Merge branch 'for-linus' of git://neil.brown.name/md
[linux-2.6-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
02af61bb 105#include <linux/kmemtrace.h>
1da177e4 106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
c175eea4 117#include <linux/kmemcheck.h>
1da177e4 118
1da177e4
LT
119#include <asm/cacheflush.h>
120#include <asm/tlbflush.h>
121#include <asm/page.h>
122
123/*
50953fe9 124 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
125 * 0 for faster, smaller code (especially in the critical paths).
126 *
127 * STATS - 1 to collect stats for /proc/slabinfo.
128 * 0 for faster, smaller code (especially in the critical paths).
129 *
130 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
131 */
132
133#ifdef CONFIG_DEBUG_SLAB
134#define DEBUG 1
135#define STATS 1
136#define FORCED_DEBUG 1
137#else
138#define DEBUG 0
139#define STATS 0
140#define FORCED_DEBUG 0
141#endif
142
1da177e4
LT
143/* Shouldn't this be in a header file somewhere? */
144#define BYTES_PER_WORD sizeof(void *)
87a927c7 145#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 146
1da177e4
LT
147#ifndef ARCH_KMALLOC_MINALIGN
148/*
149 * Enforce a minimum alignment for the kmalloc caches.
150 * Usually, the kmalloc caches are cache_line_size() aligned, except when
151 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
152 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
b46b8f19
DW
153 * alignment larger than the alignment of a 64-bit integer.
154 * ARCH_KMALLOC_MINALIGN allows that.
155 * Note that increasing this value may disable some debug features.
1da177e4 156 */
b46b8f19 157#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
1da177e4
LT
158#endif
159
160#ifndef ARCH_SLAB_MINALIGN
161/*
162 * Enforce a minimum alignment for all caches.
163 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
164 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
165 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
166 * some debug features.
167 */
168#define ARCH_SLAB_MINALIGN 0
169#endif
170
171#ifndef ARCH_KMALLOC_FLAGS
172#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
173#endif
174
175/* Legal flag mask for kmem_cache_create(). */
176#if DEBUG
50953fe9 177# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 178 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 179 SLAB_CACHE_DMA | \
5af60839 180 SLAB_STORE_USER | \
1da177e4 181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 183 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4 184#else
ac2b898c 185# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 186 SLAB_CACHE_DMA | \
1da177e4 187 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 188 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 189 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4
LT
190#endif
191
192/*
193 * kmem_bufctl_t:
194 *
195 * Bufctl's are used for linking objs within a slab
196 * linked offsets.
197 *
198 * This implementation relies on "struct page" for locating the cache &
199 * slab an object belongs to.
200 * This allows the bufctl structure to be small (one int), but limits
201 * the number of objects a slab (not a cache) can contain when off-slab
202 * bufctls are used. The limit is the size of the largest general cache
203 * that does not use off-slab slabs.
204 * For 32bit archs with 4 kB pages, is this 56.
205 * This is not serious, as it is only for large objects, when it is unwise
206 * to have too many per slab.
207 * Note: This limit can be raised by introducing a general cache whose size
208 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
209 */
210
fa5b08d5 211typedef unsigned int kmem_bufctl_t;
1da177e4
LT
212#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
213#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
214#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
215#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 216
1da177e4
LT
217/*
218 * struct slab
219 *
220 * Manages the objs in a slab. Placed either at the beginning of mem allocated
221 * for a slab, or allocated from an general cache.
222 * Slabs are chained into three list: fully used, partial, fully free slabs.
223 */
224struct slab {
b28a02de
PE
225 struct list_head list;
226 unsigned long colouroff;
227 void *s_mem; /* including colour offset */
228 unsigned int inuse; /* num of objs active in slab */
229 kmem_bufctl_t free;
230 unsigned short nodeid;
1da177e4
LT
231};
232
233/*
234 * struct slab_rcu
235 *
236 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
237 * arrange for kmem_freepages to be called via RCU. This is useful if
238 * we need to approach a kernel structure obliquely, from its address
239 * obtained without the usual locking. We can lock the structure to
240 * stabilize it and check it's still at the given address, only if we
241 * can be sure that the memory has not been meanwhile reused for some
242 * other kind of object (which our subsystem's lock might corrupt).
243 *
244 * rcu_read_lock before reading the address, then rcu_read_unlock after
245 * taking the spinlock within the structure expected at that address.
246 *
247 * We assume struct slab_rcu can overlay struct slab when destroying.
248 */
249struct slab_rcu {
b28a02de 250 struct rcu_head head;
343e0d7a 251 struct kmem_cache *cachep;
b28a02de 252 void *addr;
1da177e4
LT
253};
254
255/*
256 * struct array_cache
257 *
1da177e4
LT
258 * Purpose:
259 * - LIFO ordering, to hand out cache-warm objects from _alloc
260 * - reduce the number of linked list operations
261 * - reduce spinlock operations
262 *
263 * The limit is stored in the per-cpu structure to reduce the data cache
264 * footprint.
265 *
266 */
267struct array_cache {
268 unsigned int avail;
269 unsigned int limit;
270 unsigned int batchcount;
271 unsigned int touched;
e498be7d 272 spinlock_t lock;
bda5b655 273 void *entry[]; /*
a737b3e2
AM
274 * Must have this definition in here for the proper
275 * alignment of array_cache. Also simplifies accessing
276 * the entries.
a737b3e2 277 */
1da177e4
LT
278};
279
a737b3e2
AM
280/*
281 * bootstrap: The caches do not work without cpuarrays anymore, but the
282 * cpuarrays are allocated from the generic caches...
1da177e4
LT
283 */
284#define BOOT_CPUCACHE_ENTRIES 1
285struct arraycache_init {
286 struct array_cache cache;
b28a02de 287 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
288};
289
290/*
e498be7d 291 * The slab lists for all objects.
1da177e4
LT
292 */
293struct kmem_list3 {
b28a02de
PE
294 struct list_head slabs_partial; /* partial list first, better asm code */
295 struct list_head slabs_full;
296 struct list_head slabs_free;
297 unsigned long free_objects;
b28a02de 298 unsigned int free_limit;
2e1217cf 299 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
300 spinlock_t list_lock;
301 struct array_cache *shared; /* shared per node */
302 struct array_cache **alien; /* on other nodes */
35386e3b
CL
303 unsigned long next_reap; /* updated without locking */
304 int free_touched; /* updated without locking */
1da177e4
LT
305};
306
7e85ee0c
PE
307/*
308 * The slab allocator is initialized with interrupts disabled. Therefore, make
309 * sure early boot allocations don't accidentally enable interrupts.
310 */
311static gfp_t slab_gfp_mask __read_mostly = SLAB_GFP_BOOT_MASK;
312
e498be7d
CL
313/*
314 * Need this for bootstrapping a per node allocator.
315 */
556a169d 316#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
e498be7d
CL
317struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
318#define CACHE_CACHE 0
556a169d
PE
319#define SIZE_AC MAX_NUMNODES
320#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 321
ed11d9eb
CL
322static int drain_freelist(struct kmem_cache *cache,
323 struct kmem_list3 *l3, int tofree);
324static void free_block(struct kmem_cache *cachep, void **objpp, int len,
325 int node);
83b519e8 326static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 327static void cache_reap(struct work_struct *unused);
ed11d9eb 328
e498be7d 329/*
a737b3e2
AM
330 * This function must be completely optimized away if a constant is passed to
331 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 332 */
7243cc05 333static __always_inline int index_of(const size_t size)
e498be7d 334{
5ec8a847
SR
335 extern void __bad_size(void);
336
e498be7d
CL
337 if (__builtin_constant_p(size)) {
338 int i = 0;
339
340#define CACHE(x) \
341 if (size <=x) \
342 return i; \
343 else \
344 i++;
1c61fc40 345#include <linux/kmalloc_sizes.h>
e498be7d 346#undef CACHE
5ec8a847 347 __bad_size();
7243cc05 348 } else
5ec8a847 349 __bad_size();
e498be7d
CL
350 return 0;
351}
352
e0a42726
IM
353static int slab_early_init = 1;
354
e498be7d
CL
355#define INDEX_AC index_of(sizeof(struct arraycache_init))
356#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 357
5295a74c 358static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
359{
360 INIT_LIST_HEAD(&parent->slabs_full);
361 INIT_LIST_HEAD(&parent->slabs_partial);
362 INIT_LIST_HEAD(&parent->slabs_free);
363 parent->shared = NULL;
364 parent->alien = NULL;
2e1217cf 365 parent->colour_next = 0;
e498be7d
CL
366 spin_lock_init(&parent->list_lock);
367 parent->free_objects = 0;
368 parent->free_touched = 0;
369}
370
a737b3e2
AM
371#define MAKE_LIST(cachep, listp, slab, nodeid) \
372 do { \
373 INIT_LIST_HEAD(listp); \
374 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
375 } while (0)
376
a737b3e2
AM
377#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
378 do { \
e498be7d
CL
379 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
380 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
381 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
382 } while (0)
1da177e4 383
1da177e4
LT
384#define CFLGS_OFF_SLAB (0x80000000UL)
385#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
386
387#define BATCHREFILL_LIMIT 16
a737b3e2
AM
388/*
389 * Optimization question: fewer reaps means less probability for unnessary
390 * cpucache drain/refill cycles.
1da177e4 391 *
dc6f3f27 392 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
393 * which could lock up otherwise freeable slabs.
394 */
395#define REAPTIMEOUT_CPUC (2*HZ)
396#define REAPTIMEOUT_LIST3 (4*HZ)
397
398#if STATS
399#define STATS_INC_ACTIVE(x) ((x)->num_active++)
400#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
401#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
402#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 403#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
404#define STATS_SET_HIGH(x) \
405 do { \
406 if ((x)->num_active > (x)->high_mark) \
407 (x)->high_mark = (x)->num_active; \
408 } while (0)
1da177e4
LT
409#define STATS_INC_ERR(x) ((x)->errors++)
410#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 411#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 412#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
413#define STATS_SET_FREEABLE(x, i) \
414 do { \
415 if ((x)->max_freeable < i) \
416 (x)->max_freeable = i; \
417 } while (0)
1da177e4
LT
418#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
419#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
420#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
421#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
422#else
423#define STATS_INC_ACTIVE(x) do { } while (0)
424#define STATS_DEC_ACTIVE(x) do { } while (0)
425#define STATS_INC_ALLOCED(x) do { } while (0)
426#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 427#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
428#define STATS_SET_HIGH(x) do { } while (0)
429#define STATS_INC_ERR(x) do { } while (0)
430#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 431#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 432#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 433#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
434#define STATS_INC_ALLOCHIT(x) do { } while (0)
435#define STATS_INC_ALLOCMISS(x) do { } while (0)
436#define STATS_INC_FREEHIT(x) do { } while (0)
437#define STATS_INC_FREEMISS(x) do { } while (0)
438#endif
439
440#if DEBUG
1da177e4 441
a737b3e2
AM
442/*
443 * memory layout of objects:
1da177e4 444 * 0 : objp
3dafccf2 445 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
446 * the end of an object is aligned with the end of the real
447 * allocation. Catches writes behind the end of the allocation.
3dafccf2 448 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 449 * redzone word.
3dafccf2
MS
450 * cachep->obj_offset: The real object.
451 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
452 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
453 * [BYTES_PER_WORD long]
1da177e4 454 */
343e0d7a 455static int obj_offset(struct kmem_cache *cachep)
1da177e4 456{
3dafccf2 457 return cachep->obj_offset;
1da177e4
LT
458}
459
343e0d7a 460static int obj_size(struct kmem_cache *cachep)
1da177e4 461{
3dafccf2 462 return cachep->obj_size;
1da177e4
LT
463}
464
b46b8f19 465static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
466{
467 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
468 return (unsigned long long*) (objp + obj_offset(cachep) -
469 sizeof(unsigned long long));
1da177e4
LT
470}
471
b46b8f19 472static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
473{
474 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
475 if (cachep->flags & SLAB_STORE_USER)
b46b8f19
DW
476 return (unsigned long long *)(objp + cachep->buffer_size -
477 sizeof(unsigned long long) -
87a927c7 478 REDZONE_ALIGN);
b46b8f19
DW
479 return (unsigned long long *) (objp + cachep->buffer_size -
480 sizeof(unsigned long long));
1da177e4
LT
481}
482
343e0d7a 483static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
484{
485 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 486 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
487}
488
489#else
490
3dafccf2
MS
491#define obj_offset(x) 0
492#define obj_size(cachep) (cachep->buffer_size)
b46b8f19
DW
493#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
494#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
495#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
496
497#endif
498
36555751
EGM
499#ifdef CONFIG_KMEMTRACE
500size_t slab_buffer_size(struct kmem_cache *cachep)
501{
502 return cachep->buffer_size;
503}
504EXPORT_SYMBOL(slab_buffer_size);
505#endif
506
1da177e4
LT
507/*
508 * Do not go above this order unless 0 objects fit into the slab.
509 */
510#define BREAK_GFP_ORDER_HI 1
511#define BREAK_GFP_ORDER_LO 0
512static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
513
a737b3e2
AM
514/*
515 * Functions for storing/retrieving the cachep and or slab from the page
516 * allocator. These are used to find the slab an obj belongs to. With kfree(),
517 * these are used to find the cache which an obj belongs to.
1da177e4 518 */
065d41cb
PE
519static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
520{
521 page->lru.next = (struct list_head *)cache;
522}
523
524static inline struct kmem_cache *page_get_cache(struct page *page)
525{
d85f3385 526 page = compound_head(page);
ddc2e812 527 BUG_ON(!PageSlab(page));
065d41cb
PE
528 return (struct kmem_cache *)page->lru.next;
529}
530
531static inline void page_set_slab(struct page *page, struct slab *slab)
532{
533 page->lru.prev = (struct list_head *)slab;
534}
535
536static inline struct slab *page_get_slab(struct page *page)
537{
ddc2e812 538 BUG_ON(!PageSlab(page));
065d41cb
PE
539 return (struct slab *)page->lru.prev;
540}
1da177e4 541
6ed5eb22
PE
542static inline struct kmem_cache *virt_to_cache(const void *obj)
543{
b49af68f 544 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
545 return page_get_cache(page);
546}
547
548static inline struct slab *virt_to_slab(const void *obj)
549{
b49af68f 550 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
551 return page_get_slab(page);
552}
553
8fea4e96
PE
554static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
555 unsigned int idx)
556{
557 return slab->s_mem + cache->buffer_size * idx;
558}
559
6a2d7a95
ED
560/*
561 * We want to avoid an expensive divide : (offset / cache->buffer_size)
562 * Using the fact that buffer_size is a constant for a particular cache,
563 * we can replace (offset / cache->buffer_size) by
564 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
565 */
566static inline unsigned int obj_to_index(const struct kmem_cache *cache,
567 const struct slab *slab, void *obj)
8fea4e96 568{
6a2d7a95
ED
569 u32 offset = (obj - slab->s_mem);
570 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
571}
572
a737b3e2
AM
573/*
574 * These are the default caches for kmalloc. Custom caches can have other sizes.
575 */
1da177e4
LT
576struct cache_sizes malloc_sizes[] = {
577#define CACHE(x) { .cs_size = (x) },
578#include <linux/kmalloc_sizes.h>
579 CACHE(ULONG_MAX)
580#undef CACHE
581};
582EXPORT_SYMBOL(malloc_sizes);
583
584/* Must match cache_sizes above. Out of line to keep cache footprint low. */
585struct cache_names {
586 char *name;
587 char *name_dma;
588};
589
590static struct cache_names __initdata cache_names[] = {
591#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
592#include <linux/kmalloc_sizes.h>
b28a02de 593 {NULL,}
1da177e4
LT
594#undef CACHE
595};
596
597static struct arraycache_init initarray_cache __initdata =
b28a02de 598 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 599static struct arraycache_init initarray_generic =
b28a02de 600 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
601
602/* internal cache of cache description objs */
343e0d7a 603static struct kmem_cache cache_cache = {
b28a02de
PE
604 .batchcount = 1,
605 .limit = BOOT_CPUCACHE_ENTRIES,
606 .shared = 1,
343e0d7a 607 .buffer_size = sizeof(struct kmem_cache),
b28a02de 608 .name = "kmem_cache",
1da177e4
LT
609};
610
056c6241
RT
611#define BAD_ALIEN_MAGIC 0x01020304ul
612
f1aaee53
AV
613#ifdef CONFIG_LOCKDEP
614
615/*
616 * Slab sometimes uses the kmalloc slabs to store the slab headers
617 * for other slabs "off slab".
618 * The locking for this is tricky in that it nests within the locks
619 * of all other slabs in a few places; to deal with this special
620 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
621 *
622 * We set lock class for alien array caches which are up during init.
623 * The lock annotation will be lost if all cpus of a node goes down and
624 * then comes back up during hotplug
f1aaee53 625 */
056c6241
RT
626static struct lock_class_key on_slab_l3_key;
627static struct lock_class_key on_slab_alc_key;
628
629static inline void init_lock_keys(void)
f1aaee53 630
f1aaee53
AV
631{
632 int q;
056c6241
RT
633 struct cache_sizes *s = malloc_sizes;
634
635 while (s->cs_size != ULONG_MAX) {
636 for_each_node(q) {
637 struct array_cache **alc;
638 int r;
639 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
640 if (!l3 || OFF_SLAB(s->cs_cachep))
641 continue;
642 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
643 alc = l3->alien;
644 /*
645 * FIXME: This check for BAD_ALIEN_MAGIC
646 * should go away when common slab code is taught to
647 * work even without alien caches.
648 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
649 * for alloc_alien_cache,
650 */
651 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
652 continue;
653 for_each_node(r) {
654 if (alc[r])
655 lockdep_set_class(&alc[r]->lock,
656 &on_slab_alc_key);
657 }
658 }
659 s++;
f1aaee53
AV
660 }
661}
f1aaee53 662#else
056c6241 663static inline void init_lock_keys(void)
f1aaee53
AV
664{
665}
666#endif
667
8f5be20b 668/*
95402b38 669 * Guard access to the cache-chain.
8f5be20b 670 */
fc0abb14 671static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
672static struct list_head cache_chain;
673
1da177e4
LT
674/*
675 * chicken and egg problem: delay the per-cpu array allocation
676 * until the general caches are up.
677 */
678static enum {
679 NONE,
e498be7d
CL
680 PARTIAL_AC,
681 PARTIAL_L3,
8429db5c 682 EARLY,
1da177e4
LT
683 FULL
684} g_cpucache_up;
685
39d24e64
MK
686/*
687 * used by boot code to determine if it can use slab based allocator
688 */
689int slab_is_available(void)
690{
8429db5c 691 return g_cpucache_up >= EARLY;
39d24e64
MK
692}
693
52bad64d 694static DEFINE_PER_CPU(struct delayed_work, reap_work);
1da177e4 695
343e0d7a 696static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
697{
698 return cachep->array[smp_processor_id()];
699}
700
a737b3e2
AM
701static inline struct kmem_cache *__find_general_cachep(size_t size,
702 gfp_t gfpflags)
1da177e4
LT
703{
704 struct cache_sizes *csizep = malloc_sizes;
705
706#if DEBUG
707 /* This happens if someone tries to call
b28a02de
PE
708 * kmem_cache_create(), or __kmalloc(), before
709 * the generic caches are initialized.
710 */
c7e43c78 711 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 712#endif
6cb8f913
CL
713 if (!size)
714 return ZERO_SIZE_PTR;
715
1da177e4
LT
716 while (size > csizep->cs_size)
717 csizep++;
718
719 /*
0abf40c1 720 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
721 * has cs_{dma,}cachep==NULL. Thus no special case
722 * for large kmalloc calls required.
723 */
4b51d669 724#ifdef CONFIG_ZONE_DMA
1da177e4
LT
725 if (unlikely(gfpflags & GFP_DMA))
726 return csizep->cs_dmacachep;
4b51d669 727#endif
1da177e4
LT
728 return csizep->cs_cachep;
729}
730
b221385b 731static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
732{
733 return __find_general_cachep(size, gfpflags);
734}
97e2bde4 735
fbaccacf 736static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 737{
fbaccacf
SR
738 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
739}
1da177e4 740
a737b3e2
AM
741/*
742 * Calculate the number of objects and left-over bytes for a given buffer size.
743 */
fbaccacf
SR
744static void cache_estimate(unsigned long gfporder, size_t buffer_size,
745 size_t align, int flags, size_t *left_over,
746 unsigned int *num)
747{
748 int nr_objs;
749 size_t mgmt_size;
750 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 751
fbaccacf
SR
752 /*
753 * The slab management structure can be either off the slab or
754 * on it. For the latter case, the memory allocated for a
755 * slab is used for:
756 *
757 * - The struct slab
758 * - One kmem_bufctl_t for each object
759 * - Padding to respect alignment of @align
760 * - @buffer_size bytes for each object
761 *
762 * If the slab management structure is off the slab, then the
763 * alignment will already be calculated into the size. Because
764 * the slabs are all pages aligned, the objects will be at the
765 * correct alignment when allocated.
766 */
767 if (flags & CFLGS_OFF_SLAB) {
768 mgmt_size = 0;
769 nr_objs = slab_size / buffer_size;
770
771 if (nr_objs > SLAB_LIMIT)
772 nr_objs = SLAB_LIMIT;
773 } else {
774 /*
775 * Ignore padding for the initial guess. The padding
776 * is at most @align-1 bytes, and @buffer_size is at
777 * least @align. In the worst case, this result will
778 * be one greater than the number of objects that fit
779 * into the memory allocation when taking the padding
780 * into account.
781 */
782 nr_objs = (slab_size - sizeof(struct slab)) /
783 (buffer_size + sizeof(kmem_bufctl_t));
784
785 /*
786 * This calculated number will be either the right
787 * amount, or one greater than what we want.
788 */
789 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
790 > slab_size)
791 nr_objs--;
792
793 if (nr_objs > SLAB_LIMIT)
794 nr_objs = SLAB_LIMIT;
795
796 mgmt_size = slab_mgmt_size(nr_objs, align);
797 }
798 *num = nr_objs;
799 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
800}
801
d40cee24 802#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 803
a737b3e2
AM
804static void __slab_error(const char *function, struct kmem_cache *cachep,
805 char *msg)
1da177e4
LT
806{
807 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 808 function, cachep->name, msg);
1da177e4
LT
809 dump_stack();
810}
811
3395ee05
PM
812/*
813 * By default on NUMA we use alien caches to stage the freeing of
814 * objects allocated from other nodes. This causes massive memory
815 * inefficiencies when using fake NUMA setup to split memory into a
816 * large number of small nodes, so it can be disabled on the command
817 * line
818 */
819
820static int use_alien_caches __read_mostly = 1;
821static int __init noaliencache_setup(char *s)
822{
823 use_alien_caches = 0;
824 return 1;
825}
826__setup("noaliencache", noaliencache_setup);
827
8fce4d8e
CL
828#ifdef CONFIG_NUMA
829/*
830 * Special reaping functions for NUMA systems called from cache_reap().
831 * These take care of doing round robin flushing of alien caches (containing
832 * objects freed on different nodes from which they were allocated) and the
833 * flushing of remote pcps by calling drain_node_pages.
834 */
835static DEFINE_PER_CPU(unsigned long, reap_node);
836
837static void init_reap_node(int cpu)
838{
839 int node;
840
841 node = next_node(cpu_to_node(cpu), node_online_map);
842 if (node == MAX_NUMNODES)
442295c9 843 node = first_node(node_online_map);
8fce4d8e 844
7f6b8876 845 per_cpu(reap_node, cpu) = node;
8fce4d8e
CL
846}
847
848static void next_reap_node(void)
849{
850 int node = __get_cpu_var(reap_node);
851
8fce4d8e
CL
852 node = next_node(node, node_online_map);
853 if (unlikely(node >= MAX_NUMNODES))
854 node = first_node(node_online_map);
855 __get_cpu_var(reap_node) = node;
856}
857
858#else
859#define init_reap_node(cpu) do { } while (0)
860#define next_reap_node(void) do { } while (0)
861#endif
862
1da177e4
LT
863/*
864 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
865 * via the workqueue/eventd.
866 * Add the CPU number into the expiration time to minimize the possibility of
867 * the CPUs getting into lockstep and contending for the global cache chain
868 * lock.
869 */
897e679b 870static void __cpuinit start_cpu_timer(int cpu)
1da177e4 871{
52bad64d 872 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
1da177e4
LT
873
874 /*
875 * When this gets called from do_initcalls via cpucache_init(),
876 * init_workqueues() has already run, so keventd will be setup
877 * at that time.
878 */
52bad64d 879 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 880 init_reap_node(cpu);
65f27f38 881 INIT_DELAYED_WORK(reap_work, cache_reap);
2b284214
AV
882 schedule_delayed_work_on(cpu, reap_work,
883 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
884 }
885}
886
e498be7d 887static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 888 int batchcount, gfp_t gfp)
1da177e4 889{
b28a02de 890 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
891 struct array_cache *nc = NULL;
892
83b519e8 893 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
894 /*
895 * The array_cache structures contain pointers to free object.
896 * However, when such objects are allocated or transfered to another
897 * cache the pointers are not cleared and they could be counted as
898 * valid references during a kmemleak scan. Therefore, kmemleak must
899 * not scan such objects.
900 */
901 kmemleak_no_scan(nc);
1da177e4
LT
902 if (nc) {
903 nc->avail = 0;
904 nc->limit = entries;
905 nc->batchcount = batchcount;
906 nc->touched = 0;
e498be7d 907 spin_lock_init(&nc->lock);
1da177e4
LT
908 }
909 return nc;
910}
911
3ded175a
CL
912/*
913 * Transfer objects in one arraycache to another.
914 * Locking must be handled by the caller.
915 *
916 * Return the number of entries transferred.
917 */
918static int transfer_objects(struct array_cache *to,
919 struct array_cache *from, unsigned int max)
920{
921 /* Figure out how many entries to transfer */
922 int nr = min(min(from->avail, max), to->limit - to->avail);
923
924 if (!nr)
925 return 0;
926
927 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
928 sizeof(void *) *nr);
929
930 from->avail -= nr;
931 to->avail += nr;
932 to->touched = 1;
933 return nr;
934}
935
765c4507
CL
936#ifndef CONFIG_NUMA
937
938#define drain_alien_cache(cachep, alien) do { } while (0)
939#define reap_alien(cachep, l3) do { } while (0)
940
83b519e8 941static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
942{
943 return (struct array_cache **)BAD_ALIEN_MAGIC;
944}
945
946static inline void free_alien_cache(struct array_cache **ac_ptr)
947{
948}
949
950static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
951{
952 return 0;
953}
954
955static inline void *alternate_node_alloc(struct kmem_cache *cachep,
956 gfp_t flags)
957{
958 return NULL;
959}
960
8b98c169 961static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
962 gfp_t flags, int nodeid)
963{
964 return NULL;
965}
966
967#else /* CONFIG_NUMA */
968
8b98c169 969static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 970static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 971
83b519e8 972static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
973{
974 struct array_cache **ac_ptr;
8ef82866 975 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
976 int i;
977
978 if (limit > 1)
979 limit = 12;
83b519e8 980 ac_ptr = kmalloc_node(memsize, gfp, node);
e498be7d
CL
981 if (ac_ptr) {
982 for_each_node(i) {
983 if (i == node || !node_online(i)) {
984 ac_ptr[i] = NULL;
985 continue;
986 }
83b519e8 987 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 988 if (!ac_ptr[i]) {
cc550def 989 for (i--; i >= 0; i--)
e498be7d
CL
990 kfree(ac_ptr[i]);
991 kfree(ac_ptr);
992 return NULL;
993 }
994 }
995 }
996 return ac_ptr;
997}
998
5295a74c 999static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1000{
1001 int i;
1002
1003 if (!ac_ptr)
1004 return;
e498be7d 1005 for_each_node(i)
b28a02de 1006 kfree(ac_ptr[i]);
e498be7d
CL
1007 kfree(ac_ptr);
1008}
1009
343e0d7a 1010static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1011 struct array_cache *ac, int node)
e498be7d
CL
1012{
1013 struct kmem_list3 *rl3 = cachep->nodelists[node];
1014
1015 if (ac->avail) {
1016 spin_lock(&rl3->list_lock);
e00946fe
CL
1017 /*
1018 * Stuff objects into the remote nodes shared array first.
1019 * That way we could avoid the overhead of putting the objects
1020 * into the free lists and getting them back later.
1021 */
693f7d36 1022 if (rl3->shared)
1023 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1024
ff69416e 1025 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1026 ac->avail = 0;
1027 spin_unlock(&rl3->list_lock);
1028 }
1029}
1030
8fce4d8e
CL
1031/*
1032 * Called from cache_reap() to regularly drain alien caches round robin.
1033 */
1034static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1035{
1036 int node = __get_cpu_var(reap_node);
1037
1038 if (l3->alien) {
1039 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1040
1041 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1042 __drain_alien_cache(cachep, ac, node);
1043 spin_unlock_irq(&ac->lock);
1044 }
1045 }
1046}
1047
a737b3e2
AM
1048static void drain_alien_cache(struct kmem_cache *cachep,
1049 struct array_cache **alien)
e498be7d 1050{
b28a02de 1051 int i = 0;
e498be7d
CL
1052 struct array_cache *ac;
1053 unsigned long flags;
1054
1055 for_each_online_node(i) {
4484ebf1 1056 ac = alien[i];
e498be7d
CL
1057 if (ac) {
1058 spin_lock_irqsave(&ac->lock, flags);
1059 __drain_alien_cache(cachep, ac, i);
1060 spin_unlock_irqrestore(&ac->lock, flags);
1061 }
1062 }
1063}
729bd0b7 1064
873623df 1065static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1066{
1067 struct slab *slabp = virt_to_slab(objp);
1068 int nodeid = slabp->nodeid;
1069 struct kmem_list3 *l3;
1070 struct array_cache *alien = NULL;
1ca4cb24
PE
1071 int node;
1072
1073 node = numa_node_id();
729bd0b7
PE
1074
1075 /*
1076 * Make sure we are not freeing a object from another node to the array
1077 * cache on this cpu.
1078 */
62918a03 1079 if (likely(slabp->nodeid == node))
729bd0b7
PE
1080 return 0;
1081
1ca4cb24 1082 l3 = cachep->nodelists[node];
729bd0b7
PE
1083 STATS_INC_NODEFREES(cachep);
1084 if (l3->alien && l3->alien[nodeid]) {
1085 alien = l3->alien[nodeid];
873623df 1086 spin_lock(&alien->lock);
729bd0b7
PE
1087 if (unlikely(alien->avail == alien->limit)) {
1088 STATS_INC_ACOVERFLOW(cachep);
1089 __drain_alien_cache(cachep, alien, nodeid);
1090 }
1091 alien->entry[alien->avail++] = objp;
1092 spin_unlock(&alien->lock);
1093 } else {
1094 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1095 free_block(cachep, &objp, 1, nodeid);
1096 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1097 }
1098 return 1;
1099}
e498be7d
CL
1100#endif
1101
fbf1e473
AM
1102static void __cpuinit cpuup_canceled(long cpu)
1103{
1104 struct kmem_cache *cachep;
1105 struct kmem_list3 *l3 = NULL;
1106 int node = cpu_to_node(cpu);
a70f7302 1107 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473
AM
1108
1109 list_for_each_entry(cachep, &cache_chain, next) {
1110 struct array_cache *nc;
1111 struct array_cache *shared;
1112 struct array_cache **alien;
fbf1e473 1113
fbf1e473
AM
1114 /* cpu is dead; no one can alloc from it. */
1115 nc = cachep->array[cpu];
1116 cachep->array[cpu] = NULL;
1117 l3 = cachep->nodelists[node];
1118
1119 if (!l3)
1120 goto free_array_cache;
1121
1122 spin_lock_irq(&l3->list_lock);
1123
1124 /* Free limit for this kmem_list3 */
1125 l3->free_limit -= cachep->batchcount;
1126 if (nc)
1127 free_block(cachep, nc->entry, nc->avail, node);
1128
c5f59f08 1129 if (!cpus_empty(*mask)) {
fbf1e473
AM
1130 spin_unlock_irq(&l3->list_lock);
1131 goto free_array_cache;
1132 }
1133
1134 shared = l3->shared;
1135 if (shared) {
1136 free_block(cachep, shared->entry,
1137 shared->avail, node);
1138 l3->shared = NULL;
1139 }
1140
1141 alien = l3->alien;
1142 l3->alien = NULL;
1143
1144 spin_unlock_irq(&l3->list_lock);
1145
1146 kfree(shared);
1147 if (alien) {
1148 drain_alien_cache(cachep, alien);
1149 free_alien_cache(alien);
1150 }
1151free_array_cache:
1152 kfree(nc);
1153 }
1154 /*
1155 * In the previous loop, all the objects were freed to
1156 * the respective cache's slabs, now we can go ahead and
1157 * shrink each nodelist to its limit.
1158 */
1159 list_for_each_entry(cachep, &cache_chain, next) {
1160 l3 = cachep->nodelists[node];
1161 if (!l3)
1162 continue;
1163 drain_freelist(cachep, l3, l3->free_objects);
1164 }
1165}
1166
1167static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1168{
343e0d7a 1169 struct kmem_cache *cachep;
e498be7d
CL
1170 struct kmem_list3 *l3 = NULL;
1171 int node = cpu_to_node(cpu);
ea02e3dd 1172 const int memsize = sizeof(struct kmem_list3);
1da177e4 1173
fbf1e473
AM
1174 /*
1175 * We need to do this right in the beginning since
1176 * alloc_arraycache's are going to use this list.
1177 * kmalloc_node allows us to add the slab to the right
1178 * kmem_list3 and not this cpu's kmem_list3
1179 */
1180
1181 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2 1182 /*
fbf1e473
AM
1183 * Set up the size64 kmemlist for cpu before we can
1184 * begin anything. Make sure some other cpu on this
1185 * node has not already allocated this
e498be7d 1186 */
fbf1e473
AM
1187 if (!cachep->nodelists[node]) {
1188 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1189 if (!l3)
1190 goto bad;
1191 kmem_list3_init(l3);
1192 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1193 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1194
a737b3e2 1195 /*
fbf1e473
AM
1196 * The l3s don't come and go as CPUs come and
1197 * go. cache_chain_mutex is sufficient
1198 * protection here.
e498be7d 1199 */
fbf1e473 1200 cachep->nodelists[node] = l3;
e498be7d
CL
1201 }
1202
fbf1e473
AM
1203 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1204 cachep->nodelists[node]->free_limit =
1205 (1 + nr_cpus_node(node)) *
1206 cachep->batchcount + cachep->num;
1207 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1208 }
1209
1210 /*
1211 * Now we can go ahead with allocating the shared arrays and
1212 * array caches
1213 */
1214 list_for_each_entry(cachep, &cache_chain, next) {
1215 struct array_cache *nc;
1216 struct array_cache *shared = NULL;
1217 struct array_cache **alien = NULL;
1218
1219 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1220 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1221 if (!nc)
1222 goto bad;
1223 if (cachep->shared) {
1224 shared = alloc_arraycache(node,
1225 cachep->shared * cachep->batchcount,
83b519e8 1226 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1227 if (!shared) {
1228 kfree(nc);
1da177e4 1229 goto bad;
12d00f6a 1230 }
fbf1e473
AM
1231 }
1232 if (use_alien_caches) {
83b519e8 1233 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1234 if (!alien) {
1235 kfree(shared);
1236 kfree(nc);
fbf1e473 1237 goto bad;
12d00f6a 1238 }
fbf1e473
AM
1239 }
1240 cachep->array[cpu] = nc;
1241 l3 = cachep->nodelists[node];
1242 BUG_ON(!l3);
1243
1244 spin_lock_irq(&l3->list_lock);
1245 if (!l3->shared) {
1246 /*
1247 * We are serialised from CPU_DEAD or
1248 * CPU_UP_CANCELLED by the cpucontrol lock
1249 */
1250 l3->shared = shared;
1251 shared = NULL;
1252 }
4484ebf1 1253#ifdef CONFIG_NUMA
fbf1e473
AM
1254 if (!l3->alien) {
1255 l3->alien = alien;
1256 alien = NULL;
1da177e4 1257 }
fbf1e473
AM
1258#endif
1259 spin_unlock_irq(&l3->list_lock);
1260 kfree(shared);
1261 free_alien_cache(alien);
1262 }
1263 return 0;
1264bad:
12d00f6a 1265 cpuup_canceled(cpu);
fbf1e473
AM
1266 return -ENOMEM;
1267}
1268
1269static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1270 unsigned long action, void *hcpu)
1271{
1272 long cpu = (long)hcpu;
1273 int err = 0;
1274
1275 switch (action) {
fbf1e473
AM
1276 case CPU_UP_PREPARE:
1277 case CPU_UP_PREPARE_FROZEN:
95402b38 1278 mutex_lock(&cache_chain_mutex);
fbf1e473 1279 err = cpuup_prepare(cpu);
95402b38 1280 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1281 break;
1282 case CPU_ONLINE:
8bb78442 1283 case CPU_ONLINE_FROZEN:
1da177e4
LT
1284 start_cpu_timer(cpu);
1285 break;
1286#ifdef CONFIG_HOTPLUG_CPU
5830c590 1287 case CPU_DOWN_PREPARE:
8bb78442 1288 case CPU_DOWN_PREPARE_FROZEN:
5830c590
CL
1289 /*
1290 * Shutdown cache reaper. Note that the cache_chain_mutex is
1291 * held so that if cache_reap() is invoked it cannot do
1292 * anything expensive but will only modify reap_work
1293 * and reschedule the timer.
1294 */
1295 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1296 /* Now the cache_reaper is guaranteed to be not running. */
1297 per_cpu(reap_work, cpu).work.func = NULL;
1298 break;
1299 case CPU_DOWN_FAILED:
8bb78442 1300 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1301 start_cpu_timer(cpu);
1302 break;
1da177e4 1303 case CPU_DEAD:
8bb78442 1304 case CPU_DEAD_FROZEN:
4484ebf1
RT
1305 /*
1306 * Even if all the cpus of a node are down, we don't free the
1307 * kmem_list3 of any cache. This to avoid a race between
1308 * cpu_down, and a kmalloc allocation from another cpu for
1309 * memory from the node of the cpu going down. The list3
1310 * structure is usually allocated from kmem_cache_create() and
1311 * gets destroyed at kmem_cache_destroy().
1312 */
183ff22b 1313 /* fall through */
8f5be20b 1314#endif
1da177e4 1315 case CPU_UP_CANCELED:
8bb78442 1316 case CPU_UP_CANCELED_FROZEN:
95402b38 1317 mutex_lock(&cache_chain_mutex);
fbf1e473 1318 cpuup_canceled(cpu);
fc0abb14 1319 mutex_unlock(&cache_chain_mutex);
1da177e4 1320 break;
1da177e4 1321 }
fbf1e473 1322 return err ? NOTIFY_BAD : NOTIFY_OK;
1da177e4
LT
1323}
1324
74b85f37
CS
1325static struct notifier_block __cpuinitdata cpucache_notifier = {
1326 &cpuup_callback, NULL, 0
1327};
1da177e4 1328
e498be7d
CL
1329/*
1330 * swap the static kmem_list3 with kmalloced memory
1331 */
a737b3e2
AM
1332static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1333 int nodeid)
e498be7d
CL
1334{
1335 struct kmem_list3 *ptr;
1336
83b519e8 1337 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
e498be7d
CL
1338 BUG_ON(!ptr);
1339
e498be7d 1340 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1341 /*
1342 * Do not assume that spinlocks can be initialized via memcpy:
1343 */
1344 spin_lock_init(&ptr->list_lock);
1345
e498be7d
CL
1346 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1347 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1348}
1349
556a169d
PE
1350/*
1351 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1352 * size of kmem_list3.
1353 */
1354static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1355{
1356 int node;
1357
1358 for_each_online_node(node) {
1359 cachep->nodelists[node] = &initkmem_list3[index + node];
1360 cachep->nodelists[node]->next_reap = jiffies +
1361 REAPTIMEOUT_LIST3 +
1362 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1363 }
1364}
1365
a737b3e2
AM
1366/*
1367 * Initialisation. Called after the page allocator have been initialised and
1368 * before smp_init().
1da177e4
LT
1369 */
1370void __init kmem_cache_init(void)
1371{
1372 size_t left_over;
1373 struct cache_sizes *sizes;
1374 struct cache_names *names;
e498be7d 1375 int i;
07ed76b2 1376 int order;
1ca4cb24 1377 int node;
e498be7d 1378
b6e68bc1 1379 if (num_possible_nodes() == 1)
62918a03
SS
1380 use_alien_caches = 0;
1381
e498be7d
CL
1382 for (i = 0; i < NUM_INIT_LISTS; i++) {
1383 kmem_list3_init(&initkmem_list3[i]);
1384 if (i < MAX_NUMNODES)
1385 cache_cache.nodelists[i] = NULL;
1386 }
556a169d 1387 set_up_list3s(&cache_cache, CACHE_CACHE);
1da177e4
LT
1388
1389 /*
1390 * Fragmentation resistance on low memory - only use bigger
1391 * page orders on machines with more than 32MB of memory.
1392 */
1393 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1394 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1395
1da177e4
LT
1396 /* Bootstrap is tricky, because several objects are allocated
1397 * from caches that do not exist yet:
a737b3e2
AM
1398 * 1) initialize the cache_cache cache: it contains the struct
1399 * kmem_cache structures of all caches, except cache_cache itself:
1400 * cache_cache is statically allocated.
e498be7d
CL
1401 * Initially an __init data area is used for the head array and the
1402 * kmem_list3 structures, it's replaced with a kmalloc allocated
1403 * array at the end of the bootstrap.
1da177e4 1404 * 2) Create the first kmalloc cache.
343e0d7a 1405 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1406 * An __init data area is used for the head array.
1407 * 3) Create the remaining kmalloc caches, with minimally sized
1408 * head arrays.
1da177e4
LT
1409 * 4) Replace the __init data head arrays for cache_cache and the first
1410 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1411 * 5) Replace the __init data for kmem_list3 for cache_cache and
1412 * the other cache's with kmalloc allocated memory.
1413 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1414 */
1415
1ca4cb24
PE
1416 node = numa_node_id();
1417
1da177e4 1418 /* 1) create the cache_cache */
1da177e4
LT
1419 INIT_LIST_HEAD(&cache_chain);
1420 list_add(&cache_cache.next, &cache_chain);
1421 cache_cache.colour_off = cache_line_size();
1422 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
ec1f5eee 1423 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1da177e4 1424
8da3430d
ED
1425 /*
1426 * struct kmem_cache size depends on nr_node_ids, which
1427 * can be less than MAX_NUMNODES.
1428 */
1429 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1430 nr_node_ids * sizeof(struct kmem_list3 *);
1431#if DEBUG
1432 cache_cache.obj_size = cache_cache.buffer_size;
1433#endif
a737b3e2
AM
1434 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1435 cache_line_size());
6a2d7a95
ED
1436 cache_cache.reciprocal_buffer_size =
1437 reciprocal_value(cache_cache.buffer_size);
1da177e4 1438
07ed76b2
JS
1439 for (order = 0; order < MAX_ORDER; order++) {
1440 cache_estimate(order, cache_cache.buffer_size,
1441 cache_line_size(), 0, &left_over, &cache_cache.num);
1442 if (cache_cache.num)
1443 break;
1444 }
40094fa6 1445 BUG_ON(!cache_cache.num);
07ed76b2 1446 cache_cache.gfporder = order;
b28a02de 1447 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1448 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1449 sizeof(struct slab), cache_line_size());
1da177e4
LT
1450
1451 /* 2+3) create the kmalloc caches */
1452 sizes = malloc_sizes;
1453 names = cache_names;
1454
a737b3e2
AM
1455 /*
1456 * Initialize the caches that provide memory for the array cache and the
1457 * kmem_list3 structures first. Without this, further allocations will
1458 * bug.
e498be7d
CL
1459 */
1460
1461 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1462 sizes[INDEX_AC].cs_size,
1463 ARCH_KMALLOC_MINALIGN,
1464 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1465 NULL);
e498be7d 1466
a737b3e2 1467 if (INDEX_AC != INDEX_L3) {
e498be7d 1468 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1469 kmem_cache_create(names[INDEX_L3].name,
1470 sizes[INDEX_L3].cs_size,
1471 ARCH_KMALLOC_MINALIGN,
1472 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1473 NULL);
a737b3e2 1474 }
e498be7d 1475
e0a42726
IM
1476 slab_early_init = 0;
1477
1da177e4 1478 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1479 /*
1480 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1481 * This should be particularly beneficial on SMP boxes, as it
1482 * eliminates "false sharing".
1483 * Note for systems short on memory removing the alignment will
e498be7d
CL
1484 * allow tighter packing of the smaller caches.
1485 */
a737b3e2 1486 if (!sizes->cs_cachep) {
e498be7d 1487 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1488 sizes->cs_size,
1489 ARCH_KMALLOC_MINALIGN,
1490 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1491 NULL);
a737b3e2 1492 }
4b51d669
CL
1493#ifdef CONFIG_ZONE_DMA
1494 sizes->cs_dmacachep = kmem_cache_create(
1495 names->name_dma,
a737b3e2
AM
1496 sizes->cs_size,
1497 ARCH_KMALLOC_MINALIGN,
1498 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1499 SLAB_PANIC,
20c2df83 1500 NULL);
4b51d669 1501#endif
1da177e4
LT
1502 sizes++;
1503 names++;
1504 }
1505 /* 4) Replace the bootstrap head arrays */
1506 {
2b2d5493 1507 struct array_cache *ptr;
e498be7d 1508
83b519e8 1509 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1510
9a2dba4b
PE
1511 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1512 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1513 sizeof(struct arraycache_init));
2b2d5493
IM
1514 /*
1515 * Do not assume that spinlocks can be initialized via memcpy:
1516 */
1517 spin_lock_init(&ptr->lock);
1518
1da177e4 1519 cache_cache.array[smp_processor_id()] = ptr;
e498be7d 1520
83b519e8 1521 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1522
9a2dba4b 1523 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1524 != &initarray_generic.cache);
9a2dba4b 1525 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1526 sizeof(struct arraycache_init));
2b2d5493
IM
1527 /*
1528 * Do not assume that spinlocks can be initialized via memcpy:
1529 */
1530 spin_lock_init(&ptr->lock);
1531
e498be7d 1532 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1533 ptr;
1da177e4 1534 }
e498be7d
CL
1535 /* 5) Replace the bootstrap kmem_list3's */
1536 {
1ca4cb24
PE
1537 int nid;
1538
9c09a95c 1539 for_each_online_node(nid) {
ec1f5eee 1540 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1541
e498be7d 1542 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1543 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1544
1545 if (INDEX_AC != INDEX_L3) {
1546 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1547 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1548 }
1549 }
1550 }
1da177e4 1551
8429db5c 1552 g_cpucache_up = EARLY;
1da177e4 1553
056c6241
RT
1554 /* Annotate slab for lockdep -- annotate the malloc caches */
1555 init_lock_keys();
8429db5c
PE
1556}
1557
1558void __init kmem_cache_init_late(void)
1559{
1560 struct kmem_cache *cachep;
1561
1562 /*
1563 * Interrupts are enabled now so all GFP allocations are safe.
1564 */
1565 slab_gfp_mask = __GFP_BITS_MASK;
056c6241 1566
8429db5c
PE
1567 /* 6) resize the head arrays to their final sizes */
1568 mutex_lock(&cache_chain_mutex);
1569 list_for_each_entry(cachep, &cache_chain, next)
1570 if (enable_cpucache(cachep, GFP_NOWAIT))
1571 BUG();
1572 mutex_unlock(&cache_chain_mutex);
056c6241 1573
1da177e4
LT
1574 /* Done! */
1575 g_cpucache_up = FULL;
1576
a737b3e2
AM
1577 /*
1578 * Register a cpu startup notifier callback that initializes
1579 * cpu_cache_get for all new cpus
1da177e4
LT
1580 */
1581 register_cpu_notifier(&cpucache_notifier);
1da177e4 1582
a737b3e2
AM
1583 /*
1584 * The reap timers are started later, with a module init call: That part
1585 * of the kernel is not yet operational.
1da177e4
LT
1586 */
1587}
1588
1589static int __init cpucache_init(void)
1590{
1591 int cpu;
1592
a737b3e2
AM
1593 /*
1594 * Register the timers that return unneeded pages to the page allocator
1da177e4 1595 */
e498be7d 1596 for_each_online_cpu(cpu)
a737b3e2 1597 start_cpu_timer(cpu);
1da177e4
LT
1598 return 0;
1599}
1da177e4
LT
1600__initcall(cpucache_init);
1601
1602/*
1603 * Interface to system's page allocator. No need to hold the cache-lock.
1604 *
1605 * If we requested dmaable memory, we will get it. Even if we
1606 * did not request dmaable memory, we might get it, but that
1607 * would be relatively rare and ignorable.
1608 */
343e0d7a 1609static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1610{
1611 struct page *page;
e1b6aa6f 1612 int nr_pages;
1da177e4
LT
1613 int i;
1614
d6fef9da 1615#ifndef CONFIG_MMU
e1b6aa6f
CH
1616 /*
1617 * Nommu uses slab's for process anonymous memory allocations, and thus
1618 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1619 */
e1b6aa6f 1620 flags |= __GFP_COMP;
d6fef9da 1621#endif
765c4507 1622
3c517a61 1623 flags |= cachep->gfpflags;
e12ba74d
MG
1624 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1625 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1626
517d0869 1627 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1da177e4
LT
1628 if (!page)
1629 return NULL;
1da177e4 1630
e1b6aa6f 1631 nr_pages = (1 << cachep->gfporder);
1da177e4 1632 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1633 add_zone_page_state(page_zone(page),
1634 NR_SLAB_RECLAIMABLE, nr_pages);
1635 else
1636 add_zone_page_state(page_zone(page),
1637 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1638 for (i = 0; i < nr_pages; i++)
1639 __SetPageSlab(page + i);
c175eea4 1640
b1eeab67
VN
1641 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1642 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1643
1644 if (cachep->ctor)
1645 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1646 else
1647 kmemcheck_mark_unallocated_pages(page, nr_pages);
1648 }
c175eea4 1649
e1b6aa6f 1650 return page_address(page);
1da177e4
LT
1651}
1652
1653/*
1654 * Interface to system's page release.
1655 */
343e0d7a 1656static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1657{
b28a02de 1658 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1659 struct page *page = virt_to_page(addr);
1660 const unsigned long nr_freed = i;
1661
b1eeab67 1662 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1663
972d1a7b
CL
1664 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1665 sub_zone_page_state(page_zone(page),
1666 NR_SLAB_RECLAIMABLE, nr_freed);
1667 else
1668 sub_zone_page_state(page_zone(page),
1669 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1670 while (i--) {
f205b2fe
NP
1671 BUG_ON(!PageSlab(page));
1672 __ClearPageSlab(page);
1da177e4
LT
1673 page++;
1674 }
1da177e4
LT
1675 if (current->reclaim_state)
1676 current->reclaim_state->reclaimed_slab += nr_freed;
1677 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1678}
1679
1680static void kmem_rcu_free(struct rcu_head *head)
1681{
b28a02de 1682 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1683 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1684
1685 kmem_freepages(cachep, slab_rcu->addr);
1686 if (OFF_SLAB(cachep))
1687 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1688}
1689
1690#if DEBUG
1691
1692#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1693static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1694 unsigned long caller)
1da177e4 1695{
3dafccf2 1696 int size = obj_size(cachep);
1da177e4 1697
3dafccf2 1698 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1699
b28a02de 1700 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1701 return;
1702
b28a02de
PE
1703 *addr++ = 0x12345678;
1704 *addr++ = caller;
1705 *addr++ = smp_processor_id();
1706 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1707 {
1708 unsigned long *sptr = &caller;
1709 unsigned long svalue;
1710
1711 while (!kstack_end(sptr)) {
1712 svalue = *sptr++;
1713 if (kernel_text_address(svalue)) {
b28a02de 1714 *addr++ = svalue;
1da177e4
LT
1715 size -= sizeof(unsigned long);
1716 if (size <= sizeof(unsigned long))
1717 break;
1718 }
1719 }
1720
1721 }
b28a02de 1722 *addr++ = 0x87654321;
1da177e4
LT
1723}
1724#endif
1725
343e0d7a 1726static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1727{
3dafccf2
MS
1728 int size = obj_size(cachep);
1729 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1730
1731 memset(addr, val, size);
b28a02de 1732 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1733}
1734
1735static void dump_line(char *data, int offset, int limit)
1736{
1737 int i;
aa83aa40
DJ
1738 unsigned char error = 0;
1739 int bad_count = 0;
1740
1da177e4 1741 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1742 for (i = 0; i < limit; i++) {
1743 if (data[offset + i] != POISON_FREE) {
1744 error = data[offset + i];
1745 bad_count++;
1746 }
b28a02de 1747 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1748 }
1da177e4 1749 printk("\n");
aa83aa40
DJ
1750
1751 if (bad_count == 1) {
1752 error ^= POISON_FREE;
1753 if (!(error & (error - 1))) {
1754 printk(KERN_ERR "Single bit error detected. Probably "
1755 "bad RAM.\n");
1756#ifdef CONFIG_X86
1757 printk(KERN_ERR "Run memtest86+ or a similar memory "
1758 "test tool.\n");
1759#else
1760 printk(KERN_ERR "Run a memory test tool.\n");
1761#endif
1762 }
1763 }
1da177e4
LT
1764}
1765#endif
1766
1767#if DEBUG
1768
343e0d7a 1769static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1770{
1771 int i, size;
1772 char *realobj;
1773
1774 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1775 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1776 *dbg_redzone1(cachep, objp),
1777 *dbg_redzone2(cachep, objp));
1da177e4
LT
1778 }
1779
1780 if (cachep->flags & SLAB_STORE_USER) {
1781 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1782 *dbg_userword(cachep, objp));
1da177e4 1783 print_symbol("(%s)",
a737b3e2 1784 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1785 printk("\n");
1786 }
3dafccf2
MS
1787 realobj = (char *)objp + obj_offset(cachep);
1788 size = obj_size(cachep);
b28a02de 1789 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1790 int limit;
1791 limit = 16;
b28a02de
PE
1792 if (i + limit > size)
1793 limit = size - i;
1da177e4
LT
1794 dump_line(realobj, i, limit);
1795 }
1796}
1797
343e0d7a 1798static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1799{
1800 char *realobj;
1801 int size, i;
1802 int lines = 0;
1803
3dafccf2
MS
1804 realobj = (char *)objp + obj_offset(cachep);
1805 size = obj_size(cachep);
1da177e4 1806
b28a02de 1807 for (i = 0; i < size; i++) {
1da177e4 1808 char exp = POISON_FREE;
b28a02de 1809 if (i == size - 1)
1da177e4
LT
1810 exp = POISON_END;
1811 if (realobj[i] != exp) {
1812 int limit;
1813 /* Mismatch ! */
1814 /* Print header */
1815 if (lines == 0) {
b28a02de 1816 printk(KERN_ERR
e94a40c5
DH
1817 "Slab corruption: %s start=%p, len=%d\n",
1818 cachep->name, realobj, size);
1da177e4
LT
1819 print_objinfo(cachep, objp, 0);
1820 }
1821 /* Hexdump the affected line */
b28a02de 1822 i = (i / 16) * 16;
1da177e4 1823 limit = 16;
b28a02de
PE
1824 if (i + limit > size)
1825 limit = size - i;
1da177e4
LT
1826 dump_line(realobj, i, limit);
1827 i += 16;
1828 lines++;
1829 /* Limit to 5 lines */
1830 if (lines > 5)
1831 break;
1832 }
1833 }
1834 if (lines != 0) {
1835 /* Print some data about the neighboring objects, if they
1836 * exist:
1837 */
6ed5eb22 1838 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1839 unsigned int objnr;
1da177e4 1840
8fea4e96 1841 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1842 if (objnr) {
8fea4e96 1843 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1844 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1845 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1846 realobj, size);
1da177e4
LT
1847 print_objinfo(cachep, objp, 2);
1848 }
b28a02de 1849 if (objnr + 1 < cachep->num) {
8fea4e96 1850 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1851 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1852 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1853 realobj, size);
1da177e4
LT
1854 print_objinfo(cachep, objp, 2);
1855 }
1856 }
1857}
1858#endif
1859
12dd36fa 1860#if DEBUG
e79aec29 1861static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1862{
1da177e4
LT
1863 int i;
1864 for (i = 0; i < cachep->num; i++) {
8fea4e96 1865 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1866
1867 if (cachep->flags & SLAB_POISON) {
1868#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1869 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1870 OFF_SLAB(cachep))
b28a02de 1871 kernel_map_pages(virt_to_page(objp),
a737b3e2 1872 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1873 else
1874 check_poison_obj(cachep, objp);
1875#else
1876 check_poison_obj(cachep, objp);
1877#endif
1878 }
1879 if (cachep->flags & SLAB_RED_ZONE) {
1880 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1881 slab_error(cachep, "start of a freed object "
b28a02de 1882 "was overwritten");
1da177e4
LT
1883 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1884 slab_error(cachep, "end of a freed object "
b28a02de 1885 "was overwritten");
1da177e4 1886 }
1da177e4 1887 }
12dd36fa 1888}
1da177e4 1889#else
e79aec29 1890static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1891{
12dd36fa 1892}
1da177e4
LT
1893#endif
1894
911851e6
RD
1895/**
1896 * slab_destroy - destroy and release all objects in a slab
1897 * @cachep: cache pointer being destroyed
1898 * @slabp: slab pointer being destroyed
1899 *
12dd36fa 1900 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1901 * Before calling the slab must have been unlinked from the cache. The
1902 * cache-lock is not held/needed.
12dd36fa 1903 */
343e0d7a 1904static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1905{
1906 void *addr = slabp->s_mem - slabp->colouroff;
1907
e79aec29 1908 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
1909 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1910 struct slab_rcu *slab_rcu;
1911
b28a02de 1912 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1913 slab_rcu->cachep = cachep;
1914 slab_rcu->addr = addr;
1915 call_rcu(&slab_rcu->head, kmem_rcu_free);
1916 } else {
1917 kmem_freepages(cachep, addr);
873623df
IM
1918 if (OFF_SLAB(cachep))
1919 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1920 }
1921}
1922
117f6eb1
CL
1923static void __kmem_cache_destroy(struct kmem_cache *cachep)
1924{
1925 int i;
1926 struct kmem_list3 *l3;
1927
1928 for_each_online_cpu(i)
1929 kfree(cachep->array[i]);
1930
1931 /* NUMA: free the list3 structures */
1932 for_each_online_node(i) {
1933 l3 = cachep->nodelists[i];
1934 if (l3) {
1935 kfree(l3->shared);
1936 free_alien_cache(l3->alien);
1937 kfree(l3);
1938 }
1939 }
1940 kmem_cache_free(&cache_cache, cachep);
1941}
1942
1943
4d268eba 1944/**
a70773dd
RD
1945 * calculate_slab_order - calculate size (page order) of slabs
1946 * @cachep: pointer to the cache that is being created
1947 * @size: size of objects to be created in this cache.
1948 * @align: required alignment for the objects.
1949 * @flags: slab allocation flags
1950 *
1951 * Also calculates the number of objects per slab.
4d268eba
PE
1952 *
1953 * This could be made much more intelligent. For now, try to avoid using
1954 * high order pages for slabs. When the gfp() functions are more friendly
1955 * towards high-order requests, this should be changed.
1956 */
a737b3e2 1957static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1958 size_t size, size_t align, unsigned long flags)
4d268eba 1959{
b1ab41c4 1960 unsigned long offslab_limit;
4d268eba 1961 size_t left_over = 0;
9888e6fa 1962 int gfporder;
4d268eba 1963
0aa817f0 1964 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1965 unsigned int num;
1966 size_t remainder;
1967
9888e6fa 1968 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1969 if (!num)
1970 continue;
9888e6fa 1971
b1ab41c4
IM
1972 if (flags & CFLGS_OFF_SLAB) {
1973 /*
1974 * Max number of objs-per-slab for caches which
1975 * use off-slab slabs. Needed to avoid a possible
1976 * looping condition in cache_grow().
1977 */
1978 offslab_limit = size - sizeof(struct slab);
1979 offslab_limit /= sizeof(kmem_bufctl_t);
1980
1981 if (num > offslab_limit)
1982 break;
1983 }
4d268eba 1984
9888e6fa 1985 /* Found something acceptable - save it away */
4d268eba 1986 cachep->num = num;
9888e6fa 1987 cachep->gfporder = gfporder;
4d268eba
PE
1988 left_over = remainder;
1989
f78bb8ad
LT
1990 /*
1991 * A VFS-reclaimable slab tends to have most allocations
1992 * as GFP_NOFS and we really don't want to have to be allocating
1993 * higher-order pages when we are unable to shrink dcache.
1994 */
1995 if (flags & SLAB_RECLAIM_ACCOUNT)
1996 break;
1997
4d268eba
PE
1998 /*
1999 * Large number of objects is good, but very large slabs are
2000 * currently bad for the gfp()s.
2001 */
9888e6fa 2002 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
2003 break;
2004
9888e6fa
LT
2005 /*
2006 * Acceptable internal fragmentation?
2007 */
a737b3e2 2008 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2009 break;
2010 }
2011 return left_over;
2012}
2013
83b519e8 2014static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2015{
2ed3a4ef 2016 if (g_cpucache_up == FULL)
83b519e8 2017 return enable_cpucache(cachep, gfp);
2ed3a4ef 2018
f30cf7d1
PE
2019 if (g_cpucache_up == NONE) {
2020 /*
2021 * Note: the first kmem_cache_create must create the cache
2022 * that's used by kmalloc(24), otherwise the creation of
2023 * further caches will BUG().
2024 */
2025 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2026
2027 /*
2028 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2029 * the first cache, then we need to set up all its list3s,
2030 * otherwise the creation of further caches will BUG().
2031 */
2032 set_up_list3s(cachep, SIZE_AC);
2033 if (INDEX_AC == INDEX_L3)
2034 g_cpucache_up = PARTIAL_L3;
2035 else
2036 g_cpucache_up = PARTIAL_AC;
2037 } else {
2038 cachep->array[smp_processor_id()] =
83b519e8 2039 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1
PE
2040
2041 if (g_cpucache_up == PARTIAL_AC) {
2042 set_up_list3s(cachep, SIZE_L3);
2043 g_cpucache_up = PARTIAL_L3;
2044 } else {
2045 int node;
556a169d 2046 for_each_online_node(node) {
f30cf7d1
PE
2047 cachep->nodelists[node] =
2048 kmalloc_node(sizeof(struct kmem_list3),
eb91f1d0 2049 gfp, node);
f30cf7d1
PE
2050 BUG_ON(!cachep->nodelists[node]);
2051 kmem_list3_init(cachep->nodelists[node]);
2052 }
2053 }
2054 }
2055 cachep->nodelists[numa_node_id()]->next_reap =
2056 jiffies + REAPTIMEOUT_LIST3 +
2057 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2058
2059 cpu_cache_get(cachep)->avail = 0;
2060 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2061 cpu_cache_get(cachep)->batchcount = 1;
2062 cpu_cache_get(cachep)->touched = 0;
2063 cachep->batchcount = 1;
2064 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2065 return 0;
f30cf7d1
PE
2066}
2067
1da177e4
LT
2068/**
2069 * kmem_cache_create - Create a cache.
2070 * @name: A string which is used in /proc/slabinfo to identify this cache.
2071 * @size: The size of objects to be created in this cache.
2072 * @align: The required alignment for the objects.
2073 * @flags: SLAB flags
2074 * @ctor: A constructor for the objects.
1da177e4
LT
2075 *
2076 * Returns a ptr to the cache on success, NULL on failure.
2077 * Cannot be called within a int, but can be interrupted.
20c2df83 2078 * The @ctor is run when new pages are allocated by the cache.
1da177e4
LT
2079 *
2080 * @name must be valid until the cache is destroyed. This implies that
a737b3e2 2081 * the module calling this has to destroy the cache before getting unloaded.
249da166
CM
2082 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2083 * therefore applications must manage it themselves.
a737b3e2 2084 *
1da177e4
LT
2085 * The flags are
2086 *
2087 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2088 * to catch references to uninitialised memory.
2089 *
2090 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2091 * for buffer overruns.
2092 *
1da177e4
LT
2093 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2094 * cacheline. This can be beneficial if you're counting cycles as closely
2095 * as davem.
2096 */
343e0d7a 2097struct kmem_cache *
1da177e4 2098kmem_cache_create (const char *name, size_t size, size_t align,
51cc5068 2099 unsigned long flags, void (*ctor)(void *))
1da177e4
LT
2100{
2101 size_t left_over, slab_size, ralign;
7a7c381d 2102 struct kmem_cache *cachep = NULL, *pc;
83b519e8 2103 gfp_t gfp;
1da177e4
LT
2104
2105 /*
2106 * Sanity checks... these are all serious usage bugs.
2107 */
a737b3e2 2108 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
20c2df83 2109 size > KMALLOC_MAX_SIZE) {
d40cee24 2110 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
a737b3e2 2111 name);
b28a02de
PE
2112 BUG();
2113 }
1da177e4 2114
f0188f47 2115 /*
8f5be20b 2116 * We use cache_chain_mutex to ensure a consistent view of
174596a0 2117 * cpu_online_mask as well. Please see cpuup_callback
f0188f47 2118 */
83b519e8
PE
2119 if (slab_is_available()) {
2120 get_online_cpus();
2121 mutex_lock(&cache_chain_mutex);
2122 }
4f12bb4f 2123
7a7c381d 2124 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2125 char tmp;
2126 int res;
2127
2128 /*
2129 * This happens when the module gets unloaded and doesn't
2130 * destroy its slab cache and no-one else reuses the vmalloc
2131 * area of the module. Print a warning.
2132 */
138ae663 2133 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2134 if (res) {
b4169525 2135 printk(KERN_ERR
2136 "SLAB: cache with size %d has lost its name\n",
3dafccf2 2137 pc->buffer_size);
4f12bb4f
AM
2138 continue;
2139 }
2140
b28a02de 2141 if (!strcmp(pc->name, name)) {
b4169525 2142 printk(KERN_ERR
2143 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2144 dump_stack();
2145 goto oops;
2146 }
2147 }
2148
1da177e4
LT
2149#if DEBUG
2150 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2151#if FORCED_DEBUG
2152 /*
2153 * Enable redzoning and last user accounting, except for caches with
2154 * large objects, if the increased size would increase the object size
2155 * above the next power of two: caches with object sizes just above a
2156 * power of two have a significant amount of internal fragmentation.
2157 */
87a927c7
DW
2158 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2159 2 * sizeof(unsigned long long)))
b28a02de 2160 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2161 if (!(flags & SLAB_DESTROY_BY_RCU))
2162 flags |= SLAB_POISON;
2163#endif
2164 if (flags & SLAB_DESTROY_BY_RCU)
2165 BUG_ON(flags & SLAB_POISON);
2166#endif
1da177e4 2167 /*
a737b3e2
AM
2168 * Always checks flags, a caller might be expecting debug support which
2169 * isn't available.
1da177e4 2170 */
40094fa6 2171 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2172
a737b3e2
AM
2173 /*
2174 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2175 * unaligned accesses for some archs when redzoning is used, and makes
2176 * sure any on-slab bufctl's are also correctly aligned.
2177 */
b28a02de
PE
2178 if (size & (BYTES_PER_WORD - 1)) {
2179 size += (BYTES_PER_WORD - 1);
2180 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2181 }
2182
a737b3e2
AM
2183 /* calculate the final buffer alignment: */
2184
1da177e4
LT
2185 /* 1) arch recommendation: can be overridden for debug */
2186 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2187 /*
2188 * Default alignment: as specified by the arch code. Except if
2189 * an object is really small, then squeeze multiple objects into
2190 * one cacheline.
1da177e4
LT
2191 */
2192 ralign = cache_line_size();
b28a02de 2193 while (size <= ralign / 2)
1da177e4
LT
2194 ralign /= 2;
2195 } else {
2196 ralign = BYTES_PER_WORD;
2197 }
ca5f9703
PE
2198
2199 /*
87a927c7
DW
2200 * Redzoning and user store require word alignment or possibly larger.
2201 * Note this will be overridden by architecture or caller mandated
2202 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2203 */
87a927c7
DW
2204 if (flags & SLAB_STORE_USER)
2205 ralign = BYTES_PER_WORD;
2206
2207 if (flags & SLAB_RED_ZONE) {
2208 ralign = REDZONE_ALIGN;
2209 /* If redzoning, ensure that the second redzone is suitably
2210 * aligned, by adjusting the object size accordingly. */
2211 size += REDZONE_ALIGN - 1;
2212 size &= ~(REDZONE_ALIGN - 1);
2213 }
ca5f9703 2214
a44b56d3 2215 /* 2) arch mandated alignment */
1da177e4
LT
2216 if (ralign < ARCH_SLAB_MINALIGN) {
2217 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2218 }
a44b56d3 2219 /* 3) caller mandated alignment */
1da177e4
LT
2220 if (ralign < align) {
2221 ralign = align;
1da177e4 2222 }
a44b56d3 2223 /* disable debug if necessary */
b46b8f19 2224 if (ralign > __alignof__(unsigned long long))
a44b56d3 2225 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2226 /*
ca5f9703 2227 * 4) Store it.
1da177e4
LT
2228 */
2229 align = ralign;
2230
83b519e8
PE
2231 if (slab_is_available())
2232 gfp = GFP_KERNEL;
2233 else
2234 gfp = GFP_NOWAIT;
2235
1da177e4 2236 /* Get cache's description obj. */
83b519e8 2237 cachep = kmem_cache_zalloc(&cache_cache, gfp);
1da177e4 2238 if (!cachep)
4f12bb4f 2239 goto oops;
1da177e4
LT
2240
2241#if DEBUG
3dafccf2 2242 cachep->obj_size = size;
1da177e4 2243
ca5f9703
PE
2244 /*
2245 * Both debugging options require word-alignment which is calculated
2246 * into align above.
2247 */
1da177e4 2248 if (flags & SLAB_RED_ZONE) {
1da177e4 2249 /* add space for red zone words */
b46b8f19
DW
2250 cachep->obj_offset += sizeof(unsigned long long);
2251 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2252 }
2253 if (flags & SLAB_STORE_USER) {
ca5f9703 2254 /* user store requires one word storage behind the end of
87a927c7
DW
2255 * the real object. But if the second red zone needs to be
2256 * aligned to 64 bits, we must allow that much space.
1da177e4 2257 */
87a927c7
DW
2258 if (flags & SLAB_RED_ZONE)
2259 size += REDZONE_ALIGN;
2260 else
2261 size += BYTES_PER_WORD;
1da177e4
LT
2262 }
2263#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2264 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2265 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2266 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2267 size = PAGE_SIZE;
2268 }
2269#endif
2270#endif
2271
e0a42726
IM
2272 /*
2273 * Determine if the slab management is 'on' or 'off' slab.
2274 * (bootstrapping cannot cope with offslab caches so don't do
2275 * it too early on.)
2276 */
2277 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2278 /*
2279 * Size is large, assume best to place the slab management obj
2280 * off-slab (should allow better packing of objs).
2281 */
2282 flags |= CFLGS_OFF_SLAB;
2283
2284 size = ALIGN(size, align);
2285
f78bb8ad 2286 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2287
2288 if (!cachep->num) {
b4169525 2289 printk(KERN_ERR
2290 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4
LT
2291 kmem_cache_free(&cache_cache, cachep);
2292 cachep = NULL;
4f12bb4f 2293 goto oops;
1da177e4 2294 }
b28a02de
PE
2295 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2296 + sizeof(struct slab), align);
1da177e4
LT
2297
2298 /*
2299 * If the slab has been placed off-slab, and we have enough space then
2300 * move it on-slab. This is at the expense of any extra colouring.
2301 */
2302 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2303 flags &= ~CFLGS_OFF_SLAB;
2304 left_over -= slab_size;
2305 }
2306
2307 if (flags & CFLGS_OFF_SLAB) {
2308 /* really off slab. No need for manual alignment */
b28a02de
PE
2309 slab_size =
2310 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2311
2312#ifdef CONFIG_PAGE_POISONING
2313 /* If we're going to use the generic kernel_map_pages()
2314 * poisoning, then it's going to smash the contents of
2315 * the redzone and userword anyhow, so switch them off.
2316 */
2317 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2318 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2319#endif
1da177e4
LT
2320 }
2321
2322 cachep->colour_off = cache_line_size();
2323 /* Offset must be a multiple of the alignment. */
2324 if (cachep->colour_off < align)
2325 cachep->colour_off = align;
b28a02de 2326 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2327 cachep->slab_size = slab_size;
2328 cachep->flags = flags;
2329 cachep->gfpflags = 0;
4b51d669 2330 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2331 cachep->gfpflags |= GFP_DMA;
3dafccf2 2332 cachep->buffer_size = size;
6a2d7a95 2333 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2334
e5ac9c5a 2335 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2336 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2337 /*
2338 * This is a possibility for one of the malloc_sizes caches.
2339 * But since we go off slab only for object size greater than
2340 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2341 * this should not happen at all.
2342 * But leave a BUG_ON for some lucky dude.
2343 */
6cb8f913 2344 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2345 }
1da177e4 2346 cachep->ctor = ctor;
1da177e4
LT
2347 cachep->name = name;
2348
83b519e8 2349 if (setup_cpu_cache(cachep, gfp)) {
2ed3a4ef
CL
2350 __kmem_cache_destroy(cachep);
2351 cachep = NULL;
2352 goto oops;
2353 }
1da177e4 2354
1da177e4
LT
2355 /* cache setup completed, link it into the list */
2356 list_add(&cachep->next, &cache_chain);
a737b3e2 2357oops:
1da177e4
LT
2358 if (!cachep && (flags & SLAB_PANIC))
2359 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2360 name);
83b519e8
PE
2361 if (slab_is_available()) {
2362 mutex_unlock(&cache_chain_mutex);
2363 put_online_cpus();
2364 }
1da177e4
LT
2365 return cachep;
2366}
2367EXPORT_SYMBOL(kmem_cache_create);
2368
2369#if DEBUG
2370static void check_irq_off(void)
2371{
2372 BUG_ON(!irqs_disabled());
2373}
2374
2375static void check_irq_on(void)
2376{
2377 BUG_ON(irqs_disabled());
2378}
2379
343e0d7a 2380static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2381{
2382#ifdef CONFIG_SMP
2383 check_irq_off();
e498be7d 2384 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2385#endif
2386}
e498be7d 2387
343e0d7a 2388static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2389{
2390#ifdef CONFIG_SMP
2391 check_irq_off();
2392 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2393#endif
2394}
2395
1da177e4
LT
2396#else
2397#define check_irq_off() do { } while(0)
2398#define check_irq_on() do { } while(0)
2399#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2400#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2401#endif
2402
aab2207c
CL
2403static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2404 struct array_cache *ac,
2405 int force, int node);
2406
1da177e4
LT
2407static void do_drain(void *arg)
2408{
a737b3e2 2409 struct kmem_cache *cachep = arg;
1da177e4 2410 struct array_cache *ac;
ff69416e 2411 int node = numa_node_id();
1da177e4
LT
2412
2413 check_irq_off();
9a2dba4b 2414 ac = cpu_cache_get(cachep);
ff69416e
CL
2415 spin_lock(&cachep->nodelists[node]->list_lock);
2416 free_block(cachep, ac->entry, ac->avail, node);
2417 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2418 ac->avail = 0;
2419}
2420
343e0d7a 2421static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2422{
e498be7d
CL
2423 struct kmem_list3 *l3;
2424 int node;
2425
15c8b6c1 2426 on_each_cpu(do_drain, cachep, 1);
1da177e4 2427 check_irq_on();
b28a02de 2428 for_each_online_node(node) {
e498be7d 2429 l3 = cachep->nodelists[node];
a4523a8b
RD
2430 if (l3 && l3->alien)
2431 drain_alien_cache(cachep, l3->alien);
2432 }
2433
2434 for_each_online_node(node) {
2435 l3 = cachep->nodelists[node];
2436 if (l3)
aab2207c 2437 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2438 }
1da177e4
LT
2439}
2440
ed11d9eb
CL
2441/*
2442 * Remove slabs from the list of free slabs.
2443 * Specify the number of slabs to drain in tofree.
2444 *
2445 * Returns the actual number of slabs released.
2446 */
2447static int drain_freelist(struct kmem_cache *cache,
2448 struct kmem_list3 *l3, int tofree)
1da177e4 2449{
ed11d9eb
CL
2450 struct list_head *p;
2451 int nr_freed;
1da177e4 2452 struct slab *slabp;
1da177e4 2453
ed11d9eb
CL
2454 nr_freed = 0;
2455 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2456
ed11d9eb 2457 spin_lock_irq(&l3->list_lock);
e498be7d 2458 p = l3->slabs_free.prev;
ed11d9eb
CL
2459 if (p == &l3->slabs_free) {
2460 spin_unlock_irq(&l3->list_lock);
2461 goto out;
2462 }
1da177e4 2463
ed11d9eb 2464 slabp = list_entry(p, struct slab, list);
1da177e4 2465#if DEBUG
40094fa6 2466 BUG_ON(slabp->inuse);
1da177e4
LT
2467#endif
2468 list_del(&slabp->list);
ed11d9eb
CL
2469 /*
2470 * Safe to drop the lock. The slab is no longer linked
2471 * to the cache.
2472 */
2473 l3->free_objects -= cache->num;
e498be7d 2474 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2475 slab_destroy(cache, slabp);
2476 nr_freed++;
1da177e4 2477 }
ed11d9eb
CL
2478out:
2479 return nr_freed;
1da177e4
LT
2480}
2481
8f5be20b 2482/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2483static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2484{
2485 int ret = 0, i = 0;
2486 struct kmem_list3 *l3;
2487
2488 drain_cpu_caches(cachep);
2489
2490 check_irq_on();
2491 for_each_online_node(i) {
2492 l3 = cachep->nodelists[i];
ed11d9eb
CL
2493 if (!l3)
2494 continue;
2495
2496 drain_freelist(cachep, l3, l3->free_objects);
2497
2498 ret += !list_empty(&l3->slabs_full) ||
2499 !list_empty(&l3->slabs_partial);
e498be7d
CL
2500 }
2501 return (ret ? 1 : 0);
2502}
2503
1da177e4
LT
2504/**
2505 * kmem_cache_shrink - Shrink a cache.
2506 * @cachep: The cache to shrink.
2507 *
2508 * Releases as many slabs as possible for a cache.
2509 * To help debugging, a zero exit status indicates all slabs were released.
2510 */
343e0d7a 2511int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2512{
8f5be20b 2513 int ret;
40094fa6 2514 BUG_ON(!cachep || in_interrupt());
1da177e4 2515
95402b38 2516 get_online_cpus();
8f5be20b
RT
2517 mutex_lock(&cache_chain_mutex);
2518 ret = __cache_shrink(cachep);
2519 mutex_unlock(&cache_chain_mutex);
95402b38 2520 put_online_cpus();
8f5be20b 2521 return ret;
1da177e4
LT
2522}
2523EXPORT_SYMBOL(kmem_cache_shrink);
2524
2525/**
2526 * kmem_cache_destroy - delete a cache
2527 * @cachep: the cache to destroy
2528 *
72fd4a35 2529 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2530 *
2531 * It is expected this function will be called by a module when it is
2532 * unloaded. This will remove the cache completely, and avoid a duplicate
2533 * cache being allocated each time a module is loaded and unloaded, if the
2534 * module doesn't have persistent in-kernel storage across loads and unloads.
2535 *
2536 * The cache must be empty before calling this function.
2537 *
2538 * The caller must guarantee that noone will allocate memory from the cache
2539 * during the kmem_cache_destroy().
2540 */
133d205a 2541void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2542{
40094fa6 2543 BUG_ON(!cachep || in_interrupt());
1da177e4 2544
1da177e4 2545 /* Find the cache in the chain of caches. */
95402b38 2546 get_online_cpus();
fc0abb14 2547 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2548 /*
2549 * the chain is never empty, cache_cache is never destroyed
2550 */
2551 list_del(&cachep->next);
1da177e4
LT
2552 if (__cache_shrink(cachep)) {
2553 slab_error(cachep, "Can't free all objects");
b28a02de 2554 list_add(&cachep->next, &cache_chain);
fc0abb14 2555 mutex_unlock(&cache_chain_mutex);
95402b38 2556 put_online_cpus();
133d205a 2557 return;
1da177e4
LT
2558 }
2559
2560 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2561 synchronize_rcu();
1da177e4 2562
117f6eb1 2563 __kmem_cache_destroy(cachep);
8f5be20b 2564 mutex_unlock(&cache_chain_mutex);
95402b38 2565 put_online_cpus();
1da177e4
LT
2566}
2567EXPORT_SYMBOL(kmem_cache_destroy);
2568
e5ac9c5a
RT
2569/*
2570 * Get the memory for a slab management obj.
2571 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2572 * always come from malloc_sizes caches. The slab descriptor cannot
2573 * come from the same cache which is getting created because,
2574 * when we are searching for an appropriate cache for these
2575 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2576 * If we are creating a malloc_sizes cache here it would not be visible to
2577 * kmem_find_general_cachep till the initialization is complete.
2578 * Hence we cannot have slabp_cache same as the original cache.
2579 */
343e0d7a 2580static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2581 int colour_off, gfp_t local_flags,
2582 int nodeid)
1da177e4
LT
2583{
2584 struct slab *slabp;
b28a02de 2585
1da177e4
LT
2586 if (OFF_SLAB(cachep)) {
2587 /* Slab management obj is off-slab. */
5b74ada7 2588 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2589 local_flags, nodeid);
d5cff635
CM
2590 /*
2591 * If the first object in the slab is leaked (it's allocated
2592 * but no one has a reference to it), we want to make sure
2593 * kmemleak does not treat the ->s_mem pointer as a reference
2594 * to the object. Otherwise we will not report the leak.
2595 */
2596 kmemleak_scan_area(slabp, offsetof(struct slab, list),
2597 sizeof(struct list_head), local_flags);
1da177e4
LT
2598 if (!slabp)
2599 return NULL;
2600 } else {
b28a02de 2601 slabp = objp + colour_off;
1da177e4
LT
2602 colour_off += cachep->slab_size;
2603 }
2604 slabp->inuse = 0;
2605 slabp->colouroff = colour_off;
b28a02de 2606 slabp->s_mem = objp + colour_off;
5b74ada7 2607 slabp->nodeid = nodeid;
e51bfd0a 2608 slabp->free = 0;
1da177e4
LT
2609 return slabp;
2610}
2611
2612static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2613{
b28a02de 2614 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2615}
2616
343e0d7a 2617static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2618 struct slab *slabp)
1da177e4
LT
2619{
2620 int i;
2621
2622 for (i = 0; i < cachep->num; i++) {
8fea4e96 2623 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2624#if DEBUG
2625 /* need to poison the objs? */
2626 if (cachep->flags & SLAB_POISON)
2627 poison_obj(cachep, objp, POISON_FREE);
2628 if (cachep->flags & SLAB_STORE_USER)
2629 *dbg_userword(cachep, objp) = NULL;
2630
2631 if (cachep->flags & SLAB_RED_ZONE) {
2632 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2633 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2634 }
2635 /*
a737b3e2
AM
2636 * Constructors are not allowed to allocate memory from the same
2637 * cache which they are a constructor for. Otherwise, deadlock.
2638 * They must also be threaded.
1da177e4
LT
2639 */
2640 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2641 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2642
2643 if (cachep->flags & SLAB_RED_ZONE) {
2644 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2645 slab_error(cachep, "constructor overwrote the"
b28a02de 2646 " end of an object");
1da177e4
LT
2647 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2648 slab_error(cachep, "constructor overwrote the"
b28a02de 2649 " start of an object");
1da177e4 2650 }
a737b3e2
AM
2651 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2652 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2653 kernel_map_pages(virt_to_page(objp),
3dafccf2 2654 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2655#else
2656 if (cachep->ctor)
51cc5068 2657 cachep->ctor(objp);
1da177e4 2658#endif
b28a02de 2659 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2660 }
b28a02de 2661 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2662}
2663
343e0d7a 2664static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2665{
4b51d669
CL
2666 if (CONFIG_ZONE_DMA_FLAG) {
2667 if (flags & GFP_DMA)
2668 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2669 else
2670 BUG_ON(cachep->gfpflags & GFP_DMA);
2671 }
1da177e4
LT
2672}
2673
a737b3e2
AM
2674static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2675 int nodeid)
78d382d7 2676{
8fea4e96 2677 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2678 kmem_bufctl_t next;
2679
2680 slabp->inuse++;
2681 next = slab_bufctl(slabp)[slabp->free];
2682#if DEBUG
2683 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2684 WARN_ON(slabp->nodeid != nodeid);
2685#endif
2686 slabp->free = next;
2687
2688 return objp;
2689}
2690
a737b3e2
AM
2691static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2692 void *objp, int nodeid)
78d382d7 2693{
8fea4e96 2694 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2695
2696#if DEBUG
2697 /* Verify that the slab belongs to the intended node */
2698 WARN_ON(slabp->nodeid != nodeid);
2699
871751e2 2700 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2701 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2702 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2703 BUG();
2704 }
2705#endif
2706 slab_bufctl(slabp)[objnr] = slabp->free;
2707 slabp->free = objnr;
2708 slabp->inuse--;
2709}
2710
4776874f
PE
2711/*
2712 * Map pages beginning at addr to the given cache and slab. This is required
2713 * for the slab allocator to be able to lookup the cache and slab of a
2714 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2715 */
2716static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2717 void *addr)
1da177e4 2718{
4776874f 2719 int nr_pages;
1da177e4
LT
2720 struct page *page;
2721
4776874f 2722 page = virt_to_page(addr);
84097518 2723
4776874f 2724 nr_pages = 1;
84097518 2725 if (likely(!PageCompound(page)))
4776874f
PE
2726 nr_pages <<= cache->gfporder;
2727
1da177e4 2728 do {
4776874f
PE
2729 page_set_cache(page, cache);
2730 page_set_slab(page, slab);
1da177e4 2731 page++;
4776874f 2732 } while (--nr_pages);
1da177e4
LT
2733}
2734
2735/*
2736 * Grow (by 1) the number of slabs within a cache. This is called by
2737 * kmem_cache_alloc() when there are no active objs left in a cache.
2738 */
3c517a61
CL
2739static int cache_grow(struct kmem_cache *cachep,
2740 gfp_t flags, int nodeid, void *objp)
1da177e4 2741{
b28a02de 2742 struct slab *slabp;
b28a02de
PE
2743 size_t offset;
2744 gfp_t local_flags;
e498be7d 2745 struct kmem_list3 *l3;
1da177e4 2746
a737b3e2
AM
2747 /*
2748 * Be lazy and only check for valid flags here, keeping it out of the
2749 * critical path in kmem_cache_alloc().
1da177e4 2750 */
6cb06229
CL
2751 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2752 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2753
2e1217cf 2754 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2755 check_irq_off();
2e1217cf
RT
2756 l3 = cachep->nodelists[nodeid];
2757 spin_lock(&l3->list_lock);
1da177e4
LT
2758
2759 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2760 offset = l3->colour_next;
2761 l3->colour_next++;
2762 if (l3->colour_next >= cachep->colour)
2763 l3->colour_next = 0;
2764 spin_unlock(&l3->list_lock);
1da177e4 2765
2e1217cf 2766 offset *= cachep->colour_off;
1da177e4
LT
2767
2768 if (local_flags & __GFP_WAIT)
2769 local_irq_enable();
2770
2771 /*
2772 * The test for missing atomic flag is performed here, rather than
2773 * the more obvious place, simply to reduce the critical path length
2774 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2775 * will eventually be caught here (where it matters).
2776 */
2777 kmem_flagcheck(cachep, flags);
2778
a737b3e2
AM
2779 /*
2780 * Get mem for the objs. Attempt to allocate a physical page from
2781 * 'nodeid'.
e498be7d 2782 */
3c517a61 2783 if (!objp)
b8c1c5da 2784 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2785 if (!objp)
1da177e4
LT
2786 goto failed;
2787
2788 /* Get slab management. */
3c517a61 2789 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2790 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2791 if (!slabp)
1da177e4
LT
2792 goto opps1;
2793
4776874f 2794 slab_map_pages(cachep, slabp, objp);
1da177e4 2795
a35afb83 2796 cache_init_objs(cachep, slabp);
1da177e4
LT
2797
2798 if (local_flags & __GFP_WAIT)
2799 local_irq_disable();
2800 check_irq_off();
e498be7d 2801 spin_lock(&l3->list_lock);
1da177e4
LT
2802
2803 /* Make slab active. */
e498be7d 2804 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2805 STATS_INC_GROWN(cachep);
e498be7d
CL
2806 l3->free_objects += cachep->num;
2807 spin_unlock(&l3->list_lock);
1da177e4 2808 return 1;
a737b3e2 2809opps1:
1da177e4 2810 kmem_freepages(cachep, objp);
a737b3e2 2811failed:
1da177e4
LT
2812 if (local_flags & __GFP_WAIT)
2813 local_irq_disable();
2814 return 0;
2815}
2816
2817#if DEBUG
2818
2819/*
2820 * Perform extra freeing checks:
2821 * - detect bad pointers.
2822 * - POISON/RED_ZONE checking
1da177e4
LT
2823 */
2824static void kfree_debugcheck(const void *objp)
2825{
1da177e4
LT
2826 if (!virt_addr_valid(objp)) {
2827 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2828 (unsigned long)objp);
2829 BUG();
1da177e4 2830 }
1da177e4
LT
2831}
2832
58ce1fd5
PE
2833static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2834{
b46b8f19 2835 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2836
2837 redzone1 = *dbg_redzone1(cache, obj);
2838 redzone2 = *dbg_redzone2(cache, obj);
2839
2840 /*
2841 * Redzone is ok.
2842 */
2843 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2844 return;
2845
2846 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2847 slab_error(cache, "double free detected");
2848 else
2849 slab_error(cache, "memory outside object was overwritten");
2850
b46b8f19 2851 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2852 obj, redzone1, redzone2);
2853}
2854
343e0d7a 2855static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2856 void *caller)
1da177e4
LT
2857{
2858 struct page *page;
2859 unsigned int objnr;
2860 struct slab *slabp;
2861
80cbd911
MW
2862 BUG_ON(virt_to_cache(objp) != cachep);
2863
3dafccf2 2864 objp -= obj_offset(cachep);
1da177e4 2865 kfree_debugcheck(objp);
b49af68f 2866 page = virt_to_head_page(objp);
1da177e4 2867
065d41cb 2868 slabp = page_get_slab(page);
1da177e4
LT
2869
2870 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2871 verify_redzone_free(cachep, objp);
1da177e4
LT
2872 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2873 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2874 }
2875 if (cachep->flags & SLAB_STORE_USER)
2876 *dbg_userword(cachep, objp) = caller;
2877
8fea4e96 2878 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2879
2880 BUG_ON(objnr >= cachep->num);
8fea4e96 2881 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2882
871751e2
AV
2883#ifdef CONFIG_DEBUG_SLAB_LEAK
2884 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2885#endif
1da177e4
LT
2886 if (cachep->flags & SLAB_POISON) {
2887#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2888 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2889 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2890 kernel_map_pages(virt_to_page(objp),
3dafccf2 2891 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2892 } else {
2893 poison_obj(cachep, objp, POISON_FREE);
2894 }
2895#else
2896 poison_obj(cachep, objp, POISON_FREE);
2897#endif
2898 }
2899 return objp;
2900}
2901
343e0d7a 2902static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2903{
2904 kmem_bufctl_t i;
2905 int entries = 0;
b28a02de 2906
1da177e4
LT
2907 /* Check slab's freelist to see if this obj is there. */
2908 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2909 entries++;
2910 if (entries > cachep->num || i >= cachep->num)
2911 goto bad;
2912 }
2913 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2914bad:
2915 printk(KERN_ERR "slab: Internal list corruption detected in "
2916 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2917 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2918 for (i = 0;
264132bc 2919 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2920 i++) {
a737b3e2 2921 if (i % 16 == 0)
1da177e4 2922 printk("\n%03x:", i);
b28a02de 2923 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2924 }
2925 printk("\n");
2926 BUG();
2927 }
2928}
2929#else
2930#define kfree_debugcheck(x) do { } while(0)
2931#define cache_free_debugcheck(x,objp,z) (objp)
2932#define check_slabp(x,y) do { } while(0)
2933#endif
2934
343e0d7a 2935static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2936{
2937 int batchcount;
2938 struct kmem_list3 *l3;
2939 struct array_cache *ac;
1ca4cb24
PE
2940 int node;
2941
6d2144d3 2942retry:
1da177e4 2943 check_irq_off();
6d2144d3 2944 node = numa_node_id();
9a2dba4b 2945 ac = cpu_cache_get(cachep);
1da177e4
LT
2946 batchcount = ac->batchcount;
2947 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2948 /*
2949 * If there was little recent activity on this cache, then
2950 * perform only a partial refill. Otherwise we could generate
2951 * refill bouncing.
1da177e4
LT
2952 */
2953 batchcount = BATCHREFILL_LIMIT;
2954 }
1ca4cb24 2955 l3 = cachep->nodelists[node];
e498be7d
CL
2956
2957 BUG_ON(ac->avail > 0 || !l3);
2958 spin_lock(&l3->list_lock);
1da177e4 2959
3ded175a
CL
2960 /* See if we can refill from the shared array */
2961 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2962 goto alloc_done;
2963
1da177e4
LT
2964 while (batchcount > 0) {
2965 struct list_head *entry;
2966 struct slab *slabp;
2967 /* Get slab alloc is to come from. */
2968 entry = l3->slabs_partial.next;
2969 if (entry == &l3->slabs_partial) {
2970 l3->free_touched = 1;
2971 entry = l3->slabs_free.next;
2972 if (entry == &l3->slabs_free)
2973 goto must_grow;
2974 }
2975
2976 slabp = list_entry(entry, struct slab, list);
2977 check_slabp(cachep, slabp);
2978 check_spinlock_acquired(cachep);
714b8171
PE
2979
2980 /*
2981 * The slab was either on partial or free list so
2982 * there must be at least one object available for
2983 * allocation.
2984 */
249b9f33 2985 BUG_ON(slabp->inuse >= cachep->num);
714b8171 2986
1da177e4 2987 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2988 STATS_INC_ALLOCED(cachep);
2989 STATS_INC_ACTIVE(cachep);
2990 STATS_SET_HIGH(cachep);
2991
78d382d7 2992 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 2993 node);
1da177e4
LT
2994 }
2995 check_slabp(cachep, slabp);
2996
2997 /* move slabp to correct slabp list: */
2998 list_del(&slabp->list);
2999 if (slabp->free == BUFCTL_END)
3000 list_add(&slabp->list, &l3->slabs_full);
3001 else
3002 list_add(&slabp->list, &l3->slabs_partial);
3003 }
3004
a737b3e2 3005must_grow:
1da177e4 3006 l3->free_objects -= ac->avail;
a737b3e2 3007alloc_done:
e498be7d 3008 spin_unlock(&l3->list_lock);
1da177e4
LT
3009
3010 if (unlikely(!ac->avail)) {
3011 int x;
3c517a61 3012 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3013
a737b3e2 3014 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3015 ac = cpu_cache_get(cachep);
a737b3e2 3016 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3017 return NULL;
3018
a737b3e2 3019 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3020 goto retry;
3021 }
3022 ac->touched = 1;
e498be7d 3023 return ac->entry[--ac->avail];
1da177e4
LT
3024}
3025
a737b3e2
AM
3026static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3027 gfp_t flags)
1da177e4
LT
3028{
3029 might_sleep_if(flags & __GFP_WAIT);
3030#if DEBUG
3031 kmem_flagcheck(cachep, flags);
3032#endif
3033}
3034
3035#if DEBUG
a737b3e2
AM
3036static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3037 gfp_t flags, void *objp, void *caller)
1da177e4 3038{
b28a02de 3039 if (!objp)
1da177e4 3040 return objp;
b28a02de 3041 if (cachep->flags & SLAB_POISON) {
1da177e4 3042#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3043 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3044 kernel_map_pages(virt_to_page(objp),
3dafccf2 3045 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3046 else
3047 check_poison_obj(cachep, objp);
3048#else
3049 check_poison_obj(cachep, objp);
3050#endif
3051 poison_obj(cachep, objp, POISON_INUSE);
3052 }
3053 if (cachep->flags & SLAB_STORE_USER)
3054 *dbg_userword(cachep, objp) = caller;
3055
3056 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3057 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3058 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3059 slab_error(cachep, "double free, or memory outside"
3060 " object was overwritten");
b28a02de 3061 printk(KERN_ERR
b46b8f19 3062 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3063 objp, *dbg_redzone1(cachep, objp),
3064 *dbg_redzone2(cachep, objp));
1da177e4
LT
3065 }
3066 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3067 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3068 }
871751e2
AV
3069#ifdef CONFIG_DEBUG_SLAB_LEAK
3070 {
3071 struct slab *slabp;
3072 unsigned objnr;
3073
b49af68f 3074 slabp = page_get_slab(virt_to_head_page(objp));
871751e2
AV
3075 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3076 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3077 }
3078#endif
3dafccf2 3079 objp += obj_offset(cachep);
4f104934 3080 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3081 cachep->ctor(objp);
a44b56d3
KH
3082#if ARCH_SLAB_MINALIGN
3083 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3084 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3085 objp, ARCH_SLAB_MINALIGN);
3086 }
3087#endif
1da177e4
LT
3088 return objp;
3089}
3090#else
3091#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3092#endif
3093
773ff60e 3094static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502
AM
3095{
3096 if (cachep == &cache_cache)
773ff60e 3097 return false;
8a8b6502 3098
773ff60e 3099 return should_failslab(obj_size(cachep), flags);
8a8b6502
AM
3100}
3101
343e0d7a 3102static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3103{
b28a02de 3104 void *objp;
1da177e4
LT
3105 struct array_cache *ac;
3106
5c382300 3107 check_irq_off();
8a8b6502 3108
9a2dba4b 3109 ac = cpu_cache_get(cachep);
1da177e4
LT
3110 if (likely(ac->avail)) {
3111 STATS_INC_ALLOCHIT(cachep);
3112 ac->touched = 1;
e498be7d 3113 objp = ac->entry[--ac->avail];
1da177e4
LT
3114 } else {
3115 STATS_INC_ALLOCMISS(cachep);
3116 objp = cache_alloc_refill(cachep, flags);
3117 }
d5cff635
CM
3118 /*
3119 * To avoid a false negative, if an object that is in one of the
3120 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3121 * treat the array pointers as a reference to the object.
3122 */
3123 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3124 return objp;
3125}
3126
e498be7d 3127#ifdef CONFIG_NUMA
c61afb18 3128/*
b2455396 3129 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3130 *
3131 * If we are in_interrupt, then process context, including cpusets and
3132 * mempolicy, may not apply and should not be used for allocation policy.
3133 */
3134static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3135{
3136 int nid_alloc, nid_here;
3137
765c4507 3138 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18
PJ
3139 return NULL;
3140 nid_alloc = nid_here = numa_node_id();
3141 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3142 nid_alloc = cpuset_mem_spread_node();
3143 else if (current->mempolicy)
3144 nid_alloc = slab_node(current->mempolicy);
3145 if (nid_alloc != nid_here)
8b98c169 3146 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3147 return NULL;
3148}
3149
765c4507
CL
3150/*
3151 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3152 * certain node and fall back is permitted. First we scan all the
3153 * available nodelists for available objects. If that fails then we
3154 * perform an allocation without specifying a node. This allows the page
3155 * allocator to do its reclaim / fallback magic. We then insert the
3156 * slab into the proper nodelist and then allocate from it.
765c4507 3157 */
8c8cc2c1 3158static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3159{
8c8cc2c1
PE
3160 struct zonelist *zonelist;
3161 gfp_t local_flags;
dd1a239f 3162 struct zoneref *z;
54a6eb5c
MG
3163 struct zone *zone;
3164 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3165 void *obj = NULL;
3c517a61 3166 int nid;
8c8cc2c1
PE
3167
3168 if (flags & __GFP_THISNODE)
3169 return NULL;
3170
0e88460d 3171 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
6cb06229 3172 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3173
3c517a61
CL
3174retry:
3175 /*
3176 * Look through allowed nodes for objects available
3177 * from existing per node queues.
3178 */
54a6eb5c
MG
3179 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3180 nid = zone_to_nid(zone);
aedb0eb1 3181
54a6eb5c 3182 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3183 cache->nodelists[nid] &&
481c5346 3184 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3185 obj = ____cache_alloc_node(cache,
3186 flags | GFP_THISNODE, nid);
481c5346
CL
3187 if (obj)
3188 break;
3189 }
3c517a61
CL
3190 }
3191
cfce6604 3192 if (!obj) {
3c517a61
CL
3193 /*
3194 * This allocation will be performed within the constraints
3195 * of the current cpuset / memory policy requirements.
3196 * We may trigger various forms of reclaim on the allowed
3197 * set and go into memory reserves if necessary.
3198 */
dd47ea75
CL
3199 if (local_flags & __GFP_WAIT)
3200 local_irq_enable();
3201 kmem_flagcheck(cache, flags);
6484eb3e 3202 obj = kmem_getpages(cache, local_flags, numa_node_id());
dd47ea75
CL
3203 if (local_flags & __GFP_WAIT)
3204 local_irq_disable();
3c517a61
CL
3205 if (obj) {
3206 /*
3207 * Insert into the appropriate per node queues
3208 */
3209 nid = page_to_nid(virt_to_page(obj));
3210 if (cache_grow(cache, flags, nid, obj)) {
3211 obj = ____cache_alloc_node(cache,
3212 flags | GFP_THISNODE, nid);
3213 if (!obj)
3214 /*
3215 * Another processor may allocate the
3216 * objects in the slab since we are
3217 * not holding any locks.
3218 */
3219 goto retry;
3220 } else {
b6a60451 3221 /* cache_grow already freed obj */
3c517a61
CL
3222 obj = NULL;
3223 }
3224 }
aedb0eb1 3225 }
765c4507
CL
3226 return obj;
3227}
3228
e498be7d
CL
3229/*
3230 * A interface to enable slab creation on nodeid
1da177e4 3231 */
8b98c169 3232static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3233 int nodeid)
e498be7d
CL
3234{
3235 struct list_head *entry;
b28a02de
PE
3236 struct slab *slabp;
3237 struct kmem_list3 *l3;
3238 void *obj;
b28a02de
PE
3239 int x;
3240
3241 l3 = cachep->nodelists[nodeid];
3242 BUG_ON(!l3);
3243
a737b3e2 3244retry:
ca3b9b91 3245 check_irq_off();
b28a02de
PE
3246 spin_lock(&l3->list_lock);
3247 entry = l3->slabs_partial.next;
3248 if (entry == &l3->slabs_partial) {
3249 l3->free_touched = 1;
3250 entry = l3->slabs_free.next;
3251 if (entry == &l3->slabs_free)
3252 goto must_grow;
3253 }
3254
3255 slabp = list_entry(entry, struct slab, list);
3256 check_spinlock_acquired_node(cachep, nodeid);
3257 check_slabp(cachep, slabp);
3258
3259 STATS_INC_NODEALLOCS(cachep);
3260 STATS_INC_ACTIVE(cachep);
3261 STATS_SET_HIGH(cachep);
3262
3263 BUG_ON(slabp->inuse == cachep->num);
3264
78d382d7 3265 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3266 check_slabp(cachep, slabp);
3267 l3->free_objects--;
3268 /* move slabp to correct slabp list: */
3269 list_del(&slabp->list);
3270
a737b3e2 3271 if (slabp->free == BUFCTL_END)
b28a02de 3272 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3273 else
b28a02de 3274 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3275
b28a02de
PE
3276 spin_unlock(&l3->list_lock);
3277 goto done;
e498be7d 3278
a737b3e2 3279must_grow:
b28a02de 3280 spin_unlock(&l3->list_lock);
3c517a61 3281 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3282 if (x)
3283 goto retry;
1da177e4 3284
8c8cc2c1 3285 return fallback_alloc(cachep, flags);
e498be7d 3286
a737b3e2 3287done:
b28a02de 3288 return obj;
e498be7d 3289}
8c8cc2c1
PE
3290
3291/**
3292 * kmem_cache_alloc_node - Allocate an object on the specified node
3293 * @cachep: The cache to allocate from.
3294 * @flags: See kmalloc().
3295 * @nodeid: node number of the target node.
3296 * @caller: return address of caller, used for debug information
3297 *
3298 * Identical to kmem_cache_alloc but it will allocate memory on the given
3299 * node, which can improve the performance for cpu bound structures.
3300 *
3301 * Fallback to other node is possible if __GFP_THISNODE is not set.
3302 */
3303static __always_inline void *
3304__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3305 void *caller)
3306{
3307 unsigned long save_flags;
3308 void *ptr;
3309
7e85ee0c
PE
3310 flags &= slab_gfp_mask;
3311
cf40bd16
NP
3312 lockdep_trace_alloc(flags);
3313
773ff60e 3314 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3315 return NULL;
3316
8c8cc2c1
PE
3317 cache_alloc_debugcheck_before(cachep, flags);
3318 local_irq_save(save_flags);
3319
3320 if (unlikely(nodeid == -1))
3321 nodeid = numa_node_id();
3322
3323 if (unlikely(!cachep->nodelists[nodeid])) {
3324 /* Node not bootstrapped yet */
3325 ptr = fallback_alloc(cachep, flags);
3326 goto out;
3327 }
3328
3329 if (nodeid == numa_node_id()) {
3330 /*
3331 * Use the locally cached objects if possible.
3332 * However ____cache_alloc does not allow fallback
3333 * to other nodes. It may fail while we still have
3334 * objects on other nodes available.
3335 */
3336 ptr = ____cache_alloc(cachep, flags);
3337 if (ptr)
3338 goto out;
3339 }
3340 /* ___cache_alloc_node can fall back to other nodes */
3341 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3342 out:
3343 local_irq_restore(save_flags);
3344 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
d5cff635
CM
3345 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3346 flags);
8c8cc2c1 3347
c175eea4
PE
3348 if (likely(ptr))
3349 kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3350
d07dbea4
CL
3351 if (unlikely((flags & __GFP_ZERO) && ptr))
3352 memset(ptr, 0, obj_size(cachep));
3353
8c8cc2c1
PE
3354 return ptr;
3355}
3356
3357static __always_inline void *
3358__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3359{
3360 void *objp;
3361
3362 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3363 objp = alternate_node_alloc(cache, flags);
3364 if (objp)
3365 goto out;
3366 }
3367 objp = ____cache_alloc(cache, flags);
3368
3369 /*
3370 * We may just have run out of memory on the local node.
3371 * ____cache_alloc_node() knows how to locate memory on other nodes
3372 */
3373 if (!objp)
3374 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3375
3376 out:
3377 return objp;
3378}
3379#else
3380
3381static __always_inline void *
3382__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3383{
3384 return ____cache_alloc(cachep, flags);
3385}
3386
3387#endif /* CONFIG_NUMA */
3388
3389static __always_inline void *
3390__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3391{
3392 unsigned long save_flags;
3393 void *objp;
3394
7e85ee0c
PE
3395 flags &= slab_gfp_mask;
3396
cf40bd16
NP
3397 lockdep_trace_alloc(flags);
3398
773ff60e 3399 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3400 return NULL;
3401
8c8cc2c1
PE
3402 cache_alloc_debugcheck_before(cachep, flags);
3403 local_irq_save(save_flags);
3404 objp = __do_cache_alloc(cachep, flags);
3405 local_irq_restore(save_flags);
3406 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
d5cff635
CM
3407 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3408 flags);
8c8cc2c1
PE
3409 prefetchw(objp);
3410
c175eea4
PE
3411 if (likely(objp))
3412 kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3413
d07dbea4
CL
3414 if (unlikely((flags & __GFP_ZERO) && objp))
3415 memset(objp, 0, obj_size(cachep));
3416
8c8cc2c1
PE
3417 return objp;
3418}
e498be7d
CL
3419
3420/*
3421 * Caller needs to acquire correct kmem_list's list_lock
3422 */
343e0d7a 3423static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3424 int node)
1da177e4
LT
3425{
3426 int i;
e498be7d 3427 struct kmem_list3 *l3;
1da177e4
LT
3428
3429 for (i = 0; i < nr_objects; i++) {
3430 void *objp = objpp[i];
3431 struct slab *slabp;
1da177e4 3432
6ed5eb22 3433 slabp = virt_to_slab(objp);
ff69416e 3434 l3 = cachep->nodelists[node];
1da177e4 3435 list_del(&slabp->list);
ff69416e 3436 check_spinlock_acquired_node(cachep, node);
1da177e4 3437 check_slabp(cachep, slabp);
78d382d7 3438 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3439 STATS_DEC_ACTIVE(cachep);
e498be7d 3440 l3->free_objects++;
1da177e4
LT
3441 check_slabp(cachep, slabp);
3442
3443 /* fixup slab chains */
3444 if (slabp->inuse == 0) {
e498be7d
CL
3445 if (l3->free_objects > l3->free_limit) {
3446 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3447 /* No need to drop any previously held
3448 * lock here, even if we have a off-slab slab
3449 * descriptor it is guaranteed to come from
3450 * a different cache, refer to comments before
3451 * alloc_slabmgmt.
3452 */
1da177e4
LT
3453 slab_destroy(cachep, slabp);
3454 } else {
e498be7d 3455 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3456 }
3457 } else {
3458 /* Unconditionally move a slab to the end of the
3459 * partial list on free - maximum time for the
3460 * other objects to be freed, too.
3461 */
e498be7d 3462 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3463 }
3464 }
3465}
3466
343e0d7a 3467static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3468{
3469 int batchcount;
e498be7d 3470 struct kmem_list3 *l3;
ff69416e 3471 int node = numa_node_id();
1da177e4
LT
3472
3473 batchcount = ac->batchcount;
3474#if DEBUG
3475 BUG_ON(!batchcount || batchcount > ac->avail);
3476#endif
3477 check_irq_off();
ff69416e 3478 l3 = cachep->nodelists[node];
873623df 3479 spin_lock(&l3->list_lock);
e498be7d
CL
3480 if (l3->shared) {
3481 struct array_cache *shared_array = l3->shared;
b28a02de 3482 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3483 if (max) {
3484 if (batchcount > max)
3485 batchcount = max;
e498be7d 3486 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3487 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3488 shared_array->avail += batchcount;
3489 goto free_done;
3490 }
3491 }
3492
ff69416e 3493 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3494free_done:
1da177e4
LT
3495#if STATS
3496 {
3497 int i = 0;
3498 struct list_head *p;
3499
e498be7d
CL
3500 p = l3->slabs_free.next;
3501 while (p != &(l3->slabs_free)) {
1da177e4
LT
3502 struct slab *slabp;
3503
3504 slabp = list_entry(p, struct slab, list);
3505 BUG_ON(slabp->inuse);
3506
3507 i++;
3508 p = p->next;
3509 }
3510 STATS_SET_FREEABLE(cachep, i);
3511 }
3512#endif
e498be7d 3513 spin_unlock(&l3->list_lock);
1da177e4 3514 ac->avail -= batchcount;
a737b3e2 3515 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3516}
3517
3518/*
a737b3e2
AM
3519 * Release an obj back to its cache. If the obj has a constructed state, it must
3520 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3521 */
873623df 3522static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3523{
9a2dba4b 3524 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3525
3526 check_irq_off();
d5cff635 3527 kmemleak_free_recursive(objp, cachep->flags);
1da177e4
LT
3528 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3529
c175eea4
PE
3530 kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3531
1807a1aa
SS
3532 /*
3533 * Skip calling cache_free_alien() when the platform is not numa.
3534 * This will avoid cache misses that happen while accessing slabp (which
3535 * is per page memory reference) to get nodeid. Instead use a global
3536 * variable to skip the call, which is mostly likely to be present in
3537 * the cache.
3538 */
b6e68bc1 3539 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3540 return;
3541
1da177e4
LT
3542 if (likely(ac->avail < ac->limit)) {
3543 STATS_INC_FREEHIT(cachep);
e498be7d 3544 ac->entry[ac->avail++] = objp;
1da177e4
LT
3545 return;
3546 } else {
3547 STATS_INC_FREEMISS(cachep);
3548 cache_flusharray(cachep, ac);
e498be7d 3549 ac->entry[ac->avail++] = objp;
1da177e4
LT
3550 }
3551}
3552
3553/**
3554 * kmem_cache_alloc - Allocate an object
3555 * @cachep: The cache to allocate from.
3556 * @flags: See kmalloc().
3557 *
3558 * Allocate an object from this cache. The flags are only relevant
3559 * if the cache has no available objects.
3560 */
343e0d7a 3561void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3562{
36555751
EGM
3563 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3564
ca2b84cb
EGM
3565 trace_kmem_cache_alloc(_RET_IP_, ret,
3566 obj_size(cachep), cachep->buffer_size, flags);
36555751
EGM
3567
3568 return ret;
1da177e4
LT
3569}
3570EXPORT_SYMBOL(kmem_cache_alloc);
3571
36555751
EGM
3572#ifdef CONFIG_KMEMTRACE
3573void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
3574{
3575 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3576}
3577EXPORT_SYMBOL(kmem_cache_alloc_notrace);
3578#endif
3579
1da177e4 3580/**
7682486b 3581 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
1da177e4
LT
3582 * @cachep: the cache we're checking against
3583 * @ptr: pointer to validate
3584 *
7682486b 3585 * This verifies that the untrusted pointer looks sane;
1da177e4
LT
3586 * it is _not_ a guarantee that the pointer is actually
3587 * part of the slab cache in question, but it at least
3588 * validates that the pointer can be dereferenced and
3589 * looks half-way sane.
3590 *
3591 * Currently only used for dentry validation.
3592 */
b7f869a2 3593int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
1da177e4 3594{
b28a02de 3595 unsigned long addr = (unsigned long)ptr;
1da177e4 3596 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3597 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3598 unsigned long size = cachep->buffer_size;
1da177e4
LT
3599 struct page *page;
3600
3601 if (unlikely(addr < min_addr))
3602 goto out;
3603 if (unlikely(addr > (unsigned long)high_memory - size))
3604 goto out;
3605 if (unlikely(addr & align_mask))
3606 goto out;
3607 if (unlikely(!kern_addr_valid(addr)))
3608 goto out;
3609 if (unlikely(!kern_addr_valid(addr + size - 1)))
3610 goto out;
3611 page = virt_to_page(ptr);
3612 if (unlikely(!PageSlab(page)))
3613 goto out;
065d41cb 3614 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3615 goto out;
3616 return 1;
a737b3e2 3617out:
1da177e4
LT
3618 return 0;
3619}
3620
3621#ifdef CONFIG_NUMA
8b98c169
CH
3622void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3623{
36555751
EGM
3624 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3625 __builtin_return_address(0));
3626
ca2b84cb
EGM
3627 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3628 obj_size(cachep), cachep->buffer_size,
3629 flags, nodeid);
36555751
EGM
3630
3631 return ret;
8b98c169 3632}
1da177e4
LT
3633EXPORT_SYMBOL(kmem_cache_alloc_node);
3634
36555751
EGM
3635#ifdef CONFIG_KMEMTRACE
3636void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
3637 gfp_t flags,
3638 int nodeid)
3639{
3640 return __cache_alloc_node(cachep, flags, nodeid,
3641 __builtin_return_address(0));
3642}
3643EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
3644#endif
3645
8b98c169
CH
3646static __always_inline void *
3647__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3648{
343e0d7a 3649 struct kmem_cache *cachep;
36555751 3650 void *ret;
97e2bde4
MS
3651
3652 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3653 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3654 return cachep;
36555751
EGM
3655 ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
3656
ca2b84cb
EGM
3657 trace_kmalloc_node((unsigned long) caller, ret,
3658 size, cachep->buffer_size, flags, node);
36555751
EGM
3659
3660 return ret;
97e2bde4 3661}
8b98c169 3662
36555751 3663#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
8b98c169
CH
3664void *__kmalloc_node(size_t size, gfp_t flags, int node)
3665{
3666 return __do_kmalloc_node(size, flags, node,
3667 __builtin_return_address(0));
3668}
dbe5e69d 3669EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3670
3671void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3672 int node, unsigned long caller)
8b98c169 3673{
ce71e27c 3674 return __do_kmalloc_node(size, flags, node, (void *)caller);
8b98c169
CH
3675}
3676EXPORT_SYMBOL(__kmalloc_node_track_caller);
3677#else
3678void *__kmalloc_node(size_t size, gfp_t flags, int node)
3679{
3680 return __do_kmalloc_node(size, flags, node, NULL);
3681}
3682EXPORT_SYMBOL(__kmalloc_node);
3683#endif /* CONFIG_DEBUG_SLAB */
3684#endif /* CONFIG_NUMA */
1da177e4
LT
3685
3686/**
800590f5 3687 * __do_kmalloc - allocate memory
1da177e4 3688 * @size: how many bytes of memory are required.
800590f5 3689 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3690 * @caller: function caller for debug tracking of the caller
1da177e4 3691 */
7fd6b141
PE
3692static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3693 void *caller)
1da177e4 3694{
343e0d7a 3695 struct kmem_cache *cachep;
36555751 3696 void *ret;
1da177e4 3697
97e2bde4
MS
3698 /* If you want to save a few bytes .text space: replace
3699 * __ with kmem_.
3700 * Then kmalloc uses the uninlined functions instead of the inline
3701 * functions.
3702 */
3703 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3704 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3705 return cachep;
36555751
EGM
3706 ret = __cache_alloc(cachep, flags, caller);
3707
ca2b84cb
EGM
3708 trace_kmalloc((unsigned long) caller, ret,
3709 size, cachep->buffer_size, flags);
36555751
EGM
3710
3711 return ret;
7fd6b141
PE
3712}
3713
7fd6b141 3714
36555751 3715#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
7fd6b141
PE
3716void *__kmalloc(size_t size, gfp_t flags)
3717{
871751e2 3718 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3719}
3720EXPORT_SYMBOL(__kmalloc);
3721
ce71e27c 3722void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3723{
ce71e27c 3724 return __do_kmalloc(size, flags, (void *)caller);
7fd6b141
PE
3725}
3726EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3727
3728#else
3729void *__kmalloc(size_t size, gfp_t flags)
3730{
3731 return __do_kmalloc(size, flags, NULL);
3732}
3733EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3734#endif
3735
1da177e4
LT
3736/**
3737 * kmem_cache_free - Deallocate an object
3738 * @cachep: The cache the allocation was from.
3739 * @objp: The previously allocated object.
3740 *
3741 * Free an object which was previously allocated from this
3742 * cache.
3743 */
343e0d7a 3744void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3745{
3746 unsigned long flags;
3747
3748 local_irq_save(flags);
898552c9 3749 debug_check_no_locks_freed(objp, obj_size(cachep));
3ac7fe5a
TG
3750 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3751 debug_check_no_obj_freed(objp, obj_size(cachep));
873623df 3752 __cache_free(cachep, objp);
1da177e4 3753 local_irq_restore(flags);
36555751 3754
ca2b84cb 3755 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3756}
3757EXPORT_SYMBOL(kmem_cache_free);
3758
1da177e4
LT
3759/**
3760 * kfree - free previously allocated memory
3761 * @objp: pointer returned by kmalloc.
3762 *
80e93eff
PE
3763 * If @objp is NULL, no operation is performed.
3764 *
1da177e4
LT
3765 * Don't free memory not originally allocated by kmalloc()
3766 * or you will run into trouble.
3767 */
3768void kfree(const void *objp)
3769{
343e0d7a 3770 struct kmem_cache *c;
1da177e4
LT
3771 unsigned long flags;
3772
2121db74
PE
3773 trace_kfree(_RET_IP_, objp);
3774
6cb8f913 3775 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3776 return;
3777 local_irq_save(flags);
3778 kfree_debugcheck(objp);
6ed5eb22 3779 c = virt_to_cache(objp);
f9b8404c 3780 debug_check_no_locks_freed(objp, obj_size(c));
3ac7fe5a 3781 debug_check_no_obj_freed(objp, obj_size(c));
873623df 3782 __cache_free(c, (void *)objp);
1da177e4
LT
3783 local_irq_restore(flags);
3784}
3785EXPORT_SYMBOL(kfree);
3786
343e0d7a 3787unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3788{
3dafccf2 3789 return obj_size(cachep);
1da177e4
LT
3790}
3791EXPORT_SYMBOL(kmem_cache_size);
3792
343e0d7a 3793const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3794{
3795 return cachep->name;
3796}
3797EXPORT_SYMBOL_GPL(kmem_cache_name);
3798
e498be7d 3799/*
183ff22b 3800 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3801 */
83b519e8 3802static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3803{
3804 int node;
3805 struct kmem_list3 *l3;
cafeb02e 3806 struct array_cache *new_shared;
3395ee05 3807 struct array_cache **new_alien = NULL;
e498be7d 3808
9c09a95c 3809 for_each_online_node(node) {
cafeb02e 3810
3395ee05 3811 if (use_alien_caches) {
83b519e8 3812 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3813 if (!new_alien)
3814 goto fail;
3815 }
cafeb02e 3816
63109846
ED
3817 new_shared = NULL;
3818 if (cachep->shared) {
3819 new_shared = alloc_arraycache(node,
0718dc2a 3820 cachep->shared*cachep->batchcount,
83b519e8 3821 0xbaadf00d, gfp);
63109846
ED
3822 if (!new_shared) {
3823 free_alien_cache(new_alien);
3824 goto fail;
3825 }
0718dc2a 3826 }
cafeb02e 3827
a737b3e2
AM
3828 l3 = cachep->nodelists[node];
3829 if (l3) {
cafeb02e
CL
3830 struct array_cache *shared = l3->shared;
3831
e498be7d
CL
3832 spin_lock_irq(&l3->list_lock);
3833
cafeb02e 3834 if (shared)
0718dc2a
CL
3835 free_block(cachep, shared->entry,
3836 shared->avail, node);
e498be7d 3837
cafeb02e
CL
3838 l3->shared = new_shared;
3839 if (!l3->alien) {
e498be7d
CL
3840 l3->alien = new_alien;
3841 new_alien = NULL;
3842 }
b28a02de 3843 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3844 cachep->batchcount + cachep->num;
e498be7d 3845 spin_unlock_irq(&l3->list_lock);
cafeb02e 3846 kfree(shared);
e498be7d
CL
3847 free_alien_cache(new_alien);
3848 continue;
3849 }
83b519e8 3850 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
0718dc2a
CL
3851 if (!l3) {
3852 free_alien_cache(new_alien);
3853 kfree(new_shared);
e498be7d 3854 goto fail;
0718dc2a 3855 }
e498be7d
CL
3856
3857 kmem_list3_init(l3);
3858 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3859 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3860 l3->shared = new_shared;
e498be7d 3861 l3->alien = new_alien;
b28a02de 3862 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3863 cachep->batchcount + cachep->num;
e498be7d
CL
3864 cachep->nodelists[node] = l3;
3865 }
cafeb02e 3866 return 0;
0718dc2a 3867
a737b3e2 3868fail:
0718dc2a
CL
3869 if (!cachep->next.next) {
3870 /* Cache is not active yet. Roll back what we did */
3871 node--;
3872 while (node >= 0) {
3873 if (cachep->nodelists[node]) {
3874 l3 = cachep->nodelists[node];
3875
3876 kfree(l3->shared);
3877 free_alien_cache(l3->alien);
3878 kfree(l3);
3879 cachep->nodelists[node] = NULL;
3880 }
3881 node--;
3882 }
3883 }
cafeb02e 3884 return -ENOMEM;
e498be7d
CL
3885}
3886
1da177e4 3887struct ccupdate_struct {
343e0d7a 3888 struct kmem_cache *cachep;
1da177e4
LT
3889 struct array_cache *new[NR_CPUS];
3890};
3891
3892static void do_ccupdate_local(void *info)
3893{
a737b3e2 3894 struct ccupdate_struct *new = info;
1da177e4
LT
3895 struct array_cache *old;
3896
3897 check_irq_off();
9a2dba4b 3898 old = cpu_cache_get(new->cachep);
e498be7d 3899
1da177e4
LT
3900 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3901 new->new[smp_processor_id()] = old;
3902}
3903
b5d8ca7c 3904/* Always called with the cache_chain_mutex held */
a737b3e2 3905static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3906 int batchcount, int shared, gfp_t gfp)
1da177e4 3907{
d2e7b7d0 3908 struct ccupdate_struct *new;
2ed3a4ef 3909 int i;
1da177e4 3910
83b519e8 3911 new = kzalloc(sizeof(*new), gfp);
d2e7b7d0
SS
3912 if (!new)
3913 return -ENOMEM;
3914
e498be7d 3915 for_each_online_cpu(i) {
d2e7b7d0 3916 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
83b519e8 3917 batchcount, gfp);
d2e7b7d0 3918 if (!new->new[i]) {
b28a02de 3919 for (i--; i >= 0; i--)
d2e7b7d0
SS
3920 kfree(new->new[i]);
3921 kfree(new);
e498be7d 3922 return -ENOMEM;
1da177e4
LT
3923 }
3924 }
d2e7b7d0 3925 new->cachep = cachep;
1da177e4 3926
15c8b6c1 3927 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 3928
1da177e4 3929 check_irq_on();
1da177e4
LT
3930 cachep->batchcount = batchcount;
3931 cachep->limit = limit;
e498be7d 3932 cachep->shared = shared;
1da177e4 3933
e498be7d 3934 for_each_online_cpu(i) {
d2e7b7d0 3935 struct array_cache *ccold = new->new[i];
1da177e4
LT
3936 if (!ccold)
3937 continue;
e498be7d 3938 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3939 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3940 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3941 kfree(ccold);
3942 }
d2e7b7d0 3943 kfree(new);
83b519e8 3944 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
3945}
3946
b5d8ca7c 3947/* Called with cache_chain_mutex held always */
83b519e8 3948static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3949{
3950 int err;
3951 int limit, shared;
3952
a737b3e2
AM
3953 /*
3954 * The head array serves three purposes:
1da177e4
LT
3955 * - create a LIFO ordering, i.e. return objects that are cache-warm
3956 * - reduce the number of spinlock operations.
a737b3e2 3957 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3958 * bufctl chains: array operations are cheaper.
3959 * The numbers are guessed, we should auto-tune as described by
3960 * Bonwick.
3961 */
3dafccf2 3962 if (cachep->buffer_size > 131072)
1da177e4 3963 limit = 1;
3dafccf2 3964 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3965 limit = 8;
3dafccf2 3966 else if (cachep->buffer_size > 1024)
1da177e4 3967 limit = 24;
3dafccf2 3968 else if (cachep->buffer_size > 256)
1da177e4
LT
3969 limit = 54;
3970 else
3971 limit = 120;
3972
a737b3e2
AM
3973 /*
3974 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3975 * allocation behaviour: Most allocs on one cpu, most free operations
3976 * on another cpu. For these cases, an efficient object passing between
3977 * cpus is necessary. This is provided by a shared array. The array
3978 * replaces Bonwick's magazine layer.
3979 * On uniprocessor, it's functionally equivalent (but less efficient)
3980 * to a larger limit. Thus disabled by default.
3981 */
3982 shared = 0;
364fbb29 3983 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3984 shared = 8;
1da177e4
LT
3985
3986#if DEBUG
a737b3e2
AM
3987 /*
3988 * With debugging enabled, large batchcount lead to excessively long
3989 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3990 */
3991 if (limit > 32)
3992 limit = 32;
3993#endif
83b519e8 3994 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
1da177e4
LT
3995 if (err)
3996 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3997 cachep->name, -err);
2ed3a4ef 3998 return err;
1da177e4
LT
3999}
4000
1b55253a
CL
4001/*
4002 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4003 * necessary. Note that the l3 listlock also protects the array_cache
4004 * if drain_array() is used on the shared array.
1b55253a
CL
4005 */
4006void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4007 struct array_cache *ac, int force, int node)
1da177e4
LT
4008{
4009 int tofree;
4010
1b55253a
CL
4011 if (!ac || !ac->avail)
4012 return;
1da177e4
LT
4013 if (ac->touched && !force) {
4014 ac->touched = 0;
b18e7e65 4015 } else {
1b55253a 4016 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4017 if (ac->avail) {
4018 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4019 if (tofree > ac->avail)
4020 tofree = (ac->avail + 1) / 2;
4021 free_block(cachep, ac->entry, tofree, node);
4022 ac->avail -= tofree;
4023 memmove(ac->entry, &(ac->entry[tofree]),
4024 sizeof(void *) * ac->avail);
4025 }
1b55253a 4026 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4027 }
4028}
4029
4030/**
4031 * cache_reap - Reclaim memory from caches.
05fb6bf0 4032 * @w: work descriptor
1da177e4
LT
4033 *
4034 * Called from workqueue/eventd every few seconds.
4035 * Purpose:
4036 * - clear the per-cpu caches for this CPU.
4037 * - return freeable pages to the main free memory pool.
4038 *
a737b3e2
AM
4039 * If we cannot acquire the cache chain mutex then just give up - we'll try
4040 * again on the next iteration.
1da177e4 4041 */
7c5cae36 4042static void cache_reap(struct work_struct *w)
1da177e4 4043{
7a7c381d 4044 struct kmem_cache *searchp;
e498be7d 4045 struct kmem_list3 *l3;
aab2207c 4046 int node = numa_node_id();
bf6aede7 4047 struct delayed_work *work = to_delayed_work(w);
1da177e4 4048
7c5cae36 4049 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4050 /* Give up. Setup the next iteration. */
7c5cae36 4051 goto out;
1da177e4 4052
7a7c381d 4053 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4054 check_irq_on();
4055
35386e3b
CL
4056 /*
4057 * We only take the l3 lock if absolutely necessary and we
4058 * have established with reasonable certainty that
4059 * we can do some work if the lock was obtained.
4060 */
aab2207c 4061 l3 = searchp->nodelists[node];
35386e3b 4062
8fce4d8e 4063 reap_alien(searchp, l3);
1da177e4 4064
aab2207c 4065 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4066
35386e3b
CL
4067 /*
4068 * These are racy checks but it does not matter
4069 * if we skip one check or scan twice.
4070 */
e498be7d 4071 if (time_after(l3->next_reap, jiffies))
35386e3b 4072 goto next;
1da177e4 4073
e498be7d 4074 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4075
aab2207c 4076 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4077
ed11d9eb 4078 if (l3->free_touched)
e498be7d 4079 l3->free_touched = 0;
ed11d9eb
CL
4080 else {
4081 int freed;
1da177e4 4082
ed11d9eb
CL
4083 freed = drain_freelist(searchp, l3, (l3->free_limit +
4084 5 * searchp->num - 1) / (5 * searchp->num));
4085 STATS_ADD_REAPED(searchp, freed);
4086 }
35386e3b 4087next:
1da177e4
LT
4088 cond_resched();
4089 }
4090 check_irq_on();
fc0abb14 4091 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4092 next_reap_node();
7c5cae36 4093out:
a737b3e2 4094 /* Set up the next iteration */
7c5cae36 4095 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4096}
4097
158a9624 4098#ifdef CONFIG_SLABINFO
1da177e4 4099
85289f98 4100static void print_slabinfo_header(struct seq_file *m)
1da177e4 4101{
85289f98
PE
4102 /*
4103 * Output format version, so at least we can change it
4104 * without _too_ many complaints.
4105 */
1da177e4 4106#if STATS
85289f98 4107 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4108#else
85289f98 4109 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4110#endif
85289f98
PE
4111 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4112 "<objperslab> <pagesperslab>");
4113 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4114 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4115#if STATS
85289f98 4116 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4117 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4118 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4119#endif
85289f98
PE
4120 seq_putc(m, '\n');
4121}
4122
4123static void *s_start(struct seq_file *m, loff_t *pos)
4124{
4125 loff_t n = *pos;
85289f98 4126
fc0abb14 4127 mutex_lock(&cache_chain_mutex);
85289f98
PE
4128 if (!n)
4129 print_slabinfo_header(m);
b92151ba
PE
4130
4131 return seq_list_start(&cache_chain, *pos);
1da177e4
LT
4132}
4133
4134static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4135{
b92151ba 4136 return seq_list_next(p, &cache_chain, pos);
1da177e4
LT
4137}
4138
4139static void s_stop(struct seq_file *m, void *p)
4140{
fc0abb14 4141 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4142}
4143
4144static int s_show(struct seq_file *m, void *p)
4145{
b92151ba 4146 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
b28a02de
PE
4147 struct slab *slabp;
4148 unsigned long active_objs;
4149 unsigned long num_objs;
4150 unsigned long active_slabs = 0;
4151 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4152 const char *name;
1da177e4 4153 char *error = NULL;
e498be7d
CL
4154 int node;
4155 struct kmem_list3 *l3;
1da177e4 4156
1da177e4
LT
4157 active_objs = 0;
4158 num_slabs = 0;
e498be7d
CL
4159 for_each_online_node(node) {
4160 l3 = cachep->nodelists[node];
4161 if (!l3)
4162 continue;
4163
ca3b9b91
RT
4164 check_irq_on();
4165 spin_lock_irq(&l3->list_lock);
e498be7d 4166
7a7c381d 4167 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4168 if (slabp->inuse != cachep->num && !error)
4169 error = "slabs_full accounting error";
4170 active_objs += cachep->num;
4171 active_slabs++;
4172 }
7a7c381d 4173 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4174 if (slabp->inuse == cachep->num && !error)
4175 error = "slabs_partial inuse accounting error";
4176 if (!slabp->inuse && !error)
4177 error = "slabs_partial/inuse accounting error";
4178 active_objs += slabp->inuse;
4179 active_slabs++;
4180 }
7a7c381d 4181 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4182 if (slabp->inuse && !error)
4183 error = "slabs_free/inuse accounting error";
4184 num_slabs++;
4185 }
4186 free_objects += l3->free_objects;
4484ebf1
RT
4187 if (l3->shared)
4188 shared_avail += l3->shared->avail;
e498be7d 4189
ca3b9b91 4190 spin_unlock_irq(&l3->list_lock);
1da177e4 4191 }
b28a02de
PE
4192 num_slabs += active_slabs;
4193 num_objs = num_slabs * cachep->num;
e498be7d 4194 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4195 error = "free_objects accounting error";
4196
b28a02de 4197 name = cachep->name;
1da177e4
LT
4198 if (error)
4199 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4200
4201 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4202 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4203 cachep->num, (1 << cachep->gfporder));
1da177e4 4204 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4205 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4206 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4207 active_slabs, num_slabs, shared_avail);
1da177e4 4208#if STATS
b28a02de 4209 { /* list3 stats */
1da177e4
LT
4210 unsigned long high = cachep->high_mark;
4211 unsigned long allocs = cachep->num_allocations;
4212 unsigned long grown = cachep->grown;
4213 unsigned long reaped = cachep->reaped;
4214 unsigned long errors = cachep->errors;
4215 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4216 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4217 unsigned long node_frees = cachep->node_frees;
fb7faf33 4218 unsigned long overflows = cachep->node_overflow;
1da177e4 4219
e498be7d 4220 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 4221 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 4222 reaped, errors, max_freeable, node_allocs,
fb7faf33 4223 node_frees, overflows);
1da177e4
LT
4224 }
4225 /* cpu stats */
4226 {
4227 unsigned long allochit = atomic_read(&cachep->allochit);
4228 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4229 unsigned long freehit = atomic_read(&cachep->freehit);
4230 unsigned long freemiss = atomic_read(&cachep->freemiss);
4231
4232 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4233 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4234 }
4235#endif
4236 seq_putc(m, '\n');
1da177e4
LT
4237 return 0;
4238}
4239
4240/*
4241 * slabinfo_op - iterator that generates /proc/slabinfo
4242 *
4243 * Output layout:
4244 * cache-name
4245 * num-active-objs
4246 * total-objs
4247 * object size
4248 * num-active-slabs
4249 * total-slabs
4250 * num-pages-per-slab
4251 * + further values on SMP and with statistics enabled
4252 */
4253
7b3c3a50 4254static const struct seq_operations slabinfo_op = {
b28a02de
PE
4255 .start = s_start,
4256 .next = s_next,
4257 .stop = s_stop,
4258 .show = s_show,
1da177e4
LT
4259};
4260
4261#define MAX_SLABINFO_WRITE 128
4262/**
4263 * slabinfo_write - Tuning for the slab allocator
4264 * @file: unused
4265 * @buffer: user buffer
4266 * @count: data length
4267 * @ppos: unused
4268 */
b28a02de
PE
4269ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4270 size_t count, loff_t *ppos)
1da177e4 4271{
b28a02de 4272 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4273 int limit, batchcount, shared, res;
7a7c381d 4274 struct kmem_cache *cachep;
b28a02de 4275
1da177e4
LT
4276 if (count > MAX_SLABINFO_WRITE)
4277 return -EINVAL;
4278 if (copy_from_user(&kbuf, buffer, count))
4279 return -EFAULT;
b28a02de 4280 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4281
4282 tmp = strchr(kbuf, ' ');
4283 if (!tmp)
4284 return -EINVAL;
4285 *tmp = '\0';
4286 tmp++;
4287 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4288 return -EINVAL;
4289
4290 /* Find the cache in the chain of caches. */
fc0abb14 4291 mutex_lock(&cache_chain_mutex);
1da177e4 4292 res = -EINVAL;
7a7c381d 4293 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4294 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4295 if (limit < 1 || batchcount < 1 ||
4296 batchcount > limit || shared < 0) {
e498be7d 4297 res = 0;
1da177e4 4298 } else {
e498be7d 4299 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4300 batchcount, shared,
4301 GFP_KERNEL);
1da177e4
LT
4302 }
4303 break;
4304 }
4305 }
fc0abb14 4306 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4307 if (res >= 0)
4308 res = count;
4309 return res;
4310}
871751e2 4311
7b3c3a50
AD
4312static int slabinfo_open(struct inode *inode, struct file *file)
4313{
4314 return seq_open(file, &slabinfo_op);
4315}
4316
4317static const struct file_operations proc_slabinfo_operations = {
4318 .open = slabinfo_open,
4319 .read = seq_read,
4320 .write = slabinfo_write,
4321 .llseek = seq_lseek,
4322 .release = seq_release,
4323};
4324
871751e2
AV
4325#ifdef CONFIG_DEBUG_SLAB_LEAK
4326
4327static void *leaks_start(struct seq_file *m, loff_t *pos)
4328{
871751e2 4329 mutex_lock(&cache_chain_mutex);
b92151ba 4330 return seq_list_start(&cache_chain, *pos);
871751e2
AV
4331}
4332
4333static inline int add_caller(unsigned long *n, unsigned long v)
4334{
4335 unsigned long *p;
4336 int l;
4337 if (!v)
4338 return 1;
4339 l = n[1];
4340 p = n + 2;
4341 while (l) {
4342 int i = l/2;
4343 unsigned long *q = p + 2 * i;
4344 if (*q == v) {
4345 q[1]++;
4346 return 1;
4347 }
4348 if (*q > v) {
4349 l = i;
4350 } else {
4351 p = q + 2;
4352 l -= i + 1;
4353 }
4354 }
4355 if (++n[1] == n[0])
4356 return 0;
4357 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4358 p[0] = v;
4359 p[1] = 1;
4360 return 1;
4361}
4362
4363static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4364{
4365 void *p;
4366 int i;
4367 if (n[0] == n[1])
4368 return;
4369 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4370 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4371 continue;
4372 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4373 return;
4374 }
4375}
4376
4377static void show_symbol(struct seq_file *m, unsigned long address)
4378{
4379#ifdef CONFIG_KALLSYMS
871751e2 4380 unsigned long offset, size;
9281acea 4381 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4382
a5c43dae 4383 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4384 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4385 if (modname[0])
871751e2
AV
4386 seq_printf(m, " [%s]", modname);
4387 return;
4388 }
4389#endif
4390 seq_printf(m, "%p", (void *)address);
4391}
4392
4393static int leaks_show(struct seq_file *m, void *p)
4394{
b92151ba 4395 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
871751e2
AV
4396 struct slab *slabp;
4397 struct kmem_list3 *l3;
4398 const char *name;
4399 unsigned long *n = m->private;
4400 int node;
4401 int i;
4402
4403 if (!(cachep->flags & SLAB_STORE_USER))
4404 return 0;
4405 if (!(cachep->flags & SLAB_RED_ZONE))
4406 return 0;
4407
4408 /* OK, we can do it */
4409
4410 n[1] = 0;
4411
4412 for_each_online_node(node) {
4413 l3 = cachep->nodelists[node];
4414 if (!l3)
4415 continue;
4416
4417 check_irq_on();
4418 spin_lock_irq(&l3->list_lock);
4419
7a7c381d 4420 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4421 handle_slab(n, cachep, slabp);
7a7c381d 4422 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4423 handle_slab(n, cachep, slabp);
871751e2
AV
4424 spin_unlock_irq(&l3->list_lock);
4425 }
4426 name = cachep->name;
4427 if (n[0] == n[1]) {
4428 /* Increase the buffer size */
4429 mutex_unlock(&cache_chain_mutex);
4430 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4431 if (!m->private) {
4432 /* Too bad, we are really out */
4433 m->private = n;
4434 mutex_lock(&cache_chain_mutex);
4435 return -ENOMEM;
4436 }
4437 *(unsigned long *)m->private = n[0] * 2;
4438 kfree(n);
4439 mutex_lock(&cache_chain_mutex);
4440 /* Now make sure this entry will be retried */
4441 m->count = m->size;
4442 return 0;
4443 }
4444 for (i = 0; i < n[1]; i++) {
4445 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4446 show_symbol(m, n[2*i+2]);
4447 seq_putc(m, '\n');
4448 }
d2e7b7d0 4449
871751e2
AV
4450 return 0;
4451}
4452
a0ec95a8 4453static const struct seq_operations slabstats_op = {
871751e2
AV
4454 .start = leaks_start,
4455 .next = s_next,
4456 .stop = s_stop,
4457 .show = leaks_show,
4458};
a0ec95a8
AD
4459
4460static int slabstats_open(struct inode *inode, struct file *file)
4461{
4462 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4463 int ret = -ENOMEM;
4464 if (n) {
4465 ret = seq_open(file, &slabstats_op);
4466 if (!ret) {
4467 struct seq_file *m = file->private_data;
4468 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4469 m->private = n;
4470 n = NULL;
4471 }
4472 kfree(n);
4473 }
4474 return ret;
4475}
4476
4477static const struct file_operations proc_slabstats_operations = {
4478 .open = slabstats_open,
4479 .read = seq_read,
4480 .llseek = seq_lseek,
4481 .release = seq_release_private,
4482};
4483#endif
4484
4485static int __init slab_proc_init(void)
4486{
7b3c3a50 4487 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
a0ec95a8
AD
4488#ifdef CONFIG_DEBUG_SLAB_LEAK
4489 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4490#endif
a0ec95a8
AD
4491 return 0;
4492}
4493module_init(slab_proc_init);
1da177e4
LT
4494#endif
4495
00e145b6
MS
4496/**
4497 * ksize - get the actual amount of memory allocated for a given object
4498 * @objp: Pointer to the object
4499 *
4500 * kmalloc may internally round up allocations and return more memory
4501 * than requested. ksize() can be used to determine the actual amount of
4502 * memory allocated. The caller may use this additional memory, even though
4503 * a smaller amount of memory was initially specified with the kmalloc call.
4504 * The caller must guarantee that objp points to a valid object previously
4505 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4506 * must not be freed during the duration of the call.
4507 */
fd76bab2 4508size_t ksize(const void *objp)
1da177e4 4509{
ef8b4520
CL
4510 BUG_ON(!objp);
4511 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4512 return 0;
1da177e4 4513
6ed5eb22 4514 return obj_size(virt_to_cache(objp));
1da177e4 4515}
b1aabecd 4516EXPORT_SYMBOL(ksize);