Merge branch 'for-linus' into for-next
[linux-block.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
1507f512 13#include <linux/secretmem.h>
4bbd4c77 14
174cd4b1 15#include <linux/sched/signal.h>
2667f50e 16#include <linux/rwsem.h>
f30c59e9 17#include <linux/hugetlb.h>
9a4e9f3b
AK
18#include <linux/migrate.h>
19#include <linux/mm_inline.h>
20#include <linux/sched/mm.h>
1027e443 21
33a709b2 22#include <asm/mmu_context.h>
1027e443 23#include <asm/tlbflush.h>
2667f50e 24
4bbd4c77
KS
25#include "internal.h"
26
df06b37f
KB
27struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30};
31
cd1adf1b 32/*
ece1ed7b 33 * Return the folio with ref appropriately incremented,
cd1adf1b 34 * or NULL if that failed.
a707cdd5 35 */
ece1ed7b 36static inline struct folio *try_get_folio(struct page *page, int refs)
a707cdd5 37{
ece1ed7b 38 struct folio *folio;
a707cdd5 39
59409373 40retry:
ece1ed7b
MWO
41 folio = page_folio(page);
42 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
a707cdd5 43 return NULL;
ece1ed7b 44 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
a707cdd5 45 return NULL;
c24d3732
JH
46
47 /*
ece1ed7b
MWO
48 * At this point we have a stable reference to the folio; but it
49 * could be that between calling page_folio() and the refcount
50 * increment, the folio was split, in which case we'd end up
51 * holding a reference on a folio that has nothing to do with the page
c24d3732 52 * we were given anymore.
ece1ed7b
MWO
53 * So now that the folio is stable, recheck that the page still
54 * belongs to this folio.
c24d3732 55 */
ece1ed7b
MWO
56 if (unlikely(page_folio(page) != folio)) {
57 folio_put_refs(folio, refs);
59409373 58 goto retry;
c24d3732
JH
59 }
60
ece1ed7b 61 return folio;
a707cdd5
JH
62}
63
3967db22 64/**
ece1ed7b 65 * try_grab_folio() - Attempt to get or pin a folio.
3967db22 66 * @page: pointer to page to be grabbed
ece1ed7b 67 * @refs: the value to (effectively) add to the folio's refcount
3967db22
JH
68 * @flags: gup flags: these are the FOLL_* flag values.
69 *
3faa52c0 70 * "grab" names in this file mean, "look at flags to decide whether to use
ece1ed7b 71 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
3faa52c0
JH
72 *
73 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
74 * same time. (That's true throughout the get_user_pages*() and
75 * pin_user_pages*() APIs.) Cases:
76 *
ece1ed7b 77 * FOLL_GET: folio's refcount will be incremented by @refs.
3967db22 78 *
ece1ed7b
MWO
79 * FOLL_PIN on large folios: folio's refcount will be incremented by
80 * @refs, and its compound_pincount will be incremented by @refs.
3967db22 81 *
ece1ed7b 82 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
5232c63f 83 * @refs * GUP_PIN_COUNTING_BIAS.
3faa52c0 84 *
ece1ed7b
MWO
85 * Return: The folio containing @page (with refcount appropriately
86 * incremented) for success, or NULL upon failure. If neither FOLL_GET
87 * nor FOLL_PIN was set, that's considered failure, and furthermore,
88 * a likely bug in the caller, so a warning is also emitted.
3faa52c0 89 */
ece1ed7b 90struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
3faa52c0
JH
91{
92 if (flags & FOLL_GET)
ece1ed7b 93 return try_get_folio(page, refs);
3faa52c0 94 else if (flags & FOLL_PIN) {
ece1ed7b
MWO
95 struct folio *folio;
96
df3a0a21 97 /*
d1e153fe
PT
98 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
99 * right zone, so fail and let the caller fall back to the slow
100 * path.
df3a0a21 101 */
d1e153fe
PT
102 if (unlikely((flags & FOLL_LONGTERM) &&
103 !is_pinnable_page(page)))
df3a0a21
PL
104 return NULL;
105
c24d3732
JH
106 /*
107 * CAUTION: Don't use compound_head() on the page before this
108 * point, the result won't be stable.
109 */
ece1ed7b
MWO
110 folio = try_get_folio(page, refs);
111 if (!folio)
c24d3732
JH
112 return NULL;
113
47e29d32 114 /*
ece1ed7b 115 * When pinning a large folio, use an exact count to track it.
47e29d32 116 *
ece1ed7b
MWO
117 * However, be sure to *also* increment the normal folio
118 * refcount field at least once, so that the folio really
78d9d6ce 119 * is pinned. That's why the refcount from the earlier
ece1ed7b 120 * try_get_folio() is left intact.
47e29d32 121 */
ece1ed7b
MWO
122 if (folio_test_large(folio))
123 atomic_add(refs, folio_pincount_ptr(folio));
c24d3732 124 else
ece1ed7b
MWO
125 folio_ref_add(folio,
126 refs * (GUP_PIN_COUNTING_BIAS - 1));
127 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
47e29d32 128
ece1ed7b 129 return folio;
3faa52c0
JH
130 }
131
132 WARN_ON_ONCE(1);
133 return NULL;
134}
135
d8ddc099 136static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
4509b42c
JG
137{
138 if (flags & FOLL_PIN) {
d8ddc099
MWO
139 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
140 if (folio_test_large(folio))
141 atomic_sub(refs, folio_pincount_ptr(folio));
4509b42c
JG
142 else
143 refs *= GUP_PIN_COUNTING_BIAS;
144 }
145
d8ddc099 146 folio_put_refs(folio, refs);
4509b42c
JG
147}
148
3faa52c0
JH
149/**
150 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
5fec0719
MWO
151 * @page: pointer to page to be grabbed
152 * @flags: gup flags: these are the FOLL_* flag values.
3faa52c0
JH
153 *
154 * This might not do anything at all, depending on the flags argument.
155 *
156 * "grab" names in this file mean, "look at flags to decide whether to use
157 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
158 *
3faa52c0 159 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
ece1ed7b 160 * time. Cases: please see the try_grab_folio() documentation, with
3967db22 161 * "refs=1".
3faa52c0
JH
162 *
163 * Return: true for success, or if no action was required (if neither FOLL_PIN
164 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
165 * FOLL_PIN was set, but the page could not be grabbed.
166 */
167bool __must_check try_grab_page(struct page *page, unsigned int flags)
168{
5fec0719
MWO
169 struct folio *folio = page_folio(page);
170
c36c04c2 171 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
5fec0719
MWO
172 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
173 return false;
3faa52c0 174
c36c04c2 175 if (flags & FOLL_GET)
5fec0719 176 folio_ref_inc(folio);
c36c04c2 177 else if (flags & FOLL_PIN) {
c36c04c2 178 /*
5fec0719 179 * Similar to try_grab_folio(): be sure to *also*
78d9d6ce
MWO
180 * increment the normal page refcount field at least once,
181 * so that the page really is pinned.
c36c04c2 182 */
5fec0719
MWO
183 if (folio_test_large(folio)) {
184 folio_ref_add(folio, 1);
185 atomic_add(1, folio_pincount_ptr(folio));
8ea2979c 186 } else {
5fec0719 187 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
8ea2979c 188 }
c36c04c2 189
5fec0719 190 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
c36c04c2
JH
191 }
192
193 return true;
3faa52c0
JH
194}
195
3faa52c0
JH
196/**
197 * unpin_user_page() - release a dma-pinned page
198 * @page: pointer to page to be released
199 *
200 * Pages that were pinned via pin_user_pages*() must be released via either
201 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
202 * that such pages can be separately tracked and uniquely handled. In
203 * particular, interactions with RDMA and filesystems need special handling.
204 */
205void unpin_user_page(struct page *page)
206{
d8ddc099 207 gup_put_folio(page_folio(page), 1, FOLL_PIN);
3faa52c0
JH
208}
209EXPORT_SYMBOL(unpin_user_page);
210
659508f9 211static inline struct folio *gup_folio_range_next(struct page *start,
8f39f5fc 212 unsigned long npages, unsigned long i, unsigned int *ntails)
458a4f78 213{
659508f9
MWO
214 struct page *next = nth_page(start, i);
215 struct folio *folio = page_folio(next);
458a4f78
JM
216 unsigned int nr = 1;
217
659508f9 218 if (folio_test_large(folio))
4c654229 219 nr = min_t(unsigned int, npages - i,
659508f9 220 folio_nr_pages(folio) - folio_page_idx(folio, next));
458a4f78 221
458a4f78 222 *ntails = nr;
659508f9 223 return folio;
458a4f78
JM
224}
225
12521c76 226static inline struct folio *gup_folio_next(struct page **list,
28297dbc 227 unsigned long npages, unsigned long i, unsigned int *ntails)
8745d7f6 228{
12521c76 229 struct folio *folio = page_folio(list[i]);
8745d7f6
JM
230 unsigned int nr;
231
8745d7f6 232 for (nr = i + 1; nr < npages; nr++) {
12521c76 233 if (page_folio(list[nr]) != folio)
8745d7f6
JM
234 break;
235 }
236
8745d7f6 237 *ntails = nr - i;
12521c76 238 return folio;
8745d7f6
JM
239}
240
fc1d8e7c 241/**
f1f6a7dd 242 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 243 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 244 * @npages: number of pages in the @pages array.
2d15eb31 245 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
246 *
247 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
248 * variants called on that page.
249 *
250 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 251 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
252 * listed as clean. In any case, releases all pages using unpin_user_page(),
253 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 254 *
f1f6a7dd 255 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 256 *
2d15eb31 257 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
258 * required, then the caller should a) verify that this is really correct,
259 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 260 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
261 *
262 */
f1f6a7dd
JH
263void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
264 bool make_dirty)
fc1d8e7c 265{
12521c76
MWO
266 unsigned long i;
267 struct folio *folio;
268 unsigned int nr;
2d15eb31 269
270 if (!make_dirty) {
f1f6a7dd 271 unpin_user_pages(pages, npages);
2d15eb31 272 return;
273 }
274
12521c76
MWO
275 for (i = 0; i < npages; i += nr) {
276 folio = gup_folio_next(pages, npages, i, &nr);
2d15eb31 277 /*
278 * Checking PageDirty at this point may race with
279 * clear_page_dirty_for_io(), but that's OK. Two key
280 * cases:
281 *
282 * 1) This code sees the page as already dirty, so it
283 * skips the call to set_page_dirty(). That could happen
284 * because clear_page_dirty_for_io() called
285 * page_mkclean(), followed by set_page_dirty().
286 * However, now the page is going to get written back,
287 * which meets the original intention of setting it
288 * dirty, so all is well: clear_page_dirty_for_io() goes
289 * on to call TestClearPageDirty(), and write the page
290 * back.
291 *
292 * 2) This code sees the page as clean, so it calls
293 * set_page_dirty(). The page stays dirty, despite being
294 * written back, so it gets written back again in the
295 * next writeback cycle. This is harmless.
296 */
12521c76
MWO
297 if (!folio_test_dirty(folio)) {
298 folio_lock(folio);
299 folio_mark_dirty(folio);
300 folio_unlock(folio);
301 }
302 gup_put_folio(folio, nr, FOLL_PIN);
2d15eb31 303 }
fc1d8e7c 304}
f1f6a7dd 305EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c 306
458a4f78
JM
307/**
308 * unpin_user_page_range_dirty_lock() - release and optionally dirty
309 * gup-pinned page range
310 *
311 * @page: the starting page of a range maybe marked dirty, and definitely released.
312 * @npages: number of consecutive pages to release.
313 * @make_dirty: whether to mark the pages dirty
314 *
315 * "gup-pinned page range" refers to a range of pages that has had one of the
316 * pin_user_pages() variants called on that page.
317 *
318 * For the page ranges defined by [page .. page+npages], make that range (or
319 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
320 * page range was previously listed as clean.
321 *
322 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
323 * required, then the caller should a) verify that this is really correct,
324 * because _lock() is usually required, and b) hand code it:
325 * set_page_dirty_lock(), unpin_user_page().
326 *
327 */
328void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
329 bool make_dirty)
330{
659508f9
MWO
331 unsigned long i;
332 struct folio *folio;
333 unsigned int nr;
334
335 for (i = 0; i < npages; i += nr) {
336 folio = gup_folio_range_next(page, npages, i, &nr);
337 if (make_dirty && !folio_test_dirty(folio)) {
338 folio_lock(folio);
339 folio_mark_dirty(folio);
340 folio_unlock(folio);
341 }
342 gup_put_folio(folio, nr, FOLL_PIN);
458a4f78
JM
343 }
344}
345EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
346
fc1d8e7c 347/**
f1f6a7dd 348 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
349 * @pages: array of pages to be marked dirty and released.
350 * @npages: number of pages in the @pages array.
351 *
f1f6a7dd 352 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 353 *
f1f6a7dd 354 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 355 */
f1f6a7dd 356void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c 357{
12521c76
MWO
358 unsigned long i;
359 struct folio *folio;
360 unsigned int nr;
fc1d8e7c 361
146608bb
JH
362 /*
363 * If this WARN_ON() fires, then the system *might* be leaking pages (by
364 * leaving them pinned), but probably not. More likely, gup/pup returned
365 * a hard -ERRNO error to the caller, who erroneously passed it here.
366 */
367 if (WARN_ON(IS_ERR_VALUE(npages)))
368 return;
31b912de 369
12521c76
MWO
370 for (i = 0; i < npages; i += nr) {
371 folio = gup_folio_next(pages, npages, i, &nr);
372 gup_put_folio(folio, nr, FOLL_PIN);
e7602748 373 }
fc1d8e7c 374}
f1f6a7dd 375EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 376
a458b76a
AA
377/*
378 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
379 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
380 * cache bouncing on large SMP machines for concurrent pinned gups.
381 */
382static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
383{
384 if (!test_bit(MMF_HAS_PINNED, mm_flags))
385 set_bit(MMF_HAS_PINNED, mm_flags);
386}
387
050a9adc 388#ifdef CONFIG_MMU
69e68b4f
KS
389static struct page *no_page_table(struct vm_area_struct *vma,
390 unsigned int flags)
4bbd4c77 391{
69e68b4f
KS
392 /*
393 * When core dumping an enormous anonymous area that nobody
394 * has touched so far, we don't want to allocate unnecessary pages or
395 * page tables. Return error instead of NULL to skip handle_mm_fault,
396 * then get_dump_page() will return NULL to leave a hole in the dump.
397 * But we can only make this optimization where a hole would surely
398 * be zero-filled if handle_mm_fault() actually did handle it.
399 */
a0137f16
AK
400 if ((flags & FOLL_DUMP) &&
401 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
69e68b4f
KS
402 return ERR_PTR(-EFAULT);
403 return NULL;
404}
4bbd4c77 405
1027e443
KS
406static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
407 pte_t *pte, unsigned int flags)
408{
1027e443
KS
409 if (flags & FOLL_TOUCH) {
410 pte_t entry = *pte;
411
412 if (flags & FOLL_WRITE)
413 entry = pte_mkdirty(entry);
414 entry = pte_mkyoung(entry);
415
416 if (!pte_same(*pte, entry)) {
417 set_pte_at(vma->vm_mm, address, pte, entry);
418 update_mmu_cache(vma, address, pte);
419 }
420 }
421
422 /* Proper page table entry exists, but no corresponding struct page */
423 return -EEXIST;
424}
425
19be0eaf 426/*
a308c71b
PX
427 * FOLL_FORCE can write to even unwritable pte's, but only
428 * after we've gone through a COW cycle and they are dirty.
19be0eaf
LT
429 */
430static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
431{
a308c71b
PX
432 return pte_write(pte) ||
433 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
19be0eaf
LT
434}
435
69e68b4f 436static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
437 unsigned long address, pmd_t *pmd, unsigned int flags,
438 struct dev_pagemap **pgmap)
69e68b4f
KS
439{
440 struct mm_struct *mm = vma->vm_mm;
441 struct page *page;
442 spinlock_t *ptl;
443 pte_t *ptep, pte;
f28d4363 444 int ret;
4bbd4c77 445
eddb1c22
JH
446 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
447 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
448 (FOLL_PIN | FOLL_GET)))
449 return ERR_PTR(-EINVAL);
69e68b4f 450retry:
4bbd4c77 451 if (unlikely(pmd_bad(*pmd)))
69e68b4f 452 return no_page_table(vma, flags);
4bbd4c77
KS
453
454 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
455 pte = *ptep;
456 if (!pte_present(pte)) {
457 swp_entry_t entry;
458 /*
459 * KSM's break_ksm() relies upon recognizing a ksm page
460 * even while it is being migrated, so for that case we
461 * need migration_entry_wait().
462 */
463 if (likely(!(flags & FOLL_MIGRATION)))
464 goto no_page;
0661a336 465 if (pte_none(pte))
4bbd4c77
KS
466 goto no_page;
467 entry = pte_to_swp_entry(pte);
468 if (!is_migration_entry(entry))
469 goto no_page;
470 pte_unmap_unlock(ptep, ptl);
471 migration_entry_wait(mm, pmd, address);
69e68b4f 472 goto retry;
4bbd4c77 473 }
8a0516ed 474 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 475 goto no_page;
19be0eaf 476 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
477 pte_unmap_unlock(ptep, ptl);
478 return NULL;
479 }
4bbd4c77
KS
480
481 page = vm_normal_page(vma, address, pte);
3faa52c0 482 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 483 /*
3faa52c0
JH
484 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
485 * case since they are only valid while holding the pgmap
486 * reference.
3565fce3 487 */
df06b37f
KB
488 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
489 if (*pgmap)
3565fce3
DW
490 page = pte_page(pte);
491 else
492 goto no_page;
493 } else if (unlikely(!page)) {
1027e443
KS
494 if (flags & FOLL_DUMP) {
495 /* Avoid special (like zero) pages in core dumps */
496 page = ERR_PTR(-EFAULT);
497 goto out;
498 }
499
500 if (is_zero_pfn(pte_pfn(pte))) {
501 page = pte_page(pte);
502 } else {
1027e443
KS
503 ret = follow_pfn_pte(vma, address, ptep, flags);
504 page = ERR_PTR(ret);
505 goto out;
506 }
4bbd4c77
KS
507 }
508
3faa52c0
JH
509 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
510 if (unlikely(!try_grab_page(page, flags))) {
511 page = ERR_PTR(-ENOMEM);
512 goto out;
8fde12ca 513 }
f28d4363
CI
514 /*
515 * We need to make the page accessible if and only if we are going
516 * to access its content (the FOLL_PIN case). Please see
517 * Documentation/core-api/pin_user_pages.rst for details.
518 */
519 if (flags & FOLL_PIN) {
520 ret = arch_make_page_accessible(page);
521 if (ret) {
522 unpin_user_page(page);
523 page = ERR_PTR(ret);
524 goto out;
525 }
526 }
4bbd4c77
KS
527 if (flags & FOLL_TOUCH) {
528 if ((flags & FOLL_WRITE) &&
529 !pte_dirty(pte) && !PageDirty(page))
530 set_page_dirty(page);
531 /*
532 * pte_mkyoung() would be more correct here, but atomic care
533 * is needed to avoid losing the dirty bit: it is easier to use
534 * mark_page_accessed().
535 */
536 mark_page_accessed(page);
537 }
1027e443 538out:
4bbd4c77 539 pte_unmap_unlock(ptep, ptl);
4bbd4c77 540 return page;
4bbd4c77
KS
541no_page:
542 pte_unmap_unlock(ptep, ptl);
543 if (!pte_none(pte))
69e68b4f
KS
544 return NULL;
545 return no_page_table(vma, flags);
546}
547
080dbb61
AK
548static struct page *follow_pmd_mask(struct vm_area_struct *vma,
549 unsigned long address, pud_t *pudp,
df06b37f
KB
550 unsigned int flags,
551 struct follow_page_context *ctx)
69e68b4f 552{
68827280 553 pmd_t *pmd, pmdval;
69e68b4f
KS
554 spinlock_t *ptl;
555 struct page *page;
556 struct mm_struct *mm = vma->vm_mm;
557
080dbb61 558 pmd = pmd_offset(pudp, address);
68827280
HY
559 /*
560 * The READ_ONCE() will stabilize the pmdval in a register or
561 * on the stack so that it will stop changing under the code.
562 */
563 pmdval = READ_ONCE(*pmd);
564 if (pmd_none(pmdval))
69e68b4f 565 return no_page_table(vma, flags);
be9d3045 566 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
e66f17ff
NH
567 page = follow_huge_pmd(mm, address, pmd, flags);
568 if (page)
569 return page;
570 return no_page_table(vma, flags);
69e68b4f 571 }
68827280 572 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
4dc71451 573 page = follow_huge_pd(vma, address,
68827280 574 __hugepd(pmd_val(pmdval)), flags,
4dc71451
AK
575 PMD_SHIFT);
576 if (page)
577 return page;
578 return no_page_table(vma, flags);
579 }
84c3fc4e 580retry:
68827280 581 if (!pmd_present(pmdval)) {
28b0ee3f
LX
582 /*
583 * Should never reach here, if thp migration is not supported;
584 * Otherwise, it must be a thp migration entry.
585 */
586 VM_BUG_ON(!thp_migration_supported() ||
587 !is_pmd_migration_entry(pmdval));
588
84c3fc4e
ZY
589 if (likely(!(flags & FOLL_MIGRATION)))
590 return no_page_table(vma, flags);
28b0ee3f
LX
591
592 pmd_migration_entry_wait(mm, pmd);
68827280
HY
593 pmdval = READ_ONCE(*pmd);
594 /*
595 * MADV_DONTNEED may convert the pmd to null because
c1e8d7c6 596 * mmap_lock is held in read mode
68827280
HY
597 */
598 if (pmd_none(pmdval))
599 return no_page_table(vma, flags);
84c3fc4e
ZY
600 goto retry;
601 }
68827280 602 if (pmd_devmap(pmdval)) {
3565fce3 603 ptl = pmd_lock(mm, pmd);
df06b37f 604 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
605 spin_unlock(ptl);
606 if (page)
607 return page;
608 }
68827280 609 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 610 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 611
68827280 612 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
db08f203
AK
613 return no_page_table(vma, flags);
614
84c3fc4e 615retry_locked:
6742d293 616 ptl = pmd_lock(mm, pmd);
68827280
HY
617 if (unlikely(pmd_none(*pmd))) {
618 spin_unlock(ptl);
619 return no_page_table(vma, flags);
620 }
84c3fc4e
ZY
621 if (unlikely(!pmd_present(*pmd))) {
622 spin_unlock(ptl);
623 if (likely(!(flags & FOLL_MIGRATION)))
624 return no_page_table(vma, flags);
625 pmd_migration_entry_wait(mm, pmd);
626 goto retry_locked;
627 }
6742d293
KS
628 if (unlikely(!pmd_trans_huge(*pmd))) {
629 spin_unlock(ptl);
df06b37f 630 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 631 }
4066c119 632 if (flags & FOLL_SPLIT_PMD) {
6742d293
KS
633 int ret;
634 page = pmd_page(*pmd);
635 if (is_huge_zero_page(page)) {
636 spin_unlock(ptl);
637 ret = 0;
78ddc534 638 split_huge_pmd(vma, pmd, address);
337d9abf
NH
639 if (pmd_trans_unstable(pmd))
640 ret = -EBUSY;
4066c119 641 } else {
bfe7b00d
SL
642 spin_unlock(ptl);
643 split_huge_pmd(vma, pmd, address);
644 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
6742d293
KS
645 }
646
647 return ret ? ERR_PTR(ret) :
df06b37f 648 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 649 }
6742d293
KS
650 page = follow_trans_huge_pmd(vma, address, pmd, flags);
651 spin_unlock(ptl);
df06b37f 652 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 653 return page;
4bbd4c77
KS
654}
655
080dbb61
AK
656static struct page *follow_pud_mask(struct vm_area_struct *vma,
657 unsigned long address, p4d_t *p4dp,
df06b37f
KB
658 unsigned int flags,
659 struct follow_page_context *ctx)
080dbb61
AK
660{
661 pud_t *pud;
662 spinlock_t *ptl;
663 struct page *page;
664 struct mm_struct *mm = vma->vm_mm;
665
666 pud = pud_offset(p4dp, address);
667 if (pud_none(*pud))
668 return no_page_table(vma, flags);
be9d3045 669 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
080dbb61
AK
670 page = follow_huge_pud(mm, address, pud, flags);
671 if (page)
672 return page;
673 return no_page_table(vma, flags);
674 }
4dc71451
AK
675 if (is_hugepd(__hugepd(pud_val(*pud)))) {
676 page = follow_huge_pd(vma, address,
677 __hugepd(pud_val(*pud)), flags,
678 PUD_SHIFT);
679 if (page)
680 return page;
681 return no_page_table(vma, flags);
682 }
080dbb61
AK
683 if (pud_devmap(*pud)) {
684 ptl = pud_lock(mm, pud);
df06b37f 685 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
686 spin_unlock(ptl);
687 if (page)
688 return page;
689 }
690 if (unlikely(pud_bad(*pud)))
691 return no_page_table(vma, flags);
692
df06b37f 693 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
694}
695
080dbb61
AK
696static struct page *follow_p4d_mask(struct vm_area_struct *vma,
697 unsigned long address, pgd_t *pgdp,
df06b37f
KB
698 unsigned int flags,
699 struct follow_page_context *ctx)
080dbb61
AK
700{
701 p4d_t *p4d;
4dc71451 702 struct page *page;
080dbb61
AK
703
704 p4d = p4d_offset(pgdp, address);
705 if (p4d_none(*p4d))
706 return no_page_table(vma, flags);
707 BUILD_BUG_ON(p4d_huge(*p4d));
708 if (unlikely(p4d_bad(*p4d)))
709 return no_page_table(vma, flags);
710
4dc71451
AK
711 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
712 page = follow_huge_pd(vma, address,
713 __hugepd(p4d_val(*p4d)), flags,
714 P4D_SHIFT);
715 if (page)
716 return page;
717 return no_page_table(vma, flags);
718 }
df06b37f 719 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
720}
721
722/**
723 * follow_page_mask - look up a page descriptor from a user-virtual address
724 * @vma: vm_area_struct mapping @address
725 * @address: virtual address to look up
726 * @flags: flags modifying lookup behaviour
78179556
MR
727 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
728 * pointer to output page_mask
080dbb61
AK
729 *
730 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
731 *
78179556
MR
732 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
733 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
734 *
735 * On output, the @ctx->page_mask is set according to the size of the page.
736 *
737 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
738 * an error pointer if there is a mapping to something not represented
739 * by a page descriptor (see also vm_normal_page()).
740 */
a7030aea 741static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 742 unsigned long address, unsigned int flags,
df06b37f 743 struct follow_page_context *ctx)
080dbb61
AK
744{
745 pgd_t *pgd;
746 struct page *page;
747 struct mm_struct *mm = vma->vm_mm;
748
df06b37f 749 ctx->page_mask = 0;
080dbb61
AK
750
751 /* make this handle hugepd */
752 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
753 if (!IS_ERR(page)) {
3faa52c0 754 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
080dbb61
AK
755 return page;
756 }
757
758 pgd = pgd_offset(mm, address);
759
760 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
761 return no_page_table(vma, flags);
762
faaa5b62
AK
763 if (pgd_huge(*pgd)) {
764 page = follow_huge_pgd(mm, address, pgd, flags);
765 if (page)
766 return page;
767 return no_page_table(vma, flags);
768 }
4dc71451
AK
769 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
770 page = follow_huge_pd(vma, address,
771 __hugepd(pgd_val(*pgd)), flags,
772 PGDIR_SHIFT);
773 if (page)
774 return page;
775 return no_page_table(vma, flags);
776 }
faaa5b62 777
df06b37f
KB
778 return follow_p4d_mask(vma, address, pgd, flags, ctx);
779}
780
781struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
782 unsigned int foll_flags)
783{
784 struct follow_page_context ctx = { NULL };
785 struct page *page;
786
1507f512
MR
787 if (vma_is_secretmem(vma))
788 return NULL;
789
df06b37f
KB
790 page = follow_page_mask(vma, address, foll_flags, &ctx);
791 if (ctx.pgmap)
792 put_dev_pagemap(ctx.pgmap);
793 return page;
080dbb61
AK
794}
795
f2b495ca
KS
796static int get_gate_page(struct mm_struct *mm, unsigned long address,
797 unsigned int gup_flags, struct vm_area_struct **vma,
798 struct page **page)
799{
800 pgd_t *pgd;
c2febafc 801 p4d_t *p4d;
f2b495ca
KS
802 pud_t *pud;
803 pmd_t *pmd;
804 pte_t *pte;
805 int ret = -EFAULT;
806
807 /* user gate pages are read-only */
808 if (gup_flags & FOLL_WRITE)
809 return -EFAULT;
810 if (address > TASK_SIZE)
811 pgd = pgd_offset_k(address);
812 else
813 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
814 if (pgd_none(*pgd))
815 return -EFAULT;
c2febafc 816 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
817 if (p4d_none(*p4d))
818 return -EFAULT;
c2febafc 819 pud = pud_offset(p4d, address);
b5d1c39f
AL
820 if (pud_none(*pud))
821 return -EFAULT;
f2b495ca 822 pmd = pmd_offset(pud, address);
84c3fc4e 823 if (!pmd_present(*pmd))
f2b495ca
KS
824 return -EFAULT;
825 VM_BUG_ON(pmd_trans_huge(*pmd));
826 pte = pte_offset_map(pmd, address);
827 if (pte_none(*pte))
828 goto unmap;
829 *vma = get_gate_vma(mm);
830 if (!page)
831 goto out;
832 *page = vm_normal_page(*vma, address, *pte);
833 if (!*page) {
834 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
835 goto unmap;
836 *page = pte_page(*pte);
837 }
9fa2dd94 838 if (unlikely(!try_grab_page(*page, gup_flags))) {
8fde12ca
LT
839 ret = -ENOMEM;
840 goto unmap;
841 }
f2b495ca
KS
842out:
843 ret = 0;
844unmap:
845 pte_unmap(pte);
846 return ret;
847}
848
9a95f3cf 849/*
c1e8d7c6
ML
850 * mmap_lock must be held on entry. If @locked != NULL and *@flags
851 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
4f6da934 852 * is, *@locked will be set to 0 and -EBUSY returned.
9a95f3cf 853 */
64019a2e 854static int faultin_page(struct vm_area_struct *vma,
4f6da934 855 unsigned long address, unsigned int *flags, int *locked)
16744483 856{
16744483 857 unsigned int fault_flags = 0;
2b740303 858 vm_fault_t ret;
16744483 859
55b8fe70
AG
860 if (*flags & FOLL_NOFAULT)
861 return -EFAULT;
16744483
KS
862 if (*flags & FOLL_WRITE)
863 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
864 if (*flags & FOLL_REMOTE)
865 fault_flags |= FAULT_FLAG_REMOTE;
4f6da934 866 if (locked)
71335f37 867 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
16744483
KS
868 if (*flags & FOLL_NOWAIT)
869 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 870 if (*flags & FOLL_TRIED) {
4426e945
PX
871 /*
872 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
873 * can co-exist
874 */
234b239b
ALC
875 fault_flags |= FAULT_FLAG_TRIED;
876 }
16744483 877
bce617ed 878 ret = handle_mm_fault(vma, address, fault_flags, NULL);
16744483 879 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
880 int err = vm_fault_to_errno(ret, *flags);
881
882 if (err)
883 return err;
16744483
KS
884 BUG();
885 }
886
16744483 887 if (ret & VM_FAULT_RETRY) {
4f6da934
PX
888 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
889 *locked = 0;
16744483
KS
890 return -EBUSY;
891 }
892
893 /*
894 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
895 * necessary, even if maybe_mkwrite decided not to set pte_write. We
896 * can thus safely do subsequent page lookups as if they were reads.
897 * But only do so when looping for pte_write is futile: in some cases
898 * userspace may also be wanting to write to the gotten user page,
899 * which a read fault here might prevent (a readonly page might get
900 * reCOWed by userspace write).
901 */
902 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
2923117b 903 *flags |= FOLL_COW;
16744483
KS
904 return 0;
905}
906
fa5bb209
KS
907static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
908{
909 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
910 int write = (gup_flags & FOLL_WRITE);
911 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
912
913 if (vm_flags & (VM_IO | VM_PFNMAP))
914 return -EFAULT;
915
7f7ccc2c
WT
916 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
917 return -EFAULT;
918
52650c8b
JG
919 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
920 return -EOPNOTSUPP;
921
1507f512
MR
922 if (vma_is_secretmem(vma))
923 return -EFAULT;
924
1b2ee126 925 if (write) {
fa5bb209
KS
926 if (!(vm_flags & VM_WRITE)) {
927 if (!(gup_flags & FOLL_FORCE))
928 return -EFAULT;
929 /*
930 * We used to let the write,force case do COW in a
931 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
932 * set a breakpoint in a read-only mapping of an
933 * executable, without corrupting the file (yet only
934 * when that file had been opened for writing!).
935 * Anon pages in shared mappings are surprising: now
936 * just reject it.
937 */
46435364 938 if (!is_cow_mapping(vm_flags))
fa5bb209 939 return -EFAULT;
fa5bb209
KS
940 }
941 } else if (!(vm_flags & VM_READ)) {
942 if (!(gup_flags & FOLL_FORCE))
943 return -EFAULT;
944 /*
945 * Is there actually any vma we can reach here which does not
946 * have VM_MAYREAD set?
947 */
948 if (!(vm_flags & VM_MAYREAD))
949 return -EFAULT;
950 }
d61172b4
DH
951 /*
952 * gups are always data accesses, not instruction
953 * fetches, so execute=false here
954 */
955 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 956 return -EFAULT;
fa5bb209
KS
957 return 0;
958}
959
4bbd4c77
KS
960/**
961 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
962 * @mm: mm_struct of target mm
963 * @start: starting user address
964 * @nr_pages: number of pages from start to pin
965 * @gup_flags: flags modifying pin behaviour
966 * @pages: array that receives pointers to the pages pinned.
967 * Should be at least nr_pages long. Or NULL, if caller
968 * only intends to ensure the pages are faulted in.
969 * @vmas: array of pointers to vmas corresponding to each page.
970 * Or NULL if the caller does not require them.
c1e8d7c6 971 * @locked: whether we're still with the mmap_lock held
4bbd4c77 972 *
d2dfbe47
LX
973 * Returns either number of pages pinned (which may be less than the
974 * number requested), or an error. Details about the return value:
975 *
976 * -- If nr_pages is 0, returns 0.
977 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
978 * -- If nr_pages is >0, and some pages were pinned, returns the number of
979 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 980 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
981 *
982 * The caller is responsible for releasing returned @pages, via put_page().
983 *
c1e8d7c6 984 * @vmas are valid only as long as mmap_lock is held.
4bbd4c77 985 *
c1e8d7c6 986 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
987 *
988 * __get_user_pages walks a process's page tables and takes a reference to
989 * each struct page that each user address corresponds to at a given
990 * instant. That is, it takes the page that would be accessed if a user
991 * thread accesses the given user virtual address at that instant.
992 *
993 * This does not guarantee that the page exists in the user mappings when
994 * __get_user_pages returns, and there may even be a completely different
995 * page there in some cases (eg. if mmapped pagecache has been invalidated
996 * and subsequently re faulted). However it does guarantee that the page
997 * won't be freed completely. And mostly callers simply care that the page
998 * contains data that was valid *at some point in time*. Typically, an IO
999 * or similar operation cannot guarantee anything stronger anyway because
1000 * locks can't be held over the syscall boundary.
1001 *
1002 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1003 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1004 * appropriate) must be called after the page is finished with, and
1005 * before put_page is called.
1006 *
c1e8d7c6 1007 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
4f6da934
PX
1008 * released by an up_read(). That can happen if @gup_flags does not
1009 * have FOLL_NOWAIT.
9a95f3cf 1010 *
4f6da934 1011 * A caller using such a combination of @locked and @gup_flags
c1e8d7c6 1012 * must therefore hold the mmap_lock for reading only, and recognize
9a95f3cf
PC
1013 * when it's been released. Otherwise, it must be held for either
1014 * reading or writing and will not be released.
4bbd4c77
KS
1015 *
1016 * In most cases, get_user_pages or get_user_pages_fast should be used
1017 * instead of __get_user_pages. __get_user_pages should be used only if
1018 * you need some special @gup_flags.
1019 */
64019a2e 1020static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
1021 unsigned long start, unsigned long nr_pages,
1022 unsigned int gup_flags, struct page **pages,
4f6da934 1023 struct vm_area_struct **vmas, int *locked)
4bbd4c77 1024{
df06b37f 1025 long ret = 0, i = 0;
fa5bb209 1026 struct vm_area_struct *vma = NULL;
df06b37f 1027 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1028
1029 if (!nr_pages)
1030 return 0;
1031
f9652594
AK
1032 start = untagged_addr(start);
1033
eddb1c22 1034 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77
KS
1035
1036 /*
1037 * If FOLL_FORCE is set then do not force a full fault as the hinting
1038 * fault information is unrelated to the reference behaviour of a task
1039 * using the address space
1040 */
1041 if (!(gup_flags & FOLL_FORCE))
1042 gup_flags |= FOLL_NUMA;
1043
4bbd4c77 1044 do {
fa5bb209
KS
1045 struct page *page;
1046 unsigned int foll_flags = gup_flags;
1047 unsigned int page_increm;
1048
1049 /* first iteration or cross vma bound */
1050 if (!vma || start >= vma->vm_end) {
1051 vma = find_extend_vma(mm, start);
1052 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1053 ret = get_gate_page(mm, start & PAGE_MASK,
1054 gup_flags, &vma,
1055 pages ? &pages[i] : NULL);
1056 if (ret)
08be37b7 1057 goto out;
df06b37f 1058 ctx.page_mask = 0;
fa5bb209
KS
1059 goto next_page;
1060 }
4bbd4c77 1061
52650c8b 1062 if (!vma) {
df06b37f
KB
1063 ret = -EFAULT;
1064 goto out;
1065 }
52650c8b
JG
1066 ret = check_vma_flags(vma, gup_flags);
1067 if (ret)
1068 goto out;
1069
fa5bb209
KS
1070 if (is_vm_hugetlb_page(vma)) {
1071 i = follow_hugetlb_page(mm, vma, pages, vmas,
1072 &start, &nr_pages, i,
a308c71b 1073 gup_flags, locked);
ad415db8
PX
1074 if (locked && *locked == 0) {
1075 /*
1076 * We've got a VM_FAULT_RETRY
c1e8d7c6 1077 * and we've lost mmap_lock.
ad415db8
PX
1078 * We must stop here.
1079 */
1080 BUG_ON(gup_flags & FOLL_NOWAIT);
ad415db8
PX
1081 goto out;
1082 }
fa5bb209 1083 continue;
4bbd4c77 1084 }
fa5bb209
KS
1085 }
1086retry:
1087 /*
1088 * If we have a pending SIGKILL, don't keep faulting pages and
1089 * potentially allocating memory.
1090 */
fa45f116 1091 if (fatal_signal_pending(current)) {
d180870d 1092 ret = -EINTR;
df06b37f
KB
1093 goto out;
1094 }
fa5bb209 1095 cond_resched();
df06b37f
KB
1096
1097 page = follow_page_mask(vma, start, foll_flags, &ctx);
fa5bb209 1098 if (!page) {
64019a2e 1099 ret = faultin_page(vma, start, &foll_flags, locked);
fa5bb209
KS
1100 switch (ret) {
1101 case 0:
1102 goto retry;
df06b37f
KB
1103 case -EBUSY:
1104 ret = 0;
e4a9bc58 1105 fallthrough;
fa5bb209
KS
1106 case -EFAULT:
1107 case -ENOMEM:
1108 case -EHWPOISON:
df06b37f 1109 goto out;
4bbd4c77 1110 }
fa5bb209 1111 BUG();
1027e443
KS
1112 } else if (PTR_ERR(page) == -EEXIST) {
1113 /*
1114 * Proper page table entry exists, but no corresponding
65462462
JH
1115 * struct page. If the caller expects **pages to be
1116 * filled in, bail out now, because that can't be done
1117 * for this page.
1027e443 1118 */
65462462
JH
1119 if (pages) {
1120 ret = PTR_ERR(page);
1121 goto out;
1122 }
1123
1027e443
KS
1124 goto next_page;
1125 } else if (IS_ERR(page)) {
df06b37f
KB
1126 ret = PTR_ERR(page);
1127 goto out;
1027e443 1128 }
fa5bb209
KS
1129 if (pages) {
1130 pages[i] = page;
1131 flush_anon_page(vma, page, start);
1132 flush_dcache_page(page);
df06b37f 1133 ctx.page_mask = 0;
4bbd4c77 1134 }
4bbd4c77 1135next_page:
fa5bb209
KS
1136 if (vmas) {
1137 vmas[i] = vma;
df06b37f 1138 ctx.page_mask = 0;
fa5bb209 1139 }
df06b37f 1140 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1141 if (page_increm > nr_pages)
1142 page_increm = nr_pages;
1143 i += page_increm;
1144 start += page_increm * PAGE_SIZE;
1145 nr_pages -= page_increm;
4bbd4c77 1146 } while (nr_pages);
df06b37f
KB
1147out:
1148 if (ctx.pgmap)
1149 put_dev_pagemap(ctx.pgmap);
1150 return i ? i : ret;
4bbd4c77 1151}
4bbd4c77 1152
771ab430
TK
1153static bool vma_permits_fault(struct vm_area_struct *vma,
1154 unsigned int fault_flags)
d4925e00 1155{
1b2ee126
DH
1156 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1157 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1158 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1159
1160 if (!(vm_flags & vma->vm_flags))
1161 return false;
1162
33a709b2
DH
1163 /*
1164 * The architecture might have a hardware protection
1b2ee126 1165 * mechanism other than read/write that can deny access.
d61172b4
DH
1166 *
1167 * gup always represents data access, not instruction
1168 * fetches, so execute=false here:
33a709b2 1169 */
d61172b4 1170 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1171 return false;
1172
d4925e00
DH
1173 return true;
1174}
1175
adc8cb40 1176/**
4bbd4c77 1177 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1178 * @mm: mm_struct of target mm
1179 * @address: user address
1180 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1181 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1182 * does not allow retry. If NULL, the caller must guarantee
1183 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1184 *
1185 * This is meant to be called in the specific scenario where for locking reasons
1186 * we try to access user memory in atomic context (within a pagefault_disable()
1187 * section), this returns -EFAULT, and we want to resolve the user fault before
1188 * trying again.
1189 *
1190 * Typically this is meant to be used by the futex code.
1191 *
1192 * The main difference with get_user_pages() is that this function will
1193 * unconditionally call handle_mm_fault() which will in turn perform all the
1194 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1195 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1196 *
1197 * This is important for some architectures where those bits also gate the
1198 * access permission to the page because they are maintained in software. On
1199 * such architectures, gup() will not be enough to make a subsequent access
1200 * succeed.
1201 *
c1e8d7c6
ML
1202 * This function will not return with an unlocked mmap_lock. So it has not the
1203 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1204 */
64019a2e 1205int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1206 unsigned long address, unsigned int fault_flags,
1207 bool *unlocked)
4bbd4c77
KS
1208{
1209 struct vm_area_struct *vma;
8fed2f3c 1210 vm_fault_t ret;
4a9e1cda 1211
f9652594
AK
1212 address = untagged_addr(address);
1213
4a9e1cda 1214 if (unlocked)
71335f37 1215 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1216
4a9e1cda 1217retry:
4bbd4c77
KS
1218 vma = find_extend_vma(mm, address);
1219 if (!vma || address < vma->vm_start)
1220 return -EFAULT;
1221
d4925e00 1222 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1223 return -EFAULT;
1224
475f4dfc
PX
1225 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1226 fatal_signal_pending(current))
1227 return -EINTR;
1228
bce617ed 1229 ret = handle_mm_fault(vma, address, fault_flags, NULL);
4bbd4c77 1230 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1231 int err = vm_fault_to_errno(ret, 0);
1232
1233 if (err)
1234 return err;
4bbd4c77
KS
1235 BUG();
1236 }
4a9e1cda
DD
1237
1238 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1239 mmap_read_lock(mm);
475f4dfc
PX
1240 *unlocked = true;
1241 fault_flags |= FAULT_FLAG_TRIED;
1242 goto retry;
4a9e1cda
DD
1243 }
1244
4bbd4c77
KS
1245 return 0;
1246}
add6a0cd 1247EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1248
2d3a36a4
MH
1249/*
1250 * Please note that this function, unlike __get_user_pages will not
1251 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1252 */
64019a2e 1253static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1254 unsigned long start,
1255 unsigned long nr_pages,
f0818f47
AA
1256 struct page **pages,
1257 struct vm_area_struct **vmas,
e716712f 1258 int *locked,
0fd71a56 1259 unsigned int flags)
f0818f47 1260{
f0818f47
AA
1261 long ret, pages_done;
1262 bool lock_dropped;
1263
1264 if (locked) {
1265 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1266 BUG_ON(vmas);
1267 /* check caller initialized locked */
1268 BUG_ON(*locked != 1);
1269 }
1270
a458b76a
AA
1271 if (flags & FOLL_PIN)
1272 mm_set_has_pinned_flag(&mm->flags);
008cfe44 1273
eddb1c22
JH
1274 /*
1275 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1276 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1277 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1278 * for FOLL_GET, not for the newer FOLL_PIN.
1279 *
1280 * FOLL_PIN always expects pages to be non-null, but no need to assert
1281 * that here, as any failures will be obvious enough.
1282 */
1283 if (pages && !(flags & FOLL_PIN))
f0818f47 1284 flags |= FOLL_GET;
f0818f47
AA
1285
1286 pages_done = 0;
1287 lock_dropped = false;
1288 for (;;) {
64019a2e 1289 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
f0818f47
AA
1290 vmas, locked);
1291 if (!locked)
1292 /* VM_FAULT_RETRY couldn't trigger, bypass */
1293 return ret;
1294
1295 /* VM_FAULT_RETRY cannot return errors */
1296 if (!*locked) {
1297 BUG_ON(ret < 0);
1298 BUG_ON(ret >= nr_pages);
1299 }
1300
f0818f47
AA
1301 if (ret > 0) {
1302 nr_pages -= ret;
1303 pages_done += ret;
1304 if (!nr_pages)
1305 break;
1306 }
1307 if (*locked) {
96312e61
AA
1308 /*
1309 * VM_FAULT_RETRY didn't trigger or it was a
1310 * FOLL_NOWAIT.
1311 */
f0818f47
AA
1312 if (!pages_done)
1313 pages_done = ret;
1314 break;
1315 }
df17277b
MR
1316 /*
1317 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1318 * For the prefault case (!pages) we only update counts.
1319 */
1320 if (likely(pages))
1321 pages += ret;
f0818f47 1322 start += ret << PAGE_SHIFT;
4426e945 1323 lock_dropped = true;
f0818f47 1324
4426e945 1325retry:
f0818f47
AA
1326 /*
1327 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1328 * with both FAULT_FLAG_ALLOW_RETRY and
1329 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1330 * by fatal signals, so we need to check it before we
1331 * start trying again otherwise it can loop forever.
f0818f47 1332 */
4426e945 1333
ae46d2aa
HD
1334 if (fatal_signal_pending(current)) {
1335 if (!pages_done)
1336 pages_done = -EINTR;
4426e945 1337 break;
ae46d2aa 1338 }
4426e945 1339
d8ed45c5 1340 ret = mmap_read_lock_killable(mm);
71335f37
PX
1341 if (ret) {
1342 BUG_ON(ret > 0);
1343 if (!pages_done)
1344 pages_done = ret;
1345 break;
1346 }
4426e945 1347
c7b6a566 1348 *locked = 1;
64019a2e 1349 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
4426e945
PX
1350 pages, NULL, locked);
1351 if (!*locked) {
1352 /* Continue to retry until we succeeded */
1353 BUG_ON(ret != 0);
1354 goto retry;
1355 }
f0818f47
AA
1356 if (ret != 1) {
1357 BUG_ON(ret > 1);
1358 if (!pages_done)
1359 pages_done = ret;
1360 break;
1361 }
1362 nr_pages--;
1363 pages_done++;
1364 if (!nr_pages)
1365 break;
df17277b
MR
1366 if (likely(pages))
1367 pages++;
f0818f47
AA
1368 start += PAGE_SIZE;
1369 }
e716712f 1370 if (lock_dropped && *locked) {
f0818f47
AA
1371 /*
1372 * We must let the caller know we temporarily dropped the lock
1373 * and so the critical section protected by it was lost.
1374 */
d8ed45c5 1375 mmap_read_unlock(mm);
f0818f47
AA
1376 *locked = 0;
1377 }
1378 return pages_done;
1379}
1380
d3649f68
CH
1381/**
1382 * populate_vma_page_range() - populate a range of pages in the vma.
1383 * @vma: target vma
1384 * @start: start address
1385 * @end: end address
c1e8d7c6 1386 * @locked: whether the mmap_lock is still held
d3649f68
CH
1387 *
1388 * This takes care of mlocking the pages too if VM_LOCKED is set.
1389 *
0a36f7f8
TY
1390 * Return either number of pages pinned in the vma, or a negative error
1391 * code on error.
d3649f68 1392 *
c1e8d7c6 1393 * vma->vm_mm->mmap_lock must be held.
d3649f68 1394 *
4f6da934 1395 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1396 * be unperturbed.
1397 *
4f6da934
PX
1398 * If @locked is non-NULL, it must held for read only and may be
1399 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1400 */
1401long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1402 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1403{
1404 struct mm_struct *mm = vma->vm_mm;
1405 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1406 int gup_flags;
ece369c7 1407 long ret;
d3649f68 1408
be51eb18
ML
1409 VM_BUG_ON(!PAGE_ALIGNED(start));
1410 VM_BUG_ON(!PAGE_ALIGNED(end));
d3649f68
CH
1411 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1412 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1413 mmap_assert_locked(mm);
d3649f68 1414
b67bf49c
HD
1415 /*
1416 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1417 * faultin_page() to break COW, so it has no work to do here.
1418 */
d3649f68 1419 if (vma->vm_flags & VM_LOCKONFAULT)
b67bf49c
HD
1420 return nr_pages;
1421
1422 gup_flags = FOLL_TOUCH;
d3649f68
CH
1423 /*
1424 * We want to touch writable mappings with a write fault in order
1425 * to break COW, except for shared mappings because these don't COW
1426 * and we would not want to dirty them for nothing.
1427 */
1428 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1429 gup_flags |= FOLL_WRITE;
1430
1431 /*
1432 * We want mlock to succeed for regions that have any permissions
1433 * other than PROT_NONE.
1434 */
3122e80e 1435 if (vma_is_accessible(vma))
d3649f68
CH
1436 gup_flags |= FOLL_FORCE;
1437
1438 /*
1439 * We made sure addr is within a VMA, so the following will
1440 * not result in a stack expansion that recurses back here.
1441 */
ece369c7 1442 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
4f6da934 1443 NULL, NULL, locked);
ece369c7
HD
1444 lru_add_drain();
1445 return ret;
d3649f68
CH
1446}
1447
4ca9b385
DH
1448/*
1449 * faultin_vma_page_range() - populate (prefault) page tables inside the
1450 * given VMA range readable/writable
1451 *
1452 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1453 *
1454 * @vma: target vma
1455 * @start: start address
1456 * @end: end address
1457 * @write: whether to prefault readable or writable
1458 * @locked: whether the mmap_lock is still held
1459 *
1460 * Returns either number of processed pages in the vma, or a negative error
1461 * code on error (see __get_user_pages()).
1462 *
1463 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1464 * covered by the VMA.
1465 *
1466 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1467 *
1468 * If @locked is non-NULL, it must held for read only and may be released. If
1469 * it's released, *@locked will be set to 0.
1470 */
1471long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1472 unsigned long end, bool write, int *locked)
1473{
1474 struct mm_struct *mm = vma->vm_mm;
1475 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1476 int gup_flags;
ece369c7 1477 long ret;
4ca9b385
DH
1478
1479 VM_BUG_ON(!PAGE_ALIGNED(start));
1480 VM_BUG_ON(!PAGE_ALIGNED(end));
1481 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1482 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1483 mmap_assert_locked(mm);
1484
1485 /*
1486 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1487 * the page dirty with FOLL_WRITE -- which doesn't make a
1488 * difference with !FOLL_FORCE, because the page is writable
1489 * in the page table.
1490 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1491 * a poisoned page.
4ca9b385
DH
1492 * !FOLL_FORCE: Require proper access permissions.
1493 */
b67bf49c 1494 gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
4ca9b385
DH
1495 if (write)
1496 gup_flags |= FOLL_WRITE;
1497
1498 /*
eb2faa51
DH
1499 * We want to report -EINVAL instead of -EFAULT for any permission
1500 * problems or incompatible mappings.
4ca9b385 1501 */
eb2faa51
DH
1502 if (check_vma_flags(vma, gup_flags))
1503 return -EINVAL;
1504
ece369c7 1505 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
4ca9b385 1506 NULL, NULL, locked);
ece369c7
HD
1507 lru_add_drain();
1508 return ret;
4ca9b385
DH
1509}
1510
d3649f68
CH
1511/*
1512 * __mm_populate - populate and/or mlock pages within a range of address space.
1513 *
1514 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1515 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 1516 * mmap_lock must not be held.
d3649f68
CH
1517 */
1518int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1519{
1520 struct mm_struct *mm = current->mm;
1521 unsigned long end, nstart, nend;
1522 struct vm_area_struct *vma = NULL;
1523 int locked = 0;
1524 long ret = 0;
1525
1526 end = start + len;
1527
1528 for (nstart = start; nstart < end; nstart = nend) {
1529 /*
1530 * We want to fault in pages for [nstart; end) address range.
1531 * Find first corresponding VMA.
1532 */
1533 if (!locked) {
1534 locked = 1;
d8ed45c5 1535 mmap_read_lock(mm);
d3649f68
CH
1536 vma = find_vma(mm, nstart);
1537 } else if (nstart >= vma->vm_end)
1538 vma = vma->vm_next;
1539 if (!vma || vma->vm_start >= end)
1540 break;
1541 /*
1542 * Set [nstart; nend) to intersection of desired address
1543 * range with the first VMA. Also, skip undesirable VMA types.
1544 */
1545 nend = min(end, vma->vm_end);
1546 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1547 continue;
1548 if (nstart < vma->vm_start)
1549 nstart = vma->vm_start;
1550 /*
1551 * Now fault in a range of pages. populate_vma_page_range()
1552 * double checks the vma flags, so that it won't mlock pages
1553 * if the vma was already munlocked.
1554 */
1555 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1556 if (ret < 0) {
1557 if (ignore_errors) {
1558 ret = 0;
1559 continue; /* continue at next VMA */
1560 }
1561 break;
1562 }
1563 nend = nstart + ret * PAGE_SIZE;
1564 ret = 0;
1565 }
1566 if (locked)
d8ed45c5 1567 mmap_read_unlock(mm);
d3649f68
CH
1568 return ret; /* 0 or negative error code */
1569}
050a9adc 1570#else /* CONFIG_MMU */
64019a2e 1571static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc
CH
1572 unsigned long nr_pages, struct page **pages,
1573 struct vm_area_struct **vmas, int *locked,
1574 unsigned int foll_flags)
1575{
1576 struct vm_area_struct *vma;
1577 unsigned long vm_flags;
24dc20c7 1578 long i;
050a9adc
CH
1579
1580 /* calculate required read or write permissions.
1581 * If FOLL_FORCE is set, we only require the "MAY" flags.
1582 */
1583 vm_flags = (foll_flags & FOLL_WRITE) ?
1584 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1585 vm_flags &= (foll_flags & FOLL_FORCE) ?
1586 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1587
1588 for (i = 0; i < nr_pages; i++) {
1589 vma = find_vma(mm, start);
1590 if (!vma)
1591 goto finish_or_fault;
1592
1593 /* protect what we can, including chardevs */
1594 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1595 !(vm_flags & vma->vm_flags))
1596 goto finish_or_fault;
1597
1598 if (pages) {
1599 pages[i] = virt_to_page(start);
1600 if (pages[i])
1601 get_page(pages[i]);
1602 }
1603 if (vmas)
1604 vmas[i] = vma;
1605 start = (start + PAGE_SIZE) & PAGE_MASK;
1606 }
1607
1608 return i;
1609
1610finish_or_fault:
1611 return i ? : -EFAULT;
1612}
1613#endif /* !CONFIG_MMU */
d3649f68 1614
bb523b40
AG
1615/**
1616 * fault_in_writeable - fault in userspace address range for writing
1617 * @uaddr: start of address range
1618 * @size: size of address range
1619 *
1620 * Returns the number of bytes not faulted in (like copy_to_user() and
1621 * copy_from_user()).
1622 */
1623size_t fault_in_writeable(char __user *uaddr, size_t size)
1624{
1625 char __user *start = uaddr, *end;
1626
1627 if (unlikely(size == 0))
1628 return 0;
677b2a8c
CL
1629 if (!user_write_access_begin(uaddr, size))
1630 return size;
bb523b40 1631 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1632 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1633 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1634 }
1635 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1636 if (unlikely(end < start))
1637 end = NULL;
1638 while (uaddr != end) {
677b2a8c 1639 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1640 uaddr += PAGE_SIZE;
1641 }
1642
1643out:
677b2a8c 1644 user_write_access_end();
bb523b40
AG
1645 if (size > uaddr - start)
1646 return size - (uaddr - start);
1647 return 0;
1648}
1649EXPORT_SYMBOL(fault_in_writeable);
1650
cdd591fc
AG
1651/*
1652 * fault_in_safe_writeable - fault in an address range for writing
1653 * @uaddr: start of address range
1654 * @size: length of address range
1655 *
fe673d3f
LT
1656 * Faults in an address range for writing. This is primarily useful when we
1657 * already know that some or all of the pages in the address range aren't in
1658 * memory.
cdd591fc 1659 *
fe673d3f 1660 * Unlike fault_in_writeable(), this function is non-destructive.
cdd591fc
AG
1661 *
1662 * Note that we don't pin or otherwise hold the pages referenced that we fault
1663 * in. There's no guarantee that they'll stay in memory for any duration of
1664 * time.
1665 *
1666 * Returns the number of bytes not faulted in, like copy_to_user() and
1667 * copy_from_user().
1668 */
1669size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1670{
fe673d3f 1671 unsigned long start = (unsigned long)uaddr, end;
cdd591fc 1672 struct mm_struct *mm = current->mm;
fe673d3f 1673 bool unlocked = false;
cdd591fc 1674
fe673d3f
LT
1675 if (unlikely(size == 0))
1676 return 0;
cdd591fc 1677 end = PAGE_ALIGN(start + size);
fe673d3f 1678 if (end < start)
cdd591fc 1679 end = 0;
cdd591fc 1680
fe673d3f
LT
1681 mmap_read_lock(mm);
1682 do {
1683 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
cdd591fc 1684 break;
fe673d3f
LT
1685 start = (start + PAGE_SIZE) & PAGE_MASK;
1686 } while (start != end);
1687 mmap_read_unlock(mm);
1688
1689 if (size > (unsigned long)uaddr - start)
1690 return size - ((unsigned long)uaddr - start);
1691 return 0;
cdd591fc
AG
1692}
1693EXPORT_SYMBOL(fault_in_safe_writeable);
1694
bb523b40
AG
1695/**
1696 * fault_in_readable - fault in userspace address range for reading
1697 * @uaddr: start of user address range
1698 * @size: size of user address range
1699 *
1700 * Returns the number of bytes not faulted in (like copy_to_user() and
1701 * copy_from_user()).
1702 */
1703size_t fault_in_readable(const char __user *uaddr, size_t size)
1704{
1705 const char __user *start = uaddr, *end;
1706 volatile char c;
1707
1708 if (unlikely(size == 0))
1709 return 0;
677b2a8c
CL
1710 if (!user_read_access_begin(uaddr, size))
1711 return size;
bb523b40 1712 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1713 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1714 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1715 }
1716 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1717 if (unlikely(end < start))
1718 end = NULL;
1719 while (uaddr != end) {
677b2a8c 1720 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1721 uaddr += PAGE_SIZE;
1722 }
1723
1724out:
677b2a8c 1725 user_read_access_end();
bb523b40
AG
1726 (void)c;
1727 if (size > uaddr - start)
1728 return size - (uaddr - start);
1729 return 0;
1730}
1731EXPORT_SYMBOL(fault_in_readable);
1732
8f942eea
JH
1733/**
1734 * get_dump_page() - pin user page in memory while writing it to core dump
1735 * @addr: user address
1736 *
1737 * Returns struct page pointer of user page pinned for dump,
1738 * to be freed afterwards by put_page().
1739 *
1740 * Returns NULL on any kind of failure - a hole must then be inserted into
1741 * the corefile, to preserve alignment with its headers; and also returns
1742 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
f0953a1b 1743 * allowing a hole to be left in the corefile to save disk space.
8f942eea 1744 *
7f3bfab5 1745 * Called without mmap_lock (takes and releases the mmap_lock by itself).
8f942eea
JH
1746 */
1747#ifdef CONFIG_ELF_CORE
1748struct page *get_dump_page(unsigned long addr)
1749{
7f3bfab5 1750 struct mm_struct *mm = current->mm;
8f942eea 1751 struct page *page;
7f3bfab5
JH
1752 int locked = 1;
1753 int ret;
8f942eea 1754
7f3bfab5 1755 if (mmap_read_lock_killable(mm))
8f942eea 1756 return NULL;
7f3bfab5
JH
1757 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1758 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1759 if (locked)
1760 mmap_read_unlock(mm);
1761 return (ret == 1) ? page : NULL;
8f942eea
JH
1762}
1763#endif /* CONFIG_ELF_CORE */
1764
d1e153fe 1765#ifdef CONFIG_MIGRATION
f68749ec
PT
1766/*
1767 * Check whether all pages are pinnable, if so return number of pages. If some
1768 * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1769 * pages were migrated, or if some pages were not successfully isolated.
1770 * Return negative error if migration fails.
1771 */
1772static long check_and_migrate_movable_pages(unsigned long nr_pages,
d1e153fe 1773 struct page **pages,
d1e153fe 1774 unsigned int gup_flags)
9a4e9f3b 1775{
f9f38f78 1776 unsigned long isolation_error_count = 0, i;
1b7f7e58 1777 struct folio *prev_folio = NULL;
d1e153fe 1778 LIST_HEAD(movable_page_list);
f9f38f78
CH
1779 bool drain_allow = true;
1780 int ret = 0;
9a4e9f3b 1781
83c02c23 1782 for (i = 0; i < nr_pages; i++) {
1b7f7e58 1783 struct folio *folio = page_folio(pages[i]);
f9f38f78 1784
1b7f7e58 1785 if (folio == prev_folio)
83c02c23 1786 continue;
1b7f7e58 1787 prev_folio = folio;
f9f38f78 1788
1b7f7e58 1789 if (folio_is_pinnable(folio))
f9f38f78
CH
1790 continue;
1791
9a4e9f3b 1792 /*
f9f38f78 1793 * Try to move out any movable page before pinning the range.
9a4e9f3b 1794 */
1b7f7e58
MWO
1795 if (folio_test_hugetlb(folio)) {
1796 if (!isolate_huge_page(&folio->page,
1797 &movable_page_list))
f9f38f78
CH
1798 isolation_error_count++;
1799 continue;
1800 }
9a4e9f3b 1801
1b7f7e58 1802 if (!folio_test_lru(folio) && drain_allow) {
f9f38f78
CH
1803 lru_add_drain_all();
1804 drain_allow = false;
1805 }
1806
1b7f7e58 1807 if (folio_isolate_lru(folio)) {
f9f38f78
CH
1808 isolation_error_count++;
1809 continue;
9a4e9f3b 1810 }
1b7f7e58
MWO
1811 list_add_tail(&folio->lru, &movable_page_list);
1812 node_stat_mod_folio(folio,
1813 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1814 folio_nr_pages(folio));
9a4e9f3b
AK
1815 }
1816
f9f38f78
CH
1817 if (!list_empty(&movable_page_list) || isolation_error_count)
1818 goto unpin_pages;
1819
6e7f34eb
PT
1820 /*
1821 * If list is empty, and no isolation errors, means that all pages are
1822 * in the correct zone.
1823 */
f9f38f78 1824 return nr_pages;
6e7f34eb 1825
f9f38f78 1826unpin_pages:
f68749ec
PT
1827 if (gup_flags & FOLL_PIN) {
1828 unpin_user_pages(pages, nr_pages);
1829 } else {
1830 for (i = 0; i < nr_pages; i++)
1831 put_page(pages[i]);
1832 }
f9f38f78 1833
d1e153fe 1834 if (!list_empty(&movable_page_list)) {
f9f38f78
CH
1835 struct migration_target_control mtc = {
1836 .nid = NUMA_NO_NODE,
1837 .gfp_mask = GFP_USER | __GFP_NOWARN,
1838 };
1839
d1e153fe 1840 ret = migrate_pages(&movable_page_list, alloc_migration_target,
f0f44638 1841 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
5ac95884 1842 MR_LONGTERM_PIN, NULL);
f9f38f78
CH
1843 if (ret > 0) /* number of pages not migrated */
1844 ret = -ENOMEM;
9a4e9f3b
AK
1845 }
1846
f9f38f78
CH
1847 if (ret && !list_empty(&movable_page_list))
1848 putback_movable_pages(&movable_page_list);
1849 return ret;
9a4e9f3b
AK
1850}
1851#else
f68749ec 1852static long check_and_migrate_movable_pages(unsigned long nr_pages,
d1e153fe 1853 struct page **pages,
d1e153fe 1854 unsigned int gup_flags)
9a4e9f3b
AK
1855{
1856 return nr_pages;
1857}
d1e153fe 1858#endif /* CONFIG_MIGRATION */
9a4e9f3b 1859
2bb6d283 1860/*
932f4a63
IW
1861 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1862 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 1863 */
64019a2e 1864static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
1865 unsigned long start,
1866 unsigned long nr_pages,
1867 struct page **pages,
1868 struct vm_area_struct **vmas,
1869 unsigned int gup_flags)
2bb6d283 1870{
f68749ec 1871 unsigned int flags;
52650c8b 1872 long rc;
2bb6d283 1873
f68749ec
PT
1874 if (!(gup_flags & FOLL_LONGTERM))
1875 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1876 NULL, gup_flags);
1877 flags = memalloc_pin_save();
1878 do {
1879 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1880 NULL, gup_flags);
1881 if (rc <= 0)
1882 break;
1883 rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1884 } while (!rc);
1885 memalloc_pin_restore(flags);
2bb6d283 1886
2bb6d283
DW
1887 return rc;
1888}
932f4a63 1889
447f3e45
BS
1890static bool is_valid_gup_flags(unsigned int gup_flags)
1891{
1892 /*
1893 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1894 * never directly by the caller, so enforce that with an assertion:
1895 */
1896 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1897 return false;
1898 /*
1899 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1900 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1901 * FOLL_PIN.
1902 */
1903 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1904 return false;
1905
1906 return true;
1907}
1908
22bf29b6 1909#ifdef CONFIG_MMU
64019a2e 1910static long __get_user_pages_remote(struct mm_struct *mm,
22bf29b6
JH
1911 unsigned long start, unsigned long nr_pages,
1912 unsigned int gup_flags, struct page **pages,
1913 struct vm_area_struct **vmas, int *locked)
1914{
1915 /*
1916 * Parts of FOLL_LONGTERM behavior are incompatible with
1917 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1918 * vmas. However, this only comes up if locked is set, and there are
1919 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1920 * allow what we can.
1921 */
1922 if (gup_flags & FOLL_LONGTERM) {
1923 if (WARN_ON_ONCE(locked))
1924 return -EINVAL;
1925 /*
1926 * This will check the vmas (even if our vmas arg is NULL)
1927 * and return -ENOTSUPP if DAX isn't allowed in this case:
1928 */
64019a2e 1929 return __gup_longterm_locked(mm, start, nr_pages, pages,
22bf29b6
JH
1930 vmas, gup_flags | FOLL_TOUCH |
1931 FOLL_REMOTE);
1932 }
1933
64019a2e 1934 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
22bf29b6
JH
1935 locked,
1936 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1937}
1938
adc8cb40 1939/**
c4237f8b 1940 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
1941 * @mm: mm_struct of target mm
1942 * @start: starting user address
1943 * @nr_pages: number of pages from start to pin
1944 * @gup_flags: flags modifying lookup behaviour
1945 * @pages: array that receives pointers to the pages pinned.
1946 * Should be at least nr_pages long. Or NULL, if caller
1947 * only intends to ensure the pages are faulted in.
1948 * @vmas: array of pointers to vmas corresponding to each page.
1949 * Or NULL if the caller does not require them.
1950 * @locked: pointer to lock flag indicating whether lock is held and
1951 * subsequently whether VM_FAULT_RETRY functionality can be
1952 * utilised. Lock must initially be held.
1953 *
1954 * Returns either number of pages pinned (which may be less than the
1955 * number requested), or an error. Details about the return value:
1956 *
1957 * -- If nr_pages is 0, returns 0.
1958 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1959 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1960 * pages pinned. Again, this may be less than nr_pages.
1961 *
1962 * The caller is responsible for releasing returned @pages, via put_page().
1963 *
c1e8d7c6 1964 * @vmas are valid only as long as mmap_lock is held.
c4237f8b 1965 *
c1e8d7c6 1966 * Must be called with mmap_lock held for read or write.
c4237f8b 1967 *
adc8cb40
SJ
1968 * get_user_pages_remote walks a process's page tables and takes a reference
1969 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
1970 * instant. That is, it takes the page that would be accessed if a user
1971 * thread accesses the given user virtual address at that instant.
1972 *
1973 * This does not guarantee that the page exists in the user mappings when
adc8cb40 1974 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b
JH
1975 * page there in some cases (eg. if mmapped pagecache has been invalidated
1976 * and subsequently re faulted). However it does guarantee that the page
1977 * won't be freed completely. And mostly callers simply care that the page
1978 * contains data that was valid *at some point in time*. Typically, an IO
1979 * or similar operation cannot guarantee anything stronger anyway because
1980 * locks can't be held over the syscall boundary.
1981 *
1982 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1983 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1984 * be called after the page is finished with, and before put_page is called.
1985 *
adc8cb40
SJ
1986 * get_user_pages_remote is typically used for fewer-copy IO operations,
1987 * to get a handle on the memory by some means other than accesses
1988 * via the user virtual addresses. The pages may be submitted for
1989 * DMA to devices or accessed via their kernel linear mapping (via the
1990 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
1991 *
1992 * See also get_user_pages_fast, for performance critical applications.
1993 *
adc8cb40 1994 * get_user_pages_remote should be phased out in favor of
c4237f8b 1995 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 1996 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
1997 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1998 */
64019a2e 1999long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
2000 unsigned long start, unsigned long nr_pages,
2001 unsigned int gup_flags, struct page **pages,
2002 struct vm_area_struct **vmas, int *locked)
2003{
447f3e45 2004 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
2005 return -EINVAL;
2006
64019a2e 2007 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
22bf29b6 2008 pages, vmas, locked);
c4237f8b
JH
2009}
2010EXPORT_SYMBOL(get_user_pages_remote);
2011
eddb1c22 2012#else /* CONFIG_MMU */
64019a2e 2013long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2014 unsigned long start, unsigned long nr_pages,
2015 unsigned int gup_flags, struct page **pages,
2016 struct vm_area_struct **vmas, int *locked)
2017{
2018 return 0;
2019}
3faa52c0 2020
64019a2e 2021static long __get_user_pages_remote(struct mm_struct *mm,
3faa52c0
JH
2022 unsigned long start, unsigned long nr_pages,
2023 unsigned int gup_flags, struct page **pages,
2024 struct vm_area_struct **vmas, int *locked)
2025{
2026 return 0;
2027}
eddb1c22
JH
2028#endif /* !CONFIG_MMU */
2029
adc8cb40
SJ
2030/**
2031 * get_user_pages() - pin user pages in memory
2032 * @start: starting user address
2033 * @nr_pages: number of pages from start to pin
2034 * @gup_flags: flags modifying lookup behaviour
2035 * @pages: array that receives pointers to the pages pinned.
2036 * Should be at least nr_pages long. Or NULL, if caller
2037 * only intends to ensure the pages are faulted in.
2038 * @vmas: array of pointers to vmas corresponding to each page.
2039 * Or NULL if the caller does not require them.
2040 *
64019a2e
PX
2041 * This is the same as get_user_pages_remote(), just with a less-flexible
2042 * calling convention where we assume that the mm being operated on belongs to
2043 * the current task, and doesn't allow passing of a locked parameter. We also
2044 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
2045 */
2046long get_user_pages(unsigned long start, unsigned long nr_pages,
2047 unsigned int gup_flags, struct page **pages,
2048 struct vm_area_struct **vmas)
2049{
447f3e45 2050 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
2051 return -EINVAL;
2052
64019a2e 2053 return __gup_longterm_locked(current->mm, start, nr_pages,
932f4a63
IW
2054 pages, vmas, gup_flags | FOLL_TOUCH);
2055}
2056EXPORT_SYMBOL(get_user_pages);
2bb6d283 2057
acc3c8d1 2058/*
d3649f68 2059 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 2060 *
3e4e28c5 2061 * mmap_read_lock(mm);
64019a2e 2062 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 2063 * mmap_read_unlock(mm);
d3649f68
CH
2064 *
2065 * with:
2066 *
64019a2e 2067 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
2068 *
2069 * It is functionally equivalent to get_user_pages_fast so
2070 * get_user_pages_fast should be used instead if specific gup_flags
2071 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 2072 */
d3649f68
CH
2073long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2074 struct page **pages, unsigned int gup_flags)
acc3c8d1
KS
2075{
2076 struct mm_struct *mm = current->mm;
d3649f68
CH
2077 int locked = 1;
2078 long ret;
acc3c8d1 2079
d3649f68
CH
2080 /*
2081 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2082 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2083 * vmas. As there are no users of this flag in this call we simply
2084 * disallow this option for now.
2085 */
2086 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2087 return -EINVAL;
acc3c8d1 2088
d8ed45c5 2089 mmap_read_lock(mm);
64019a2e 2090 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
d3649f68 2091 &locked, gup_flags | FOLL_TOUCH);
acc3c8d1 2092 if (locked)
d8ed45c5 2093 mmap_read_unlock(mm);
d3649f68 2094 return ret;
4bbd4c77 2095}
d3649f68 2096EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
2097
2098/*
67a929e0 2099 * Fast GUP
2667f50e
SC
2100 *
2101 * get_user_pages_fast attempts to pin user pages by walking the page
2102 * tables directly and avoids taking locks. Thus the walker needs to be
2103 * protected from page table pages being freed from under it, and should
2104 * block any THP splits.
2105 *
2106 * One way to achieve this is to have the walker disable interrupts, and
2107 * rely on IPIs from the TLB flushing code blocking before the page table
2108 * pages are freed. This is unsuitable for architectures that do not need
2109 * to broadcast an IPI when invalidating TLBs.
2110 *
2111 * Another way to achieve this is to batch up page table containing pages
2112 * belonging to more than one mm_user, then rcu_sched a callback to free those
2113 * pages. Disabling interrupts will allow the fast_gup walker to both block
2114 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2115 * (which is a relatively rare event). The code below adopts this strategy.
2116 *
2117 * Before activating this code, please be aware that the following assumptions
2118 * are currently made:
2119 *
ff2e6d72 2120 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2121 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2122 *
2667f50e
SC
2123 * *) ptes can be read atomically by the architecture.
2124 *
2125 * *) access_ok is sufficient to validate userspace address ranges.
2126 *
2127 * The last two assumptions can be relaxed by the addition of helper functions.
2128 *
2129 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2130 */
67a929e0 2131#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0 2132
790c7369 2133static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 2134 unsigned int flags,
790c7369 2135 struct page **pages)
b59f65fa
KS
2136{
2137 while ((*nr) - nr_start) {
2138 struct page *page = pages[--(*nr)];
2139
2140 ClearPageReferenced(page);
3faa52c0
JH
2141 if (flags & FOLL_PIN)
2142 unpin_user_page(page);
2143 else
2144 put_page(page);
b59f65fa
KS
2145 }
2146}
2147
3010a5ea 2148#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2667f50e 2149static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2150 unsigned int flags, struct page **pages, int *nr)
2667f50e 2151{
b59f65fa
KS
2152 struct dev_pagemap *pgmap = NULL;
2153 int nr_start = *nr, ret = 0;
2667f50e 2154 pte_t *ptep, *ptem;
2667f50e
SC
2155
2156 ptem = ptep = pte_offset_map(&pmd, addr);
2157 do {
2a4a06da 2158 pte_t pte = ptep_get_lockless(ptep);
b0496fe4
MWO
2159 struct page *page;
2160 struct folio *folio;
2667f50e
SC
2161
2162 /*
2163 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 2164 * path using the pte_protnone check.
2667f50e 2165 */
e7884f8e
KS
2166 if (pte_protnone(pte))
2167 goto pte_unmap;
2168
b798bec4 2169 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2170 goto pte_unmap;
2171
b59f65fa 2172 if (pte_devmap(pte)) {
7af75561
IW
2173 if (unlikely(flags & FOLL_LONGTERM))
2174 goto pte_unmap;
2175
b59f65fa
KS
2176 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2177 if (unlikely(!pgmap)) {
3b78d834 2178 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2179 goto pte_unmap;
2180 }
2181 } else if (pte_special(pte))
2667f50e
SC
2182 goto pte_unmap;
2183
2184 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2185 page = pte_page(pte);
2186
b0496fe4
MWO
2187 folio = try_grab_folio(page, 1, flags);
2188 if (!folio)
2667f50e
SC
2189 goto pte_unmap;
2190
1507f512 2191 if (unlikely(page_is_secretmem(page))) {
b0496fe4 2192 gup_put_folio(folio, 1, flags);
1507f512
MR
2193 goto pte_unmap;
2194 }
2195
2667f50e 2196 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
b0496fe4 2197 gup_put_folio(folio, 1, flags);
2667f50e
SC
2198 goto pte_unmap;
2199 }
2200
f28d4363
CI
2201 /*
2202 * We need to make the page accessible if and only if we are
2203 * going to access its content (the FOLL_PIN case). Please
2204 * see Documentation/core-api/pin_user_pages.rst for
2205 * details.
2206 */
2207 if (flags & FOLL_PIN) {
2208 ret = arch_make_page_accessible(page);
2209 if (ret) {
b0496fe4 2210 gup_put_folio(folio, 1, flags);
f28d4363
CI
2211 goto pte_unmap;
2212 }
2213 }
b0496fe4 2214 folio_set_referenced(folio);
2667f50e
SC
2215 pages[*nr] = page;
2216 (*nr)++;
2667f50e
SC
2217 } while (ptep++, addr += PAGE_SIZE, addr != end);
2218
2219 ret = 1;
2220
2221pte_unmap:
832d7aa0
CH
2222 if (pgmap)
2223 put_dev_pagemap(pgmap);
2667f50e
SC
2224 pte_unmap(ptem);
2225 return ret;
2226}
2227#else
2228
2229/*
2230 * If we can't determine whether or not a pte is special, then fail immediately
2231 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2232 * to be special.
2233 *
2234 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 2235 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2667f50e
SC
2236 * useful to have gup_huge_pmd even if we can't operate on ptes.
2237 */
2238static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2239 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2240{
2241 return 0;
2242}
3010a5ea 2243#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2244
17596731 2245#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 2246static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
2247 unsigned long end, unsigned int flags,
2248 struct page **pages, int *nr)
b59f65fa
KS
2249{
2250 int nr_start = *nr;
2251 struct dev_pagemap *pgmap = NULL;
2252
2253 do {
2254 struct page *page = pfn_to_page(pfn);
2255
2256 pgmap = get_dev_pagemap(pfn, pgmap);
2257 if (unlikely(!pgmap)) {
3b78d834 2258 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2259 break;
b59f65fa
KS
2260 }
2261 SetPageReferenced(page);
2262 pages[*nr] = page;
3faa52c0
JH
2263 if (unlikely(!try_grab_page(page, flags))) {
2264 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2265 break;
3faa52c0 2266 }
b59f65fa
KS
2267 (*nr)++;
2268 pfn++;
2269 } while (addr += PAGE_SIZE, addr != end);
832d7aa0 2270
6401c4eb 2271 put_dev_pagemap(pgmap);
20b7fee7 2272 return addr == end;
b59f65fa
KS
2273}
2274
a9b6de77 2275static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2276 unsigned long end, unsigned int flags,
2277 struct page **pages, int *nr)
b59f65fa
KS
2278{
2279 unsigned long fault_pfn;
a9b6de77
DW
2280 int nr_start = *nr;
2281
2282 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 2283 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2284 return 0;
b59f65fa 2285
a9b6de77 2286 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2287 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2288 return 0;
2289 }
2290 return 1;
b59f65fa
KS
2291}
2292
a9b6de77 2293static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2294 unsigned long end, unsigned int flags,
2295 struct page **pages, int *nr)
b59f65fa
KS
2296{
2297 unsigned long fault_pfn;
a9b6de77
DW
2298 int nr_start = *nr;
2299
2300 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 2301 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2302 return 0;
b59f65fa 2303
a9b6de77 2304 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2305 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2306 return 0;
2307 }
2308 return 1;
b59f65fa
KS
2309}
2310#else
a9b6de77 2311static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2312 unsigned long end, unsigned int flags,
2313 struct page **pages, int *nr)
b59f65fa
KS
2314{
2315 BUILD_BUG();
2316 return 0;
2317}
2318
a9b6de77 2319static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2320 unsigned long end, unsigned int flags,
2321 struct page **pages, int *nr)
b59f65fa
KS
2322{
2323 BUILD_BUG();
2324 return 0;
2325}
2326#endif
2327
a43e9820
JH
2328static int record_subpages(struct page *page, unsigned long addr,
2329 unsigned long end, struct page **pages)
2330{
2331 int nr;
2332
c228afb1
MWO
2333 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2334 pages[nr] = nth_page(page, nr);
a43e9820
JH
2335
2336 return nr;
2337}
2338
cbd34da7
CH
2339#ifdef CONFIG_ARCH_HAS_HUGEPD
2340static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2341 unsigned long sz)
2342{
2343 unsigned long __boundary = (addr + sz) & ~(sz-1);
2344 return (__boundary - 1 < end - 1) ? __boundary : end;
2345}
2346
2347static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2348 unsigned long end, unsigned int flags,
2349 struct page **pages, int *nr)
cbd34da7
CH
2350{
2351 unsigned long pte_end;
09a1626e
MWO
2352 struct page *page;
2353 struct folio *folio;
cbd34da7
CH
2354 pte_t pte;
2355 int refs;
2356
2357 pte_end = (addr + sz) & ~(sz-1);
2358 if (pte_end < end)
2359 end = pte_end;
2360
55ca2263 2361 pte = huge_ptep_get(ptep);
cbd34da7 2362
0cd22afd 2363 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2364 return 0;
2365
2366 /* hugepages are never "special" */
2367 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2368
09a1626e 2369 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
a43e9820 2370 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2371
09a1626e
MWO
2372 folio = try_grab_folio(page, refs, flags);
2373 if (!folio)
cbd34da7 2374 return 0;
cbd34da7
CH
2375
2376 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
09a1626e 2377 gup_put_folio(folio, refs, flags);
cbd34da7
CH
2378 return 0;
2379 }
2380
a43e9820 2381 *nr += refs;
09a1626e 2382 folio_set_referenced(folio);
cbd34da7
CH
2383 return 1;
2384}
2385
2386static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2387 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2388 struct page **pages, int *nr)
2389{
2390 pte_t *ptep;
2391 unsigned long sz = 1UL << hugepd_shift(hugepd);
2392 unsigned long next;
2393
2394 ptep = hugepte_offset(hugepd, addr, pdshift);
2395 do {
2396 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2397 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2398 return 0;
2399 } while (ptep++, addr = next, addr != end);
2400
2401 return 1;
2402}
2403#else
2404static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2405 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2406 struct page **pages, int *nr)
2407{
2408 return 0;
2409}
2410#endif /* CONFIG_ARCH_HAS_HUGEPD */
2411
2667f50e 2412static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2413 unsigned long end, unsigned int flags,
2414 struct page **pages, int *nr)
2667f50e 2415{
667ed1f7
MWO
2416 struct page *page;
2417 struct folio *folio;
2667f50e
SC
2418 int refs;
2419
b798bec4 2420 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2421 return 0;
2422
7af75561
IW
2423 if (pmd_devmap(orig)) {
2424 if (unlikely(flags & FOLL_LONGTERM))
2425 return 0;
86dfbed4
JH
2426 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2427 pages, nr);
7af75561 2428 }
b59f65fa 2429
c228afb1 2430 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2431 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2432
667ed1f7
MWO
2433 folio = try_grab_folio(page, refs, flags);
2434 if (!folio)
2667f50e 2435 return 0;
2667f50e
SC
2436
2437 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
667ed1f7 2438 gup_put_folio(folio, refs, flags);
2667f50e
SC
2439 return 0;
2440 }
2441
a43e9820 2442 *nr += refs;
667ed1f7 2443 folio_set_referenced(folio);
2667f50e
SC
2444 return 1;
2445}
2446
2447static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2448 unsigned long end, unsigned int flags,
2449 struct page **pages, int *nr)
2667f50e 2450{
83afb52e
MWO
2451 struct page *page;
2452 struct folio *folio;
2667f50e
SC
2453 int refs;
2454
b798bec4 2455 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2456 return 0;
2457
7af75561
IW
2458 if (pud_devmap(orig)) {
2459 if (unlikely(flags & FOLL_LONGTERM))
2460 return 0;
86dfbed4
JH
2461 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2462 pages, nr);
7af75561 2463 }
b59f65fa 2464
c228afb1 2465 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2466 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2467
83afb52e
MWO
2468 folio = try_grab_folio(page, refs, flags);
2469 if (!folio)
2667f50e 2470 return 0;
2667f50e
SC
2471
2472 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
83afb52e 2473 gup_put_folio(folio, refs, flags);
2667f50e
SC
2474 return 0;
2475 }
2476
a43e9820 2477 *nr += refs;
83afb52e 2478 folio_set_referenced(folio);
2667f50e
SC
2479 return 1;
2480}
2481
f30c59e9 2482static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2483 unsigned long end, unsigned int flags,
f30c59e9
AK
2484 struct page **pages, int *nr)
2485{
2486 int refs;
2d7919a2
MWO
2487 struct page *page;
2488 struct folio *folio;
f30c59e9 2489
b798bec4 2490 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2491 return 0;
2492
b59f65fa 2493 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2494
c228afb1 2495 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2496 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2497
2d7919a2
MWO
2498 folio = try_grab_folio(page, refs, flags);
2499 if (!folio)
f30c59e9 2500 return 0;
f30c59e9
AK
2501
2502 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2d7919a2 2503 gup_put_folio(folio, refs, flags);
f30c59e9
AK
2504 return 0;
2505 }
2506
a43e9820 2507 *nr += refs;
2d7919a2 2508 folio_set_referenced(folio);
f30c59e9
AK
2509 return 1;
2510}
2511
d3f7b1bb 2512static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2513 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2514{
2515 unsigned long next;
2516 pmd_t *pmdp;
2517
d3f7b1bb 2518 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 2519 do {
38c5ce93 2520 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
2521
2522 next = pmd_addr_end(addr, end);
84c3fc4e 2523 if (!pmd_present(pmd))
2667f50e
SC
2524 return 0;
2525
414fd080
YZ
2526 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2527 pmd_devmap(pmd))) {
2667f50e
SC
2528 /*
2529 * NUMA hinting faults need to be handled in the GUP
2530 * slowpath for accounting purposes and so that they
2531 * can be serialised against THP migration.
2532 */
8a0516ed 2533 if (pmd_protnone(pmd))
2667f50e
SC
2534 return 0;
2535
b798bec4 2536 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2537 pages, nr))
2538 return 0;
2539
f30c59e9
AK
2540 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2541 /*
2542 * architecture have different format for hugetlbfs
2543 * pmd format and THP pmd format
2544 */
2545 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2546 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2547 return 0;
b798bec4 2548 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2923117b 2549 return 0;
2667f50e
SC
2550 } while (pmdp++, addr = next, addr != end);
2551
2552 return 1;
2553}
2554
d3f7b1bb 2555static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2556 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2557{
2558 unsigned long next;
2559 pud_t *pudp;
2560
d3f7b1bb 2561 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 2562 do {
e37c6982 2563 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
2564
2565 next = pud_addr_end(addr, end);
15494520 2566 if (unlikely(!pud_present(pud)))
2667f50e 2567 return 0;
f30c59e9 2568 if (unlikely(pud_huge(pud))) {
b798bec4 2569 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
2570 pages, nr))
2571 return 0;
2572 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2573 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 2574 PUD_SHIFT, next, flags, pages, nr))
2667f50e 2575 return 0;
d3f7b1bb 2576 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2667f50e
SC
2577 return 0;
2578 } while (pudp++, addr = next, addr != end);
2579
2580 return 1;
2581}
2582
d3f7b1bb 2583static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 2584 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
2585{
2586 unsigned long next;
2587 p4d_t *p4dp;
2588
d3f7b1bb 2589 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
2590 do {
2591 p4d_t p4d = READ_ONCE(*p4dp);
2592
2593 next = p4d_addr_end(addr, end);
2594 if (p4d_none(p4d))
2595 return 0;
2596 BUILD_BUG_ON(p4d_huge(p4d));
2597 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2598 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 2599 P4D_SHIFT, next, flags, pages, nr))
c2febafc 2600 return 0;
d3f7b1bb 2601 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
c2febafc
KS
2602 return 0;
2603 } while (p4dp++, addr = next, addr != end);
2604
2605 return 1;
2606}
2607
5b65c467 2608static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 2609 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
2610{
2611 unsigned long next;
2612 pgd_t *pgdp;
2613
2614 pgdp = pgd_offset(current->mm, addr);
2615 do {
2616 pgd_t pgd = READ_ONCE(*pgdp);
2617
2618 next = pgd_addr_end(addr, end);
2619 if (pgd_none(pgd))
2620 return;
2621 if (unlikely(pgd_huge(pgd))) {
b798bec4 2622 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
2623 pages, nr))
2624 return;
2625 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2626 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 2627 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 2628 return;
d3f7b1bb 2629 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
5b65c467
KS
2630 return;
2631 } while (pgdp++, addr = next, addr != end);
2632}
050a9adc
CH
2633#else
2634static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2635 unsigned int flags, struct page **pages, int *nr)
2636{
2637}
2638#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
2639
2640#ifndef gup_fast_permitted
2641/*
dadbb612 2642 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
2643 * we need to fall back to the slow version:
2644 */
26f4c328 2645static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 2646{
26f4c328 2647 return true;
5b65c467
KS
2648}
2649#endif
2650
7af75561
IW
2651static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2652 unsigned int gup_flags, struct page **pages)
2653{
2654 int ret;
2655
2656 /*
2657 * FIXME: FOLL_LONGTERM does not work with
2658 * get_user_pages_unlocked() (see comments in that function)
2659 */
2660 if (gup_flags & FOLL_LONGTERM) {
d8ed45c5 2661 mmap_read_lock(current->mm);
64019a2e 2662 ret = __gup_longterm_locked(current->mm,
7af75561
IW
2663 start, nr_pages,
2664 pages, NULL, gup_flags);
d8ed45c5 2665 mmap_read_unlock(current->mm);
7af75561
IW
2666 } else {
2667 ret = get_user_pages_unlocked(start, nr_pages,
2668 pages, gup_flags);
2669 }
2670
2671 return ret;
2672}
2673
c28b1fc7
JG
2674static unsigned long lockless_pages_from_mm(unsigned long start,
2675 unsigned long end,
2676 unsigned int gup_flags,
2677 struct page **pages)
2678{
2679 unsigned long flags;
2680 int nr_pinned = 0;
57efa1fe 2681 unsigned seq;
c28b1fc7
JG
2682
2683 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2684 !gup_fast_permitted(start, end))
2685 return 0;
2686
57efa1fe
JG
2687 if (gup_flags & FOLL_PIN) {
2688 seq = raw_read_seqcount(&current->mm->write_protect_seq);
2689 if (seq & 1)
2690 return 0;
2691 }
2692
c28b1fc7
JG
2693 /*
2694 * Disable interrupts. The nested form is used, in order to allow full,
2695 * general purpose use of this routine.
2696 *
2697 * With interrupts disabled, we block page table pages from being freed
2698 * from under us. See struct mmu_table_batch comments in
2699 * include/asm-generic/tlb.h for more details.
2700 *
2701 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2702 * that come from THPs splitting.
2703 */
2704 local_irq_save(flags);
2705 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2706 local_irq_restore(flags);
57efa1fe
JG
2707
2708 /*
2709 * When pinning pages for DMA there could be a concurrent write protect
2710 * from fork() via copy_page_range(), in this case always fail fast GUP.
2711 */
2712 if (gup_flags & FOLL_PIN) {
2713 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2714 unpin_user_pages(pages, nr_pinned);
2715 return 0;
2716 }
2717 }
c28b1fc7
JG
2718 return nr_pinned;
2719}
2720
2721static int internal_get_user_pages_fast(unsigned long start,
2722 unsigned long nr_pages,
eddb1c22
JH
2723 unsigned int gup_flags,
2724 struct page **pages)
2667f50e 2725{
c28b1fc7
JG
2726 unsigned long len, end;
2727 unsigned long nr_pinned;
2728 int ret;
2667f50e 2729
f4000fdf 2730 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef 2731 FOLL_FORCE | FOLL_PIN | FOLL_GET |
55b8fe70 2732 FOLL_FAST_ONLY | FOLL_NOFAULT)))
817be129
CH
2733 return -EINVAL;
2734
a458b76a
AA
2735 if (gup_flags & FOLL_PIN)
2736 mm_set_has_pinned_flag(&current->mm->flags);
008cfe44 2737
f81cd178 2738 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 2739 might_lock_read(&current->mm->mmap_lock);
f81cd178 2740
f455c854 2741 start = untagged_addr(start) & PAGE_MASK;
c28b1fc7
JG
2742 len = nr_pages << PAGE_SHIFT;
2743 if (check_add_overflow(start, len, &end))
c61611f7 2744 return 0;
96d4f267 2745 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 2746 return -EFAULT;
73e10a61 2747
c28b1fc7
JG
2748 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2749 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2750 return nr_pinned;
2667f50e 2751
c28b1fc7
JG
2752 /* Slow path: try to get the remaining pages with get_user_pages */
2753 start += nr_pinned << PAGE_SHIFT;
2754 pages += nr_pinned;
2755 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2756 pages);
2757 if (ret < 0) {
2758 /*
2759 * The caller has to unpin the pages we already pinned so
2760 * returning -errno is not an option
2761 */
2762 if (nr_pinned)
2763 return nr_pinned;
2764 return ret;
2667f50e 2765 }
c28b1fc7 2766 return ret + nr_pinned;
2667f50e 2767}
c28b1fc7 2768
dadbb612
SJ
2769/**
2770 * get_user_pages_fast_only() - pin user pages in memory
2771 * @start: starting user address
2772 * @nr_pages: number of pages from start to pin
2773 * @gup_flags: flags modifying pin behaviour
2774 * @pages: array that receives pointers to the pages pinned.
2775 * Should be at least nr_pages long.
2776 *
9e1f0580
JH
2777 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2778 * the regular GUP.
2779 * Note a difference with get_user_pages_fast: this always returns the
2780 * number of pages pinned, 0 if no pages were pinned.
2781 *
2782 * If the architecture does not support this function, simply return with no
2783 * pages pinned.
2784 *
2785 * Careful, careful! COW breaking can go either way, so a non-write
2786 * access can get ambiguous page results. If you call this function without
2787 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2788 */
dadbb612
SJ
2789int get_user_pages_fast_only(unsigned long start, int nr_pages,
2790 unsigned int gup_flags, struct page **pages)
9e1f0580 2791{
376a34ef 2792 int nr_pinned;
9e1f0580
JH
2793 /*
2794 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2795 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
2796 *
2797 * FOLL_FAST_ONLY is required in order to match the API description of
2798 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 2799 */
dadbb612 2800 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
9e1f0580 2801
376a34ef
JH
2802 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2803 pages);
9e1f0580
JH
2804
2805 /*
376a34ef
JH
2806 * As specified in the API description above, this routine is not
2807 * allowed to return negative values. However, the common core
2808 * routine internal_get_user_pages_fast() *can* return -errno.
2809 * Therefore, correct for that here:
9e1f0580 2810 */
376a34ef
JH
2811 if (nr_pinned < 0)
2812 nr_pinned = 0;
9e1f0580
JH
2813
2814 return nr_pinned;
2815}
dadbb612 2816EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 2817
eddb1c22
JH
2818/**
2819 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
2820 * @start: starting user address
2821 * @nr_pages: number of pages from start to pin
2822 * @gup_flags: flags modifying pin behaviour
2823 * @pages: array that receives pointers to the pages pinned.
2824 * Should be at least nr_pages long.
eddb1c22 2825 *
c1e8d7c6 2826 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
2827 * If not successful, it will fall back to taking the lock and
2828 * calling get_user_pages().
2829 *
2830 * Returns number of pages pinned. This may be fewer than the number requested.
2831 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2832 * -errno.
2833 */
2834int get_user_pages_fast(unsigned long start, int nr_pages,
2835 unsigned int gup_flags, struct page **pages)
2836{
447f3e45 2837 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
2838 return -EINVAL;
2839
94202f12
JH
2840 /*
2841 * The caller may or may not have explicitly set FOLL_GET; either way is
2842 * OK. However, internally (within mm/gup.c), gup fast variants must set
2843 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2844 * request.
2845 */
2846 gup_flags |= FOLL_GET;
eddb1c22
JH
2847 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2848}
050a9adc 2849EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
2850
2851/**
2852 * pin_user_pages_fast() - pin user pages in memory without taking locks
2853 *
3faa52c0
JH
2854 * @start: starting user address
2855 * @nr_pages: number of pages from start to pin
2856 * @gup_flags: flags modifying pin behaviour
2857 * @pages: array that receives pointers to the pages pinned.
2858 * Should be at least nr_pages long.
2859 *
2860 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2861 * get_user_pages_fast() for documentation on the function arguments, because
2862 * the arguments here are identical.
2863 *
2864 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2865 * see Documentation/core-api/pin_user_pages.rst for further details.
eddb1c22
JH
2866 */
2867int pin_user_pages_fast(unsigned long start, int nr_pages,
2868 unsigned int gup_flags, struct page **pages)
2869{
3faa52c0
JH
2870 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2871 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2872 return -EINVAL;
2873
2874 gup_flags |= FOLL_PIN;
2875 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
2876}
2877EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2878
104acc32 2879/*
dadbb612
SJ
2880 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2881 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
104acc32
JH
2882 *
2883 * The API rules are the same, too: no negative values may be returned.
2884 */
2885int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2886 unsigned int gup_flags, struct page **pages)
2887{
2888 int nr_pinned;
2889
2890 /*
2891 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2892 * rules require returning 0, rather than -errno:
2893 */
2894 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2895 return 0;
2896 /*
2897 * FOLL_FAST_ONLY is required in order to match the API description of
2898 * this routine: no fall back to regular ("slow") GUP.
2899 */
2900 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2901 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2902 pages);
2903 /*
2904 * This routine is not allowed to return negative values. However,
2905 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2906 * correct for that here:
2907 */
2908 if (nr_pinned < 0)
2909 nr_pinned = 0;
2910
2911 return nr_pinned;
2912}
2913EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2914
eddb1c22 2915/**
64019a2e 2916 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 2917 *
3faa52c0
JH
2918 * @mm: mm_struct of target mm
2919 * @start: starting user address
2920 * @nr_pages: number of pages from start to pin
2921 * @gup_flags: flags modifying lookup behaviour
2922 * @pages: array that receives pointers to the pages pinned.
2923 * Should be at least nr_pages long. Or NULL, if caller
2924 * only intends to ensure the pages are faulted in.
2925 * @vmas: array of pointers to vmas corresponding to each page.
2926 * Or NULL if the caller does not require them.
2927 * @locked: pointer to lock flag indicating whether lock is held and
2928 * subsequently whether VM_FAULT_RETRY functionality can be
2929 * utilised. Lock must initially be held.
2930 *
2931 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2932 * get_user_pages_remote() for documentation on the function arguments, because
2933 * the arguments here are identical.
2934 *
2935 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2936 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22 2937 */
64019a2e 2938long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2939 unsigned long start, unsigned long nr_pages,
2940 unsigned int gup_flags, struct page **pages,
2941 struct vm_area_struct **vmas, int *locked)
2942{
3faa52c0
JH
2943 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2944 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2945 return -EINVAL;
2946
2947 gup_flags |= FOLL_PIN;
64019a2e 2948 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3faa52c0 2949 pages, vmas, locked);
eddb1c22
JH
2950}
2951EXPORT_SYMBOL(pin_user_pages_remote);
2952
2953/**
2954 * pin_user_pages() - pin user pages in memory for use by other devices
2955 *
3faa52c0
JH
2956 * @start: starting user address
2957 * @nr_pages: number of pages from start to pin
2958 * @gup_flags: flags modifying lookup behaviour
2959 * @pages: array that receives pointers to the pages pinned.
2960 * Should be at least nr_pages long. Or NULL, if caller
2961 * only intends to ensure the pages are faulted in.
2962 * @vmas: array of pointers to vmas corresponding to each page.
2963 * Or NULL if the caller does not require them.
2964 *
2965 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2966 * FOLL_PIN is set.
2967 *
2968 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2969 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22
JH
2970 */
2971long pin_user_pages(unsigned long start, unsigned long nr_pages,
2972 unsigned int gup_flags, struct page **pages,
2973 struct vm_area_struct **vmas)
2974{
3faa52c0
JH
2975 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2976 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2977 return -EINVAL;
2978
2979 gup_flags |= FOLL_PIN;
64019a2e 2980 return __gup_longterm_locked(current->mm, start, nr_pages,
3faa52c0 2981 pages, vmas, gup_flags);
eddb1c22
JH
2982}
2983EXPORT_SYMBOL(pin_user_pages);
91429023
JH
2984
2985/*
2986 * pin_user_pages_unlocked() is the FOLL_PIN variant of
2987 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2988 * FOLL_PIN and rejects FOLL_GET.
2989 */
2990long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2991 struct page **pages, unsigned int gup_flags)
2992{
2993 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2994 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2995 return -EINVAL;
2996
2997 gup_flags |= FOLL_PIN;
2998 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2999}
3000EXPORT_SYMBOL(pin_user_pages_unlocked);