oom: suppress nodes that are not allowed from meminfo on page alloc failure
[linux-2.6-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
1da177e4 118
1da177e4
LT
119#include <asm/cacheflush.h>
120#include <asm/tlbflush.h>
121#include <asm/page.h>
122
123/*
50953fe9 124 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
125 * 0 for faster, smaller code (especially in the critical paths).
126 *
127 * STATS - 1 to collect stats for /proc/slabinfo.
128 * 0 for faster, smaller code (especially in the critical paths).
129 *
130 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
131 */
132
133#ifdef CONFIG_DEBUG_SLAB
134#define DEBUG 1
135#define STATS 1
136#define FORCED_DEBUG 1
137#else
138#define DEBUG 0
139#define STATS 0
140#define FORCED_DEBUG 0
141#endif
142
1da177e4
LT
143/* Shouldn't this be in a header file somewhere? */
144#define BYTES_PER_WORD sizeof(void *)
87a927c7 145#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 146
1da177e4
LT
147#ifndef ARCH_KMALLOC_FLAGS
148#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
149#endif
150
151/* Legal flag mask for kmem_cache_create(). */
152#if DEBUG
50953fe9 153# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 154 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 155 SLAB_CACHE_DMA | \
5af60839 156 SLAB_STORE_USER | \
1da177e4 157 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 158 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 159 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4 160#else
ac2b898c 161# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 162 SLAB_CACHE_DMA | \
1da177e4 163 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 164 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 165 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4
LT
166#endif
167
168/*
169 * kmem_bufctl_t:
170 *
171 * Bufctl's are used for linking objs within a slab
172 * linked offsets.
173 *
174 * This implementation relies on "struct page" for locating the cache &
175 * slab an object belongs to.
176 * This allows the bufctl structure to be small (one int), but limits
177 * the number of objects a slab (not a cache) can contain when off-slab
178 * bufctls are used. The limit is the size of the largest general cache
179 * that does not use off-slab slabs.
180 * For 32bit archs with 4 kB pages, is this 56.
181 * This is not serious, as it is only for large objects, when it is unwise
182 * to have too many per slab.
183 * Note: This limit can be raised by introducing a general cache whose size
184 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
185 */
186
fa5b08d5 187typedef unsigned int kmem_bufctl_t;
1da177e4
LT
188#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
189#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
190#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
191#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 192
1da177e4
LT
193/*
194 * struct slab_rcu
195 *
196 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
197 * arrange for kmem_freepages to be called via RCU. This is useful if
198 * we need to approach a kernel structure obliquely, from its address
199 * obtained without the usual locking. We can lock the structure to
200 * stabilize it and check it's still at the given address, only if we
201 * can be sure that the memory has not been meanwhile reused for some
202 * other kind of object (which our subsystem's lock might corrupt).
203 *
204 * rcu_read_lock before reading the address, then rcu_read_unlock after
205 * taking the spinlock within the structure expected at that address.
1da177e4
LT
206 */
207struct slab_rcu {
b28a02de 208 struct rcu_head head;
343e0d7a 209 struct kmem_cache *cachep;
b28a02de 210 void *addr;
1da177e4
LT
211};
212
5bfe53a7
LJ
213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
221 union {
222 struct {
223 struct list_head list;
224 unsigned long colouroff;
225 void *s_mem; /* including colour offset */
226 unsigned int inuse; /* num of objs active in slab */
227 kmem_bufctl_t free;
228 unsigned short nodeid;
229 };
230 struct slab_rcu __slab_cover_slab_rcu;
231 };
232};
233
1da177e4
LT
234/*
235 * struct array_cache
236 *
1da177e4
LT
237 * Purpose:
238 * - LIFO ordering, to hand out cache-warm objects from _alloc
239 * - reduce the number of linked list operations
240 * - reduce spinlock operations
241 *
242 * The limit is stored in the per-cpu structure to reduce the data cache
243 * footprint.
244 *
245 */
246struct array_cache {
247 unsigned int avail;
248 unsigned int limit;
249 unsigned int batchcount;
250 unsigned int touched;
e498be7d 251 spinlock_t lock;
bda5b655 252 void *entry[]; /*
a737b3e2
AM
253 * Must have this definition in here for the proper
254 * alignment of array_cache. Also simplifies accessing
255 * the entries.
a737b3e2 256 */
1da177e4
LT
257};
258
a737b3e2
AM
259/*
260 * bootstrap: The caches do not work without cpuarrays anymore, but the
261 * cpuarrays are allocated from the generic caches...
1da177e4
LT
262 */
263#define BOOT_CPUCACHE_ENTRIES 1
264struct arraycache_init {
265 struct array_cache cache;
b28a02de 266 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
267};
268
269/*
e498be7d 270 * The slab lists for all objects.
1da177e4
LT
271 */
272struct kmem_list3 {
b28a02de
PE
273 struct list_head slabs_partial; /* partial list first, better asm code */
274 struct list_head slabs_full;
275 struct list_head slabs_free;
276 unsigned long free_objects;
b28a02de 277 unsigned int free_limit;
2e1217cf 278 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
279 spinlock_t list_lock;
280 struct array_cache *shared; /* shared per node */
281 struct array_cache **alien; /* on other nodes */
35386e3b
CL
282 unsigned long next_reap; /* updated without locking */
283 int free_touched; /* updated without locking */
1da177e4
LT
284};
285
e498be7d
CL
286/*
287 * Need this for bootstrapping a per node allocator.
288 */
556a169d 289#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
68a1b195 290static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
e498be7d 291#define CACHE_CACHE 0
556a169d
PE
292#define SIZE_AC MAX_NUMNODES
293#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 294
ed11d9eb
CL
295static int drain_freelist(struct kmem_cache *cache,
296 struct kmem_list3 *l3, int tofree);
297static void free_block(struct kmem_cache *cachep, void **objpp, int len,
298 int node);
83b519e8 299static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 300static void cache_reap(struct work_struct *unused);
ed11d9eb 301
e498be7d 302/*
a737b3e2
AM
303 * This function must be completely optimized away if a constant is passed to
304 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 305 */
7243cc05 306static __always_inline int index_of(const size_t size)
e498be7d 307{
5ec8a847
SR
308 extern void __bad_size(void);
309
e498be7d
CL
310 if (__builtin_constant_p(size)) {
311 int i = 0;
312
313#define CACHE(x) \
314 if (size <=x) \
315 return i; \
316 else \
317 i++;
1c61fc40 318#include <linux/kmalloc_sizes.h>
e498be7d 319#undef CACHE
5ec8a847 320 __bad_size();
7243cc05 321 } else
5ec8a847 322 __bad_size();
e498be7d
CL
323 return 0;
324}
325
e0a42726
IM
326static int slab_early_init = 1;
327
e498be7d
CL
328#define INDEX_AC index_of(sizeof(struct arraycache_init))
329#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 330
5295a74c 331static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
332{
333 INIT_LIST_HEAD(&parent->slabs_full);
334 INIT_LIST_HEAD(&parent->slabs_partial);
335 INIT_LIST_HEAD(&parent->slabs_free);
336 parent->shared = NULL;
337 parent->alien = NULL;
2e1217cf 338 parent->colour_next = 0;
e498be7d
CL
339 spin_lock_init(&parent->list_lock);
340 parent->free_objects = 0;
341 parent->free_touched = 0;
342}
343
a737b3e2
AM
344#define MAKE_LIST(cachep, listp, slab, nodeid) \
345 do { \
346 INIT_LIST_HEAD(listp); \
347 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
348 } while (0)
349
a737b3e2
AM
350#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
351 do { \
e498be7d
CL
352 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
353 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
354 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
355 } while (0)
1da177e4 356
1da177e4
LT
357#define CFLGS_OFF_SLAB (0x80000000UL)
358#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
359
360#define BATCHREFILL_LIMIT 16
a737b3e2
AM
361/*
362 * Optimization question: fewer reaps means less probability for unnessary
363 * cpucache drain/refill cycles.
1da177e4 364 *
dc6f3f27 365 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
366 * which could lock up otherwise freeable slabs.
367 */
368#define REAPTIMEOUT_CPUC (2*HZ)
369#define REAPTIMEOUT_LIST3 (4*HZ)
370
371#if STATS
372#define STATS_INC_ACTIVE(x) ((x)->num_active++)
373#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
374#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
375#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 376#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
377#define STATS_SET_HIGH(x) \
378 do { \
379 if ((x)->num_active > (x)->high_mark) \
380 (x)->high_mark = (x)->num_active; \
381 } while (0)
1da177e4
LT
382#define STATS_INC_ERR(x) ((x)->errors++)
383#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 384#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 385#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
386#define STATS_SET_FREEABLE(x, i) \
387 do { \
388 if ((x)->max_freeable < i) \
389 (x)->max_freeable = i; \
390 } while (0)
1da177e4
LT
391#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
392#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
393#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
394#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
395#else
396#define STATS_INC_ACTIVE(x) do { } while (0)
397#define STATS_DEC_ACTIVE(x) do { } while (0)
398#define STATS_INC_ALLOCED(x) do { } while (0)
399#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 400#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
401#define STATS_SET_HIGH(x) do { } while (0)
402#define STATS_INC_ERR(x) do { } while (0)
403#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 404#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 405#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 406#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
407#define STATS_INC_ALLOCHIT(x) do { } while (0)
408#define STATS_INC_ALLOCMISS(x) do { } while (0)
409#define STATS_INC_FREEHIT(x) do { } while (0)
410#define STATS_INC_FREEMISS(x) do { } while (0)
411#endif
412
413#if DEBUG
1da177e4 414
a737b3e2
AM
415/*
416 * memory layout of objects:
1da177e4 417 * 0 : objp
3dafccf2 418 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
419 * the end of an object is aligned with the end of the real
420 * allocation. Catches writes behind the end of the allocation.
3dafccf2 421 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 422 * redzone word.
3dafccf2
MS
423 * cachep->obj_offset: The real object.
424 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
425 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
426 * [BYTES_PER_WORD long]
1da177e4 427 */
343e0d7a 428static int obj_offset(struct kmem_cache *cachep)
1da177e4 429{
3dafccf2 430 return cachep->obj_offset;
1da177e4
LT
431}
432
343e0d7a 433static int obj_size(struct kmem_cache *cachep)
1da177e4 434{
3dafccf2 435 return cachep->obj_size;
1da177e4
LT
436}
437
b46b8f19 438static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
439{
440 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
441 return (unsigned long long*) (objp + obj_offset(cachep) -
442 sizeof(unsigned long long));
1da177e4
LT
443}
444
b46b8f19 445static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
446{
447 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
448 if (cachep->flags & SLAB_STORE_USER)
b46b8f19
DW
449 return (unsigned long long *)(objp + cachep->buffer_size -
450 sizeof(unsigned long long) -
87a927c7 451 REDZONE_ALIGN);
b46b8f19
DW
452 return (unsigned long long *) (objp + cachep->buffer_size -
453 sizeof(unsigned long long));
1da177e4
LT
454}
455
343e0d7a 456static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
457{
458 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 459 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
460}
461
462#else
463
3dafccf2
MS
464#define obj_offset(x) 0
465#define obj_size(cachep) (cachep->buffer_size)
b46b8f19
DW
466#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
467#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
468#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
469
470#endif
471
0f24f128 472#ifdef CONFIG_TRACING
36555751
EGM
473size_t slab_buffer_size(struct kmem_cache *cachep)
474{
475 return cachep->buffer_size;
476}
477EXPORT_SYMBOL(slab_buffer_size);
478#endif
479
1da177e4
LT
480/*
481 * Do not go above this order unless 0 objects fit into the slab.
482 */
483#define BREAK_GFP_ORDER_HI 1
484#define BREAK_GFP_ORDER_LO 0
485static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
486
a737b3e2
AM
487/*
488 * Functions for storing/retrieving the cachep and or slab from the page
489 * allocator. These are used to find the slab an obj belongs to. With kfree(),
490 * these are used to find the cache which an obj belongs to.
1da177e4 491 */
065d41cb
PE
492static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
493{
494 page->lru.next = (struct list_head *)cache;
495}
496
497static inline struct kmem_cache *page_get_cache(struct page *page)
498{
d85f3385 499 page = compound_head(page);
ddc2e812 500 BUG_ON(!PageSlab(page));
065d41cb
PE
501 return (struct kmem_cache *)page->lru.next;
502}
503
504static inline void page_set_slab(struct page *page, struct slab *slab)
505{
506 page->lru.prev = (struct list_head *)slab;
507}
508
509static inline struct slab *page_get_slab(struct page *page)
510{
ddc2e812 511 BUG_ON(!PageSlab(page));
065d41cb
PE
512 return (struct slab *)page->lru.prev;
513}
1da177e4 514
6ed5eb22
PE
515static inline struct kmem_cache *virt_to_cache(const void *obj)
516{
b49af68f 517 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
518 return page_get_cache(page);
519}
520
521static inline struct slab *virt_to_slab(const void *obj)
522{
b49af68f 523 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
524 return page_get_slab(page);
525}
526
8fea4e96
PE
527static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
528 unsigned int idx)
529{
530 return slab->s_mem + cache->buffer_size * idx;
531}
532
6a2d7a95
ED
533/*
534 * We want to avoid an expensive divide : (offset / cache->buffer_size)
535 * Using the fact that buffer_size is a constant for a particular cache,
536 * we can replace (offset / cache->buffer_size) by
537 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
538 */
539static inline unsigned int obj_to_index(const struct kmem_cache *cache,
540 const struct slab *slab, void *obj)
8fea4e96 541{
6a2d7a95
ED
542 u32 offset = (obj - slab->s_mem);
543 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
544}
545
a737b3e2
AM
546/*
547 * These are the default caches for kmalloc. Custom caches can have other sizes.
548 */
1da177e4
LT
549struct cache_sizes malloc_sizes[] = {
550#define CACHE(x) { .cs_size = (x) },
551#include <linux/kmalloc_sizes.h>
552 CACHE(ULONG_MAX)
553#undef CACHE
554};
555EXPORT_SYMBOL(malloc_sizes);
556
557/* Must match cache_sizes above. Out of line to keep cache footprint low. */
558struct cache_names {
559 char *name;
560 char *name_dma;
561};
562
563static struct cache_names __initdata cache_names[] = {
564#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
565#include <linux/kmalloc_sizes.h>
b28a02de 566 {NULL,}
1da177e4
LT
567#undef CACHE
568};
569
570static struct arraycache_init initarray_cache __initdata =
b28a02de 571 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 572static struct arraycache_init initarray_generic =
b28a02de 573 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
574
575/* internal cache of cache description objs */
343e0d7a 576static struct kmem_cache cache_cache = {
b28a02de
PE
577 .batchcount = 1,
578 .limit = BOOT_CPUCACHE_ENTRIES,
579 .shared = 1,
343e0d7a 580 .buffer_size = sizeof(struct kmem_cache),
b28a02de 581 .name = "kmem_cache",
1da177e4
LT
582};
583
056c6241
RT
584#define BAD_ALIEN_MAGIC 0x01020304ul
585
ce79ddc8
PE
586/*
587 * chicken and egg problem: delay the per-cpu array allocation
588 * until the general caches are up.
589 */
590static enum {
591 NONE,
592 PARTIAL_AC,
593 PARTIAL_L3,
594 EARLY,
595 FULL
596} g_cpucache_up;
597
598/*
599 * used by boot code to determine if it can use slab based allocator
600 */
601int slab_is_available(void)
602{
603 return g_cpucache_up >= EARLY;
604}
605
f1aaee53
AV
606#ifdef CONFIG_LOCKDEP
607
608/*
609 * Slab sometimes uses the kmalloc slabs to store the slab headers
610 * for other slabs "off slab".
611 * The locking for this is tricky in that it nests within the locks
612 * of all other slabs in a few places; to deal with this special
613 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
614 *
615 * We set lock class for alien array caches which are up during init.
616 * The lock annotation will be lost if all cpus of a node goes down and
617 * then comes back up during hotplug
f1aaee53 618 */
056c6241
RT
619static struct lock_class_key on_slab_l3_key;
620static struct lock_class_key on_slab_alc_key;
621
ce79ddc8 622static void init_node_lock_keys(int q)
f1aaee53 623{
056c6241
RT
624 struct cache_sizes *s = malloc_sizes;
625
ce79ddc8
PE
626 if (g_cpucache_up != FULL)
627 return;
628
629 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
630 struct array_cache **alc;
631 struct kmem_list3 *l3;
632 int r;
633
634 l3 = s->cs_cachep->nodelists[q];
635 if (!l3 || OFF_SLAB(s->cs_cachep))
00afa758 636 continue;
ce79ddc8
PE
637 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
638 alc = l3->alien;
639 /*
640 * FIXME: This check for BAD_ALIEN_MAGIC
641 * should go away when common slab code is taught to
642 * work even without alien caches.
643 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
644 * for alloc_alien_cache,
645 */
646 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
00afa758 647 continue;
ce79ddc8
PE
648 for_each_node(r) {
649 if (alc[r])
650 lockdep_set_class(&alc[r]->lock,
651 &on_slab_alc_key);
056c6241 652 }
f1aaee53
AV
653 }
654}
ce79ddc8
PE
655
656static inline void init_lock_keys(void)
657{
658 int node;
659
660 for_each_node(node)
661 init_node_lock_keys(node);
662}
f1aaee53 663#else
ce79ddc8
PE
664static void init_node_lock_keys(int q)
665{
666}
667
056c6241 668static inline void init_lock_keys(void)
f1aaee53
AV
669{
670}
671#endif
672
8f5be20b 673/*
95402b38 674 * Guard access to the cache-chain.
8f5be20b 675 */
fc0abb14 676static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
677static struct list_head cache_chain;
678
1871e52c 679static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 680
343e0d7a 681static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
682{
683 return cachep->array[smp_processor_id()];
684}
685
a737b3e2
AM
686static inline struct kmem_cache *__find_general_cachep(size_t size,
687 gfp_t gfpflags)
1da177e4
LT
688{
689 struct cache_sizes *csizep = malloc_sizes;
690
691#if DEBUG
692 /* This happens if someone tries to call
b28a02de
PE
693 * kmem_cache_create(), or __kmalloc(), before
694 * the generic caches are initialized.
695 */
c7e43c78 696 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 697#endif
6cb8f913
CL
698 if (!size)
699 return ZERO_SIZE_PTR;
700
1da177e4
LT
701 while (size > csizep->cs_size)
702 csizep++;
703
704 /*
0abf40c1 705 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
706 * has cs_{dma,}cachep==NULL. Thus no special case
707 * for large kmalloc calls required.
708 */
4b51d669 709#ifdef CONFIG_ZONE_DMA
1da177e4
LT
710 if (unlikely(gfpflags & GFP_DMA))
711 return csizep->cs_dmacachep;
4b51d669 712#endif
1da177e4
LT
713 return csizep->cs_cachep;
714}
715
b221385b 716static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
717{
718 return __find_general_cachep(size, gfpflags);
719}
97e2bde4 720
fbaccacf 721static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 722{
fbaccacf
SR
723 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
724}
1da177e4 725
a737b3e2
AM
726/*
727 * Calculate the number of objects and left-over bytes for a given buffer size.
728 */
fbaccacf
SR
729static void cache_estimate(unsigned long gfporder, size_t buffer_size,
730 size_t align, int flags, size_t *left_over,
731 unsigned int *num)
732{
733 int nr_objs;
734 size_t mgmt_size;
735 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 736
fbaccacf
SR
737 /*
738 * The slab management structure can be either off the slab or
739 * on it. For the latter case, the memory allocated for a
740 * slab is used for:
741 *
742 * - The struct slab
743 * - One kmem_bufctl_t for each object
744 * - Padding to respect alignment of @align
745 * - @buffer_size bytes for each object
746 *
747 * If the slab management structure is off the slab, then the
748 * alignment will already be calculated into the size. Because
749 * the slabs are all pages aligned, the objects will be at the
750 * correct alignment when allocated.
751 */
752 if (flags & CFLGS_OFF_SLAB) {
753 mgmt_size = 0;
754 nr_objs = slab_size / buffer_size;
755
756 if (nr_objs > SLAB_LIMIT)
757 nr_objs = SLAB_LIMIT;
758 } else {
759 /*
760 * Ignore padding for the initial guess. The padding
761 * is at most @align-1 bytes, and @buffer_size is at
762 * least @align. In the worst case, this result will
763 * be one greater than the number of objects that fit
764 * into the memory allocation when taking the padding
765 * into account.
766 */
767 nr_objs = (slab_size - sizeof(struct slab)) /
768 (buffer_size + sizeof(kmem_bufctl_t));
769
770 /*
771 * This calculated number will be either the right
772 * amount, or one greater than what we want.
773 */
774 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
775 > slab_size)
776 nr_objs--;
777
778 if (nr_objs > SLAB_LIMIT)
779 nr_objs = SLAB_LIMIT;
780
781 mgmt_size = slab_mgmt_size(nr_objs, align);
782 }
783 *num = nr_objs;
784 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
785}
786
d40cee24 787#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 788
a737b3e2
AM
789static void __slab_error(const char *function, struct kmem_cache *cachep,
790 char *msg)
1da177e4
LT
791{
792 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 793 function, cachep->name, msg);
1da177e4
LT
794 dump_stack();
795}
796
3395ee05
PM
797/*
798 * By default on NUMA we use alien caches to stage the freeing of
799 * objects allocated from other nodes. This causes massive memory
800 * inefficiencies when using fake NUMA setup to split memory into a
801 * large number of small nodes, so it can be disabled on the command
802 * line
803 */
804
805static int use_alien_caches __read_mostly = 1;
806static int __init noaliencache_setup(char *s)
807{
808 use_alien_caches = 0;
809 return 1;
810}
811__setup("noaliencache", noaliencache_setup);
812
8fce4d8e
CL
813#ifdef CONFIG_NUMA
814/*
815 * Special reaping functions for NUMA systems called from cache_reap().
816 * These take care of doing round robin flushing of alien caches (containing
817 * objects freed on different nodes from which they were allocated) and the
818 * flushing of remote pcps by calling drain_node_pages.
819 */
1871e52c 820static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
821
822static void init_reap_node(int cpu)
823{
824 int node;
825
7d6e6d09 826 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 827 if (node == MAX_NUMNODES)
442295c9 828 node = first_node(node_online_map);
8fce4d8e 829
1871e52c 830 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
831}
832
833static void next_reap_node(void)
834{
909ea964 835 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 836
8fce4d8e
CL
837 node = next_node(node, node_online_map);
838 if (unlikely(node >= MAX_NUMNODES))
839 node = first_node(node_online_map);
909ea964 840 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
841}
842
843#else
844#define init_reap_node(cpu) do { } while (0)
845#define next_reap_node(void) do { } while (0)
846#endif
847
1da177e4
LT
848/*
849 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
850 * via the workqueue/eventd.
851 * Add the CPU number into the expiration time to minimize the possibility of
852 * the CPUs getting into lockstep and contending for the global cache chain
853 * lock.
854 */
897e679b 855static void __cpuinit start_cpu_timer(int cpu)
1da177e4 856{
1871e52c 857 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
858
859 /*
860 * When this gets called from do_initcalls via cpucache_init(),
861 * init_workqueues() has already run, so keventd will be setup
862 * at that time.
863 */
52bad64d 864 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 865 init_reap_node(cpu);
78b43536 866 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
2b284214
AV
867 schedule_delayed_work_on(cpu, reap_work,
868 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
869 }
870}
871
e498be7d 872static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 873 int batchcount, gfp_t gfp)
1da177e4 874{
b28a02de 875 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
876 struct array_cache *nc = NULL;
877
83b519e8 878 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
879 /*
880 * The array_cache structures contain pointers to free object.
881 * However, when such objects are allocated or transfered to another
882 * cache the pointers are not cleared and they could be counted as
883 * valid references during a kmemleak scan. Therefore, kmemleak must
884 * not scan such objects.
885 */
886 kmemleak_no_scan(nc);
1da177e4
LT
887 if (nc) {
888 nc->avail = 0;
889 nc->limit = entries;
890 nc->batchcount = batchcount;
891 nc->touched = 0;
e498be7d 892 spin_lock_init(&nc->lock);
1da177e4
LT
893 }
894 return nc;
895}
896
3ded175a
CL
897/*
898 * Transfer objects in one arraycache to another.
899 * Locking must be handled by the caller.
900 *
901 * Return the number of entries transferred.
902 */
903static int transfer_objects(struct array_cache *to,
904 struct array_cache *from, unsigned int max)
905{
906 /* Figure out how many entries to transfer */
732eacc0 907 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
908
909 if (!nr)
910 return 0;
911
912 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
913 sizeof(void *) *nr);
914
915 from->avail -= nr;
916 to->avail += nr;
3ded175a
CL
917 return nr;
918}
919
765c4507
CL
920#ifndef CONFIG_NUMA
921
922#define drain_alien_cache(cachep, alien) do { } while (0)
923#define reap_alien(cachep, l3) do { } while (0)
924
83b519e8 925static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
926{
927 return (struct array_cache **)BAD_ALIEN_MAGIC;
928}
929
930static inline void free_alien_cache(struct array_cache **ac_ptr)
931{
932}
933
934static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
935{
936 return 0;
937}
938
939static inline void *alternate_node_alloc(struct kmem_cache *cachep,
940 gfp_t flags)
941{
942 return NULL;
943}
944
8b98c169 945static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
946 gfp_t flags, int nodeid)
947{
948 return NULL;
949}
950
951#else /* CONFIG_NUMA */
952
8b98c169 953static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 954static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 955
83b519e8 956static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
957{
958 struct array_cache **ac_ptr;
8ef82866 959 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
960 int i;
961
962 if (limit > 1)
963 limit = 12;
f3186a9c 964 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
965 if (ac_ptr) {
966 for_each_node(i) {
f3186a9c 967 if (i == node || !node_online(i))
e498be7d 968 continue;
83b519e8 969 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 970 if (!ac_ptr[i]) {
cc550def 971 for (i--; i >= 0; i--)
e498be7d
CL
972 kfree(ac_ptr[i]);
973 kfree(ac_ptr);
974 return NULL;
975 }
976 }
977 }
978 return ac_ptr;
979}
980
5295a74c 981static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
982{
983 int i;
984
985 if (!ac_ptr)
986 return;
e498be7d 987 for_each_node(i)
b28a02de 988 kfree(ac_ptr[i]);
e498be7d
CL
989 kfree(ac_ptr);
990}
991
343e0d7a 992static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 993 struct array_cache *ac, int node)
e498be7d
CL
994{
995 struct kmem_list3 *rl3 = cachep->nodelists[node];
996
997 if (ac->avail) {
998 spin_lock(&rl3->list_lock);
e00946fe
CL
999 /*
1000 * Stuff objects into the remote nodes shared array first.
1001 * That way we could avoid the overhead of putting the objects
1002 * into the free lists and getting them back later.
1003 */
693f7d36 1004 if (rl3->shared)
1005 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1006
ff69416e 1007 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1008 ac->avail = 0;
1009 spin_unlock(&rl3->list_lock);
1010 }
1011}
1012
8fce4d8e
CL
1013/*
1014 * Called from cache_reap() to regularly drain alien caches round robin.
1015 */
1016static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1017{
909ea964 1018 int node = __this_cpu_read(slab_reap_node);
8fce4d8e
CL
1019
1020 if (l3->alien) {
1021 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1022
1023 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1024 __drain_alien_cache(cachep, ac, node);
1025 spin_unlock_irq(&ac->lock);
1026 }
1027 }
1028}
1029
a737b3e2
AM
1030static void drain_alien_cache(struct kmem_cache *cachep,
1031 struct array_cache **alien)
e498be7d 1032{
b28a02de 1033 int i = 0;
e498be7d
CL
1034 struct array_cache *ac;
1035 unsigned long flags;
1036
1037 for_each_online_node(i) {
4484ebf1 1038 ac = alien[i];
e498be7d
CL
1039 if (ac) {
1040 spin_lock_irqsave(&ac->lock, flags);
1041 __drain_alien_cache(cachep, ac, i);
1042 spin_unlock_irqrestore(&ac->lock, flags);
1043 }
1044 }
1045}
729bd0b7 1046
873623df 1047static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1048{
1049 struct slab *slabp = virt_to_slab(objp);
1050 int nodeid = slabp->nodeid;
1051 struct kmem_list3 *l3;
1052 struct array_cache *alien = NULL;
1ca4cb24
PE
1053 int node;
1054
7d6e6d09 1055 node = numa_mem_id();
729bd0b7
PE
1056
1057 /*
1058 * Make sure we are not freeing a object from another node to the array
1059 * cache on this cpu.
1060 */
62918a03 1061 if (likely(slabp->nodeid == node))
729bd0b7
PE
1062 return 0;
1063
1ca4cb24 1064 l3 = cachep->nodelists[node];
729bd0b7
PE
1065 STATS_INC_NODEFREES(cachep);
1066 if (l3->alien && l3->alien[nodeid]) {
1067 alien = l3->alien[nodeid];
873623df 1068 spin_lock(&alien->lock);
729bd0b7
PE
1069 if (unlikely(alien->avail == alien->limit)) {
1070 STATS_INC_ACOVERFLOW(cachep);
1071 __drain_alien_cache(cachep, alien, nodeid);
1072 }
1073 alien->entry[alien->avail++] = objp;
1074 spin_unlock(&alien->lock);
1075 } else {
1076 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1077 free_block(cachep, &objp, 1, nodeid);
1078 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1079 }
1080 return 1;
1081}
e498be7d
CL
1082#endif
1083
8f9f8d9e
DR
1084/*
1085 * Allocates and initializes nodelists for a node on each slab cache, used for
1086 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1087 * will be allocated off-node since memory is not yet online for the new node.
1088 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1089 * already in use.
1090 *
1091 * Must hold cache_chain_mutex.
1092 */
1093static int init_cache_nodelists_node(int node)
1094{
1095 struct kmem_cache *cachep;
1096 struct kmem_list3 *l3;
1097 const int memsize = sizeof(struct kmem_list3);
1098
1099 list_for_each_entry(cachep, &cache_chain, next) {
1100 /*
1101 * Set up the size64 kmemlist for cpu before we can
1102 * begin anything. Make sure some other cpu on this
1103 * node has not already allocated this
1104 */
1105 if (!cachep->nodelists[node]) {
1106 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1107 if (!l3)
1108 return -ENOMEM;
1109 kmem_list3_init(l3);
1110 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1111 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1112
1113 /*
1114 * The l3s don't come and go as CPUs come and
1115 * go. cache_chain_mutex is sufficient
1116 * protection here.
1117 */
1118 cachep->nodelists[node] = l3;
1119 }
1120
1121 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1122 cachep->nodelists[node]->free_limit =
1123 (1 + nr_cpus_node(node)) *
1124 cachep->batchcount + cachep->num;
1125 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1126 }
1127 return 0;
1128}
1129
fbf1e473
AM
1130static void __cpuinit cpuup_canceled(long cpu)
1131{
1132 struct kmem_cache *cachep;
1133 struct kmem_list3 *l3 = NULL;
7d6e6d09 1134 int node = cpu_to_mem(cpu);
a70f7302 1135 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473
AM
1136
1137 list_for_each_entry(cachep, &cache_chain, next) {
1138 struct array_cache *nc;
1139 struct array_cache *shared;
1140 struct array_cache **alien;
fbf1e473 1141
fbf1e473
AM
1142 /* cpu is dead; no one can alloc from it. */
1143 nc = cachep->array[cpu];
1144 cachep->array[cpu] = NULL;
1145 l3 = cachep->nodelists[node];
1146
1147 if (!l3)
1148 goto free_array_cache;
1149
1150 spin_lock_irq(&l3->list_lock);
1151
1152 /* Free limit for this kmem_list3 */
1153 l3->free_limit -= cachep->batchcount;
1154 if (nc)
1155 free_block(cachep, nc->entry, nc->avail, node);
1156
58463c1f 1157 if (!cpumask_empty(mask)) {
fbf1e473
AM
1158 spin_unlock_irq(&l3->list_lock);
1159 goto free_array_cache;
1160 }
1161
1162 shared = l3->shared;
1163 if (shared) {
1164 free_block(cachep, shared->entry,
1165 shared->avail, node);
1166 l3->shared = NULL;
1167 }
1168
1169 alien = l3->alien;
1170 l3->alien = NULL;
1171
1172 spin_unlock_irq(&l3->list_lock);
1173
1174 kfree(shared);
1175 if (alien) {
1176 drain_alien_cache(cachep, alien);
1177 free_alien_cache(alien);
1178 }
1179free_array_cache:
1180 kfree(nc);
1181 }
1182 /*
1183 * In the previous loop, all the objects were freed to
1184 * the respective cache's slabs, now we can go ahead and
1185 * shrink each nodelist to its limit.
1186 */
1187 list_for_each_entry(cachep, &cache_chain, next) {
1188 l3 = cachep->nodelists[node];
1189 if (!l3)
1190 continue;
1191 drain_freelist(cachep, l3, l3->free_objects);
1192 }
1193}
1194
1195static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1196{
343e0d7a 1197 struct kmem_cache *cachep;
e498be7d 1198 struct kmem_list3 *l3 = NULL;
7d6e6d09 1199 int node = cpu_to_mem(cpu);
8f9f8d9e 1200 int err;
1da177e4 1201
fbf1e473
AM
1202 /*
1203 * We need to do this right in the beginning since
1204 * alloc_arraycache's are going to use this list.
1205 * kmalloc_node allows us to add the slab to the right
1206 * kmem_list3 and not this cpu's kmem_list3
1207 */
8f9f8d9e
DR
1208 err = init_cache_nodelists_node(node);
1209 if (err < 0)
1210 goto bad;
fbf1e473
AM
1211
1212 /*
1213 * Now we can go ahead with allocating the shared arrays and
1214 * array caches
1215 */
1216 list_for_each_entry(cachep, &cache_chain, next) {
1217 struct array_cache *nc;
1218 struct array_cache *shared = NULL;
1219 struct array_cache **alien = NULL;
1220
1221 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1222 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1223 if (!nc)
1224 goto bad;
1225 if (cachep->shared) {
1226 shared = alloc_arraycache(node,
1227 cachep->shared * cachep->batchcount,
83b519e8 1228 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1229 if (!shared) {
1230 kfree(nc);
1da177e4 1231 goto bad;
12d00f6a 1232 }
fbf1e473
AM
1233 }
1234 if (use_alien_caches) {
83b519e8 1235 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1236 if (!alien) {
1237 kfree(shared);
1238 kfree(nc);
fbf1e473 1239 goto bad;
12d00f6a 1240 }
fbf1e473
AM
1241 }
1242 cachep->array[cpu] = nc;
1243 l3 = cachep->nodelists[node];
1244 BUG_ON(!l3);
1245
1246 spin_lock_irq(&l3->list_lock);
1247 if (!l3->shared) {
1248 /*
1249 * We are serialised from CPU_DEAD or
1250 * CPU_UP_CANCELLED by the cpucontrol lock
1251 */
1252 l3->shared = shared;
1253 shared = NULL;
1254 }
4484ebf1 1255#ifdef CONFIG_NUMA
fbf1e473
AM
1256 if (!l3->alien) {
1257 l3->alien = alien;
1258 alien = NULL;
1da177e4 1259 }
fbf1e473
AM
1260#endif
1261 spin_unlock_irq(&l3->list_lock);
1262 kfree(shared);
1263 free_alien_cache(alien);
1264 }
ce79ddc8
PE
1265 init_node_lock_keys(node);
1266
fbf1e473
AM
1267 return 0;
1268bad:
12d00f6a 1269 cpuup_canceled(cpu);
fbf1e473
AM
1270 return -ENOMEM;
1271}
1272
1273static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1274 unsigned long action, void *hcpu)
1275{
1276 long cpu = (long)hcpu;
1277 int err = 0;
1278
1279 switch (action) {
fbf1e473
AM
1280 case CPU_UP_PREPARE:
1281 case CPU_UP_PREPARE_FROZEN:
95402b38 1282 mutex_lock(&cache_chain_mutex);
fbf1e473 1283 err = cpuup_prepare(cpu);
95402b38 1284 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1285 break;
1286 case CPU_ONLINE:
8bb78442 1287 case CPU_ONLINE_FROZEN:
1da177e4
LT
1288 start_cpu_timer(cpu);
1289 break;
1290#ifdef CONFIG_HOTPLUG_CPU
5830c590 1291 case CPU_DOWN_PREPARE:
8bb78442 1292 case CPU_DOWN_PREPARE_FROZEN:
5830c590
CL
1293 /*
1294 * Shutdown cache reaper. Note that the cache_chain_mutex is
1295 * held so that if cache_reap() is invoked it cannot do
1296 * anything expensive but will only modify reap_work
1297 * and reschedule the timer.
1298 */
afe2c511 1299 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1300 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1301 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1302 break;
1303 case CPU_DOWN_FAILED:
8bb78442 1304 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1305 start_cpu_timer(cpu);
1306 break;
1da177e4 1307 case CPU_DEAD:
8bb78442 1308 case CPU_DEAD_FROZEN:
4484ebf1
RT
1309 /*
1310 * Even if all the cpus of a node are down, we don't free the
1311 * kmem_list3 of any cache. This to avoid a race between
1312 * cpu_down, and a kmalloc allocation from another cpu for
1313 * memory from the node of the cpu going down. The list3
1314 * structure is usually allocated from kmem_cache_create() and
1315 * gets destroyed at kmem_cache_destroy().
1316 */
183ff22b 1317 /* fall through */
8f5be20b 1318#endif
1da177e4 1319 case CPU_UP_CANCELED:
8bb78442 1320 case CPU_UP_CANCELED_FROZEN:
95402b38 1321 mutex_lock(&cache_chain_mutex);
fbf1e473 1322 cpuup_canceled(cpu);
fc0abb14 1323 mutex_unlock(&cache_chain_mutex);
1da177e4 1324 break;
1da177e4 1325 }
eac40680 1326 return notifier_from_errno(err);
1da177e4
LT
1327}
1328
74b85f37
CS
1329static struct notifier_block __cpuinitdata cpucache_notifier = {
1330 &cpuup_callback, NULL, 0
1331};
1da177e4 1332
8f9f8d9e
DR
1333#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1334/*
1335 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1336 * Returns -EBUSY if all objects cannot be drained so that the node is not
1337 * removed.
1338 *
1339 * Must hold cache_chain_mutex.
1340 */
1341static int __meminit drain_cache_nodelists_node(int node)
1342{
1343 struct kmem_cache *cachep;
1344 int ret = 0;
1345
1346 list_for_each_entry(cachep, &cache_chain, next) {
1347 struct kmem_list3 *l3;
1348
1349 l3 = cachep->nodelists[node];
1350 if (!l3)
1351 continue;
1352
1353 drain_freelist(cachep, l3, l3->free_objects);
1354
1355 if (!list_empty(&l3->slabs_full) ||
1356 !list_empty(&l3->slabs_partial)) {
1357 ret = -EBUSY;
1358 break;
1359 }
1360 }
1361 return ret;
1362}
1363
1364static int __meminit slab_memory_callback(struct notifier_block *self,
1365 unsigned long action, void *arg)
1366{
1367 struct memory_notify *mnb = arg;
1368 int ret = 0;
1369 int nid;
1370
1371 nid = mnb->status_change_nid;
1372 if (nid < 0)
1373 goto out;
1374
1375 switch (action) {
1376 case MEM_GOING_ONLINE:
1377 mutex_lock(&cache_chain_mutex);
1378 ret = init_cache_nodelists_node(nid);
1379 mutex_unlock(&cache_chain_mutex);
1380 break;
1381 case MEM_GOING_OFFLINE:
1382 mutex_lock(&cache_chain_mutex);
1383 ret = drain_cache_nodelists_node(nid);
1384 mutex_unlock(&cache_chain_mutex);
1385 break;
1386 case MEM_ONLINE:
1387 case MEM_OFFLINE:
1388 case MEM_CANCEL_ONLINE:
1389 case MEM_CANCEL_OFFLINE:
1390 break;
1391 }
1392out:
1393 return ret ? notifier_from_errno(ret) : NOTIFY_OK;
1394}
1395#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1396
e498be7d
CL
1397/*
1398 * swap the static kmem_list3 with kmalloced memory
1399 */
8f9f8d9e
DR
1400static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1401 int nodeid)
e498be7d
CL
1402{
1403 struct kmem_list3 *ptr;
1404
83b519e8 1405 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
e498be7d
CL
1406 BUG_ON(!ptr);
1407
e498be7d 1408 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1409 /*
1410 * Do not assume that spinlocks can be initialized via memcpy:
1411 */
1412 spin_lock_init(&ptr->list_lock);
1413
e498be7d
CL
1414 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1415 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1416}
1417
556a169d
PE
1418/*
1419 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1420 * size of kmem_list3.
1421 */
1422static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1423{
1424 int node;
1425
1426 for_each_online_node(node) {
1427 cachep->nodelists[node] = &initkmem_list3[index + node];
1428 cachep->nodelists[node]->next_reap = jiffies +
1429 REAPTIMEOUT_LIST3 +
1430 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1431 }
1432}
1433
a737b3e2
AM
1434/*
1435 * Initialisation. Called after the page allocator have been initialised and
1436 * before smp_init().
1da177e4
LT
1437 */
1438void __init kmem_cache_init(void)
1439{
1440 size_t left_over;
1441 struct cache_sizes *sizes;
1442 struct cache_names *names;
e498be7d 1443 int i;
07ed76b2 1444 int order;
1ca4cb24 1445 int node;
e498be7d 1446
b6e68bc1 1447 if (num_possible_nodes() == 1)
62918a03
SS
1448 use_alien_caches = 0;
1449
e498be7d
CL
1450 for (i = 0; i < NUM_INIT_LISTS; i++) {
1451 kmem_list3_init(&initkmem_list3[i]);
1452 if (i < MAX_NUMNODES)
1453 cache_cache.nodelists[i] = NULL;
1454 }
556a169d 1455 set_up_list3s(&cache_cache, CACHE_CACHE);
1da177e4
LT
1456
1457 /*
1458 * Fragmentation resistance on low memory - only use bigger
1459 * page orders on machines with more than 32MB of memory.
1460 */
4481374c 1461 if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
1da177e4
LT
1462 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1463
1da177e4
LT
1464 /* Bootstrap is tricky, because several objects are allocated
1465 * from caches that do not exist yet:
a737b3e2
AM
1466 * 1) initialize the cache_cache cache: it contains the struct
1467 * kmem_cache structures of all caches, except cache_cache itself:
1468 * cache_cache is statically allocated.
e498be7d
CL
1469 * Initially an __init data area is used for the head array and the
1470 * kmem_list3 structures, it's replaced with a kmalloc allocated
1471 * array at the end of the bootstrap.
1da177e4 1472 * 2) Create the first kmalloc cache.
343e0d7a 1473 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1474 * An __init data area is used for the head array.
1475 * 3) Create the remaining kmalloc caches, with minimally sized
1476 * head arrays.
1da177e4
LT
1477 * 4) Replace the __init data head arrays for cache_cache and the first
1478 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1479 * 5) Replace the __init data for kmem_list3 for cache_cache and
1480 * the other cache's with kmalloc allocated memory.
1481 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1482 */
1483
7d6e6d09 1484 node = numa_mem_id();
1ca4cb24 1485
1da177e4 1486 /* 1) create the cache_cache */
1da177e4
LT
1487 INIT_LIST_HEAD(&cache_chain);
1488 list_add(&cache_cache.next, &cache_chain);
1489 cache_cache.colour_off = cache_line_size();
1490 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
ec1f5eee 1491 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1da177e4 1492
8da3430d
ED
1493 /*
1494 * struct kmem_cache size depends on nr_node_ids, which
1495 * can be less than MAX_NUMNODES.
1496 */
1497 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1498 nr_node_ids * sizeof(struct kmem_list3 *);
1499#if DEBUG
1500 cache_cache.obj_size = cache_cache.buffer_size;
1501#endif
a737b3e2
AM
1502 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1503 cache_line_size());
6a2d7a95
ED
1504 cache_cache.reciprocal_buffer_size =
1505 reciprocal_value(cache_cache.buffer_size);
1da177e4 1506
07ed76b2
JS
1507 for (order = 0; order < MAX_ORDER; order++) {
1508 cache_estimate(order, cache_cache.buffer_size,
1509 cache_line_size(), 0, &left_over, &cache_cache.num);
1510 if (cache_cache.num)
1511 break;
1512 }
40094fa6 1513 BUG_ON(!cache_cache.num);
07ed76b2 1514 cache_cache.gfporder = order;
b28a02de 1515 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1516 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1517 sizeof(struct slab), cache_line_size());
1da177e4
LT
1518
1519 /* 2+3) create the kmalloc caches */
1520 sizes = malloc_sizes;
1521 names = cache_names;
1522
a737b3e2
AM
1523 /*
1524 * Initialize the caches that provide memory for the array cache and the
1525 * kmem_list3 structures first. Without this, further allocations will
1526 * bug.
e498be7d
CL
1527 */
1528
1529 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1530 sizes[INDEX_AC].cs_size,
1531 ARCH_KMALLOC_MINALIGN,
1532 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1533 NULL);
e498be7d 1534
a737b3e2 1535 if (INDEX_AC != INDEX_L3) {
e498be7d 1536 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1537 kmem_cache_create(names[INDEX_L3].name,
1538 sizes[INDEX_L3].cs_size,
1539 ARCH_KMALLOC_MINALIGN,
1540 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1541 NULL);
a737b3e2 1542 }
e498be7d 1543
e0a42726
IM
1544 slab_early_init = 0;
1545
1da177e4 1546 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1547 /*
1548 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1549 * This should be particularly beneficial on SMP boxes, as it
1550 * eliminates "false sharing".
1551 * Note for systems short on memory removing the alignment will
e498be7d
CL
1552 * allow tighter packing of the smaller caches.
1553 */
a737b3e2 1554 if (!sizes->cs_cachep) {
e498be7d 1555 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1556 sizes->cs_size,
1557 ARCH_KMALLOC_MINALIGN,
1558 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1559 NULL);
a737b3e2 1560 }
4b51d669
CL
1561#ifdef CONFIG_ZONE_DMA
1562 sizes->cs_dmacachep = kmem_cache_create(
1563 names->name_dma,
a737b3e2
AM
1564 sizes->cs_size,
1565 ARCH_KMALLOC_MINALIGN,
1566 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1567 SLAB_PANIC,
20c2df83 1568 NULL);
4b51d669 1569#endif
1da177e4
LT
1570 sizes++;
1571 names++;
1572 }
1573 /* 4) Replace the bootstrap head arrays */
1574 {
2b2d5493 1575 struct array_cache *ptr;
e498be7d 1576
83b519e8 1577 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1578
9a2dba4b
PE
1579 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1580 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1581 sizeof(struct arraycache_init));
2b2d5493
IM
1582 /*
1583 * Do not assume that spinlocks can be initialized via memcpy:
1584 */
1585 spin_lock_init(&ptr->lock);
1586
1da177e4 1587 cache_cache.array[smp_processor_id()] = ptr;
e498be7d 1588
83b519e8 1589 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1590
9a2dba4b 1591 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1592 != &initarray_generic.cache);
9a2dba4b 1593 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1594 sizeof(struct arraycache_init));
2b2d5493
IM
1595 /*
1596 * Do not assume that spinlocks can be initialized via memcpy:
1597 */
1598 spin_lock_init(&ptr->lock);
1599
e498be7d 1600 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1601 ptr;
1da177e4 1602 }
e498be7d
CL
1603 /* 5) Replace the bootstrap kmem_list3's */
1604 {
1ca4cb24
PE
1605 int nid;
1606
9c09a95c 1607 for_each_online_node(nid) {
ec1f5eee 1608 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1609
e498be7d 1610 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1611 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1612
1613 if (INDEX_AC != INDEX_L3) {
1614 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1615 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1616 }
1617 }
1618 }
1da177e4 1619
8429db5c 1620 g_cpucache_up = EARLY;
8429db5c
PE
1621}
1622
1623void __init kmem_cache_init_late(void)
1624{
1625 struct kmem_cache *cachep;
1626
8429db5c
PE
1627 /* 6) resize the head arrays to their final sizes */
1628 mutex_lock(&cache_chain_mutex);
1629 list_for_each_entry(cachep, &cache_chain, next)
1630 if (enable_cpucache(cachep, GFP_NOWAIT))
1631 BUG();
1632 mutex_unlock(&cache_chain_mutex);
056c6241 1633
1da177e4
LT
1634 /* Done! */
1635 g_cpucache_up = FULL;
1636
ec5a36f9
PE
1637 /* Annotate slab for lockdep -- annotate the malloc caches */
1638 init_lock_keys();
1639
a737b3e2
AM
1640 /*
1641 * Register a cpu startup notifier callback that initializes
1642 * cpu_cache_get for all new cpus
1da177e4
LT
1643 */
1644 register_cpu_notifier(&cpucache_notifier);
1da177e4 1645
8f9f8d9e
DR
1646#ifdef CONFIG_NUMA
1647 /*
1648 * Register a memory hotplug callback that initializes and frees
1649 * nodelists.
1650 */
1651 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1652#endif
1653
a737b3e2
AM
1654 /*
1655 * The reap timers are started later, with a module init call: That part
1656 * of the kernel is not yet operational.
1da177e4
LT
1657 */
1658}
1659
1660static int __init cpucache_init(void)
1661{
1662 int cpu;
1663
a737b3e2
AM
1664 /*
1665 * Register the timers that return unneeded pages to the page allocator
1da177e4 1666 */
e498be7d 1667 for_each_online_cpu(cpu)
a737b3e2 1668 start_cpu_timer(cpu);
1da177e4
LT
1669 return 0;
1670}
1da177e4
LT
1671__initcall(cpucache_init);
1672
1673/*
1674 * Interface to system's page allocator. No need to hold the cache-lock.
1675 *
1676 * If we requested dmaable memory, we will get it. Even if we
1677 * did not request dmaable memory, we might get it, but that
1678 * would be relatively rare and ignorable.
1679 */
343e0d7a 1680static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1681{
1682 struct page *page;
e1b6aa6f 1683 int nr_pages;
1da177e4
LT
1684 int i;
1685
d6fef9da 1686#ifndef CONFIG_MMU
e1b6aa6f
CH
1687 /*
1688 * Nommu uses slab's for process anonymous memory allocations, and thus
1689 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1690 */
e1b6aa6f 1691 flags |= __GFP_COMP;
d6fef9da 1692#endif
765c4507 1693
3c517a61 1694 flags |= cachep->gfpflags;
e12ba74d
MG
1695 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1696 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1697
517d0869 1698 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1da177e4
LT
1699 if (!page)
1700 return NULL;
1da177e4 1701
e1b6aa6f 1702 nr_pages = (1 << cachep->gfporder);
1da177e4 1703 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1704 add_zone_page_state(page_zone(page),
1705 NR_SLAB_RECLAIMABLE, nr_pages);
1706 else
1707 add_zone_page_state(page_zone(page),
1708 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1709 for (i = 0; i < nr_pages; i++)
1710 __SetPageSlab(page + i);
c175eea4 1711
b1eeab67
VN
1712 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1713 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1714
1715 if (cachep->ctor)
1716 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1717 else
1718 kmemcheck_mark_unallocated_pages(page, nr_pages);
1719 }
c175eea4 1720
e1b6aa6f 1721 return page_address(page);
1da177e4
LT
1722}
1723
1724/*
1725 * Interface to system's page release.
1726 */
343e0d7a 1727static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1728{
b28a02de 1729 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1730 struct page *page = virt_to_page(addr);
1731 const unsigned long nr_freed = i;
1732
b1eeab67 1733 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1734
972d1a7b
CL
1735 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1736 sub_zone_page_state(page_zone(page),
1737 NR_SLAB_RECLAIMABLE, nr_freed);
1738 else
1739 sub_zone_page_state(page_zone(page),
1740 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1741 while (i--) {
f205b2fe
NP
1742 BUG_ON(!PageSlab(page));
1743 __ClearPageSlab(page);
1da177e4
LT
1744 page++;
1745 }
1da177e4
LT
1746 if (current->reclaim_state)
1747 current->reclaim_state->reclaimed_slab += nr_freed;
1748 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1749}
1750
1751static void kmem_rcu_free(struct rcu_head *head)
1752{
b28a02de 1753 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1754 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1755
1756 kmem_freepages(cachep, slab_rcu->addr);
1757 if (OFF_SLAB(cachep))
1758 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1759}
1760
1761#if DEBUG
1762
1763#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1764static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1765 unsigned long caller)
1da177e4 1766{
3dafccf2 1767 int size = obj_size(cachep);
1da177e4 1768
3dafccf2 1769 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1770
b28a02de 1771 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1772 return;
1773
b28a02de
PE
1774 *addr++ = 0x12345678;
1775 *addr++ = caller;
1776 *addr++ = smp_processor_id();
1777 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1778 {
1779 unsigned long *sptr = &caller;
1780 unsigned long svalue;
1781
1782 while (!kstack_end(sptr)) {
1783 svalue = *sptr++;
1784 if (kernel_text_address(svalue)) {
b28a02de 1785 *addr++ = svalue;
1da177e4
LT
1786 size -= sizeof(unsigned long);
1787 if (size <= sizeof(unsigned long))
1788 break;
1789 }
1790 }
1791
1792 }
b28a02de 1793 *addr++ = 0x87654321;
1da177e4
LT
1794}
1795#endif
1796
343e0d7a 1797static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1798{
3dafccf2
MS
1799 int size = obj_size(cachep);
1800 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1801
1802 memset(addr, val, size);
b28a02de 1803 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1804}
1805
1806static void dump_line(char *data, int offset, int limit)
1807{
1808 int i;
aa83aa40
DJ
1809 unsigned char error = 0;
1810 int bad_count = 0;
1811
1da177e4 1812 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1813 for (i = 0; i < limit; i++) {
1814 if (data[offset + i] != POISON_FREE) {
1815 error = data[offset + i];
1816 bad_count++;
1817 }
b28a02de 1818 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1819 }
1da177e4 1820 printk("\n");
aa83aa40
DJ
1821
1822 if (bad_count == 1) {
1823 error ^= POISON_FREE;
1824 if (!(error & (error - 1))) {
1825 printk(KERN_ERR "Single bit error detected. Probably "
1826 "bad RAM.\n");
1827#ifdef CONFIG_X86
1828 printk(KERN_ERR "Run memtest86+ or a similar memory "
1829 "test tool.\n");
1830#else
1831 printk(KERN_ERR "Run a memory test tool.\n");
1832#endif
1833 }
1834 }
1da177e4
LT
1835}
1836#endif
1837
1838#if DEBUG
1839
343e0d7a 1840static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1841{
1842 int i, size;
1843 char *realobj;
1844
1845 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1846 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1847 *dbg_redzone1(cachep, objp),
1848 *dbg_redzone2(cachep, objp));
1da177e4
LT
1849 }
1850
1851 if (cachep->flags & SLAB_STORE_USER) {
1852 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1853 *dbg_userword(cachep, objp));
1da177e4 1854 print_symbol("(%s)",
a737b3e2 1855 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1856 printk("\n");
1857 }
3dafccf2
MS
1858 realobj = (char *)objp + obj_offset(cachep);
1859 size = obj_size(cachep);
b28a02de 1860 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1861 int limit;
1862 limit = 16;
b28a02de
PE
1863 if (i + limit > size)
1864 limit = size - i;
1da177e4
LT
1865 dump_line(realobj, i, limit);
1866 }
1867}
1868
343e0d7a 1869static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1870{
1871 char *realobj;
1872 int size, i;
1873 int lines = 0;
1874
3dafccf2
MS
1875 realobj = (char *)objp + obj_offset(cachep);
1876 size = obj_size(cachep);
1da177e4 1877
b28a02de 1878 for (i = 0; i < size; i++) {
1da177e4 1879 char exp = POISON_FREE;
b28a02de 1880 if (i == size - 1)
1da177e4
LT
1881 exp = POISON_END;
1882 if (realobj[i] != exp) {
1883 int limit;
1884 /* Mismatch ! */
1885 /* Print header */
1886 if (lines == 0) {
b28a02de 1887 printk(KERN_ERR
e94a40c5
DH
1888 "Slab corruption: %s start=%p, len=%d\n",
1889 cachep->name, realobj, size);
1da177e4
LT
1890 print_objinfo(cachep, objp, 0);
1891 }
1892 /* Hexdump the affected line */
b28a02de 1893 i = (i / 16) * 16;
1da177e4 1894 limit = 16;
b28a02de
PE
1895 if (i + limit > size)
1896 limit = size - i;
1da177e4
LT
1897 dump_line(realobj, i, limit);
1898 i += 16;
1899 lines++;
1900 /* Limit to 5 lines */
1901 if (lines > 5)
1902 break;
1903 }
1904 }
1905 if (lines != 0) {
1906 /* Print some data about the neighboring objects, if they
1907 * exist:
1908 */
6ed5eb22 1909 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1910 unsigned int objnr;
1da177e4 1911
8fea4e96 1912 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1913 if (objnr) {
8fea4e96 1914 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1915 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1916 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1917 realobj, size);
1da177e4
LT
1918 print_objinfo(cachep, objp, 2);
1919 }
b28a02de 1920 if (objnr + 1 < cachep->num) {
8fea4e96 1921 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1922 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1923 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1924 realobj, size);
1da177e4
LT
1925 print_objinfo(cachep, objp, 2);
1926 }
1927 }
1928}
1929#endif
1930
12dd36fa 1931#if DEBUG
e79aec29 1932static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1933{
1da177e4
LT
1934 int i;
1935 for (i = 0; i < cachep->num; i++) {
8fea4e96 1936 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1937
1938 if (cachep->flags & SLAB_POISON) {
1939#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1940 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1941 OFF_SLAB(cachep))
b28a02de 1942 kernel_map_pages(virt_to_page(objp),
a737b3e2 1943 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1944 else
1945 check_poison_obj(cachep, objp);
1946#else
1947 check_poison_obj(cachep, objp);
1948#endif
1949 }
1950 if (cachep->flags & SLAB_RED_ZONE) {
1951 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1952 slab_error(cachep, "start of a freed object "
b28a02de 1953 "was overwritten");
1da177e4
LT
1954 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1955 slab_error(cachep, "end of a freed object "
b28a02de 1956 "was overwritten");
1da177e4 1957 }
1da177e4 1958 }
12dd36fa 1959}
1da177e4 1960#else
e79aec29 1961static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1962{
12dd36fa 1963}
1da177e4
LT
1964#endif
1965
911851e6
RD
1966/**
1967 * slab_destroy - destroy and release all objects in a slab
1968 * @cachep: cache pointer being destroyed
1969 * @slabp: slab pointer being destroyed
1970 *
12dd36fa 1971 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1972 * Before calling the slab must have been unlinked from the cache. The
1973 * cache-lock is not held/needed.
12dd36fa 1974 */
343e0d7a 1975static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1976{
1977 void *addr = slabp->s_mem - slabp->colouroff;
1978
e79aec29 1979 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
1980 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1981 struct slab_rcu *slab_rcu;
1982
b28a02de 1983 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1984 slab_rcu->cachep = cachep;
1985 slab_rcu->addr = addr;
1986 call_rcu(&slab_rcu->head, kmem_rcu_free);
1987 } else {
1988 kmem_freepages(cachep, addr);
873623df
IM
1989 if (OFF_SLAB(cachep))
1990 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1991 }
1992}
1993
117f6eb1
CL
1994static void __kmem_cache_destroy(struct kmem_cache *cachep)
1995{
1996 int i;
1997 struct kmem_list3 *l3;
1998
1999 for_each_online_cpu(i)
2000 kfree(cachep->array[i]);
2001
2002 /* NUMA: free the list3 structures */
2003 for_each_online_node(i) {
2004 l3 = cachep->nodelists[i];
2005 if (l3) {
2006 kfree(l3->shared);
2007 free_alien_cache(l3->alien);
2008 kfree(l3);
2009 }
2010 }
2011 kmem_cache_free(&cache_cache, cachep);
2012}
2013
2014
4d268eba 2015/**
a70773dd
RD
2016 * calculate_slab_order - calculate size (page order) of slabs
2017 * @cachep: pointer to the cache that is being created
2018 * @size: size of objects to be created in this cache.
2019 * @align: required alignment for the objects.
2020 * @flags: slab allocation flags
2021 *
2022 * Also calculates the number of objects per slab.
4d268eba
PE
2023 *
2024 * This could be made much more intelligent. For now, try to avoid using
2025 * high order pages for slabs. When the gfp() functions are more friendly
2026 * towards high-order requests, this should be changed.
2027 */
a737b3e2 2028static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2029 size_t size, size_t align, unsigned long flags)
4d268eba 2030{
b1ab41c4 2031 unsigned long offslab_limit;
4d268eba 2032 size_t left_over = 0;
9888e6fa 2033 int gfporder;
4d268eba 2034
0aa817f0 2035 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2036 unsigned int num;
2037 size_t remainder;
2038
9888e6fa 2039 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2040 if (!num)
2041 continue;
9888e6fa 2042
b1ab41c4
IM
2043 if (flags & CFLGS_OFF_SLAB) {
2044 /*
2045 * Max number of objs-per-slab for caches which
2046 * use off-slab slabs. Needed to avoid a possible
2047 * looping condition in cache_grow().
2048 */
2049 offslab_limit = size - sizeof(struct slab);
2050 offslab_limit /= sizeof(kmem_bufctl_t);
2051
2052 if (num > offslab_limit)
2053 break;
2054 }
4d268eba 2055
9888e6fa 2056 /* Found something acceptable - save it away */
4d268eba 2057 cachep->num = num;
9888e6fa 2058 cachep->gfporder = gfporder;
4d268eba
PE
2059 left_over = remainder;
2060
f78bb8ad
LT
2061 /*
2062 * A VFS-reclaimable slab tends to have most allocations
2063 * as GFP_NOFS and we really don't want to have to be allocating
2064 * higher-order pages when we are unable to shrink dcache.
2065 */
2066 if (flags & SLAB_RECLAIM_ACCOUNT)
2067 break;
2068
4d268eba
PE
2069 /*
2070 * Large number of objects is good, but very large slabs are
2071 * currently bad for the gfp()s.
2072 */
9888e6fa 2073 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
2074 break;
2075
9888e6fa
LT
2076 /*
2077 * Acceptable internal fragmentation?
2078 */
a737b3e2 2079 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2080 break;
2081 }
2082 return left_over;
2083}
2084
83b519e8 2085static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2086{
2ed3a4ef 2087 if (g_cpucache_up == FULL)
83b519e8 2088 return enable_cpucache(cachep, gfp);
2ed3a4ef 2089
f30cf7d1
PE
2090 if (g_cpucache_up == NONE) {
2091 /*
2092 * Note: the first kmem_cache_create must create the cache
2093 * that's used by kmalloc(24), otherwise the creation of
2094 * further caches will BUG().
2095 */
2096 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2097
2098 /*
2099 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2100 * the first cache, then we need to set up all its list3s,
2101 * otherwise the creation of further caches will BUG().
2102 */
2103 set_up_list3s(cachep, SIZE_AC);
2104 if (INDEX_AC == INDEX_L3)
2105 g_cpucache_up = PARTIAL_L3;
2106 else
2107 g_cpucache_up = PARTIAL_AC;
2108 } else {
2109 cachep->array[smp_processor_id()] =
83b519e8 2110 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1
PE
2111
2112 if (g_cpucache_up == PARTIAL_AC) {
2113 set_up_list3s(cachep, SIZE_L3);
2114 g_cpucache_up = PARTIAL_L3;
2115 } else {
2116 int node;
556a169d 2117 for_each_online_node(node) {
f30cf7d1
PE
2118 cachep->nodelists[node] =
2119 kmalloc_node(sizeof(struct kmem_list3),
eb91f1d0 2120 gfp, node);
f30cf7d1
PE
2121 BUG_ON(!cachep->nodelists[node]);
2122 kmem_list3_init(cachep->nodelists[node]);
2123 }
2124 }
2125 }
7d6e6d09 2126 cachep->nodelists[numa_mem_id()]->next_reap =
f30cf7d1
PE
2127 jiffies + REAPTIMEOUT_LIST3 +
2128 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2129
2130 cpu_cache_get(cachep)->avail = 0;
2131 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2132 cpu_cache_get(cachep)->batchcount = 1;
2133 cpu_cache_get(cachep)->touched = 0;
2134 cachep->batchcount = 1;
2135 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2136 return 0;
f30cf7d1
PE
2137}
2138
1da177e4
LT
2139/**
2140 * kmem_cache_create - Create a cache.
2141 * @name: A string which is used in /proc/slabinfo to identify this cache.
2142 * @size: The size of objects to be created in this cache.
2143 * @align: The required alignment for the objects.
2144 * @flags: SLAB flags
2145 * @ctor: A constructor for the objects.
1da177e4
LT
2146 *
2147 * Returns a ptr to the cache on success, NULL on failure.
2148 * Cannot be called within a int, but can be interrupted.
20c2df83 2149 * The @ctor is run when new pages are allocated by the cache.
1da177e4
LT
2150 *
2151 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2152 * the module calling this has to destroy the cache before getting unloaded.
2153 *
1da177e4
LT
2154 * The flags are
2155 *
2156 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2157 * to catch references to uninitialised memory.
2158 *
2159 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2160 * for buffer overruns.
2161 *
1da177e4
LT
2162 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2163 * cacheline. This can be beneficial if you're counting cycles as closely
2164 * as davem.
2165 */
343e0d7a 2166struct kmem_cache *
1da177e4 2167kmem_cache_create (const char *name, size_t size, size_t align,
51cc5068 2168 unsigned long flags, void (*ctor)(void *))
1da177e4
LT
2169{
2170 size_t left_over, slab_size, ralign;
7a7c381d 2171 struct kmem_cache *cachep = NULL, *pc;
83b519e8 2172 gfp_t gfp;
1da177e4
LT
2173
2174 /*
2175 * Sanity checks... these are all serious usage bugs.
2176 */
a737b3e2 2177 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
20c2df83 2178 size > KMALLOC_MAX_SIZE) {
d40cee24 2179 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
a737b3e2 2180 name);
b28a02de
PE
2181 BUG();
2182 }
1da177e4 2183
f0188f47 2184 /*
8f5be20b 2185 * We use cache_chain_mutex to ensure a consistent view of
174596a0 2186 * cpu_online_mask as well. Please see cpuup_callback
f0188f47 2187 */
83b519e8
PE
2188 if (slab_is_available()) {
2189 get_online_cpus();
2190 mutex_lock(&cache_chain_mutex);
2191 }
4f12bb4f 2192
7a7c381d 2193 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2194 char tmp;
2195 int res;
2196
2197 /*
2198 * This happens when the module gets unloaded and doesn't
2199 * destroy its slab cache and no-one else reuses the vmalloc
2200 * area of the module. Print a warning.
2201 */
138ae663 2202 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2203 if (res) {
b4169525 2204 printk(KERN_ERR
2205 "SLAB: cache with size %d has lost its name\n",
3dafccf2 2206 pc->buffer_size);
4f12bb4f
AM
2207 continue;
2208 }
2209
b28a02de 2210 if (!strcmp(pc->name, name)) {
b4169525 2211 printk(KERN_ERR
2212 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2213 dump_stack();
2214 goto oops;
2215 }
2216 }
2217
1da177e4
LT
2218#if DEBUG
2219 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2220#if FORCED_DEBUG
2221 /*
2222 * Enable redzoning and last user accounting, except for caches with
2223 * large objects, if the increased size would increase the object size
2224 * above the next power of two: caches with object sizes just above a
2225 * power of two have a significant amount of internal fragmentation.
2226 */
87a927c7
DW
2227 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2228 2 * sizeof(unsigned long long)))
b28a02de 2229 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2230 if (!(flags & SLAB_DESTROY_BY_RCU))
2231 flags |= SLAB_POISON;
2232#endif
2233 if (flags & SLAB_DESTROY_BY_RCU)
2234 BUG_ON(flags & SLAB_POISON);
2235#endif
1da177e4 2236 /*
a737b3e2
AM
2237 * Always checks flags, a caller might be expecting debug support which
2238 * isn't available.
1da177e4 2239 */
40094fa6 2240 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2241
a737b3e2
AM
2242 /*
2243 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2244 * unaligned accesses for some archs when redzoning is used, and makes
2245 * sure any on-slab bufctl's are also correctly aligned.
2246 */
b28a02de
PE
2247 if (size & (BYTES_PER_WORD - 1)) {
2248 size += (BYTES_PER_WORD - 1);
2249 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2250 }
2251
a737b3e2
AM
2252 /* calculate the final buffer alignment: */
2253
1da177e4
LT
2254 /* 1) arch recommendation: can be overridden for debug */
2255 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2256 /*
2257 * Default alignment: as specified by the arch code. Except if
2258 * an object is really small, then squeeze multiple objects into
2259 * one cacheline.
1da177e4
LT
2260 */
2261 ralign = cache_line_size();
b28a02de 2262 while (size <= ralign / 2)
1da177e4
LT
2263 ralign /= 2;
2264 } else {
2265 ralign = BYTES_PER_WORD;
2266 }
ca5f9703
PE
2267
2268 /*
87a927c7
DW
2269 * Redzoning and user store require word alignment or possibly larger.
2270 * Note this will be overridden by architecture or caller mandated
2271 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2272 */
87a927c7
DW
2273 if (flags & SLAB_STORE_USER)
2274 ralign = BYTES_PER_WORD;
2275
2276 if (flags & SLAB_RED_ZONE) {
2277 ralign = REDZONE_ALIGN;
2278 /* If redzoning, ensure that the second redzone is suitably
2279 * aligned, by adjusting the object size accordingly. */
2280 size += REDZONE_ALIGN - 1;
2281 size &= ~(REDZONE_ALIGN - 1);
2282 }
ca5f9703 2283
a44b56d3 2284 /* 2) arch mandated alignment */
1da177e4
LT
2285 if (ralign < ARCH_SLAB_MINALIGN) {
2286 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2287 }
a44b56d3 2288 /* 3) caller mandated alignment */
1da177e4
LT
2289 if (ralign < align) {
2290 ralign = align;
1da177e4 2291 }
3ff84a7f
PE
2292 /* disable debug if necessary */
2293 if (ralign > __alignof__(unsigned long long))
a44b56d3 2294 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2295 /*
ca5f9703 2296 * 4) Store it.
1da177e4
LT
2297 */
2298 align = ralign;
2299
83b519e8
PE
2300 if (slab_is_available())
2301 gfp = GFP_KERNEL;
2302 else
2303 gfp = GFP_NOWAIT;
2304
1da177e4 2305 /* Get cache's description obj. */
83b519e8 2306 cachep = kmem_cache_zalloc(&cache_cache, gfp);
1da177e4 2307 if (!cachep)
4f12bb4f 2308 goto oops;
1da177e4
LT
2309
2310#if DEBUG
3dafccf2 2311 cachep->obj_size = size;
1da177e4 2312
ca5f9703
PE
2313 /*
2314 * Both debugging options require word-alignment which is calculated
2315 * into align above.
2316 */
1da177e4 2317 if (flags & SLAB_RED_ZONE) {
1da177e4 2318 /* add space for red zone words */
3ff84a7f
PE
2319 cachep->obj_offset += sizeof(unsigned long long);
2320 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2321 }
2322 if (flags & SLAB_STORE_USER) {
ca5f9703 2323 /* user store requires one word storage behind the end of
87a927c7
DW
2324 * the real object. But if the second red zone needs to be
2325 * aligned to 64 bits, we must allow that much space.
1da177e4 2326 */
87a927c7
DW
2327 if (flags & SLAB_RED_ZONE)
2328 size += REDZONE_ALIGN;
2329 else
2330 size += BYTES_PER_WORD;
1da177e4
LT
2331 }
2332#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2333 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
1ab335d8
CO
2334 && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2335 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
1da177e4
LT
2336 size = PAGE_SIZE;
2337 }
2338#endif
2339#endif
2340
e0a42726
IM
2341 /*
2342 * Determine if the slab management is 'on' or 'off' slab.
2343 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2344 * it too early on. Always use on-slab management when
2345 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2346 */
e7cb55b9
CM
2347 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2348 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2349 /*
2350 * Size is large, assume best to place the slab management obj
2351 * off-slab (should allow better packing of objs).
2352 */
2353 flags |= CFLGS_OFF_SLAB;
2354
2355 size = ALIGN(size, align);
2356
f78bb8ad 2357 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2358
2359 if (!cachep->num) {
b4169525 2360 printk(KERN_ERR
2361 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4
LT
2362 kmem_cache_free(&cache_cache, cachep);
2363 cachep = NULL;
4f12bb4f 2364 goto oops;
1da177e4 2365 }
b28a02de
PE
2366 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2367 + sizeof(struct slab), align);
1da177e4
LT
2368
2369 /*
2370 * If the slab has been placed off-slab, and we have enough space then
2371 * move it on-slab. This is at the expense of any extra colouring.
2372 */
2373 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2374 flags &= ~CFLGS_OFF_SLAB;
2375 left_over -= slab_size;
2376 }
2377
2378 if (flags & CFLGS_OFF_SLAB) {
2379 /* really off slab. No need for manual alignment */
b28a02de
PE
2380 slab_size =
2381 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2382
2383#ifdef CONFIG_PAGE_POISONING
2384 /* If we're going to use the generic kernel_map_pages()
2385 * poisoning, then it's going to smash the contents of
2386 * the redzone and userword anyhow, so switch them off.
2387 */
2388 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2389 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2390#endif
1da177e4
LT
2391 }
2392
2393 cachep->colour_off = cache_line_size();
2394 /* Offset must be a multiple of the alignment. */
2395 if (cachep->colour_off < align)
2396 cachep->colour_off = align;
b28a02de 2397 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2398 cachep->slab_size = slab_size;
2399 cachep->flags = flags;
2400 cachep->gfpflags = 0;
4b51d669 2401 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2402 cachep->gfpflags |= GFP_DMA;
3dafccf2 2403 cachep->buffer_size = size;
6a2d7a95 2404 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2405
e5ac9c5a 2406 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2407 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2408 /*
2409 * This is a possibility for one of the malloc_sizes caches.
2410 * But since we go off slab only for object size greater than
2411 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2412 * this should not happen at all.
2413 * But leave a BUG_ON for some lucky dude.
2414 */
6cb8f913 2415 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2416 }
1da177e4 2417 cachep->ctor = ctor;
1da177e4
LT
2418 cachep->name = name;
2419
83b519e8 2420 if (setup_cpu_cache(cachep, gfp)) {
2ed3a4ef
CL
2421 __kmem_cache_destroy(cachep);
2422 cachep = NULL;
2423 goto oops;
2424 }
1da177e4 2425
1da177e4
LT
2426 /* cache setup completed, link it into the list */
2427 list_add(&cachep->next, &cache_chain);
a737b3e2 2428oops:
1da177e4
LT
2429 if (!cachep && (flags & SLAB_PANIC))
2430 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2431 name);
83b519e8
PE
2432 if (slab_is_available()) {
2433 mutex_unlock(&cache_chain_mutex);
2434 put_online_cpus();
2435 }
1da177e4
LT
2436 return cachep;
2437}
2438EXPORT_SYMBOL(kmem_cache_create);
2439
2440#if DEBUG
2441static void check_irq_off(void)
2442{
2443 BUG_ON(!irqs_disabled());
2444}
2445
2446static void check_irq_on(void)
2447{
2448 BUG_ON(irqs_disabled());
2449}
2450
343e0d7a 2451static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2452{
2453#ifdef CONFIG_SMP
2454 check_irq_off();
7d6e6d09 2455 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
1da177e4
LT
2456#endif
2457}
e498be7d 2458
343e0d7a 2459static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2460{
2461#ifdef CONFIG_SMP
2462 check_irq_off();
2463 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2464#endif
2465}
2466
1da177e4
LT
2467#else
2468#define check_irq_off() do { } while(0)
2469#define check_irq_on() do { } while(0)
2470#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2471#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2472#endif
2473
aab2207c
CL
2474static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2475 struct array_cache *ac,
2476 int force, int node);
2477
1da177e4
LT
2478static void do_drain(void *arg)
2479{
a737b3e2 2480 struct kmem_cache *cachep = arg;
1da177e4 2481 struct array_cache *ac;
7d6e6d09 2482 int node = numa_mem_id();
1da177e4
LT
2483
2484 check_irq_off();
9a2dba4b 2485 ac = cpu_cache_get(cachep);
ff69416e
CL
2486 spin_lock(&cachep->nodelists[node]->list_lock);
2487 free_block(cachep, ac->entry, ac->avail, node);
2488 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2489 ac->avail = 0;
2490}
2491
343e0d7a 2492static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2493{
e498be7d
CL
2494 struct kmem_list3 *l3;
2495 int node;
2496
15c8b6c1 2497 on_each_cpu(do_drain, cachep, 1);
1da177e4 2498 check_irq_on();
b28a02de 2499 for_each_online_node(node) {
e498be7d 2500 l3 = cachep->nodelists[node];
a4523a8b
RD
2501 if (l3 && l3->alien)
2502 drain_alien_cache(cachep, l3->alien);
2503 }
2504
2505 for_each_online_node(node) {
2506 l3 = cachep->nodelists[node];
2507 if (l3)
aab2207c 2508 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2509 }
1da177e4
LT
2510}
2511
ed11d9eb
CL
2512/*
2513 * Remove slabs from the list of free slabs.
2514 * Specify the number of slabs to drain in tofree.
2515 *
2516 * Returns the actual number of slabs released.
2517 */
2518static int drain_freelist(struct kmem_cache *cache,
2519 struct kmem_list3 *l3, int tofree)
1da177e4 2520{
ed11d9eb
CL
2521 struct list_head *p;
2522 int nr_freed;
1da177e4 2523 struct slab *slabp;
1da177e4 2524
ed11d9eb
CL
2525 nr_freed = 0;
2526 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2527
ed11d9eb 2528 spin_lock_irq(&l3->list_lock);
e498be7d 2529 p = l3->slabs_free.prev;
ed11d9eb
CL
2530 if (p == &l3->slabs_free) {
2531 spin_unlock_irq(&l3->list_lock);
2532 goto out;
2533 }
1da177e4 2534
ed11d9eb 2535 slabp = list_entry(p, struct slab, list);
1da177e4 2536#if DEBUG
40094fa6 2537 BUG_ON(slabp->inuse);
1da177e4
LT
2538#endif
2539 list_del(&slabp->list);
ed11d9eb
CL
2540 /*
2541 * Safe to drop the lock. The slab is no longer linked
2542 * to the cache.
2543 */
2544 l3->free_objects -= cache->num;
e498be7d 2545 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2546 slab_destroy(cache, slabp);
2547 nr_freed++;
1da177e4 2548 }
ed11d9eb
CL
2549out:
2550 return nr_freed;
1da177e4
LT
2551}
2552
8f5be20b 2553/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2554static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2555{
2556 int ret = 0, i = 0;
2557 struct kmem_list3 *l3;
2558
2559 drain_cpu_caches(cachep);
2560
2561 check_irq_on();
2562 for_each_online_node(i) {
2563 l3 = cachep->nodelists[i];
ed11d9eb
CL
2564 if (!l3)
2565 continue;
2566
2567 drain_freelist(cachep, l3, l3->free_objects);
2568
2569 ret += !list_empty(&l3->slabs_full) ||
2570 !list_empty(&l3->slabs_partial);
e498be7d
CL
2571 }
2572 return (ret ? 1 : 0);
2573}
2574
1da177e4
LT
2575/**
2576 * kmem_cache_shrink - Shrink a cache.
2577 * @cachep: The cache to shrink.
2578 *
2579 * Releases as many slabs as possible for a cache.
2580 * To help debugging, a zero exit status indicates all slabs were released.
2581 */
343e0d7a 2582int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2583{
8f5be20b 2584 int ret;
40094fa6 2585 BUG_ON(!cachep || in_interrupt());
1da177e4 2586
95402b38 2587 get_online_cpus();
8f5be20b
RT
2588 mutex_lock(&cache_chain_mutex);
2589 ret = __cache_shrink(cachep);
2590 mutex_unlock(&cache_chain_mutex);
95402b38 2591 put_online_cpus();
8f5be20b 2592 return ret;
1da177e4
LT
2593}
2594EXPORT_SYMBOL(kmem_cache_shrink);
2595
2596/**
2597 * kmem_cache_destroy - delete a cache
2598 * @cachep: the cache to destroy
2599 *
72fd4a35 2600 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2601 *
2602 * It is expected this function will be called by a module when it is
2603 * unloaded. This will remove the cache completely, and avoid a duplicate
2604 * cache being allocated each time a module is loaded and unloaded, if the
2605 * module doesn't have persistent in-kernel storage across loads and unloads.
2606 *
2607 * The cache must be empty before calling this function.
2608 *
2609 * The caller must guarantee that noone will allocate memory from the cache
2610 * during the kmem_cache_destroy().
2611 */
133d205a 2612void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2613{
40094fa6 2614 BUG_ON(!cachep || in_interrupt());
1da177e4 2615
1da177e4 2616 /* Find the cache in the chain of caches. */
95402b38 2617 get_online_cpus();
fc0abb14 2618 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2619 /*
2620 * the chain is never empty, cache_cache is never destroyed
2621 */
2622 list_del(&cachep->next);
1da177e4
LT
2623 if (__cache_shrink(cachep)) {
2624 slab_error(cachep, "Can't free all objects");
b28a02de 2625 list_add(&cachep->next, &cache_chain);
fc0abb14 2626 mutex_unlock(&cache_chain_mutex);
95402b38 2627 put_online_cpus();
133d205a 2628 return;
1da177e4
LT
2629 }
2630
2631 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
7ed9f7e5 2632 rcu_barrier();
1da177e4 2633
117f6eb1 2634 __kmem_cache_destroy(cachep);
8f5be20b 2635 mutex_unlock(&cache_chain_mutex);
95402b38 2636 put_online_cpus();
1da177e4
LT
2637}
2638EXPORT_SYMBOL(kmem_cache_destroy);
2639
e5ac9c5a
RT
2640/*
2641 * Get the memory for a slab management obj.
2642 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2643 * always come from malloc_sizes caches. The slab descriptor cannot
2644 * come from the same cache which is getting created because,
2645 * when we are searching for an appropriate cache for these
2646 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2647 * If we are creating a malloc_sizes cache here it would not be visible to
2648 * kmem_find_general_cachep till the initialization is complete.
2649 * Hence we cannot have slabp_cache same as the original cache.
2650 */
343e0d7a 2651static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2652 int colour_off, gfp_t local_flags,
2653 int nodeid)
1da177e4
LT
2654{
2655 struct slab *slabp;
b28a02de 2656
1da177e4
LT
2657 if (OFF_SLAB(cachep)) {
2658 /* Slab management obj is off-slab. */
5b74ada7 2659 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2660 local_flags, nodeid);
d5cff635
CM
2661 /*
2662 * If the first object in the slab is leaked (it's allocated
2663 * but no one has a reference to it), we want to make sure
2664 * kmemleak does not treat the ->s_mem pointer as a reference
2665 * to the object. Otherwise we will not report the leak.
2666 */
c017b4be
CM
2667 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2668 local_flags);
1da177e4
LT
2669 if (!slabp)
2670 return NULL;
2671 } else {
b28a02de 2672 slabp = objp + colour_off;
1da177e4
LT
2673 colour_off += cachep->slab_size;
2674 }
2675 slabp->inuse = 0;
2676 slabp->colouroff = colour_off;
b28a02de 2677 slabp->s_mem = objp + colour_off;
5b74ada7 2678 slabp->nodeid = nodeid;
e51bfd0a 2679 slabp->free = 0;
1da177e4
LT
2680 return slabp;
2681}
2682
2683static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2684{
b28a02de 2685 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2686}
2687
343e0d7a 2688static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2689 struct slab *slabp)
1da177e4
LT
2690{
2691 int i;
2692
2693 for (i = 0; i < cachep->num; i++) {
8fea4e96 2694 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2695#if DEBUG
2696 /* need to poison the objs? */
2697 if (cachep->flags & SLAB_POISON)
2698 poison_obj(cachep, objp, POISON_FREE);
2699 if (cachep->flags & SLAB_STORE_USER)
2700 *dbg_userword(cachep, objp) = NULL;
2701
2702 if (cachep->flags & SLAB_RED_ZONE) {
2703 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2704 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2705 }
2706 /*
a737b3e2
AM
2707 * Constructors are not allowed to allocate memory from the same
2708 * cache which they are a constructor for. Otherwise, deadlock.
2709 * They must also be threaded.
1da177e4
LT
2710 */
2711 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2712 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2713
2714 if (cachep->flags & SLAB_RED_ZONE) {
2715 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2716 slab_error(cachep, "constructor overwrote the"
b28a02de 2717 " end of an object");
1da177e4
LT
2718 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2719 slab_error(cachep, "constructor overwrote the"
b28a02de 2720 " start of an object");
1da177e4 2721 }
a737b3e2
AM
2722 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2723 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2724 kernel_map_pages(virt_to_page(objp),
3dafccf2 2725 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2726#else
2727 if (cachep->ctor)
51cc5068 2728 cachep->ctor(objp);
1da177e4 2729#endif
b28a02de 2730 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2731 }
b28a02de 2732 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2733}
2734
343e0d7a 2735static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2736{
4b51d669
CL
2737 if (CONFIG_ZONE_DMA_FLAG) {
2738 if (flags & GFP_DMA)
2739 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2740 else
2741 BUG_ON(cachep->gfpflags & GFP_DMA);
2742 }
1da177e4
LT
2743}
2744
a737b3e2
AM
2745static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2746 int nodeid)
78d382d7 2747{
8fea4e96 2748 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2749 kmem_bufctl_t next;
2750
2751 slabp->inuse++;
2752 next = slab_bufctl(slabp)[slabp->free];
2753#if DEBUG
2754 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2755 WARN_ON(slabp->nodeid != nodeid);
2756#endif
2757 slabp->free = next;
2758
2759 return objp;
2760}
2761
a737b3e2
AM
2762static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2763 void *objp, int nodeid)
78d382d7 2764{
8fea4e96 2765 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2766
2767#if DEBUG
2768 /* Verify that the slab belongs to the intended node */
2769 WARN_ON(slabp->nodeid != nodeid);
2770
871751e2 2771 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2772 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2773 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2774 BUG();
2775 }
2776#endif
2777 slab_bufctl(slabp)[objnr] = slabp->free;
2778 slabp->free = objnr;
2779 slabp->inuse--;
2780}
2781
4776874f
PE
2782/*
2783 * Map pages beginning at addr to the given cache and slab. This is required
2784 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2785 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2786 */
2787static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2788 void *addr)
1da177e4 2789{
4776874f 2790 int nr_pages;
1da177e4
LT
2791 struct page *page;
2792
4776874f 2793 page = virt_to_page(addr);
84097518 2794
4776874f 2795 nr_pages = 1;
84097518 2796 if (likely(!PageCompound(page)))
4776874f
PE
2797 nr_pages <<= cache->gfporder;
2798
1da177e4 2799 do {
4776874f
PE
2800 page_set_cache(page, cache);
2801 page_set_slab(page, slab);
1da177e4 2802 page++;
4776874f 2803 } while (--nr_pages);
1da177e4
LT
2804}
2805
2806/*
2807 * Grow (by 1) the number of slabs within a cache. This is called by
2808 * kmem_cache_alloc() when there are no active objs left in a cache.
2809 */
3c517a61
CL
2810static int cache_grow(struct kmem_cache *cachep,
2811 gfp_t flags, int nodeid, void *objp)
1da177e4 2812{
b28a02de 2813 struct slab *slabp;
b28a02de
PE
2814 size_t offset;
2815 gfp_t local_flags;
e498be7d 2816 struct kmem_list3 *l3;
1da177e4 2817
a737b3e2
AM
2818 /*
2819 * Be lazy and only check for valid flags here, keeping it out of the
2820 * critical path in kmem_cache_alloc().
1da177e4 2821 */
6cb06229
CL
2822 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2823 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2824
2e1217cf 2825 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2826 check_irq_off();
2e1217cf
RT
2827 l3 = cachep->nodelists[nodeid];
2828 spin_lock(&l3->list_lock);
1da177e4
LT
2829
2830 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2831 offset = l3->colour_next;
2832 l3->colour_next++;
2833 if (l3->colour_next >= cachep->colour)
2834 l3->colour_next = 0;
2835 spin_unlock(&l3->list_lock);
1da177e4 2836
2e1217cf 2837 offset *= cachep->colour_off;
1da177e4
LT
2838
2839 if (local_flags & __GFP_WAIT)
2840 local_irq_enable();
2841
2842 /*
2843 * The test for missing atomic flag is performed here, rather than
2844 * the more obvious place, simply to reduce the critical path length
2845 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2846 * will eventually be caught here (where it matters).
2847 */
2848 kmem_flagcheck(cachep, flags);
2849
a737b3e2
AM
2850 /*
2851 * Get mem for the objs. Attempt to allocate a physical page from
2852 * 'nodeid'.
e498be7d 2853 */
3c517a61 2854 if (!objp)
b8c1c5da 2855 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2856 if (!objp)
1da177e4
LT
2857 goto failed;
2858
2859 /* Get slab management. */
3c517a61 2860 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2861 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2862 if (!slabp)
1da177e4
LT
2863 goto opps1;
2864
4776874f 2865 slab_map_pages(cachep, slabp, objp);
1da177e4 2866
a35afb83 2867 cache_init_objs(cachep, slabp);
1da177e4
LT
2868
2869 if (local_flags & __GFP_WAIT)
2870 local_irq_disable();
2871 check_irq_off();
e498be7d 2872 spin_lock(&l3->list_lock);
1da177e4
LT
2873
2874 /* Make slab active. */
e498be7d 2875 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2876 STATS_INC_GROWN(cachep);
e498be7d
CL
2877 l3->free_objects += cachep->num;
2878 spin_unlock(&l3->list_lock);
1da177e4 2879 return 1;
a737b3e2 2880opps1:
1da177e4 2881 kmem_freepages(cachep, objp);
a737b3e2 2882failed:
1da177e4
LT
2883 if (local_flags & __GFP_WAIT)
2884 local_irq_disable();
2885 return 0;
2886}
2887
2888#if DEBUG
2889
2890/*
2891 * Perform extra freeing checks:
2892 * - detect bad pointers.
2893 * - POISON/RED_ZONE checking
1da177e4
LT
2894 */
2895static void kfree_debugcheck(const void *objp)
2896{
1da177e4
LT
2897 if (!virt_addr_valid(objp)) {
2898 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2899 (unsigned long)objp);
2900 BUG();
1da177e4 2901 }
1da177e4
LT
2902}
2903
58ce1fd5
PE
2904static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2905{
b46b8f19 2906 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2907
2908 redzone1 = *dbg_redzone1(cache, obj);
2909 redzone2 = *dbg_redzone2(cache, obj);
2910
2911 /*
2912 * Redzone is ok.
2913 */
2914 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2915 return;
2916
2917 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2918 slab_error(cache, "double free detected");
2919 else
2920 slab_error(cache, "memory outside object was overwritten");
2921
b46b8f19 2922 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2923 obj, redzone1, redzone2);
2924}
2925
343e0d7a 2926static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2927 void *caller)
1da177e4
LT
2928{
2929 struct page *page;
2930 unsigned int objnr;
2931 struct slab *slabp;
2932
80cbd911
MW
2933 BUG_ON(virt_to_cache(objp) != cachep);
2934
3dafccf2 2935 objp -= obj_offset(cachep);
1da177e4 2936 kfree_debugcheck(objp);
b49af68f 2937 page = virt_to_head_page(objp);
1da177e4 2938
065d41cb 2939 slabp = page_get_slab(page);
1da177e4
LT
2940
2941 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2942 verify_redzone_free(cachep, objp);
1da177e4
LT
2943 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2944 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2945 }
2946 if (cachep->flags & SLAB_STORE_USER)
2947 *dbg_userword(cachep, objp) = caller;
2948
8fea4e96 2949 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2950
2951 BUG_ON(objnr >= cachep->num);
8fea4e96 2952 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2953
871751e2
AV
2954#ifdef CONFIG_DEBUG_SLAB_LEAK
2955 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2956#endif
1da177e4
LT
2957 if (cachep->flags & SLAB_POISON) {
2958#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2959 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2960 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2961 kernel_map_pages(virt_to_page(objp),
3dafccf2 2962 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2963 } else {
2964 poison_obj(cachep, objp, POISON_FREE);
2965 }
2966#else
2967 poison_obj(cachep, objp, POISON_FREE);
2968#endif
2969 }
2970 return objp;
2971}
2972
343e0d7a 2973static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2974{
2975 kmem_bufctl_t i;
2976 int entries = 0;
b28a02de 2977
1da177e4
LT
2978 /* Check slab's freelist to see if this obj is there. */
2979 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2980 entries++;
2981 if (entries > cachep->num || i >= cachep->num)
2982 goto bad;
2983 }
2984 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2985bad:
2986 printk(KERN_ERR "slab: Internal list corruption detected in "
2987 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2988 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2989 for (i = 0;
264132bc 2990 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2991 i++) {
a737b3e2 2992 if (i % 16 == 0)
1da177e4 2993 printk("\n%03x:", i);
b28a02de 2994 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2995 }
2996 printk("\n");
2997 BUG();
2998 }
2999}
3000#else
3001#define kfree_debugcheck(x) do { } while(0)
3002#define cache_free_debugcheck(x,objp,z) (objp)
3003#define check_slabp(x,y) do { } while(0)
3004#endif
3005
343e0d7a 3006static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
3007{
3008 int batchcount;
3009 struct kmem_list3 *l3;
3010 struct array_cache *ac;
1ca4cb24
PE
3011 int node;
3012
6d2144d3 3013retry:
1da177e4 3014 check_irq_off();
7d6e6d09 3015 node = numa_mem_id();
9a2dba4b 3016 ac = cpu_cache_get(cachep);
1da177e4
LT
3017 batchcount = ac->batchcount;
3018 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3019 /*
3020 * If there was little recent activity on this cache, then
3021 * perform only a partial refill. Otherwise we could generate
3022 * refill bouncing.
1da177e4
LT
3023 */
3024 batchcount = BATCHREFILL_LIMIT;
3025 }
1ca4cb24 3026 l3 = cachep->nodelists[node];
e498be7d
CL
3027
3028 BUG_ON(ac->avail > 0 || !l3);
3029 spin_lock(&l3->list_lock);
1da177e4 3030
3ded175a 3031 /* See if we can refill from the shared array */
44b57f1c
NP
3032 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3033 l3->shared->touched = 1;
3ded175a 3034 goto alloc_done;
44b57f1c 3035 }
3ded175a 3036
1da177e4
LT
3037 while (batchcount > 0) {
3038 struct list_head *entry;
3039 struct slab *slabp;
3040 /* Get slab alloc is to come from. */
3041 entry = l3->slabs_partial.next;
3042 if (entry == &l3->slabs_partial) {
3043 l3->free_touched = 1;
3044 entry = l3->slabs_free.next;
3045 if (entry == &l3->slabs_free)
3046 goto must_grow;
3047 }
3048
3049 slabp = list_entry(entry, struct slab, list);
3050 check_slabp(cachep, slabp);
3051 check_spinlock_acquired(cachep);
714b8171
PE
3052
3053 /*
3054 * The slab was either on partial or free list so
3055 * there must be at least one object available for
3056 * allocation.
3057 */
249b9f33 3058 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3059
1da177e4 3060 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3061 STATS_INC_ALLOCED(cachep);
3062 STATS_INC_ACTIVE(cachep);
3063 STATS_SET_HIGH(cachep);
3064
78d382d7 3065 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 3066 node);
1da177e4
LT
3067 }
3068 check_slabp(cachep, slabp);
3069
3070 /* move slabp to correct slabp list: */
3071 list_del(&slabp->list);
3072 if (slabp->free == BUFCTL_END)
3073 list_add(&slabp->list, &l3->slabs_full);
3074 else
3075 list_add(&slabp->list, &l3->slabs_partial);
3076 }
3077
a737b3e2 3078must_grow:
1da177e4 3079 l3->free_objects -= ac->avail;
a737b3e2 3080alloc_done:
e498be7d 3081 spin_unlock(&l3->list_lock);
1da177e4
LT
3082
3083 if (unlikely(!ac->avail)) {
3084 int x;
3c517a61 3085 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3086
a737b3e2 3087 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3088 ac = cpu_cache_get(cachep);
a737b3e2 3089 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3090 return NULL;
3091
a737b3e2 3092 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3093 goto retry;
3094 }
3095 ac->touched = 1;
e498be7d 3096 return ac->entry[--ac->avail];
1da177e4
LT
3097}
3098
a737b3e2
AM
3099static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3100 gfp_t flags)
1da177e4
LT
3101{
3102 might_sleep_if(flags & __GFP_WAIT);
3103#if DEBUG
3104 kmem_flagcheck(cachep, flags);
3105#endif
3106}
3107
3108#if DEBUG
a737b3e2
AM
3109static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3110 gfp_t flags, void *objp, void *caller)
1da177e4 3111{
b28a02de 3112 if (!objp)
1da177e4 3113 return objp;
b28a02de 3114 if (cachep->flags & SLAB_POISON) {
1da177e4 3115#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3116 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3117 kernel_map_pages(virt_to_page(objp),
3dafccf2 3118 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3119 else
3120 check_poison_obj(cachep, objp);
3121#else
3122 check_poison_obj(cachep, objp);
3123#endif
3124 poison_obj(cachep, objp, POISON_INUSE);
3125 }
3126 if (cachep->flags & SLAB_STORE_USER)
3127 *dbg_userword(cachep, objp) = caller;
3128
3129 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3130 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3131 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3132 slab_error(cachep, "double free, or memory outside"
3133 " object was overwritten");
b28a02de 3134 printk(KERN_ERR
b46b8f19 3135 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3136 objp, *dbg_redzone1(cachep, objp),
3137 *dbg_redzone2(cachep, objp));
1da177e4
LT
3138 }
3139 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3140 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3141 }
871751e2
AV
3142#ifdef CONFIG_DEBUG_SLAB_LEAK
3143 {
3144 struct slab *slabp;
3145 unsigned objnr;
3146
b49af68f 3147 slabp = page_get_slab(virt_to_head_page(objp));
871751e2
AV
3148 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3149 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3150 }
3151#endif
3dafccf2 3152 objp += obj_offset(cachep);
4f104934 3153 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3154 cachep->ctor(objp);
a44b56d3
KH
3155#if ARCH_SLAB_MINALIGN
3156 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3157 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3158 objp, ARCH_SLAB_MINALIGN);
3159 }
3160#endif
1da177e4
LT
3161 return objp;
3162}
3163#else
3164#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3165#endif
3166
773ff60e 3167static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502
AM
3168{
3169 if (cachep == &cache_cache)
773ff60e 3170 return false;
8a8b6502 3171
4c13dd3b 3172 return should_failslab(obj_size(cachep), flags, cachep->flags);
8a8b6502
AM
3173}
3174
343e0d7a 3175static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3176{
b28a02de 3177 void *objp;
1da177e4
LT
3178 struct array_cache *ac;
3179
5c382300 3180 check_irq_off();
8a8b6502 3181
9a2dba4b 3182 ac = cpu_cache_get(cachep);
1da177e4
LT
3183 if (likely(ac->avail)) {
3184 STATS_INC_ALLOCHIT(cachep);
3185 ac->touched = 1;
e498be7d 3186 objp = ac->entry[--ac->avail];
1da177e4
LT
3187 } else {
3188 STATS_INC_ALLOCMISS(cachep);
3189 objp = cache_alloc_refill(cachep, flags);
ddbf2e83
O
3190 /*
3191 * the 'ac' may be updated by cache_alloc_refill(),
3192 * and kmemleak_erase() requires its correct value.
3193 */
3194 ac = cpu_cache_get(cachep);
1da177e4 3195 }
d5cff635
CM
3196 /*
3197 * To avoid a false negative, if an object that is in one of the
3198 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3199 * treat the array pointers as a reference to the object.
3200 */
f3d8b53a
O
3201 if (objp)
3202 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3203 return objp;
3204}
3205
e498be7d 3206#ifdef CONFIG_NUMA
c61afb18 3207/*
b2455396 3208 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3209 *
3210 * If we are in_interrupt, then process context, including cpusets and
3211 * mempolicy, may not apply and should not be used for allocation policy.
3212 */
3213static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3214{
3215 int nid_alloc, nid_here;
3216
765c4507 3217 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3218 return NULL;
7d6e6d09 3219 nid_alloc = nid_here = numa_mem_id();
c0ff7453 3220 get_mems_allowed();
c61afb18 3221 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3222 nid_alloc = cpuset_slab_spread_node();
c61afb18
PJ
3223 else if (current->mempolicy)
3224 nid_alloc = slab_node(current->mempolicy);
c0ff7453 3225 put_mems_allowed();
c61afb18 3226 if (nid_alloc != nid_here)
8b98c169 3227 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3228 return NULL;
3229}
3230
765c4507
CL
3231/*
3232 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3233 * certain node and fall back is permitted. First we scan all the
3234 * available nodelists for available objects. If that fails then we
3235 * perform an allocation without specifying a node. This allows the page
3236 * allocator to do its reclaim / fallback magic. We then insert the
3237 * slab into the proper nodelist and then allocate from it.
765c4507 3238 */
8c8cc2c1 3239static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3240{
8c8cc2c1
PE
3241 struct zonelist *zonelist;
3242 gfp_t local_flags;
dd1a239f 3243 struct zoneref *z;
54a6eb5c
MG
3244 struct zone *zone;
3245 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3246 void *obj = NULL;
3c517a61 3247 int nid;
8c8cc2c1
PE
3248
3249 if (flags & __GFP_THISNODE)
3250 return NULL;
3251
c0ff7453 3252 get_mems_allowed();
0e88460d 3253 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
6cb06229 3254 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3255
3c517a61
CL
3256retry:
3257 /*
3258 * Look through allowed nodes for objects available
3259 * from existing per node queues.
3260 */
54a6eb5c
MG
3261 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3262 nid = zone_to_nid(zone);
aedb0eb1 3263
54a6eb5c 3264 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3265 cache->nodelists[nid] &&
481c5346 3266 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3267 obj = ____cache_alloc_node(cache,
3268 flags | GFP_THISNODE, nid);
481c5346
CL
3269 if (obj)
3270 break;
3271 }
3c517a61
CL
3272 }
3273
cfce6604 3274 if (!obj) {
3c517a61
CL
3275 /*
3276 * This allocation will be performed within the constraints
3277 * of the current cpuset / memory policy requirements.
3278 * We may trigger various forms of reclaim on the allowed
3279 * set and go into memory reserves if necessary.
3280 */
dd47ea75
CL
3281 if (local_flags & __GFP_WAIT)
3282 local_irq_enable();
3283 kmem_flagcheck(cache, flags);
7d6e6d09 3284 obj = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3285 if (local_flags & __GFP_WAIT)
3286 local_irq_disable();
3c517a61
CL
3287 if (obj) {
3288 /*
3289 * Insert into the appropriate per node queues
3290 */
3291 nid = page_to_nid(virt_to_page(obj));
3292 if (cache_grow(cache, flags, nid, obj)) {
3293 obj = ____cache_alloc_node(cache,
3294 flags | GFP_THISNODE, nid);
3295 if (!obj)
3296 /*
3297 * Another processor may allocate the
3298 * objects in the slab since we are
3299 * not holding any locks.
3300 */
3301 goto retry;
3302 } else {
b6a60451 3303 /* cache_grow already freed obj */
3c517a61
CL
3304 obj = NULL;
3305 }
3306 }
aedb0eb1 3307 }
c0ff7453 3308 put_mems_allowed();
765c4507
CL
3309 return obj;
3310}
3311
e498be7d
CL
3312/*
3313 * A interface to enable slab creation on nodeid
1da177e4 3314 */
8b98c169 3315static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3316 int nodeid)
e498be7d
CL
3317{
3318 struct list_head *entry;
b28a02de
PE
3319 struct slab *slabp;
3320 struct kmem_list3 *l3;
3321 void *obj;
b28a02de
PE
3322 int x;
3323
3324 l3 = cachep->nodelists[nodeid];
3325 BUG_ON(!l3);
3326
a737b3e2 3327retry:
ca3b9b91 3328 check_irq_off();
b28a02de
PE
3329 spin_lock(&l3->list_lock);
3330 entry = l3->slabs_partial.next;
3331 if (entry == &l3->slabs_partial) {
3332 l3->free_touched = 1;
3333 entry = l3->slabs_free.next;
3334 if (entry == &l3->slabs_free)
3335 goto must_grow;
3336 }
3337
3338 slabp = list_entry(entry, struct slab, list);
3339 check_spinlock_acquired_node(cachep, nodeid);
3340 check_slabp(cachep, slabp);
3341
3342 STATS_INC_NODEALLOCS(cachep);
3343 STATS_INC_ACTIVE(cachep);
3344 STATS_SET_HIGH(cachep);
3345
3346 BUG_ON(slabp->inuse == cachep->num);
3347
78d382d7 3348 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3349 check_slabp(cachep, slabp);
3350 l3->free_objects--;
3351 /* move slabp to correct slabp list: */
3352 list_del(&slabp->list);
3353
a737b3e2 3354 if (slabp->free == BUFCTL_END)
b28a02de 3355 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3356 else
b28a02de 3357 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3358
b28a02de
PE
3359 spin_unlock(&l3->list_lock);
3360 goto done;
e498be7d 3361
a737b3e2 3362must_grow:
b28a02de 3363 spin_unlock(&l3->list_lock);
3c517a61 3364 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3365 if (x)
3366 goto retry;
1da177e4 3367
8c8cc2c1 3368 return fallback_alloc(cachep, flags);
e498be7d 3369
a737b3e2 3370done:
b28a02de 3371 return obj;
e498be7d 3372}
8c8cc2c1
PE
3373
3374/**
3375 * kmem_cache_alloc_node - Allocate an object on the specified node
3376 * @cachep: The cache to allocate from.
3377 * @flags: See kmalloc().
3378 * @nodeid: node number of the target node.
3379 * @caller: return address of caller, used for debug information
3380 *
3381 * Identical to kmem_cache_alloc but it will allocate memory on the given
3382 * node, which can improve the performance for cpu bound structures.
3383 *
3384 * Fallback to other node is possible if __GFP_THISNODE is not set.
3385 */
3386static __always_inline void *
3387__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3388 void *caller)
3389{
3390 unsigned long save_flags;
3391 void *ptr;
7d6e6d09 3392 int slab_node = numa_mem_id();
8c8cc2c1 3393
dcce284a 3394 flags &= gfp_allowed_mask;
7e85ee0c 3395
cf40bd16
NP
3396 lockdep_trace_alloc(flags);
3397
773ff60e 3398 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3399 return NULL;
3400
8c8cc2c1
PE
3401 cache_alloc_debugcheck_before(cachep, flags);
3402 local_irq_save(save_flags);
3403
8e15b79c 3404 if (nodeid == -1)
7d6e6d09 3405 nodeid = slab_node;
8c8cc2c1
PE
3406
3407 if (unlikely(!cachep->nodelists[nodeid])) {
3408 /* Node not bootstrapped yet */
3409 ptr = fallback_alloc(cachep, flags);
3410 goto out;
3411 }
3412
7d6e6d09 3413 if (nodeid == slab_node) {
8c8cc2c1
PE
3414 /*
3415 * Use the locally cached objects if possible.
3416 * However ____cache_alloc does not allow fallback
3417 * to other nodes. It may fail while we still have
3418 * objects on other nodes available.
3419 */
3420 ptr = ____cache_alloc(cachep, flags);
3421 if (ptr)
3422 goto out;
3423 }
3424 /* ___cache_alloc_node can fall back to other nodes */
3425 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3426 out:
3427 local_irq_restore(save_flags);
3428 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
d5cff635
CM
3429 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3430 flags);
8c8cc2c1 3431
c175eea4
PE
3432 if (likely(ptr))
3433 kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3434
d07dbea4
CL
3435 if (unlikely((flags & __GFP_ZERO) && ptr))
3436 memset(ptr, 0, obj_size(cachep));
3437
8c8cc2c1
PE
3438 return ptr;
3439}
3440
3441static __always_inline void *
3442__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3443{
3444 void *objp;
3445
3446 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3447 objp = alternate_node_alloc(cache, flags);
3448 if (objp)
3449 goto out;
3450 }
3451 objp = ____cache_alloc(cache, flags);
3452
3453 /*
3454 * We may just have run out of memory on the local node.
3455 * ____cache_alloc_node() knows how to locate memory on other nodes
3456 */
7d6e6d09
LS
3457 if (!objp)
3458 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3459
3460 out:
3461 return objp;
3462}
3463#else
3464
3465static __always_inline void *
3466__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3467{
3468 return ____cache_alloc(cachep, flags);
3469}
3470
3471#endif /* CONFIG_NUMA */
3472
3473static __always_inline void *
3474__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3475{
3476 unsigned long save_flags;
3477 void *objp;
3478
dcce284a 3479 flags &= gfp_allowed_mask;
7e85ee0c 3480
cf40bd16
NP
3481 lockdep_trace_alloc(flags);
3482
773ff60e 3483 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3484 return NULL;
3485
8c8cc2c1
PE
3486 cache_alloc_debugcheck_before(cachep, flags);
3487 local_irq_save(save_flags);
3488 objp = __do_cache_alloc(cachep, flags);
3489 local_irq_restore(save_flags);
3490 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
d5cff635
CM
3491 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3492 flags);
8c8cc2c1
PE
3493 prefetchw(objp);
3494
c175eea4
PE
3495 if (likely(objp))
3496 kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3497
d07dbea4
CL
3498 if (unlikely((flags & __GFP_ZERO) && objp))
3499 memset(objp, 0, obj_size(cachep));
3500
8c8cc2c1
PE
3501 return objp;
3502}
e498be7d
CL
3503
3504/*
3505 * Caller needs to acquire correct kmem_list's list_lock
3506 */
343e0d7a 3507static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3508 int node)
1da177e4
LT
3509{
3510 int i;
e498be7d 3511 struct kmem_list3 *l3;
1da177e4
LT
3512
3513 for (i = 0; i < nr_objects; i++) {
3514 void *objp = objpp[i];
3515 struct slab *slabp;
1da177e4 3516
6ed5eb22 3517 slabp = virt_to_slab(objp);
ff69416e 3518 l3 = cachep->nodelists[node];
1da177e4 3519 list_del(&slabp->list);
ff69416e 3520 check_spinlock_acquired_node(cachep, node);
1da177e4 3521 check_slabp(cachep, slabp);
78d382d7 3522 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3523 STATS_DEC_ACTIVE(cachep);
e498be7d 3524 l3->free_objects++;
1da177e4
LT
3525 check_slabp(cachep, slabp);
3526
3527 /* fixup slab chains */
3528 if (slabp->inuse == 0) {
e498be7d
CL
3529 if (l3->free_objects > l3->free_limit) {
3530 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3531 /* No need to drop any previously held
3532 * lock here, even if we have a off-slab slab
3533 * descriptor it is guaranteed to come from
3534 * a different cache, refer to comments before
3535 * alloc_slabmgmt.
3536 */
1da177e4
LT
3537 slab_destroy(cachep, slabp);
3538 } else {
e498be7d 3539 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3540 }
3541 } else {
3542 /* Unconditionally move a slab to the end of the
3543 * partial list on free - maximum time for the
3544 * other objects to be freed, too.
3545 */
e498be7d 3546 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3547 }
3548 }
3549}
3550
343e0d7a 3551static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3552{
3553 int batchcount;
e498be7d 3554 struct kmem_list3 *l3;
7d6e6d09 3555 int node = numa_mem_id();
1da177e4
LT
3556
3557 batchcount = ac->batchcount;
3558#if DEBUG
3559 BUG_ON(!batchcount || batchcount > ac->avail);
3560#endif
3561 check_irq_off();
ff69416e 3562 l3 = cachep->nodelists[node];
873623df 3563 spin_lock(&l3->list_lock);
e498be7d
CL
3564 if (l3->shared) {
3565 struct array_cache *shared_array = l3->shared;
b28a02de 3566 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3567 if (max) {
3568 if (batchcount > max)
3569 batchcount = max;
e498be7d 3570 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3571 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3572 shared_array->avail += batchcount;
3573 goto free_done;
3574 }
3575 }
3576
ff69416e 3577 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3578free_done:
1da177e4
LT
3579#if STATS
3580 {
3581 int i = 0;
3582 struct list_head *p;
3583
e498be7d
CL
3584 p = l3->slabs_free.next;
3585 while (p != &(l3->slabs_free)) {
1da177e4
LT
3586 struct slab *slabp;
3587
3588 slabp = list_entry(p, struct slab, list);
3589 BUG_ON(slabp->inuse);
3590
3591 i++;
3592 p = p->next;
3593 }
3594 STATS_SET_FREEABLE(cachep, i);
3595 }
3596#endif
e498be7d 3597 spin_unlock(&l3->list_lock);
1da177e4 3598 ac->avail -= batchcount;
a737b3e2 3599 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3600}
3601
3602/*
a737b3e2
AM
3603 * Release an obj back to its cache. If the obj has a constructed state, it must
3604 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3605 */
873623df 3606static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3607{
9a2dba4b 3608 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3609
3610 check_irq_off();
d5cff635 3611 kmemleak_free_recursive(objp, cachep->flags);
1da177e4
LT
3612 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3613
c175eea4
PE
3614 kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3615
1807a1aa
SS
3616 /*
3617 * Skip calling cache_free_alien() when the platform is not numa.
3618 * This will avoid cache misses that happen while accessing slabp (which
3619 * is per page memory reference) to get nodeid. Instead use a global
3620 * variable to skip the call, which is mostly likely to be present in
3621 * the cache.
3622 */
b6e68bc1 3623 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3624 return;
3625
1da177e4
LT
3626 if (likely(ac->avail < ac->limit)) {
3627 STATS_INC_FREEHIT(cachep);
e498be7d 3628 ac->entry[ac->avail++] = objp;
1da177e4
LT
3629 return;
3630 } else {
3631 STATS_INC_FREEMISS(cachep);
3632 cache_flusharray(cachep, ac);
e498be7d 3633 ac->entry[ac->avail++] = objp;
1da177e4
LT
3634 }
3635}
3636
3637/**
3638 * kmem_cache_alloc - Allocate an object
3639 * @cachep: The cache to allocate from.
3640 * @flags: See kmalloc().
3641 *
3642 * Allocate an object from this cache. The flags are only relevant
3643 * if the cache has no available objects.
3644 */
343e0d7a 3645void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3646{
36555751
EGM
3647 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3648
ca2b84cb
EGM
3649 trace_kmem_cache_alloc(_RET_IP_, ret,
3650 obj_size(cachep), cachep->buffer_size, flags);
36555751
EGM
3651
3652 return ret;
1da177e4
LT
3653}
3654EXPORT_SYMBOL(kmem_cache_alloc);
3655
0f24f128 3656#ifdef CONFIG_TRACING
85beb586
SR
3657void *
3658kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
36555751 3659{
85beb586
SR
3660 void *ret;
3661
3662 ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3663
3664 trace_kmalloc(_RET_IP_, ret,
3665 size, slab_buffer_size(cachep), flags);
3666 return ret;
36555751 3667}
85beb586 3668EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3669#endif
3670
1da177e4 3671#ifdef CONFIG_NUMA
8b98c169
CH
3672void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3673{
36555751
EGM
3674 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3675 __builtin_return_address(0));
3676
ca2b84cb
EGM
3677 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3678 obj_size(cachep), cachep->buffer_size,
3679 flags, nodeid);
36555751
EGM
3680
3681 return ret;
8b98c169 3682}
1da177e4
LT
3683EXPORT_SYMBOL(kmem_cache_alloc_node);
3684
0f24f128 3685#ifdef CONFIG_TRACING
85beb586
SR
3686void *kmem_cache_alloc_node_trace(size_t size,
3687 struct kmem_cache *cachep,
3688 gfp_t flags,
3689 int nodeid)
36555751 3690{
85beb586
SR
3691 void *ret;
3692
3693 ret = __cache_alloc_node(cachep, flags, nodeid,
36555751 3694 __builtin_return_address(0));
85beb586
SR
3695 trace_kmalloc_node(_RET_IP_, ret,
3696 size, slab_buffer_size(cachep),
3697 flags, nodeid);
3698 return ret;
36555751 3699}
85beb586 3700EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3701#endif
3702
8b98c169
CH
3703static __always_inline void *
3704__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3705{
343e0d7a 3706 struct kmem_cache *cachep;
97e2bde4
MS
3707
3708 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3709 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3710 return cachep;
85beb586 3711 return kmem_cache_alloc_node_trace(size, cachep, flags, node);
97e2bde4 3712}
8b98c169 3713
0bb38a5c 3714#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3715void *__kmalloc_node(size_t size, gfp_t flags, int node)
3716{
3717 return __do_kmalloc_node(size, flags, node,
3718 __builtin_return_address(0));
3719}
dbe5e69d 3720EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3721
3722void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3723 int node, unsigned long caller)
8b98c169 3724{
ce71e27c 3725 return __do_kmalloc_node(size, flags, node, (void *)caller);
8b98c169
CH
3726}
3727EXPORT_SYMBOL(__kmalloc_node_track_caller);
3728#else
3729void *__kmalloc_node(size_t size, gfp_t flags, int node)
3730{
3731 return __do_kmalloc_node(size, flags, node, NULL);
3732}
3733EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3734#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3735#endif /* CONFIG_NUMA */
1da177e4
LT
3736
3737/**
800590f5 3738 * __do_kmalloc - allocate memory
1da177e4 3739 * @size: how many bytes of memory are required.
800590f5 3740 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3741 * @caller: function caller for debug tracking of the caller
1da177e4 3742 */
7fd6b141
PE
3743static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3744 void *caller)
1da177e4 3745{
343e0d7a 3746 struct kmem_cache *cachep;
36555751 3747 void *ret;
1da177e4 3748
97e2bde4
MS
3749 /* If you want to save a few bytes .text space: replace
3750 * __ with kmem_.
3751 * Then kmalloc uses the uninlined functions instead of the inline
3752 * functions.
3753 */
3754 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3755 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3756 return cachep;
36555751
EGM
3757 ret = __cache_alloc(cachep, flags, caller);
3758
ca2b84cb
EGM
3759 trace_kmalloc((unsigned long) caller, ret,
3760 size, cachep->buffer_size, flags);
36555751
EGM
3761
3762 return ret;
7fd6b141
PE
3763}
3764
7fd6b141 3765
0bb38a5c 3766#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3767void *__kmalloc(size_t size, gfp_t flags)
3768{
871751e2 3769 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3770}
3771EXPORT_SYMBOL(__kmalloc);
3772
ce71e27c 3773void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3774{
ce71e27c 3775 return __do_kmalloc(size, flags, (void *)caller);
7fd6b141
PE
3776}
3777EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3778
3779#else
3780void *__kmalloc(size_t size, gfp_t flags)
3781{
3782 return __do_kmalloc(size, flags, NULL);
3783}
3784EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3785#endif
3786
1da177e4
LT
3787/**
3788 * kmem_cache_free - Deallocate an object
3789 * @cachep: The cache the allocation was from.
3790 * @objp: The previously allocated object.
3791 *
3792 * Free an object which was previously allocated from this
3793 * cache.
3794 */
343e0d7a 3795void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3796{
3797 unsigned long flags;
3798
3799 local_irq_save(flags);
898552c9 3800 debug_check_no_locks_freed(objp, obj_size(cachep));
3ac7fe5a
TG
3801 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3802 debug_check_no_obj_freed(objp, obj_size(cachep));
873623df 3803 __cache_free(cachep, objp);
1da177e4 3804 local_irq_restore(flags);
36555751 3805
ca2b84cb 3806 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3807}
3808EXPORT_SYMBOL(kmem_cache_free);
3809
1da177e4
LT
3810/**
3811 * kfree - free previously allocated memory
3812 * @objp: pointer returned by kmalloc.
3813 *
80e93eff
PE
3814 * If @objp is NULL, no operation is performed.
3815 *
1da177e4
LT
3816 * Don't free memory not originally allocated by kmalloc()
3817 * or you will run into trouble.
3818 */
3819void kfree(const void *objp)
3820{
343e0d7a 3821 struct kmem_cache *c;
1da177e4
LT
3822 unsigned long flags;
3823
2121db74
PE
3824 trace_kfree(_RET_IP_, objp);
3825
6cb8f913 3826 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3827 return;
3828 local_irq_save(flags);
3829 kfree_debugcheck(objp);
6ed5eb22 3830 c = virt_to_cache(objp);
f9b8404c 3831 debug_check_no_locks_freed(objp, obj_size(c));
3ac7fe5a 3832 debug_check_no_obj_freed(objp, obj_size(c));
873623df 3833 __cache_free(c, (void *)objp);
1da177e4
LT
3834 local_irq_restore(flags);
3835}
3836EXPORT_SYMBOL(kfree);
3837
343e0d7a 3838unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3839{
3dafccf2 3840 return obj_size(cachep);
1da177e4
LT
3841}
3842EXPORT_SYMBOL(kmem_cache_size);
3843
e498be7d 3844/*
183ff22b 3845 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3846 */
83b519e8 3847static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3848{
3849 int node;
3850 struct kmem_list3 *l3;
cafeb02e 3851 struct array_cache *new_shared;
3395ee05 3852 struct array_cache **new_alien = NULL;
e498be7d 3853
9c09a95c 3854 for_each_online_node(node) {
cafeb02e 3855
3395ee05 3856 if (use_alien_caches) {
83b519e8 3857 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3858 if (!new_alien)
3859 goto fail;
3860 }
cafeb02e 3861
63109846
ED
3862 new_shared = NULL;
3863 if (cachep->shared) {
3864 new_shared = alloc_arraycache(node,
0718dc2a 3865 cachep->shared*cachep->batchcount,
83b519e8 3866 0xbaadf00d, gfp);
63109846
ED
3867 if (!new_shared) {
3868 free_alien_cache(new_alien);
3869 goto fail;
3870 }
0718dc2a 3871 }
cafeb02e 3872
a737b3e2
AM
3873 l3 = cachep->nodelists[node];
3874 if (l3) {
cafeb02e
CL
3875 struct array_cache *shared = l3->shared;
3876
e498be7d
CL
3877 spin_lock_irq(&l3->list_lock);
3878
cafeb02e 3879 if (shared)
0718dc2a
CL
3880 free_block(cachep, shared->entry,
3881 shared->avail, node);
e498be7d 3882
cafeb02e
CL
3883 l3->shared = new_shared;
3884 if (!l3->alien) {
e498be7d
CL
3885 l3->alien = new_alien;
3886 new_alien = NULL;
3887 }
b28a02de 3888 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3889 cachep->batchcount + cachep->num;
e498be7d 3890 spin_unlock_irq(&l3->list_lock);
cafeb02e 3891 kfree(shared);
e498be7d
CL
3892 free_alien_cache(new_alien);
3893 continue;
3894 }
83b519e8 3895 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
0718dc2a
CL
3896 if (!l3) {
3897 free_alien_cache(new_alien);
3898 kfree(new_shared);
e498be7d 3899 goto fail;
0718dc2a 3900 }
e498be7d
CL
3901
3902 kmem_list3_init(l3);
3903 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3904 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3905 l3->shared = new_shared;
e498be7d 3906 l3->alien = new_alien;
b28a02de 3907 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3908 cachep->batchcount + cachep->num;
e498be7d
CL
3909 cachep->nodelists[node] = l3;
3910 }
cafeb02e 3911 return 0;
0718dc2a 3912
a737b3e2 3913fail:
0718dc2a
CL
3914 if (!cachep->next.next) {
3915 /* Cache is not active yet. Roll back what we did */
3916 node--;
3917 while (node >= 0) {
3918 if (cachep->nodelists[node]) {
3919 l3 = cachep->nodelists[node];
3920
3921 kfree(l3->shared);
3922 free_alien_cache(l3->alien);
3923 kfree(l3);
3924 cachep->nodelists[node] = NULL;
3925 }
3926 node--;
3927 }
3928 }
cafeb02e 3929 return -ENOMEM;
e498be7d
CL
3930}
3931
1da177e4 3932struct ccupdate_struct {
343e0d7a 3933 struct kmem_cache *cachep;
1da177e4
LT
3934 struct array_cache *new[NR_CPUS];
3935};
3936
3937static void do_ccupdate_local(void *info)
3938{
a737b3e2 3939 struct ccupdate_struct *new = info;
1da177e4
LT
3940 struct array_cache *old;
3941
3942 check_irq_off();
9a2dba4b 3943 old = cpu_cache_get(new->cachep);
e498be7d 3944
1da177e4
LT
3945 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3946 new->new[smp_processor_id()] = old;
3947}
3948
b5d8ca7c 3949/* Always called with the cache_chain_mutex held */
a737b3e2 3950static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3951 int batchcount, int shared, gfp_t gfp)
1da177e4 3952{
d2e7b7d0 3953 struct ccupdate_struct *new;
2ed3a4ef 3954 int i;
1da177e4 3955
83b519e8 3956 new = kzalloc(sizeof(*new), gfp);
d2e7b7d0
SS
3957 if (!new)
3958 return -ENOMEM;
3959
e498be7d 3960 for_each_online_cpu(i) {
7d6e6d09 3961 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 3962 batchcount, gfp);
d2e7b7d0 3963 if (!new->new[i]) {
b28a02de 3964 for (i--; i >= 0; i--)
d2e7b7d0
SS
3965 kfree(new->new[i]);
3966 kfree(new);
e498be7d 3967 return -ENOMEM;
1da177e4
LT
3968 }
3969 }
d2e7b7d0 3970 new->cachep = cachep;
1da177e4 3971
15c8b6c1 3972 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 3973
1da177e4 3974 check_irq_on();
1da177e4
LT
3975 cachep->batchcount = batchcount;
3976 cachep->limit = limit;
e498be7d 3977 cachep->shared = shared;
1da177e4 3978
e498be7d 3979 for_each_online_cpu(i) {
d2e7b7d0 3980 struct array_cache *ccold = new->new[i];
1da177e4
LT
3981 if (!ccold)
3982 continue;
7d6e6d09
LS
3983 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
3984 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3985 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
1da177e4
LT
3986 kfree(ccold);
3987 }
d2e7b7d0 3988 kfree(new);
83b519e8 3989 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
3990}
3991
b5d8ca7c 3992/* Called with cache_chain_mutex held always */
83b519e8 3993static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3994{
3995 int err;
3996 int limit, shared;
3997
a737b3e2
AM
3998 /*
3999 * The head array serves three purposes:
1da177e4
LT
4000 * - create a LIFO ordering, i.e. return objects that are cache-warm
4001 * - reduce the number of spinlock operations.
a737b3e2 4002 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4003 * bufctl chains: array operations are cheaper.
4004 * The numbers are guessed, we should auto-tune as described by
4005 * Bonwick.
4006 */
3dafccf2 4007 if (cachep->buffer_size > 131072)
1da177e4 4008 limit = 1;
3dafccf2 4009 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 4010 limit = 8;
3dafccf2 4011 else if (cachep->buffer_size > 1024)
1da177e4 4012 limit = 24;
3dafccf2 4013 else if (cachep->buffer_size > 256)
1da177e4
LT
4014 limit = 54;
4015 else
4016 limit = 120;
4017
a737b3e2
AM
4018 /*
4019 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4020 * allocation behaviour: Most allocs on one cpu, most free operations
4021 * on another cpu. For these cases, an efficient object passing between
4022 * cpus is necessary. This is provided by a shared array. The array
4023 * replaces Bonwick's magazine layer.
4024 * On uniprocessor, it's functionally equivalent (but less efficient)
4025 * to a larger limit. Thus disabled by default.
4026 */
4027 shared = 0;
364fbb29 4028 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4029 shared = 8;
1da177e4
LT
4030
4031#if DEBUG
a737b3e2
AM
4032 /*
4033 * With debugging enabled, large batchcount lead to excessively long
4034 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4035 */
4036 if (limit > 32)
4037 limit = 32;
4038#endif
83b519e8 4039 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
1da177e4
LT
4040 if (err)
4041 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4042 cachep->name, -err);
2ed3a4ef 4043 return err;
1da177e4
LT
4044}
4045
1b55253a
CL
4046/*
4047 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4048 * necessary. Note that the l3 listlock also protects the array_cache
4049 * if drain_array() is used on the shared array.
1b55253a 4050 */
68a1b195 4051static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
1b55253a 4052 struct array_cache *ac, int force, int node)
1da177e4
LT
4053{
4054 int tofree;
4055
1b55253a
CL
4056 if (!ac || !ac->avail)
4057 return;
1da177e4
LT
4058 if (ac->touched && !force) {
4059 ac->touched = 0;
b18e7e65 4060 } else {
1b55253a 4061 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4062 if (ac->avail) {
4063 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4064 if (tofree > ac->avail)
4065 tofree = (ac->avail + 1) / 2;
4066 free_block(cachep, ac->entry, tofree, node);
4067 ac->avail -= tofree;
4068 memmove(ac->entry, &(ac->entry[tofree]),
4069 sizeof(void *) * ac->avail);
4070 }
1b55253a 4071 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4072 }
4073}
4074
4075/**
4076 * cache_reap - Reclaim memory from caches.
05fb6bf0 4077 * @w: work descriptor
1da177e4
LT
4078 *
4079 * Called from workqueue/eventd every few seconds.
4080 * Purpose:
4081 * - clear the per-cpu caches for this CPU.
4082 * - return freeable pages to the main free memory pool.
4083 *
a737b3e2
AM
4084 * If we cannot acquire the cache chain mutex then just give up - we'll try
4085 * again on the next iteration.
1da177e4 4086 */
7c5cae36 4087static void cache_reap(struct work_struct *w)
1da177e4 4088{
7a7c381d 4089 struct kmem_cache *searchp;
e498be7d 4090 struct kmem_list3 *l3;
7d6e6d09 4091 int node = numa_mem_id();
bf6aede7 4092 struct delayed_work *work = to_delayed_work(w);
1da177e4 4093
7c5cae36 4094 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4095 /* Give up. Setup the next iteration. */
7c5cae36 4096 goto out;
1da177e4 4097
7a7c381d 4098 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4099 check_irq_on();
4100
35386e3b
CL
4101 /*
4102 * We only take the l3 lock if absolutely necessary and we
4103 * have established with reasonable certainty that
4104 * we can do some work if the lock was obtained.
4105 */
aab2207c 4106 l3 = searchp->nodelists[node];
35386e3b 4107
8fce4d8e 4108 reap_alien(searchp, l3);
1da177e4 4109
aab2207c 4110 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4111
35386e3b
CL
4112 /*
4113 * These are racy checks but it does not matter
4114 * if we skip one check or scan twice.
4115 */
e498be7d 4116 if (time_after(l3->next_reap, jiffies))
35386e3b 4117 goto next;
1da177e4 4118
e498be7d 4119 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4120
aab2207c 4121 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4122
ed11d9eb 4123 if (l3->free_touched)
e498be7d 4124 l3->free_touched = 0;
ed11d9eb
CL
4125 else {
4126 int freed;
1da177e4 4127
ed11d9eb
CL
4128 freed = drain_freelist(searchp, l3, (l3->free_limit +
4129 5 * searchp->num - 1) / (5 * searchp->num));
4130 STATS_ADD_REAPED(searchp, freed);
4131 }
35386e3b 4132next:
1da177e4
LT
4133 cond_resched();
4134 }
4135 check_irq_on();
fc0abb14 4136 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4137 next_reap_node();
7c5cae36 4138out:
a737b3e2 4139 /* Set up the next iteration */
7c5cae36 4140 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4141}
4142
158a9624 4143#ifdef CONFIG_SLABINFO
1da177e4 4144
85289f98 4145static void print_slabinfo_header(struct seq_file *m)
1da177e4 4146{
85289f98
PE
4147 /*
4148 * Output format version, so at least we can change it
4149 * without _too_ many complaints.
4150 */
1da177e4 4151#if STATS
85289f98 4152 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4153#else
85289f98 4154 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4155#endif
85289f98
PE
4156 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4157 "<objperslab> <pagesperslab>");
4158 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4159 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4160#if STATS
85289f98 4161 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4162 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4163 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4164#endif
85289f98
PE
4165 seq_putc(m, '\n');
4166}
4167
4168static void *s_start(struct seq_file *m, loff_t *pos)
4169{
4170 loff_t n = *pos;
85289f98 4171
fc0abb14 4172 mutex_lock(&cache_chain_mutex);
85289f98
PE
4173 if (!n)
4174 print_slabinfo_header(m);
b92151ba
PE
4175
4176 return seq_list_start(&cache_chain, *pos);
1da177e4
LT
4177}
4178
4179static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4180{
b92151ba 4181 return seq_list_next(p, &cache_chain, pos);
1da177e4
LT
4182}
4183
4184static void s_stop(struct seq_file *m, void *p)
4185{
fc0abb14 4186 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4187}
4188
4189static int s_show(struct seq_file *m, void *p)
4190{
b92151ba 4191 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
b28a02de
PE
4192 struct slab *slabp;
4193 unsigned long active_objs;
4194 unsigned long num_objs;
4195 unsigned long active_slabs = 0;
4196 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4197 const char *name;
1da177e4 4198 char *error = NULL;
e498be7d
CL
4199 int node;
4200 struct kmem_list3 *l3;
1da177e4 4201
1da177e4
LT
4202 active_objs = 0;
4203 num_slabs = 0;
e498be7d
CL
4204 for_each_online_node(node) {
4205 l3 = cachep->nodelists[node];
4206 if (!l3)
4207 continue;
4208
ca3b9b91
RT
4209 check_irq_on();
4210 spin_lock_irq(&l3->list_lock);
e498be7d 4211
7a7c381d 4212 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4213 if (slabp->inuse != cachep->num && !error)
4214 error = "slabs_full accounting error";
4215 active_objs += cachep->num;
4216 active_slabs++;
4217 }
7a7c381d 4218 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4219 if (slabp->inuse == cachep->num && !error)
4220 error = "slabs_partial inuse accounting error";
4221 if (!slabp->inuse && !error)
4222 error = "slabs_partial/inuse accounting error";
4223 active_objs += slabp->inuse;
4224 active_slabs++;
4225 }
7a7c381d 4226 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4227 if (slabp->inuse && !error)
4228 error = "slabs_free/inuse accounting error";
4229 num_slabs++;
4230 }
4231 free_objects += l3->free_objects;
4484ebf1
RT
4232 if (l3->shared)
4233 shared_avail += l3->shared->avail;
e498be7d 4234
ca3b9b91 4235 spin_unlock_irq(&l3->list_lock);
1da177e4 4236 }
b28a02de
PE
4237 num_slabs += active_slabs;
4238 num_objs = num_slabs * cachep->num;
e498be7d 4239 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4240 error = "free_objects accounting error";
4241
b28a02de 4242 name = cachep->name;
1da177e4
LT
4243 if (error)
4244 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4245
4246 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4247 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4248 cachep->num, (1 << cachep->gfporder));
1da177e4 4249 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4250 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4251 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4252 active_slabs, num_slabs, shared_avail);
1da177e4 4253#if STATS
b28a02de 4254 { /* list3 stats */
1da177e4
LT
4255 unsigned long high = cachep->high_mark;
4256 unsigned long allocs = cachep->num_allocations;
4257 unsigned long grown = cachep->grown;
4258 unsigned long reaped = cachep->reaped;
4259 unsigned long errors = cachep->errors;
4260 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4261 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4262 unsigned long node_frees = cachep->node_frees;
fb7faf33 4263 unsigned long overflows = cachep->node_overflow;
1da177e4 4264
e92dd4fd
JP
4265 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4266 "%4lu %4lu %4lu %4lu %4lu",
4267 allocs, high, grown,
4268 reaped, errors, max_freeable, node_allocs,
4269 node_frees, overflows);
1da177e4
LT
4270 }
4271 /* cpu stats */
4272 {
4273 unsigned long allochit = atomic_read(&cachep->allochit);
4274 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4275 unsigned long freehit = atomic_read(&cachep->freehit);
4276 unsigned long freemiss = atomic_read(&cachep->freemiss);
4277
4278 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4279 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4280 }
4281#endif
4282 seq_putc(m, '\n');
1da177e4
LT
4283 return 0;
4284}
4285
4286/*
4287 * slabinfo_op - iterator that generates /proc/slabinfo
4288 *
4289 * Output layout:
4290 * cache-name
4291 * num-active-objs
4292 * total-objs
4293 * object size
4294 * num-active-slabs
4295 * total-slabs
4296 * num-pages-per-slab
4297 * + further values on SMP and with statistics enabled
4298 */
4299
7b3c3a50 4300static const struct seq_operations slabinfo_op = {
b28a02de
PE
4301 .start = s_start,
4302 .next = s_next,
4303 .stop = s_stop,
4304 .show = s_show,
1da177e4
LT
4305};
4306
4307#define MAX_SLABINFO_WRITE 128
4308/**
4309 * slabinfo_write - Tuning for the slab allocator
4310 * @file: unused
4311 * @buffer: user buffer
4312 * @count: data length
4313 * @ppos: unused
4314 */
68a1b195 4315static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4316 size_t count, loff_t *ppos)
1da177e4 4317{
b28a02de 4318 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4319 int limit, batchcount, shared, res;
7a7c381d 4320 struct kmem_cache *cachep;
b28a02de 4321
1da177e4
LT
4322 if (count > MAX_SLABINFO_WRITE)
4323 return -EINVAL;
4324 if (copy_from_user(&kbuf, buffer, count))
4325 return -EFAULT;
b28a02de 4326 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4327
4328 tmp = strchr(kbuf, ' ');
4329 if (!tmp)
4330 return -EINVAL;
4331 *tmp = '\0';
4332 tmp++;
4333 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4334 return -EINVAL;
4335
4336 /* Find the cache in the chain of caches. */
fc0abb14 4337 mutex_lock(&cache_chain_mutex);
1da177e4 4338 res = -EINVAL;
7a7c381d 4339 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4340 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4341 if (limit < 1 || batchcount < 1 ||
4342 batchcount > limit || shared < 0) {
e498be7d 4343 res = 0;
1da177e4 4344 } else {
e498be7d 4345 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4346 batchcount, shared,
4347 GFP_KERNEL);
1da177e4
LT
4348 }
4349 break;
4350 }
4351 }
fc0abb14 4352 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4353 if (res >= 0)
4354 res = count;
4355 return res;
4356}
871751e2 4357
7b3c3a50
AD
4358static int slabinfo_open(struct inode *inode, struct file *file)
4359{
4360 return seq_open(file, &slabinfo_op);
4361}
4362
4363static const struct file_operations proc_slabinfo_operations = {
4364 .open = slabinfo_open,
4365 .read = seq_read,
4366 .write = slabinfo_write,
4367 .llseek = seq_lseek,
4368 .release = seq_release,
4369};
4370
871751e2
AV
4371#ifdef CONFIG_DEBUG_SLAB_LEAK
4372
4373static void *leaks_start(struct seq_file *m, loff_t *pos)
4374{
871751e2 4375 mutex_lock(&cache_chain_mutex);
b92151ba 4376 return seq_list_start(&cache_chain, *pos);
871751e2
AV
4377}
4378
4379static inline int add_caller(unsigned long *n, unsigned long v)
4380{
4381 unsigned long *p;
4382 int l;
4383 if (!v)
4384 return 1;
4385 l = n[1];
4386 p = n + 2;
4387 while (l) {
4388 int i = l/2;
4389 unsigned long *q = p + 2 * i;
4390 if (*q == v) {
4391 q[1]++;
4392 return 1;
4393 }
4394 if (*q > v) {
4395 l = i;
4396 } else {
4397 p = q + 2;
4398 l -= i + 1;
4399 }
4400 }
4401 if (++n[1] == n[0])
4402 return 0;
4403 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4404 p[0] = v;
4405 p[1] = 1;
4406 return 1;
4407}
4408
4409static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4410{
4411 void *p;
4412 int i;
4413 if (n[0] == n[1])
4414 return;
4415 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4416 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4417 continue;
4418 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4419 return;
4420 }
4421}
4422
4423static void show_symbol(struct seq_file *m, unsigned long address)
4424{
4425#ifdef CONFIG_KALLSYMS
871751e2 4426 unsigned long offset, size;
9281acea 4427 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4428
a5c43dae 4429 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4430 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4431 if (modname[0])
871751e2
AV
4432 seq_printf(m, " [%s]", modname);
4433 return;
4434 }
4435#endif
4436 seq_printf(m, "%p", (void *)address);
4437}
4438
4439static int leaks_show(struct seq_file *m, void *p)
4440{
b92151ba 4441 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
871751e2
AV
4442 struct slab *slabp;
4443 struct kmem_list3 *l3;
4444 const char *name;
4445 unsigned long *n = m->private;
4446 int node;
4447 int i;
4448
4449 if (!(cachep->flags & SLAB_STORE_USER))
4450 return 0;
4451 if (!(cachep->flags & SLAB_RED_ZONE))
4452 return 0;
4453
4454 /* OK, we can do it */
4455
4456 n[1] = 0;
4457
4458 for_each_online_node(node) {
4459 l3 = cachep->nodelists[node];
4460 if (!l3)
4461 continue;
4462
4463 check_irq_on();
4464 spin_lock_irq(&l3->list_lock);
4465
7a7c381d 4466 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4467 handle_slab(n, cachep, slabp);
7a7c381d 4468 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4469 handle_slab(n, cachep, slabp);
871751e2
AV
4470 spin_unlock_irq(&l3->list_lock);
4471 }
4472 name = cachep->name;
4473 if (n[0] == n[1]) {
4474 /* Increase the buffer size */
4475 mutex_unlock(&cache_chain_mutex);
4476 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4477 if (!m->private) {
4478 /* Too bad, we are really out */
4479 m->private = n;
4480 mutex_lock(&cache_chain_mutex);
4481 return -ENOMEM;
4482 }
4483 *(unsigned long *)m->private = n[0] * 2;
4484 kfree(n);
4485 mutex_lock(&cache_chain_mutex);
4486 /* Now make sure this entry will be retried */
4487 m->count = m->size;
4488 return 0;
4489 }
4490 for (i = 0; i < n[1]; i++) {
4491 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4492 show_symbol(m, n[2*i+2]);
4493 seq_putc(m, '\n');
4494 }
d2e7b7d0 4495
871751e2
AV
4496 return 0;
4497}
4498
a0ec95a8 4499static const struct seq_operations slabstats_op = {
871751e2
AV
4500 .start = leaks_start,
4501 .next = s_next,
4502 .stop = s_stop,
4503 .show = leaks_show,
4504};
a0ec95a8
AD
4505
4506static int slabstats_open(struct inode *inode, struct file *file)
4507{
4508 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4509 int ret = -ENOMEM;
4510 if (n) {
4511 ret = seq_open(file, &slabstats_op);
4512 if (!ret) {
4513 struct seq_file *m = file->private_data;
4514 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4515 m->private = n;
4516 n = NULL;
4517 }
4518 kfree(n);
4519 }
4520 return ret;
4521}
4522
4523static const struct file_operations proc_slabstats_operations = {
4524 .open = slabstats_open,
4525 .read = seq_read,
4526 .llseek = seq_lseek,
4527 .release = seq_release_private,
4528};
4529#endif
4530
4531static int __init slab_proc_init(void)
4532{
7b3c3a50 4533 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
a0ec95a8
AD
4534#ifdef CONFIG_DEBUG_SLAB_LEAK
4535 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4536#endif
a0ec95a8
AD
4537 return 0;
4538}
4539module_init(slab_proc_init);
1da177e4
LT
4540#endif
4541
00e145b6
MS
4542/**
4543 * ksize - get the actual amount of memory allocated for a given object
4544 * @objp: Pointer to the object
4545 *
4546 * kmalloc may internally round up allocations and return more memory
4547 * than requested. ksize() can be used to determine the actual amount of
4548 * memory allocated. The caller may use this additional memory, even though
4549 * a smaller amount of memory was initially specified with the kmalloc call.
4550 * The caller must guarantee that objp points to a valid object previously
4551 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4552 * must not be freed during the duration of the call.
4553 */
fd76bab2 4554size_t ksize(const void *objp)
1da177e4 4555{
ef8b4520
CL
4556 BUG_ON(!objp);
4557 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4558 return 0;
1da177e4 4559
6ed5eb22 4560 return obj_size(virt_to_cache(objp));
1da177e4 4561}
b1aabecd 4562EXPORT_SYMBOL(ksize);