Merge branch 'patch-3' of https://github.com/yangjueji/fio
[fio.git] / stat.c
1 #include <stdio.h>
2 #include <string.h>
3 #include <stdlib.h>
4 #include <sys/time.h>
5 #include <sys/stat.h>
6 #include <math.h>
7
8 #include "fio.h"
9 #include "diskutil.h"
10 #include "lib/ieee754.h"
11 #include "json.h"
12 #include "lib/getrusage.h"
13 #include "idletime.h"
14 #include "lib/pow2.h"
15 #include "lib/output_buffer.h"
16 #include "helper_thread.h"
17 #include "smalloc.h"
18 #include "zbd.h"
19 #include "oslib/asprintf.h"
20
21 #ifdef WIN32
22 #define LOG_MSEC_SLACK  2
23 #else
24 #define LOG_MSEC_SLACK  1
25 #endif
26
27 struct fio_sem *stat_sem;
28
29 void clear_rusage_stat(struct thread_data *td)
30 {
31         struct thread_stat *ts = &td->ts;
32
33         fio_getrusage(&td->ru_start);
34         ts->usr_time = ts->sys_time = 0;
35         ts->ctx = 0;
36         ts->minf = ts->majf = 0;
37 }
38
39 void update_rusage_stat(struct thread_data *td)
40 {
41         struct thread_stat *ts = &td->ts;
42
43         fio_getrusage(&td->ru_end);
44         ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
45                                         &td->ru_end.ru_utime);
46         ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
47                                         &td->ru_end.ru_stime);
48         ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
49                         - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
50         ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
51         ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
52
53         memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
54 }
55
56 /*
57  * Given a latency, return the index of the corresponding bucket in
58  * the structure tracking percentiles.
59  *
60  * (1) find the group (and error bits) that the value (latency)
61  * belongs to by looking at its MSB. (2) find the bucket number in the
62  * group by looking at the index bits.
63  *
64  */
65 static unsigned int plat_val_to_idx(unsigned long long val)
66 {
67         unsigned int msb, error_bits, base, offset, idx;
68
69         /* Find MSB starting from bit 0 */
70         if (val == 0)
71                 msb = 0;
72         else
73                 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
74
75         /*
76          * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
77          * all bits of the sample as index
78          */
79         if (msb <= FIO_IO_U_PLAT_BITS)
80                 return val;
81
82         /* Compute the number of error bits to discard*/
83         error_bits = msb - FIO_IO_U_PLAT_BITS;
84
85         /* Compute the number of buckets before the group */
86         base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
87
88         /*
89          * Discard the error bits and apply the mask to find the
90          * index for the buckets in the group
91          */
92         offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
93
94         /* Make sure the index does not exceed (array size - 1) */
95         idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
96                 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
97
98         return idx;
99 }
100
101 /*
102  * Convert the given index of the bucket array to the value
103  * represented by the bucket
104  */
105 static unsigned long long plat_idx_to_val(unsigned int idx)
106 {
107         unsigned int error_bits;
108         unsigned long long k, base;
109
110         assert(idx < FIO_IO_U_PLAT_NR);
111
112         /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
113          * all bits of the sample as index */
114         if (idx < (FIO_IO_U_PLAT_VAL << 1))
115                 return idx;
116
117         /* Find the group and compute the minimum value of that group */
118         error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
119         base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
120
121         /* Find its bucket number of the group */
122         k = idx % FIO_IO_U_PLAT_VAL;
123
124         /* Return the mean of the range of the bucket */
125         return base + ((k + 0.5) * (1 << error_bits));
126 }
127
128 static int double_cmp(const void *a, const void *b)
129 {
130         const fio_fp64_t fa = *(const fio_fp64_t *) a;
131         const fio_fp64_t fb = *(const fio_fp64_t *) b;
132         int cmp = 0;
133
134         if (fa.u.f > fb.u.f)
135                 cmp = 1;
136         else if (fa.u.f < fb.u.f)
137                 cmp = -1;
138
139         return cmp;
140 }
141
142 unsigned int calc_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
143                                    fio_fp64_t *plist, unsigned long long **output,
144                                    unsigned long long *maxv, unsigned long long *minv)
145 {
146         unsigned long long sum = 0;
147         unsigned int len, i, j = 0;
148         unsigned long long *ovals = NULL;
149         bool is_last;
150
151         *minv = -1ULL;
152         *maxv = 0;
153
154         len = 0;
155         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
156                 len++;
157
158         if (!len)
159                 return 0;
160
161         /*
162          * Sort the percentile list. Note that it may already be sorted if
163          * we are using the default values, but since it's a short list this
164          * isn't a worry. Also note that this does not work for NaN values.
165          */
166         if (len > 1)
167                 qsort(plist, len, sizeof(plist[0]), double_cmp);
168
169         ovals = malloc(len * sizeof(*ovals));
170         if (!ovals)
171                 return 0;
172
173         /*
174          * Calculate bucket values, note down max and min values
175          */
176         is_last = false;
177         for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
178                 sum += io_u_plat[i];
179                 while (sum >= ((long double) plist[j].u.f / 100.0 * nr)) {
180                         assert(plist[j].u.f <= 100.0);
181
182                         ovals[j] = plat_idx_to_val(i);
183                         if (ovals[j] < *minv)
184                                 *minv = ovals[j];
185                         if (ovals[j] > *maxv)
186                                 *maxv = ovals[j];
187
188                         is_last = (j == len - 1) != 0;
189                         if (is_last)
190                                 break;
191
192                         j++;
193                 }
194         }
195
196         if (!is_last)
197                 log_err("fio: error calculating latency percentiles\n");
198
199         *output = ovals;
200         return len;
201 }
202
203 /*
204  * Find and display the p-th percentile of clat
205  */
206 static void show_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
207                                   fio_fp64_t *plist, unsigned int precision,
208                                   const char *pre, struct buf_output *out)
209 {
210         unsigned int divisor, len, i, j = 0;
211         unsigned long long minv, maxv;
212         unsigned long long *ovals;
213         int per_line, scale_down, time_width;
214         bool is_last;
215         char fmt[32];
216
217         len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
218         if (!len || !ovals)
219                 return;
220
221         /*
222          * We default to nsecs, but if the value range is such that we
223          * should scale down to usecs or msecs, do that.
224          */
225         if (minv > 2000000 && maxv > 99999999ULL) {
226                 scale_down = 2;
227                 divisor = 1000000;
228                 log_buf(out, "    %s percentiles (msec):\n     |", pre);
229         } else if (minv > 2000 && maxv > 99999) {
230                 scale_down = 1;
231                 divisor = 1000;
232                 log_buf(out, "    %s percentiles (usec):\n     |", pre);
233         } else {
234                 scale_down = 0;
235                 divisor = 1;
236                 log_buf(out, "    %s percentiles (nsec):\n     |", pre);
237         }
238
239
240         time_width = max(5, (int) (log10(maxv / divisor) + 1));
241         snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
242                         precision, time_width);
243         /* fmt will be something like " %5.2fth=[%4llu]%c" */
244         per_line = (80 - 7) / (precision + 10 + time_width);
245
246         for (j = 0; j < len; j++) {
247                 /* for formatting */
248                 if (j != 0 && (j % per_line) == 0)
249                         log_buf(out, "     |");
250
251                 /* end of the list */
252                 is_last = (j == len - 1) != 0;
253
254                 for (i = 0; i < scale_down; i++)
255                         ovals[j] = (ovals[j] + 999) / 1000;
256
257                 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
258
259                 if (is_last)
260                         break;
261
262                 if ((j % per_line) == per_line - 1)     /* for formatting */
263                         log_buf(out, "\n");
264         }
265
266         free(ovals);
267 }
268
269 static int get_nr_prios_with_samples(struct thread_stat *ts, enum fio_ddir ddir)
270 {
271         int i, nr_prios_with_samples = 0;
272
273         for (i = 0; i < ts->nr_clat_prio[ddir]; i++) {
274                 if (ts->clat_prio[ddir][i].clat_stat.samples)
275                         nr_prios_with_samples++;
276         }
277
278         return nr_prios_with_samples;
279 }
280
281 bool calc_lat(struct io_stat *is, unsigned long long *min,
282               unsigned long long *max, double *mean, double *dev)
283 {
284         double n = (double) is->samples;
285
286         if (n == 0)
287                 return false;
288
289         *min = is->min_val;
290         *max = is->max_val;
291         *mean = is->mean.u.f;
292
293         if (n > 1.0)
294                 *dev = sqrt(is->S.u.f / (n - 1.0));
295         else
296                 *dev = 0;
297
298         return true;
299 }
300
301 void show_mixed_group_stats(struct group_run_stats *rs, struct buf_output *out) 
302 {
303         char *io, *agg, *min, *max;
304         char *ioalt, *aggalt, *minalt, *maxalt;
305         uint64_t io_mix = 0, agg_mix = 0, min_mix = -1, max_mix = 0;
306         uint64_t min_run = -1, max_run = 0;
307         const int i2p = is_power_of_2(rs->kb_base);
308         int i;
309
310         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
311                 if (!rs->max_run[i])
312                         continue;
313                 io_mix += rs->iobytes[i];
314                 agg_mix += rs->agg[i];
315                 min_mix = min_mix < rs->min_bw[i] ? min_mix : rs->min_bw[i];
316                 max_mix = max_mix > rs->max_bw[i] ? max_mix : rs->max_bw[i];
317                 min_run = min_run < rs->min_run[i] ? min_run : rs->min_run[i];
318                 max_run = max_run > rs->max_run[i] ? max_run : rs->max_run[i];
319         }
320         io = num2str(io_mix, rs->sig_figs, 1, i2p, N2S_BYTE);
321         ioalt = num2str(io_mix, rs->sig_figs, 1, !i2p, N2S_BYTE);
322         agg = num2str(agg_mix, rs->sig_figs, 1, i2p, rs->unit_base);
323         aggalt = num2str(agg_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
324         min = num2str(min_mix, rs->sig_figs, 1, i2p, rs->unit_base);
325         minalt = num2str(min_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
326         max = num2str(max_mix, rs->sig_figs, 1, i2p, rs->unit_base);
327         maxalt = num2str(max_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
328         log_buf(out, "  MIXED: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
329                         agg, aggalt, min, max, minalt, maxalt, io, ioalt,
330                         (unsigned long long) min_run,
331                         (unsigned long long) max_run);
332         free(io);
333         free(agg);
334         free(min);
335         free(max);
336         free(ioalt);
337         free(aggalt);
338         free(minalt);
339         free(maxalt);
340 }
341
342 void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
343 {
344         char *io, *agg, *min, *max;
345         char *ioalt, *aggalt, *minalt, *maxalt;
346         const char *str[] = { "   READ", "  WRITE" , "   TRIM"};
347         int i;
348
349         log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
350
351         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
352                 const int i2p = is_power_of_2(rs->kb_base);
353
354                 if (!rs->max_run[i])
355                         continue;
356
357                 io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE);
358                 ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE);
359                 agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base);
360                 aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base);
361                 min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
362                 minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
363                 max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
364                 maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
365                 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
366                                 (rs->unified_rw_rep == UNIFIED_MIXED) ? "  MIXED" : str[i],
367                                 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
368                                 (unsigned long long) rs->min_run[i],
369                                 (unsigned long long) rs->max_run[i]);
370
371                 free(io);
372                 free(agg);
373                 free(min);
374                 free(max);
375                 free(ioalt);
376                 free(aggalt);
377                 free(minalt);
378                 free(maxalt);
379         }
380
381         /* Need to aggregate statistics to show mixed values */
382         if (rs->unified_rw_rep == UNIFIED_BOTH)
383                 show_mixed_group_stats(rs, out);
384 }
385
386 void stat_calc_dist(uint64_t *map, unsigned long total, double *io_u_dist)
387 {
388         int i;
389
390         /*
391          * Do depth distribution calculations
392          */
393         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
394                 if (total) {
395                         io_u_dist[i] = (double) map[i] / (double) total;
396                         io_u_dist[i] *= 100.0;
397                         if (io_u_dist[i] < 0.1 && map[i])
398                                 io_u_dist[i] = 0.1;
399                 } else
400                         io_u_dist[i] = 0.0;
401         }
402 }
403
404 static void stat_calc_lat(struct thread_stat *ts, double *dst,
405                           uint64_t *src, int nr)
406 {
407         unsigned long total = ddir_rw_sum(ts->total_io_u);
408         int i;
409
410         /*
411          * Do latency distribution calculations
412          */
413         for (i = 0; i < nr; i++) {
414                 if (total) {
415                         dst[i] = (double) src[i] / (double) total;
416                         dst[i] *= 100.0;
417                         if (dst[i] < 0.01 && src[i])
418                                 dst[i] = 0.01;
419                 } else
420                         dst[i] = 0.0;
421         }
422 }
423
424 /*
425  * To keep the terse format unaltered, add all of the ns latency
426  * buckets to the first us latency bucket
427  */
428 static void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
429 {
430         unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
431         int i;
432
433         stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
434
435         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
436                 ntotal += ts->io_u_lat_n[i];
437
438         io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
439 }
440
441 void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
442 {
443         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
444 }
445
446 void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
447 {
448         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
449 }
450
451 void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
452 {
453         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
454 }
455
456 static void display_lat(const char *name, unsigned long long min,
457                         unsigned long long max, double mean, double dev,
458                         struct buf_output *out)
459 {
460         const char *base = "(nsec)";
461         char *minp, *maxp;
462
463         if (nsec_to_msec(&min, &max, &mean, &dev))
464                 base = "(msec)";
465         else if (nsec_to_usec(&min, &max, &mean, &dev))
466                 base = "(usec)";
467
468         minp = num2str(min, 6, 1, 0, N2S_NONE);
469         maxp = num2str(max, 6, 1, 0, N2S_NONE);
470
471         log_buf(out, "    %s %s: min=%s, max=%s, avg=%5.02f,"
472                  " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
473
474         free(minp);
475         free(maxp);
476 }
477
478 static struct thread_stat *gen_mixed_ddir_stats_from_ts(struct thread_stat *ts)
479 {
480         struct thread_stat *ts_lcl;
481
482         /*
483          * Handle aggregation of Reads (ddir = 0), Writes (ddir = 1), and
484          * Trims (ddir = 2)
485          */
486         ts_lcl = malloc(sizeof(struct thread_stat));
487         if (!ts_lcl) {
488                 log_err("fio: failed to allocate local thread stat\n");
489                 return NULL;
490         }
491
492         init_thread_stat(ts_lcl);
493
494         /* calculate mixed stats  */
495         ts_lcl->unified_rw_rep = UNIFIED_MIXED;
496         ts_lcl->lat_percentiles = ts->lat_percentiles;
497         ts_lcl->clat_percentiles = ts->clat_percentiles;
498         ts_lcl->slat_percentiles = ts->slat_percentiles;
499         ts_lcl->percentile_precision = ts->percentile_precision;
500         memcpy(ts_lcl->percentile_list, ts->percentile_list, sizeof(ts->percentile_list));
501
502         sum_thread_stats(ts_lcl, ts);
503
504         return ts_lcl;
505 }
506
507 static double convert_agg_kbytes_percent(struct group_run_stats *rs,
508                                          enum fio_ddir ddir, int mean)
509 {
510         double p_of_agg = 100.0;
511         if (rs && rs->agg[ddir] > 1024) {
512                 p_of_agg = mean * 100.0 / (double) (rs->agg[ddir] / 1024.0);
513
514                 if (p_of_agg > 100.0)
515                         p_of_agg = 100.0;
516         }
517         return p_of_agg;
518 }
519
520 static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
521                              enum fio_ddir ddir, struct buf_output *out)
522 {
523         unsigned long runt;
524         unsigned long long min, max, bw, iops;
525         double mean, dev;
526         char *io_p, *bw_p, *bw_p_alt, *iops_p, *post_st = NULL;
527         int i2p, i;
528         const char *clat_type = ts->lat_percentiles ? "lat" : "clat";
529
530         if (ddir_sync(ddir)) {
531                 if (calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
532                         log_buf(out, "  %s:\n", "fsync/fdatasync/sync_file_range");
533                         display_lat(io_ddir_name(ddir), min, max, mean, dev, out);
534                         show_clat_percentiles(ts->io_u_sync_plat,
535                                                 ts->sync_stat.samples,
536                                                 ts->percentile_list,
537                                                 ts->percentile_precision,
538                                                 io_ddir_name(ddir), out);
539                 }
540                 return;
541         }
542
543         assert(ddir_rw(ddir));
544
545         if (!ts->runtime[ddir])
546                 return;
547
548         i2p = is_power_of_2(rs->kb_base);
549         runt = ts->runtime[ddir];
550
551         bw = (1000 * ts->io_bytes[ddir]) / runt;
552         io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
553         bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
554         bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
555
556         iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
557         iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
558         if (ddir == DDIR_WRITE || ddir == DDIR_TRIM)
559                 post_st = zbd_write_status(ts);
560         else if (ddir == DDIR_READ && ts->cachehit && ts->cachemiss) {
561                 uint64_t total;
562                 double hit;
563
564                 total = ts->cachehit + ts->cachemiss;
565                 hit = (double) ts->cachehit / (double) total;
566                 hit *= 100.0;
567                 if (asprintf(&post_st, "; Cachehit=%0.2f%%", hit) < 0)
568                         post_st = NULL;
569         }
570
571         log_buf(out, "  %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)%s\n",
572                         (ts->unified_rw_rep == UNIFIED_MIXED) ? "mixed" : io_ddir_name(ddir),
573                         iops_p, bw_p, bw_p_alt, io_p,
574                         (unsigned long long) ts->runtime[ddir],
575                         post_st ? : "");
576
577         free(post_st);
578         free(io_p);
579         free(bw_p);
580         free(bw_p_alt);
581         free(iops_p);
582
583         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
584                 display_lat("slat", min, max, mean, dev, out);
585         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
586                 display_lat("clat", min, max, mean, dev, out);
587         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
588                 display_lat(" lat", min, max, mean, dev, out);
589
590         /* Only print per prio stats if there are >= 2 prios with samples */
591         if (get_nr_prios_with_samples(ts, ddir) >= 2) {
592                 for (i = 0; i < ts->nr_clat_prio[ddir]; i++) {
593                         char buf[64];
594
595                         if (!calc_lat(&ts->clat_prio[ddir][i].clat_stat, &min,
596                                       &max, &mean, &dev))
597                                 continue;
598
599                         snprintf(buf, sizeof(buf),
600                                  "%s prio %u/%u",
601                                  clat_type,
602                                  ioprio_class(ts->clat_prio[ddir][i].ioprio),
603                                  ioprio(ts->clat_prio[ddir][i].ioprio));
604                         display_lat(buf, min, max, mean, dev, out);
605                 }
606         }
607
608         if (ts->slat_percentiles && ts->slat_stat[ddir].samples > 0)
609                 show_clat_percentiles(ts->io_u_plat[FIO_SLAT][ddir],
610                                         ts->slat_stat[ddir].samples,
611                                         ts->percentile_list,
612                                         ts->percentile_precision, "slat", out);
613         if (ts->clat_percentiles && ts->clat_stat[ddir].samples > 0)
614                 show_clat_percentiles(ts->io_u_plat[FIO_CLAT][ddir],
615                                         ts->clat_stat[ddir].samples,
616                                         ts->percentile_list,
617                                         ts->percentile_precision, "clat", out);
618         if (ts->lat_percentiles && ts->lat_stat[ddir].samples > 0)
619                 show_clat_percentiles(ts->io_u_plat[FIO_LAT][ddir],
620                                         ts->lat_stat[ddir].samples,
621                                         ts->percentile_list,
622                                         ts->percentile_precision, "lat", out);
623
624         if (ts->clat_percentiles || ts->lat_percentiles) {
625                 char prio_name[64];
626                 uint64_t samples;
627
628                 if (ts->lat_percentiles)
629                         samples = ts->lat_stat[ddir].samples;
630                 else
631                         samples = ts->clat_stat[ddir].samples;
632
633                 /* Only print per prio stats if there are >= 2 prios with samples */
634                 if (get_nr_prios_with_samples(ts, ddir) >= 2) {
635                         for (i = 0; i < ts->nr_clat_prio[ddir]; i++) {
636                                 uint64_t prio_samples =
637                                         ts->clat_prio[ddir][i].clat_stat.samples;
638
639                                 if (!prio_samples)
640                                         continue;
641
642                                 snprintf(prio_name, sizeof(prio_name),
643                                          "%s prio %u/%u (%.2f%% of IOs)",
644                                          clat_type,
645                                          ioprio_class(ts->clat_prio[ddir][i].ioprio),
646                                          ioprio(ts->clat_prio[ddir][i].ioprio),
647                                          100. * (double) prio_samples / (double) samples);
648                                 show_clat_percentiles(ts->clat_prio[ddir][i].io_u_plat,
649                                                 prio_samples, ts->percentile_list,
650                                                 ts->percentile_precision,
651                                                 prio_name, out);
652                         }
653                 }
654         }
655
656         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
657                 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
658                 const char *bw_str;
659
660                 if ((rs->unit_base == 1) && i2p)
661                         bw_str = "Kibit";
662                 else if (rs->unit_base == 1)
663                         bw_str = "kbit";
664                 else if (i2p)
665                         bw_str = "KiB";
666                 else
667                         bw_str = "kB";
668
669                 p_of_agg = convert_agg_kbytes_percent(rs, ddir, mean);
670
671                 if (rs->unit_base == 1) {
672                         min *= 8.0;
673                         max *= 8.0;
674                         mean *= 8.0;
675                         dev *= 8.0;
676                 }
677
678                 if (mean > fkb_base * fkb_base) {
679                         min /= fkb_base;
680                         max /= fkb_base;
681                         mean /= fkb_base;
682                         dev /= fkb_base;
683                         bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
684                 }
685
686                 log_buf(out, "   bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
687                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
688                         bw_str, min, max, p_of_agg, mean, dev,
689                         (&ts->bw_stat[ddir])->samples);
690         }
691         if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
692                 log_buf(out, "   iops        : min=%5llu, max=%5llu, "
693                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
694                         min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
695         }
696 }
697
698 static void show_mixed_ddir_status(struct group_run_stats *rs,
699                                    struct thread_stat *ts,
700                                    struct buf_output *out)
701 {
702         struct thread_stat *ts_lcl = gen_mixed_ddir_stats_from_ts(ts);
703
704         if (ts_lcl)
705                 show_ddir_status(rs, ts_lcl, DDIR_READ, out);
706
707         free_clat_prio_stats(ts_lcl);
708         free(ts_lcl);
709 }
710
711 static bool show_lat(double *io_u_lat, int nr, const char **ranges,
712                      const char *msg, struct buf_output *out)
713 {
714         bool new_line = true, shown = false;
715         int i, line = 0;
716
717         for (i = 0; i < nr; i++) {
718                 if (io_u_lat[i] <= 0.0)
719                         continue;
720                 shown = true;
721                 if (new_line) {
722                         if (line)
723                                 log_buf(out, "\n");
724                         log_buf(out, "  lat (%s)   : ", msg);
725                         new_line = false;
726                         line = 0;
727                 }
728                 if (line)
729                         log_buf(out, ", ");
730                 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
731                 line++;
732                 if (line == 5)
733                         new_line = true;
734         }
735
736         if (shown)
737                 log_buf(out, "\n");
738
739         return true;
740 }
741
742 static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
743 {
744         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
745                                  "250=", "500=", "750=", "1000=", };
746
747         show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
748 }
749
750 static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
751 {
752         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
753                                  "250=", "500=", "750=", "1000=", };
754
755         show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
756 }
757
758 static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
759 {
760         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
761                                  "250=", "500=", "750=", "1000=", "2000=",
762                                  ">=2000=", };
763
764         show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
765 }
766
767 static void show_latencies(struct thread_stat *ts, struct buf_output *out)
768 {
769         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
770         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
771         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
772
773         stat_calc_lat_n(ts, io_u_lat_n);
774         stat_calc_lat_u(ts, io_u_lat_u);
775         stat_calc_lat_m(ts, io_u_lat_m);
776
777         show_lat_n(io_u_lat_n, out);
778         show_lat_u(io_u_lat_u, out);
779         show_lat_m(io_u_lat_m, out);
780 }
781
782 static int block_state_category(int block_state)
783 {
784         switch (block_state) {
785         case BLOCK_STATE_UNINIT:
786                 return 0;
787         case BLOCK_STATE_TRIMMED:
788         case BLOCK_STATE_WRITTEN:
789                 return 1;
790         case BLOCK_STATE_WRITE_FAILURE:
791         case BLOCK_STATE_TRIM_FAILURE:
792                 return 2;
793         default:
794                 /* Silence compile warning on some BSDs and have a return */
795                 assert(0);
796                 return -1;
797         }
798 }
799
800 static int compare_block_infos(const void *bs1, const void *bs2)
801 {
802         uint64_t block1 = *(uint64_t *)bs1;
803         uint64_t block2 = *(uint64_t *)bs2;
804         int state1 = BLOCK_INFO_STATE(block1);
805         int state2 = BLOCK_INFO_STATE(block2);
806         int bscat1 = block_state_category(state1);
807         int bscat2 = block_state_category(state2);
808         int cycles1 = BLOCK_INFO_TRIMS(block1);
809         int cycles2 = BLOCK_INFO_TRIMS(block2);
810
811         if (bscat1 < bscat2)
812                 return -1;
813         if (bscat1 > bscat2)
814                 return 1;
815
816         if (cycles1 < cycles2)
817                 return -1;
818         if (cycles1 > cycles2)
819                 return 1;
820
821         if (state1 < state2)
822                 return -1;
823         if (state1 > state2)
824                 return 1;
825
826         assert(block1 == block2);
827         return 0;
828 }
829
830 static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
831                                   fio_fp64_t *plist, unsigned int **percentiles,
832                                   unsigned int *types)
833 {
834         int len = 0;
835         int i, nr_uninit;
836
837         qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
838
839         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
840                 len++;
841
842         if (!len)
843                 return 0;
844
845         /*
846          * Sort the percentile list. Note that it may already be sorted if
847          * we are using the default values, but since it's a short list this
848          * isn't a worry. Also note that this does not work for NaN values.
849          */
850         if (len > 1)
851                 qsort(plist, len, sizeof(plist[0]), double_cmp);
852
853         /* Start only after the uninit entries end */
854         for (nr_uninit = 0;
855              nr_uninit < nr_block_infos
856                 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
857              nr_uninit ++)
858                 ;
859
860         if (nr_uninit == nr_block_infos)
861                 return 0;
862
863         *percentiles = calloc(len, sizeof(**percentiles));
864
865         for (i = 0; i < len; i++) {
866                 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
867                                 + nr_uninit;
868                 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
869         }
870
871         memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
872         for (i = 0; i < nr_block_infos; i++)
873                 types[BLOCK_INFO_STATE(block_infos[i])]++;
874
875         return len;
876 }
877
878 static const char *block_state_names[] = {
879         [BLOCK_STATE_UNINIT] = "unwritten",
880         [BLOCK_STATE_TRIMMED] = "trimmed",
881         [BLOCK_STATE_WRITTEN] = "written",
882         [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
883         [BLOCK_STATE_WRITE_FAILURE] = "write failure",
884 };
885
886 static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
887                              fio_fp64_t *plist, struct buf_output *out)
888 {
889         int len, pos, i;
890         unsigned int *percentiles = NULL;
891         unsigned int block_state_counts[BLOCK_STATE_COUNT];
892
893         len = calc_block_percentiles(nr_block_infos, block_infos, plist,
894                                      &percentiles, block_state_counts);
895
896         log_buf(out, "  block lifetime percentiles :\n   |");
897         pos = 0;
898         for (i = 0; i < len; i++) {
899                 uint32_t block_info = percentiles[i];
900 #define LINE_LENGTH     75
901                 char str[LINE_LENGTH];
902                 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
903                                      plist[i].u.f, block_info,
904                                      i == len - 1 ? '\n' : ',');
905                 assert(strln < LINE_LENGTH);
906                 if (pos + strln > LINE_LENGTH) {
907                         pos = 0;
908                         log_buf(out, "\n   |");
909                 }
910                 log_buf(out, "%s", str);
911                 pos += strln;
912 #undef LINE_LENGTH
913         }
914         if (percentiles)
915                 free(percentiles);
916
917         log_buf(out, "        states               :");
918         for (i = 0; i < BLOCK_STATE_COUNT; i++)
919                 log_buf(out, " %s=%u%c",
920                          block_state_names[i], block_state_counts[i],
921                          i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
922 }
923
924 static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
925 {
926         char *p1, *p1alt, *p2;
927         unsigned long long bw_mean, iops_mean;
928         const int i2p = is_power_of_2(ts->kb_base);
929
930         if (!ts->ss_dur)
931                 return;
932
933         bw_mean = steadystate_bw_mean(ts);
934         iops_mean = steadystate_iops_mean(ts);
935
936         p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base);
937         p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base);
938         p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE);
939
940         log_buf(out, "  steadystate  : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
941                 ts->ss_state & FIO_SS_ATTAINED ? "yes" : "no",
942                 p1, p1alt, p2,
943                 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
944                 ts->ss_state & FIO_SS_SLOPE ? " slope": " mean dev",
945                 ts->ss_criterion.u.f,
946                 ts->ss_state & FIO_SS_PCT ? "%" : "");
947
948         free(p1);
949         free(p1alt);
950         free(p2);
951 }
952
953 static void show_agg_stats(struct disk_util_agg *agg, int terse,
954                            struct buf_output *out)
955 {
956         if (!agg->slavecount)
957                 return;
958
959         if (!terse) {
960                 log_buf(out, ", aggrios=%llu/%llu, aggsectors=%llu/%llu, "
961                          "aggrmerge=%llu/%llu, aggrticks=%llu/%llu, "
962                          "aggrin_queue=%llu, aggrutil=%3.2f%%",
963                         (unsigned long long) agg->ios[0] / agg->slavecount,
964                         (unsigned long long) agg->ios[1] / agg->slavecount,
965                         (unsigned long long) agg->sectors[0] / agg->slavecount,
966                         (unsigned long long) agg->sectors[1] / agg->slavecount,
967                         (unsigned long long) agg->merges[0] / agg->slavecount,
968                         (unsigned long long) agg->merges[1] / agg->slavecount,
969                         (unsigned long long) agg->ticks[0] / agg->slavecount,
970                         (unsigned long long) agg->ticks[1] / agg->slavecount,
971                         (unsigned long long) agg->time_in_queue / agg->slavecount,
972                         agg->max_util.u.f);
973         } else {
974                 log_buf(out, ";slaves;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
975                         (unsigned long long) agg->ios[0] / agg->slavecount,
976                         (unsigned long long) agg->ios[1] / agg->slavecount,
977                         (unsigned long long) agg->merges[0] / agg->slavecount,
978                         (unsigned long long) agg->merges[1] / agg->slavecount,
979                         (unsigned long long) agg->ticks[0] / agg->slavecount,
980                         (unsigned long long) agg->ticks[1] / agg->slavecount,
981                         (unsigned long long) agg->time_in_queue / agg->slavecount,
982                         agg->max_util.u.f);
983         }
984 }
985
986 static void aggregate_slaves_stats(struct disk_util *masterdu)
987 {
988         struct disk_util_agg *agg = &masterdu->agg;
989         struct disk_util_stat *dus;
990         struct flist_head *entry;
991         struct disk_util *slavedu;
992         double util;
993
994         flist_for_each(entry, &masterdu->slaves) {
995                 slavedu = flist_entry(entry, struct disk_util, slavelist);
996                 dus = &slavedu->dus;
997                 agg->ios[0] += dus->s.ios[0];
998                 agg->ios[1] += dus->s.ios[1];
999                 agg->merges[0] += dus->s.merges[0];
1000                 agg->merges[1] += dus->s.merges[1];
1001                 agg->sectors[0] += dus->s.sectors[0];
1002                 agg->sectors[1] += dus->s.sectors[1];
1003                 agg->ticks[0] += dus->s.ticks[0];
1004                 agg->ticks[1] += dus->s.ticks[1];
1005                 agg->time_in_queue += dus->s.time_in_queue;
1006                 agg->slavecount++;
1007
1008                 util = (double) (100 * dus->s.io_ticks / (double) slavedu->dus.s.msec);
1009                 /* System utilization is the utilization of the
1010                  * component with the highest utilization.
1011                  */
1012                 if (util > agg->max_util.u.f)
1013                         agg->max_util.u.f = util;
1014
1015         }
1016
1017         if (agg->max_util.u.f > 100.0)
1018                 agg->max_util.u.f = 100.0;
1019 }
1020
1021 void print_disk_util(struct disk_util_stat *dus, struct disk_util_agg *agg,
1022                      int terse, struct buf_output *out)
1023 {
1024         double util = 0;
1025
1026         if (dus->s.msec)
1027                 util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
1028         if (util > 100.0)
1029                 util = 100.0;
1030
1031         if (!terse) {
1032                 if (agg->slavecount)
1033                         log_buf(out, "  ");
1034
1035                 log_buf(out, "  %s: ios=%llu/%llu, sectors=%llu/%llu, "
1036                         "merge=%llu/%llu, ticks=%llu/%llu, in_queue=%llu, "
1037                         "util=%3.2f%%",
1038                                 dus->name,
1039                                 (unsigned long long) dus->s.ios[0],
1040                                 (unsigned long long) dus->s.ios[1],
1041                                 (unsigned long long) dus->s.sectors[0],
1042                                 (unsigned long long) dus->s.sectors[1],
1043                                 (unsigned long long) dus->s.merges[0],
1044                                 (unsigned long long) dus->s.merges[1],
1045                                 (unsigned long long) dus->s.ticks[0],
1046                                 (unsigned long long) dus->s.ticks[1],
1047                                 (unsigned long long) dus->s.time_in_queue,
1048                                 util);
1049         } else {
1050                 log_buf(out, ";%s;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
1051                                 dus->name,
1052                                 (unsigned long long) dus->s.ios[0],
1053                                 (unsigned long long) dus->s.ios[1],
1054                                 (unsigned long long) dus->s.merges[0],
1055                                 (unsigned long long) dus->s.merges[1],
1056                                 (unsigned long long) dus->s.ticks[0],
1057                                 (unsigned long long) dus->s.ticks[1],
1058                                 (unsigned long long) dus->s.time_in_queue,
1059                                 util);
1060         }
1061
1062         /*
1063          * If the device has slaves, aggregate the stats for
1064          * those slave devices also.
1065          */
1066         show_agg_stats(agg, terse, out);
1067
1068         if (!terse)
1069                 log_buf(out, "\n");
1070 }
1071
1072 void json_array_add_disk_util(struct disk_util_stat *dus,
1073                 struct disk_util_agg *agg, struct json_array *array)
1074 {
1075         struct json_object *obj;
1076         double util = 0;
1077
1078         if (dus->s.msec)
1079                 util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
1080         if (util > 100.0)
1081                 util = 100.0;
1082
1083         obj = json_create_object();
1084         json_array_add_value_object(array, obj);
1085
1086         json_object_add_value_string(obj, "name", (const char *)dus->name);
1087         json_object_add_value_int(obj, "read_ios", dus->s.ios[0]);
1088         json_object_add_value_int(obj, "write_ios", dus->s.ios[1]);
1089         json_object_add_value_int(obj, "read_sectors", dus->s.sectors[0]);
1090         json_object_add_value_int(obj, "write_sectors", dus->s.sectors[1]);
1091         json_object_add_value_int(obj, "read_merges", dus->s.merges[0]);
1092         json_object_add_value_int(obj, "write_merges", dus->s.merges[1]);
1093         json_object_add_value_int(obj, "read_ticks", dus->s.ticks[0]);
1094         json_object_add_value_int(obj, "write_ticks", dus->s.ticks[1]);
1095         json_object_add_value_int(obj, "in_queue", dus->s.time_in_queue);
1096         json_object_add_value_float(obj, "util", util);
1097
1098         /*
1099          * If the device has slaves, aggregate the stats for
1100          * those slave devices also.
1101          */
1102         if (!agg->slavecount)
1103                 return;
1104         json_object_add_value_int(obj, "aggr_read_ios",
1105                                 agg->ios[0] / agg->slavecount);
1106         json_object_add_value_int(obj, "aggr_write_ios",
1107                                 agg->ios[1] / agg->slavecount);
1108         json_object_add_value_int(obj, "aggr_read_sectors",
1109                                 agg->sectors[0] / agg->slavecount);
1110         json_object_add_value_int(obj, "aggr_write_sectors",
1111                                 agg->sectors[1] / agg->slavecount);
1112         json_object_add_value_int(obj, "aggr_read_merges",
1113                                 agg->merges[0] / agg->slavecount);
1114         json_object_add_value_int(obj, "aggr_write_merge",
1115                                 agg->merges[1] / agg->slavecount);
1116         json_object_add_value_int(obj, "aggr_read_ticks",
1117                                 agg->ticks[0] / agg->slavecount);
1118         json_object_add_value_int(obj, "aggr_write_ticks",
1119                                 agg->ticks[1] / agg->slavecount);
1120         json_object_add_value_int(obj, "aggr_in_queue",
1121                                 agg->time_in_queue / agg->slavecount);
1122         json_object_add_value_float(obj, "aggr_util", agg->max_util.u.f);
1123 }
1124
1125 static void json_object_add_disk_utils(struct json_object *obj,
1126                                        struct flist_head *head)
1127 {
1128         struct json_array *array = json_create_array();
1129         struct flist_head *entry;
1130         struct disk_util *du;
1131
1132         json_object_add_value_array(obj, "disk_util", array);
1133
1134         flist_for_each(entry, head) {
1135                 du = flist_entry(entry, struct disk_util, list);
1136
1137                 aggregate_slaves_stats(du);
1138                 json_array_add_disk_util(&du->dus, &du->agg, array);
1139         }
1140 }
1141
1142 void show_disk_util(int terse, struct json_object *parent,
1143                     struct buf_output *out)
1144 {
1145         struct flist_head *entry;
1146         struct disk_util *du;
1147         bool do_json;
1148
1149         if (!is_running_backend())
1150                 return;
1151
1152         if (flist_empty(&disk_list))
1153                 return;
1154
1155         if ((output_format & FIO_OUTPUT_JSON) && parent)
1156                 do_json = true;
1157         else
1158                 do_json = false;
1159
1160         if (!terse && !do_json)
1161                 log_buf(out, "\nDisk stats (read/write):\n");
1162
1163         if (do_json) {
1164                 json_object_add_disk_utils(parent, &disk_list);
1165         } else if (output_format & ~(FIO_OUTPUT_JSON | FIO_OUTPUT_JSON_PLUS)) {
1166                 flist_for_each(entry, &disk_list) {
1167                         du = flist_entry(entry, struct disk_util, list);
1168
1169                         aggregate_slaves_stats(du);
1170                         print_disk_util(&du->dus, &du->agg, terse, out);
1171                 }
1172         }
1173 }
1174
1175 static void show_thread_status_normal(struct thread_stat *ts,
1176                                       struct group_run_stats *rs,
1177                                       struct buf_output *out)
1178 {
1179         double usr_cpu, sys_cpu;
1180         unsigned long runtime;
1181         double io_u_dist[FIO_IO_U_MAP_NR];
1182         time_t time_p;
1183         char time_buf[32];
1184
1185         if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
1186                 return;
1187
1188         memset(time_buf, 0, sizeof(time_buf));
1189
1190         time(&time_p);
1191         os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
1192
1193         if (!ts->error) {
1194                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
1195                                         ts->name, ts->groupid, ts->members,
1196                                         ts->error, (int) ts->pid, time_buf);
1197         } else {
1198                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
1199                                         ts->name, ts->groupid, ts->members,
1200                                         ts->error, ts->verror, (int) ts->pid,
1201                                         time_buf);
1202         }
1203
1204         if (strlen(ts->description))
1205                 log_buf(out, "  Description  : [%s]\n", ts->description);
1206
1207         for_each_rw_ddir(ddir) {
1208                 if (ts->io_bytes[ddir])
1209                         show_ddir_status(rs, ts, ddir, out);
1210         }
1211
1212         if (ts->unified_rw_rep == UNIFIED_BOTH)
1213                 show_mixed_ddir_status(rs, ts, out);
1214
1215         show_latencies(ts, out);
1216
1217         if (ts->sync_stat.samples)
1218                 show_ddir_status(rs, ts, DDIR_SYNC, out);
1219
1220         runtime = ts->total_run_time;
1221         if (runtime) {
1222                 double runt = (double) runtime;
1223
1224                 usr_cpu = (double) ts->usr_time * 100 / runt;
1225                 sys_cpu = (double) ts->sys_time * 100 / runt;
1226         } else {
1227                 usr_cpu = 0;
1228                 sys_cpu = 0;
1229         }
1230
1231         log_buf(out, "  cpu          : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
1232                  " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
1233                         (unsigned long long) ts->ctx,
1234                         (unsigned long long) ts->majf,
1235                         (unsigned long long) ts->minf);
1236
1237         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1238         log_buf(out, "  IO depths    : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
1239                  " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1240                                         io_u_dist[1], io_u_dist[2],
1241                                         io_u_dist[3], io_u_dist[4],
1242                                         io_u_dist[5], io_u_dist[6]);
1243
1244         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1245         log_buf(out, "     submit    : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1246                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1247                                         io_u_dist[1], io_u_dist[2],
1248                                         io_u_dist[3], io_u_dist[4],
1249                                         io_u_dist[5], io_u_dist[6]);
1250         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1251         log_buf(out, "     complete  : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1252                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1253                                         io_u_dist[1], io_u_dist[2],
1254                                         io_u_dist[3], io_u_dist[4],
1255                                         io_u_dist[5], io_u_dist[6]);
1256         log_buf(out, "     issued rwts: total=%llu,%llu,%llu,%llu"
1257                                  " short=%llu,%llu,%llu,0"
1258                                  " dropped=%llu,%llu,%llu,0\n",
1259                                         (unsigned long long) ts->total_io_u[0],
1260                                         (unsigned long long) ts->total_io_u[1],
1261                                         (unsigned long long) ts->total_io_u[2],
1262                                         (unsigned long long) ts->total_io_u[3],
1263                                         (unsigned long long) ts->short_io_u[0],
1264                                         (unsigned long long) ts->short_io_u[1],
1265                                         (unsigned long long) ts->short_io_u[2],
1266                                         (unsigned long long) ts->drop_io_u[0],
1267                                         (unsigned long long) ts->drop_io_u[1],
1268                                         (unsigned long long) ts->drop_io_u[2]);
1269         if (ts->continue_on_error) {
1270                 log_buf(out, "     errors    : total=%llu, first_error=%d/<%s>\n",
1271                                         (unsigned long long)ts->total_err_count,
1272                                         ts->first_error,
1273                                         strerror(ts->first_error));
1274         }
1275         if (ts->latency_depth) {
1276                 log_buf(out, "     latency   : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
1277                                         (unsigned long long)ts->latency_target,
1278                                         (unsigned long long)ts->latency_window,
1279                                         ts->latency_percentile.u.f,
1280                                         ts->latency_depth);
1281         }
1282
1283         if (ts->nr_block_infos)
1284                 show_block_infos(ts->nr_block_infos, ts->block_infos,
1285                                   ts->percentile_list, out);
1286
1287         if (ts->ss_dur)
1288                 show_ss_normal(ts, out);
1289 }
1290
1291 static void show_ddir_status_terse(struct thread_stat *ts,
1292                                    struct group_run_stats *rs,
1293                                    enum fio_ddir ddir, int ver,
1294                                    struct buf_output *out)
1295 {
1296         unsigned long long min, max, minv, maxv, bw, iops;
1297         unsigned long long *ovals = NULL;
1298         double mean, dev;
1299         unsigned int len;
1300         int i, bw_stat;
1301
1302         assert(ddir_rw(ddir));
1303
1304         iops = bw = 0;
1305         if (ts->runtime[ddir]) {
1306                 uint64_t runt = ts->runtime[ddir];
1307
1308                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
1309                 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
1310         }
1311
1312         log_buf(out, ";%llu;%llu;%llu;%llu",
1313                 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
1314                                         (unsigned long long) ts->runtime[ddir]);
1315
1316         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
1317                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1318         else
1319                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1320
1321         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
1322                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1323         else
1324                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1325
1326         if (ts->lat_percentiles) {
1327                 len = calc_clat_percentiles(ts->io_u_plat[FIO_LAT][ddir],
1328                                         ts->lat_stat[ddir].samples,
1329                                         ts->percentile_list, &ovals, &maxv,
1330                                         &minv);
1331         } else if (ts->clat_percentiles) {
1332                 len = calc_clat_percentiles(ts->io_u_plat[FIO_CLAT][ddir],
1333                                         ts->clat_stat[ddir].samples,
1334                                         ts->percentile_list, &ovals, &maxv,
1335                                         &minv);
1336         } else {
1337                 len = 0;
1338         }
1339
1340         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
1341                 if (i >= len) {
1342                         log_buf(out, ";0%%=0");
1343                         continue;
1344                 }
1345                 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
1346         }
1347
1348         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
1349                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1350         else
1351                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1352
1353         free(ovals);
1354
1355         bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
1356         if (bw_stat) {
1357                 double p_of_agg = 100.0;
1358
1359                 if (rs->agg[ddir]) {
1360                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1361                         if (p_of_agg > 100.0)
1362                                 p_of_agg = 100.0;
1363                 }
1364
1365                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
1366         } else {
1367                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
1368         }
1369
1370         if (ver == 5) {
1371                 if (bw_stat)
1372                         log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
1373                 else
1374                         log_buf(out, ";%lu", 0UL);
1375
1376                 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
1377                         log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
1378                                 mean, dev, (&ts->iops_stat[ddir])->samples);
1379                 else
1380                         log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
1381         }
1382 }
1383
1384 static void show_mixed_ddir_status_terse(struct thread_stat *ts,
1385                                    struct group_run_stats *rs,
1386                                    int ver, struct buf_output *out)
1387 {
1388         struct thread_stat *ts_lcl = gen_mixed_ddir_stats_from_ts(ts);
1389
1390         if (ts_lcl)
1391                 show_ddir_status_terse(ts_lcl, rs, DDIR_READ, ver, out);
1392
1393         free_clat_prio_stats(ts_lcl);
1394         free(ts_lcl);
1395 }
1396
1397 static struct json_object *add_ddir_lat_json(struct thread_stat *ts,
1398                                              uint32_t percentiles,
1399                                              struct io_stat *lat_stat,
1400                                              uint64_t *io_u_plat)
1401 {
1402         char buf[120];
1403         double mean, dev;
1404         unsigned int i, len;
1405         struct json_object *lat_object, *percentile_object, *clat_bins_object;
1406         unsigned long long min, max, maxv, minv, *ovals = NULL;
1407
1408         if (!calc_lat(lat_stat, &min, &max, &mean, &dev)) {
1409                 min = max = 0;
1410                 mean = dev = 0.0;
1411         }
1412         lat_object = json_create_object();
1413         json_object_add_value_int(lat_object, "min", min);
1414         json_object_add_value_int(lat_object, "max", max);
1415         json_object_add_value_float(lat_object, "mean", mean);
1416         json_object_add_value_float(lat_object, "stddev", dev);
1417         json_object_add_value_int(lat_object, "N", lat_stat->samples);
1418
1419         if (percentiles && lat_stat->samples) {
1420                 len = calc_clat_percentiles(io_u_plat, lat_stat->samples,
1421                                 ts->percentile_list, &ovals, &maxv, &minv);
1422
1423                 if (len > FIO_IO_U_LIST_MAX_LEN)
1424                         len = FIO_IO_U_LIST_MAX_LEN;
1425
1426                 percentile_object = json_create_object();
1427                 json_object_add_value_object(lat_object, "percentile", percentile_object);
1428                 for (i = 0; i < len; i++) {
1429                         snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1430                         json_object_add_value_int(percentile_object, buf, ovals[i]);
1431                 }
1432                 free(ovals);
1433
1434                 if (output_format & FIO_OUTPUT_JSON_PLUS) {
1435                         clat_bins_object = json_create_object();
1436                         json_object_add_value_object(lat_object, "bins", clat_bins_object);
1437
1438                         for(i = 0; i < FIO_IO_U_PLAT_NR; i++)
1439                                 if (io_u_plat[i]) {
1440                                         snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1441                                         json_object_add_value_int(clat_bins_object, buf, io_u_plat[i]);
1442                                 }
1443                 }
1444         }
1445
1446         return lat_object;
1447 }
1448
1449 static void add_ddir_status_json(struct thread_stat *ts,
1450                                  struct group_run_stats *rs, enum fio_ddir ddir,
1451                                  struct json_object *parent)
1452 {
1453         unsigned long long min, max;
1454         unsigned long long bw_bytes, bw;
1455         double mean, dev, iops;
1456         struct json_object *dir_object, *tmp_object;
1457         double p_of_agg = 100.0;
1458
1459         assert(ddir_rw(ddir) || ddir_sync(ddir));
1460
1461         if ((ts->unified_rw_rep == UNIFIED_MIXED) && ddir != DDIR_READ)
1462                 return;
1463
1464         dir_object = json_create_object();
1465         json_object_add_value_object(parent,
1466                 (ts->unified_rw_rep == UNIFIED_MIXED) ? "mixed" : io_ddir_name(ddir), dir_object);
1467
1468         if (ddir_rw(ddir)) {
1469                 bw_bytes = 0;
1470                 bw = 0;
1471                 iops = 0.0;
1472                 if (ts->runtime[ddir]) {
1473                         uint64_t runt = ts->runtime[ddir];
1474
1475                         bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */
1476                         bw = bw_bytes / 1024; /* KiB/s */
1477                         iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
1478                 }
1479
1480                 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
1481                 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
1482                 json_object_add_value_int(dir_object, "bw_bytes", bw_bytes);
1483                 json_object_add_value_int(dir_object, "bw", bw);
1484                 json_object_add_value_float(dir_object, "iops", iops);
1485                 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
1486                 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
1487                 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
1488                 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
1489
1490                 tmp_object = add_ddir_lat_json(ts, ts->slat_percentiles,
1491                                 &ts->slat_stat[ddir], ts->io_u_plat[FIO_SLAT][ddir]);
1492                 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1493
1494                 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles,
1495                                 &ts->clat_stat[ddir], ts->io_u_plat[FIO_CLAT][ddir]);
1496                 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1497
1498                 tmp_object = add_ddir_lat_json(ts, ts->lat_percentiles,
1499                                 &ts->lat_stat[ddir], ts->io_u_plat[FIO_LAT][ddir]);
1500                 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1501         } else {
1502                 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[DDIR_SYNC]);
1503                 tmp_object = add_ddir_lat_json(ts, ts->lat_percentiles | ts->clat_percentiles,
1504                                 &ts->sync_stat, ts->io_u_sync_plat);
1505                 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1506         }
1507
1508         if (!ddir_rw(ddir))
1509                 return;
1510
1511         /* Only include per prio stats if there are >= 2 prios with samples */
1512         if (get_nr_prios_with_samples(ts, ddir) >= 2) {
1513                 struct json_array *array = json_create_array();
1514                 const char *obj_name;
1515                 int i;
1516
1517                 if (ts->lat_percentiles)
1518                         obj_name = "lat_ns";
1519                 else
1520                         obj_name = "clat_ns";
1521
1522                 json_object_add_value_array(dir_object, "prios", array);
1523
1524                 for (i = 0; i < ts->nr_clat_prio[ddir]; i++) {
1525                         struct json_object *obj;
1526
1527                         if (!ts->clat_prio[ddir][i].clat_stat.samples)
1528                                 continue;
1529
1530                         obj = json_create_object();
1531
1532                         json_object_add_value_int(obj, "prioclass",
1533                                 ioprio_class(ts->clat_prio[ddir][i].ioprio));
1534                         json_object_add_value_int(obj, "prio",
1535                                 ioprio(ts->clat_prio[ddir][i].ioprio));
1536
1537                         tmp_object = add_ddir_lat_json(ts,
1538                                         ts->clat_percentiles | ts->lat_percentiles,
1539                                         &ts->clat_prio[ddir][i].clat_stat,
1540                                         ts->clat_prio[ddir][i].io_u_plat);
1541                         json_object_add_value_object(obj, obj_name, tmp_object);
1542                         json_array_add_value_object(array, obj);
1543                 }
1544         }
1545
1546         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1547                 p_of_agg = convert_agg_kbytes_percent(rs, ddir, mean);
1548         } else {
1549                 min = max = 0;
1550                 p_of_agg = mean = dev = 0.0;
1551         }
1552
1553         json_object_add_value_int(dir_object, "bw_min", min);
1554         json_object_add_value_int(dir_object, "bw_max", max);
1555         json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1556         json_object_add_value_float(dir_object, "bw_mean", mean);
1557         json_object_add_value_float(dir_object, "bw_dev", dev);
1558         json_object_add_value_int(dir_object, "bw_samples",
1559                                 (&ts->bw_stat[ddir])->samples);
1560
1561         if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1562                 min = max = 0;
1563                 mean = dev = 0.0;
1564         }
1565         json_object_add_value_int(dir_object, "iops_min", min);
1566         json_object_add_value_int(dir_object, "iops_max", max);
1567         json_object_add_value_float(dir_object, "iops_mean", mean);
1568         json_object_add_value_float(dir_object, "iops_stddev", dev);
1569         json_object_add_value_int(dir_object, "iops_samples",
1570                                 (&ts->iops_stat[ddir])->samples);
1571
1572         if (ts->cachehit + ts->cachemiss) {
1573                 uint64_t total;
1574                 double hit;
1575
1576                 total = ts->cachehit + ts->cachemiss;
1577                 hit = (double) ts->cachehit / (double) total;
1578                 hit *= 100.0;
1579                 json_object_add_value_float(dir_object, "cachehit", hit);
1580         }
1581 }
1582
1583 static void add_mixed_ddir_status_json(struct thread_stat *ts,
1584                 struct group_run_stats *rs, struct json_object *parent)
1585 {
1586         struct thread_stat *ts_lcl = gen_mixed_ddir_stats_from_ts(ts);
1587
1588         /* add the aggregated stats to json parent */
1589         if (ts_lcl)
1590                 add_ddir_status_json(ts_lcl, rs, DDIR_READ, parent);
1591
1592         free_clat_prio_stats(ts_lcl);
1593         free(ts_lcl);
1594 }
1595
1596 static void show_thread_status_terse_all(struct thread_stat *ts,
1597                                          struct group_run_stats *rs, int ver,
1598                                          struct buf_output *out)
1599 {
1600         double io_u_dist[FIO_IO_U_MAP_NR];
1601         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1602         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1603         double usr_cpu, sys_cpu;
1604         int i;
1605
1606         /* General Info */
1607         if (ver == 2)
1608                 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1609         else
1610                 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1611                         ts->name, ts->groupid, ts->error);
1612
1613         /* Log Read Status, or mixed if unified_rw_rep = 1 */
1614         show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1615         if (ts->unified_rw_rep != UNIFIED_MIXED) {
1616                 /* Log Write Status */
1617                 show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1618                 /* Log Trim Status */
1619                 if (ver == 2 || ver == 4 || ver == 5)
1620                         show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1621         }
1622         if (ts->unified_rw_rep == UNIFIED_BOTH)
1623                 show_mixed_ddir_status_terse(ts, rs, ver, out);
1624         /* CPU Usage */
1625         if (ts->total_run_time) {
1626                 double runt = (double) ts->total_run_time;
1627
1628                 usr_cpu = (double) ts->usr_time * 100 / runt;
1629                 sys_cpu = (double) ts->sys_time * 100 / runt;
1630         } else {
1631                 usr_cpu = 0;
1632                 sys_cpu = 0;
1633         }
1634
1635         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1636                                                 (unsigned long long) ts->ctx,
1637                                                 (unsigned long long) ts->majf,
1638                                                 (unsigned long long) ts->minf);
1639
1640         /* Calc % distribution of IO depths, usecond, msecond latency */
1641         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1642         stat_calc_lat_nu(ts, io_u_lat_u);
1643         stat_calc_lat_m(ts, io_u_lat_m);
1644
1645         /* Only show fixed 7 I/O depth levels*/
1646         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1647                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1648                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1649
1650         /* Microsecond latency */
1651         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1652                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1653         /* Millisecond latency */
1654         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1655                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1656
1657         /* disk util stats, if any */
1658         if (ver >= 3 && is_running_backend())
1659                 show_disk_util(1, NULL, out);
1660
1661         /* Additional output if continue_on_error set - default off*/
1662         if (ts->continue_on_error)
1663                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1664
1665         /* Additional output if description is set */
1666         if (strlen(ts->description)) {
1667                 if (ver == 2)
1668                         log_buf(out, "\n");
1669                 log_buf(out, ";%s", ts->description);
1670         }
1671
1672         log_buf(out, "\n");
1673 }
1674
1675 static void json_add_job_opts(struct json_object *root, const char *name,
1676                               struct flist_head *opt_list)
1677 {
1678         struct json_object *dir_object;
1679         struct flist_head *entry;
1680         struct print_option *p;
1681
1682         if (flist_empty(opt_list))
1683                 return;
1684
1685         dir_object = json_create_object();
1686         json_object_add_value_object(root, name, dir_object);
1687
1688         flist_for_each(entry, opt_list) {
1689                 p = flist_entry(entry, struct print_option, list);
1690                 json_object_add_value_string(dir_object, p->name, p->value);
1691         }
1692 }
1693
1694 static struct json_object *show_thread_status_json(struct thread_stat *ts,
1695                                                    struct group_run_stats *rs,
1696                                                    struct flist_head *opt_list)
1697 {
1698         struct json_object *root, *tmp;
1699         struct jobs_eta *je;
1700         double io_u_dist[FIO_IO_U_MAP_NR];
1701         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1702         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1703         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1704         double usr_cpu, sys_cpu;
1705         int i;
1706         size_t size;
1707
1708         root = json_create_object();
1709         json_object_add_value_string(root, "jobname", ts->name);
1710         json_object_add_value_int(root, "groupid", ts->groupid);
1711         json_object_add_value_int(root, "error", ts->error);
1712
1713         /* ETA Info */
1714         je = get_jobs_eta(true, &size);
1715         if (je) {
1716                 json_object_add_value_int(root, "eta", je->eta_sec);
1717                 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1718                 free(je);
1719         }
1720
1721         if (opt_list)
1722                 json_add_job_opts(root, "job options", opt_list);
1723
1724         add_ddir_status_json(ts, rs, DDIR_READ, root);
1725         add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1726         add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1727         add_ddir_status_json(ts, rs, DDIR_SYNC, root);
1728
1729         if (ts->unified_rw_rep == UNIFIED_BOTH)
1730                 add_mixed_ddir_status_json(ts, rs, root);
1731
1732         /* CPU Usage */
1733         if (ts->total_run_time) {
1734                 double runt = (double) ts->total_run_time;
1735
1736                 usr_cpu = (double) ts->usr_time * 100 / runt;
1737                 sys_cpu = (double) ts->sys_time * 100 / runt;
1738         } else {
1739                 usr_cpu = 0;
1740                 sys_cpu = 0;
1741         }
1742         json_object_add_value_int(root, "job_runtime", ts->total_run_time);
1743         json_object_add_value_float(root, "usr_cpu", usr_cpu);
1744         json_object_add_value_float(root, "sys_cpu", sys_cpu);
1745         json_object_add_value_int(root, "ctx", ts->ctx);
1746         json_object_add_value_int(root, "majf", ts->majf);
1747         json_object_add_value_int(root, "minf", ts->minf);
1748
1749         /* Calc % distribution of IO depths */
1750         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1751         tmp = json_create_object();
1752         json_object_add_value_object(root, "iodepth_level", tmp);
1753         /* Only show fixed 7 I/O depth levels*/
1754         for (i = 0; i < 7; i++) {
1755                 char name[20];
1756                 if (i < 6)
1757                         snprintf(name, 20, "%d", 1 << i);
1758                 else
1759                         snprintf(name, 20, ">=%d", 1 << i);
1760                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1761         }
1762
1763         /* Calc % distribution of submit IO depths */
1764         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1765         tmp = json_create_object();
1766         json_object_add_value_object(root, "iodepth_submit", tmp);
1767         /* Only show fixed 7 I/O depth levels*/
1768         for (i = 0; i < 7; i++) {
1769                 char name[20];
1770                 if (i == 0)
1771                         snprintf(name, 20, "0");
1772                 else if (i < 6)
1773                         snprintf(name, 20, "%d", 1 << (i+1));
1774                 else
1775                         snprintf(name, 20, ">=%d", 1 << i);
1776                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1777         }
1778
1779         /* Calc % distribution of completion IO depths */
1780         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1781         tmp = json_create_object();
1782         json_object_add_value_object(root, "iodepth_complete", tmp);
1783         /* Only show fixed 7 I/O depth levels*/
1784         for (i = 0; i < 7; i++) {
1785                 char name[20];
1786                 if (i == 0)
1787                         snprintf(name, 20, "0");
1788                 else if (i < 6)
1789                         snprintf(name, 20, "%d", 1 << (i+1));
1790                 else
1791                         snprintf(name, 20, ">=%d", 1 << i);
1792                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1793         }
1794
1795         /* Calc % distribution of nsecond, usecond, msecond latency */
1796         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1797         stat_calc_lat_n(ts, io_u_lat_n);
1798         stat_calc_lat_u(ts, io_u_lat_u);
1799         stat_calc_lat_m(ts, io_u_lat_m);
1800
1801         /* Nanosecond latency */
1802         tmp = json_create_object();
1803         json_object_add_value_object(root, "latency_ns", tmp);
1804         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1805                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1806                                  "250", "500", "750", "1000", };
1807                 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1808         }
1809         /* Microsecond latency */
1810         tmp = json_create_object();
1811         json_object_add_value_object(root, "latency_us", tmp);
1812         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1813                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1814                                  "250", "500", "750", "1000", };
1815                 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1816         }
1817         /* Millisecond latency */
1818         tmp = json_create_object();
1819         json_object_add_value_object(root, "latency_ms", tmp);
1820         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1821                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1822                                  "250", "500", "750", "1000", "2000",
1823                                  ">=2000", };
1824                 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1825         }
1826
1827         /* Additional output if continue_on_error set - default off*/
1828         if (ts->continue_on_error) {
1829                 json_object_add_value_int(root, "total_err", ts->total_err_count);
1830                 json_object_add_value_int(root, "first_error", ts->first_error);
1831         }
1832
1833         if (ts->latency_depth) {
1834                 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1835                 json_object_add_value_int(root, "latency_target", ts->latency_target);
1836                 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1837                 json_object_add_value_int(root, "latency_window", ts->latency_window);
1838         }
1839
1840         /* Additional output if description is set */
1841         if (strlen(ts->description))
1842                 json_object_add_value_string(root, "desc", ts->description);
1843
1844         if (ts->nr_block_infos) {
1845                 /* Block error histogram and types */
1846                 int len;
1847                 unsigned int *percentiles = NULL;
1848                 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1849
1850                 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1851                                              ts->percentile_list,
1852                                              &percentiles, block_state_counts);
1853
1854                 if (len) {
1855                         struct json_object *block, *percentile_object, *states;
1856                         int state;
1857                         block = json_create_object();
1858                         json_object_add_value_object(root, "block", block);
1859
1860                         percentile_object = json_create_object();
1861                         json_object_add_value_object(block, "percentiles",
1862                                                      percentile_object);
1863                         for (i = 0; i < len; i++) {
1864                                 char buf[20];
1865                                 snprintf(buf, sizeof(buf), "%f",
1866                                          ts->percentile_list[i].u.f);
1867                                 json_object_add_value_int(percentile_object,
1868                                                           buf,
1869                                                           percentiles[i]);
1870                         }
1871
1872                         states = json_create_object();
1873                         json_object_add_value_object(block, "states", states);
1874                         for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1875                                 json_object_add_value_int(states,
1876                                         block_state_names[state],
1877                                         block_state_counts[state]);
1878                         }
1879                         free(percentiles);
1880                 }
1881         }
1882
1883         if (ts->ss_dur) {
1884                 struct json_object *data;
1885                 struct json_array *iops, *bw;
1886                 int j, k, l;
1887                 char ss_buf[64];
1888                 int intervals = ts->ss_dur / (ss_check_interval / 1000L);
1889
1890                 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1891                         ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1892                         ts->ss_state & FIO_SS_SLOPE ? "_slope" : "",
1893                         (float) ts->ss_limit.u.f,
1894                         ts->ss_state & FIO_SS_PCT ? "%" : "");
1895
1896                 tmp = json_create_object();
1897                 json_object_add_value_object(root, "steadystate", tmp);
1898                 json_object_add_value_string(tmp, "ss", ss_buf);
1899                 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1900                 json_object_add_value_int(tmp, "attained", (ts->ss_state & FIO_SS_ATTAINED) > 0);
1901
1902                 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1903                         ts->ss_state & FIO_SS_PCT ? "%" : "");
1904                 json_object_add_value_string(tmp, "criterion", ss_buf);
1905                 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1906                 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1907
1908                 data = json_create_object();
1909                 json_object_add_value_object(tmp, "data", data);
1910                 bw = json_create_array();
1911                 iops = json_create_array();
1912
1913                 /*
1914                 ** if ss was attained or the buffer is not full,
1915                 ** ss->head points to the first element in the list.
1916                 ** otherwise it actually points to the second element
1917                 ** in the list
1918                 */
1919                 if ((ts->ss_state & FIO_SS_ATTAINED) || !(ts->ss_state & FIO_SS_BUFFER_FULL))
1920                         j = ts->ss_head;
1921                 else
1922                         j = ts->ss_head == 0 ? intervals - 1 : ts->ss_head - 1;
1923                 for (l = 0; l < intervals; l++) {
1924                         k = (j + l) % intervals;
1925                         json_array_add_value_int(bw, ts->ss_bw_data[k]);
1926                         json_array_add_value_int(iops, ts->ss_iops_data[k]);
1927                 }
1928                 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1929                 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1930                 json_object_add_value_array(data, "iops", iops);
1931                 json_object_add_value_array(data, "bw", bw);
1932         }
1933
1934         return root;
1935 }
1936
1937 static void show_thread_status_terse(struct thread_stat *ts,
1938                                      struct group_run_stats *rs,
1939                                      struct buf_output *out)
1940 {
1941         if (terse_version >= 2 && terse_version <= 5)
1942                 show_thread_status_terse_all(ts, rs, terse_version, out);
1943         else
1944                 log_err("fio: bad terse version!? %d\n", terse_version);
1945 }
1946
1947 struct json_object *show_thread_status(struct thread_stat *ts,
1948                                        struct group_run_stats *rs,
1949                                        struct flist_head *opt_list,
1950                                        struct buf_output *out)
1951 {
1952         struct json_object *ret = NULL;
1953
1954         if (output_format & FIO_OUTPUT_TERSE)
1955                 show_thread_status_terse(ts, rs,  out);
1956         if (output_format & FIO_OUTPUT_JSON)
1957                 ret = show_thread_status_json(ts, rs, opt_list);
1958         if (output_format & FIO_OUTPUT_NORMAL)
1959                 show_thread_status_normal(ts, rs,  out);
1960
1961         return ret;
1962 }
1963
1964 static void __sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1965 {
1966         double mean, S;
1967
1968         dst->min_val = min(dst->min_val, src->min_val);
1969         dst->max_val = max(dst->max_val, src->max_val);
1970
1971         /*
1972          * Compute new mean and S after the merge
1973          * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1974          *  #Parallel_algorithm>
1975          */
1976         if (first) {
1977                 mean = src->mean.u.f;
1978                 S = src->S.u.f;
1979         } else {
1980                 double delta = src->mean.u.f - dst->mean.u.f;
1981
1982                 mean = ((src->mean.u.f * src->samples) +
1983                         (dst->mean.u.f * dst->samples)) /
1984                         (dst->samples + src->samples);
1985
1986                 S =  src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1987                         (dst->samples * src->samples) /
1988                         (dst->samples + src->samples);
1989         }
1990
1991         dst->samples += src->samples;
1992         dst->mean.u.f = mean;
1993         dst->S.u.f = S;
1994
1995 }
1996
1997 /*
1998  * We sum two kinds of stats - one that is time based, in which case we
1999  * apply the proper summing technique, and then one that is iops/bw
2000  * numbers. For group_reporting, we should just add those up, not make
2001  * them the mean of everything.
2002  */
2003 static void sum_stat(struct io_stat *dst, struct io_stat *src, bool pure_sum)
2004 {
2005         bool first = dst->samples == 0;
2006
2007         if (src->samples == 0)
2008                 return;
2009
2010         if (!pure_sum) {
2011                 __sum_stat(dst, src, first);
2012                 return;
2013         }
2014
2015         if (first) {
2016                 dst->min_val = src->min_val;
2017                 dst->max_val = src->max_val;
2018                 dst->samples = src->samples;
2019                 dst->mean.u.f = src->mean.u.f;
2020                 dst->S.u.f = src->S.u.f;
2021         } else {
2022                 dst->min_val += src->min_val;
2023                 dst->max_val += src->max_val;
2024                 dst->samples += src->samples;
2025                 dst->mean.u.f += src->mean.u.f;
2026                 dst->S.u.f += src->S.u.f;
2027         }
2028 }
2029
2030 void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
2031 {
2032         int i;
2033
2034         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2035                 if (dst->max_run[i] < src->max_run[i])
2036                         dst->max_run[i] = src->max_run[i];
2037                 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
2038                         dst->min_run[i] = src->min_run[i];
2039                 if (dst->max_bw[i] < src->max_bw[i])
2040                         dst->max_bw[i] = src->max_bw[i];
2041                 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
2042                         dst->min_bw[i] = src->min_bw[i];
2043
2044                 dst->iobytes[i] += src->iobytes[i];
2045                 dst->agg[i] += src->agg[i];
2046         }
2047
2048         if (!dst->kb_base)
2049                 dst->kb_base = src->kb_base;
2050         if (!dst->unit_base)
2051                 dst->unit_base = src->unit_base;
2052         if (!dst->sig_figs)
2053                 dst->sig_figs = src->sig_figs;
2054 }
2055
2056 /*
2057  * Free the clat_prio_stat arrays allocated by alloc_clat_prio_stat_ddir().
2058  */
2059 void free_clat_prio_stats(struct thread_stat *ts)
2060 {
2061         enum fio_ddir ddir;
2062
2063         if (!ts)
2064                 return;
2065
2066         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2067                 sfree(ts->clat_prio[ddir]);
2068                 ts->clat_prio[ddir] = NULL;
2069                 ts->nr_clat_prio[ddir] = 0;
2070         }
2071 }
2072
2073 /*
2074  * Allocate a clat_prio_stat array. The array has to be allocated/freed using
2075  * smalloc/sfree, so that it is accessible by the process/thread summing the
2076  * thread_stats.
2077  */
2078 int alloc_clat_prio_stat_ddir(struct thread_stat *ts, enum fio_ddir ddir,
2079                               int nr_prios)
2080 {
2081         struct clat_prio_stat *clat_prio;
2082         int i;
2083
2084         clat_prio = scalloc(nr_prios, sizeof(*ts->clat_prio[ddir]));
2085         if (!clat_prio) {
2086                 log_err("fio: failed to allocate ts clat data\n");
2087                 return 1;
2088         }
2089
2090         for (i = 0; i < nr_prios; i++)
2091                 clat_prio[i].clat_stat.min_val = ULONG_MAX;
2092
2093         ts->clat_prio[ddir] = clat_prio;
2094         ts->nr_clat_prio[ddir] = nr_prios;
2095
2096         return 0;
2097 }
2098
2099 static int grow_clat_prio_stat(struct thread_stat *dst, enum fio_ddir ddir)
2100 {
2101         int curr_len = dst->nr_clat_prio[ddir];
2102         void *new_arr;
2103
2104         new_arr = scalloc(curr_len + 1, sizeof(*dst->clat_prio[ddir]));
2105         if (!new_arr) {
2106                 log_err("fio: failed to grow clat prio array\n");
2107                 return 1;
2108         }
2109
2110         memcpy(new_arr, dst->clat_prio[ddir],
2111                curr_len * sizeof(*dst->clat_prio[ddir]));
2112         sfree(dst->clat_prio[ddir]);
2113
2114         dst->clat_prio[ddir] = new_arr;
2115         dst->clat_prio[ddir][curr_len].clat_stat.min_val = ULONG_MAX;
2116         dst->nr_clat_prio[ddir]++;
2117
2118         return 0;
2119 }
2120
2121 static int find_clat_prio_index(struct thread_stat *dst, enum fio_ddir ddir,
2122                                 uint32_t ioprio)
2123 {
2124         int i, nr_prios = dst->nr_clat_prio[ddir];
2125
2126         for (i = 0; i < nr_prios; i++) {
2127                 if (dst->clat_prio[ddir][i].ioprio == ioprio)
2128                         return i;
2129         }
2130
2131         return -1;
2132 }
2133
2134 static int alloc_or_get_clat_prio_index(struct thread_stat *dst,
2135                                         enum fio_ddir ddir, uint32_t ioprio,
2136                                         int *idx)
2137 {
2138         int index = find_clat_prio_index(dst, ddir, ioprio);
2139
2140         if (index == -1) {
2141                 index = dst->nr_clat_prio[ddir];
2142
2143                 if (grow_clat_prio_stat(dst, ddir))
2144                         return 1;
2145
2146                 dst->clat_prio[ddir][index].ioprio = ioprio;
2147         }
2148
2149         *idx = index;
2150
2151         return 0;
2152 }
2153
2154 static int clat_prio_stats_copy(struct thread_stat *dst, struct thread_stat *src,
2155                                 enum fio_ddir dst_ddir, enum fio_ddir src_ddir)
2156 {
2157         size_t sz = sizeof(*src->clat_prio[src_ddir]) *
2158                 src->nr_clat_prio[src_ddir];
2159
2160         dst->clat_prio[dst_ddir] = smalloc(sz);
2161         if (!dst->clat_prio[dst_ddir]) {
2162                 log_err("fio: failed to alloc clat prio array\n");
2163                 return 1;
2164         }
2165
2166         memcpy(dst->clat_prio[dst_ddir], src->clat_prio[src_ddir], sz);
2167         dst->nr_clat_prio[dst_ddir] = src->nr_clat_prio[src_ddir];
2168
2169         return 0;
2170 }
2171
2172 static int clat_prio_stat_add_samples(struct thread_stat *dst,
2173                                       enum fio_ddir dst_ddir, uint32_t ioprio,
2174                                       struct io_stat *io_stat,
2175                                       uint64_t *io_u_plat)
2176 {
2177         int i, dst_index;
2178
2179         if (!io_stat->samples)
2180                 return 0;
2181
2182         if (alloc_or_get_clat_prio_index(dst, dst_ddir, ioprio, &dst_index))
2183                 return 1;
2184
2185         sum_stat(&dst->clat_prio[dst_ddir][dst_index].clat_stat, io_stat,
2186                  false);
2187
2188         for (i = 0; i < FIO_IO_U_PLAT_NR; i++)
2189                 dst->clat_prio[dst_ddir][dst_index].io_u_plat[i] += io_u_plat[i];
2190
2191         return 0;
2192 }
2193
2194 static int sum_clat_prio_stats_src_single_prio(struct thread_stat *dst,
2195                                                struct thread_stat *src,
2196                                                enum fio_ddir dst_ddir,
2197                                                enum fio_ddir src_ddir)
2198 {
2199         struct io_stat *io_stat;
2200         uint64_t *io_u_plat;
2201
2202         /*
2203          * If src ts has no clat_prio_stat array, then all I/Os were submitted
2204          * using src->ioprio. Thus, the global samples in src->clat_stat (or
2205          * src->lat_stat) can be used as the 'per prio' samples for src->ioprio.
2206          */
2207         assert(!src->clat_prio[src_ddir]);
2208         assert(src->nr_clat_prio[src_ddir] == 0);
2209
2210         if (src->lat_percentiles) {
2211                 io_u_plat = src->io_u_plat[FIO_LAT][src_ddir];
2212                 io_stat = &src->lat_stat[src_ddir];
2213         } else {
2214                 io_u_plat = src->io_u_plat[FIO_CLAT][src_ddir];
2215                 io_stat = &src->clat_stat[src_ddir];
2216         }
2217
2218         return clat_prio_stat_add_samples(dst, dst_ddir, src->ioprio, io_stat,
2219                                           io_u_plat);
2220 }
2221
2222 static int sum_clat_prio_stats_src_multi_prio(struct thread_stat *dst,
2223                                               struct thread_stat *src,
2224                                               enum fio_ddir dst_ddir,
2225                                               enum fio_ddir src_ddir)
2226 {
2227         int i;
2228
2229         /*
2230          * If src ts has a clat_prio_stat array, then there are multiple prios
2231          * in use (i.e. src ts had cmdprio_percentage or cmdprio_bssplit set).
2232          * The samples for the default prio will exist in the src->clat_prio
2233          * array, just like the samples for any other prio.
2234          */
2235         assert(src->clat_prio[src_ddir]);
2236         assert(src->nr_clat_prio[src_ddir]);
2237
2238         /* If the dst ts doesn't yet have a clat_prio array, simply memcpy. */
2239         if (!dst->clat_prio[dst_ddir])
2240                 return clat_prio_stats_copy(dst, src, dst_ddir, src_ddir);
2241
2242         /* The dst ts already has a clat_prio_array, add src stats into it. */
2243         for (i = 0; i < src->nr_clat_prio[src_ddir]; i++) {
2244                 struct io_stat *io_stat = &src->clat_prio[src_ddir][i].clat_stat;
2245                 uint64_t *io_u_plat = src->clat_prio[src_ddir][i].io_u_plat;
2246                 uint32_t ioprio = src->clat_prio[src_ddir][i].ioprio;
2247
2248                 if (clat_prio_stat_add_samples(dst, dst_ddir, ioprio, io_stat, io_u_plat))
2249                         return 1;
2250         }
2251
2252         return 0;
2253 }
2254
2255 static int sum_clat_prio_stats(struct thread_stat *dst, struct thread_stat *src,
2256                                enum fio_ddir dst_ddir, enum fio_ddir src_ddir)
2257 {
2258         if (dst->disable_prio_stat)
2259                 return 0;
2260
2261         if (!src->clat_prio[src_ddir])
2262                 return sum_clat_prio_stats_src_single_prio(dst, src, dst_ddir,
2263                                                            src_ddir);
2264
2265         return sum_clat_prio_stats_src_multi_prio(dst, src, dst_ddir, src_ddir);
2266 }
2267
2268 void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src)
2269 {
2270         int k, l, m;
2271
2272         for (l = 0; l < DDIR_RWDIR_CNT; l++) {
2273                 if (dst->unified_rw_rep != UNIFIED_MIXED) {
2274                         sum_stat(&dst->clat_stat[l], &src->clat_stat[l], false);
2275                         sum_stat(&dst->slat_stat[l], &src->slat_stat[l], false);
2276                         sum_stat(&dst->lat_stat[l], &src->lat_stat[l], false);
2277                         sum_stat(&dst->bw_stat[l], &src->bw_stat[l], true);
2278                         sum_stat(&dst->iops_stat[l], &src->iops_stat[l], true);
2279                         sum_clat_prio_stats(dst, src, l, l);
2280
2281                         dst->io_bytes[l] += src->io_bytes[l];
2282
2283                         if (dst->runtime[l] < src->runtime[l])
2284                                 dst->runtime[l] = src->runtime[l];
2285                 } else {
2286                         sum_stat(&dst->clat_stat[0], &src->clat_stat[l], false);
2287                         sum_stat(&dst->slat_stat[0], &src->slat_stat[l], false);
2288                         sum_stat(&dst->lat_stat[0], &src->lat_stat[l], false);
2289                         sum_stat(&dst->bw_stat[0], &src->bw_stat[l], true);
2290                         sum_stat(&dst->iops_stat[0], &src->iops_stat[l], true);
2291                         sum_clat_prio_stats(dst, src, 0, l);
2292
2293                         dst->io_bytes[0] += src->io_bytes[l];
2294
2295                         if (dst->runtime[0] < src->runtime[l])
2296                                 dst->runtime[0] = src->runtime[l];
2297                 }
2298         }
2299
2300         sum_stat(&dst->sync_stat, &src->sync_stat, false);
2301         dst->usr_time += src->usr_time;
2302         dst->sys_time += src->sys_time;
2303         dst->ctx += src->ctx;
2304         dst->majf += src->majf;
2305         dst->minf += src->minf;
2306
2307         for (k = 0; k < FIO_IO_U_MAP_NR; k++) {
2308                 dst->io_u_map[k] += src->io_u_map[k];
2309                 dst->io_u_submit[k] += src->io_u_submit[k];
2310                 dst->io_u_complete[k] += src->io_u_complete[k];
2311         }
2312
2313         for (k = 0; k < FIO_IO_U_LAT_N_NR; k++)
2314                 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
2315         for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
2316                 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
2317         for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
2318                 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
2319
2320         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
2321                 if (dst->unified_rw_rep != UNIFIED_MIXED) {
2322                         dst->total_io_u[k] += src->total_io_u[k];
2323                         dst->short_io_u[k] += src->short_io_u[k];
2324                         dst->drop_io_u[k] += src->drop_io_u[k];
2325                 } else {
2326                         dst->total_io_u[0] += src->total_io_u[k];
2327                         dst->short_io_u[0] += src->short_io_u[k];
2328                         dst->drop_io_u[0] += src->drop_io_u[k];
2329                 }
2330         }
2331
2332         dst->total_io_u[DDIR_SYNC] += src->total_io_u[DDIR_SYNC];
2333
2334         for (k = 0; k < FIO_LAT_CNT; k++)
2335                 for (l = 0; l < DDIR_RWDIR_CNT; l++)
2336                         for (m = 0; m < FIO_IO_U_PLAT_NR; m++)
2337                                 if (dst->unified_rw_rep != UNIFIED_MIXED)
2338                                         dst->io_u_plat[k][l][m] += src->io_u_plat[k][l][m];
2339                                 else
2340                                         dst->io_u_plat[k][0][m] += src->io_u_plat[k][l][m];
2341
2342         for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
2343                 dst->io_u_sync_plat[k] += src->io_u_sync_plat[k];
2344
2345         dst->total_run_time += src->total_run_time;
2346         dst->total_submit += src->total_submit;
2347         dst->total_complete += src->total_complete;
2348         dst->nr_zone_resets += src->nr_zone_resets;
2349         dst->cachehit += src->cachehit;
2350         dst->cachemiss += src->cachemiss;
2351 }
2352
2353 void init_group_run_stat(struct group_run_stats *gs)
2354 {
2355         int i;
2356         memset(gs, 0, sizeof(*gs));
2357
2358         for (i = 0; i < DDIR_RWDIR_CNT; i++)
2359                 gs->min_bw[i] = gs->min_run[i] = ~0UL;
2360 }
2361
2362 void init_thread_stat_min_vals(struct thread_stat *ts)
2363 {
2364         int i;
2365
2366         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2367                 ts->clat_stat[i].min_val = ULONG_MAX;
2368                 ts->slat_stat[i].min_val = ULONG_MAX;
2369                 ts->lat_stat[i].min_val = ULONG_MAX;
2370                 ts->bw_stat[i].min_val = ULONG_MAX;
2371                 ts->iops_stat[i].min_val = ULONG_MAX;
2372         }
2373         ts->sync_stat.min_val = ULONG_MAX;
2374 }
2375
2376 void init_thread_stat(struct thread_stat *ts)
2377 {
2378         memset(ts, 0, sizeof(*ts));
2379
2380         init_thread_stat_min_vals(ts);
2381         ts->groupid = -1;
2382 }
2383
2384 static void init_per_prio_stats(struct thread_stat *threadstats, int nr_ts)
2385 {
2386         struct thread_stat *ts;
2387         int i, j, last_ts, idx;
2388         enum fio_ddir ddir;
2389
2390         j = 0;
2391         last_ts = -1;
2392         idx = 0;
2393
2394         /*
2395          * Loop through all tds, if a td requires per prio stats, temporarily
2396          * store a 1 in ts->disable_prio_stat, and then do an additional
2397          * loop at the end where we invert the ts->disable_prio_stat values.
2398          */
2399         for_each_td(td) {
2400                 if (!td->o.stats)
2401                         continue;
2402                 if (idx &&
2403                     (!td->o.group_reporting ||
2404                      (td->o.group_reporting && last_ts != td->groupid))) {
2405                         idx = 0;
2406                         j++;
2407                 }
2408
2409                 last_ts = td->groupid;
2410                 ts = &threadstats[j];
2411
2412                 /* idx == 0 means first td in group, or td is not in a group. */
2413                 if (idx == 0)
2414                         ts->ioprio = td->ioprio;
2415                 else if (td->ioprio != ts->ioprio)
2416                         ts->disable_prio_stat = 1;
2417
2418                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2419                         if (td->ts.clat_prio[ddir]) {
2420                                 ts->disable_prio_stat = 1;
2421                                 break;
2422                         }
2423                 }
2424
2425                 idx++;
2426         } end_for_each();
2427
2428         /* Loop through all dst threadstats and fixup the values. */
2429         for (i = 0; i < nr_ts; i++) {
2430                 ts = &threadstats[i];
2431                 ts->disable_prio_stat = !ts->disable_prio_stat;
2432         }
2433 }
2434
2435 void __show_run_stats(void)
2436 {
2437         struct group_run_stats *runstats, *rs;
2438         struct thread_stat *threadstats, *ts;
2439         int i, j, k, nr_ts, last_ts, idx;
2440         bool kb_base_warned = false;
2441         bool unit_base_warned = false;
2442         struct json_object *root = NULL;
2443         struct json_array *array = NULL;
2444         struct buf_output output[FIO_OUTPUT_NR];
2445         struct flist_head **opt_lists;
2446
2447         runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
2448
2449         for (i = 0; i < groupid + 1; i++)
2450                 init_group_run_stat(&runstats[i]);
2451
2452         /*
2453          * find out how many threads stats we need. if group reporting isn't
2454          * enabled, it's one-per-td.
2455          */
2456         nr_ts = 0;
2457         last_ts = -1;
2458         for_each_td(td) {
2459                 if (!td->o.group_reporting) {
2460                         nr_ts++;
2461                         continue;
2462                 }
2463                 if (last_ts == td->groupid)
2464                         continue;
2465                 if (!td->o.stats)
2466                         continue;
2467
2468                 last_ts = td->groupid;
2469                 nr_ts++;
2470         } end_for_each();
2471
2472         threadstats = malloc(nr_ts * sizeof(struct thread_stat));
2473         opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
2474
2475         for (i = 0; i < nr_ts; i++) {
2476                 init_thread_stat(&threadstats[i]);
2477                 opt_lists[i] = NULL;
2478         }
2479
2480         init_per_prio_stats(threadstats, nr_ts);
2481
2482         j = 0;
2483         last_ts = -1;
2484         idx = 0;
2485         for_each_td(td) {
2486                 if (!td->o.stats)
2487                         continue;
2488                 if (idx && (!td->o.group_reporting ||
2489                     (td->o.group_reporting && last_ts != td->groupid))) {
2490                         idx = 0;
2491                         j++;
2492                 }
2493
2494                 last_ts = td->groupid;
2495
2496                 ts = &threadstats[j];
2497
2498                 ts->clat_percentiles = td->o.clat_percentiles;
2499                 ts->lat_percentiles = td->o.lat_percentiles;
2500                 ts->slat_percentiles = td->o.slat_percentiles;
2501                 ts->percentile_precision = td->o.percentile_precision;
2502                 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
2503                 opt_lists[j] = &td->opt_list;
2504
2505                 idx++;
2506
2507                 if (ts->groupid == -1) {
2508                         /*
2509                          * These are per-group shared already
2510                          */
2511                         snprintf(ts->name, sizeof(ts->name), "%s", td->o.name);
2512                         if (td->o.description)
2513                                 snprintf(ts->description,
2514                                          sizeof(ts->description), "%s",
2515                                          td->o.description);
2516                         else
2517                                 memset(ts->description, 0, FIO_JOBDESC_SIZE);
2518
2519                         /*
2520                          * If multiple entries in this group, this is
2521                          * the first member.
2522                          */
2523                         ts->thread_number = td->thread_number;
2524                         ts->groupid = td->groupid;
2525
2526                         /*
2527                          * first pid in group, not very useful...
2528                          */
2529                         ts->pid = td->pid;
2530
2531                         ts->kb_base = td->o.kb_base;
2532                         ts->unit_base = td->o.unit_base;
2533                         ts->sig_figs = td->o.sig_figs;
2534                         ts->unified_rw_rep = td->o.unified_rw_rep;
2535                 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
2536                         log_info("fio: kb_base differs for jobs in group, using"
2537                                  " %u as the base\n", ts->kb_base);
2538                         kb_base_warned = true;
2539                 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
2540                         log_info("fio: unit_base differs for jobs in group, using"
2541                                  " %u as the base\n", ts->unit_base);
2542                         unit_base_warned = true;
2543                 }
2544
2545                 ts->continue_on_error = td->o.continue_on_error;
2546                 ts->total_err_count += td->total_err_count;
2547                 ts->first_error = td->first_error;
2548                 if (!ts->error) {
2549                         if (!td->error && td->o.continue_on_error &&
2550                             td->first_error) {
2551                                 ts->error = td->first_error;
2552                                 snprintf(ts->verror, sizeof(ts->verror), "%s",
2553                                          td->verror);
2554                         } else  if (td->error) {
2555                                 ts->error = td->error;
2556                                 snprintf(ts->verror, sizeof(ts->verror), "%s",
2557                                          td->verror);
2558                         }
2559                 }
2560
2561                 ts->latency_depth = td->latency_qd;
2562                 ts->latency_target = td->o.latency_target;
2563                 ts->latency_percentile = td->o.latency_percentile;
2564                 ts->latency_window = td->o.latency_window;
2565
2566                 ts->nr_block_infos = td->ts.nr_block_infos;
2567                 for (k = 0; k < ts->nr_block_infos; k++)
2568                         ts->block_infos[k] = td->ts.block_infos[k];
2569
2570                 sum_thread_stats(ts, &td->ts);
2571
2572                 ts->members++;
2573
2574                 if (td->o.ss_dur) {
2575                         ts->ss_state = td->ss.state;
2576                         ts->ss_dur = td->ss.dur;
2577                         ts->ss_head = td->ss.head;
2578                         ts->ss_bw_data = td->ss.bw_data;
2579                         ts->ss_iops_data = td->ss.iops_data;
2580                         ts->ss_limit.u.f = td->ss.limit;
2581                         ts->ss_slope.u.f = td->ss.slope;
2582                         ts->ss_deviation.u.f = td->ss.deviation;
2583                         ts->ss_criterion.u.f = td->ss.criterion;
2584                 }
2585                 else
2586                         ts->ss_dur = ts->ss_state = 0;
2587         } end_for_each();
2588
2589         for (i = 0; i < nr_ts; i++) {
2590                 unsigned long long bw;
2591
2592                 ts = &threadstats[i];
2593                 if (ts->groupid == -1)
2594                         continue;
2595                 rs = &runstats[ts->groupid];
2596                 rs->kb_base = ts->kb_base;
2597                 rs->unit_base = ts->unit_base;
2598                 rs->sig_figs = ts->sig_figs;
2599                 rs->unified_rw_rep |= ts->unified_rw_rep;
2600
2601                 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
2602                         if (!ts->runtime[j])
2603                                 continue;
2604                         if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
2605                                 rs->min_run[j] = ts->runtime[j];
2606                         if (ts->runtime[j] > rs->max_run[j])
2607                                 rs->max_run[j] = ts->runtime[j];
2608
2609                         bw = 0;
2610                         if (ts->runtime[j])
2611                                 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
2612                         if (bw < rs->min_bw[j])
2613                                 rs->min_bw[j] = bw;
2614                         if (bw > rs->max_bw[j])
2615                                 rs->max_bw[j] = bw;
2616
2617                         rs->iobytes[j] += ts->io_bytes[j];
2618                 }
2619         }
2620
2621         for (i = 0; i < groupid + 1; i++) {
2622                 enum fio_ddir ddir;
2623
2624                 rs = &runstats[i];
2625
2626                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2627                         if (rs->max_run[ddir])
2628                                 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
2629                                                 rs->max_run[ddir];
2630                 }
2631         }
2632
2633         for (i = 0; i < FIO_OUTPUT_NR; i++)
2634                 buf_output_init(&output[i]);
2635
2636         /*
2637          * don't overwrite last signal output
2638          */
2639         if (output_format & FIO_OUTPUT_NORMAL)
2640                 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
2641         if (output_format & FIO_OUTPUT_JSON) {
2642                 struct thread_data *global;
2643                 char time_buf[32];
2644                 struct timeval now;
2645                 unsigned long long ms_since_epoch;
2646                 time_t tv_sec;
2647
2648                 gettimeofday(&now, NULL);
2649                 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
2650                                  (unsigned long long)(now.tv_usec) / 1000;
2651
2652                 tv_sec = now.tv_sec;
2653                 os_ctime_r(&tv_sec, time_buf, sizeof(time_buf));
2654                 if (time_buf[strlen(time_buf) - 1] == '\n')
2655                         time_buf[strlen(time_buf) - 1] = '\0';
2656
2657                 root = json_create_object();
2658                 json_object_add_value_string(root, "fio version", fio_version_string);
2659                 json_object_add_value_int(root, "timestamp", now.tv_sec);
2660                 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
2661                 json_object_add_value_string(root, "time", time_buf);
2662                 global = get_global_options();
2663                 json_add_job_opts(root, "global options", &global->opt_list);
2664                 array = json_create_array();
2665                 json_object_add_value_array(root, "jobs", array);
2666         }
2667
2668         if (is_backend)
2669                 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
2670
2671         for (i = 0; i < nr_ts; i++) {
2672                 ts = &threadstats[i];
2673                 rs = &runstats[ts->groupid];
2674
2675                 if (is_backend) {
2676                         fio_server_send_job_options(opt_lists[i], i);
2677                         fio_server_send_ts(ts, rs);
2678                 } else {
2679                         if (output_format & FIO_OUTPUT_TERSE)
2680                                 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
2681                         if (output_format & FIO_OUTPUT_JSON) {
2682                                 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
2683                                 json_array_add_value_object(array, tmp);
2684                         }
2685                         if (output_format & FIO_OUTPUT_NORMAL)
2686                                 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
2687                 }
2688         }
2689         if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
2690                 /* disk util stats, if any */
2691                 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
2692
2693                 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
2694
2695                 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
2696                 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
2697                 json_free_object(root);
2698         }
2699
2700         for (i = 0; i < groupid + 1; i++) {
2701                 rs = &runstats[i];
2702
2703                 rs->groupid = i;
2704                 if (is_backend)
2705                         fio_server_send_gs(rs);
2706                 else if (output_format & FIO_OUTPUT_NORMAL)
2707                         show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
2708         }
2709
2710         if (is_backend)
2711                 fio_server_send_du();
2712         else if (output_format & FIO_OUTPUT_NORMAL) {
2713                 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
2714                 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
2715         }
2716
2717         for (i = 0; i < FIO_OUTPUT_NR; i++) {
2718                 struct buf_output *out = &output[i];
2719
2720                 log_info_buf(out->buf, out->buflen);
2721                 buf_output_free(out);
2722         }
2723
2724         fio_idle_prof_cleanup();
2725
2726         log_info_flush();
2727         free(runstats);
2728
2729         /* free arrays allocated by sum_thread_stats(), if any */
2730         for (i = 0; i < nr_ts; i++) {
2731                 ts = &threadstats[i];
2732                 free_clat_prio_stats(ts);
2733         }
2734         free(threadstats);
2735         free(opt_lists);
2736 }
2737
2738 int __show_running_run_stats(void)
2739 {
2740         unsigned long long *rt;
2741         struct timespec ts;
2742
2743         fio_sem_down(stat_sem);
2744
2745         rt = malloc(thread_number * sizeof(unsigned long long));
2746         fio_gettime(&ts, NULL);
2747
2748         for_each_td(td) {
2749                 if (td->runstate >= TD_EXITED)
2750                         continue;
2751
2752                 td->update_rusage = 1;
2753                 for_each_rw_ddir(ddir) {
2754                         td->ts.io_bytes[ddir] = td->io_bytes[ddir];
2755                 }
2756                 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
2757
2758                 rt[__td_index] = mtime_since(&td->start, &ts);
2759                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2760                         td->ts.runtime[DDIR_READ] += rt[__td_index];
2761                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2762                         td->ts.runtime[DDIR_WRITE] += rt[__td_index];
2763                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2764                         td->ts.runtime[DDIR_TRIM] += rt[__td_index];
2765         } end_for_each();
2766
2767         for_each_td(td) {
2768                 if (td->runstate >= TD_EXITED)
2769                         continue;
2770                 if (td->rusage_sem) {
2771                         td->update_rusage = 1;
2772                         fio_sem_down(td->rusage_sem);
2773                 }
2774                 td->update_rusage = 0;
2775         } end_for_each();
2776
2777         __show_run_stats();
2778
2779         for_each_td(td) {
2780                 if (td->runstate >= TD_EXITED)
2781                         continue;
2782
2783                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2784                         td->ts.runtime[DDIR_READ] -= rt[__td_index];
2785                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2786                         td->ts.runtime[DDIR_WRITE] -= rt[__td_index];
2787                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2788                         td->ts.runtime[DDIR_TRIM] -= rt[__td_index];
2789         } end_for_each();
2790
2791         free(rt);
2792         fio_sem_up(stat_sem);
2793
2794         return 0;
2795 }
2796
2797 static bool status_file_disabled;
2798
2799 #define FIO_STATUS_FILE         "fio-dump-status"
2800
2801 static int check_status_file(void)
2802 {
2803         struct stat sb;
2804         const char *temp_dir;
2805         char fio_status_file_path[PATH_MAX];
2806
2807         if (status_file_disabled)
2808                 return 0;
2809
2810         temp_dir = getenv("TMPDIR");
2811         if (temp_dir == NULL) {
2812                 temp_dir = getenv("TEMP");
2813                 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
2814                         temp_dir = NULL;
2815         }
2816         if (temp_dir == NULL)
2817                 temp_dir = "/tmp";
2818 #ifdef __COVERITY__
2819         __coverity_tainted_data_sanitize__(temp_dir);
2820 #endif
2821
2822         snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
2823
2824         if (stat(fio_status_file_path, &sb))
2825                 return 0;
2826
2827         if (unlink(fio_status_file_path) < 0) {
2828                 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
2829                                                         strerror(errno));
2830                 log_err("fio: disabling status file updates\n");
2831                 status_file_disabled = true;
2832         }
2833
2834         return 1;
2835 }
2836
2837 void check_for_running_stats(void)
2838 {
2839         if (check_status_file()) {
2840                 show_running_run_stats();
2841                 return;
2842         }
2843 }
2844
2845 static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2846 {
2847         double val = data;
2848         double delta;
2849
2850         if (data > is->max_val)
2851                 is->max_val = data;
2852         if (data < is->min_val)
2853                 is->min_val = data;
2854
2855         delta = val - is->mean.u.f;
2856         if (delta) {
2857                 is->mean.u.f += delta / (is->samples + 1.0);
2858                 is->S.u.f += delta * (val - is->mean.u.f);
2859         }
2860
2861         is->samples++;
2862 }
2863
2864 static inline void add_stat_prio_sample(struct clat_prio_stat *clat_prio,
2865                                         unsigned short clat_prio_index,
2866                                         unsigned long long nsec)
2867 {
2868         if (clat_prio)
2869                 add_stat_sample(&clat_prio[clat_prio_index].clat_stat, nsec);
2870 }
2871
2872 /*
2873  * Return a struct io_logs, which is added to the tail of the log
2874  * list for 'iolog'.
2875  */
2876 static struct io_logs *get_new_log(struct io_log *iolog)
2877 {
2878         size_t new_samples;
2879         struct io_logs *cur_log;
2880
2881         /*
2882          * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2883          * forever
2884          */
2885         if (!iolog->cur_log_max) {
2886                 if (iolog->td)
2887                         new_samples = iolog->td->o.log_entries;
2888                 else
2889                         new_samples = DEF_LOG_ENTRIES;
2890         } else {
2891                 new_samples = iolog->cur_log_max * 2;
2892                 if (new_samples > MAX_LOG_ENTRIES)
2893                         new_samples = MAX_LOG_ENTRIES;
2894         }
2895
2896         cur_log = smalloc(sizeof(*cur_log));
2897         if (cur_log) {
2898                 INIT_FLIST_HEAD(&cur_log->list);
2899                 cur_log->log = calloc(new_samples, log_entry_sz(iolog));
2900                 if (cur_log->log) {
2901                         cur_log->nr_samples = 0;
2902                         cur_log->max_samples = new_samples;
2903                         flist_add_tail(&cur_log->list, &iolog->io_logs);
2904                         iolog->cur_log_max = new_samples;
2905                         return cur_log;
2906                 }
2907                 sfree(cur_log);
2908         }
2909
2910         return NULL;
2911 }
2912
2913 /*
2914  * Add and return a new log chunk, or return current log if big enough
2915  */
2916 static struct io_logs *regrow_log(struct io_log *iolog)
2917 {
2918         struct io_logs *cur_log;
2919         int i;
2920
2921         if (!iolog || iolog->disabled)
2922                 goto disable;
2923
2924         cur_log = iolog_cur_log(iolog);
2925         if (!cur_log) {
2926                 cur_log = get_new_log(iolog);
2927                 if (!cur_log)
2928                         return NULL;
2929         }
2930
2931         if (cur_log->nr_samples < cur_log->max_samples)
2932                 return cur_log;
2933
2934         /*
2935          * No room for a new sample. If we're compressing on the fly, flush
2936          * out the current chunk
2937          */
2938         if (iolog->log_gz) {
2939                 if (iolog_cur_flush(iolog, cur_log)) {
2940                         log_err("fio: failed flushing iolog! Will stop logging.\n");
2941                         return NULL;
2942                 }
2943         }
2944
2945         /*
2946          * Get a new log array, and add to our list
2947          */
2948         cur_log = get_new_log(iolog);
2949         if (!cur_log) {
2950                 log_err("fio: failed extending iolog! Will stop logging.\n");
2951                 return NULL;
2952         }
2953
2954         if (!iolog->pending || !iolog->pending->nr_samples)
2955                 return cur_log;
2956
2957         /*
2958          * Flush pending items to new log
2959          */
2960         for (i = 0; i < iolog->pending->nr_samples; i++) {
2961                 struct io_sample *src, *dst;
2962
2963                 src = get_sample(iolog, iolog->pending, i);
2964                 dst = get_sample(iolog, cur_log, i);
2965                 memcpy(dst, src, log_entry_sz(iolog));
2966         }
2967         cur_log->nr_samples = iolog->pending->nr_samples;
2968
2969         iolog->pending->nr_samples = 0;
2970         return cur_log;
2971 disable:
2972         if (iolog)
2973                 iolog->disabled = true;
2974         return NULL;
2975 }
2976
2977 void regrow_logs(struct thread_data *td)
2978 {
2979         regrow_log(td->slat_log);
2980         regrow_log(td->clat_log);
2981         regrow_log(td->clat_hist_log);
2982         regrow_log(td->lat_log);
2983         regrow_log(td->bw_log);
2984         regrow_log(td->iops_log);
2985         td->flags &= ~TD_F_REGROW_LOGS;
2986 }
2987
2988 void regrow_agg_logs(void)
2989 {
2990         enum fio_ddir ddir;
2991
2992         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2993                 regrow_log(agg_io_log[ddir]);
2994 }
2995
2996 static struct io_logs *get_cur_log(struct io_log *iolog)
2997 {
2998         struct io_logs *cur_log;
2999
3000         cur_log = iolog_cur_log(iolog);
3001         if (!cur_log) {
3002                 cur_log = get_new_log(iolog);
3003                 if (!cur_log)
3004                         return NULL;
3005         }
3006
3007         if (cur_log->nr_samples < cur_log->max_samples)
3008                 return cur_log;
3009
3010         /*
3011          * Out of space. If we're in IO offload mode, or we're not doing
3012          * per unit logging (hence logging happens outside of the IO thread
3013          * as well), add a new log chunk inline. If we're doing inline
3014          * submissions, flag 'td' as needing a log regrow and we'll take
3015          * care of it on the submission side.
3016          */
3017         if ((iolog->td && iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD) ||
3018             !per_unit_log(iolog))
3019                 return regrow_log(iolog);
3020
3021         if (iolog->td)
3022                 iolog->td->flags |= TD_F_REGROW_LOGS;
3023         if (iolog->pending)
3024                 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
3025         return iolog->pending;
3026 }
3027
3028 static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
3029                              enum fio_ddir ddir, unsigned long long bs,
3030                              unsigned long t, uint64_t offset,
3031                              unsigned int priority)
3032 {
3033         struct io_logs *cur_log;
3034
3035         if (iolog->disabled)
3036                 return;
3037         if (flist_empty(&iolog->io_logs))
3038                 iolog->avg_last[ddir] = t;
3039
3040         cur_log = get_cur_log(iolog);
3041         if (cur_log) {
3042                 struct io_sample *s;
3043
3044                 s = get_sample(iolog, cur_log, cur_log->nr_samples);
3045
3046                 s->data = data;
3047                 s->time = t + (iolog->td ? iolog->td->alternate_epoch : 0);
3048                 io_sample_set_ddir(iolog, s, ddir);
3049                 s->bs = bs;
3050                 s->priority = priority;
3051
3052                 if (iolog->log_offset) {
3053                         struct io_sample_offset *so = (void *) s;
3054
3055                         so->offset = offset;
3056                 }
3057
3058                 cur_log->nr_samples++;
3059                 return;
3060         }
3061
3062         iolog->disabled = true;
3063 }
3064
3065 static inline void reset_io_stat(struct io_stat *ios)
3066 {
3067         ios->min_val = -1ULL;
3068         ios->max_val = ios->samples = 0;
3069         ios->mean.u.f = ios->S.u.f = 0;
3070 }
3071
3072 static inline void reset_io_u_plat(uint64_t *io_u_plat)
3073 {
3074         int i;
3075
3076         for (i = 0; i < FIO_IO_U_PLAT_NR; i++)
3077                 io_u_plat[i] = 0;
3078 }
3079
3080 static inline void reset_clat_prio_stats(struct thread_stat *ts)
3081 {
3082         enum fio_ddir ddir;
3083         int i;
3084
3085         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
3086                 if (!ts->clat_prio[ddir])
3087                         continue;
3088
3089                 for (i = 0; i < ts->nr_clat_prio[ddir]; i++) {
3090                         reset_io_stat(&ts->clat_prio[ddir][i].clat_stat);
3091                         reset_io_u_plat(ts->clat_prio[ddir][i].io_u_plat);
3092                 }
3093         }
3094 }
3095
3096 void reset_io_stats(struct thread_data *td)
3097 {
3098         struct thread_stat *ts = &td->ts;
3099         int i, j;
3100
3101         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
3102                 reset_io_stat(&ts->clat_stat[i]);
3103                 reset_io_stat(&ts->slat_stat[i]);
3104                 reset_io_stat(&ts->lat_stat[i]);
3105                 reset_io_stat(&ts->bw_stat[i]);
3106                 reset_io_stat(&ts->iops_stat[i]);
3107
3108                 ts->io_bytes[i] = 0;
3109                 ts->runtime[i] = 0;
3110                 ts->total_io_u[i] = 0;
3111                 ts->short_io_u[i] = 0;
3112                 ts->drop_io_u[i] = 0;
3113         }
3114
3115         for (i = 0; i < FIO_LAT_CNT; i++)
3116                 for (j = 0; j < DDIR_RWDIR_CNT; j++)
3117                         reset_io_u_plat(ts->io_u_plat[i][j]);
3118
3119         reset_clat_prio_stats(ts);
3120
3121         ts->total_io_u[DDIR_SYNC] = 0;
3122         reset_io_u_plat(ts->io_u_sync_plat);
3123
3124         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
3125                 ts->io_u_map[i] = 0;
3126                 ts->io_u_submit[i] = 0;
3127                 ts->io_u_complete[i] = 0;
3128         }
3129
3130         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
3131                 ts->io_u_lat_n[i] = 0;
3132         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
3133                 ts->io_u_lat_u[i] = 0;
3134         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
3135                 ts->io_u_lat_m[i] = 0;
3136
3137         ts->total_submit = 0;
3138         ts->total_complete = 0;
3139         ts->nr_zone_resets = 0;
3140         ts->cachehit = ts->cachemiss = 0;
3141 }
3142
3143 static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
3144                               unsigned long elapsed, bool log_max)
3145 {
3146         /*
3147          * Note an entry in the log. Use the mean from the logged samples,
3148          * making sure to properly round up. Only write a log entry if we
3149          * had actual samples done.
3150          */
3151         if (iolog->avg_window[ddir].samples) {
3152                 union io_sample_data data;
3153
3154                 if (log_max)
3155                         data.val = iolog->avg_window[ddir].max_val;
3156                 else
3157                         data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
3158
3159                 __add_log_sample(iolog, data, ddir, 0, elapsed, 0, 0);
3160         }
3161
3162         reset_io_stat(&iolog->avg_window[ddir]);
3163 }
3164
3165 static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
3166                              bool log_max)
3167 {
3168         enum fio_ddir ddir;
3169
3170         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
3171                 __add_stat_to_log(iolog, ddir, elapsed, log_max);
3172 }
3173
3174 static unsigned long add_log_sample(struct thread_data *td,
3175                                     struct io_log *iolog,
3176                                     union io_sample_data data,
3177                                     enum fio_ddir ddir, unsigned long long bs,
3178                                     uint64_t offset, unsigned int ioprio)
3179 {
3180         unsigned long elapsed, this_window;
3181
3182         if (!ddir_rw(ddir))
3183                 return 0;
3184
3185         elapsed = mtime_since_now(&td->epoch);
3186
3187         /*
3188          * If no time averaging, just add the log sample.
3189          */
3190         if (!iolog->avg_msec) {
3191                 __add_log_sample(iolog, data, ddir, bs, elapsed, offset,
3192                                  ioprio);
3193                 return 0;
3194         }
3195
3196         /*
3197          * Add the sample. If the time period has passed, then
3198          * add that entry to the log and clear.
3199          */
3200         add_stat_sample(&iolog->avg_window[ddir], data.val);
3201
3202         /*
3203          * If period hasn't passed, adding the above sample is all we
3204          * need to do.
3205          */
3206         this_window = elapsed - iolog->avg_last[ddir];
3207         if (elapsed < iolog->avg_last[ddir])
3208                 return iolog->avg_last[ddir] - elapsed;
3209         else if (this_window < iolog->avg_msec) {
3210                 unsigned long diff = iolog->avg_msec - this_window;
3211
3212                 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
3213                         return diff;
3214         }
3215
3216         __add_stat_to_log(iolog, ddir, elapsed, td->o.log_max != 0);
3217
3218         iolog->avg_last[ddir] = elapsed - (elapsed % iolog->avg_msec);
3219
3220         return iolog->avg_msec;
3221 }
3222
3223 void finalize_logs(struct thread_data *td, bool unit_logs)
3224 {
3225         unsigned long elapsed;
3226
3227         elapsed = mtime_since_now(&td->epoch);
3228
3229         if (td->clat_log && unit_logs)
3230                 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
3231         if (td->slat_log && unit_logs)
3232                 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
3233         if (td->lat_log && unit_logs)
3234                 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
3235         if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
3236                 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
3237         if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
3238                 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
3239 }
3240
3241 void add_agg_sample(union io_sample_data data, enum fio_ddir ddir,
3242                     unsigned long long bs)
3243 {
3244         struct io_log *iolog;
3245
3246         if (!ddir_rw(ddir))
3247                 return;
3248
3249         iolog = agg_io_log[ddir];
3250         __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0, 0);
3251 }
3252
3253 void add_sync_clat_sample(struct thread_stat *ts, unsigned long long nsec)
3254 {
3255         unsigned int idx = plat_val_to_idx(nsec);
3256         assert(idx < FIO_IO_U_PLAT_NR);
3257
3258         ts->io_u_sync_plat[idx]++;
3259         add_stat_sample(&ts->sync_stat, nsec);
3260 }
3261
3262 static inline void add_lat_percentile_sample(struct thread_stat *ts,
3263                                              unsigned long long nsec,
3264                                              enum fio_ddir ddir,
3265                                              enum fio_lat lat)
3266 {
3267         unsigned int idx = plat_val_to_idx(nsec);
3268         assert(idx < FIO_IO_U_PLAT_NR);
3269
3270         ts->io_u_plat[lat][ddir][idx]++;
3271 }
3272
3273 static inline void
3274 add_lat_percentile_prio_sample(struct thread_stat *ts, unsigned long long nsec,
3275                                enum fio_ddir ddir,
3276                                unsigned short clat_prio_index)
3277 {
3278         unsigned int idx = plat_val_to_idx(nsec);
3279
3280         if (ts->clat_prio[ddir])
3281                 ts->clat_prio[ddir][clat_prio_index].io_u_plat[idx]++;
3282 }
3283
3284 void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
3285                      unsigned long long nsec, unsigned long long bs,
3286                      uint64_t offset, unsigned int ioprio,
3287                      unsigned short clat_prio_index)
3288 {
3289         const bool needs_lock = td_async_processing(td);
3290         unsigned long elapsed, this_window;
3291         struct thread_stat *ts = &td->ts;
3292         struct io_log *iolog = td->clat_hist_log;
3293
3294         if (needs_lock)
3295                 __td_io_u_lock(td);
3296
3297         add_stat_sample(&ts->clat_stat[ddir], nsec);
3298
3299         /*
3300          * When lat_percentiles=1 (default 0), the reported per priority
3301          * percentiles and stats are used for describing total latency values,
3302          * even though the variable names themselves start with clat_.
3303          *
3304          * Because of the above definition, add a prio stat sample only when
3305          * lat_percentiles=0. add_lat_sample() will add the prio stat sample
3306          * when lat_percentiles=1.
3307          */
3308         if (!ts->lat_percentiles)
3309                 add_stat_prio_sample(ts->clat_prio[ddir], clat_prio_index,
3310                                      nsec);
3311
3312         if (td->clat_log)
3313                 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
3314                                offset, ioprio);
3315
3316         if (ts->clat_percentiles) {
3317                 /*
3318                  * Because of the above definition, add a prio lat percentile
3319                  * sample only when lat_percentiles=0. add_lat_sample() will add
3320                  * the prio lat percentile sample when lat_percentiles=1.
3321                  */
3322                 add_lat_percentile_sample(ts, nsec, ddir, FIO_CLAT);
3323                 if (!ts->lat_percentiles)
3324                         add_lat_percentile_prio_sample(ts, nsec, ddir,
3325                                                        clat_prio_index);
3326         }
3327
3328         if (iolog && iolog->hist_msec) {
3329                 struct io_hist *hw = &iolog->hist_window[ddir];
3330
3331                 hw->samples++;
3332                 elapsed = mtime_since_now(&td->epoch);
3333                 if (!hw->hist_last)
3334                         hw->hist_last = elapsed;
3335                 this_window = elapsed - hw->hist_last;
3336
3337                 if (this_window >= iolog->hist_msec) {
3338                         uint64_t *io_u_plat;
3339                         struct io_u_plat_entry *dst;
3340
3341                         /*
3342                          * Make a byte-for-byte copy of the latency histogram
3343                          * stored in td->ts.io_u_plat[ddir], recording it in a
3344                          * log sample. Note that the matching call to free() is
3345                          * located in iolog.c after printing this sample to the
3346                          * log file.
3347                          */
3348                         io_u_plat = (uint64_t *) td->ts.io_u_plat[FIO_CLAT][ddir];
3349                         dst = malloc(sizeof(struct io_u_plat_entry));
3350                         memcpy(&(dst->io_u_plat), io_u_plat,
3351                                 FIO_IO_U_PLAT_NR * sizeof(uint64_t));
3352                         flist_add(&dst->list, &hw->list);
3353                         __add_log_sample(iolog, sample_plat(dst), ddir, bs,
3354                                          elapsed, offset, ioprio);
3355
3356                         /*
3357                          * Update the last time we recorded as being now, minus
3358                          * any drift in time we encountered before actually
3359                          * making the record.
3360                          */
3361                         hw->hist_last = elapsed - (this_window - iolog->hist_msec);
3362                         hw->samples = 0;
3363                 }
3364         }
3365
3366         if (needs_lock)
3367                 __td_io_u_unlock(td);
3368 }
3369
3370 void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
3371                      unsigned long long nsec, unsigned long long bs,
3372                      uint64_t offset, unsigned int ioprio)
3373 {
3374         const bool needs_lock = td_async_processing(td);
3375         struct thread_stat *ts = &td->ts;
3376
3377         if (!ddir_rw(ddir))
3378                 return;
3379
3380         if (needs_lock)
3381                 __td_io_u_lock(td);
3382
3383         add_stat_sample(&ts->slat_stat[ddir], nsec);
3384
3385         if (td->slat_log)
3386                 add_log_sample(td, td->slat_log, sample_val(nsec), ddir, bs,
3387                                offset, ioprio);
3388
3389         if (ts->slat_percentiles)
3390                 add_lat_percentile_sample(ts, nsec, ddir, FIO_SLAT);
3391
3392         if (needs_lock)
3393                 __td_io_u_unlock(td);
3394 }
3395
3396 void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
3397                     unsigned long long nsec, unsigned long long bs,
3398                     uint64_t offset, unsigned int ioprio,
3399                     unsigned short clat_prio_index)
3400 {
3401         const bool needs_lock = td_async_processing(td);
3402         struct thread_stat *ts = &td->ts;
3403
3404         if (!ddir_rw(ddir))
3405                 return;
3406
3407         if (needs_lock)
3408                 __td_io_u_lock(td);
3409
3410         add_stat_sample(&ts->lat_stat[ddir], nsec);
3411
3412         if (td->lat_log)
3413                 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
3414                                offset, ioprio);
3415
3416         /*
3417          * When lat_percentiles=1 (default 0), the reported per priority
3418          * percentiles and stats are used for describing total latency values,
3419          * even though the variable names themselves start with clat_.
3420          *
3421          * Because of the above definition, add a prio stat and prio lat
3422          * percentile sample only when lat_percentiles=1. add_clat_sample() will
3423          * add the prio stat and prio lat percentile sample when
3424          * lat_percentiles=0.
3425          */
3426         if (ts->lat_percentiles) {
3427                 add_lat_percentile_sample(ts, nsec, ddir, FIO_LAT);
3428                 add_lat_percentile_prio_sample(ts, nsec, ddir, clat_prio_index);
3429                 add_stat_prio_sample(ts->clat_prio[ddir], clat_prio_index,
3430                                      nsec);
3431         }
3432         if (needs_lock)
3433                 __td_io_u_unlock(td);
3434 }
3435
3436 void add_bw_sample(struct thread_data *td, struct io_u *io_u,
3437                    unsigned int bytes, unsigned long long spent)
3438 {
3439         const bool needs_lock = td_async_processing(td);
3440         struct thread_stat *ts = &td->ts;
3441         unsigned long rate;
3442
3443         if (spent)
3444                 rate = (unsigned long) (bytes * 1000000ULL / spent);
3445         else
3446                 rate = 0;
3447
3448         if (needs_lock)
3449                 __td_io_u_lock(td);
3450
3451         add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
3452
3453         if (td->bw_log)
3454                 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
3455                                bytes, io_u->offset, io_u->ioprio);
3456
3457         td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
3458
3459         if (needs_lock)
3460                 __td_io_u_unlock(td);
3461 }
3462
3463 static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
3464                          struct timespec *t, unsigned int avg_time,
3465                          uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
3466                          struct io_stat *stat, struct io_log *log,
3467                          bool is_kb)
3468 {
3469         const bool needs_lock = td_async_processing(td);
3470         unsigned long spent, rate;
3471         enum fio_ddir ddir;
3472         unsigned long next, next_log;
3473
3474         next_log = avg_time;
3475
3476         spent = mtime_since(parent_tv, t);
3477         if (spent < avg_time && avg_time - spent > LOG_MSEC_SLACK)
3478                 return avg_time - spent;
3479
3480         if (needs_lock)
3481                 __td_io_u_lock(td);
3482
3483         /*
3484          * Compute both read and write rates for the interval.
3485          */
3486         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
3487                 uint64_t delta;
3488
3489                 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
3490                 if (!delta)
3491                         continue; /* No entries for interval */
3492
3493                 if (spent) {
3494                         if (is_kb)
3495                                 rate = delta * 1000 / spent / 1024; /* KiB/s */
3496                         else
3497                                 rate = (delta * 1000) / spent;
3498                 } else
3499                         rate = 0;
3500
3501                 add_stat_sample(&stat[ddir], rate);
3502
3503                 if (log) {
3504                         unsigned long long bs = 0;
3505
3506                         if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
3507                                 bs = td->o.min_bs[ddir];
3508
3509                         next = add_log_sample(td, log, sample_val(rate), ddir,
3510                                               bs, 0, 0);
3511                         next_log = min(next_log, next);
3512                 }
3513
3514                 stat_io_bytes[ddir] = this_io_bytes[ddir];
3515         }
3516
3517         *parent_tv = *t;
3518
3519         if (needs_lock)
3520                 __td_io_u_unlock(td);
3521
3522         if (spent <= avg_time)
3523                 next = avg_time;
3524         else
3525                 next = avg_time - (1 + spent - avg_time);
3526
3527         return min(next, next_log);
3528 }
3529
3530 static int add_bw_samples(struct thread_data *td, struct timespec *t)
3531 {
3532         return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
3533                                 td->this_io_bytes, td->stat_io_bytes,
3534                                 td->ts.bw_stat, td->bw_log, true);
3535 }
3536
3537 void add_iops_sample(struct thread_data *td, struct io_u *io_u,
3538                      unsigned int bytes)
3539 {
3540         const bool needs_lock = td_async_processing(td);
3541         struct thread_stat *ts = &td->ts;
3542
3543         if (needs_lock)
3544                 __td_io_u_lock(td);
3545
3546         add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
3547
3548         if (td->iops_log)
3549                 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
3550                                bytes, io_u->offset, io_u->ioprio);
3551
3552         td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
3553
3554         if (needs_lock)
3555                 __td_io_u_unlock(td);
3556 }
3557
3558 static int add_iops_samples(struct thread_data *td, struct timespec *t)
3559 {
3560         return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
3561                                 td->this_io_blocks, td->stat_io_blocks,
3562                                 td->ts.iops_stat, td->iops_log, false);
3563 }
3564
3565 /*
3566  * Returns msecs to next event
3567  */
3568 int calc_log_samples(void)
3569 {
3570         unsigned int next = ~0U, tmp = 0, next_mod = 0, log_avg_msec_min = -1U;
3571         struct timespec now;
3572         long elapsed_time = 0;
3573
3574         fio_gettime(&now, NULL);
3575
3576         for_each_td(td) {
3577                 elapsed_time = mtime_since_now(&td->epoch);
3578
3579                 if (!td->o.stats)
3580                         continue;
3581                 if (in_ramp_time(td) ||
3582                     !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
3583                         next = min(td->o.iops_avg_time, td->o.bw_avg_time);
3584                         continue;
3585                 }
3586                 if (!td->bw_log ||
3587                         (td->bw_log && !per_unit_log(td->bw_log))) {
3588                         tmp = add_bw_samples(td, &now);
3589
3590                         if (td->bw_log)
3591                                 log_avg_msec_min = min(log_avg_msec_min, (unsigned int)td->bw_log->avg_msec);
3592                 }
3593                 if (!td->iops_log ||
3594                         (td->iops_log && !per_unit_log(td->iops_log))) {
3595                         tmp = add_iops_samples(td, &now);
3596
3597                         if (td->iops_log)
3598                                 log_avg_msec_min = min(log_avg_msec_min, (unsigned int)td->iops_log->avg_msec);
3599                 }
3600
3601                 if (tmp < next)
3602                         next = tmp;
3603         } end_for_each();
3604
3605         /* if log_avg_msec_min has not been changed, set it to 0 */
3606         if (log_avg_msec_min == -1U)
3607                 log_avg_msec_min = 0;
3608
3609         if (log_avg_msec_min == 0)
3610                 next_mod = elapsed_time;
3611         else
3612                 next_mod = elapsed_time % log_avg_msec_min;
3613
3614         /* correction to keep the time on the log avg msec boundary */
3615         next = min(next, (log_avg_msec_min - next_mod));
3616
3617         return next == ~0U ? 0 : next;
3618 }
3619
3620 void stat_init(void)
3621 {
3622         stat_sem = fio_sem_init(FIO_SEM_UNLOCKED);
3623 }
3624
3625 void stat_exit(void)
3626 {
3627         /*
3628          * When we have the mutex, we know out-of-band access to it
3629          * have ended.
3630          */
3631         fio_sem_down(stat_sem);
3632         fio_sem_remove(stat_sem);
3633 }
3634
3635 /*
3636  * Called from signal handler. Wake up status thread.
3637  */
3638 void show_running_run_stats(void)
3639 {
3640         helper_do_stat();
3641 }
3642
3643 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
3644 {
3645         /* Ignore io_u's which span multiple blocks--they will just get
3646          * inaccurate counts. */
3647         int idx = (io_u->offset - io_u->file->file_offset)
3648                         / td->o.bs[DDIR_TRIM];
3649         uint32_t *info = &td->ts.block_infos[idx];
3650         assert(idx < td->ts.nr_block_infos);
3651         return info;
3652 }
3653