s390/bitops: fix comment
[linux-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
1da177e4
LT
21
22struct mempolicy;
23struct anon_vma;
bf181b9f 24struct anon_vma_chain;
4e950f6f 25struct file_ra_state;
e8edc6e0 26struct user_struct;
4e950f6f 27struct writeback_control;
1da177e4 28
fccc9987 29#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 30extern unsigned long max_mapnr;
fccc9987
JL
31
32static inline void set_max_mapnr(unsigned long limit)
33{
34 max_mapnr = limit;
35}
36#else
37static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
38#endif
39
4481374c 40extern unsigned long totalram_pages;
1da177e4 41extern void * high_memory;
1da177e4
LT
42extern int page_cluster;
43
44#ifdef CONFIG_SYSCTL
45extern int sysctl_legacy_va_layout;
46#else
47#define sysctl_legacy_va_layout 0
48#endif
49
50#include <asm/page.h>
51#include <asm/pgtable.h>
52#include <asm/processor.h>
1da177e4 53
79442ed1
TC
54#ifndef __pa_symbol
55#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
56#endif
57
c9b1d098 58extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 59extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 60
49f0ce5f
JM
61extern int sysctl_overcommit_memory;
62extern int sysctl_overcommit_ratio;
63extern unsigned long sysctl_overcommit_kbytes;
64
65extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
66 size_t *, loff_t *);
67extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
68 size_t *, loff_t *);
69
1da177e4
LT
70#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
71
27ac792c
AR
72/* to align the pointer to the (next) page boundary */
73#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
74
0fa73b86
AM
75/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
76#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
77
1da177e4
LT
78/*
79 * Linux kernel virtual memory manager primitives.
80 * The idea being to have a "virtual" mm in the same way
81 * we have a virtual fs - giving a cleaner interface to the
82 * mm details, and allowing different kinds of memory mappings
83 * (from shared memory to executable loading to arbitrary
84 * mmap() functions).
85 */
86
c43692e8
CL
87extern struct kmem_cache *vm_area_cachep;
88
1da177e4 89#ifndef CONFIG_MMU
8feae131
DH
90extern struct rb_root nommu_region_tree;
91extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
92
93extern unsigned int kobjsize(const void *objp);
94#endif
95
96/*
605d9288 97 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 98 */
cc2383ec
KK
99#define VM_NONE 0x00000000
100
1da177e4
LT
101#define VM_READ 0x00000001 /* currently active flags */
102#define VM_WRITE 0x00000002
103#define VM_EXEC 0x00000004
104#define VM_SHARED 0x00000008
105
7e2cff42 106/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
107#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
108#define VM_MAYWRITE 0x00000020
109#define VM_MAYEXEC 0x00000040
110#define VM_MAYSHARE 0x00000080
111
112#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 113#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
114#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
115
1da177e4
LT
116#define VM_LOCKED 0x00002000
117#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
118
119 /* Used by sys_madvise() */
120#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
121#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
122
123#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
124#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 125#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 126#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
127#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
128#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
cc2383ec 129#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
0103bd16 130#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 131
d9104d1c
CG
132#ifdef CONFIG_MEM_SOFT_DIRTY
133# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
134#else
135# define VM_SOFTDIRTY 0
136#endif
137
b379d790 138#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
139#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
140#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 141#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 142
cc2383ec
KK
143#if defined(CONFIG_X86)
144# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
145#elif defined(CONFIG_PPC)
146# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
147#elif defined(CONFIG_PARISC)
148# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
149#elif defined(CONFIG_METAG)
150# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
151#elif defined(CONFIG_IA64)
152# define VM_GROWSUP VM_ARCH_1
153#elif !defined(CONFIG_MMU)
154# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
155#endif
156
157#ifndef VM_GROWSUP
158# define VM_GROWSUP VM_NONE
159#endif
160
a8bef8ff
MG
161/* Bits set in the VMA until the stack is in its final location */
162#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
163
1da177e4
LT
164#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
165#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
166#endif
167
168#ifdef CONFIG_STACK_GROWSUP
169#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
170#else
171#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
172#endif
173
b291f000 174/*
78f11a25
AA
175 * Special vmas that are non-mergable, non-mlock()able.
176 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 177 */
314e51b9 178#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
b291f000 179
1da177e4
LT
180/*
181 * mapping from the currently active vm_flags protection bits (the
182 * low four bits) to a page protection mask..
183 */
184extern pgprot_t protection_map[16];
185
d0217ac0
NP
186#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
187#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 188#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 189#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 190#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 191#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
45cac65b 192#define FAULT_FLAG_TRIED 0x40 /* second try */
759496ba 193#define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
d0217ac0 194
54cb8821 195/*
d0217ac0 196 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
197 * ->fault function. The vma's ->fault is responsible for returning a bitmask
198 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 199 *
d0217ac0 200 * pgoff should be used in favour of virtual_address, if possible. If pgoff
0b173bc4 201 * is used, one may implement ->remap_pages to get nonlinear mapping support.
54cb8821 202 */
d0217ac0
NP
203struct vm_fault {
204 unsigned int flags; /* FAULT_FLAG_xxx flags */
205 pgoff_t pgoff; /* Logical page offset based on vma */
206 void __user *virtual_address; /* Faulting virtual address */
207
208 struct page *page; /* ->fault handlers should return a
83c54070 209 * page here, unless VM_FAULT_NOPAGE
d0217ac0 210 * is set (which is also implied by
83c54070 211 * VM_FAULT_ERROR).
d0217ac0 212 */
54cb8821 213};
1da177e4
LT
214
215/*
216 * These are the virtual MM functions - opening of an area, closing and
217 * unmapping it (needed to keep files on disk up-to-date etc), pointer
218 * to the functions called when a no-page or a wp-page exception occurs.
219 */
220struct vm_operations_struct {
221 void (*open)(struct vm_area_struct * area);
222 void (*close)(struct vm_area_struct * area);
d0217ac0 223 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
224
225 /* notification that a previously read-only page is about to become
226 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 227 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
228
229 /* called by access_process_vm when get_user_pages() fails, typically
230 * for use by special VMAs that can switch between memory and hardware
231 */
232 int (*access)(struct vm_area_struct *vma, unsigned long addr,
233 void *buf, int len, int write);
1da177e4 234#ifdef CONFIG_NUMA
a6020ed7
LS
235 /*
236 * set_policy() op must add a reference to any non-NULL @new mempolicy
237 * to hold the policy upon return. Caller should pass NULL @new to
238 * remove a policy and fall back to surrounding context--i.e. do not
239 * install a MPOL_DEFAULT policy, nor the task or system default
240 * mempolicy.
241 */
1da177e4 242 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
243
244 /*
245 * get_policy() op must add reference [mpol_get()] to any policy at
246 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
247 * in mm/mempolicy.c will do this automatically.
248 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
249 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
250 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
251 * must return NULL--i.e., do not "fallback" to task or system default
252 * policy.
253 */
1da177e4
LT
254 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
255 unsigned long addr);
7b2259b3
CL
256 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
257 const nodemask_t *to, unsigned long flags);
1da177e4 258#endif
0b173bc4
KK
259 /* called by sys_remap_file_pages() to populate non-linear mapping */
260 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
261 unsigned long size, pgoff_t pgoff);
1da177e4
LT
262};
263
264struct mmu_gather;
265struct inode;
266
349aef0b
AM
267#define page_private(page) ((page)->private)
268#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 269
b12c4ad1
MK
270/* It's valid only if the page is free path or free_list */
271static inline void set_freepage_migratetype(struct page *page, int migratetype)
272{
95e34412 273 page->index = migratetype;
b12c4ad1
MK
274}
275
276/* It's valid only if the page is free path or free_list */
277static inline int get_freepage_migratetype(struct page *page)
278{
95e34412 279 return page->index;
b12c4ad1
MK
280}
281
1da177e4
LT
282/*
283 * FIXME: take this include out, include page-flags.h in
284 * files which need it (119 of them)
285 */
286#include <linux/page-flags.h>
71e3aac0 287#include <linux/huge_mm.h>
1da177e4
LT
288
289/*
290 * Methods to modify the page usage count.
291 *
292 * What counts for a page usage:
293 * - cache mapping (page->mapping)
294 * - private data (page->private)
295 * - page mapped in a task's page tables, each mapping
296 * is counted separately
297 *
298 * Also, many kernel routines increase the page count before a critical
299 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
300 */
301
302/*
da6052f7 303 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 304 */
7c8ee9a8
NP
305static inline int put_page_testzero(struct page *page)
306{
309381fe 307 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 308 return atomic_dec_and_test(&page->_count);
7c8ee9a8 309}
1da177e4
LT
310
311/*
7c8ee9a8
NP
312 * Try to grab a ref unless the page has a refcount of zero, return false if
313 * that is the case.
8e0861fa
AK
314 * This can be called when MMU is off so it must not access
315 * any of the virtual mappings.
1da177e4 316 */
7c8ee9a8
NP
317static inline int get_page_unless_zero(struct page *page)
318{
8dc04efb 319 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 320}
1da177e4 321
8e0861fa
AK
322/*
323 * Try to drop a ref unless the page has a refcount of one, return false if
324 * that is the case.
325 * This is to make sure that the refcount won't become zero after this drop.
326 * This can be called when MMU is off so it must not access
327 * any of the virtual mappings.
328 */
329static inline int put_page_unless_one(struct page *page)
330{
331 return atomic_add_unless(&page->_count, -1, 1);
332}
333
53df8fdc
WF
334extern int page_is_ram(unsigned long pfn);
335
48667e7a 336/* Support for virtually mapped pages */
b3bdda02
CL
337struct page *vmalloc_to_page(const void *addr);
338unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 339
0738c4bb
PM
340/*
341 * Determine if an address is within the vmalloc range
342 *
343 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
344 * is no special casing required.
345 */
9e2779fa
CL
346static inline int is_vmalloc_addr(const void *x)
347{
0738c4bb 348#ifdef CONFIG_MMU
9e2779fa
CL
349 unsigned long addr = (unsigned long)x;
350
351 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
352#else
353 return 0;
8ca3ed87 354#endif
0738c4bb 355}
81ac3ad9
KH
356#ifdef CONFIG_MMU
357extern int is_vmalloc_or_module_addr(const void *x);
358#else
934831d0 359static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
360{
361 return 0;
362}
363#endif
9e2779fa 364
e9da73d6
AA
365static inline void compound_lock(struct page *page)
366{
367#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 368 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
369 bit_spin_lock(PG_compound_lock, &page->flags);
370#endif
371}
372
373static inline void compound_unlock(struct page *page)
374{
375#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 376 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
377 bit_spin_unlock(PG_compound_lock, &page->flags);
378#endif
379}
380
381static inline unsigned long compound_lock_irqsave(struct page *page)
382{
383 unsigned long uninitialized_var(flags);
384#ifdef CONFIG_TRANSPARENT_HUGEPAGE
385 local_irq_save(flags);
386 compound_lock(page);
387#endif
388 return flags;
389}
390
391static inline void compound_unlock_irqrestore(struct page *page,
392 unsigned long flags)
393{
394#ifdef CONFIG_TRANSPARENT_HUGEPAGE
395 compound_unlock(page);
396 local_irq_restore(flags);
397#endif
398}
399
d85f3385
CL
400static inline struct page *compound_head(struct page *page)
401{
6d777953 402 if (unlikely(PageTail(page)))
d85f3385
CL
403 return page->first_page;
404 return page;
405}
406
70b50f94
AA
407/*
408 * The atomic page->_mapcount, starts from -1: so that transitions
409 * both from it and to it can be tracked, using atomic_inc_and_test
410 * and atomic_add_negative(-1).
411 */
22b751c3 412static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
413{
414 atomic_set(&(page)->_mapcount, -1);
415}
416
417static inline int page_mapcount(struct page *page)
418{
419 return atomic_read(&(page)->_mapcount) + 1;
420}
421
4c21e2f2 422static inline int page_count(struct page *page)
1da177e4 423{
d85f3385 424 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
425}
426
44518d2b
AA
427#ifdef CONFIG_HUGETLB_PAGE
428extern int PageHeadHuge(struct page *page_head);
429#else /* CONFIG_HUGETLB_PAGE */
430static inline int PageHeadHuge(struct page *page_head)
431{
432 return 0;
433}
434#endif /* CONFIG_HUGETLB_PAGE */
435
436static inline bool __compound_tail_refcounted(struct page *page)
437{
438 return !PageSlab(page) && !PageHeadHuge(page);
439}
440
441/*
442 * This takes a head page as parameter and tells if the
443 * tail page reference counting can be skipped.
444 *
445 * For this to be safe, PageSlab and PageHeadHuge must remain true on
446 * any given page where they return true here, until all tail pins
447 * have been released.
448 */
449static inline bool compound_tail_refcounted(struct page *page)
450{
309381fe 451 VM_BUG_ON_PAGE(!PageHead(page), page);
44518d2b
AA
452 return __compound_tail_refcounted(page);
453}
454
b35a35b5
AA
455static inline void get_huge_page_tail(struct page *page)
456{
457 /*
5eaf1a9e 458 * __split_huge_page_refcount() cannot run from under us.
b35a35b5 459 */
309381fe
SL
460 VM_BUG_ON_PAGE(!PageTail(page), page);
461 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
462 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
5eaf1a9e 463 if (compound_tail_refcounted(page->first_page))
44518d2b 464 atomic_inc(&page->_mapcount);
b35a35b5
AA
465}
466
70b50f94
AA
467extern bool __get_page_tail(struct page *page);
468
1da177e4
LT
469static inline void get_page(struct page *page)
470{
70b50f94
AA
471 if (unlikely(PageTail(page)))
472 if (likely(__get_page_tail(page)))
473 return;
91807063
AA
474 /*
475 * Getting a normal page or the head of a compound page
70b50f94 476 * requires to already have an elevated page->_count.
91807063 477 */
309381fe 478 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
1da177e4
LT
479 atomic_inc(&page->_count);
480}
481
b49af68f
CL
482static inline struct page *virt_to_head_page(const void *x)
483{
484 struct page *page = virt_to_page(x);
485 return compound_head(page);
486}
487
7835e98b
NP
488/*
489 * Setup the page count before being freed into the page allocator for
490 * the first time (boot or memory hotplug)
491 */
492static inline void init_page_count(struct page *page)
493{
494 atomic_set(&page->_count, 1);
495}
496
5f24ce5f
AA
497/*
498 * PageBuddy() indicate that the page is free and in the buddy system
499 * (see mm/page_alloc.c).
ef2b4b95
AA
500 *
501 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
502 * -2 so that an underflow of the page_mapcount() won't be mistaken
503 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
504 * efficiently by most CPU architectures.
5f24ce5f 505 */
ef2b4b95
AA
506#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
507
5f24ce5f
AA
508static inline int PageBuddy(struct page *page)
509{
ef2b4b95 510 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
511}
512
513static inline void __SetPageBuddy(struct page *page)
514{
309381fe 515 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
ef2b4b95 516 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
517}
518
519static inline void __ClearPageBuddy(struct page *page)
520{
309381fe 521 VM_BUG_ON_PAGE(!PageBuddy(page), page);
5f24ce5f
AA
522 atomic_set(&page->_mapcount, -1);
523}
524
1da177e4 525void put_page(struct page *page);
1d7ea732 526void put_pages_list(struct list_head *pages);
1da177e4 527
8dfcc9ba 528void split_page(struct page *page, unsigned int order);
748446bb 529int split_free_page(struct page *page);
8dfcc9ba 530
33f2ef89
AW
531/*
532 * Compound pages have a destructor function. Provide a
533 * prototype for that function and accessor functions.
534 * These are _only_ valid on the head of a PG_compound page.
535 */
536typedef void compound_page_dtor(struct page *);
537
538static inline void set_compound_page_dtor(struct page *page,
539 compound_page_dtor *dtor)
540{
541 page[1].lru.next = (void *)dtor;
542}
543
544static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
545{
546 return (compound_page_dtor *)page[1].lru.next;
547}
548
d85f3385
CL
549static inline int compound_order(struct page *page)
550{
6d777953 551 if (!PageHead(page))
d85f3385
CL
552 return 0;
553 return (unsigned long)page[1].lru.prev;
554}
555
556static inline void set_compound_order(struct page *page, unsigned long order)
557{
558 page[1].lru.prev = (void *)order;
559}
560
3dece370 561#ifdef CONFIG_MMU
14fd403f
AA
562/*
563 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
564 * servicing faults for write access. In the normal case, do always want
565 * pte_mkwrite. But get_user_pages can cause write faults for mappings
566 * that do not have writing enabled, when used by access_process_vm.
567 */
568static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
569{
570 if (likely(vma->vm_flags & VM_WRITE))
571 pte = pte_mkwrite(pte);
572 return pte;
573}
3dece370 574#endif
14fd403f 575
1da177e4
LT
576/*
577 * Multiple processes may "see" the same page. E.g. for untouched
578 * mappings of /dev/null, all processes see the same page full of
579 * zeroes, and text pages of executables and shared libraries have
580 * only one copy in memory, at most, normally.
581 *
582 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
583 * page_count() == 0 means the page is free. page->lru is then used for
584 * freelist management in the buddy allocator.
da6052f7 585 * page_count() > 0 means the page has been allocated.
1da177e4 586 *
da6052f7
NP
587 * Pages are allocated by the slab allocator in order to provide memory
588 * to kmalloc and kmem_cache_alloc. In this case, the management of the
589 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
590 * unless a particular usage is carefully commented. (the responsibility of
591 * freeing the kmalloc memory is the caller's, of course).
1da177e4 592 *
da6052f7
NP
593 * A page may be used by anyone else who does a __get_free_page().
594 * In this case, page_count still tracks the references, and should only
595 * be used through the normal accessor functions. The top bits of page->flags
596 * and page->virtual store page management information, but all other fields
597 * are unused and could be used privately, carefully. The management of this
598 * page is the responsibility of the one who allocated it, and those who have
599 * subsequently been given references to it.
600 *
601 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
602 * managed by the Linux memory manager: I/O, buffers, swapping etc.
603 * The following discussion applies only to them.
604 *
da6052f7
NP
605 * A pagecache page contains an opaque `private' member, which belongs to the
606 * page's address_space. Usually, this is the address of a circular list of
607 * the page's disk buffers. PG_private must be set to tell the VM to call
608 * into the filesystem to release these pages.
1da177e4 609 *
da6052f7
NP
610 * A page may belong to an inode's memory mapping. In this case, page->mapping
611 * is the pointer to the inode, and page->index is the file offset of the page,
612 * in units of PAGE_CACHE_SIZE.
1da177e4 613 *
da6052f7
NP
614 * If pagecache pages are not associated with an inode, they are said to be
615 * anonymous pages. These may become associated with the swapcache, and in that
616 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 617 *
da6052f7
NP
618 * In either case (swapcache or inode backed), the pagecache itself holds one
619 * reference to the page. Setting PG_private should also increment the
620 * refcount. The each user mapping also has a reference to the page.
1da177e4 621 *
da6052f7
NP
622 * The pagecache pages are stored in a per-mapping radix tree, which is
623 * rooted at mapping->page_tree, and indexed by offset.
624 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
625 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 626 *
da6052f7 627 * All pagecache pages may be subject to I/O:
1da177e4
LT
628 * - inode pages may need to be read from disk,
629 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
630 * to be written back to the inode on disk,
631 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
632 * modified may need to be swapped out to swap space and (later) to be read
633 * back into memory.
1da177e4
LT
634 */
635
636/*
637 * The zone field is never updated after free_area_init_core()
638 * sets it, so none of the operations on it need to be atomic.
1da177e4 639 */
348f8b6c 640
90572890 641/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 642#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
643#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
644#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 645#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 646
348f8b6c 647/*
25985edc 648 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
649 * sections we define the shift as 0; that plus a 0 mask ensures
650 * the compiler will optimise away reference to them.
651 */
d41dee36
AW
652#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
653#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
654#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 655#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 656
bce54bbf
WD
657/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
658#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 659#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
660#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
661 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 662#else
89689ae7 663#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
664#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
665 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
666#endif
667
bd8029b6 668#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 669
9223b419
CL
670#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
671#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
672#endif
673
d41dee36
AW
674#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
675#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
676#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
90572890 677#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_WIDTH) - 1)
89689ae7 678#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 679
33dd4e0e 680static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 681{
348f8b6c 682 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 683}
1da177e4 684
9127ab4f
CS
685#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
686#define SECTION_IN_PAGE_FLAGS
687#endif
688
89689ae7 689/*
7a8010cd
VB
690 * The identification function is mainly used by the buddy allocator for
691 * determining if two pages could be buddies. We are not really identifying
692 * the zone since we could be using the section number id if we do not have
693 * node id available in page flags.
694 * We only guarantee that it will return the same value for two combinable
695 * pages in a zone.
89689ae7 696 */
cb2b95e1
AW
697static inline int page_zone_id(struct page *page)
698{
89689ae7 699 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
700}
701
25ba77c1 702static inline int zone_to_nid(struct zone *zone)
89fa3024 703{
d5f541ed
CL
704#ifdef CONFIG_NUMA
705 return zone->node;
706#else
707 return 0;
708#endif
89fa3024
CL
709}
710
89689ae7 711#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 712extern int page_to_nid(const struct page *page);
89689ae7 713#else
33dd4e0e 714static inline int page_to_nid(const struct page *page)
d41dee36 715{
89689ae7 716 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 717}
89689ae7
CL
718#endif
719
57e0a030 720#ifdef CONFIG_NUMA_BALANCING
90572890 721static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 722{
90572890 723 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
724}
725
90572890 726static inline int cpupid_to_pid(int cpupid)
57e0a030 727{
90572890 728 return cpupid & LAST__PID_MASK;
57e0a030 729}
b795854b 730
90572890 731static inline int cpupid_to_cpu(int cpupid)
b795854b 732{
90572890 733 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
734}
735
90572890 736static inline int cpupid_to_nid(int cpupid)
b795854b 737{
90572890 738 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
739}
740
90572890 741static inline bool cpupid_pid_unset(int cpupid)
57e0a030 742{
90572890 743 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
744}
745
90572890 746static inline bool cpupid_cpu_unset(int cpupid)
b795854b 747{
90572890 748 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
749}
750
8c8a743c
PZ
751static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
752{
753 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
754}
755
756#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
757#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
758static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 759{
90572890 760 return xchg(&page->_last_cpupid, cpupid);
b795854b 761}
90572890
PZ
762
763static inline int page_cpupid_last(struct page *page)
764{
765 return page->_last_cpupid;
766}
767static inline void page_cpupid_reset_last(struct page *page)
b795854b 768{
90572890 769 page->_last_cpupid = -1;
57e0a030
MG
770}
771#else
90572890 772static inline int page_cpupid_last(struct page *page)
75980e97 773{
90572890 774 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
775}
776
90572890 777extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 778
90572890 779static inline void page_cpupid_reset_last(struct page *page)
75980e97 780{
90572890 781 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 782
90572890
PZ
783 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
784 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 785}
90572890
PZ
786#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
787#else /* !CONFIG_NUMA_BALANCING */
788static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 789{
90572890 790 return page_to_nid(page); /* XXX */
57e0a030
MG
791}
792
90572890 793static inline int page_cpupid_last(struct page *page)
57e0a030 794{
90572890 795 return page_to_nid(page); /* XXX */
57e0a030
MG
796}
797
90572890 798static inline int cpupid_to_nid(int cpupid)
b795854b
MG
799{
800 return -1;
801}
802
90572890 803static inline int cpupid_to_pid(int cpupid)
b795854b
MG
804{
805 return -1;
806}
807
90572890 808static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
809{
810 return -1;
811}
812
90572890
PZ
813static inline int cpu_pid_to_cpupid(int nid, int pid)
814{
815 return -1;
816}
817
818static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
819{
820 return 1;
821}
822
90572890 823static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
824{
825}
8c8a743c
PZ
826
827static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
828{
829 return false;
830}
90572890 831#endif /* CONFIG_NUMA_BALANCING */
57e0a030 832
33dd4e0e 833static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
834{
835 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
836}
837
9127ab4f 838#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
839static inline void set_page_section(struct page *page, unsigned long section)
840{
841 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
842 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
843}
844
aa462abe 845static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
846{
847 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
848}
308c05e3 849#endif
d41dee36 850
2f1b6248 851static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
852{
853 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
854 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
855}
2f1b6248 856
348f8b6c
DH
857static inline void set_page_node(struct page *page, unsigned long node)
858{
859 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
860 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 861}
89689ae7 862
2f1b6248 863static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 864 unsigned long node, unsigned long pfn)
1da177e4 865{
348f8b6c
DH
866 set_page_zone(page, zone);
867 set_page_node(page, node);
9127ab4f 868#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 869 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 870#endif
1da177e4
LT
871}
872
f6ac2354
CL
873/*
874 * Some inline functions in vmstat.h depend on page_zone()
875 */
876#include <linux/vmstat.h>
877
33dd4e0e 878static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 879{
aa462abe 880 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
881}
882
883#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
884#define HASHED_PAGE_VIRTUAL
885#endif
886
887#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
888static inline void *page_address(const struct page *page)
889{
890 return page->virtual;
891}
892static inline void set_page_address(struct page *page, void *address)
893{
894 page->virtual = address;
895}
1da177e4
LT
896#define page_address_init() do { } while(0)
897#endif
898
899#if defined(HASHED_PAGE_VIRTUAL)
f9918794 900void *page_address(const struct page *page);
1da177e4
LT
901void set_page_address(struct page *page, void *virtual);
902void page_address_init(void);
903#endif
904
905#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
906#define page_address(page) lowmem_page_address(page)
907#define set_page_address(page, address) do { } while(0)
908#define page_address_init() do { } while(0)
909#endif
910
911/*
912 * On an anonymous page mapped into a user virtual memory area,
913 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
914 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
915 *
916 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
917 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
918 * and then page->mapping points, not to an anon_vma, but to a private
919 * structure which KSM associates with that merged page. See ksm.h.
920 *
921 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
922 *
923 * Please note that, confusingly, "page_mapping" refers to the inode
924 * address_space which maps the page from disk; whereas "page_mapped"
925 * refers to user virtual address space into which the page is mapped.
926 */
927#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
928#define PAGE_MAPPING_KSM 2
929#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4 930
9800339b 931extern struct address_space *page_mapping(struct page *page);
1da177e4 932
3ca7b3c5
HD
933/* Neutral page->mapping pointer to address_space or anon_vma or other */
934static inline void *page_rmapping(struct page *page)
935{
936 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
937}
938
f981c595
MG
939extern struct address_space *__page_file_mapping(struct page *);
940
941static inline
942struct address_space *page_file_mapping(struct page *page)
943{
944 if (unlikely(PageSwapCache(page)))
945 return __page_file_mapping(page);
946
947 return page->mapping;
948}
949
1da177e4
LT
950static inline int PageAnon(struct page *page)
951{
952 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
953}
954
955/*
956 * Return the pagecache index of the passed page. Regular pagecache pages
957 * use ->index whereas swapcache pages use ->private
958 */
959static inline pgoff_t page_index(struct page *page)
960{
961 if (unlikely(PageSwapCache(page)))
4c21e2f2 962 return page_private(page);
1da177e4
LT
963 return page->index;
964}
965
f981c595
MG
966extern pgoff_t __page_file_index(struct page *page);
967
968/*
969 * Return the file index of the page. Regular pagecache pages use ->index
970 * whereas swapcache pages use swp_offset(->private)
971 */
972static inline pgoff_t page_file_index(struct page *page)
973{
974 if (unlikely(PageSwapCache(page)))
975 return __page_file_index(page);
976
977 return page->index;
978}
979
1da177e4
LT
980/*
981 * Return true if this page is mapped into pagetables.
982 */
983static inline int page_mapped(struct page *page)
984{
985 return atomic_read(&(page)->_mapcount) >= 0;
986}
987
1da177e4
LT
988/*
989 * Different kinds of faults, as returned by handle_mm_fault().
990 * Used to decide whether a process gets delivered SIGBUS or
991 * just gets major/minor fault counters bumped up.
992 */
d0217ac0 993
83c54070 994#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 995
83c54070
NP
996#define VM_FAULT_OOM 0x0001
997#define VM_FAULT_SIGBUS 0x0002
998#define VM_FAULT_MAJOR 0x0004
999#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1000#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1001#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 1002
83c54070
NP
1003#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1004#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1005#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1006#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1007
aa50d3a7
AK
1008#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1009
1010#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
c0292554 1011 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
aa50d3a7
AK
1012
1013/* Encode hstate index for a hwpoisoned large page */
1014#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1015#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1016
1c0fe6e3
NP
1017/*
1018 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1019 */
1020extern void pagefault_out_of_memory(void);
1021
1da177e4
LT
1022#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1023
ddd588b5 1024/*
7bf02ea2 1025 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1026 * various contexts.
1027 */
4b59e6c4 1028#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1029
7bf02ea2
DR
1030extern void show_free_areas(unsigned int flags);
1031extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1032
1da177e4
LT
1033int shmem_zero_setup(struct vm_area_struct *);
1034
e8edc6e0 1035extern int can_do_mlock(void);
1da177e4
LT
1036extern int user_shm_lock(size_t, struct user_struct *);
1037extern void user_shm_unlock(size_t, struct user_struct *);
1038
1039/*
1040 * Parameter block passed down to zap_pte_range in exceptional cases.
1041 */
1042struct zap_details {
1043 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1044 struct address_space *check_mapping; /* Check page->mapping if set */
1045 pgoff_t first_index; /* Lowest page->index to unmap */
1046 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1047};
1048
7e675137
NP
1049struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1050 pte_t pte);
1051
c627f9cc
JS
1052int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1053 unsigned long size);
14f5ff5d 1054void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1055 unsigned long size, struct zap_details *);
4f74d2c8
LT
1056void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1057 unsigned long start, unsigned long end);
e6473092
MM
1058
1059/**
1060 * mm_walk - callbacks for walk_page_range
1061 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1062 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1063 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1064 * this handler is required to be able to handle
1065 * pmd_trans_huge() pmds. They may simply choose to
1066 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1067 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1068 * @pte_hole: if set, called for each hole at all levels
5dc37642 1069 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
1070 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1071 * is used.
e6473092
MM
1072 *
1073 * (see walk_page_range for more details)
1074 */
1075struct mm_walk {
0f157a5b
AM
1076 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1077 unsigned long next, struct mm_walk *walk);
1078 int (*pud_entry)(pud_t *pud, unsigned long addr,
1079 unsigned long next, struct mm_walk *walk);
1080 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1081 unsigned long next, struct mm_walk *walk);
1082 int (*pte_entry)(pte_t *pte, unsigned long addr,
1083 unsigned long next, struct mm_walk *walk);
1084 int (*pte_hole)(unsigned long addr, unsigned long next,
1085 struct mm_walk *walk);
1086 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1087 unsigned long addr, unsigned long next,
1088 struct mm_walk *walk);
2165009b
DH
1089 struct mm_struct *mm;
1090 void *private;
e6473092
MM
1091};
1092
2165009b
DH
1093int walk_page_range(unsigned long addr, unsigned long end,
1094 struct mm_walk *walk);
42b77728 1095void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1096 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1097int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1098 struct vm_area_struct *vma);
1da177e4
LT
1099void unmap_mapping_range(struct address_space *mapping,
1100 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1101int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1102 unsigned long *pfn);
d87fe660 1103int follow_phys(struct vm_area_struct *vma, unsigned long address,
1104 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1105int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1106 void *buf, int len, int write);
1da177e4
LT
1107
1108static inline void unmap_shared_mapping_range(struct address_space *mapping,
1109 loff_t const holebegin, loff_t const holelen)
1110{
1111 unmap_mapping_range(mapping, holebegin, holelen, 0);
1112}
1113
7caef267 1114extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1115extern void truncate_setsize(struct inode *inode, loff_t newsize);
623e3db9 1116void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1117int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1118int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1119int invalidate_inode_page(struct page *page);
1120
7ee1dd3f 1121#ifdef CONFIG_MMU
83c54070 1122extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1123 unsigned long address, unsigned int flags);
5c723ba5
PZ
1124extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1125 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1126#else
1127static inline int handle_mm_fault(struct mm_struct *mm,
1128 struct vm_area_struct *vma, unsigned long address,
d06063cc 1129 unsigned int flags)
7ee1dd3f
DH
1130{
1131 /* should never happen if there's no MMU */
1132 BUG();
1133 return VM_FAULT_SIGBUS;
1134}
5c723ba5
PZ
1135static inline int fixup_user_fault(struct task_struct *tsk,
1136 struct mm_struct *mm, unsigned long address,
1137 unsigned int fault_flags)
1138{
1139 /* should never happen if there's no MMU */
1140 BUG();
1141 return -EFAULT;
1142}
7ee1dd3f 1143#endif
f33ea7f4 1144
1da177e4 1145extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1146extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1147 void *buf, int len, int write);
1da177e4 1148
28a35716
ML
1149long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1150 unsigned long start, unsigned long nr_pages,
1151 unsigned int foll_flags, struct page **pages,
1152 struct vm_area_struct **vmas, int *nonblocking);
1153long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1154 unsigned long start, unsigned long nr_pages,
1155 int write, int force, struct page **pages,
1156 struct vm_area_struct **vmas);
d2bf6be8
NP
1157int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1158 struct page **pages);
18022c5d
MG
1159struct kvec;
1160int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1161 struct page **pages);
1162int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1163struct page *get_dump_page(unsigned long addr);
1da177e4 1164
cf9a2ae8 1165extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1166extern void do_invalidatepage(struct page *page, unsigned int offset,
1167 unsigned int length);
cf9a2ae8 1168
1da177e4 1169int __set_page_dirty_nobuffers(struct page *page);
76719325 1170int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1171int redirty_page_for_writepage(struct writeback_control *wbc,
1172 struct page *page);
e3a7cca1 1173void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 1174void account_page_writeback(struct page *page);
b3c97528 1175int set_page_dirty(struct page *page);
1da177e4
LT
1176int set_page_dirty_lock(struct page *page);
1177int clear_page_dirty_for_io(struct page *page);
1178
39aa3cb3 1179/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1180static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1181{
1182 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1183}
1184
a09a79f6
MP
1185static inline int stack_guard_page_start(struct vm_area_struct *vma,
1186 unsigned long addr)
1187{
1188 return (vma->vm_flags & VM_GROWSDOWN) &&
1189 (vma->vm_start == addr) &&
1190 !vma_growsdown(vma->vm_prev, addr);
1191}
1192
1193/* Is the vma a continuation of the stack vma below it? */
1194static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1195{
1196 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1197}
1198
1199static inline int stack_guard_page_end(struct vm_area_struct *vma,
1200 unsigned long addr)
1201{
1202 return (vma->vm_flags & VM_GROWSUP) &&
1203 (vma->vm_end == addr) &&
1204 !vma_growsup(vma->vm_next, addr);
1205}
1206
b7643757
SP
1207extern pid_t
1208vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1209
b6a2fea3
OW
1210extern unsigned long move_page_tables(struct vm_area_struct *vma,
1211 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1212 unsigned long new_addr, unsigned long len,
1213 bool need_rmap_locks);
7da4d641
PZ
1214extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1215 unsigned long end, pgprot_t newprot,
4b10e7d5 1216 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1217extern int mprotect_fixup(struct vm_area_struct *vma,
1218 struct vm_area_struct **pprev, unsigned long start,
1219 unsigned long end, unsigned long newflags);
1da177e4 1220
465a454f
PZ
1221/*
1222 * doesn't attempt to fault and will return short.
1223 */
1224int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1225 struct page **pages);
d559db08
KH
1226/*
1227 * per-process(per-mm_struct) statistics.
1228 */
d559db08
KH
1229static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1230{
69c97823
KK
1231 long val = atomic_long_read(&mm->rss_stat.count[member]);
1232
1233#ifdef SPLIT_RSS_COUNTING
1234 /*
1235 * counter is updated in asynchronous manner and may go to minus.
1236 * But it's never be expected number for users.
1237 */
1238 if (val < 0)
1239 val = 0;
172703b0 1240#endif
69c97823
KK
1241 return (unsigned long)val;
1242}
d559db08
KH
1243
1244static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1245{
172703b0 1246 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1247}
1248
1249static inline void inc_mm_counter(struct mm_struct *mm, int member)
1250{
172703b0 1251 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1252}
1253
1254static inline void dec_mm_counter(struct mm_struct *mm, int member)
1255{
172703b0 1256 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1257}
1258
d559db08
KH
1259static inline unsigned long get_mm_rss(struct mm_struct *mm)
1260{
1261 return get_mm_counter(mm, MM_FILEPAGES) +
1262 get_mm_counter(mm, MM_ANONPAGES);
1263}
1264
1265static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1266{
1267 return max(mm->hiwater_rss, get_mm_rss(mm));
1268}
1269
1270static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1271{
1272 return max(mm->hiwater_vm, mm->total_vm);
1273}
1274
1275static inline void update_hiwater_rss(struct mm_struct *mm)
1276{
1277 unsigned long _rss = get_mm_rss(mm);
1278
1279 if ((mm)->hiwater_rss < _rss)
1280 (mm)->hiwater_rss = _rss;
1281}
1282
1283static inline void update_hiwater_vm(struct mm_struct *mm)
1284{
1285 if (mm->hiwater_vm < mm->total_vm)
1286 mm->hiwater_vm = mm->total_vm;
1287}
1288
1289static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1290 struct mm_struct *mm)
1291{
1292 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1293
1294 if (*maxrss < hiwater_rss)
1295 *maxrss = hiwater_rss;
1296}
1297
53bddb4e 1298#if defined(SPLIT_RSS_COUNTING)
05af2e10 1299void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1300#else
05af2e10 1301static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1302{
1303}
1304#endif
465a454f 1305
4e950f6f 1306int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1307
25ca1d6c
NK
1308extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1309 spinlock_t **ptl);
1310static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1311 spinlock_t **ptl)
1312{
1313 pte_t *ptep;
1314 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1315 return ptep;
1316}
c9cfcddf 1317
5f22df00
NP
1318#ifdef __PAGETABLE_PUD_FOLDED
1319static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1320 unsigned long address)
1321{
1322 return 0;
1323}
1324#else
1bb3630e 1325int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1326#endif
1327
1328#ifdef __PAGETABLE_PMD_FOLDED
1329static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1330 unsigned long address)
1331{
1332 return 0;
1333}
1334#else
1bb3630e 1335int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1336#endif
1337
8ac1f832
AA
1338int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1339 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1340int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1341
1da177e4
LT
1342/*
1343 * The following ifdef needed to get the 4level-fixup.h header to work.
1344 * Remove it when 4level-fixup.h has been removed.
1345 */
1bb3630e 1346#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1347static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1348{
1bb3630e
HD
1349 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1350 NULL: pud_offset(pgd, address);
1da177e4
LT
1351}
1352
1353static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1354{
1bb3630e
HD
1355 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1356 NULL: pmd_offset(pud, address);
1da177e4 1357}
1bb3630e
HD
1358#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1359
57c1ffce 1360#if USE_SPLIT_PTE_PTLOCKS
597d795a 1361#if ALLOC_SPLIT_PTLOCKS
b35f1819 1362void __init ptlock_cache_init(void);
539edb58
PZ
1363extern bool ptlock_alloc(struct page *page);
1364extern void ptlock_free(struct page *page);
1365
1366static inline spinlock_t *ptlock_ptr(struct page *page)
1367{
1368 return page->ptl;
1369}
597d795a 1370#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1371static inline void ptlock_cache_init(void)
1372{
1373}
1374
49076ec2
KS
1375static inline bool ptlock_alloc(struct page *page)
1376{
49076ec2
KS
1377 return true;
1378}
539edb58 1379
49076ec2
KS
1380static inline void ptlock_free(struct page *page)
1381{
49076ec2
KS
1382}
1383
1384static inline spinlock_t *ptlock_ptr(struct page *page)
1385{
539edb58 1386 return &page->ptl;
49076ec2 1387}
597d795a 1388#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1389
1390static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1391{
1392 return ptlock_ptr(pmd_page(*pmd));
1393}
1394
1395static inline bool ptlock_init(struct page *page)
1396{
1397 /*
1398 * prep_new_page() initialize page->private (and therefore page->ptl)
1399 * with 0. Make sure nobody took it in use in between.
1400 *
1401 * It can happen if arch try to use slab for page table allocation:
1402 * slab code uses page->slab_cache and page->first_page (for tail
1403 * pages), which share storage with page->ptl.
1404 */
309381fe 1405 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1406 if (!ptlock_alloc(page))
1407 return false;
1408 spin_lock_init(ptlock_ptr(page));
1409 return true;
1410}
1411
1412/* Reset page->mapping so free_pages_check won't complain. */
1413static inline void pte_lock_deinit(struct page *page)
1414{
1415 page->mapping = NULL;
1416 ptlock_free(page);
1417}
1418
57c1ffce 1419#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1420/*
1421 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1422 */
49076ec2
KS
1423static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1424{
1425 return &mm->page_table_lock;
1426}
b35f1819 1427static inline void ptlock_cache_init(void) {}
49076ec2
KS
1428static inline bool ptlock_init(struct page *page) { return true; }
1429static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1430#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1431
b35f1819
KS
1432static inline void pgtable_init(void)
1433{
1434 ptlock_cache_init();
1435 pgtable_cache_init();
1436}
1437
390f44e2 1438static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1439{
2f569afd 1440 inc_zone_page_state(page, NR_PAGETABLE);
49076ec2 1441 return ptlock_init(page);
2f569afd
MS
1442}
1443
1444static inline void pgtable_page_dtor(struct page *page)
1445{
1446 pte_lock_deinit(page);
1447 dec_zone_page_state(page, NR_PAGETABLE);
1448}
1449
c74df32c
HD
1450#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1451({ \
4c21e2f2 1452 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1453 pte_t *__pte = pte_offset_map(pmd, address); \
1454 *(ptlp) = __ptl; \
1455 spin_lock(__ptl); \
1456 __pte; \
1457})
1458
1459#define pte_unmap_unlock(pte, ptl) do { \
1460 spin_unlock(ptl); \
1461 pte_unmap(pte); \
1462} while (0)
1463
8ac1f832
AA
1464#define pte_alloc_map(mm, vma, pmd, address) \
1465 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1466 pmd, address))? \
1467 NULL: pte_offset_map(pmd, address))
1bb3630e 1468
c74df32c 1469#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1470 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1471 pmd, address))? \
c74df32c
HD
1472 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1473
1bb3630e 1474#define pte_alloc_kernel(pmd, address) \
8ac1f832 1475 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1476 NULL: pte_offset_kernel(pmd, address))
1da177e4 1477
e009bb30
KS
1478#if USE_SPLIT_PMD_PTLOCKS
1479
1480static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1481{
49076ec2 1482 return ptlock_ptr(virt_to_page(pmd));
e009bb30
KS
1483}
1484
1485static inline bool pgtable_pmd_page_ctor(struct page *page)
1486{
e009bb30
KS
1487#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1488 page->pmd_huge_pte = NULL;
1489#endif
49076ec2 1490 return ptlock_init(page);
e009bb30
KS
1491}
1492
1493static inline void pgtable_pmd_page_dtor(struct page *page)
1494{
1495#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1496 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1497#endif
49076ec2 1498 ptlock_free(page);
e009bb30
KS
1499}
1500
1501#define pmd_huge_pte(mm, pmd) (virt_to_page(pmd)->pmd_huge_pte)
1502
1503#else
1504
9a86cb7b
KS
1505static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1506{
1507 return &mm->page_table_lock;
1508}
1509
e009bb30
KS
1510static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1511static inline void pgtable_pmd_page_dtor(struct page *page) {}
1512
c389a250 1513#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1514
e009bb30
KS
1515#endif
1516
9a86cb7b
KS
1517static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1518{
1519 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1520 spin_lock(ptl);
1521 return ptl;
1522}
1523
1da177e4 1524extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1525extern void free_area_init_node(int nid, unsigned long * zones_size,
1526 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1527extern void free_initmem(void);
1528
69afade7
JL
1529/*
1530 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1531 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1532 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1533 * Return pages freed into the buddy system.
1534 */
11199692 1535extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1536 int poison, char *s);
c3d5f5f0 1537
cfa11e08
JL
1538#ifdef CONFIG_HIGHMEM
1539/*
1540 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1541 * and totalram_pages.
1542 */
1543extern void free_highmem_page(struct page *page);
1544#endif
69afade7 1545
c3d5f5f0 1546extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1547extern void mem_init_print_info(const char *str);
69afade7
JL
1548
1549/* Free the reserved page into the buddy system, so it gets managed. */
1550static inline void __free_reserved_page(struct page *page)
1551{
1552 ClearPageReserved(page);
1553 init_page_count(page);
1554 __free_page(page);
1555}
1556
1557static inline void free_reserved_page(struct page *page)
1558{
1559 __free_reserved_page(page);
1560 adjust_managed_page_count(page, 1);
1561}
1562
1563static inline void mark_page_reserved(struct page *page)
1564{
1565 SetPageReserved(page);
1566 adjust_managed_page_count(page, -1);
1567}
1568
1569/*
1570 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1571 * The freed pages will be poisoned with pattern "poison" if it's within
1572 * range [0, UCHAR_MAX].
1573 * Return pages freed into the buddy system.
69afade7
JL
1574 */
1575static inline unsigned long free_initmem_default(int poison)
1576{
1577 extern char __init_begin[], __init_end[];
1578
11199692 1579 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1580 poison, "unused kernel");
1581}
1582
7ee3d4e8
JL
1583static inline unsigned long get_num_physpages(void)
1584{
1585 int nid;
1586 unsigned long phys_pages = 0;
1587
1588 for_each_online_node(nid)
1589 phys_pages += node_present_pages(nid);
1590
1591 return phys_pages;
1592}
1593
0ee332c1 1594#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1595/*
0ee332c1 1596 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1597 * zones, allocate the backing mem_map and account for memory holes in a more
1598 * architecture independent manner. This is a substitute for creating the
1599 * zone_sizes[] and zholes_size[] arrays and passing them to
1600 * free_area_init_node()
1601 *
1602 * An architecture is expected to register range of page frames backed by
0ee332c1 1603 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1604 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1605 * usage, an architecture is expected to do something like
1606 *
1607 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1608 * max_highmem_pfn};
1609 * for_each_valid_physical_page_range()
0ee332c1 1610 * memblock_add_node(base, size, nid)
c713216d
MG
1611 * free_area_init_nodes(max_zone_pfns);
1612 *
0ee332c1
TH
1613 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1614 * registered physical page range. Similarly
1615 * sparse_memory_present_with_active_regions() calls memory_present() for
1616 * each range when SPARSEMEM is enabled.
c713216d
MG
1617 *
1618 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1619 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1620 */
1621extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1622unsigned long node_map_pfn_alignment(void);
32996250
YL
1623unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1624 unsigned long end_pfn);
c713216d
MG
1625extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1626 unsigned long end_pfn);
1627extern void get_pfn_range_for_nid(unsigned int nid,
1628 unsigned long *start_pfn, unsigned long *end_pfn);
1629extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1630extern void free_bootmem_with_active_regions(int nid,
1631 unsigned long max_low_pfn);
1632extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1633
0ee332c1 1634#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1635
0ee332c1 1636#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1637 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1638static inline int __early_pfn_to_nid(unsigned long pfn)
1639{
1640 return 0;
1641}
1642#else
1643/* please see mm/page_alloc.c */
1644extern int __meminit early_pfn_to_nid(unsigned long pfn);
1645#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1646/* there is a per-arch backend function. */
1647extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1648#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1649#endif
1650
0e0b864e 1651extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1652extern void memmap_init_zone(unsigned long, int, unsigned long,
1653 unsigned long, enum memmap_context);
bc75d33f 1654extern void setup_per_zone_wmarks(void);
1b79acc9 1655extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1656extern void mem_init(void);
8feae131 1657extern void __init mmap_init(void);
b2b755b5 1658extern void show_mem(unsigned int flags);
1da177e4
LT
1659extern void si_meminfo(struct sysinfo * val);
1660extern void si_meminfo_node(struct sysinfo *val, int nid);
1661
3ee9a4f0
JP
1662extern __printf(3, 4)
1663void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1664
e7c8d5c9 1665extern void setup_per_cpu_pageset(void);
e7c8d5c9 1666
112067f0 1667extern void zone_pcp_update(struct zone *zone);
340175b7 1668extern void zone_pcp_reset(struct zone *zone);
112067f0 1669
75f7ad8e
PS
1670/* page_alloc.c */
1671extern int min_free_kbytes;
1672
8feae131 1673/* nommu.c */
33e5d769 1674extern atomic_long_t mmap_pages_allocated;
7e660872 1675extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1676
6b2dbba8 1677/* interval_tree.c */
6b2dbba8
ML
1678void vma_interval_tree_insert(struct vm_area_struct *node,
1679 struct rb_root *root);
9826a516
ML
1680void vma_interval_tree_insert_after(struct vm_area_struct *node,
1681 struct vm_area_struct *prev,
1682 struct rb_root *root);
6b2dbba8
ML
1683void vma_interval_tree_remove(struct vm_area_struct *node,
1684 struct rb_root *root);
1685struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1686 unsigned long start, unsigned long last);
1687struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1688 unsigned long start, unsigned long last);
1689
1690#define vma_interval_tree_foreach(vma, root, start, last) \
1691 for (vma = vma_interval_tree_iter_first(root, start, last); \
1692 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4
LT
1693
1694static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1695 struct list_head *list)
1696{
6b2dbba8 1697 list_add_tail(&vma->shared.nonlinear, list);
1da177e4
LT
1698}
1699
bf181b9f
ML
1700void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1701 struct rb_root *root);
1702void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1703 struct rb_root *root);
1704struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1705 struct rb_root *root, unsigned long start, unsigned long last);
1706struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1707 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1708#ifdef CONFIG_DEBUG_VM_RB
1709void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1710#endif
bf181b9f
ML
1711
1712#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1713 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1714 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1715
1da177e4 1716/* mmap.c */
34b4e4aa 1717extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1718extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1719 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1720extern struct vm_area_struct *vma_merge(struct mm_struct *,
1721 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1722 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1723 struct mempolicy *);
1724extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1725extern int split_vma(struct mm_struct *,
1726 struct vm_area_struct *, unsigned long addr, int new_below);
1727extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1728extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1729 struct rb_node **, struct rb_node *);
a8fb5618 1730extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1731extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1732 unsigned long addr, unsigned long len, pgoff_t pgoff,
1733 bool *need_rmap_locks);
1da177e4 1734extern void exit_mmap(struct mm_struct *);
925d1c40 1735
7906d00c
AA
1736extern int mm_take_all_locks(struct mm_struct *mm);
1737extern void mm_drop_all_locks(struct mm_struct *mm);
1738
38646013
JS
1739extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1740extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1741
119f657c 1742extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1743extern int install_special_mapping(struct mm_struct *mm,
1744 unsigned long addr, unsigned long len,
1745 unsigned long flags, struct page **pages);
1da177e4
LT
1746
1747extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1748
0165ab44 1749extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1750 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1751extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1752 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1753 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1754extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1755
bebeb3d6
ML
1756#ifdef CONFIG_MMU
1757extern int __mm_populate(unsigned long addr, unsigned long len,
1758 int ignore_errors);
1759static inline void mm_populate(unsigned long addr, unsigned long len)
1760{
1761 /* Ignore errors */
1762 (void) __mm_populate(addr, len, 1);
1763}
1764#else
1765static inline void mm_populate(unsigned long addr, unsigned long len) {}
1766#endif
1767
e4eb1ff6
LT
1768/* These take the mm semaphore themselves */
1769extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1770extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1771extern unsigned long vm_mmap(struct file *, unsigned long,
1772 unsigned long, unsigned long,
1773 unsigned long, unsigned long);
1da177e4 1774
db4fbfb9
ML
1775struct vm_unmapped_area_info {
1776#define VM_UNMAPPED_AREA_TOPDOWN 1
1777 unsigned long flags;
1778 unsigned long length;
1779 unsigned long low_limit;
1780 unsigned long high_limit;
1781 unsigned long align_mask;
1782 unsigned long align_offset;
1783};
1784
1785extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1786extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1787
1788/*
1789 * Search for an unmapped address range.
1790 *
1791 * We are looking for a range that:
1792 * - does not intersect with any VMA;
1793 * - is contained within the [low_limit, high_limit) interval;
1794 * - is at least the desired size.
1795 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1796 */
1797static inline unsigned long
1798vm_unmapped_area(struct vm_unmapped_area_info *info)
1799{
1800 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1801 return unmapped_area(info);
1802 else
1803 return unmapped_area_topdown(info);
1804}
1805
85821aab 1806/* truncate.c */
1da177e4 1807extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1808extern void truncate_inode_pages_range(struct address_space *,
1809 loff_t lstart, loff_t lend);
1da177e4
LT
1810
1811/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1812extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
4fcf1c62 1813extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1814
1815/* mm/page-writeback.c */
1816int write_one_page(struct page *page, int wait);
1cf6e7d8 1817void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1818
1819/* readahead.c */
1820#define VM_MAX_READAHEAD 128 /* kbytes */
1821#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1822
1da177e4 1823int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1824 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1825
1826void page_cache_sync_readahead(struct address_space *mapping,
1827 struct file_ra_state *ra,
1828 struct file *filp,
1829 pgoff_t offset,
1830 unsigned long size);
1831
1832void page_cache_async_readahead(struct address_space *mapping,
1833 struct file_ra_state *ra,
1834 struct file *filp,
1835 struct page *pg,
1836 pgoff_t offset,
1837 unsigned long size);
1838
1da177e4 1839unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1840unsigned long ra_submit(struct file_ra_state *ra,
1841 struct address_space *mapping,
1842 struct file *filp);
1da177e4 1843
d05f3169 1844/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1845extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1846
1847/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1848extern int expand_downwards(struct vm_area_struct *vma,
1849 unsigned long address);
8ca3eb08 1850#if VM_GROWSUP
46dea3d0 1851extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
LT
1852#else
1853 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1854#endif
1da177e4
LT
1855
1856/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1857extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1858extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1859 struct vm_area_struct **pprev);
1860
1861/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1862 NULL if none. Assume start_addr < end_addr. */
1863static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1864{
1865 struct vm_area_struct * vma = find_vma(mm,start_addr);
1866
1867 if (vma && end_addr <= vma->vm_start)
1868 vma = NULL;
1869 return vma;
1870}
1871
1872static inline unsigned long vma_pages(struct vm_area_struct *vma)
1873{
1874 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1875}
1876
640708a2
PE
1877/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1878static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1879 unsigned long vm_start, unsigned long vm_end)
1880{
1881 struct vm_area_struct *vma = find_vma(mm, vm_start);
1882
1883 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1884 vma = NULL;
1885
1886 return vma;
1887}
1888
bad849b3 1889#ifdef CONFIG_MMU
804af2cf 1890pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1891#else
1892static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1893{
1894 return __pgprot(0);
1895}
1896#endif
1897
5877231f 1898#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 1899unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
1900 unsigned long start, unsigned long end);
1901#endif
1902
deceb6cd 1903struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1904int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1905 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1906int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1907int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1908 unsigned long pfn);
423bad60
NP
1909int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1910 unsigned long pfn);
b4cbb197
LT
1911int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1912
deceb6cd 1913
240aadee
ML
1914struct page *follow_page_mask(struct vm_area_struct *vma,
1915 unsigned long address, unsigned int foll_flags,
1916 unsigned int *page_mask);
1917
1918static inline struct page *follow_page(struct vm_area_struct *vma,
1919 unsigned long address, unsigned int foll_flags)
1920{
1921 unsigned int unused_page_mask;
1922 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1923}
1924
deceb6cd
HD
1925#define FOLL_WRITE 0x01 /* check pte is writable */
1926#define FOLL_TOUCH 0x02 /* mark page accessed */
1927#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1928#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1929#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
1930#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1931 * and return without waiting upon it */
110d74a9 1932#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1933#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1934#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 1935#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 1936#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1da177e4 1937
2f569afd 1938typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1939 void *data);
1940extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1941 unsigned long size, pte_fn_t fn, void *data);
1942
1da177e4 1943#ifdef CONFIG_PROC_FS
ab50b8ed 1944void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1945#else
ab50b8ed 1946static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1947 unsigned long flags, struct file *file, long pages)
1948{
44de9d0c 1949 mm->total_vm += pages;
1da177e4
LT
1950}
1951#endif /* CONFIG_PROC_FS */
1952
12d6f21e 1953#ifdef CONFIG_DEBUG_PAGEALLOC
12d6f21e 1954extern void kernel_map_pages(struct page *page, int numpages, int enable);
8a235efa
RW
1955#ifdef CONFIG_HIBERNATION
1956extern bool kernel_page_present(struct page *page);
1957#endif /* CONFIG_HIBERNATION */
12d6f21e 1958#else
1da177e4 1959static inline void
9858db50 1960kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
1961#ifdef CONFIG_HIBERNATION
1962static inline bool kernel_page_present(struct page *page) { return true; }
1963#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1964#endif
1965
31db58b3 1966extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1da177e4 1967#ifdef __HAVE_ARCH_GATE_AREA
cae5d390 1968int in_gate_area_no_mm(unsigned long addr);
83b964bb 1969int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 1970#else
cae5d390
SW
1971int in_gate_area_no_mm(unsigned long addr);
1972#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1da177e4
LT
1973#endif /* __HAVE_ARCH_GATE_AREA */
1974
146732ce
JT
1975#ifdef CONFIG_SYSCTL
1976extern int sysctl_drop_caches;
8d65af78 1977int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1978 void __user *, size_t *, loff_t *);
146732ce
JT
1979#endif
1980
a09ed5e0 1981unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
1982 unsigned long nr_pages_scanned,
1983 unsigned long lru_pages);
9d0243bc 1984
7a9166e3
LY
1985#ifndef CONFIG_MMU
1986#define randomize_va_space 0
1987#else
a62eaf15 1988extern int randomize_va_space;
7a9166e3 1989#endif
a62eaf15 1990
045e72ac 1991const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1992void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1993
9bdac914
YL
1994void sparse_mem_maps_populate_node(struct page **map_map,
1995 unsigned long pnum_begin,
1996 unsigned long pnum_end,
1997 unsigned long map_count,
1998 int nodeid);
1999
98f3cfc1 2000struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2001pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2002pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2003pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2004pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2005void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 2006void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 2007void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2008int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2009 int node);
2010int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2011void vmemmap_populate_print_last(void);
0197518c 2012#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2013void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2014#endif
46723bfa
YI
2015void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2016 unsigned long size);
6a46079c 2017
82ba011b
AK
2018enum mf_flags {
2019 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2020 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2021 MF_MUST_KILL = 1 << 2,
cf870c70 2022 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2023};
cd42f4a3 2024extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2025extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2026extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
2027extern int sysctl_memory_failure_early_kill;
2028extern int sysctl_memory_failure_recovery;
facb6011 2029extern void shake_page(struct page *p, int access);
293c07e3 2030extern atomic_long_t num_poisoned_pages;
facb6011 2031extern int soft_offline_page(struct page *page, int flags);
6a46079c 2032
47ad8475
AA
2033#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2034extern void clear_huge_page(struct page *page,
2035 unsigned long addr,
2036 unsigned int pages_per_huge_page);
2037extern void copy_user_huge_page(struct page *dst, struct page *src,
2038 unsigned long addr, struct vm_area_struct *vma,
2039 unsigned int pages_per_huge_page);
2040#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2041
c0a32fc5
SG
2042#ifdef CONFIG_DEBUG_PAGEALLOC
2043extern unsigned int _debug_guardpage_minorder;
2044
2045static inline unsigned int debug_guardpage_minorder(void)
2046{
2047 return _debug_guardpage_minorder;
2048}
2049
2050static inline bool page_is_guard(struct page *page)
2051{
2052 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2053}
2054#else
2055static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2056static inline bool page_is_guard(struct page *page) { return false; }
2057#endif /* CONFIG_DEBUG_PAGEALLOC */
2058
f9872caf
CS
2059#if MAX_NUMNODES > 1
2060void __init setup_nr_node_ids(void);
2061#else
2062static inline void setup_nr_node_ids(void) {}
2063#endif
2064
1da177e4
LT
2065#endif /* __KERNEL__ */
2066#endif /* _LINUX_MM_H */