proc/maps: replace proc_maps_private->pid with "struct inode *inode"
[linux-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
1da177e4
LT
21
22struct mempolicy;
23struct anon_vma;
bf181b9f 24struct anon_vma_chain;
4e950f6f 25struct file_ra_state;
e8edc6e0 26struct user_struct;
4e950f6f 27struct writeback_control;
1da177e4 28
fccc9987 29#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 30extern unsigned long max_mapnr;
fccc9987
JL
31
32static inline void set_max_mapnr(unsigned long limit)
33{
34 max_mapnr = limit;
35}
36#else
37static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
38#endif
39
4481374c 40extern unsigned long totalram_pages;
1da177e4 41extern void * high_memory;
1da177e4
LT
42extern int page_cluster;
43
44#ifdef CONFIG_SYSCTL
45extern int sysctl_legacy_va_layout;
46#else
47#define sysctl_legacy_va_layout 0
48#endif
49
50#include <asm/page.h>
51#include <asm/pgtable.h>
52#include <asm/processor.h>
1da177e4 53
79442ed1
TC
54#ifndef __pa_symbol
55#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
56#endif
57
c9b1d098 58extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 59extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 60
49f0ce5f
JM
61extern int sysctl_overcommit_memory;
62extern int sysctl_overcommit_ratio;
63extern unsigned long sysctl_overcommit_kbytes;
64
65extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
66 size_t *, loff_t *);
67extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
68 size_t *, loff_t *);
69
1da177e4
LT
70#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
71
27ac792c
AR
72/* to align the pointer to the (next) page boundary */
73#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
74
0fa73b86
AM
75/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
76#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
77
1da177e4
LT
78/*
79 * Linux kernel virtual memory manager primitives.
80 * The idea being to have a "virtual" mm in the same way
81 * we have a virtual fs - giving a cleaner interface to the
82 * mm details, and allowing different kinds of memory mappings
83 * (from shared memory to executable loading to arbitrary
84 * mmap() functions).
85 */
86
c43692e8
CL
87extern struct kmem_cache *vm_area_cachep;
88
1da177e4 89#ifndef CONFIG_MMU
8feae131
DH
90extern struct rb_root nommu_region_tree;
91extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
92
93extern unsigned int kobjsize(const void *objp);
94#endif
95
96/*
605d9288 97 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 98 */
cc2383ec
KK
99#define VM_NONE 0x00000000
100
1da177e4
LT
101#define VM_READ 0x00000001 /* currently active flags */
102#define VM_WRITE 0x00000002
103#define VM_EXEC 0x00000004
104#define VM_SHARED 0x00000008
105
7e2cff42 106/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
107#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
108#define VM_MAYWRITE 0x00000020
109#define VM_MAYEXEC 0x00000040
110#define VM_MAYSHARE 0x00000080
111
112#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 113#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
114#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
115
1da177e4
LT
116#define VM_LOCKED 0x00002000
117#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
118
119 /* Used by sys_madvise() */
120#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
121#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
122
123#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
124#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 125#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 126#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
127#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
128#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
cc2383ec 129#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
0103bd16 130#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 131
d9104d1c
CG
132#ifdef CONFIG_MEM_SOFT_DIRTY
133# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
134#else
135# define VM_SOFTDIRTY 0
136#endif
137
b379d790 138#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
139#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
140#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 141#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 142
cc2383ec
KK
143#if defined(CONFIG_X86)
144# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
145#elif defined(CONFIG_PPC)
146# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
147#elif defined(CONFIG_PARISC)
148# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
149#elif defined(CONFIG_METAG)
150# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
151#elif defined(CONFIG_IA64)
152# define VM_GROWSUP VM_ARCH_1
153#elif !defined(CONFIG_MMU)
154# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
155#endif
156
157#ifndef VM_GROWSUP
158# define VM_GROWSUP VM_NONE
159#endif
160
a8bef8ff
MG
161/* Bits set in the VMA until the stack is in its final location */
162#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
163
1da177e4
LT
164#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
165#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
166#endif
167
168#ifdef CONFIG_STACK_GROWSUP
169#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
170#else
171#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
172#endif
173
b291f000 174/*
78f11a25
AA
175 * Special vmas that are non-mergable, non-mlock()able.
176 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 177 */
9050d7eb 178#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 179
a0715cc2
AT
180/* This mask defines which mm->def_flags a process can inherit its parent */
181#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
182
1da177e4
LT
183/*
184 * mapping from the currently active vm_flags protection bits (the
185 * low four bits) to a page protection mask..
186 */
187extern pgprot_t protection_map[16];
188
d0217ac0
NP
189#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
190#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 191#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 192#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 193#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 194#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
45cac65b 195#define FAULT_FLAG_TRIED 0x40 /* second try */
759496ba 196#define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
d0217ac0 197
54cb8821 198/*
d0217ac0 199 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
200 * ->fault function. The vma's ->fault is responsible for returning a bitmask
201 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 202 *
d0217ac0 203 * pgoff should be used in favour of virtual_address, if possible. If pgoff
0b173bc4 204 * is used, one may implement ->remap_pages to get nonlinear mapping support.
54cb8821 205 */
d0217ac0
NP
206struct vm_fault {
207 unsigned int flags; /* FAULT_FLAG_xxx flags */
208 pgoff_t pgoff; /* Logical page offset based on vma */
209 void __user *virtual_address; /* Faulting virtual address */
210
211 struct page *page; /* ->fault handlers should return a
83c54070 212 * page here, unless VM_FAULT_NOPAGE
d0217ac0 213 * is set (which is also implied by
83c54070 214 * VM_FAULT_ERROR).
d0217ac0 215 */
8c6e50b0
KS
216 /* for ->map_pages() only */
217 pgoff_t max_pgoff; /* map pages for offset from pgoff till
218 * max_pgoff inclusive */
219 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 220};
1da177e4
LT
221
222/*
223 * These are the virtual MM functions - opening of an area, closing and
224 * unmapping it (needed to keep files on disk up-to-date etc), pointer
225 * to the functions called when a no-page or a wp-page exception occurs.
226 */
227struct vm_operations_struct {
228 void (*open)(struct vm_area_struct * area);
229 void (*close)(struct vm_area_struct * area);
d0217ac0 230 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
8c6e50b0 231 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
232
233 /* notification that a previously read-only page is about to become
234 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 235 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
236
237 /* called by access_process_vm when get_user_pages() fails, typically
238 * for use by special VMAs that can switch between memory and hardware
239 */
240 int (*access)(struct vm_area_struct *vma, unsigned long addr,
241 void *buf, int len, int write);
78d683e8
AL
242
243 /* Called by the /proc/PID/maps code to ask the vma whether it
244 * has a special name. Returning non-NULL will also cause this
245 * vma to be dumped unconditionally. */
246 const char *(*name)(struct vm_area_struct *vma);
247
1da177e4 248#ifdef CONFIG_NUMA
a6020ed7
LS
249 /*
250 * set_policy() op must add a reference to any non-NULL @new mempolicy
251 * to hold the policy upon return. Caller should pass NULL @new to
252 * remove a policy and fall back to surrounding context--i.e. do not
253 * install a MPOL_DEFAULT policy, nor the task or system default
254 * mempolicy.
255 */
1da177e4 256 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
257
258 /*
259 * get_policy() op must add reference [mpol_get()] to any policy at
260 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
261 * in mm/mempolicy.c will do this automatically.
262 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
263 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
264 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
265 * must return NULL--i.e., do not "fallback" to task or system default
266 * policy.
267 */
1da177e4
LT
268 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
269 unsigned long addr);
7b2259b3
CL
270 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
271 const nodemask_t *to, unsigned long flags);
1da177e4 272#endif
0b173bc4
KK
273 /* called by sys_remap_file_pages() to populate non-linear mapping */
274 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
275 unsigned long size, pgoff_t pgoff);
1da177e4
LT
276};
277
278struct mmu_gather;
279struct inode;
280
349aef0b
AM
281#define page_private(page) ((page)->private)
282#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 283
b12c4ad1
MK
284/* It's valid only if the page is free path or free_list */
285static inline void set_freepage_migratetype(struct page *page, int migratetype)
286{
95e34412 287 page->index = migratetype;
b12c4ad1
MK
288}
289
290/* It's valid only if the page is free path or free_list */
291static inline int get_freepage_migratetype(struct page *page)
292{
95e34412 293 return page->index;
b12c4ad1
MK
294}
295
1da177e4
LT
296/*
297 * FIXME: take this include out, include page-flags.h in
298 * files which need it (119 of them)
299 */
300#include <linux/page-flags.h>
71e3aac0 301#include <linux/huge_mm.h>
1da177e4
LT
302
303/*
304 * Methods to modify the page usage count.
305 *
306 * What counts for a page usage:
307 * - cache mapping (page->mapping)
308 * - private data (page->private)
309 * - page mapped in a task's page tables, each mapping
310 * is counted separately
311 *
312 * Also, many kernel routines increase the page count before a critical
313 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
314 */
315
316/*
da6052f7 317 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 318 */
7c8ee9a8
NP
319static inline int put_page_testzero(struct page *page)
320{
309381fe 321 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 322 return atomic_dec_and_test(&page->_count);
7c8ee9a8 323}
1da177e4
LT
324
325/*
7c8ee9a8
NP
326 * Try to grab a ref unless the page has a refcount of zero, return false if
327 * that is the case.
8e0861fa
AK
328 * This can be called when MMU is off so it must not access
329 * any of the virtual mappings.
1da177e4 330 */
7c8ee9a8
NP
331static inline int get_page_unless_zero(struct page *page)
332{
8dc04efb 333 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 334}
1da177e4 335
8e0861fa
AK
336/*
337 * Try to drop a ref unless the page has a refcount of one, return false if
338 * that is the case.
339 * This is to make sure that the refcount won't become zero after this drop.
340 * This can be called when MMU is off so it must not access
341 * any of the virtual mappings.
342 */
343static inline int put_page_unless_one(struct page *page)
344{
345 return atomic_add_unless(&page->_count, -1, 1);
346}
347
53df8fdc
WF
348extern int page_is_ram(unsigned long pfn);
349
48667e7a 350/* Support for virtually mapped pages */
b3bdda02
CL
351struct page *vmalloc_to_page(const void *addr);
352unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 353
0738c4bb
PM
354/*
355 * Determine if an address is within the vmalloc range
356 *
357 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
358 * is no special casing required.
359 */
9e2779fa
CL
360static inline int is_vmalloc_addr(const void *x)
361{
0738c4bb 362#ifdef CONFIG_MMU
9e2779fa
CL
363 unsigned long addr = (unsigned long)x;
364
365 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
366#else
367 return 0;
8ca3ed87 368#endif
0738c4bb 369}
81ac3ad9
KH
370#ifdef CONFIG_MMU
371extern int is_vmalloc_or_module_addr(const void *x);
372#else
934831d0 373static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
374{
375 return 0;
376}
377#endif
9e2779fa 378
39f1f78d
AV
379extern void kvfree(const void *addr);
380
e9da73d6
AA
381static inline void compound_lock(struct page *page)
382{
383#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 384 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
385 bit_spin_lock(PG_compound_lock, &page->flags);
386#endif
387}
388
389static inline void compound_unlock(struct page *page)
390{
391#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 392 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
393 bit_spin_unlock(PG_compound_lock, &page->flags);
394#endif
395}
396
397static inline unsigned long compound_lock_irqsave(struct page *page)
398{
399 unsigned long uninitialized_var(flags);
400#ifdef CONFIG_TRANSPARENT_HUGEPAGE
401 local_irq_save(flags);
402 compound_lock(page);
403#endif
404 return flags;
405}
406
407static inline void compound_unlock_irqrestore(struct page *page,
408 unsigned long flags)
409{
410#ifdef CONFIG_TRANSPARENT_HUGEPAGE
411 compound_unlock(page);
412 local_irq_restore(flags);
413#endif
414}
415
d2ee40ea
JZ
416static inline struct page *compound_head_by_tail(struct page *tail)
417{
418 struct page *head = tail->first_page;
419
420 /*
421 * page->first_page may be a dangling pointer to an old
422 * compound page, so recheck that it is still a tail
423 * page before returning.
424 */
425 smp_rmb();
426 if (likely(PageTail(tail)))
427 return head;
428 return tail;
429}
430
d85f3385
CL
431static inline struct page *compound_head(struct page *page)
432{
d2ee40ea
JZ
433 if (unlikely(PageTail(page)))
434 return compound_head_by_tail(page);
d85f3385
CL
435 return page;
436}
437
70b50f94
AA
438/*
439 * The atomic page->_mapcount, starts from -1: so that transitions
440 * both from it and to it can be tracked, using atomic_inc_and_test
441 * and atomic_add_negative(-1).
442 */
22b751c3 443static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
444{
445 atomic_set(&(page)->_mapcount, -1);
446}
447
448static inline int page_mapcount(struct page *page)
449{
450 return atomic_read(&(page)->_mapcount) + 1;
451}
452
4c21e2f2 453static inline int page_count(struct page *page)
1da177e4 454{
d85f3385 455 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
456}
457
44518d2b
AA
458#ifdef CONFIG_HUGETLB_PAGE
459extern int PageHeadHuge(struct page *page_head);
460#else /* CONFIG_HUGETLB_PAGE */
461static inline int PageHeadHuge(struct page *page_head)
462{
463 return 0;
464}
465#endif /* CONFIG_HUGETLB_PAGE */
466
467static inline bool __compound_tail_refcounted(struct page *page)
468{
469 return !PageSlab(page) && !PageHeadHuge(page);
470}
471
472/*
473 * This takes a head page as parameter and tells if the
474 * tail page reference counting can be skipped.
475 *
476 * For this to be safe, PageSlab and PageHeadHuge must remain true on
477 * any given page where they return true here, until all tail pins
478 * have been released.
479 */
480static inline bool compound_tail_refcounted(struct page *page)
481{
309381fe 482 VM_BUG_ON_PAGE(!PageHead(page), page);
44518d2b
AA
483 return __compound_tail_refcounted(page);
484}
485
b35a35b5
AA
486static inline void get_huge_page_tail(struct page *page)
487{
488 /*
5eaf1a9e 489 * __split_huge_page_refcount() cannot run from under us.
b35a35b5 490 */
309381fe
SL
491 VM_BUG_ON_PAGE(!PageTail(page), page);
492 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
493 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
5eaf1a9e 494 if (compound_tail_refcounted(page->first_page))
44518d2b 495 atomic_inc(&page->_mapcount);
b35a35b5
AA
496}
497
70b50f94
AA
498extern bool __get_page_tail(struct page *page);
499
1da177e4
LT
500static inline void get_page(struct page *page)
501{
70b50f94
AA
502 if (unlikely(PageTail(page)))
503 if (likely(__get_page_tail(page)))
504 return;
91807063
AA
505 /*
506 * Getting a normal page or the head of a compound page
70b50f94 507 * requires to already have an elevated page->_count.
91807063 508 */
309381fe 509 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
1da177e4
LT
510 atomic_inc(&page->_count);
511}
512
b49af68f
CL
513static inline struct page *virt_to_head_page(const void *x)
514{
515 struct page *page = virt_to_page(x);
516 return compound_head(page);
517}
518
7835e98b
NP
519/*
520 * Setup the page count before being freed into the page allocator for
521 * the first time (boot or memory hotplug)
522 */
523static inline void init_page_count(struct page *page)
524{
525 atomic_set(&page->_count, 1);
526}
527
5f24ce5f
AA
528/*
529 * PageBuddy() indicate that the page is free and in the buddy system
530 * (see mm/page_alloc.c).
ef2b4b95
AA
531 *
532 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
533 * -2 so that an underflow of the page_mapcount() won't be mistaken
534 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
535 * efficiently by most CPU architectures.
5f24ce5f 536 */
ef2b4b95
AA
537#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
538
5f24ce5f
AA
539static inline int PageBuddy(struct page *page)
540{
ef2b4b95 541 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
542}
543
544static inline void __SetPageBuddy(struct page *page)
545{
309381fe 546 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
ef2b4b95 547 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
548}
549
550static inline void __ClearPageBuddy(struct page *page)
551{
309381fe 552 VM_BUG_ON_PAGE(!PageBuddy(page), page);
5f24ce5f
AA
553 atomic_set(&page->_mapcount, -1);
554}
555
1da177e4 556void put_page(struct page *page);
1d7ea732 557void put_pages_list(struct list_head *pages);
1da177e4 558
8dfcc9ba 559void split_page(struct page *page, unsigned int order);
748446bb 560int split_free_page(struct page *page);
8dfcc9ba 561
33f2ef89
AW
562/*
563 * Compound pages have a destructor function. Provide a
564 * prototype for that function and accessor functions.
565 * These are _only_ valid on the head of a PG_compound page.
566 */
567typedef void compound_page_dtor(struct page *);
568
569static inline void set_compound_page_dtor(struct page *page,
570 compound_page_dtor *dtor)
571{
572 page[1].lru.next = (void *)dtor;
573}
574
575static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
576{
577 return (compound_page_dtor *)page[1].lru.next;
578}
579
d85f3385
CL
580static inline int compound_order(struct page *page)
581{
6d777953 582 if (!PageHead(page))
d85f3385
CL
583 return 0;
584 return (unsigned long)page[1].lru.prev;
585}
586
587static inline void set_compound_order(struct page *page, unsigned long order)
588{
589 page[1].lru.prev = (void *)order;
590}
591
3dece370 592#ifdef CONFIG_MMU
14fd403f
AA
593/*
594 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
595 * servicing faults for write access. In the normal case, do always want
596 * pte_mkwrite. But get_user_pages can cause write faults for mappings
597 * that do not have writing enabled, when used by access_process_vm.
598 */
599static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
600{
601 if (likely(vma->vm_flags & VM_WRITE))
602 pte = pte_mkwrite(pte);
603 return pte;
604}
8c6e50b0
KS
605
606void do_set_pte(struct vm_area_struct *vma, unsigned long address,
607 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 608#endif
14fd403f 609
1da177e4
LT
610/*
611 * Multiple processes may "see" the same page. E.g. for untouched
612 * mappings of /dev/null, all processes see the same page full of
613 * zeroes, and text pages of executables and shared libraries have
614 * only one copy in memory, at most, normally.
615 *
616 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
617 * page_count() == 0 means the page is free. page->lru is then used for
618 * freelist management in the buddy allocator.
da6052f7 619 * page_count() > 0 means the page has been allocated.
1da177e4 620 *
da6052f7
NP
621 * Pages are allocated by the slab allocator in order to provide memory
622 * to kmalloc and kmem_cache_alloc. In this case, the management of the
623 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
624 * unless a particular usage is carefully commented. (the responsibility of
625 * freeing the kmalloc memory is the caller's, of course).
1da177e4 626 *
da6052f7
NP
627 * A page may be used by anyone else who does a __get_free_page().
628 * In this case, page_count still tracks the references, and should only
629 * be used through the normal accessor functions. The top bits of page->flags
630 * and page->virtual store page management information, but all other fields
631 * are unused and could be used privately, carefully. The management of this
632 * page is the responsibility of the one who allocated it, and those who have
633 * subsequently been given references to it.
634 *
635 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
636 * managed by the Linux memory manager: I/O, buffers, swapping etc.
637 * The following discussion applies only to them.
638 *
da6052f7
NP
639 * A pagecache page contains an opaque `private' member, which belongs to the
640 * page's address_space. Usually, this is the address of a circular list of
641 * the page's disk buffers. PG_private must be set to tell the VM to call
642 * into the filesystem to release these pages.
1da177e4 643 *
da6052f7
NP
644 * A page may belong to an inode's memory mapping. In this case, page->mapping
645 * is the pointer to the inode, and page->index is the file offset of the page,
646 * in units of PAGE_CACHE_SIZE.
1da177e4 647 *
da6052f7
NP
648 * If pagecache pages are not associated with an inode, they are said to be
649 * anonymous pages. These may become associated with the swapcache, and in that
650 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 651 *
da6052f7
NP
652 * In either case (swapcache or inode backed), the pagecache itself holds one
653 * reference to the page. Setting PG_private should also increment the
654 * refcount. The each user mapping also has a reference to the page.
1da177e4 655 *
da6052f7
NP
656 * The pagecache pages are stored in a per-mapping radix tree, which is
657 * rooted at mapping->page_tree, and indexed by offset.
658 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
659 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 660 *
da6052f7 661 * All pagecache pages may be subject to I/O:
1da177e4
LT
662 * - inode pages may need to be read from disk,
663 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
664 * to be written back to the inode on disk,
665 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
666 * modified may need to be swapped out to swap space and (later) to be read
667 * back into memory.
1da177e4
LT
668 */
669
670/*
671 * The zone field is never updated after free_area_init_core()
672 * sets it, so none of the operations on it need to be atomic.
1da177e4 673 */
348f8b6c 674
90572890 675/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 676#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
677#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
678#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 679#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 680
348f8b6c 681/*
25985edc 682 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
683 * sections we define the shift as 0; that plus a 0 mask ensures
684 * the compiler will optimise away reference to them.
685 */
d41dee36
AW
686#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
687#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
688#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 689#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 690
bce54bbf
WD
691/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
692#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 693#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
694#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
695 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 696#else
89689ae7 697#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
698#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
699 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
700#endif
701
bd8029b6 702#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 703
9223b419
CL
704#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
705#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
706#endif
707
d41dee36
AW
708#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
709#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
710#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 711#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 712#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 713
33dd4e0e 714static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 715{
348f8b6c 716 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 717}
1da177e4 718
9127ab4f
CS
719#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
720#define SECTION_IN_PAGE_FLAGS
721#endif
722
89689ae7 723/*
7a8010cd
VB
724 * The identification function is mainly used by the buddy allocator for
725 * determining if two pages could be buddies. We are not really identifying
726 * the zone since we could be using the section number id if we do not have
727 * node id available in page flags.
728 * We only guarantee that it will return the same value for two combinable
729 * pages in a zone.
89689ae7 730 */
cb2b95e1
AW
731static inline int page_zone_id(struct page *page)
732{
89689ae7 733 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
734}
735
25ba77c1 736static inline int zone_to_nid(struct zone *zone)
89fa3024 737{
d5f541ed
CL
738#ifdef CONFIG_NUMA
739 return zone->node;
740#else
741 return 0;
742#endif
89fa3024
CL
743}
744
89689ae7 745#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 746extern int page_to_nid(const struct page *page);
89689ae7 747#else
33dd4e0e 748static inline int page_to_nid(const struct page *page)
d41dee36 749{
89689ae7 750 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 751}
89689ae7
CL
752#endif
753
57e0a030 754#ifdef CONFIG_NUMA_BALANCING
90572890 755static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 756{
90572890 757 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
758}
759
90572890 760static inline int cpupid_to_pid(int cpupid)
57e0a030 761{
90572890 762 return cpupid & LAST__PID_MASK;
57e0a030 763}
b795854b 764
90572890 765static inline int cpupid_to_cpu(int cpupid)
b795854b 766{
90572890 767 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
768}
769
90572890 770static inline int cpupid_to_nid(int cpupid)
b795854b 771{
90572890 772 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
773}
774
90572890 775static inline bool cpupid_pid_unset(int cpupid)
57e0a030 776{
90572890 777 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
778}
779
90572890 780static inline bool cpupid_cpu_unset(int cpupid)
b795854b 781{
90572890 782 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
783}
784
8c8a743c
PZ
785static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
786{
787 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
788}
789
790#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
791#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
792static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 793{
1ae71d03 794 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 795}
90572890
PZ
796
797static inline int page_cpupid_last(struct page *page)
798{
799 return page->_last_cpupid;
800}
801static inline void page_cpupid_reset_last(struct page *page)
b795854b 802{
1ae71d03 803 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
804}
805#else
90572890 806static inline int page_cpupid_last(struct page *page)
75980e97 807{
90572890 808 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
809}
810
90572890 811extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 812
90572890 813static inline void page_cpupid_reset_last(struct page *page)
75980e97 814{
90572890 815 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 816
90572890
PZ
817 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
818 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 819}
90572890
PZ
820#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
821#else /* !CONFIG_NUMA_BALANCING */
822static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 823{
90572890 824 return page_to_nid(page); /* XXX */
57e0a030
MG
825}
826
90572890 827static inline int page_cpupid_last(struct page *page)
57e0a030 828{
90572890 829 return page_to_nid(page); /* XXX */
57e0a030
MG
830}
831
90572890 832static inline int cpupid_to_nid(int cpupid)
b795854b
MG
833{
834 return -1;
835}
836
90572890 837static inline int cpupid_to_pid(int cpupid)
b795854b
MG
838{
839 return -1;
840}
841
90572890 842static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
843{
844 return -1;
845}
846
90572890
PZ
847static inline int cpu_pid_to_cpupid(int nid, int pid)
848{
849 return -1;
850}
851
852static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
853{
854 return 1;
855}
856
90572890 857static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
858{
859}
8c8a743c
PZ
860
861static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
862{
863 return false;
864}
90572890 865#endif /* CONFIG_NUMA_BALANCING */
57e0a030 866
33dd4e0e 867static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
868{
869 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
870}
871
9127ab4f 872#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
873static inline void set_page_section(struct page *page, unsigned long section)
874{
875 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
876 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
877}
878
aa462abe 879static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
880{
881 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
882}
308c05e3 883#endif
d41dee36 884
2f1b6248 885static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
886{
887 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
888 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
889}
2f1b6248 890
348f8b6c
DH
891static inline void set_page_node(struct page *page, unsigned long node)
892{
893 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
894 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 895}
89689ae7 896
2f1b6248 897static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 898 unsigned long node, unsigned long pfn)
1da177e4 899{
348f8b6c
DH
900 set_page_zone(page, zone);
901 set_page_node(page, node);
9127ab4f 902#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 903 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 904#endif
1da177e4
LT
905}
906
f6ac2354
CL
907/*
908 * Some inline functions in vmstat.h depend on page_zone()
909 */
910#include <linux/vmstat.h>
911
33dd4e0e 912static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 913{
aa462abe 914 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
915}
916
917#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
918#define HASHED_PAGE_VIRTUAL
919#endif
920
921#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
922static inline void *page_address(const struct page *page)
923{
924 return page->virtual;
925}
926static inline void set_page_address(struct page *page, void *address)
927{
928 page->virtual = address;
929}
1da177e4
LT
930#define page_address_init() do { } while(0)
931#endif
932
933#if defined(HASHED_PAGE_VIRTUAL)
f9918794 934void *page_address(const struct page *page);
1da177e4
LT
935void set_page_address(struct page *page, void *virtual);
936void page_address_init(void);
937#endif
938
939#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
940#define page_address(page) lowmem_page_address(page)
941#define set_page_address(page, address) do { } while(0)
942#define page_address_init() do { } while(0)
943#endif
944
945/*
946 * On an anonymous page mapped into a user virtual memory area,
947 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
948 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
949 *
950 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
951 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
952 * and then page->mapping points, not to an anon_vma, but to a private
953 * structure which KSM associates with that merged page. See ksm.h.
954 *
955 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
956 *
957 * Please note that, confusingly, "page_mapping" refers to the inode
958 * address_space which maps the page from disk; whereas "page_mapped"
959 * refers to user virtual address space into which the page is mapped.
960 */
961#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
962#define PAGE_MAPPING_KSM 2
963#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4 964
9800339b 965extern struct address_space *page_mapping(struct page *page);
1da177e4 966
3ca7b3c5
HD
967/* Neutral page->mapping pointer to address_space or anon_vma or other */
968static inline void *page_rmapping(struct page *page)
969{
970 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
971}
972
f981c595
MG
973extern struct address_space *__page_file_mapping(struct page *);
974
975static inline
976struct address_space *page_file_mapping(struct page *page)
977{
978 if (unlikely(PageSwapCache(page)))
979 return __page_file_mapping(page);
980
981 return page->mapping;
982}
983
1da177e4
LT
984static inline int PageAnon(struct page *page)
985{
986 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
987}
988
989/*
990 * Return the pagecache index of the passed page. Regular pagecache pages
991 * use ->index whereas swapcache pages use ->private
992 */
993static inline pgoff_t page_index(struct page *page)
994{
995 if (unlikely(PageSwapCache(page)))
4c21e2f2 996 return page_private(page);
1da177e4
LT
997 return page->index;
998}
999
f981c595
MG
1000extern pgoff_t __page_file_index(struct page *page);
1001
1002/*
1003 * Return the file index of the page. Regular pagecache pages use ->index
1004 * whereas swapcache pages use swp_offset(->private)
1005 */
1006static inline pgoff_t page_file_index(struct page *page)
1007{
1008 if (unlikely(PageSwapCache(page)))
1009 return __page_file_index(page);
1010
1011 return page->index;
1012}
1013
1da177e4
LT
1014/*
1015 * Return true if this page is mapped into pagetables.
1016 */
1017static inline int page_mapped(struct page *page)
1018{
1019 return atomic_read(&(page)->_mapcount) >= 0;
1020}
1021
1da177e4
LT
1022/*
1023 * Different kinds of faults, as returned by handle_mm_fault().
1024 * Used to decide whether a process gets delivered SIGBUS or
1025 * just gets major/minor fault counters bumped up.
1026 */
d0217ac0 1027
83c54070 1028#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1029
83c54070
NP
1030#define VM_FAULT_OOM 0x0001
1031#define VM_FAULT_SIGBUS 0x0002
1032#define VM_FAULT_MAJOR 0x0004
1033#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1034#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1035#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 1036
83c54070
NP
1037#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1038#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1039#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1040#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1041
aa50d3a7
AK
1042#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1043
1044#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
c0292554 1045 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
aa50d3a7
AK
1046
1047/* Encode hstate index for a hwpoisoned large page */
1048#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1049#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1050
1c0fe6e3
NP
1051/*
1052 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1053 */
1054extern void pagefault_out_of_memory(void);
1055
1da177e4
LT
1056#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1057
ddd588b5 1058/*
7bf02ea2 1059 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1060 * various contexts.
1061 */
4b59e6c4 1062#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1063
7bf02ea2
DR
1064extern void show_free_areas(unsigned int flags);
1065extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1066
1da177e4 1067int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1068#ifdef CONFIG_SHMEM
1069bool shmem_mapping(struct address_space *mapping);
1070#else
1071static inline bool shmem_mapping(struct address_space *mapping)
1072{
1073 return false;
1074}
1075#endif
1da177e4 1076
e8edc6e0 1077extern int can_do_mlock(void);
1da177e4
LT
1078extern int user_shm_lock(size_t, struct user_struct *);
1079extern void user_shm_unlock(size_t, struct user_struct *);
1080
1081/*
1082 * Parameter block passed down to zap_pte_range in exceptional cases.
1083 */
1084struct zap_details {
1085 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1086 struct address_space *check_mapping; /* Check page->mapping if set */
1087 pgoff_t first_index; /* Lowest page->index to unmap */
1088 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1089};
1090
7e675137
NP
1091struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1092 pte_t pte);
1093
c627f9cc
JS
1094int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1095 unsigned long size);
14f5ff5d 1096void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1097 unsigned long size, struct zap_details *);
4f74d2c8
LT
1098void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1099 unsigned long start, unsigned long end);
e6473092
MM
1100
1101/**
1102 * mm_walk - callbacks for walk_page_range
1103 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1104 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1105 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1106 * this handler is required to be able to handle
1107 * pmd_trans_huge() pmds. They may simply choose to
1108 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1109 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1110 * @pte_hole: if set, called for each hole at all levels
5dc37642 1111 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
1112 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1113 * is used.
e6473092
MM
1114 *
1115 * (see walk_page_range for more details)
1116 */
1117struct mm_walk {
0f157a5b
AM
1118 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1119 unsigned long next, struct mm_walk *walk);
1120 int (*pud_entry)(pud_t *pud, unsigned long addr,
1121 unsigned long next, struct mm_walk *walk);
1122 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1123 unsigned long next, struct mm_walk *walk);
1124 int (*pte_entry)(pte_t *pte, unsigned long addr,
1125 unsigned long next, struct mm_walk *walk);
1126 int (*pte_hole)(unsigned long addr, unsigned long next,
1127 struct mm_walk *walk);
1128 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1129 unsigned long addr, unsigned long next,
1130 struct mm_walk *walk);
2165009b
DH
1131 struct mm_struct *mm;
1132 void *private;
e6473092
MM
1133};
1134
2165009b
DH
1135int walk_page_range(unsigned long addr, unsigned long end,
1136 struct mm_walk *walk);
42b77728 1137void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1138 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1139int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1140 struct vm_area_struct *vma);
1da177e4
LT
1141void unmap_mapping_range(struct address_space *mapping,
1142 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1143int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1144 unsigned long *pfn);
d87fe660 1145int follow_phys(struct vm_area_struct *vma, unsigned long address,
1146 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1147int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1148 void *buf, int len, int write);
1da177e4
LT
1149
1150static inline void unmap_shared_mapping_range(struct address_space *mapping,
1151 loff_t const holebegin, loff_t const holelen)
1152{
1153 unmap_mapping_range(mapping, holebegin, holelen, 0);
1154}
1155
7caef267 1156extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1157extern void truncate_setsize(struct inode *inode, loff_t newsize);
623e3db9 1158void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1159int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1160int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1161int invalidate_inode_page(struct page *page);
1162
7ee1dd3f 1163#ifdef CONFIG_MMU
83c54070 1164extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1165 unsigned long address, unsigned int flags);
5c723ba5
PZ
1166extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1167 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1168#else
1169static inline int handle_mm_fault(struct mm_struct *mm,
1170 struct vm_area_struct *vma, unsigned long address,
d06063cc 1171 unsigned int flags)
7ee1dd3f
DH
1172{
1173 /* should never happen if there's no MMU */
1174 BUG();
1175 return VM_FAULT_SIGBUS;
1176}
5c723ba5
PZ
1177static inline int fixup_user_fault(struct task_struct *tsk,
1178 struct mm_struct *mm, unsigned long address,
1179 unsigned int fault_flags)
1180{
1181 /* should never happen if there's no MMU */
1182 BUG();
1183 return -EFAULT;
1184}
7ee1dd3f 1185#endif
f33ea7f4 1186
1da177e4 1187extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1188extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1189 void *buf, int len, int write);
1da177e4 1190
28a35716
ML
1191long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1192 unsigned long start, unsigned long nr_pages,
1193 unsigned int foll_flags, struct page **pages,
1194 struct vm_area_struct **vmas, int *nonblocking);
1195long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1196 unsigned long start, unsigned long nr_pages,
1197 int write, int force, struct page **pages,
1198 struct vm_area_struct **vmas);
d2bf6be8
NP
1199int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1200 struct page **pages);
18022c5d
MG
1201struct kvec;
1202int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1203 struct page **pages);
1204int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1205struct page *get_dump_page(unsigned long addr);
1da177e4 1206
cf9a2ae8 1207extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1208extern void do_invalidatepage(struct page *page, unsigned int offset,
1209 unsigned int length);
cf9a2ae8 1210
1da177e4 1211int __set_page_dirty_nobuffers(struct page *page);
76719325 1212int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1213int redirty_page_for_writepage(struct writeback_control *wbc,
1214 struct page *page);
e3a7cca1 1215void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 1216void account_page_writeback(struct page *page);
b3c97528 1217int set_page_dirty(struct page *page);
1da177e4
LT
1218int set_page_dirty_lock(struct page *page);
1219int clear_page_dirty_for_io(struct page *page);
a9090253 1220int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1221
39aa3cb3 1222/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1223static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1224{
1225 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1226}
1227
a09a79f6
MP
1228static inline int stack_guard_page_start(struct vm_area_struct *vma,
1229 unsigned long addr)
1230{
1231 return (vma->vm_flags & VM_GROWSDOWN) &&
1232 (vma->vm_start == addr) &&
1233 !vma_growsdown(vma->vm_prev, addr);
1234}
1235
1236/* Is the vma a continuation of the stack vma below it? */
1237static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1238{
1239 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1240}
1241
1242static inline int stack_guard_page_end(struct vm_area_struct *vma,
1243 unsigned long addr)
1244{
1245 return (vma->vm_flags & VM_GROWSUP) &&
1246 (vma->vm_end == addr) &&
1247 !vma_growsup(vma->vm_next, addr);
1248}
1249
b7643757
SP
1250extern pid_t
1251vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1252
b6a2fea3
OW
1253extern unsigned long move_page_tables(struct vm_area_struct *vma,
1254 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1255 unsigned long new_addr, unsigned long len,
1256 bool need_rmap_locks);
7da4d641
PZ
1257extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1258 unsigned long end, pgprot_t newprot,
4b10e7d5 1259 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1260extern int mprotect_fixup(struct vm_area_struct *vma,
1261 struct vm_area_struct **pprev, unsigned long start,
1262 unsigned long end, unsigned long newflags);
1da177e4 1263
465a454f
PZ
1264/*
1265 * doesn't attempt to fault and will return short.
1266 */
1267int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1268 struct page **pages);
d559db08
KH
1269/*
1270 * per-process(per-mm_struct) statistics.
1271 */
d559db08
KH
1272static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1273{
69c97823
KK
1274 long val = atomic_long_read(&mm->rss_stat.count[member]);
1275
1276#ifdef SPLIT_RSS_COUNTING
1277 /*
1278 * counter is updated in asynchronous manner and may go to minus.
1279 * But it's never be expected number for users.
1280 */
1281 if (val < 0)
1282 val = 0;
172703b0 1283#endif
69c97823
KK
1284 return (unsigned long)val;
1285}
d559db08
KH
1286
1287static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1288{
172703b0 1289 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1290}
1291
1292static inline void inc_mm_counter(struct mm_struct *mm, int member)
1293{
172703b0 1294 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1295}
1296
1297static inline void dec_mm_counter(struct mm_struct *mm, int member)
1298{
172703b0 1299 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1300}
1301
d559db08
KH
1302static inline unsigned long get_mm_rss(struct mm_struct *mm)
1303{
1304 return get_mm_counter(mm, MM_FILEPAGES) +
1305 get_mm_counter(mm, MM_ANONPAGES);
1306}
1307
1308static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1309{
1310 return max(mm->hiwater_rss, get_mm_rss(mm));
1311}
1312
1313static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1314{
1315 return max(mm->hiwater_vm, mm->total_vm);
1316}
1317
1318static inline void update_hiwater_rss(struct mm_struct *mm)
1319{
1320 unsigned long _rss = get_mm_rss(mm);
1321
1322 if ((mm)->hiwater_rss < _rss)
1323 (mm)->hiwater_rss = _rss;
1324}
1325
1326static inline void update_hiwater_vm(struct mm_struct *mm)
1327{
1328 if (mm->hiwater_vm < mm->total_vm)
1329 mm->hiwater_vm = mm->total_vm;
1330}
1331
1332static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1333 struct mm_struct *mm)
1334{
1335 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1336
1337 if (*maxrss < hiwater_rss)
1338 *maxrss = hiwater_rss;
1339}
1340
53bddb4e 1341#if defined(SPLIT_RSS_COUNTING)
05af2e10 1342void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1343#else
05af2e10 1344static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1345{
1346}
1347#endif
465a454f 1348
4e950f6f 1349int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1350
25ca1d6c
NK
1351extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1352 spinlock_t **ptl);
1353static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1354 spinlock_t **ptl)
1355{
1356 pte_t *ptep;
1357 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1358 return ptep;
1359}
c9cfcddf 1360
5f22df00
NP
1361#ifdef __PAGETABLE_PUD_FOLDED
1362static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1363 unsigned long address)
1364{
1365 return 0;
1366}
1367#else
1bb3630e 1368int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1369#endif
1370
1371#ifdef __PAGETABLE_PMD_FOLDED
1372static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1373 unsigned long address)
1374{
1375 return 0;
1376}
1377#else
1bb3630e 1378int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1379#endif
1380
8ac1f832
AA
1381int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1382 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1383int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1384
1da177e4
LT
1385/*
1386 * The following ifdef needed to get the 4level-fixup.h header to work.
1387 * Remove it when 4level-fixup.h has been removed.
1388 */
1bb3630e 1389#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1390static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1391{
1bb3630e
HD
1392 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1393 NULL: pud_offset(pgd, address);
1da177e4
LT
1394}
1395
1396static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1397{
1bb3630e
HD
1398 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1399 NULL: pmd_offset(pud, address);
1da177e4 1400}
1bb3630e
HD
1401#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1402
57c1ffce 1403#if USE_SPLIT_PTE_PTLOCKS
597d795a 1404#if ALLOC_SPLIT_PTLOCKS
b35f1819 1405void __init ptlock_cache_init(void);
539edb58
PZ
1406extern bool ptlock_alloc(struct page *page);
1407extern void ptlock_free(struct page *page);
1408
1409static inline spinlock_t *ptlock_ptr(struct page *page)
1410{
1411 return page->ptl;
1412}
597d795a 1413#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1414static inline void ptlock_cache_init(void)
1415{
1416}
1417
49076ec2
KS
1418static inline bool ptlock_alloc(struct page *page)
1419{
49076ec2
KS
1420 return true;
1421}
539edb58 1422
49076ec2
KS
1423static inline void ptlock_free(struct page *page)
1424{
49076ec2
KS
1425}
1426
1427static inline spinlock_t *ptlock_ptr(struct page *page)
1428{
539edb58 1429 return &page->ptl;
49076ec2 1430}
597d795a 1431#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1432
1433static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1434{
1435 return ptlock_ptr(pmd_page(*pmd));
1436}
1437
1438static inline bool ptlock_init(struct page *page)
1439{
1440 /*
1441 * prep_new_page() initialize page->private (and therefore page->ptl)
1442 * with 0. Make sure nobody took it in use in between.
1443 *
1444 * It can happen if arch try to use slab for page table allocation:
1445 * slab code uses page->slab_cache and page->first_page (for tail
1446 * pages), which share storage with page->ptl.
1447 */
309381fe 1448 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1449 if (!ptlock_alloc(page))
1450 return false;
1451 spin_lock_init(ptlock_ptr(page));
1452 return true;
1453}
1454
1455/* Reset page->mapping so free_pages_check won't complain. */
1456static inline void pte_lock_deinit(struct page *page)
1457{
1458 page->mapping = NULL;
1459 ptlock_free(page);
1460}
1461
57c1ffce 1462#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1463/*
1464 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1465 */
49076ec2
KS
1466static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1467{
1468 return &mm->page_table_lock;
1469}
b35f1819 1470static inline void ptlock_cache_init(void) {}
49076ec2
KS
1471static inline bool ptlock_init(struct page *page) { return true; }
1472static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1473#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1474
b35f1819
KS
1475static inline void pgtable_init(void)
1476{
1477 ptlock_cache_init();
1478 pgtable_cache_init();
1479}
1480
390f44e2 1481static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1482{
2f569afd 1483 inc_zone_page_state(page, NR_PAGETABLE);
49076ec2 1484 return ptlock_init(page);
2f569afd
MS
1485}
1486
1487static inline void pgtable_page_dtor(struct page *page)
1488{
1489 pte_lock_deinit(page);
1490 dec_zone_page_state(page, NR_PAGETABLE);
1491}
1492
c74df32c
HD
1493#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1494({ \
4c21e2f2 1495 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1496 pte_t *__pte = pte_offset_map(pmd, address); \
1497 *(ptlp) = __ptl; \
1498 spin_lock(__ptl); \
1499 __pte; \
1500})
1501
1502#define pte_unmap_unlock(pte, ptl) do { \
1503 spin_unlock(ptl); \
1504 pte_unmap(pte); \
1505} while (0)
1506
8ac1f832
AA
1507#define pte_alloc_map(mm, vma, pmd, address) \
1508 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1509 pmd, address))? \
1510 NULL: pte_offset_map(pmd, address))
1bb3630e 1511
c74df32c 1512#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1513 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1514 pmd, address))? \
c74df32c
HD
1515 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1516
1bb3630e 1517#define pte_alloc_kernel(pmd, address) \
8ac1f832 1518 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1519 NULL: pte_offset_kernel(pmd, address))
1da177e4 1520
e009bb30
KS
1521#if USE_SPLIT_PMD_PTLOCKS
1522
634391ac
MS
1523static struct page *pmd_to_page(pmd_t *pmd)
1524{
1525 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1526 return virt_to_page((void *)((unsigned long) pmd & mask));
1527}
1528
e009bb30
KS
1529static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1530{
634391ac 1531 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1532}
1533
1534static inline bool pgtable_pmd_page_ctor(struct page *page)
1535{
e009bb30
KS
1536#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1537 page->pmd_huge_pte = NULL;
1538#endif
49076ec2 1539 return ptlock_init(page);
e009bb30
KS
1540}
1541
1542static inline void pgtable_pmd_page_dtor(struct page *page)
1543{
1544#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1545 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1546#endif
49076ec2 1547 ptlock_free(page);
e009bb30
KS
1548}
1549
634391ac 1550#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1551
1552#else
1553
9a86cb7b
KS
1554static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1555{
1556 return &mm->page_table_lock;
1557}
1558
e009bb30
KS
1559static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1560static inline void pgtable_pmd_page_dtor(struct page *page) {}
1561
c389a250 1562#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1563
e009bb30
KS
1564#endif
1565
9a86cb7b
KS
1566static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1567{
1568 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1569 spin_lock(ptl);
1570 return ptl;
1571}
1572
1da177e4 1573extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1574extern void free_area_init_node(int nid, unsigned long * zones_size,
1575 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1576extern void free_initmem(void);
1577
69afade7
JL
1578/*
1579 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1580 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1581 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1582 * Return pages freed into the buddy system.
1583 */
11199692 1584extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1585 int poison, char *s);
c3d5f5f0 1586
cfa11e08
JL
1587#ifdef CONFIG_HIGHMEM
1588/*
1589 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1590 * and totalram_pages.
1591 */
1592extern void free_highmem_page(struct page *page);
1593#endif
69afade7 1594
c3d5f5f0 1595extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1596extern void mem_init_print_info(const char *str);
69afade7
JL
1597
1598/* Free the reserved page into the buddy system, so it gets managed. */
1599static inline void __free_reserved_page(struct page *page)
1600{
1601 ClearPageReserved(page);
1602 init_page_count(page);
1603 __free_page(page);
1604}
1605
1606static inline void free_reserved_page(struct page *page)
1607{
1608 __free_reserved_page(page);
1609 adjust_managed_page_count(page, 1);
1610}
1611
1612static inline void mark_page_reserved(struct page *page)
1613{
1614 SetPageReserved(page);
1615 adjust_managed_page_count(page, -1);
1616}
1617
1618/*
1619 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1620 * The freed pages will be poisoned with pattern "poison" if it's within
1621 * range [0, UCHAR_MAX].
1622 * Return pages freed into the buddy system.
69afade7
JL
1623 */
1624static inline unsigned long free_initmem_default(int poison)
1625{
1626 extern char __init_begin[], __init_end[];
1627
11199692 1628 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1629 poison, "unused kernel");
1630}
1631
7ee3d4e8
JL
1632static inline unsigned long get_num_physpages(void)
1633{
1634 int nid;
1635 unsigned long phys_pages = 0;
1636
1637 for_each_online_node(nid)
1638 phys_pages += node_present_pages(nid);
1639
1640 return phys_pages;
1641}
1642
0ee332c1 1643#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1644/*
0ee332c1 1645 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1646 * zones, allocate the backing mem_map and account for memory holes in a more
1647 * architecture independent manner. This is a substitute for creating the
1648 * zone_sizes[] and zholes_size[] arrays and passing them to
1649 * free_area_init_node()
1650 *
1651 * An architecture is expected to register range of page frames backed by
0ee332c1 1652 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1653 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1654 * usage, an architecture is expected to do something like
1655 *
1656 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1657 * max_highmem_pfn};
1658 * for_each_valid_physical_page_range()
0ee332c1 1659 * memblock_add_node(base, size, nid)
c713216d
MG
1660 * free_area_init_nodes(max_zone_pfns);
1661 *
0ee332c1
TH
1662 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1663 * registered physical page range. Similarly
1664 * sparse_memory_present_with_active_regions() calls memory_present() for
1665 * each range when SPARSEMEM is enabled.
c713216d
MG
1666 *
1667 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1668 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1669 */
1670extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1671unsigned long node_map_pfn_alignment(void);
32996250
YL
1672unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1673 unsigned long end_pfn);
c713216d
MG
1674extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1675 unsigned long end_pfn);
1676extern void get_pfn_range_for_nid(unsigned int nid,
1677 unsigned long *start_pfn, unsigned long *end_pfn);
1678extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1679extern void free_bootmem_with_active_regions(int nid,
1680 unsigned long max_low_pfn);
1681extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1682
0ee332c1 1683#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1684
0ee332c1 1685#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1686 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1687static inline int __early_pfn_to_nid(unsigned long pfn)
1688{
1689 return 0;
1690}
1691#else
1692/* please see mm/page_alloc.c */
1693extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
1694/* there is a per-arch backend function. */
1695extern int __meminit __early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
1696#endif
1697
0e0b864e 1698extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1699extern void memmap_init_zone(unsigned long, int, unsigned long,
1700 unsigned long, enum memmap_context);
bc75d33f 1701extern void setup_per_zone_wmarks(void);
1b79acc9 1702extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1703extern void mem_init(void);
8feae131 1704extern void __init mmap_init(void);
b2b755b5 1705extern void show_mem(unsigned int flags);
1da177e4
LT
1706extern void si_meminfo(struct sysinfo * val);
1707extern void si_meminfo_node(struct sysinfo *val, int nid);
1708
3ee9a4f0
JP
1709extern __printf(3, 4)
1710void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1711
e7c8d5c9 1712extern void setup_per_cpu_pageset(void);
e7c8d5c9 1713
112067f0 1714extern void zone_pcp_update(struct zone *zone);
340175b7 1715extern void zone_pcp_reset(struct zone *zone);
112067f0 1716
75f7ad8e
PS
1717/* page_alloc.c */
1718extern int min_free_kbytes;
1719
8feae131 1720/* nommu.c */
33e5d769 1721extern atomic_long_t mmap_pages_allocated;
7e660872 1722extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1723
6b2dbba8 1724/* interval_tree.c */
6b2dbba8
ML
1725void vma_interval_tree_insert(struct vm_area_struct *node,
1726 struct rb_root *root);
9826a516
ML
1727void vma_interval_tree_insert_after(struct vm_area_struct *node,
1728 struct vm_area_struct *prev,
1729 struct rb_root *root);
6b2dbba8
ML
1730void vma_interval_tree_remove(struct vm_area_struct *node,
1731 struct rb_root *root);
1732struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1733 unsigned long start, unsigned long last);
1734struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1735 unsigned long start, unsigned long last);
1736
1737#define vma_interval_tree_foreach(vma, root, start, last) \
1738 for (vma = vma_interval_tree_iter_first(root, start, last); \
1739 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4
LT
1740
1741static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1742 struct list_head *list)
1743{
6b2dbba8 1744 list_add_tail(&vma->shared.nonlinear, list);
1da177e4
LT
1745}
1746
bf181b9f
ML
1747void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1748 struct rb_root *root);
1749void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1750 struct rb_root *root);
1751struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1752 struct rb_root *root, unsigned long start, unsigned long last);
1753struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1754 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1755#ifdef CONFIG_DEBUG_VM_RB
1756void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1757#endif
bf181b9f
ML
1758
1759#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1760 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1761 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1762
1da177e4 1763/* mmap.c */
34b4e4aa 1764extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1765extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1766 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1767extern struct vm_area_struct *vma_merge(struct mm_struct *,
1768 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1769 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1770 struct mempolicy *);
1771extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1772extern int split_vma(struct mm_struct *,
1773 struct vm_area_struct *, unsigned long addr, int new_below);
1774extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1775extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1776 struct rb_node **, struct rb_node *);
a8fb5618 1777extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1778extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1779 unsigned long addr, unsigned long len, pgoff_t pgoff,
1780 bool *need_rmap_locks);
1da177e4 1781extern void exit_mmap(struct mm_struct *);
925d1c40 1782
7906d00c
AA
1783extern int mm_take_all_locks(struct mm_struct *mm);
1784extern void mm_drop_all_locks(struct mm_struct *mm);
1785
38646013
JS
1786extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1787extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1788
119f657c 1789extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
3935ed6a
SS
1790extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1791 unsigned long addr, unsigned long len,
a62c34bd
AL
1792 unsigned long flags,
1793 const struct vm_special_mapping *spec);
1794/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
1795extern int install_special_mapping(struct mm_struct *mm,
1796 unsigned long addr, unsigned long len,
1797 unsigned long flags, struct page **pages);
1da177e4
LT
1798
1799extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1800
0165ab44 1801extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1802 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1803extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1804 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1805 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1806extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1807
bebeb3d6
ML
1808#ifdef CONFIG_MMU
1809extern int __mm_populate(unsigned long addr, unsigned long len,
1810 int ignore_errors);
1811static inline void mm_populate(unsigned long addr, unsigned long len)
1812{
1813 /* Ignore errors */
1814 (void) __mm_populate(addr, len, 1);
1815}
1816#else
1817static inline void mm_populate(unsigned long addr, unsigned long len) {}
1818#endif
1819
e4eb1ff6
LT
1820/* These take the mm semaphore themselves */
1821extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1822extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1823extern unsigned long vm_mmap(struct file *, unsigned long,
1824 unsigned long, unsigned long,
1825 unsigned long, unsigned long);
1da177e4 1826
db4fbfb9
ML
1827struct vm_unmapped_area_info {
1828#define VM_UNMAPPED_AREA_TOPDOWN 1
1829 unsigned long flags;
1830 unsigned long length;
1831 unsigned long low_limit;
1832 unsigned long high_limit;
1833 unsigned long align_mask;
1834 unsigned long align_offset;
1835};
1836
1837extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1838extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1839
1840/*
1841 * Search for an unmapped address range.
1842 *
1843 * We are looking for a range that:
1844 * - does not intersect with any VMA;
1845 * - is contained within the [low_limit, high_limit) interval;
1846 * - is at least the desired size.
1847 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1848 */
1849static inline unsigned long
1850vm_unmapped_area(struct vm_unmapped_area_info *info)
1851{
1852 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1853 return unmapped_area(info);
1854 else
1855 return unmapped_area_topdown(info);
1856}
1857
85821aab 1858/* truncate.c */
1da177e4 1859extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1860extern void truncate_inode_pages_range(struct address_space *,
1861 loff_t lstart, loff_t lend);
91b0abe3 1862extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
1863
1864/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1865extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 1866extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 1867extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1868
1869/* mm/page-writeback.c */
1870int write_one_page(struct page *page, int wait);
1cf6e7d8 1871void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1872
1873/* readahead.c */
1874#define VM_MAX_READAHEAD 128 /* kbytes */
1875#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1876
1da177e4 1877int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1878 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1879
1880void page_cache_sync_readahead(struct address_space *mapping,
1881 struct file_ra_state *ra,
1882 struct file *filp,
1883 pgoff_t offset,
1884 unsigned long size);
1885
1886void page_cache_async_readahead(struct address_space *mapping,
1887 struct file_ra_state *ra,
1888 struct file *filp,
1889 struct page *pg,
1890 pgoff_t offset,
1891 unsigned long size);
1892
1da177e4
LT
1893unsigned long max_sane_readahead(unsigned long nr);
1894
d05f3169 1895/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1896extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1897
1898/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1899extern int expand_downwards(struct vm_area_struct *vma,
1900 unsigned long address);
8ca3eb08 1901#if VM_GROWSUP
46dea3d0 1902extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
LT
1903#else
1904 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1905#endif
1da177e4
LT
1906
1907/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1908extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1909extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1910 struct vm_area_struct **pprev);
1911
1912/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1913 NULL if none. Assume start_addr < end_addr. */
1914static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1915{
1916 struct vm_area_struct * vma = find_vma(mm,start_addr);
1917
1918 if (vma && end_addr <= vma->vm_start)
1919 vma = NULL;
1920 return vma;
1921}
1922
1923static inline unsigned long vma_pages(struct vm_area_struct *vma)
1924{
1925 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1926}
1927
640708a2
PE
1928/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1929static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1930 unsigned long vm_start, unsigned long vm_end)
1931{
1932 struct vm_area_struct *vma = find_vma(mm, vm_start);
1933
1934 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1935 vma = NULL;
1936
1937 return vma;
1938}
1939
bad849b3 1940#ifdef CONFIG_MMU
804af2cf 1941pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1942#else
1943static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1944{
1945 return __pgprot(0);
1946}
1947#endif
1948
5877231f 1949#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 1950unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
1951 unsigned long start, unsigned long end);
1952#endif
1953
deceb6cd 1954struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1955int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1956 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1957int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1958int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1959 unsigned long pfn);
423bad60
NP
1960int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1961 unsigned long pfn);
b4cbb197
LT
1962int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1963
deceb6cd 1964
240aadee
ML
1965struct page *follow_page_mask(struct vm_area_struct *vma,
1966 unsigned long address, unsigned int foll_flags,
1967 unsigned int *page_mask);
1968
1969static inline struct page *follow_page(struct vm_area_struct *vma,
1970 unsigned long address, unsigned int foll_flags)
1971{
1972 unsigned int unused_page_mask;
1973 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1974}
1975
deceb6cd
HD
1976#define FOLL_WRITE 0x01 /* check pte is writable */
1977#define FOLL_TOUCH 0x02 /* mark page accessed */
1978#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1979#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1980#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
1981#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1982 * and return without waiting upon it */
110d74a9 1983#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1984#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1985#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 1986#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 1987#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 1988#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
1da177e4 1989
2f569afd 1990typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1991 void *data);
1992extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1993 unsigned long size, pte_fn_t fn, void *data);
1994
1da177e4 1995#ifdef CONFIG_PROC_FS
ab50b8ed 1996void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1997#else
ab50b8ed 1998static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1999 unsigned long flags, struct file *file, long pages)
2000{
44de9d0c 2001 mm->total_vm += pages;
1da177e4
LT
2002}
2003#endif /* CONFIG_PROC_FS */
2004
12d6f21e 2005#ifdef CONFIG_DEBUG_PAGEALLOC
12d6f21e 2006extern void kernel_map_pages(struct page *page, int numpages, int enable);
8a235efa
RW
2007#ifdef CONFIG_HIBERNATION
2008extern bool kernel_page_present(struct page *page);
2009#endif /* CONFIG_HIBERNATION */
12d6f21e 2010#else
1da177e4 2011static inline void
9858db50 2012kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2013#ifdef CONFIG_HIBERNATION
2014static inline bool kernel_page_present(struct page *page) { return true; }
2015#endif /* CONFIG_HIBERNATION */
1da177e4
LT
2016#endif
2017
a6c19dfe 2018#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2019extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2020extern int in_gate_area_no_mm(unsigned long addr);
2021extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2022#else
a6c19dfe
AL
2023static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2024{
2025 return NULL;
2026}
2027static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2028static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2029{
2030 return 0;
2031}
1da177e4
LT
2032#endif /* __HAVE_ARCH_GATE_AREA */
2033
146732ce
JT
2034#ifdef CONFIG_SYSCTL
2035extern int sysctl_drop_caches;
8d65af78 2036int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2037 void __user *, size_t *, loff_t *);
146732ce
JT
2038#endif
2039
a09ed5e0 2040unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
2041 unsigned long nr_pages_scanned,
2042 unsigned long lru_pages);
9d0243bc 2043
7a9166e3
LY
2044#ifndef CONFIG_MMU
2045#define randomize_va_space 0
2046#else
a62eaf15 2047extern int randomize_va_space;
7a9166e3 2048#endif
a62eaf15 2049
045e72ac 2050const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2051void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2052
9bdac914
YL
2053void sparse_mem_maps_populate_node(struct page **map_map,
2054 unsigned long pnum_begin,
2055 unsigned long pnum_end,
2056 unsigned long map_count,
2057 int nodeid);
2058
98f3cfc1 2059struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2060pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2061pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2062pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2063pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2064void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 2065void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 2066void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2067int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2068 int node);
2069int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2070void vmemmap_populate_print_last(void);
0197518c 2071#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2072void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2073#endif
46723bfa
YI
2074void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2075 unsigned long size);
6a46079c 2076
82ba011b
AK
2077enum mf_flags {
2078 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2079 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2080 MF_MUST_KILL = 1 << 2,
cf870c70 2081 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2082};
cd42f4a3 2083extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2084extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2085extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
2086extern int sysctl_memory_failure_early_kill;
2087extern int sysctl_memory_failure_recovery;
facb6011 2088extern void shake_page(struct page *p, int access);
293c07e3 2089extern atomic_long_t num_poisoned_pages;
facb6011 2090extern int soft_offline_page(struct page *page, int flags);
6a46079c 2091
47ad8475
AA
2092#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2093extern void clear_huge_page(struct page *page,
2094 unsigned long addr,
2095 unsigned int pages_per_huge_page);
2096extern void copy_user_huge_page(struct page *dst, struct page *src,
2097 unsigned long addr, struct vm_area_struct *vma,
2098 unsigned int pages_per_huge_page);
2099#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2100
c0a32fc5
SG
2101#ifdef CONFIG_DEBUG_PAGEALLOC
2102extern unsigned int _debug_guardpage_minorder;
2103
2104static inline unsigned int debug_guardpage_minorder(void)
2105{
2106 return _debug_guardpage_minorder;
2107}
2108
2109static inline bool page_is_guard(struct page *page)
2110{
2111 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2112}
2113#else
2114static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2115static inline bool page_is_guard(struct page *page) { return false; }
2116#endif /* CONFIG_DEBUG_PAGEALLOC */
2117
f9872caf
CS
2118#if MAX_NUMNODES > 1
2119void __init setup_nr_node_ids(void);
2120#else
2121static inline void setup_nr_node_ids(void) {}
2122#endif
2123
1da177e4
LT
2124#endif /* __KERNEL__ */
2125#endif /* _LINUX_MM_H */