io_u_complete[k] += src->io_u_complete[k];
2086         }
2087
2088         for (k = 0; k < FIO_IO_U_LAT_N_NR; k++)
2089                 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
2090         for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
2091                 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
2092         for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
2093                 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
2094
2095         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
2096                 if (dst->unified_rw_rep != UNIFIED_MIXED) {
2097                         dst->total_io_u[k] += src->total_io_u[k];
2098                         dst->short_io_u[k] += src->short_io_u[k];
2099                         dst->drop_io_u[k] += src->drop_io_u[k];
2100                 } else {
2101                         dst->total_io_u[0] += src->total_io_u[k];
2102                         dst->short_io_u[0] += src->short_io_u[k];
2103                         dst->drop_io_u[0] += src->drop_io_u[k];
2104                 }
2105         }
2106
2107         dst->total_io_u[DDIR_SYNC] += src->total_io_u[DDIR_SYNC];
2108
2109         for (k = 0; k < FIO_LAT_CNT; k++)
2110                 for (l = 0; l < DDIR_RWDIR_CNT; l++)
2111                         for (m = 0; m < FIO_IO_U_PLAT_NR; m++)
2112                                 if (dst->unified_rw_rep != UNIFIED_MIXED)
2113                                         dst->io_u_plat[k][l][m] += src->io_u_plat[k][l][m];
2114                                 else
2115                                         dst->io_u_plat[k][0][m] += src->io_u_plat[k][l][m];
2116
2117         for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
2118                 dst->io_u_sync_plat[k] += src->io_u_sync_plat[k];
2119
2120         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
2121                 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
2122                         if (dst->unified_rw_rep != UNIFIED_MIXED) {
2123                                 dst->io_u_plat_high_prio[k][m] += src->io_u_plat_high_prio[k][m];
2124                                 dst->io_u_plat_low_prio[k][m] += src->io_u_plat_low_prio[k][m];
2125                         } else {
2126                                 dst->io_u_plat_high_prio[0][m] += src->io_u_plat_high_prio[k][m];
2127                                 dst->io_u_plat_low_prio[0][m] += src->io_u_plat_low_prio[k][m];
2128                         }
2129
2130                 }
2131         }
2132
2133         dst->total_run_time += src->total_run_time;
2134         dst->total_submit += src->total_submit;
2135         dst->total_complete += src->total_complete;
2136         dst->nr_zone_resets += src->nr_zone_resets;
2137         dst->cachehit += src->cachehit;
2138         dst->cachemiss += src->cachemiss;
2139 }
2140
2141 void init_group_run_stat(struct group_run_stats *gs)
2142 {
2143         int i;
2144         memset(gs, 0, sizeof(*gs));
2145
2146         for (i = 0; i < DDIR_RWDIR_CNT; i++)
2147                 gs->min_bw[i] = gs->min_run[i] = ~0UL;
2148 }
2149
2150 void init_thread_stat_min_vals(struct thread_stat *ts)
2151 {
2152         int i;
2153
2154         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2155                 ts->clat_stat[i].min_val = ULONG_MAX;
2156                 ts->slat_stat[i].min_val = ULONG_MAX;
2157                 ts->lat_stat[i].min_val = ULONG_MAX;
2158                 ts->bw_stat[i].min_val = ULONG_MAX;
2159                 ts->iops_stat[i].min_val = ULONG_MAX;
2160                 ts->clat_high_prio_stat[i].min_val = ULONG_MAX;
2161                 ts->clat_low_prio_stat[i].min_val = ULONG_MAX;
2162         }
2163         ts->sync_stat.min_val = ULONG_MAX;
2164 }
2165
2166 void init_thread_stat(struct thread_stat *ts)
2167 {
2168         memset(ts, 0, sizeof(*ts));
2169
2170         init_thread_stat_min_vals(ts);
2171         ts->groupid = -1;
2172 }
2173
2174 void __show_run_stats(void)
2175 {
2176         struct group_run_stats *runstats, *rs;
2177         struct thread_data *td;
2178         struct thread_stat *threadstats, *ts;
2179         int i, j, k, nr_ts, last_ts, idx;
2180         bool kb_base_warned = false;
2181         bool unit_base_warned = false;
2182         struct json_object *root = NULL;
2183         struct json_array *array = NULL;
2184         struct buf_output output[FIO_OUTPUT_NR];
2185         struct flist_head **opt_lists;
2186
2187         runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
2188
2189         for (i = 0; i < groupid + 1; i++)
2190                 init_group_run_stat(&runstats[i]);
2191
2192         /*
2193          * find out how many threads stats we need. if group reporting isn't
2194          * enabled, it's one-per-td.
2195          */
2196         nr_ts = 0;
2197         last_ts = -1;
2198         for_each_td(td, i) {
2199                 if (!td->o.group_reporting) {
2200                         nr_ts++;
2201                         continue;
2202                 }
2203                 if (last_ts == td->groupid)
2204                         continue;
2205                 if (!td->o.stats)
2206                         continue;
2207
2208                 last_ts = td->groupid;
2209                 nr_ts++;
2210         }
2211
2212         threadstats = malloc(nr_ts * sizeof(struct thread_stat));
2213         opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
2214
2215         for (i = 0; i < nr_ts; i++) {
2216                 init_thread_stat(&threadstats[i]);
2217                 opt_lists[i] = NULL;
2218         }
2219
2220         j = 0;
2221         last_ts = -1;
2222         idx = 0;
2223         for_each_td(td, i) {
2224                 if (!td->o.stats)
2225                         continue;
2226                 if (idx && (!td->o.group_reporting ||
2227                     (td->o.group_reporting && last_ts != td->groupid))) {
2228                         idx = 0;
2229                         j++;
2230                 }
2231
2232                 last_ts = td->groupid;
2233
2234                 ts = &threadstats[j];
2235
2236                 ts->clat_percentiles = td->o.clat_percentiles;
2237                 ts->lat_percentiles = td->o.lat_percentiles;
2238                 ts->slat_percentiles = td->o.slat_percentiles;
2239                 ts->percentile_precision = td->o.percentile_precision;
2240                 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
2241                 opt_lists[j] = &td->opt_list;
2242
2243                 idx++;
2244
2245                 if (ts->groupid == -1) {
2246                         /*
2247                          * These are per-group shared already
2248                          */
2249                         snprintf(ts->name, sizeof(ts->name), "%s", td->o.name);
2250                         if (td->o.description)
2251                                 snprintf(ts->description,
2252                                          sizeof(ts->description), "%s",
2253                                          td->o.description);
2254                         else
2255                                 memset(ts->description, 0, FIO_JOBDESC_SIZE);
2256
2257                         /*
2258                          * If multiple entries in this group, this is
2259                          * the first member.
2260                          */
2261                         ts->thread_number = td->thread_number;
2262                         ts->groupid = td->groupid;
2263
2264                         /*
2265                          * first pid in group, not very useful...
2266                          */
2267                         ts->pid = td->pid;
2268
2269                         ts->kb_base = td->o.kb_base;
2270                         ts->unit_base = td->o.unit_base;
2271                         ts->sig_figs = td->o.sig_figs;
2272                         ts->unified_rw_rep = td->o.unified_rw_rep;
2273                 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
2274                         log_info("fio: kb_base differs for jobs in group, using"
2275                                  " %u as the base\n", ts->kb_base);
2276                         kb_base_warned = true;
2277                 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
2278                         log_info("fio: unit_base differs for jobs in group, using"
2279                                  " %u as the base\n", ts->unit_base);
2280                         unit_base_warned = true;
2281                 }
2282
2283                 ts->continue_on_error = td->o.continue_on_error;
2284                 ts->total_err_count += td->total_err_count;
2285                 ts->first_error = td->first_error;
2286                 if (!ts->error) {
2287                         if (!td->error && td->o.continue_on_error &&
2288                             td->first_error) {
2289                                 ts->error = td->first_error;
2290                                 snprintf(ts->verror, sizeof(ts->verror), "%s",
2291                                          td->verror);
2292                         } else  if (td->error) {
2293                                 ts->error = td->error;
2294                                 snprintf(ts->verror, sizeof(ts->verror), "%s",
2295                                          td->verror);
2296                         }
2297                 }
2298
2299                 ts->latency_depth = td->latency_qd;
2300                 ts->latency_target = td->o.latency_target;
2301                 ts->latency_percentile = td->o.latency_percentile;
2302                 ts->latency_window = td->o.latency_window;
2303
2304                 ts->nr_block_infos = td->ts.nr_block_infos;
2305                 for (k = 0; k < ts->nr_block_infos; k++)
2306                         ts->block_infos[k] = td->ts.block_infos[k];
2307
2308                 sum_thread_stats(ts, &td->ts);
2309
2310                 ts->members++;
2311
2312                 if (td->o.ss_dur) {
2313                         ts->ss_state = td->ss.state;
2314                         ts->ss_dur = td->ss.dur;
2315                         ts->ss_head = td->ss.head;
2316                         ts->ss_bw_data = td->ss.bw_data;
2317                         ts->ss_iops_data = td->ss.iops_data;
2318                         ts->ss_limit.u.f = td->ss.limit;
2319                         ts->ss_slope.u.f = td->ss.slope;
2320                         ts->ss_deviation.u.f = td->ss.deviation;
2321                         ts->ss_criterion.u.f = td->ss.criterion;
2322                 }
2323                 else
2324                         ts->ss_dur = ts->ss_state = 0;
2325         }
2326
2327         for (i = 0; i < nr_ts; i++) {
2328                 unsigned long long bw;
2329
2330                 ts = &threadstats[i];
2331                 if (ts->groupid == -1)
2332                         continue;
2333                 rs = &runstats[ts->groupid];
2334                 rs->kb_base = ts->kb_base;
2335                 rs->unit_base = ts->unit_base;
2336                 rs->sig_figs = ts->sig_figs;
2337                 rs->unified_rw_rep |= ts->unified_rw_rep;
2338
2339                 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
2340                         if (!ts->runtime[j])
2341                                 continue;
2342                         if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
2343                                 rs->min_run[j] = ts->runtime[j];
2344                         if (ts->runtime[j] > rs->max_run[j])
2345                                 rs->max_run[j] = ts->runtime[j];
2346
2347                         bw = 0;
2348                         if (ts->runtime[j])
2349                                 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
2350                         if (bw < rs->min_bw[j])
2351                                 rs->min_bw[j] = bw;
2352                         if (bw > rs->max_bw[j])
2353                                 rs->max_bw[j] = bw;
2354
2355                         rs->iobytes[j] += ts->io_bytes[j];
2356                 }
2357         }
2358
2359         for (i = 0; i < groupid + 1; i++) {
2360                 enum fio_ddir ddir;
2361
2362                 rs = &runstats[i];
2363
2364                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2365                         if (rs->max_run[ddir])
2366                                 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
2367                                                 rs->max_run[ddir];
2368                 }
2369         }
2370
2371         for (i = 0; i < FIO_OUTPUT_NR; i++)
2372                 buf_output_init(&output[i]);
2373
2374         /*
2375          * don't overwrite last signal output
2376          */
2377         if (output_format & FIO_OUTPUT_NORMAL)
2378                 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
2379         if (output_format & FIO_OUTPUT_JSON) {
2380                 struct thread_data *global;
2381                 char time_buf[32];
2382                 struct timeval now;
2383                 unsigned long long ms_since_epoch;
2384                 time_t tv_sec;
2385
2386                 gettimeofday(&now, NULL);
2387                 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
2388                                  (unsigned long long)(now.tv_usec) / 1000;
2389
2390                 tv_sec = now.tv_sec;
2391                 os_ctime_r(&tv_sec, time_buf, sizeof(time_buf));
2392                 if (time_buf[strlen(time_buf) - 1] == '\n')
2393                         time_buf[strlen(time_buf) - 1] = '\0';
2394
2395                 root = json_create_object();
2396                 json_object_add_value_string(root, "fio version", fio_version_string);
2397                 json_object_add_value_int(root, "timestamp", now.tv_sec);
2398                 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
2399                 json_object_add_value_string(root, "time", time_buf);
2400                 global = get_global_options();
2401                 json_add_job_opts(root, "global options", &global->opt_list);
2402                 array = json_create_array();
2403                 json_object_add_value_array(root, "jobs", array);
2404         }
2405
2406         if (is_backend)
2407                 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
2408
2409         for (i = 0; i < nr_ts; i++) {
2410                 ts = &threadstats[i];
2411                 rs = &runstats[ts->groupid];
2412
2413                 if (is_backend) {
2414                         fio_server_send_job_options(opt_lists[i], i);
2415                         fio_server_send_ts(ts, rs);
2416                 } else {
2417                         if (output_format & FIO_OUTPUT_TERSE)
2418                                 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
2419                         if (output_format & FIO_OUTPUT_JSON) {
2420                                 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
2421                                 json_array_add_value_object(array, tmp);
2422                         }
2423                         if (output_format & FIO_OUTPUT_NORMAL)
2424                                 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
2425                 }
2426         }
2427         if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
2428                 /* disk util stats, if any */
2429                 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
2430
2431                 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
2432
2433                 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
2434                 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
2435                 json_free_object(root);
2436         }
2437
2438         for (i = 0; i < groupid + 1; i++) {
2439                 rs = &runstats[i];
2440
2441                 rs->groupid = i;
2442                 if (is_backend)
2443                         fio_server_send_gs(rs);
2444                 else if (output_format & FIO_OUTPUT_NORMAL)
2445                         show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
2446         }
2447
2448         if (is_backend)
2449                 fio_server_send_du();
2450         else if (output_format & FIO_OUTPUT_NORMAL) {
2451                 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
2452                 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
2453         }
2454
2455         for (i = 0; i < FIO_OUTPUT_NR; i++) {
2456                 struct buf_output *out = &output[i];
2457
2458                 log_info_buf(out->buf, out->buflen);
2459                 buf_output_free(out);
2460         }
2461
2462         fio_idle_prof_cleanup();
2463
2464         log_info_flush();
2465         free(runstats);
2466         free(threadstats);
2467         free(opt_lists);
2468 }
2469
2470 int __show_running_run_stats(void)
2471 {
2472         struct thread_data *td;
2473         unsigned long long *rt;
2474         struct timespec ts;
2475         int i;
2476
2477         fio_sem_down(stat_sem);
2478
2479         rt = malloc(thread_number * sizeof(unsigned long long));
2480         fio_gettime(&ts, NULL);
2481
2482         for_each_td(td, i) {
2483                 td->update_rusage = 1;
2484                 for_each_rw_ddir(ddir) {
2485                         td->ts.io_bytes[ddir] = td->io_bytes[ddir];
2486                 }
2487                 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
2488
2489                 rt[i] = mtime_since(&td->start, &ts);
2490                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2491                         td->ts.runtime[DDIR_READ] += rt[i];
2492                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2493                         td->ts.runtime[DDIR_WRITE] += rt[i];
2494                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2495                         td->ts.runtime[DDIR_TRIM] += rt[i];
2496         }
2497
2498         for_each_td(td, i) {
2499                 if (td->runstate >= TD_EXITED)
2500                         continue;
2501                 if (td->rusage_sem) {
2502                         td->update_rusage = 1;
2503                         fio_sem_down(td->rusage_sem);
2504                 }
2505                 td->update_rusage = 0;
2506         }
2507
2508         __show_run_stats();
2509
2510         for_each_td(td, i) {
2511                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2512                         td->ts.runtime[DDIR_READ] -= rt[i];
2513                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2514                         td->ts.runtime[DDIR_WRITE] -= rt[i];
2515                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2516                         td->ts.runtime[DDIR_TRIM] -= rt[i];
2517         }
2518
2519         free(rt);
2520         fio_sem_up(stat_sem);
2521
2522         return 0;
2523 }
2524
2525 static bool status_file_disabled;
2526
2527 #define FIO_STATUS_FILE         "fio-dump-status"
2528
2529 static int check_status_file(void)
2530 {
2531         struct stat sb;
2532         const char *temp_dir;
2533         char fio_status_file_path[PATH_MAX];
2534
2535         if (status_file_disabled)
2536                 return 0;
2537
2538         temp_dir = getenv("TMPDIR");
2539         if (temp_dir == NULL) {
2540                 temp_dir = getenv("TEMP");
2541                 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
2542                         temp_dir = NULL;
2543         }
2544         if (temp_dir == NULL)
2545                 temp_dir = "/tmp";
2546 #ifdef __COVERITY__
2547         __coverity_tainted_data_sanitize__(temp_dir);
2548 #endif
2549
2550         snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
2551
2552         if (stat(fio_status_file_path, &sb))
2553                 return 0;
2554
2555         if (unlink(fio_status_file_path) < 0) {
2556                 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
2557                                                         strerror(errno));
2558                 log_err("fio: disabling status file updates\n");
2559                 status_file_disabled = true;
2560         }
2561
2562         return 1;
2563 }
2564
2565 void check_for_running_stats(void)
2566 {
2567         if (check_status_file()) {
2568                 show_running_run_stats();
2569                 return;
2570         }
2571 }
2572
2573 static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2574 {
2575         double val = data;
2576         double delta;
2577
2578         if (data > is->max_val)
2579                 is->max_val = data;
2580         if (data < is->min_val)
2581                 is->min_val = data;
2582
2583         delta = val - is->mean.u.f;
2584         if (delta) {
2585                 is->mean.u.f += delta / (is->samples + 1.0);
2586                 is->S.u.f += delta * (val - is->mean.u.f);
2587         }
2588
2589         is->samples++;
2590 }
2591
2592 /*
2593  * Return a struct io_logs, which is added to the tail of the log
2594  * list for 'iolog'.
2595  */
2596 static struct io_logs *get_new_log(struct io_log *iolog)
2597 {
2598         size_t new_samples;
2599         struct io_logs *cur_log;
2600
2601         /*
2602          * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2603          * forever
2604          */
2605         if (!iolog->cur_log_max) {
2606                 new_samples = iolog->td->o.log_entries;
2607         } else {
2608                 new_samples = iolog->cur_log_max * 2;
2609                 if (new_samples > MAX_LOG_ENTRIES)
2610                         new_samples = MAX_LOG_ENTRIES;
2611         }
2612
2613         cur_log = smalloc(sizeof(*cur_log));
2614         if (cur_log) {
2615                 INIT_FLIST_HEAD(&cur_log->list);
2616                 cur_log->log = calloc(new_samples, log_entry_sz(iolog));
2617                 if (cur_log->log) {
2618                         cur_log->nr_samples = 0;
2619                         cur_log->max_samples = new_samples;
2620                         flist_add_tail(&cur_log->list, &iolog->io_logs);
2621                         iolog->cur_log_max = new_samples;
2622                         return cur_log;
2623                 }
2624                 sfree(cur_log);
2625         }
2626
2627         return NULL;
2628 }
2629
2630 /*
2631  * Add and return a new log chunk, or return current log if big enough
2632  */
2633 static struct io_logs *regrow_log(struct io_log *iolog)
2634 {
2635         struct io_logs *cur_log;
2636         int i;
2637
2638         if (!iolog || iolog->disabled)
2639                 goto disable;
2640
2641         cur_log = iolog_cur_log(iolog);
2642         if (!cur_log) {
2643                 cur_log = get_new_log(iolog);
2644                 if (!cur_log)
2645                         return NULL;
2646         }
2647
2648         if (cur_log->nr_samples < cur_log->max_samples)
2649                 return cur_log;
2650
2651         /*
2652          * No room for a new sample. If we're compressing on the fly, flush
2653          * out the current chunk
2654          */
2655         if (iolog->log_gz) {
2656                 if (iolog_cur_flush(iolog, cur_log)) {
2657                         log_err("fio: failed flushing iolog! Will stop logging.\n");
2658                         return NULL;
2659                 }
2660         }
2661
2662         /*
2663          * Get a new log array, and add to our list
2664          */
2665         cur_log = get_new_log(iolog);
2666         if (!cur_log) {
2667                 log_err("fio: failed extending iolog! Will stop logging.\n");
2668                 return NULL;
2669         }
2670
2671         if (!iolog->pending || !iolog->pending->nr_samples)
2672                 return cur_log;
2673
2674         /*
2675          * Flush pending items to new log
2676          */
2677         for (i = 0; i < iolog->pending->nr_samples; i++) {
2678                 struct io_sample *src, *dst;
2679
2680                 src = get_sample(iolog, iolog->pending, i);
2681                 dst = get_sample(iolog, cur_log, i);
2682                 memcpy(dst, src, log_entry_sz(iolog));
2683         }
2684         cur_log->nr_samples = iolog->pending->nr_samples;
2685
2686         iolog->pending->nr_samples = 0;
2687         return cur_log;
2688 disable:
2689         if (iolog)
2690                 iolog->disabled = true;
2691         return NULL;
2692 }
2693
2694 void regrow_logs(struct thread_data *td)
2695 {
2696         regrow_log(td->slat_log);
2697         regrow_log(td->clat_log);
2698         regrow_log(td->clat_hist_log);
2699         regrow_log(td->lat_log);
2700         regrow_log(td->bw_log);
2701         regrow_log(td->iops_log);
2702         td->flags &= ~TD_F_REGROW_LOGS;
2703 }
2704
2705 void regrow_agg_logs(void)
2706 {
2707         enum fio_ddir ddir;
2708
2709         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2710                 regrow_log(agg_io_log[ddir]);
2711 }
2712
2713 static struct io_logs *get_cur_log(struct io_log *iolog)
2714 {
2715         struct io_logs *cur_log;
2716
2717         cur_log = iolog_cur_log(iolog);
2718         if (!cur_log) {
2719                 cur_log = get_new_log(iolog);
2720                 if (!cur_log)
2721                         return NULL;
2722         }
2723
2724         if (cur_log->nr_samples < cur_log->max_samples)
2725                 return cur_log;
2726
2727         /*
2728          * Out of space. If we're in IO offload mode, or we're not doing
2729          * per unit logging (hence logging happens outside of the IO thread
2730          * as well), add a new log chunk inline. If we're doing inline
2731          * submissions, flag 'td' as needing a log regrow and we'll take
2732          * care of it on the submission side.
2733          */
2734         if ((iolog->td && iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD) ||
2735             !per_unit_log(iolog))
2736                 return regrow_log(iolog);
2737
2738         if (iolog->td)
2739                 iolog->td->flags |= TD_F_REGROW_LOGS;
2740         if (iolog->pending)
2741                 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2742         return iolog->pending;
2743 }
2744
2745 static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2746                              enum fio_ddir ddir, unsigned long long bs,
2747                              unsigned long t, uint64_t offset,
2748                              unsigned int priority)
2749 {
2750         struct io_logs *cur_log;
2751
2752         if (iolog->disabled)
2753                 return;
2754         if (flist_empty(&iolog->io_logs))
2755                 iolog->avg_last[ddir] = t;
2756
2757         cur_log = get_cur_log(iolog);
2758         if (cur_log) {
2759                 struct io_sample *s;
2760
2761                 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2762
2763                 s->data = data;
2764                 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2765                 io_sample_set_ddir(iolog, s, ddir);
2766                 s->bs = bs;
2767                 s->priority = priority;
2768
2769                 if (iolog->log_offset) {
2770                         struct io_sample_offset *so = (void *) s;
2771
2772                         so->offset = offset;
2773                 }
2774
2775                 cur_log->nr_samples++;
2776                 return;
2777         }
2778
2779         iolog->disabled = true;
2780 }
2781
2782 static inline void reset_io_stat(struct io_stat *ios)
2783 {
2784         ios->min_val = -1ULL;
2785         ios->max_val = ios->samples = 0;
2786         ios->mean.u.f = ios->S.u.f = 0;
2787 }
2788
2789 static inline void reset_io_u_plat(uint64_t *io_u_plat)
2790 {
2791         int i;
2792
2793         for (i = 0; i < FIO_IO_U_PLAT_NR; i++)
2794                 io_u_plat[i] = 0;
2795 }
2796
2797 void reset_io_stats(struct thread_data *td)
2798 {
2799         struct thread_stat *ts = &td->ts;
2800         int i, j;
2801
2802         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2803                 reset_io_stat(&ts->clat_high_prio_stat[i]);
2804                 reset_io_stat(&ts->clat_low_prio_stat[i]);
2805                 reset_io_stat(&ts->clat_stat[i]);
2806                 reset_io_stat(&ts->slat_stat[i]);
2807                 reset_io_stat(&ts->lat_stat[i]);
2808                 reset_io_stat(&ts->bw_stat[i]);
2809                 reset_io_stat(&ts->iops_stat[i]);
2810
2811                 ts->io_bytes[i] = 0;
2812                 ts->runtime[i] = 0;
2813                 ts->total_io_u[i] = 0;
2814                 ts->short_io_u[i] = 0;
2815                 ts->drop_io_u[i] = 0;
2816
2817                 reset_io_u_plat(ts->io_u_plat_high_prio[i]);
2818                 reset_io_u_plat(ts->io_u_plat_low_prio[i]);
2819         }
2820
2821         for (i = 0; i < FIO_LAT_CNT; i++)
2822                 for (j = 0; j < DDIR_RWDIR_CNT; j++)
2823                         reset_io_u_plat(ts->io_u_plat[i][j]);
2824
2825         ts->total_io_u[DDIR_SYNC] = 0;
2826         reset_io_u_plat(ts->io_u_sync_plat);
2827
2828         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2829                 ts->io_u_map[i] = 0;
2830                 ts->io_u_submit[i] = 0;
2831                 ts->io_u_complete[i] = 0;
2832         }
2833
2834         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2835                 ts->io_u_lat_n[i] = 0;
2836         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2837                 ts->io_u_lat_u[i] = 0;
2838         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2839                 ts->io_u_lat_m[i] = 0;
2840
2841         ts->total_submit = 0;
2842         ts->total_complete = 0;
2843         ts->nr_zone_resets = 0;
2844         ts->cachehit = ts->cachemiss = 0;
2845 }
2846
2847 static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2848                               unsigned long elapsed, bool log_max)
2849 {
2850         /*
2851          * Note an entry in the log. Use the mean from the logged samples,
2852          * making sure to properly round up. Only write a log entry if we
2853          * had actual samples done.
2854          */
2855         if (iolog->avg_window[ddir].samples) {
2856                 union io_sample_data data;
2857
2858                 if (log_max)
2859                         data.val = iolog->avg_window[ddir].max_val;
2860                 else
2861                         data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2862
2863                 __add_log_sample(iolog, data, ddir, 0, elapsed, 0, 0);
2864         }
2865
2866         reset_io_stat(&iolog->avg_window[ddir]);
2867 }
2868
2869 static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2870                              bool log_max)
2871 {
2872         enum fio_ddir ddir;
2873
2874         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2875                 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2876 }
2877
2878 static unsigned long add_log_sample(struct thread_data *td,
2879                                     struct io_log *iolog,
2880                                     union io_sample_data data,
2881                                     enum fio_ddir ddir, unsigned long long bs,
2882                                     uint64_t offset, unsigned int ioprio)
2883 {
2884         unsigned long elapsed, this_window;
2885
2886         if (!ddir_rw(ddir))
2887                 return 0;
2888
2889         elapsed = mtime_since_now(&td->epoch);
2890
2891         /*
2892          * If no time averaging, just add the log sample.
2893          */
2894         if (!iolog->avg_msec) {
2895                 __add_log_sample(iolog, data, ddir, bs, elapsed, offset,
2896                                  ioprio);
2897                 return 0;
2898         }
2899
2900         /*
2901          * Add the sample. If the time period has passed, then
2902          * add that entry to the log and clear.
2903          */
2904         add_stat_sample(&iolog->avg_window[ddir], data.val);
2905
2906         /*
2907          * If period hasn't passed, adding the above sample is all we
2908          * need to do.
2909          */
2910         this_window = elapsed - iolog->avg_last[ddir];
2911         if (elapsed < iolog->avg_last[ddir])
2912                 return iolog->avg_last[ddir] - elapsed;
2913         else if (this_window < iolog->avg_msec) {
2914                 unsigned long diff = iolog->avg_msec - this_window;
2915
2916                 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2917                         return diff;
2918         }
2919
2920         __add_stat_to_log(iolog, ddir, elapsed, td->o.log_max != 0);
2921
2922         iolog->avg_last[ddir] = elapsed - (elapsed % iolog->avg_msec);
2923
2924         return iolog->avg_msec;
2925 }
2926
2927 void finalize_logs(struct thread_data *td, bool unit_logs)
2928 {
2929         unsigned long elapsed;
2930
2931         elapsed = mtime_since_now(&td->epoch);
2932
2933         if (td->clat_log && unit_logs)
2934                 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2935         if (td->slat_log && unit_logs)
2936                 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2937         if (td->lat_log && unit_logs)
2938                 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2939         if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2940                 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2941         if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2942                 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2943 }
2944
2945 void add_agg_sample(union io_sample_data data, enum fio_ddir ddir,
2946                     unsigned long long bs)
2947 {
2948         struct io_log *iolog;
2949
2950         if (!ddir_rw(ddir))
2951                 return;
2952
2953         iolog = agg_io_log[ddir];
2954         __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0, 0);
2955 }
2956
2957 void add_sync_clat_sample(struct thread_stat *ts, unsigned long long nsec)
2958 {
2959         unsigned int idx = plat_val_to_idx(nsec);
2960         assert(idx < FIO_IO_U_PLAT_NR);
2961
2962         ts->io_u_sync_plat[idx]++;
2963         add_stat_sample(&ts->sync_stat, nsec);
2964 }
2965
2966 static inline void add_lat_percentile_sample(struct thread_stat *ts,
2967                                              unsigned long long nsec,
2968                                              enum fio_ddir ddir,
2969                                              enum fio_lat lat)
2970 {
2971         unsigned int idx = plat_val_to_idx(nsec);
2972         assert(idx < FIO_IO_U_PLAT_NR);
2973
2974         ts->io_u_plat[lat][ddir][idx]++;
2975 }
2976
2977 static inline void add_lat_percentile_prio_sample(struct thread_stat *ts,
2978                                                   unsigned long long nsec,
2979                                                   enum fio_ddir ddir,
2980                                                   bool high_prio)
2981 {
2982         unsigned int idx = plat_val_to_idx(nsec);
2983
2984         if (!high_prio)
2985                 ts->io_u_plat_low_prio[ddir][idx]++;
2986         else
2987                 ts->io_u_plat_high_prio[ddir][idx]++;
2988 }
2989
2990 void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2991                      unsigned long long nsec, unsigned long long bs,
2992                      uint64_t offset, unsigned int ioprio, bool high_prio)
2993 {
2994         const bool needs_lock = td_async_processing(td);
2995         unsigned long elapsed, this_window;
2996         struct thread_stat *ts = &td->ts;
2997         struct io_log *iolog = td->clat_hist_log;
2998
2999         if (needs_lock)
3000                 __td_io_u_lock(td);
3001
3002         add_stat_sample(&ts->clat_stat[ddir], nsec);
3003
3004         /*
3005          * When lat_percentiles=1 (default 0), the reported high/low priority
3006          * percentiles and stats are used for describing total latency values,
3007          * even though the variable names themselves start with clat_.
3008          *
3009          * Because of the above definition, add a prio stat sample only when
3010          * lat_percentiles=0. add_lat_sample() will add the prio stat sample
3011          * when lat_percentiles=1.
3012          */
3013         if (!ts->lat_percentiles) {
3014                 if (high_prio)
3015                         add_stat_sample(&ts->clat_high_prio_stat[ddir], nsec);
3016                 else
3017                         add_stat_sample(&ts->clat_low_prio_stat[ddir], nsec);
3018         }
3019
3020         if (td->clat_log)
3021                 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
3022                                offset, ioprio);
3023
3024         if (ts->clat_percentiles) {
3025                 /*
3026                  * Because of the above definition, add a prio lat percentile
3027                  * sample only when lat_percentiles=0. add_lat_sample() will add
3028                  * the prio lat percentile sample when lat_percentiles=1.
3029                  */
3030                 add_lat_percentile_sample(ts, nsec, ddir, FIO_CLAT);
3031                 if (!ts->lat_percentiles)
3032                         add_lat_percentile_prio_sample(ts, nsec, ddir,
3033                                                        high_prio);
3034         }
3035
3036         if (iolog && iolog->hist_msec) {
3037                 struct io_hist *hw = &iolog->hist_window[ddir];
3038
3039                 hw->samples++;
3040                 elapsed = mtime_since_now(&td->epoch);
3041                 if (!hw->hist_last)
3042                         hw->hist_last = elapsed;
3043                 this_window = elapsed - hw->hist_last;
3044
3045                 if (this_window >= iolog->hist_msec) {
3046                         uint64_t *io_u_plat;
3047                         struct io_u_plat_entry *dst;
3048
3049                         /*
3050                          * Make a byte-for-byte copy of the latency histogram
3051                          * stored in td->ts.io_u_plat[ddir], recording it in a
3052                          * log sample. Note that the matching call to free() is
3053                          * located in iolog.c after printing this sample to the
3054                          * log file.
3055                          */
3056                         io_u_plat = (uint64_t *) td->ts.io_u_plat[FIO_CLAT][ddir];
3057                         dst = malloc(sizeof(struct io_u_plat_entry));
3058                         memcpy(&(dst->io_u_plat), io_u_plat,
3059                                 FIO_IO_U_PLAT_NR * sizeof(uint64_t));
3060                         flist_add(&dst->list, &hw->list);
3061                         __add_log_sample(iolog, sample_plat(dst), ddir, bs,
3062                                          elapsed, offset, ioprio);
3063
3064                         /*
3065                          * Update the last time we recorded as being now, minus
3066                          * any drift in time we encountered before actually
3067                          * making the record.
3068                          */
3069                         hw->hist_last = elapsed - (this_window - iolog->hist_msec);
3070                         hw->samples = 0;
3071                 }
3072         }
3073
3074         if (needs_lock)
3075                 __td_io_u_unlock(td);
3076 }
3077
3078 void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
3079                      unsigned long long nsec, unsigned long long bs,
3080                      uint64_t offset, unsigned int ioprio)
3081 {
3082         const bool needs_lock = td_async_processing(td);
3083         struct thread_stat *ts = &td->ts;
3084
3085         if (!ddir_rw(ddir))
3086                 return;
3087
3088         if (needs_lock)
3089                 __td_io_u_lock(td);
3090
3091         add_stat_sample(&ts->slat_stat[ddir], nsec);
3092
3093         if (td->slat_log)
3094                 add_log_sample(td, td->slat_log, sample_val(nsec), ddir, bs,
3095                                offset, ioprio);
3096
3097         if (ts->slat_percentiles)
3098                 add_lat_percentile_sample(ts, nsec, ddir, FIO_SLAT);
3099
3100         if (needs_lock)
3101                 __td_io_u_unlock(td);
3102 }
3103
3104 void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
3105                     unsigned long long nsec, unsigned long long bs,
3106                     uint64_t offset, unsigned int ioprio, bool high_prio)
3107 {
3108         const bool needs_lock = td_async_processing(td);
3109         struct thread_stat *ts = &td->ts;
3110
3111         if (!ddir_rw(ddir))
3112                 return;
3113
3114         if (needs_lock)
3115                 __td_io_u_lock(td);
3116
3117         add_stat_sample(&ts->lat_stat[ddir], nsec);
3118
3119         if (td->lat_log)
3120                 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
3121                                offset, ioprio);
3122
3123         /*
3124          * When lat_percentiles=1 (default 0), the reported high/low priority
3125          * percentiles and stats are used for describing total latency values,
3126          * even though the variable names themselves start with clat_.
3127          *
3128          * Because of the above definition, add a prio stat and prio lat
3129          * percentile sample only when lat_percentiles=1. add_clat_sample() will
3130          * add the prio stat and prio lat percentile sample when
3131          * lat_percentiles=0.
3132          */
3133         if (ts->lat_percentiles) {
3134                 add_lat_percentile_sample(ts, nsec, ddir, FIO_LAT);
3135                 add_lat_percentile_prio_sample(ts, nsec, ddir, high_prio);
3136                 if (high_prio)
3137                         add_stat_sample(&ts->clat_high_prio_stat[ddir], nsec);
3138                 else
3139                         add_stat_sample(&ts->clat_low_prio_stat[ddir], nsec);
3140
3141         }
3142         if (needs_lock)
3143                 __td_io_u_unlock(td);
3144 }
3145
3146 void add_bw_sample(struct thread_data *td, struct io_u *io_u,
3147                    unsigned int bytes, unsigned long long spent)
3148 {
3149         const bool needs_lock = td_async_processing(td);
3150         struct thread_stat *ts = &td->ts;
3151         unsigned long rate;
3152
3153         if (spent)
3154                 rate = (unsigned long) (bytes * 1000000ULL / spent);
3155         else
3156                 rate = 0;
3157
3158         if (needs_lock)
3159                 __td_io_u_lock(td);
3160
3161         add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
3162
3163         if (td->bw_log)
3164                 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
3165                                bytes, io_u->offset, io_u->ioprio);
3166
3167         td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
3168
3169         if (needs_lock)
3170                 __td_io_u_unlock(td);
3171 }
3172
3173 static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
3174                          struct timespec *t, unsigned int avg_time,
3175                          uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
3176                          struct io_stat *stat, struct io_log *log,
3177                          bool is_kb)
3178 {
3179         const bool needs_lock = td_async_processing(td);
3180         unsigned long spent, rate;
3181         enum fio_ddir ddir;
3182         unsigned long next, next_log;
3183
3184         next_log = avg_time;
3185
3186         spent = mtime_since(parent_tv, t);
3187         if (spent < avg_time && avg_time - spent > LOG_MSEC_SLACK)
3188                 return avg_time - spent;
3189
3190         if (needs_lock)
3191                 __td_io_u_lock(td);
3192
3193         /*
3194          * Compute both read and write rates for the interval.
3195          */
3196         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
3197                 uint64_t delta;
3198
3199                 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
3200                 if (!delta)
3201                         continue; /* No entries for interval */
3202
3203                 if (spent) {
3204                         if (is_kb)
3205                                 rate = delta * 1000 / spent / 1024; /* KiB/s */
3206                         else
3207                                 rate = (delta * 1000) / spent;
3208                 } else
3209                         rate = 0;
3210
3211                 add_stat_sample(&stat[ddir], rate);
3212
3213                 if (log) {
3214                         unsigned long long bs = 0;
3215
3216                         if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
3217                                 bs = td->o.min_bs[ddir];
3218
3219                         next = add_log_sample(td, log, sample_val(rate), ddir,
3220                                               bs, 0, 0);
3221                         next_log = min(next_log, next);
3222                 }
3223
3224                 stat_io_bytes[ddir] = this_io_bytes[ddir];
3225         }
3226
3227         *parent_tv = *t;
3228
3229         if (needs_lock)
3230                 __td_io_u_unlock(td);
3231
3232         if (spent <= avg_time)
3233                 next = avg_time;
3234         else
3235                 next = avg_time - (1 + spent - avg_time);
3236
3237         return min(next, next_log);
3238 }
3239
3240 static int add_bw_samples(struct thread_data *td, struct timespec *t)
3241 {
3242         return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
3243                                 td->this_io_bytes, td->stat_io_bytes,
3244                                 td->ts.bw_stat, td->bw_log, true);
3245 }
3246
3247 void add_iops_sample(struct thread_data *td, struct io_u *io_u,
3248                      unsigned int bytes)
3249 {
3250         const bool needs_lock = td_async_processing(td);
3251         struct thread_stat *ts = &td->ts;
3252
3253         if (needs_lock)
3254                 __td_io_u_lock(td);
3255
3256         add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
3257
3258         if (td->iops_log)
3259                 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
3260                                bytes, io_u->offset, io_u->ioprio);
3261
3262         td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
3263
3264         if (needs_lock)
3265                 __td_io_u_unlock(td);
3266 }
3267
3268 static int add_iops_samples(struct thread_data *td, struct timespec *t)
3269 {
3270         return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
3271                                 td->this_io_blocks, td->stat_io_blocks,
3272                                 td->ts.iops_stat, td->iops_log, false);
3273 }
3274
3275 /*
3276  * Returns msecs to next event
3277  */
3278 int calc_log_samples(void)
3279 {
3280         struct thread_data *td;
3281         unsigned int next = ~0U, tmp = 0, next_mod = 0, log_avg_msec_min = -1U;
3282         struct timespec now;
3283         int i;
3284         long elapsed_time = 0;
3285
3286         fio_gettime(&now, NULL);
3287
3288         for_each_td(td, i) {
3289                 elapsed_time = mtime_since_now(&td->epoch);
3290
3291                 if (!td->o.stats)
3292                         continue;
3293                 if (in_ramp_time(td) ||
3294                     !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
3295                         next = min(td->o.iops_avg_time, td->o.bw_avg_time);
3296                         continue;
3297                 }
3298                 if (!td->bw_log ||
3299                         (td->bw_log && !per_unit_log(td->bw_log))) {
3300                         tmp = add_bw_samples(td, &now);
3301
3302                         if (td->bw_log)
3303                                 log_avg_msec_min = min(log_avg_msec_min, (unsigned int)td->bw_log->avg_msec);
3304                 }
3305                 if (!td->iops_log ||
3306                         (td->iops_log && !per_unit_log(td->iops_log))) {
3307                         tmp = add_iops_samples(td, &now);
3308
3309                         if (td->iops_log)
3310                                 log_avg_msec_min = min(log_avg_msec_min, (unsigned int)td->iops_log->avg_msec);
3311                 }
3312
3313                 if (tmp < next)
3314                         next = tmp;
3315         }
3316
3317         /* if log_avg_msec_min has not been changed, set it to 0 */
3318         if (log_avg_msec_min == -1U)
3319                 log_avg_msec_min = 0;
3320
3321         if (log_avg_msec_min == 0)
3322                 next_mod = elapsed_time;
3323         else
3324                 next_mod = elapsed_time % log_avg_msec_min;
3325
3326         /* correction to keep the time on the log avg msec boundary */
3327         next = min(next, (log_avg_msec_min - next_mod));
3328
3329         return next == ~0U ? 0 : next;
3330 }
3331
3332 void stat_init(void)
3333 {
3334         stat_sem = fio_sem_init(FIO_SEM_UNLOCKED);
3335 }
3336
3337 void stat_exit(void)
3338 {
3339         /*
3340          * When we have the mutex, we know out-of-band access to it
3341          * have ended.
3342          */
3343         fio_sem_down(stat_sem);
3344         fio_sem_remove(stat_sem);
3345 }
3346
3347 /*
3348  * Called from signal handler. Wake up status thread.
3349  */
3350 void show_running_run_stats(void)
3351 {
3352         helper_do_stat();
3353 }
3354
3355 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
3356 {
3357         /* Ignore io_u's which span multiple blocks--they will just get
3358          * inaccurate counts. */
3359         int idx = (io_u->offset - io_u->file->file_offset)
3360                         / td->o.bs[DDIR_TRIM];
3361         uint32_t *info = &td->ts.block_infos[idx];
3362         assert(idx < td->ts.nr_block_infos);
3363         return info;
3364 }
3365