lockdep: Fix up warning
[linux-2.6-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
1da177e4
LT
120#include <asm/cacheflush.h>
121#include <asm/tlbflush.h>
122#include <asm/page.h>
123
124/*
50953fe9 125 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
126 * 0 for faster, smaller code (especially in the critical paths).
127 *
128 * STATS - 1 to collect stats for /proc/slabinfo.
129 * 0 for faster, smaller code (especially in the critical paths).
130 *
131 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
132 */
133
134#ifdef CONFIG_DEBUG_SLAB
135#define DEBUG 1
136#define STATS 1
137#define FORCED_DEBUG 1
138#else
139#define DEBUG 0
140#define STATS 0
141#define FORCED_DEBUG 0
142#endif
143
1da177e4
LT
144/* Shouldn't this be in a header file somewhere? */
145#define BYTES_PER_WORD sizeof(void *)
87a927c7 146#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 147
1da177e4
LT
148#ifndef ARCH_KMALLOC_FLAGS
149#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
150#endif
151
152/* Legal flag mask for kmem_cache_create(). */
153#if DEBUG
50953fe9 154# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 155 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 156 SLAB_CACHE_DMA | \
5af60839 157 SLAB_STORE_USER | \
1da177e4 158 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 159 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 160 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4 161#else
ac2b898c 162# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 163 SLAB_CACHE_DMA | \
1da177e4 164 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 165 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 166 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4
LT
167#endif
168
169/*
170 * kmem_bufctl_t:
171 *
172 * Bufctl's are used for linking objs within a slab
173 * linked offsets.
174 *
175 * This implementation relies on "struct page" for locating the cache &
176 * slab an object belongs to.
177 * This allows the bufctl structure to be small (one int), but limits
178 * the number of objects a slab (not a cache) can contain when off-slab
179 * bufctls are used. The limit is the size of the largest general cache
180 * that does not use off-slab slabs.
181 * For 32bit archs with 4 kB pages, is this 56.
182 * This is not serious, as it is only for large objects, when it is unwise
183 * to have too many per slab.
184 * Note: This limit can be raised by introducing a general cache whose size
185 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
186 */
187
fa5b08d5 188typedef unsigned int kmem_bufctl_t;
1da177e4
LT
189#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
190#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
191#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
192#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 193
1da177e4
LT
194/*
195 * struct slab_rcu
196 *
197 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
198 * arrange for kmem_freepages to be called via RCU. This is useful if
199 * we need to approach a kernel structure obliquely, from its address
200 * obtained without the usual locking. We can lock the structure to
201 * stabilize it and check it's still at the given address, only if we
202 * can be sure that the memory has not been meanwhile reused for some
203 * other kind of object (which our subsystem's lock might corrupt).
204 *
205 * rcu_read_lock before reading the address, then rcu_read_unlock after
206 * taking the spinlock within the structure expected at that address.
1da177e4
LT
207 */
208struct slab_rcu {
b28a02de 209 struct rcu_head head;
343e0d7a 210 struct kmem_cache *cachep;
b28a02de 211 void *addr;
1da177e4
LT
212};
213
5bfe53a7
LJ
214/*
215 * struct slab
216 *
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 */
221struct slab {
222 union {
223 struct {
224 struct list_head list;
225 unsigned long colouroff;
226 void *s_mem; /* including colour offset */
227 unsigned int inuse; /* num of objs active in slab */
228 kmem_bufctl_t free;
229 unsigned short nodeid;
230 };
231 struct slab_rcu __slab_cover_slab_rcu;
232 };
233};
234
1da177e4
LT
235/*
236 * struct array_cache
237 *
1da177e4
LT
238 * Purpose:
239 * - LIFO ordering, to hand out cache-warm objects from _alloc
240 * - reduce the number of linked list operations
241 * - reduce spinlock operations
242 *
243 * The limit is stored in the per-cpu structure to reduce the data cache
244 * footprint.
245 *
246 */
247struct array_cache {
248 unsigned int avail;
249 unsigned int limit;
250 unsigned int batchcount;
251 unsigned int touched;
e498be7d 252 spinlock_t lock;
bda5b655 253 void *entry[]; /*
a737b3e2
AM
254 * Must have this definition in here for the proper
255 * alignment of array_cache. Also simplifies accessing
256 * the entries.
a737b3e2 257 */
1da177e4
LT
258};
259
a737b3e2
AM
260/*
261 * bootstrap: The caches do not work without cpuarrays anymore, but the
262 * cpuarrays are allocated from the generic caches...
1da177e4
LT
263 */
264#define BOOT_CPUCACHE_ENTRIES 1
265struct arraycache_init {
266 struct array_cache cache;
b28a02de 267 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
268};
269
270/*
e498be7d 271 * The slab lists for all objects.
1da177e4
LT
272 */
273struct kmem_list3 {
b28a02de
PE
274 struct list_head slabs_partial; /* partial list first, better asm code */
275 struct list_head slabs_full;
276 struct list_head slabs_free;
277 unsigned long free_objects;
b28a02de 278 unsigned int free_limit;
2e1217cf 279 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
280 spinlock_t list_lock;
281 struct array_cache *shared; /* shared per node */
282 struct array_cache **alien; /* on other nodes */
35386e3b
CL
283 unsigned long next_reap; /* updated without locking */
284 int free_touched; /* updated without locking */
1da177e4
LT
285};
286
e498be7d
CL
287/*
288 * Need this for bootstrapping a per node allocator.
289 */
556a169d 290#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
68a1b195 291static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
e498be7d 292#define CACHE_CACHE 0
556a169d
PE
293#define SIZE_AC MAX_NUMNODES
294#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 295
ed11d9eb
CL
296static int drain_freelist(struct kmem_cache *cache,
297 struct kmem_list3 *l3, int tofree);
298static void free_block(struct kmem_cache *cachep, void **objpp, int len,
299 int node);
83b519e8 300static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 301static void cache_reap(struct work_struct *unused);
ed11d9eb 302
e498be7d 303/*
a737b3e2
AM
304 * This function must be completely optimized away if a constant is passed to
305 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 306 */
7243cc05 307static __always_inline int index_of(const size_t size)
e498be7d 308{
5ec8a847
SR
309 extern void __bad_size(void);
310
e498be7d
CL
311 if (__builtin_constant_p(size)) {
312 int i = 0;
313
314#define CACHE(x) \
315 if (size <=x) \
316 return i; \
317 else \
318 i++;
1c61fc40 319#include <linux/kmalloc_sizes.h>
e498be7d 320#undef CACHE
5ec8a847 321 __bad_size();
7243cc05 322 } else
5ec8a847 323 __bad_size();
e498be7d
CL
324 return 0;
325}
326
e0a42726
IM
327static int slab_early_init = 1;
328
e498be7d
CL
329#define INDEX_AC index_of(sizeof(struct arraycache_init))
330#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 331
5295a74c 332static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
333{
334 INIT_LIST_HEAD(&parent->slabs_full);
335 INIT_LIST_HEAD(&parent->slabs_partial);
336 INIT_LIST_HEAD(&parent->slabs_free);
337 parent->shared = NULL;
338 parent->alien = NULL;
2e1217cf 339 parent->colour_next = 0;
e498be7d
CL
340 spin_lock_init(&parent->list_lock);
341 parent->free_objects = 0;
342 parent->free_touched = 0;
343}
344
a737b3e2
AM
345#define MAKE_LIST(cachep, listp, slab, nodeid) \
346 do { \
347 INIT_LIST_HEAD(listp); \
348 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
349 } while (0)
350
a737b3e2
AM
351#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
352 do { \
e498be7d
CL
353 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
354 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
355 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
356 } while (0)
1da177e4 357
1da177e4
LT
358#define CFLGS_OFF_SLAB (0x80000000UL)
359#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
360
361#define BATCHREFILL_LIMIT 16
a737b3e2
AM
362/*
363 * Optimization question: fewer reaps means less probability for unnessary
364 * cpucache drain/refill cycles.
1da177e4 365 *
dc6f3f27 366 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
367 * which could lock up otherwise freeable slabs.
368 */
369#define REAPTIMEOUT_CPUC (2*HZ)
370#define REAPTIMEOUT_LIST3 (4*HZ)
371
372#if STATS
373#define STATS_INC_ACTIVE(x) ((x)->num_active++)
374#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
375#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
376#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 377#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
378#define STATS_SET_HIGH(x) \
379 do { \
380 if ((x)->num_active > (x)->high_mark) \
381 (x)->high_mark = (x)->num_active; \
382 } while (0)
1da177e4
LT
383#define STATS_INC_ERR(x) ((x)->errors++)
384#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 385#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 386#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
387#define STATS_SET_FREEABLE(x, i) \
388 do { \
389 if ((x)->max_freeable < i) \
390 (x)->max_freeable = i; \
391 } while (0)
1da177e4
LT
392#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
393#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
394#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
395#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
396#else
397#define STATS_INC_ACTIVE(x) do { } while (0)
398#define STATS_DEC_ACTIVE(x) do { } while (0)
399#define STATS_INC_ALLOCED(x) do { } while (0)
400#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 401#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
402#define STATS_SET_HIGH(x) do { } while (0)
403#define STATS_INC_ERR(x) do { } while (0)
404#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 405#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 406#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 407#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
408#define STATS_INC_ALLOCHIT(x) do { } while (0)
409#define STATS_INC_ALLOCMISS(x) do { } while (0)
410#define STATS_INC_FREEHIT(x) do { } while (0)
411#define STATS_INC_FREEMISS(x) do { } while (0)
412#endif
413
414#if DEBUG
1da177e4 415
a737b3e2
AM
416/*
417 * memory layout of objects:
1da177e4 418 * 0 : objp
3dafccf2 419 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
420 * the end of an object is aligned with the end of the real
421 * allocation. Catches writes behind the end of the allocation.
3dafccf2 422 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 423 * redzone word.
3dafccf2
MS
424 * cachep->obj_offset: The real object.
425 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
426 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
427 * [BYTES_PER_WORD long]
1da177e4 428 */
343e0d7a 429static int obj_offset(struct kmem_cache *cachep)
1da177e4 430{
3dafccf2 431 return cachep->obj_offset;
1da177e4
LT
432}
433
343e0d7a 434static int obj_size(struct kmem_cache *cachep)
1da177e4 435{
3dafccf2 436 return cachep->obj_size;
1da177e4
LT
437}
438
b46b8f19 439static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
440{
441 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
442 return (unsigned long long*) (objp + obj_offset(cachep) -
443 sizeof(unsigned long long));
1da177e4
LT
444}
445
b46b8f19 446static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
447{
448 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
449 if (cachep->flags & SLAB_STORE_USER)
b46b8f19
DW
450 return (unsigned long long *)(objp + cachep->buffer_size -
451 sizeof(unsigned long long) -
87a927c7 452 REDZONE_ALIGN);
b46b8f19
DW
453 return (unsigned long long *) (objp + cachep->buffer_size -
454 sizeof(unsigned long long));
1da177e4
LT
455}
456
343e0d7a 457static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
458{
459 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 460 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
461}
462
463#else
464
3dafccf2
MS
465#define obj_offset(x) 0
466#define obj_size(cachep) (cachep->buffer_size)
b46b8f19
DW
467#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
468#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
469#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
470
471#endif
472
0f24f128 473#ifdef CONFIG_TRACING
36555751
EGM
474size_t slab_buffer_size(struct kmem_cache *cachep)
475{
476 return cachep->buffer_size;
477}
478EXPORT_SYMBOL(slab_buffer_size);
479#endif
480
1da177e4
LT
481/*
482 * Do not go above this order unless 0 objects fit into the slab.
483 */
484#define BREAK_GFP_ORDER_HI 1
485#define BREAK_GFP_ORDER_LO 0
486static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
487
a737b3e2
AM
488/*
489 * Functions for storing/retrieving the cachep and or slab from the page
490 * allocator. These are used to find the slab an obj belongs to. With kfree(),
491 * these are used to find the cache which an obj belongs to.
1da177e4 492 */
065d41cb
PE
493static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
494{
495 page->lru.next = (struct list_head *)cache;
496}
497
498static inline struct kmem_cache *page_get_cache(struct page *page)
499{
d85f3385 500 page = compound_head(page);
ddc2e812 501 BUG_ON(!PageSlab(page));
065d41cb
PE
502 return (struct kmem_cache *)page->lru.next;
503}
504
505static inline void page_set_slab(struct page *page, struct slab *slab)
506{
507 page->lru.prev = (struct list_head *)slab;
508}
509
510static inline struct slab *page_get_slab(struct page *page)
511{
ddc2e812 512 BUG_ON(!PageSlab(page));
065d41cb
PE
513 return (struct slab *)page->lru.prev;
514}
1da177e4 515
6ed5eb22
PE
516static inline struct kmem_cache *virt_to_cache(const void *obj)
517{
b49af68f 518 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
519 return page_get_cache(page);
520}
521
522static inline struct slab *virt_to_slab(const void *obj)
523{
b49af68f 524 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
525 return page_get_slab(page);
526}
527
8fea4e96
PE
528static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
529 unsigned int idx)
530{
531 return slab->s_mem + cache->buffer_size * idx;
532}
533
6a2d7a95
ED
534/*
535 * We want to avoid an expensive divide : (offset / cache->buffer_size)
536 * Using the fact that buffer_size is a constant for a particular cache,
537 * we can replace (offset / cache->buffer_size) by
538 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
539 */
540static inline unsigned int obj_to_index(const struct kmem_cache *cache,
541 const struct slab *slab, void *obj)
8fea4e96 542{
6a2d7a95
ED
543 u32 offset = (obj - slab->s_mem);
544 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
545}
546
a737b3e2
AM
547/*
548 * These are the default caches for kmalloc. Custom caches can have other sizes.
549 */
1da177e4
LT
550struct cache_sizes malloc_sizes[] = {
551#define CACHE(x) { .cs_size = (x) },
552#include <linux/kmalloc_sizes.h>
553 CACHE(ULONG_MAX)
554#undef CACHE
555};
556EXPORT_SYMBOL(malloc_sizes);
557
558/* Must match cache_sizes above. Out of line to keep cache footprint low. */
559struct cache_names {
560 char *name;
561 char *name_dma;
562};
563
564static struct cache_names __initdata cache_names[] = {
565#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
566#include <linux/kmalloc_sizes.h>
b28a02de 567 {NULL,}
1da177e4
LT
568#undef CACHE
569};
570
571static struct arraycache_init initarray_cache __initdata =
b28a02de 572 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 573static struct arraycache_init initarray_generic =
b28a02de 574 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
575
576/* internal cache of cache description objs */
b56efcf0 577static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
343e0d7a 578static struct kmem_cache cache_cache = {
b56efcf0 579 .nodelists = cache_cache_nodelists,
b28a02de
PE
580 .batchcount = 1,
581 .limit = BOOT_CPUCACHE_ENTRIES,
582 .shared = 1,
343e0d7a 583 .buffer_size = sizeof(struct kmem_cache),
b28a02de 584 .name = "kmem_cache",
1da177e4
LT
585};
586
056c6241
RT
587#define BAD_ALIEN_MAGIC 0x01020304ul
588
ce79ddc8
PE
589/*
590 * chicken and egg problem: delay the per-cpu array allocation
591 * until the general caches are up.
592 */
593static enum {
594 NONE,
595 PARTIAL_AC,
596 PARTIAL_L3,
597 EARLY,
598 FULL
599} g_cpucache_up;
600
601/*
602 * used by boot code to determine if it can use slab based allocator
603 */
604int slab_is_available(void)
605{
606 return g_cpucache_up >= EARLY;
607}
608
f1aaee53
AV
609#ifdef CONFIG_LOCKDEP
610
611/*
612 * Slab sometimes uses the kmalloc slabs to store the slab headers
613 * for other slabs "off slab".
614 * The locking for this is tricky in that it nests within the locks
615 * of all other slabs in a few places; to deal with this special
616 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
617 *
618 * We set lock class for alien array caches which are up during init.
619 * The lock annotation will be lost if all cpus of a node goes down and
620 * then comes back up during hotplug
f1aaee53 621 */
056c6241
RT
622static struct lock_class_key on_slab_l3_key;
623static struct lock_class_key on_slab_alc_key;
624
ce79ddc8 625static void init_node_lock_keys(int q)
f1aaee53 626{
056c6241
RT
627 struct cache_sizes *s = malloc_sizes;
628
ce79ddc8
PE
629 if (g_cpucache_up != FULL)
630 return;
631
632 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
633 struct array_cache **alc;
634 struct kmem_list3 *l3;
635 int r;
636
637 l3 = s->cs_cachep->nodelists[q];
638 if (!l3 || OFF_SLAB(s->cs_cachep))
00afa758 639 continue;
ce79ddc8
PE
640 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
641 alc = l3->alien;
642 /*
643 * FIXME: This check for BAD_ALIEN_MAGIC
644 * should go away when common slab code is taught to
645 * work even without alien caches.
646 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
647 * for alloc_alien_cache,
648 */
649 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
00afa758 650 continue;
ce79ddc8
PE
651 for_each_node(r) {
652 if (alc[r])
653 lockdep_set_class(&alc[r]->lock,
654 &on_slab_alc_key);
056c6241 655 }
f1aaee53
AV
656 }
657}
ce79ddc8
PE
658
659static inline void init_lock_keys(void)
660{
661 int node;
662
663 for_each_node(node)
664 init_node_lock_keys(node);
665}
f1aaee53 666#else
ce79ddc8
PE
667static void init_node_lock_keys(int q)
668{
669}
670
056c6241 671static inline void init_lock_keys(void)
f1aaee53
AV
672{
673}
674#endif
675
8f5be20b 676/*
95402b38 677 * Guard access to the cache-chain.
8f5be20b 678 */
fc0abb14 679static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
680static struct list_head cache_chain;
681
1871e52c 682static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 683
343e0d7a 684static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
685{
686 return cachep->array[smp_processor_id()];
687}
688
a737b3e2
AM
689static inline struct kmem_cache *__find_general_cachep(size_t size,
690 gfp_t gfpflags)
1da177e4
LT
691{
692 struct cache_sizes *csizep = malloc_sizes;
693
694#if DEBUG
695 /* This happens if someone tries to call
b28a02de
PE
696 * kmem_cache_create(), or __kmalloc(), before
697 * the generic caches are initialized.
698 */
c7e43c78 699 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 700#endif
6cb8f913
CL
701 if (!size)
702 return ZERO_SIZE_PTR;
703
1da177e4
LT
704 while (size > csizep->cs_size)
705 csizep++;
706
707 /*
0abf40c1 708 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
709 * has cs_{dma,}cachep==NULL. Thus no special case
710 * for large kmalloc calls required.
711 */
4b51d669 712#ifdef CONFIG_ZONE_DMA
1da177e4
LT
713 if (unlikely(gfpflags & GFP_DMA))
714 return csizep->cs_dmacachep;
4b51d669 715#endif
1da177e4
LT
716 return csizep->cs_cachep;
717}
718
b221385b 719static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
720{
721 return __find_general_cachep(size, gfpflags);
722}
97e2bde4 723
fbaccacf 724static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 725{
fbaccacf
SR
726 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
727}
1da177e4 728
a737b3e2
AM
729/*
730 * Calculate the number of objects and left-over bytes for a given buffer size.
731 */
fbaccacf
SR
732static void cache_estimate(unsigned long gfporder, size_t buffer_size,
733 size_t align, int flags, size_t *left_over,
734 unsigned int *num)
735{
736 int nr_objs;
737 size_t mgmt_size;
738 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 739
fbaccacf
SR
740 /*
741 * The slab management structure can be either off the slab or
742 * on it. For the latter case, the memory allocated for a
743 * slab is used for:
744 *
745 * - The struct slab
746 * - One kmem_bufctl_t for each object
747 * - Padding to respect alignment of @align
748 * - @buffer_size bytes for each object
749 *
750 * If the slab management structure is off the slab, then the
751 * alignment will already be calculated into the size. Because
752 * the slabs are all pages aligned, the objects will be at the
753 * correct alignment when allocated.
754 */
755 if (flags & CFLGS_OFF_SLAB) {
756 mgmt_size = 0;
757 nr_objs = slab_size / buffer_size;
758
759 if (nr_objs > SLAB_LIMIT)
760 nr_objs = SLAB_LIMIT;
761 } else {
762 /*
763 * Ignore padding for the initial guess. The padding
764 * is at most @align-1 bytes, and @buffer_size is at
765 * least @align. In the worst case, this result will
766 * be one greater than the number of objects that fit
767 * into the memory allocation when taking the padding
768 * into account.
769 */
770 nr_objs = (slab_size - sizeof(struct slab)) /
771 (buffer_size + sizeof(kmem_bufctl_t));
772
773 /*
774 * This calculated number will be either the right
775 * amount, or one greater than what we want.
776 */
777 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
778 > slab_size)
779 nr_objs--;
780
781 if (nr_objs > SLAB_LIMIT)
782 nr_objs = SLAB_LIMIT;
783
784 mgmt_size = slab_mgmt_size(nr_objs, align);
785 }
786 *num = nr_objs;
787 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
788}
789
d40cee24 790#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 791
a737b3e2
AM
792static void __slab_error(const char *function, struct kmem_cache *cachep,
793 char *msg)
1da177e4
LT
794{
795 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 796 function, cachep->name, msg);
1da177e4
LT
797 dump_stack();
798}
799
3395ee05
PM
800/*
801 * By default on NUMA we use alien caches to stage the freeing of
802 * objects allocated from other nodes. This causes massive memory
803 * inefficiencies when using fake NUMA setup to split memory into a
804 * large number of small nodes, so it can be disabled on the command
805 * line
806 */
807
808static int use_alien_caches __read_mostly = 1;
809static int __init noaliencache_setup(char *s)
810{
811 use_alien_caches = 0;
812 return 1;
813}
814__setup("noaliencache", noaliencache_setup);
815
8fce4d8e
CL
816#ifdef CONFIG_NUMA
817/*
818 * Special reaping functions for NUMA systems called from cache_reap().
819 * These take care of doing round robin flushing of alien caches (containing
820 * objects freed on different nodes from which they were allocated) and the
821 * flushing of remote pcps by calling drain_node_pages.
822 */
1871e52c 823static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
824
825static void init_reap_node(int cpu)
826{
827 int node;
828
7d6e6d09 829 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 830 if (node == MAX_NUMNODES)
442295c9 831 node = first_node(node_online_map);
8fce4d8e 832
1871e52c 833 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
834}
835
836static void next_reap_node(void)
837{
909ea964 838 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 839
8fce4d8e
CL
840 node = next_node(node, node_online_map);
841 if (unlikely(node >= MAX_NUMNODES))
842 node = first_node(node_online_map);
909ea964 843 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
844}
845
846#else
847#define init_reap_node(cpu) do { } while (0)
848#define next_reap_node(void) do { } while (0)
849#endif
850
1da177e4
LT
851/*
852 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
853 * via the workqueue/eventd.
854 * Add the CPU number into the expiration time to minimize the possibility of
855 * the CPUs getting into lockstep and contending for the global cache chain
856 * lock.
857 */
897e679b 858static void __cpuinit start_cpu_timer(int cpu)
1da177e4 859{
1871e52c 860 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
861
862 /*
863 * When this gets called from do_initcalls via cpucache_init(),
864 * init_workqueues() has already run, so keventd will be setup
865 * at that time.
866 */
52bad64d 867 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 868 init_reap_node(cpu);
78b43536 869 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
2b284214
AV
870 schedule_delayed_work_on(cpu, reap_work,
871 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
872 }
873}
874
e498be7d 875static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 876 int batchcount, gfp_t gfp)
1da177e4 877{
b28a02de 878 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
879 struct array_cache *nc = NULL;
880
83b519e8 881 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
882 /*
883 * The array_cache structures contain pointers to free object.
25985edc 884 * However, when such objects are allocated or transferred to another
d5cff635
CM
885 * cache the pointers are not cleared and they could be counted as
886 * valid references during a kmemleak scan. Therefore, kmemleak must
887 * not scan such objects.
888 */
889 kmemleak_no_scan(nc);
1da177e4
LT
890 if (nc) {
891 nc->avail = 0;
892 nc->limit = entries;
893 nc->batchcount = batchcount;
894 nc->touched = 0;
e498be7d 895 spin_lock_init(&nc->lock);
1da177e4
LT
896 }
897 return nc;
898}
899
3ded175a
CL
900/*
901 * Transfer objects in one arraycache to another.
902 * Locking must be handled by the caller.
903 *
904 * Return the number of entries transferred.
905 */
906static int transfer_objects(struct array_cache *to,
907 struct array_cache *from, unsigned int max)
908{
909 /* Figure out how many entries to transfer */
732eacc0 910 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
911
912 if (!nr)
913 return 0;
914
915 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
916 sizeof(void *) *nr);
917
918 from->avail -= nr;
919 to->avail += nr;
3ded175a
CL
920 return nr;
921}
922
765c4507
CL
923#ifndef CONFIG_NUMA
924
925#define drain_alien_cache(cachep, alien) do { } while (0)
926#define reap_alien(cachep, l3) do { } while (0)
927
83b519e8 928static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
929{
930 return (struct array_cache **)BAD_ALIEN_MAGIC;
931}
932
933static inline void free_alien_cache(struct array_cache **ac_ptr)
934{
935}
936
937static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
938{
939 return 0;
940}
941
942static inline void *alternate_node_alloc(struct kmem_cache *cachep,
943 gfp_t flags)
944{
945 return NULL;
946}
947
8b98c169 948static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
949 gfp_t flags, int nodeid)
950{
951 return NULL;
952}
953
954#else /* CONFIG_NUMA */
955
8b98c169 956static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 957static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 958
83b519e8 959static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
960{
961 struct array_cache **ac_ptr;
8ef82866 962 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
963 int i;
964
965 if (limit > 1)
966 limit = 12;
f3186a9c 967 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
968 if (ac_ptr) {
969 for_each_node(i) {
f3186a9c 970 if (i == node || !node_online(i))
e498be7d 971 continue;
83b519e8 972 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 973 if (!ac_ptr[i]) {
cc550def 974 for (i--; i >= 0; i--)
e498be7d
CL
975 kfree(ac_ptr[i]);
976 kfree(ac_ptr);
977 return NULL;
978 }
979 }
980 }
981 return ac_ptr;
982}
983
5295a74c 984static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
985{
986 int i;
987
988 if (!ac_ptr)
989 return;
e498be7d 990 for_each_node(i)
b28a02de 991 kfree(ac_ptr[i]);
e498be7d
CL
992 kfree(ac_ptr);
993}
994
343e0d7a 995static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 996 struct array_cache *ac, int node)
e498be7d
CL
997{
998 struct kmem_list3 *rl3 = cachep->nodelists[node];
999
1000 if (ac->avail) {
1001 spin_lock(&rl3->list_lock);
e00946fe
CL
1002 /*
1003 * Stuff objects into the remote nodes shared array first.
1004 * That way we could avoid the overhead of putting the objects
1005 * into the free lists and getting them back later.
1006 */
693f7d36 1007 if (rl3->shared)
1008 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1009
ff69416e 1010 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1011 ac->avail = 0;
1012 spin_unlock(&rl3->list_lock);
1013 }
1014}
1015
8fce4d8e
CL
1016/*
1017 * Called from cache_reap() to regularly drain alien caches round robin.
1018 */
1019static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1020{
909ea964 1021 int node = __this_cpu_read(slab_reap_node);
8fce4d8e
CL
1022
1023 if (l3->alien) {
1024 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1025
1026 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1027 __drain_alien_cache(cachep, ac, node);
1028 spin_unlock_irq(&ac->lock);
1029 }
1030 }
1031}
1032
a737b3e2
AM
1033static void drain_alien_cache(struct kmem_cache *cachep,
1034 struct array_cache **alien)
e498be7d 1035{
b28a02de 1036 int i = 0;
e498be7d
CL
1037 struct array_cache *ac;
1038 unsigned long flags;
1039
1040 for_each_online_node(i) {
4484ebf1 1041 ac = alien[i];
e498be7d
CL
1042 if (ac) {
1043 spin_lock_irqsave(&ac->lock, flags);
1044 __drain_alien_cache(cachep, ac, i);
1045 spin_unlock_irqrestore(&ac->lock, flags);
1046 }
1047 }
1048}
729bd0b7 1049
873623df 1050static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1051{
1052 struct slab *slabp = virt_to_slab(objp);
1053 int nodeid = slabp->nodeid;
1054 struct kmem_list3 *l3;
1055 struct array_cache *alien = NULL;
1ca4cb24
PE
1056 int node;
1057
7d6e6d09 1058 node = numa_mem_id();
729bd0b7
PE
1059
1060 /*
1061 * Make sure we are not freeing a object from another node to the array
1062 * cache on this cpu.
1063 */
62918a03 1064 if (likely(slabp->nodeid == node))
729bd0b7
PE
1065 return 0;
1066
1ca4cb24 1067 l3 = cachep->nodelists[node];
729bd0b7
PE
1068 STATS_INC_NODEFREES(cachep);
1069 if (l3->alien && l3->alien[nodeid]) {
1070 alien = l3->alien[nodeid];
873623df 1071 spin_lock(&alien->lock);
729bd0b7
PE
1072 if (unlikely(alien->avail == alien->limit)) {
1073 STATS_INC_ACOVERFLOW(cachep);
1074 __drain_alien_cache(cachep, alien, nodeid);
1075 }
1076 alien->entry[alien->avail++] = objp;
1077 spin_unlock(&alien->lock);
1078 } else {
1079 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1080 free_block(cachep, &objp, 1, nodeid);
1081 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1082 }
1083 return 1;
1084}
e498be7d
CL
1085#endif
1086
8f9f8d9e
DR
1087/*
1088 * Allocates and initializes nodelists for a node on each slab cache, used for
1089 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1090 * will be allocated off-node since memory is not yet online for the new node.
1091 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1092 * already in use.
1093 *
1094 * Must hold cache_chain_mutex.
1095 */
1096static int init_cache_nodelists_node(int node)
1097{
1098 struct kmem_cache *cachep;
1099 struct kmem_list3 *l3;
1100 const int memsize = sizeof(struct kmem_list3);
1101
1102 list_for_each_entry(cachep, &cache_chain, next) {
1103 /*
1104 * Set up the size64 kmemlist for cpu before we can
1105 * begin anything. Make sure some other cpu on this
1106 * node has not already allocated this
1107 */
1108 if (!cachep->nodelists[node]) {
1109 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1110 if (!l3)
1111 return -ENOMEM;
1112 kmem_list3_init(l3);
1113 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1114 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1115
1116 /*
1117 * The l3s don't come and go as CPUs come and
1118 * go. cache_chain_mutex is sufficient
1119 * protection here.
1120 */
1121 cachep->nodelists[node] = l3;
1122 }
1123
1124 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1125 cachep->nodelists[node]->free_limit =
1126 (1 + nr_cpus_node(node)) *
1127 cachep->batchcount + cachep->num;
1128 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1129 }
1130 return 0;
1131}
1132
fbf1e473
AM
1133static void __cpuinit cpuup_canceled(long cpu)
1134{
1135 struct kmem_cache *cachep;
1136 struct kmem_list3 *l3 = NULL;
7d6e6d09 1137 int node = cpu_to_mem(cpu);
a70f7302 1138 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473
AM
1139
1140 list_for_each_entry(cachep, &cache_chain, next) {
1141 struct array_cache *nc;
1142 struct array_cache *shared;
1143 struct array_cache **alien;
fbf1e473 1144
fbf1e473
AM
1145 /* cpu is dead; no one can alloc from it. */
1146 nc = cachep->array[cpu];
1147 cachep->array[cpu] = NULL;
1148 l3 = cachep->nodelists[node];
1149
1150 if (!l3)
1151 goto free_array_cache;
1152
1153 spin_lock_irq(&l3->list_lock);
1154
1155 /* Free limit for this kmem_list3 */
1156 l3->free_limit -= cachep->batchcount;
1157 if (nc)
1158 free_block(cachep, nc->entry, nc->avail, node);
1159
58463c1f 1160 if (!cpumask_empty(mask)) {
fbf1e473
AM
1161 spin_unlock_irq(&l3->list_lock);
1162 goto free_array_cache;
1163 }
1164
1165 shared = l3->shared;
1166 if (shared) {
1167 free_block(cachep, shared->entry,
1168 shared->avail, node);
1169 l3->shared = NULL;
1170 }
1171
1172 alien = l3->alien;
1173 l3->alien = NULL;
1174
1175 spin_unlock_irq(&l3->list_lock);
1176
1177 kfree(shared);
1178 if (alien) {
1179 drain_alien_cache(cachep, alien);
1180 free_alien_cache(alien);
1181 }
1182free_array_cache:
1183 kfree(nc);
1184 }
1185 /*
1186 * In the previous loop, all the objects were freed to
1187 * the respective cache's slabs, now we can go ahead and
1188 * shrink each nodelist to its limit.
1189 */
1190 list_for_each_entry(cachep, &cache_chain, next) {
1191 l3 = cachep->nodelists[node];
1192 if (!l3)
1193 continue;
1194 drain_freelist(cachep, l3, l3->free_objects);
1195 }
1196}
1197
1198static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1199{
343e0d7a 1200 struct kmem_cache *cachep;
e498be7d 1201 struct kmem_list3 *l3 = NULL;
7d6e6d09 1202 int node = cpu_to_mem(cpu);
8f9f8d9e 1203 int err;
1da177e4 1204
fbf1e473
AM
1205 /*
1206 * We need to do this right in the beginning since
1207 * alloc_arraycache's are going to use this list.
1208 * kmalloc_node allows us to add the slab to the right
1209 * kmem_list3 and not this cpu's kmem_list3
1210 */
8f9f8d9e
DR
1211 err = init_cache_nodelists_node(node);
1212 if (err < 0)
1213 goto bad;
fbf1e473
AM
1214
1215 /*
1216 * Now we can go ahead with allocating the shared arrays and
1217 * array caches
1218 */
1219 list_for_each_entry(cachep, &cache_chain, next) {
1220 struct array_cache *nc;
1221 struct array_cache *shared = NULL;
1222 struct array_cache **alien = NULL;
1223
1224 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1225 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1226 if (!nc)
1227 goto bad;
1228 if (cachep->shared) {
1229 shared = alloc_arraycache(node,
1230 cachep->shared * cachep->batchcount,
83b519e8 1231 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1232 if (!shared) {
1233 kfree(nc);
1da177e4 1234 goto bad;
12d00f6a 1235 }
fbf1e473
AM
1236 }
1237 if (use_alien_caches) {
83b519e8 1238 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1239 if (!alien) {
1240 kfree(shared);
1241 kfree(nc);
fbf1e473 1242 goto bad;
12d00f6a 1243 }
fbf1e473
AM
1244 }
1245 cachep->array[cpu] = nc;
1246 l3 = cachep->nodelists[node];
1247 BUG_ON(!l3);
1248
1249 spin_lock_irq(&l3->list_lock);
1250 if (!l3->shared) {
1251 /*
1252 * We are serialised from CPU_DEAD or
1253 * CPU_UP_CANCELLED by the cpucontrol lock
1254 */
1255 l3->shared = shared;
1256 shared = NULL;
1257 }
4484ebf1 1258#ifdef CONFIG_NUMA
fbf1e473
AM
1259 if (!l3->alien) {
1260 l3->alien = alien;
1261 alien = NULL;
1da177e4 1262 }
fbf1e473
AM
1263#endif
1264 spin_unlock_irq(&l3->list_lock);
1265 kfree(shared);
1266 free_alien_cache(alien);
1267 }
ce79ddc8
PE
1268 init_node_lock_keys(node);
1269
fbf1e473
AM
1270 return 0;
1271bad:
12d00f6a 1272 cpuup_canceled(cpu);
fbf1e473
AM
1273 return -ENOMEM;
1274}
1275
1276static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1277 unsigned long action, void *hcpu)
1278{
1279 long cpu = (long)hcpu;
1280 int err = 0;
1281
1282 switch (action) {
fbf1e473
AM
1283 case CPU_UP_PREPARE:
1284 case CPU_UP_PREPARE_FROZEN:
95402b38 1285 mutex_lock(&cache_chain_mutex);
fbf1e473 1286 err = cpuup_prepare(cpu);
95402b38 1287 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1288 break;
1289 case CPU_ONLINE:
8bb78442 1290 case CPU_ONLINE_FROZEN:
1da177e4
LT
1291 start_cpu_timer(cpu);
1292 break;
1293#ifdef CONFIG_HOTPLUG_CPU
5830c590 1294 case CPU_DOWN_PREPARE:
8bb78442 1295 case CPU_DOWN_PREPARE_FROZEN:
5830c590
CL
1296 /*
1297 * Shutdown cache reaper. Note that the cache_chain_mutex is
1298 * held so that if cache_reap() is invoked it cannot do
1299 * anything expensive but will only modify reap_work
1300 * and reschedule the timer.
1301 */
afe2c511 1302 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1303 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1304 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1305 break;
1306 case CPU_DOWN_FAILED:
8bb78442 1307 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1308 start_cpu_timer(cpu);
1309 break;
1da177e4 1310 case CPU_DEAD:
8bb78442 1311 case CPU_DEAD_FROZEN:
4484ebf1
RT
1312 /*
1313 * Even if all the cpus of a node are down, we don't free the
1314 * kmem_list3 of any cache. This to avoid a race between
1315 * cpu_down, and a kmalloc allocation from another cpu for
1316 * memory from the node of the cpu going down. The list3
1317 * structure is usually allocated from kmem_cache_create() and
1318 * gets destroyed at kmem_cache_destroy().
1319 */
183ff22b 1320 /* fall through */
8f5be20b 1321#endif
1da177e4 1322 case CPU_UP_CANCELED:
8bb78442 1323 case CPU_UP_CANCELED_FROZEN:
95402b38 1324 mutex_lock(&cache_chain_mutex);
fbf1e473 1325 cpuup_canceled(cpu);
fc0abb14 1326 mutex_unlock(&cache_chain_mutex);
1da177e4 1327 break;
1da177e4 1328 }
eac40680 1329 return notifier_from_errno(err);
1da177e4
LT
1330}
1331
74b85f37
CS
1332static struct notifier_block __cpuinitdata cpucache_notifier = {
1333 &cpuup_callback, NULL, 0
1334};
1da177e4 1335
8f9f8d9e
DR
1336#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1337/*
1338 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1339 * Returns -EBUSY if all objects cannot be drained so that the node is not
1340 * removed.
1341 *
1342 * Must hold cache_chain_mutex.
1343 */
1344static int __meminit drain_cache_nodelists_node(int node)
1345{
1346 struct kmem_cache *cachep;
1347 int ret = 0;
1348
1349 list_for_each_entry(cachep, &cache_chain, next) {
1350 struct kmem_list3 *l3;
1351
1352 l3 = cachep->nodelists[node];
1353 if (!l3)
1354 continue;
1355
1356 drain_freelist(cachep, l3, l3->free_objects);
1357
1358 if (!list_empty(&l3->slabs_full) ||
1359 !list_empty(&l3->slabs_partial)) {
1360 ret = -EBUSY;
1361 break;
1362 }
1363 }
1364 return ret;
1365}
1366
1367static int __meminit slab_memory_callback(struct notifier_block *self,
1368 unsigned long action, void *arg)
1369{
1370 struct memory_notify *mnb = arg;
1371 int ret = 0;
1372 int nid;
1373
1374 nid = mnb->status_change_nid;
1375 if (nid < 0)
1376 goto out;
1377
1378 switch (action) {
1379 case MEM_GOING_ONLINE:
1380 mutex_lock(&cache_chain_mutex);
1381 ret = init_cache_nodelists_node(nid);
1382 mutex_unlock(&cache_chain_mutex);
1383 break;
1384 case MEM_GOING_OFFLINE:
1385 mutex_lock(&cache_chain_mutex);
1386 ret = drain_cache_nodelists_node(nid);
1387 mutex_unlock(&cache_chain_mutex);
1388 break;
1389 case MEM_ONLINE:
1390 case MEM_OFFLINE:
1391 case MEM_CANCEL_ONLINE:
1392 case MEM_CANCEL_OFFLINE:
1393 break;
1394 }
1395out:
5fda1bd5 1396 return notifier_from_errno(ret);
8f9f8d9e
DR
1397}
1398#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1399
e498be7d
CL
1400/*
1401 * swap the static kmem_list3 with kmalloced memory
1402 */
8f9f8d9e
DR
1403static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1404 int nodeid)
e498be7d
CL
1405{
1406 struct kmem_list3 *ptr;
1407
83b519e8 1408 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
e498be7d
CL
1409 BUG_ON(!ptr);
1410
e498be7d 1411 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1412 /*
1413 * Do not assume that spinlocks can be initialized via memcpy:
1414 */
1415 spin_lock_init(&ptr->list_lock);
1416
e498be7d
CL
1417 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1418 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1419}
1420
556a169d
PE
1421/*
1422 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1423 * size of kmem_list3.
1424 */
1425static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1426{
1427 int node;
1428
1429 for_each_online_node(node) {
1430 cachep->nodelists[node] = &initkmem_list3[index + node];
1431 cachep->nodelists[node]->next_reap = jiffies +
1432 REAPTIMEOUT_LIST3 +
1433 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1434 }
1435}
1436
a737b3e2
AM
1437/*
1438 * Initialisation. Called after the page allocator have been initialised and
1439 * before smp_init().
1da177e4
LT
1440 */
1441void __init kmem_cache_init(void)
1442{
1443 size_t left_over;
1444 struct cache_sizes *sizes;
1445 struct cache_names *names;
e498be7d 1446 int i;
07ed76b2 1447 int order;
1ca4cb24 1448 int node;
e498be7d 1449
b6e68bc1 1450 if (num_possible_nodes() == 1)
62918a03
SS
1451 use_alien_caches = 0;
1452
e498be7d
CL
1453 for (i = 0; i < NUM_INIT_LISTS; i++) {
1454 kmem_list3_init(&initkmem_list3[i]);
1455 if (i < MAX_NUMNODES)
1456 cache_cache.nodelists[i] = NULL;
1457 }
556a169d 1458 set_up_list3s(&cache_cache, CACHE_CACHE);
1da177e4
LT
1459
1460 /*
1461 * Fragmentation resistance on low memory - only use bigger
1462 * page orders on machines with more than 32MB of memory.
1463 */
4481374c 1464 if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
1da177e4
LT
1465 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1466
1da177e4
LT
1467 /* Bootstrap is tricky, because several objects are allocated
1468 * from caches that do not exist yet:
a737b3e2
AM
1469 * 1) initialize the cache_cache cache: it contains the struct
1470 * kmem_cache structures of all caches, except cache_cache itself:
1471 * cache_cache is statically allocated.
e498be7d
CL
1472 * Initially an __init data area is used for the head array and the
1473 * kmem_list3 structures, it's replaced with a kmalloc allocated
1474 * array at the end of the bootstrap.
1da177e4 1475 * 2) Create the first kmalloc cache.
343e0d7a 1476 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1477 * An __init data area is used for the head array.
1478 * 3) Create the remaining kmalloc caches, with minimally sized
1479 * head arrays.
1da177e4
LT
1480 * 4) Replace the __init data head arrays for cache_cache and the first
1481 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1482 * 5) Replace the __init data for kmem_list3 for cache_cache and
1483 * the other cache's with kmalloc allocated memory.
1484 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1485 */
1486
7d6e6d09 1487 node = numa_mem_id();
1ca4cb24 1488
1da177e4 1489 /* 1) create the cache_cache */
1da177e4
LT
1490 INIT_LIST_HEAD(&cache_chain);
1491 list_add(&cache_cache.next, &cache_chain);
1492 cache_cache.colour_off = cache_line_size();
1493 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
ec1f5eee 1494 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1da177e4 1495
8da3430d 1496 /*
b56efcf0 1497 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1498 */
b56efcf0
ED
1499 cache_cache.buffer_size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1500 nr_node_ids * sizeof(struct kmem_list3 *);
8da3430d
ED
1501#if DEBUG
1502 cache_cache.obj_size = cache_cache.buffer_size;
1503#endif
a737b3e2
AM
1504 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1505 cache_line_size());
6a2d7a95
ED
1506 cache_cache.reciprocal_buffer_size =
1507 reciprocal_value(cache_cache.buffer_size);
1da177e4 1508
07ed76b2
JS
1509 for (order = 0; order < MAX_ORDER; order++) {
1510 cache_estimate(order, cache_cache.buffer_size,
1511 cache_line_size(), 0, &left_over, &cache_cache.num);
1512 if (cache_cache.num)
1513 break;
1514 }
40094fa6 1515 BUG_ON(!cache_cache.num);
07ed76b2 1516 cache_cache.gfporder = order;
b28a02de 1517 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1518 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1519 sizeof(struct slab), cache_line_size());
1da177e4
LT
1520
1521 /* 2+3) create the kmalloc caches */
1522 sizes = malloc_sizes;
1523 names = cache_names;
1524
a737b3e2
AM
1525 /*
1526 * Initialize the caches that provide memory for the array cache and the
1527 * kmem_list3 structures first. Without this, further allocations will
1528 * bug.
e498be7d
CL
1529 */
1530
1531 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1532 sizes[INDEX_AC].cs_size,
1533 ARCH_KMALLOC_MINALIGN,
1534 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1535 NULL);
e498be7d 1536
a737b3e2 1537 if (INDEX_AC != INDEX_L3) {
e498be7d 1538 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1539 kmem_cache_create(names[INDEX_L3].name,
1540 sizes[INDEX_L3].cs_size,
1541 ARCH_KMALLOC_MINALIGN,
1542 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1543 NULL);
a737b3e2 1544 }
e498be7d 1545
e0a42726
IM
1546 slab_early_init = 0;
1547
1da177e4 1548 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1549 /*
1550 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1551 * This should be particularly beneficial on SMP boxes, as it
1552 * eliminates "false sharing".
1553 * Note for systems short on memory removing the alignment will
e498be7d
CL
1554 * allow tighter packing of the smaller caches.
1555 */
a737b3e2 1556 if (!sizes->cs_cachep) {
e498be7d 1557 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1558 sizes->cs_size,
1559 ARCH_KMALLOC_MINALIGN,
1560 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1561 NULL);
a737b3e2 1562 }
4b51d669
CL
1563#ifdef CONFIG_ZONE_DMA
1564 sizes->cs_dmacachep = kmem_cache_create(
1565 names->name_dma,
a737b3e2
AM
1566 sizes->cs_size,
1567 ARCH_KMALLOC_MINALIGN,
1568 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1569 SLAB_PANIC,
20c2df83 1570 NULL);
4b51d669 1571#endif
1da177e4
LT
1572 sizes++;
1573 names++;
1574 }
1575 /* 4) Replace the bootstrap head arrays */
1576 {
2b2d5493 1577 struct array_cache *ptr;
e498be7d 1578
83b519e8 1579 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1580
9a2dba4b
PE
1581 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1582 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1583 sizeof(struct arraycache_init));
2b2d5493
IM
1584 /*
1585 * Do not assume that spinlocks can be initialized via memcpy:
1586 */
1587 spin_lock_init(&ptr->lock);
1588
1da177e4 1589 cache_cache.array[smp_processor_id()] = ptr;
e498be7d 1590
83b519e8 1591 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1592
9a2dba4b 1593 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1594 != &initarray_generic.cache);
9a2dba4b 1595 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1596 sizeof(struct arraycache_init));
2b2d5493
IM
1597 /*
1598 * Do not assume that spinlocks can be initialized via memcpy:
1599 */
1600 spin_lock_init(&ptr->lock);
1601
e498be7d 1602 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1603 ptr;
1da177e4 1604 }
e498be7d
CL
1605 /* 5) Replace the bootstrap kmem_list3's */
1606 {
1ca4cb24
PE
1607 int nid;
1608
9c09a95c 1609 for_each_online_node(nid) {
ec1f5eee 1610 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1611
e498be7d 1612 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1613 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1614
1615 if (INDEX_AC != INDEX_L3) {
1616 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1617 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1618 }
1619 }
1620 }
1da177e4 1621
8429db5c 1622 g_cpucache_up = EARLY;
8429db5c
PE
1623}
1624
1625void __init kmem_cache_init_late(void)
1626{
1627 struct kmem_cache *cachep;
1628
8429db5c
PE
1629 /* 6) resize the head arrays to their final sizes */
1630 mutex_lock(&cache_chain_mutex);
1631 list_for_each_entry(cachep, &cache_chain, next)
1632 if (enable_cpucache(cachep, GFP_NOWAIT))
1633 BUG();
1634 mutex_unlock(&cache_chain_mutex);
056c6241 1635
1da177e4
LT
1636 /* Done! */
1637 g_cpucache_up = FULL;
1638
ec5a36f9
PE
1639 /* Annotate slab for lockdep -- annotate the malloc caches */
1640 init_lock_keys();
1641
a737b3e2
AM
1642 /*
1643 * Register a cpu startup notifier callback that initializes
1644 * cpu_cache_get for all new cpus
1da177e4
LT
1645 */
1646 register_cpu_notifier(&cpucache_notifier);
1da177e4 1647
8f9f8d9e
DR
1648#ifdef CONFIG_NUMA
1649 /*
1650 * Register a memory hotplug callback that initializes and frees
1651 * nodelists.
1652 */
1653 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1654#endif
1655
a737b3e2
AM
1656 /*
1657 * The reap timers are started later, with a module init call: That part
1658 * of the kernel is not yet operational.
1da177e4
LT
1659 */
1660}
1661
1662static int __init cpucache_init(void)
1663{
1664 int cpu;
1665
a737b3e2
AM
1666 /*
1667 * Register the timers that return unneeded pages to the page allocator
1da177e4 1668 */
e498be7d 1669 for_each_online_cpu(cpu)
a737b3e2 1670 start_cpu_timer(cpu);
1da177e4
LT
1671 return 0;
1672}
1da177e4
LT
1673__initcall(cpucache_init);
1674
1675/*
1676 * Interface to system's page allocator. No need to hold the cache-lock.
1677 *
1678 * If we requested dmaable memory, we will get it. Even if we
1679 * did not request dmaable memory, we might get it, but that
1680 * would be relatively rare and ignorable.
1681 */
343e0d7a 1682static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1683{
1684 struct page *page;
e1b6aa6f 1685 int nr_pages;
1da177e4
LT
1686 int i;
1687
d6fef9da 1688#ifndef CONFIG_MMU
e1b6aa6f
CH
1689 /*
1690 * Nommu uses slab's for process anonymous memory allocations, and thus
1691 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1692 */
e1b6aa6f 1693 flags |= __GFP_COMP;
d6fef9da 1694#endif
765c4507 1695
3c517a61 1696 flags |= cachep->gfpflags;
e12ba74d
MG
1697 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1698 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1699
517d0869 1700 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1da177e4
LT
1701 if (!page)
1702 return NULL;
1da177e4 1703
e1b6aa6f 1704 nr_pages = (1 << cachep->gfporder);
1da177e4 1705 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1706 add_zone_page_state(page_zone(page),
1707 NR_SLAB_RECLAIMABLE, nr_pages);
1708 else
1709 add_zone_page_state(page_zone(page),
1710 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1711 for (i = 0; i < nr_pages; i++)
1712 __SetPageSlab(page + i);
c175eea4 1713
b1eeab67
VN
1714 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1715 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1716
1717 if (cachep->ctor)
1718 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1719 else
1720 kmemcheck_mark_unallocated_pages(page, nr_pages);
1721 }
c175eea4 1722
e1b6aa6f 1723 return page_address(page);
1da177e4
LT
1724}
1725
1726/*
1727 * Interface to system's page release.
1728 */
343e0d7a 1729static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1730{
b28a02de 1731 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1732 struct page *page = virt_to_page(addr);
1733 const unsigned long nr_freed = i;
1734
b1eeab67 1735 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1736
972d1a7b
CL
1737 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1738 sub_zone_page_state(page_zone(page),
1739 NR_SLAB_RECLAIMABLE, nr_freed);
1740 else
1741 sub_zone_page_state(page_zone(page),
1742 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1743 while (i--) {
f205b2fe
NP
1744 BUG_ON(!PageSlab(page));
1745 __ClearPageSlab(page);
1da177e4
LT
1746 page++;
1747 }
1da177e4
LT
1748 if (current->reclaim_state)
1749 current->reclaim_state->reclaimed_slab += nr_freed;
1750 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1751}
1752
1753static void kmem_rcu_free(struct rcu_head *head)
1754{
b28a02de 1755 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1756 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1757
1758 kmem_freepages(cachep, slab_rcu->addr);
1759 if (OFF_SLAB(cachep))
1760 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1761}
1762
1763#if DEBUG
1764
1765#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1766static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1767 unsigned long caller)
1da177e4 1768{
3dafccf2 1769 int size = obj_size(cachep);
1da177e4 1770
3dafccf2 1771 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1772
b28a02de 1773 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1774 return;
1775
b28a02de
PE
1776 *addr++ = 0x12345678;
1777 *addr++ = caller;
1778 *addr++ = smp_processor_id();
1779 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1780 {
1781 unsigned long *sptr = &caller;
1782 unsigned long svalue;
1783
1784 while (!kstack_end(sptr)) {
1785 svalue = *sptr++;
1786 if (kernel_text_address(svalue)) {
b28a02de 1787 *addr++ = svalue;
1da177e4
LT
1788 size -= sizeof(unsigned long);
1789 if (size <= sizeof(unsigned long))
1790 break;
1791 }
1792 }
1793
1794 }
b28a02de 1795 *addr++ = 0x87654321;
1da177e4
LT
1796}
1797#endif
1798
343e0d7a 1799static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1800{
3dafccf2
MS
1801 int size = obj_size(cachep);
1802 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1803
1804 memset(addr, val, size);
b28a02de 1805 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1806}
1807
1808static void dump_line(char *data, int offset, int limit)
1809{
1810 int i;
aa83aa40
DJ
1811 unsigned char error = 0;
1812 int bad_count = 0;
1813
1da177e4 1814 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1815 for (i = 0; i < limit; i++) {
1816 if (data[offset + i] != POISON_FREE) {
1817 error = data[offset + i];
1818 bad_count++;
1819 }
b28a02de 1820 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1821 }
1da177e4 1822 printk("\n");
aa83aa40
DJ
1823
1824 if (bad_count == 1) {
1825 error ^= POISON_FREE;
1826 if (!(error & (error - 1))) {
1827 printk(KERN_ERR "Single bit error detected. Probably "
1828 "bad RAM.\n");
1829#ifdef CONFIG_X86
1830 printk(KERN_ERR "Run memtest86+ or a similar memory "
1831 "test tool.\n");
1832#else
1833 printk(KERN_ERR "Run a memory test tool.\n");
1834#endif
1835 }
1836 }
1da177e4
LT
1837}
1838#endif
1839
1840#if DEBUG
1841
343e0d7a 1842static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1843{
1844 int i, size;
1845 char *realobj;
1846
1847 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1848 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1849 *dbg_redzone1(cachep, objp),
1850 *dbg_redzone2(cachep, objp));
1da177e4
LT
1851 }
1852
1853 if (cachep->flags & SLAB_STORE_USER) {
1854 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1855 *dbg_userword(cachep, objp));
1da177e4 1856 print_symbol("(%s)",
a737b3e2 1857 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1858 printk("\n");
1859 }
3dafccf2
MS
1860 realobj = (char *)objp + obj_offset(cachep);
1861 size = obj_size(cachep);
b28a02de 1862 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1863 int limit;
1864 limit = 16;
b28a02de
PE
1865 if (i + limit > size)
1866 limit = size - i;
1da177e4
LT
1867 dump_line(realobj, i, limit);
1868 }
1869}
1870
343e0d7a 1871static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1872{
1873 char *realobj;
1874 int size, i;
1875 int lines = 0;
1876
3dafccf2
MS
1877 realobj = (char *)objp + obj_offset(cachep);
1878 size = obj_size(cachep);
1da177e4 1879
b28a02de 1880 for (i = 0; i < size; i++) {
1da177e4 1881 char exp = POISON_FREE;
b28a02de 1882 if (i == size - 1)
1da177e4
LT
1883 exp = POISON_END;
1884 if (realobj[i] != exp) {
1885 int limit;
1886 /* Mismatch ! */
1887 /* Print header */
1888 if (lines == 0) {
b28a02de 1889 printk(KERN_ERR
e94a40c5
DH
1890 "Slab corruption: %s start=%p, len=%d\n",
1891 cachep->name, realobj, size);
1da177e4
LT
1892 print_objinfo(cachep, objp, 0);
1893 }
1894 /* Hexdump the affected line */
b28a02de 1895 i = (i / 16) * 16;
1da177e4 1896 limit = 16;
b28a02de
PE
1897 if (i + limit > size)
1898 limit = size - i;
1da177e4
LT
1899 dump_line(realobj, i, limit);
1900 i += 16;
1901 lines++;
1902 /* Limit to 5 lines */
1903 if (lines > 5)
1904 break;
1905 }
1906 }
1907 if (lines != 0) {
1908 /* Print some data about the neighboring objects, if they
1909 * exist:
1910 */
6ed5eb22 1911 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1912 unsigned int objnr;
1da177e4 1913
8fea4e96 1914 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1915 if (objnr) {
8fea4e96 1916 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1917 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1918 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1919 realobj, size);
1da177e4
LT
1920 print_objinfo(cachep, objp, 2);
1921 }
b28a02de 1922 if (objnr + 1 < cachep->num) {
8fea4e96 1923 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1924 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1925 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1926 realobj, size);
1da177e4
LT
1927 print_objinfo(cachep, objp, 2);
1928 }
1929 }
1930}
1931#endif
1932
12dd36fa 1933#if DEBUG
e79aec29 1934static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1935{
1da177e4
LT
1936 int i;
1937 for (i = 0; i < cachep->num; i++) {
8fea4e96 1938 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1939
1940 if (cachep->flags & SLAB_POISON) {
1941#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1942 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1943 OFF_SLAB(cachep))
b28a02de 1944 kernel_map_pages(virt_to_page(objp),
a737b3e2 1945 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1946 else
1947 check_poison_obj(cachep, objp);
1948#else
1949 check_poison_obj(cachep, objp);
1950#endif
1951 }
1952 if (cachep->flags & SLAB_RED_ZONE) {
1953 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1954 slab_error(cachep, "start of a freed object "
b28a02de 1955 "was overwritten");
1da177e4
LT
1956 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1957 slab_error(cachep, "end of a freed object "
b28a02de 1958 "was overwritten");
1da177e4 1959 }
1da177e4 1960 }
12dd36fa 1961}
1da177e4 1962#else
e79aec29 1963static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1964{
12dd36fa 1965}
1da177e4
LT
1966#endif
1967
911851e6
RD
1968/**
1969 * slab_destroy - destroy and release all objects in a slab
1970 * @cachep: cache pointer being destroyed
1971 * @slabp: slab pointer being destroyed
1972 *
12dd36fa 1973 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1974 * Before calling the slab must have been unlinked from the cache. The
1975 * cache-lock is not held/needed.
12dd36fa 1976 */
343e0d7a 1977static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1978{
1979 void *addr = slabp->s_mem - slabp->colouroff;
1980
e79aec29 1981 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
1982 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1983 struct slab_rcu *slab_rcu;
1984
b28a02de 1985 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1986 slab_rcu->cachep = cachep;
1987 slab_rcu->addr = addr;
1988 call_rcu(&slab_rcu->head, kmem_rcu_free);
1989 } else {
1990 kmem_freepages(cachep, addr);
873623df
IM
1991 if (OFF_SLAB(cachep))
1992 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1993 }
1994}
1995
117f6eb1
CL
1996static void __kmem_cache_destroy(struct kmem_cache *cachep)
1997{
1998 int i;
1999 struct kmem_list3 *l3;
2000
2001 for_each_online_cpu(i)
2002 kfree(cachep->array[i]);
2003
2004 /* NUMA: free the list3 structures */
2005 for_each_online_node(i) {
2006 l3 = cachep->nodelists[i];
2007 if (l3) {
2008 kfree(l3->shared);
2009 free_alien_cache(l3->alien);
2010 kfree(l3);
2011 }
2012 }
2013 kmem_cache_free(&cache_cache, cachep);
2014}
2015
2016
4d268eba 2017/**
a70773dd
RD
2018 * calculate_slab_order - calculate size (page order) of slabs
2019 * @cachep: pointer to the cache that is being created
2020 * @size: size of objects to be created in this cache.
2021 * @align: required alignment for the objects.
2022 * @flags: slab allocation flags
2023 *
2024 * Also calculates the number of objects per slab.
4d268eba
PE
2025 *
2026 * This could be made much more intelligent. For now, try to avoid using
2027 * high order pages for slabs. When the gfp() functions are more friendly
2028 * towards high-order requests, this should be changed.
2029 */
a737b3e2 2030static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2031 size_t size, size_t align, unsigned long flags)
4d268eba 2032{
b1ab41c4 2033 unsigned long offslab_limit;
4d268eba 2034 size_t left_over = 0;
9888e6fa 2035 int gfporder;
4d268eba 2036
0aa817f0 2037 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2038 unsigned int num;
2039 size_t remainder;
2040
9888e6fa 2041 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2042 if (!num)
2043 continue;
9888e6fa 2044
b1ab41c4
IM
2045 if (flags & CFLGS_OFF_SLAB) {
2046 /*
2047 * Max number of objs-per-slab for caches which
2048 * use off-slab slabs. Needed to avoid a possible
2049 * looping condition in cache_grow().
2050 */
2051 offslab_limit = size - sizeof(struct slab);
2052 offslab_limit /= sizeof(kmem_bufctl_t);
2053
2054 if (num > offslab_limit)
2055 break;
2056 }
4d268eba 2057
9888e6fa 2058 /* Found something acceptable - save it away */
4d268eba 2059 cachep->num = num;
9888e6fa 2060 cachep->gfporder = gfporder;
4d268eba
PE
2061 left_over = remainder;
2062
f78bb8ad
LT
2063 /*
2064 * A VFS-reclaimable slab tends to have most allocations
2065 * as GFP_NOFS and we really don't want to have to be allocating
2066 * higher-order pages when we are unable to shrink dcache.
2067 */
2068 if (flags & SLAB_RECLAIM_ACCOUNT)
2069 break;
2070
4d268eba
PE
2071 /*
2072 * Large number of objects is good, but very large slabs are
2073 * currently bad for the gfp()s.
2074 */
9888e6fa 2075 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
2076 break;
2077
9888e6fa
LT
2078 /*
2079 * Acceptable internal fragmentation?
2080 */
a737b3e2 2081 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2082 break;
2083 }
2084 return left_over;
2085}
2086
83b519e8 2087static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2088{
2ed3a4ef 2089 if (g_cpucache_up == FULL)
83b519e8 2090 return enable_cpucache(cachep, gfp);
2ed3a4ef 2091
f30cf7d1
PE
2092 if (g_cpucache_up == NONE) {
2093 /*
2094 * Note: the first kmem_cache_create must create the cache
2095 * that's used by kmalloc(24), otherwise the creation of
2096 * further caches will BUG().
2097 */
2098 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2099
2100 /*
2101 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2102 * the first cache, then we need to set up all its list3s,
2103 * otherwise the creation of further caches will BUG().
2104 */
2105 set_up_list3s(cachep, SIZE_AC);
2106 if (INDEX_AC == INDEX_L3)
2107 g_cpucache_up = PARTIAL_L3;
2108 else
2109 g_cpucache_up = PARTIAL_AC;
2110 } else {
2111 cachep->array[smp_processor_id()] =
83b519e8 2112 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1
PE
2113
2114 if (g_cpucache_up == PARTIAL_AC) {
2115 set_up_list3s(cachep, SIZE_L3);
2116 g_cpucache_up = PARTIAL_L3;
2117 } else {
2118 int node;
556a169d 2119 for_each_online_node(node) {
f30cf7d1
PE
2120 cachep->nodelists[node] =
2121 kmalloc_node(sizeof(struct kmem_list3),
eb91f1d0 2122 gfp, node);
f30cf7d1
PE
2123 BUG_ON(!cachep->nodelists[node]);
2124 kmem_list3_init(cachep->nodelists[node]);
2125 }
2126 }
2127 }
7d6e6d09 2128 cachep->nodelists[numa_mem_id()]->next_reap =
f30cf7d1
PE
2129 jiffies + REAPTIMEOUT_LIST3 +
2130 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2131
2132 cpu_cache_get(cachep)->avail = 0;
2133 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2134 cpu_cache_get(cachep)->batchcount = 1;
2135 cpu_cache_get(cachep)->touched = 0;
2136 cachep->batchcount = 1;
2137 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2138 return 0;
f30cf7d1
PE
2139}
2140
1da177e4
LT
2141/**
2142 * kmem_cache_create - Create a cache.
2143 * @name: A string which is used in /proc/slabinfo to identify this cache.
2144 * @size: The size of objects to be created in this cache.
2145 * @align: The required alignment for the objects.
2146 * @flags: SLAB flags
2147 * @ctor: A constructor for the objects.
1da177e4
LT
2148 *
2149 * Returns a ptr to the cache on success, NULL on failure.
2150 * Cannot be called within a int, but can be interrupted.
20c2df83 2151 * The @ctor is run when new pages are allocated by the cache.
1da177e4
LT
2152 *
2153 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2154 * the module calling this has to destroy the cache before getting unloaded.
2155 *
1da177e4
LT
2156 * The flags are
2157 *
2158 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2159 * to catch references to uninitialised memory.
2160 *
2161 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2162 * for buffer overruns.
2163 *
1da177e4
LT
2164 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2165 * cacheline. This can be beneficial if you're counting cycles as closely
2166 * as davem.
2167 */
343e0d7a 2168struct kmem_cache *
1da177e4 2169kmem_cache_create (const char *name, size_t size, size_t align,
51cc5068 2170 unsigned long flags, void (*ctor)(void *))
1da177e4
LT
2171{
2172 size_t left_over, slab_size, ralign;
7a7c381d 2173 struct kmem_cache *cachep = NULL, *pc;
83b519e8 2174 gfp_t gfp;
1da177e4
LT
2175
2176 /*
2177 * Sanity checks... these are all serious usage bugs.
2178 */
a737b3e2 2179 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
20c2df83 2180 size > KMALLOC_MAX_SIZE) {
d40cee24 2181 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
a737b3e2 2182 name);
b28a02de
PE
2183 BUG();
2184 }
1da177e4 2185
f0188f47 2186 /*
8f5be20b 2187 * We use cache_chain_mutex to ensure a consistent view of
174596a0 2188 * cpu_online_mask as well. Please see cpuup_callback
f0188f47 2189 */
83b519e8
PE
2190 if (slab_is_available()) {
2191 get_online_cpus();
2192 mutex_lock(&cache_chain_mutex);
2193 }
4f12bb4f 2194
7a7c381d 2195 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2196 char tmp;
2197 int res;
2198
2199 /*
2200 * This happens when the module gets unloaded and doesn't
2201 * destroy its slab cache and no-one else reuses the vmalloc
2202 * area of the module. Print a warning.
2203 */
138ae663 2204 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2205 if (res) {
b4169525 2206 printk(KERN_ERR
2207 "SLAB: cache with size %d has lost its name\n",
3dafccf2 2208 pc->buffer_size);
4f12bb4f
AM
2209 continue;
2210 }
2211
b28a02de 2212 if (!strcmp(pc->name, name)) {
b4169525 2213 printk(KERN_ERR
2214 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2215 dump_stack();
2216 goto oops;
2217 }
2218 }
2219
1da177e4
LT
2220#if DEBUG
2221 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2222#if FORCED_DEBUG
2223 /*
2224 * Enable redzoning and last user accounting, except for caches with
2225 * large objects, if the increased size would increase the object size
2226 * above the next power of two: caches with object sizes just above a
2227 * power of two have a significant amount of internal fragmentation.
2228 */
87a927c7
DW
2229 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2230 2 * sizeof(unsigned long long)))
b28a02de 2231 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2232 if (!(flags & SLAB_DESTROY_BY_RCU))
2233 flags |= SLAB_POISON;
2234#endif
2235 if (flags & SLAB_DESTROY_BY_RCU)
2236 BUG_ON(flags & SLAB_POISON);
2237#endif
1da177e4 2238 /*
a737b3e2
AM
2239 * Always checks flags, a caller might be expecting debug support which
2240 * isn't available.
1da177e4 2241 */
40094fa6 2242 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2243
a737b3e2
AM
2244 /*
2245 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2246 * unaligned accesses for some archs when redzoning is used, and makes
2247 * sure any on-slab bufctl's are also correctly aligned.
2248 */
b28a02de
PE
2249 if (size & (BYTES_PER_WORD - 1)) {
2250 size += (BYTES_PER_WORD - 1);
2251 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2252 }
2253
a737b3e2
AM
2254 /* calculate the final buffer alignment: */
2255
1da177e4
LT
2256 /* 1) arch recommendation: can be overridden for debug */
2257 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2258 /*
2259 * Default alignment: as specified by the arch code. Except if
2260 * an object is really small, then squeeze multiple objects into
2261 * one cacheline.
1da177e4
LT
2262 */
2263 ralign = cache_line_size();
b28a02de 2264 while (size <= ralign / 2)
1da177e4
LT
2265 ralign /= 2;
2266 } else {
2267 ralign = BYTES_PER_WORD;
2268 }
ca5f9703
PE
2269
2270 /*
87a927c7
DW
2271 * Redzoning and user store require word alignment or possibly larger.
2272 * Note this will be overridden by architecture or caller mandated
2273 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2274 */
87a927c7
DW
2275 if (flags & SLAB_STORE_USER)
2276 ralign = BYTES_PER_WORD;
2277
2278 if (flags & SLAB_RED_ZONE) {
2279 ralign = REDZONE_ALIGN;
2280 /* If redzoning, ensure that the second redzone is suitably
2281 * aligned, by adjusting the object size accordingly. */
2282 size += REDZONE_ALIGN - 1;
2283 size &= ~(REDZONE_ALIGN - 1);
2284 }
ca5f9703 2285
a44b56d3 2286 /* 2) arch mandated alignment */
1da177e4
LT
2287 if (ralign < ARCH_SLAB_MINALIGN) {
2288 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2289 }
a44b56d3 2290 /* 3) caller mandated alignment */
1da177e4
LT
2291 if (ralign < align) {
2292 ralign = align;
1da177e4 2293 }
3ff84a7f
PE
2294 /* disable debug if necessary */
2295 if (ralign > __alignof__(unsigned long long))
a44b56d3 2296 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2297 /*
ca5f9703 2298 * 4) Store it.
1da177e4
LT
2299 */
2300 align = ralign;
2301
83b519e8
PE
2302 if (slab_is_available())
2303 gfp = GFP_KERNEL;
2304 else
2305 gfp = GFP_NOWAIT;
2306
1da177e4 2307 /* Get cache's description obj. */
83b519e8 2308 cachep = kmem_cache_zalloc(&cache_cache, gfp);
1da177e4 2309 if (!cachep)
4f12bb4f 2310 goto oops;
1da177e4 2311
b56efcf0 2312 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
1da177e4 2313#if DEBUG
3dafccf2 2314 cachep->obj_size = size;
1da177e4 2315
ca5f9703
PE
2316 /*
2317 * Both debugging options require word-alignment which is calculated
2318 * into align above.
2319 */
1da177e4 2320 if (flags & SLAB_RED_ZONE) {
1da177e4 2321 /* add space for red zone words */
3ff84a7f
PE
2322 cachep->obj_offset += sizeof(unsigned long long);
2323 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2324 }
2325 if (flags & SLAB_STORE_USER) {
ca5f9703 2326 /* user store requires one word storage behind the end of
87a927c7
DW
2327 * the real object. But if the second red zone needs to be
2328 * aligned to 64 bits, we must allow that much space.
1da177e4 2329 */
87a927c7
DW
2330 if (flags & SLAB_RED_ZONE)
2331 size += REDZONE_ALIGN;
2332 else
2333 size += BYTES_PER_WORD;
1da177e4
LT
2334 }
2335#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2336 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
1ab335d8
CO
2337 && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2338 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
1da177e4
LT
2339 size = PAGE_SIZE;
2340 }
2341#endif
2342#endif
2343
e0a42726
IM
2344 /*
2345 * Determine if the slab management is 'on' or 'off' slab.
2346 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2347 * it too early on. Always use on-slab management when
2348 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2349 */
e7cb55b9
CM
2350 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2351 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2352 /*
2353 * Size is large, assume best to place the slab management obj
2354 * off-slab (should allow better packing of objs).
2355 */
2356 flags |= CFLGS_OFF_SLAB;
2357
2358 size = ALIGN(size, align);
2359
f78bb8ad 2360 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2361
2362 if (!cachep->num) {
b4169525 2363 printk(KERN_ERR
2364 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4
LT
2365 kmem_cache_free(&cache_cache, cachep);
2366 cachep = NULL;
4f12bb4f 2367 goto oops;
1da177e4 2368 }
b28a02de
PE
2369 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2370 + sizeof(struct slab), align);
1da177e4
LT
2371
2372 /*
2373 * If the slab has been placed off-slab, and we have enough space then
2374 * move it on-slab. This is at the expense of any extra colouring.
2375 */
2376 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2377 flags &= ~CFLGS_OFF_SLAB;
2378 left_over -= slab_size;
2379 }
2380
2381 if (flags & CFLGS_OFF_SLAB) {
2382 /* really off slab. No need for manual alignment */
b28a02de
PE
2383 slab_size =
2384 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2385
2386#ifdef CONFIG_PAGE_POISONING
2387 /* If we're going to use the generic kernel_map_pages()
2388 * poisoning, then it's going to smash the contents of
2389 * the redzone and userword anyhow, so switch them off.
2390 */
2391 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2392 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2393#endif
1da177e4
LT
2394 }
2395
2396 cachep->colour_off = cache_line_size();
2397 /* Offset must be a multiple of the alignment. */
2398 if (cachep->colour_off < align)
2399 cachep->colour_off = align;
b28a02de 2400 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2401 cachep->slab_size = slab_size;
2402 cachep->flags = flags;
2403 cachep->gfpflags = 0;
4b51d669 2404 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2405 cachep->gfpflags |= GFP_DMA;
3dafccf2 2406 cachep->buffer_size = size;
6a2d7a95 2407 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2408
e5ac9c5a 2409 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2410 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2411 /*
2412 * This is a possibility for one of the malloc_sizes caches.
2413 * But since we go off slab only for object size greater than
2414 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2415 * this should not happen at all.
2416 * But leave a BUG_ON for some lucky dude.
2417 */
6cb8f913 2418 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2419 }
1da177e4 2420 cachep->ctor = ctor;
1da177e4
LT
2421 cachep->name = name;
2422
83b519e8 2423 if (setup_cpu_cache(cachep, gfp)) {
2ed3a4ef
CL
2424 __kmem_cache_destroy(cachep);
2425 cachep = NULL;
2426 goto oops;
2427 }
1da177e4 2428
1da177e4
LT
2429 /* cache setup completed, link it into the list */
2430 list_add(&cachep->next, &cache_chain);
a737b3e2 2431oops:
1da177e4
LT
2432 if (!cachep && (flags & SLAB_PANIC))
2433 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2434 name);
83b519e8
PE
2435 if (slab_is_available()) {
2436 mutex_unlock(&cache_chain_mutex);
2437 put_online_cpus();
2438 }
1da177e4
LT
2439 return cachep;
2440}
2441EXPORT_SYMBOL(kmem_cache_create);
2442
2443#if DEBUG
2444static void check_irq_off(void)
2445{
2446 BUG_ON(!irqs_disabled());
2447}
2448
2449static void check_irq_on(void)
2450{
2451 BUG_ON(irqs_disabled());
2452}
2453
343e0d7a 2454static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2455{
2456#ifdef CONFIG_SMP
2457 check_irq_off();
7d6e6d09 2458 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
1da177e4
LT
2459#endif
2460}
e498be7d 2461
343e0d7a 2462static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2463{
2464#ifdef CONFIG_SMP
2465 check_irq_off();
2466 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2467#endif
2468}
2469
1da177e4
LT
2470#else
2471#define check_irq_off() do { } while(0)
2472#define check_irq_on() do { } while(0)
2473#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2474#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2475#endif
2476
aab2207c
CL
2477static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2478 struct array_cache *ac,
2479 int force, int node);
2480
1da177e4
LT
2481static void do_drain(void *arg)
2482{
a737b3e2 2483 struct kmem_cache *cachep = arg;
1da177e4 2484 struct array_cache *ac;
7d6e6d09 2485 int node = numa_mem_id();
1da177e4
LT
2486
2487 check_irq_off();
9a2dba4b 2488 ac = cpu_cache_get(cachep);
ff69416e
CL
2489 spin_lock(&cachep->nodelists[node]->list_lock);
2490 free_block(cachep, ac->entry, ac->avail, node);
2491 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2492 ac->avail = 0;
2493}
2494
343e0d7a 2495static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2496{
e498be7d
CL
2497 struct kmem_list3 *l3;
2498 int node;
2499
15c8b6c1 2500 on_each_cpu(do_drain, cachep, 1);
1da177e4 2501 check_irq_on();
b28a02de 2502 for_each_online_node(node) {
e498be7d 2503 l3 = cachep->nodelists[node];
a4523a8b
RD
2504 if (l3 && l3->alien)
2505 drain_alien_cache(cachep, l3->alien);
2506 }
2507
2508 for_each_online_node(node) {
2509 l3 = cachep->nodelists[node];
2510 if (l3)
aab2207c 2511 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2512 }
1da177e4
LT
2513}
2514
ed11d9eb
CL
2515/*
2516 * Remove slabs from the list of free slabs.
2517 * Specify the number of slabs to drain in tofree.
2518 *
2519 * Returns the actual number of slabs released.
2520 */
2521static int drain_freelist(struct kmem_cache *cache,
2522 struct kmem_list3 *l3, int tofree)
1da177e4 2523{
ed11d9eb
CL
2524 struct list_head *p;
2525 int nr_freed;
1da177e4 2526 struct slab *slabp;
1da177e4 2527
ed11d9eb
CL
2528 nr_freed = 0;
2529 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2530
ed11d9eb 2531 spin_lock_irq(&l3->list_lock);
e498be7d 2532 p = l3->slabs_free.prev;
ed11d9eb
CL
2533 if (p == &l3->slabs_free) {
2534 spin_unlock_irq(&l3->list_lock);
2535 goto out;
2536 }
1da177e4 2537
ed11d9eb 2538 slabp = list_entry(p, struct slab, list);
1da177e4 2539#if DEBUG
40094fa6 2540 BUG_ON(slabp->inuse);
1da177e4
LT
2541#endif
2542 list_del(&slabp->list);
ed11d9eb
CL
2543 /*
2544 * Safe to drop the lock. The slab is no longer linked
2545 * to the cache.
2546 */
2547 l3->free_objects -= cache->num;
e498be7d 2548 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2549 slab_destroy(cache, slabp);
2550 nr_freed++;
1da177e4 2551 }
ed11d9eb
CL
2552out:
2553 return nr_freed;
1da177e4
LT
2554}
2555
8f5be20b 2556/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2557static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2558{
2559 int ret = 0, i = 0;
2560 struct kmem_list3 *l3;
2561
2562 drain_cpu_caches(cachep);
2563
2564 check_irq_on();
2565 for_each_online_node(i) {
2566 l3 = cachep->nodelists[i];
ed11d9eb
CL
2567 if (!l3)
2568 continue;
2569
2570 drain_freelist(cachep, l3, l3->free_objects);
2571
2572 ret += !list_empty(&l3->slabs_full) ||
2573 !list_empty(&l3->slabs_partial);
e498be7d
CL
2574 }
2575 return (ret ? 1 : 0);
2576}
2577
1da177e4
LT
2578/**
2579 * kmem_cache_shrink - Shrink a cache.
2580 * @cachep: The cache to shrink.
2581 *
2582 * Releases as many slabs as possible for a cache.
2583 * To help debugging, a zero exit status indicates all slabs were released.
2584 */
343e0d7a 2585int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2586{
8f5be20b 2587 int ret;
40094fa6 2588 BUG_ON(!cachep || in_interrupt());
1da177e4 2589
95402b38 2590 get_online_cpus();
8f5be20b
RT
2591 mutex_lock(&cache_chain_mutex);
2592 ret = __cache_shrink(cachep);
2593 mutex_unlock(&cache_chain_mutex);
95402b38 2594 put_online_cpus();
8f5be20b 2595 return ret;
1da177e4
LT
2596}
2597EXPORT_SYMBOL(kmem_cache_shrink);
2598
2599/**
2600 * kmem_cache_destroy - delete a cache
2601 * @cachep: the cache to destroy
2602 *
72fd4a35 2603 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2604 *
2605 * It is expected this function will be called by a module when it is
2606 * unloaded. This will remove the cache completely, and avoid a duplicate
2607 * cache being allocated each time a module is loaded and unloaded, if the
2608 * module doesn't have persistent in-kernel storage across loads and unloads.
2609 *
2610 * The cache must be empty before calling this function.
2611 *
25985edc 2612 * The caller must guarantee that no one will allocate memory from the cache
1da177e4
LT
2613 * during the kmem_cache_destroy().
2614 */
133d205a 2615void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2616{
40094fa6 2617 BUG_ON(!cachep || in_interrupt());
1da177e4 2618
1da177e4 2619 /* Find the cache in the chain of caches. */
95402b38 2620 get_online_cpus();
fc0abb14 2621 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2622 /*
2623 * the chain is never empty, cache_cache is never destroyed
2624 */
2625 list_del(&cachep->next);
1da177e4
LT
2626 if (__cache_shrink(cachep)) {
2627 slab_error(cachep, "Can't free all objects");
b28a02de 2628 list_add(&cachep->next, &cache_chain);
fc0abb14 2629 mutex_unlock(&cache_chain_mutex);
95402b38 2630 put_online_cpus();
133d205a 2631 return;
1da177e4
LT
2632 }
2633
2634 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
7ed9f7e5 2635 rcu_barrier();
1da177e4 2636
117f6eb1 2637 __kmem_cache_destroy(cachep);
8f5be20b 2638 mutex_unlock(&cache_chain_mutex);
95402b38 2639 put_online_cpus();
1da177e4
LT
2640}
2641EXPORT_SYMBOL(kmem_cache_destroy);
2642
e5ac9c5a
RT
2643/*
2644 * Get the memory for a slab management obj.
2645 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2646 * always come from malloc_sizes caches. The slab descriptor cannot
2647 * come from the same cache which is getting created because,
2648 * when we are searching for an appropriate cache for these
2649 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2650 * If we are creating a malloc_sizes cache here it would not be visible to
2651 * kmem_find_general_cachep till the initialization is complete.
2652 * Hence we cannot have slabp_cache same as the original cache.
2653 */
343e0d7a 2654static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2655 int colour_off, gfp_t local_flags,
2656 int nodeid)
1da177e4
LT
2657{
2658 struct slab *slabp;
b28a02de 2659
1da177e4
LT
2660 if (OFF_SLAB(cachep)) {
2661 /* Slab management obj is off-slab. */
5b74ada7 2662 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2663 local_flags, nodeid);
d5cff635
CM
2664 /*
2665 * If the first object in the slab is leaked (it's allocated
2666 * but no one has a reference to it), we want to make sure
2667 * kmemleak does not treat the ->s_mem pointer as a reference
2668 * to the object. Otherwise we will not report the leak.
2669 */
c017b4be
CM
2670 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2671 local_flags);
1da177e4
LT
2672 if (!slabp)
2673 return NULL;
2674 } else {
b28a02de 2675 slabp = objp + colour_off;
1da177e4
LT
2676 colour_off += cachep->slab_size;
2677 }
2678 slabp->inuse = 0;
2679 slabp->colouroff = colour_off;
b28a02de 2680 slabp->s_mem = objp + colour_off;
5b74ada7 2681 slabp->nodeid = nodeid;
e51bfd0a 2682 slabp->free = 0;
1da177e4
LT
2683 return slabp;
2684}
2685
2686static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2687{
b28a02de 2688 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2689}
2690
343e0d7a 2691static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2692 struct slab *slabp)
1da177e4
LT
2693{
2694 int i;
2695
2696 for (i = 0; i < cachep->num; i++) {
8fea4e96 2697 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2698#if DEBUG
2699 /* need to poison the objs? */
2700 if (cachep->flags & SLAB_POISON)
2701 poison_obj(cachep, objp, POISON_FREE);
2702 if (cachep->flags & SLAB_STORE_USER)
2703 *dbg_userword(cachep, objp) = NULL;
2704
2705 if (cachep->flags & SLAB_RED_ZONE) {
2706 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2707 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2708 }
2709 /*
a737b3e2
AM
2710 * Constructors are not allowed to allocate memory from the same
2711 * cache which they are a constructor for. Otherwise, deadlock.
2712 * They must also be threaded.
1da177e4
LT
2713 */
2714 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2715 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2716
2717 if (cachep->flags & SLAB_RED_ZONE) {
2718 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2719 slab_error(cachep, "constructor overwrote the"
b28a02de 2720 " end of an object");
1da177e4
LT
2721 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2722 slab_error(cachep, "constructor overwrote the"
b28a02de 2723 " start of an object");
1da177e4 2724 }
a737b3e2
AM
2725 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2726 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2727 kernel_map_pages(virt_to_page(objp),
3dafccf2 2728 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2729#else
2730 if (cachep->ctor)
51cc5068 2731 cachep->ctor(objp);
1da177e4 2732#endif
b28a02de 2733 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2734 }
b28a02de 2735 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2736}
2737
343e0d7a 2738static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2739{
4b51d669
CL
2740 if (CONFIG_ZONE_DMA_FLAG) {
2741 if (flags & GFP_DMA)
2742 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2743 else
2744 BUG_ON(cachep->gfpflags & GFP_DMA);
2745 }
1da177e4
LT
2746}
2747
a737b3e2
AM
2748static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2749 int nodeid)
78d382d7 2750{
8fea4e96 2751 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2752 kmem_bufctl_t next;
2753
2754 slabp->inuse++;
2755 next = slab_bufctl(slabp)[slabp->free];
2756#if DEBUG
2757 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2758 WARN_ON(slabp->nodeid != nodeid);
2759#endif
2760 slabp->free = next;
2761
2762 return objp;
2763}
2764
a737b3e2
AM
2765static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2766 void *objp, int nodeid)
78d382d7 2767{
8fea4e96 2768 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2769
2770#if DEBUG
2771 /* Verify that the slab belongs to the intended node */
2772 WARN_ON(slabp->nodeid != nodeid);
2773
871751e2 2774 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2775 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2776 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2777 BUG();
2778 }
2779#endif
2780 slab_bufctl(slabp)[objnr] = slabp->free;
2781 slabp->free = objnr;
2782 slabp->inuse--;
2783}
2784
4776874f
PE
2785/*
2786 * Map pages beginning at addr to the given cache and slab. This is required
2787 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2788 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2789 */
2790static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2791 void *addr)
1da177e4 2792{
4776874f 2793 int nr_pages;
1da177e4
LT
2794 struct page *page;
2795
4776874f 2796 page = virt_to_page(addr);
84097518 2797
4776874f 2798 nr_pages = 1;
84097518 2799 if (likely(!PageCompound(page)))
4776874f
PE
2800 nr_pages <<= cache->gfporder;
2801
1da177e4 2802 do {
4776874f
PE
2803 page_set_cache(page, cache);
2804 page_set_slab(page, slab);
1da177e4 2805 page++;
4776874f 2806 } while (--nr_pages);
1da177e4
LT
2807}
2808
2809/*
2810 * Grow (by 1) the number of slabs within a cache. This is called by
2811 * kmem_cache_alloc() when there are no active objs left in a cache.
2812 */
3c517a61
CL
2813static int cache_grow(struct kmem_cache *cachep,
2814 gfp_t flags, int nodeid, void *objp)
1da177e4 2815{
b28a02de 2816 struct slab *slabp;
b28a02de
PE
2817 size_t offset;
2818 gfp_t local_flags;
e498be7d 2819 struct kmem_list3 *l3;
1da177e4 2820
a737b3e2
AM
2821 /*
2822 * Be lazy and only check for valid flags here, keeping it out of the
2823 * critical path in kmem_cache_alloc().
1da177e4 2824 */
6cb06229
CL
2825 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2826 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2827
2e1217cf 2828 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2829 check_irq_off();
2e1217cf
RT
2830 l3 = cachep->nodelists[nodeid];
2831 spin_lock(&l3->list_lock);
1da177e4
LT
2832
2833 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2834 offset = l3->colour_next;
2835 l3->colour_next++;
2836 if (l3->colour_next >= cachep->colour)
2837 l3->colour_next = 0;
2838 spin_unlock(&l3->list_lock);
1da177e4 2839
2e1217cf 2840 offset *= cachep->colour_off;
1da177e4
LT
2841
2842 if (local_flags & __GFP_WAIT)
2843 local_irq_enable();
2844
2845 /*
2846 * The test for missing atomic flag is performed here, rather than
2847 * the more obvious place, simply to reduce the critical path length
2848 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2849 * will eventually be caught here (where it matters).
2850 */
2851 kmem_flagcheck(cachep, flags);
2852
a737b3e2
AM
2853 /*
2854 * Get mem for the objs. Attempt to allocate a physical page from
2855 * 'nodeid'.
e498be7d 2856 */
3c517a61 2857 if (!objp)
b8c1c5da 2858 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2859 if (!objp)
1da177e4
LT
2860 goto failed;
2861
2862 /* Get slab management. */
3c517a61 2863 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2864 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2865 if (!slabp)
1da177e4
LT
2866 goto opps1;
2867
4776874f 2868 slab_map_pages(cachep, slabp, objp);
1da177e4 2869
a35afb83 2870 cache_init_objs(cachep, slabp);
1da177e4
LT
2871
2872 if (local_flags & __GFP_WAIT)
2873 local_irq_disable();
2874 check_irq_off();
e498be7d 2875 spin_lock(&l3->list_lock);
1da177e4
LT
2876
2877 /* Make slab active. */
e498be7d 2878 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2879 STATS_INC_GROWN(cachep);
e498be7d
CL
2880 l3->free_objects += cachep->num;
2881 spin_unlock(&l3->list_lock);
1da177e4 2882 return 1;
a737b3e2 2883opps1:
1da177e4 2884 kmem_freepages(cachep, objp);
a737b3e2 2885failed:
1da177e4
LT
2886 if (local_flags & __GFP_WAIT)
2887 local_irq_disable();
2888 return 0;
2889}
2890
2891#if DEBUG
2892
2893/*
2894 * Perform extra freeing checks:
2895 * - detect bad pointers.
2896 * - POISON/RED_ZONE checking
1da177e4
LT
2897 */
2898static void kfree_debugcheck(const void *objp)
2899{
1da177e4
LT
2900 if (!virt_addr_valid(objp)) {
2901 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2902 (unsigned long)objp);
2903 BUG();
1da177e4 2904 }
1da177e4
LT
2905}
2906
58ce1fd5
PE
2907static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2908{
b46b8f19 2909 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2910
2911 redzone1 = *dbg_redzone1(cache, obj);
2912 redzone2 = *dbg_redzone2(cache, obj);
2913
2914 /*
2915 * Redzone is ok.
2916 */
2917 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2918 return;
2919
2920 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2921 slab_error(cache, "double free detected");
2922 else
2923 slab_error(cache, "memory outside object was overwritten");
2924
b46b8f19 2925 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2926 obj, redzone1, redzone2);
2927}
2928
343e0d7a 2929static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2930 void *caller)
1da177e4
LT
2931{
2932 struct page *page;
2933 unsigned int objnr;
2934 struct slab *slabp;
2935
80cbd911
MW
2936 BUG_ON(virt_to_cache(objp) != cachep);
2937
3dafccf2 2938 objp -= obj_offset(cachep);
1da177e4 2939 kfree_debugcheck(objp);
b49af68f 2940 page = virt_to_head_page(objp);
1da177e4 2941
065d41cb 2942 slabp = page_get_slab(page);
1da177e4
LT
2943
2944 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2945 verify_redzone_free(cachep, objp);
1da177e4
LT
2946 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2947 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2948 }
2949 if (cachep->flags & SLAB_STORE_USER)
2950 *dbg_userword(cachep, objp) = caller;
2951
8fea4e96 2952 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2953
2954 BUG_ON(objnr >= cachep->num);
8fea4e96 2955 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2956
871751e2
AV
2957#ifdef CONFIG_DEBUG_SLAB_LEAK
2958 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2959#endif
1da177e4
LT
2960 if (cachep->flags & SLAB_POISON) {
2961#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2962 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2963 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2964 kernel_map_pages(virt_to_page(objp),
3dafccf2 2965 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2966 } else {
2967 poison_obj(cachep, objp, POISON_FREE);
2968 }
2969#else
2970 poison_obj(cachep, objp, POISON_FREE);
2971#endif
2972 }
2973 return objp;
2974}
2975
343e0d7a 2976static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2977{
2978 kmem_bufctl_t i;
2979 int entries = 0;
b28a02de 2980
1da177e4
LT
2981 /* Check slab's freelist to see if this obj is there. */
2982 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2983 entries++;
2984 if (entries > cachep->num || i >= cachep->num)
2985 goto bad;
2986 }
2987 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2988bad:
2989 printk(KERN_ERR "slab: Internal list corruption detected in "
2990 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2991 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2992 for (i = 0;
264132bc 2993 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2994 i++) {
a737b3e2 2995 if (i % 16 == 0)
1da177e4 2996 printk("\n%03x:", i);
b28a02de 2997 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2998 }
2999 printk("\n");
3000 BUG();
3001 }
3002}
3003#else
3004#define kfree_debugcheck(x) do { } while(0)
3005#define cache_free_debugcheck(x,objp,z) (objp)
3006#define check_slabp(x,y) do { } while(0)
3007#endif
3008
343e0d7a 3009static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
3010{
3011 int batchcount;
3012 struct kmem_list3 *l3;
3013 struct array_cache *ac;
1ca4cb24
PE
3014 int node;
3015
6d2144d3 3016retry:
1da177e4 3017 check_irq_off();
7d6e6d09 3018 node = numa_mem_id();
9a2dba4b 3019 ac = cpu_cache_get(cachep);
1da177e4
LT
3020 batchcount = ac->batchcount;
3021 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3022 /*
3023 * If there was little recent activity on this cache, then
3024 * perform only a partial refill. Otherwise we could generate
3025 * refill bouncing.
1da177e4
LT
3026 */
3027 batchcount = BATCHREFILL_LIMIT;
3028 }
1ca4cb24 3029 l3 = cachep->nodelists[node];
e498be7d
CL
3030
3031 BUG_ON(ac->avail > 0 || !l3);
3032 spin_lock(&l3->list_lock);
1da177e4 3033
3ded175a 3034 /* See if we can refill from the shared array */
44b57f1c
NP
3035 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3036 l3->shared->touched = 1;
3ded175a 3037 goto alloc_done;
44b57f1c 3038 }
3ded175a 3039
1da177e4
LT
3040 while (batchcount > 0) {
3041 struct list_head *entry;
3042 struct slab *slabp;
3043 /* Get slab alloc is to come from. */
3044 entry = l3->slabs_partial.next;
3045 if (entry == &l3->slabs_partial) {
3046 l3->free_touched = 1;
3047 entry = l3->slabs_free.next;
3048 if (entry == &l3->slabs_free)
3049 goto must_grow;
3050 }
3051
3052 slabp = list_entry(entry, struct slab, list);
3053 check_slabp(cachep, slabp);
3054 check_spinlock_acquired(cachep);
714b8171
PE
3055
3056 /*
3057 * The slab was either on partial or free list so
3058 * there must be at least one object available for
3059 * allocation.
3060 */
249b9f33 3061 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3062
1da177e4 3063 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3064 STATS_INC_ALLOCED(cachep);
3065 STATS_INC_ACTIVE(cachep);
3066 STATS_SET_HIGH(cachep);
3067
78d382d7 3068 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 3069 node);
1da177e4
LT
3070 }
3071 check_slabp(cachep, slabp);
3072
3073 /* move slabp to correct slabp list: */
3074 list_del(&slabp->list);
3075 if (slabp->free == BUFCTL_END)
3076 list_add(&slabp->list, &l3->slabs_full);
3077 else
3078 list_add(&slabp->list, &l3->slabs_partial);
3079 }
3080
a737b3e2 3081must_grow:
1da177e4 3082 l3->free_objects -= ac->avail;
a737b3e2 3083alloc_done:
e498be7d 3084 spin_unlock(&l3->list_lock);
1da177e4
LT
3085
3086 if (unlikely(!ac->avail)) {
3087 int x;
3c517a61 3088 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3089
a737b3e2 3090 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3091 ac = cpu_cache_get(cachep);
a737b3e2 3092 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3093 return NULL;
3094
a737b3e2 3095 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3096 goto retry;
3097 }
3098 ac->touched = 1;
e498be7d 3099 return ac->entry[--ac->avail];
1da177e4
LT
3100}
3101
a737b3e2
AM
3102static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3103 gfp_t flags)
1da177e4
LT
3104{
3105 might_sleep_if(flags & __GFP_WAIT);
3106#if DEBUG
3107 kmem_flagcheck(cachep, flags);
3108#endif
3109}
3110
3111#if DEBUG
a737b3e2
AM
3112static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3113 gfp_t flags, void *objp, void *caller)
1da177e4 3114{
b28a02de 3115 if (!objp)
1da177e4 3116 return objp;
b28a02de 3117 if (cachep->flags & SLAB_POISON) {
1da177e4 3118#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3119 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3120 kernel_map_pages(virt_to_page(objp),
3dafccf2 3121 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3122 else
3123 check_poison_obj(cachep, objp);
3124#else
3125 check_poison_obj(cachep, objp);
3126#endif
3127 poison_obj(cachep, objp, POISON_INUSE);
3128 }
3129 if (cachep->flags & SLAB_STORE_USER)
3130 *dbg_userword(cachep, objp) = caller;
3131
3132 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3133 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3134 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3135 slab_error(cachep, "double free, or memory outside"
3136 " object was overwritten");
b28a02de 3137 printk(KERN_ERR
b46b8f19 3138 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3139 objp, *dbg_redzone1(cachep, objp),
3140 *dbg_redzone2(cachep, objp));
1da177e4
LT
3141 }
3142 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3143 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3144 }
871751e2
AV
3145#ifdef CONFIG_DEBUG_SLAB_LEAK
3146 {
3147 struct slab *slabp;
3148 unsigned objnr;
3149
b49af68f 3150 slabp = page_get_slab(virt_to_head_page(objp));
871751e2
AV
3151 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3152 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3153 }
3154#endif
3dafccf2 3155 objp += obj_offset(cachep);
4f104934 3156 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3157 cachep->ctor(objp);
7ea466f2
TH
3158 if (ARCH_SLAB_MINALIGN &&
3159 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3160 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3161 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3162 }
1da177e4
LT
3163 return objp;
3164}
3165#else
3166#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3167#endif
3168
773ff60e 3169static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502
AM
3170{
3171 if (cachep == &cache_cache)
773ff60e 3172 return false;
8a8b6502 3173
4c13dd3b 3174 return should_failslab(obj_size(cachep), flags, cachep->flags);
8a8b6502
AM
3175}
3176
343e0d7a 3177static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3178{
b28a02de 3179 void *objp;
1da177e4
LT
3180 struct array_cache *ac;
3181
5c382300 3182 check_irq_off();
8a8b6502 3183
9a2dba4b 3184 ac = cpu_cache_get(cachep);
1da177e4
LT
3185 if (likely(ac->avail)) {
3186 STATS_INC_ALLOCHIT(cachep);
3187 ac->touched = 1;
e498be7d 3188 objp = ac->entry[--ac->avail];
1da177e4
LT
3189 } else {
3190 STATS_INC_ALLOCMISS(cachep);
3191 objp = cache_alloc_refill(cachep, flags);
ddbf2e83
O
3192 /*
3193 * the 'ac' may be updated by cache_alloc_refill(),
3194 * and kmemleak_erase() requires its correct value.
3195 */
3196 ac = cpu_cache_get(cachep);
1da177e4 3197 }
d5cff635
CM
3198 /*
3199 * To avoid a false negative, if an object that is in one of the
3200 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3201 * treat the array pointers as a reference to the object.
3202 */
f3d8b53a
O
3203 if (objp)
3204 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3205 return objp;
3206}
3207
e498be7d 3208#ifdef CONFIG_NUMA
c61afb18 3209/*
b2455396 3210 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3211 *
3212 * If we are in_interrupt, then process context, including cpusets and
3213 * mempolicy, may not apply and should not be used for allocation policy.
3214 */
3215static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3216{
3217 int nid_alloc, nid_here;
3218
765c4507 3219 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3220 return NULL;
7d6e6d09 3221 nid_alloc = nid_here = numa_mem_id();
c0ff7453 3222 get_mems_allowed();
c61afb18 3223 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3224 nid_alloc = cpuset_slab_spread_node();
c61afb18
PJ
3225 else if (current->mempolicy)
3226 nid_alloc = slab_node(current->mempolicy);
c0ff7453 3227 put_mems_allowed();
c61afb18 3228 if (nid_alloc != nid_here)
8b98c169 3229 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3230 return NULL;
3231}
3232
765c4507
CL
3233/*
3234 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3235 * certain node and fall back is permitted. First we scan all the
3236 * available nodelists for available objects. If that fails then we
3237 * perform an allocation without specifying a node. This allows the page
3238 * allocator to do its reclaim / fallback magic. We then insert the
3239 * slab into the proper nodelist and then allocate from it.
765c4507 3240 */
8c8cc2c1 3241static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3242{
8c8cc2c1
PE
3243 struct zonelist *zonelist;
3244 gfp_t local_flags;
dd1a239f 3245 struct zoneref *z;
54a6eb5c
MG
3246 struct zone *zone;
3247 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3248 void *obj = NULL;
3c517a61 3249 int nid;
8c8cc2c1
PE
3250
3251 if (flags & __GFP_THISNODE)
3252 return NULL;
3253
c0ff7453 3254 get_mems_allowed();
0e88460d 3255 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
6cb06229 3256 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3257
3c517a61
CL
3258retry:
3259 /*
3260 * Look through allowed nodes for objects available
3261 * from existing per node queues.
3262 */
54a6eb5c
MG
3263 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3264 nid = zone_to_nid(zone);
aedb0eb1 3265
54a6eb5c 3266 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3267 cache->nodelists[nid] &&
481c5346 3268 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3269 obj = ____cache_alloc_node(cache,
3270 flags | GFP_THISNODE, nid);
481c5346
CL
3271 if (obj)
3272 break;
3273 }
3c517a61
CL
3274 }
3275
cfce6604 3276 if (!obj) {
3c517a61
CL
3277 /*
3278 * This allocation will be performed within the constraints
3279 * of the current cpuset / memory policy requirements.
3280 * We may trigger various forms of reclaim on the allowed
3281 * set and go into memory reserves if necessary.
3282 */
dd47ea75
CL
3283 if (local_flags & __GFP_WAIT)
3284 local_irq_enable();
3285 kmem_flagcheck(cache, flags);
7d6e6d09 3286 obj = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3287 if (local_flags & __GFP_WAIT)
3288 local_irq_disable();
3c517a61
CL
3289 if (obj) {
3290 /*
3291 * Insert into the appropriate per node queues
3292 */
3293 nid = page_to_nid(virt_to_page(obj));
3294 if (cache_grow(cache, flags, nid, obj)) {
3295 obj = ____cache_alloc_node(cache,
3296 flags | GFP_THISNODE, nid);
3297 if (!obj)
3298 /*
3299 * Another processor may allocate the
3300 * objects in the slab since we are
3301 * not holding any locks.
3302 */
3303 goto retry;
3304 } else {
b6a60451 3305 /* cache_grow already freed obj */
3c517a61
CL
3306 obj = NULL;
3307 }
3308 }
aedb0eb1 3309 }
c0ff7453 3310 put_mems_allowed();
765c4507
CL
3311 return obj;
3312}
3313
e498be7d
CL
3314/*
3315 * A interface to enable slab creation on nodeid
1da177e4 3316 */
8b98c169 3317static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3318 int nodeid)
e498be7d
CL
3319{
3320 struct list_head *entry;
b28a02de
PE
3321 struct slab *slabp;
3322 struct kmem_list3 *l3;
3323 void *obj;
b28a02de
PE
3324 int x;
3325
3326 l3 = cachep->nodelists[nodeid];
3327 BUG_ON(!l3);
3328
a737b3e2 3329retry:
ca3b9b91 3330 check_irq_off();
b28a02de
PE
3331 spin_lock(&l3->list_lock);
3332 entry = l3->slabs_partial.next;
3333 if (entry == &l3->slabs_partial) {
3334 l3->free_touched = 1;
3335 entry = l3->slabs_free.next;
3336 if (entry == &l3->slabs_free)
3337 goto must_grow;
3338 }
3339
3340 slabp = list_entry(entry, struct slab, list);
3341 check_spinlock_acquired_node(cachep, nodeid);
3342 check_slabp(cachep, slabp);
3343
3344 STATS_INC_NODEALLOCS(cachep);
3345 STATS_INC_ACTIVE(cachep);
3346 STATS_SET_HIGH(cachep);
3347
3348 BUG_ON(slabp->inuse == cachep->num);
3349
78d382d7 3350 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3351 check_slabp(cachep, slabp);
3352 l3->free_objects--;
3353 /* move slabp to correct slabp list: */
3354 list_del(&slabp->list);
3355
a737b3e2 3356 if (slabp->free == BUFCTL_END)
b28a02de 3357 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3358 else
b28a02de 3359 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3360
b28a02de
PE
3361 spin_unlock(&l3->list_lock);
3362 goto done;
e498be7d 3363
a737b3e2 3364must_grow:
b28a02de 3365 spin_unlock(&l3->list_lock);
3c517a61 3366 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3367 if (x)
3368 goto retry;
1da177e4 3369
8c8cc2c1 3370 return fallback_alloc(cachep, flags);
e498be7d 3371
a737b3e2 3372done:
b28a02de 3373 return obj;
e498be7d 3374}
8c8cc2c1
PE
3375
3376/**
3377 * kmem_cache_alloc_node - Allocate an object on the specified node
3378 * @cachep: The cache to allocate from.
3379 * @flags: See kmalloc().
3380 * @nodeid: node number of the target node.
3381 * @caller: return address of caller, used for debug information
3382 *
3383 * Identical to kmem_cache_alloc but it will allocate memory on the given
3384 * node, which can improve the performance for cpu bound structures.
3385 *
3386 * Fallback to other node is possible if __GFP_THISNODE is not set.
3387 */
3388static __always_inline void *
3389__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3390 void *caller)
3391{
3392 unsigned long save_flags;
3393 void *ptr;
7d6e6d09 3394 int slab_node = numa_mem_id();
8c8cc2c1 3395
dcce284a 3396 flags &= gfp_allowed_mask;
7e85ee0c 3397
cf40bd16
NP
3398 lockdep_trace_alloc(flags);
3399
773ff60e 3400 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3401 return NULL;
3402
8c8cc2c1
PE
3403 cache_alloc_debugcheck_before(cachep, flags);
3404 local_irq_save(save_flags);
3405
eacbbae3 3406 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3407 nodeid = slab_node;
8c8cc2c1
PE
3408
3409 if (unlikely(!cachep->nodelists[nodeid])) {
3410 /* Node not bootstrapped yet */
3411 ptr = fallback_alloc(cachep, flags);
3412 goto out;
3413 }
3414
7d6e6d09 3415 if (nodeid == slab_node) {
8c8cc2c1
PE
3416 /*
3417 * Use the locally cached objects if possible.
3418 * However ____cache_alloc does not allow fallback
3419 * to other nodes. It may fail while we still have
3420 * objects on other nodes available.
3421 */
3422 ptr = ____cache_alloc(cachep, flags);
3423 if (ptr)
3424 goto out;
3425 }
3426 /* ___cache_alloc_node can fall back to other nodes */
3427 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3428 out:
3429 local_irq_restore(save_flags);
3430 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
d5cff635
CM
3431 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3432 flags);
8c8cc2c1 3433
c175eea4
PE
3434 if (likely(ptr))
3435 kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3436
d07dbea4
CL
3437 if (unlikely((flags & __GFP_ZERO) && ptr))
3438 memset(ptr, 0, obj_size(cachep));
3439
8c8cc2c1
PE
3440 return ptr;
3441}
3442
3443static __always_inline void *
3444__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3445{
3446 void *objp;
3447
3448 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3449 objp = alternate_node_alloc(cache, flags);
3450 if (objp)
3451 goto out;
3452 }
3453 objp = ____cache_alloc(cache, flags);
3454
3455 /*
3456 * We may just have run out of memory on the local node.
3457 * ____cache_alloc_node() knows how to locate memory on other nodes
3458 */
7d6e6d09
LS
3459 if (!objp)
3460 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3461
3462 out:
3463 return objp;
3464}
3465#else
3466
3467static __always_inline void *
3468__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3469{
3470 return ____cache_alloc(cachep, flags);
3471}
3472
3473#endif /* CONFIG_NUMA */
3474
3475static __always_inline void *
3476__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3477{
3478 unsigned long save_flags;
3479 void *objp;
3480
dcce284a 3481 flags &= gfp_allowed_mask;
7e85ee0c 3482
cf40bd16
NP
3483 lockdep_trace_alloc(flags);
3484
773ff60e 3485 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3486 return NULL;
3487
8c8cc2c1
PE
3488 cache_alloc_debugcheck_before(cachep, flags);
3489 local_irq_save(save_flags);
3490 objp = __do_cache_alloc(cachep, flags);
3491 local_irq_restore(save_flags);
3492 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
d5cff635
CM
3493 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3494 flags);
8c8cc2c1
PE
3495 prefetchw(objp);
3496
c175eea4
PE
3497 if (likely(objp))
3498 kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3499
d07dbea4
CL
3500 if (unlikely((flags & __GFP_ZERO) && objp))
3501 memset(objp, 0, obj_size(cachep));
3502
8c8cc2c1
PE
3503 return objp;
3504}
e498be7d
CL
3505
3506/*
3507 * Caller needs to acquire correct kmem_list's list_lock
3508 */
343e0d7a 3509static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3510 int node)
1da177e4
LT
3511{
3512 int i;
e498be7d 3513 struct kmem_list3 *l3;
1da177e4
LT
3514
3515 for (i = 0; i < nr_objects; i++) {
3516 void *objp = objpp[i];
3517 struct slab *slabp;
1da177e4 3518
6ed5eb22 3519 slabp = virt_to_slab(objp);
ff69416e 3520 l3 = cachep->nodelists[node];
1da177e4 3521 list_del(&slabp->list);
ff69416e 3522 check_spinlock_acquired_node(cachep, node);
1da177e4 3523 check_slabp(cachep, slabp);
78d382d7 3524 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3525 STATS_DEC_ACTIVE(cachep);
e498be7d 3526 l3->free_objects++;
1da177e4
LT
3527 check_slabp(cachep, slabp);
3528
3529 /* fixup slab chains */
3530 if (slabp->inuse == 0) {
e498be7d
CL
3531 if (l3->free_objects > l3->free_limit) {
3532 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3533 /* No need to drop any previously held
3534 * lock here, even if we have a off-slab slab
3535 * descriptor it is guaranteed to come from
3536 * a different cache, refer to comments before
3537 * alloc_slabmgmt.
3538 */
1da177e4
LT
3539 slab_destroy(cachep, slabp);
3540 } else {
e498be7d 3541 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3542 }
3543 } else {
3544 /* Unconditionally move a slab to the end of the
3545 * partial list on free - maximum time for the
3546 * other objects to be freed, too.
3547 */
e498be7d 3548 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3549 }
3550 }
3551}
3552
343e0d7a 3553static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3554{
3555 int batchcount;
e498be7d 3556 struct kmem_list3 *l3;
7d6e6d09 3557 int node = numa_mem_id();
1da177e4
LT
3558
3559 batchcount = ac->batchcount;
3560#if DEBUG
3561 BUG_ON(!batchcount || batchcount > ac->avail);
3562#endif
3563 check_irq_off();
ff69416e 3564 l3 = cachep->nodelists[node];
873623df 3565 spin_lock(&l3->list_lock);
e498be7d
CL
3566 if (l3->shared) {
3567 struct array_cache *shared_array = l3->shared;
b28a02de 3568 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3569 if (max) {
3570 if (batchcount > max)
3571 batchcount = max;
e498be7d 3572 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3573 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3574 shared_array->avail += batchcount;
3575 goto free_done;
3576 }
3577 }
3578
ff69416e 3579 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3580free_done:
1da177e4
LT
3581#if STATS
3582 {
3583 int i = 0;
3584 struct list_head *p;
3585
e498be7d
CL
3586 p = l3->slabs_free.next;
3587 while (p != &(l3->slabs_free)) {
1da177e4
LT
3588 struct slab *slabp;
3589
3590 slabp = list_entry(p, struct slab, list);
3591 BUG_ON(slabp->inuse);
3592
3593 i++;
3594 p = p->next;
3595 }
3596 STATS_SET_FREEABLE(cachep, i);
3597 }
3598#endif
e498be7d 3599 spin_unlock(&l3->list_lock);
1da177e4 3600 ac->avail -= batchcount;
a737b3e2 3601 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3602}
3603
3604/*
a737b3e2
AM
3605 * Release an obj back to its cache. If the obj has a constructed state, it must
3606 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3607 */
a947eb95
SS
3608static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3609 void *caller)
1da177e4 3610{
9a2dba4b 3611 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3612
3613 check_irq_off();
d5cff635 3614 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3615 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3616
c175eea4
PE
3617 kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3618
1807a1aa
SS
3619 /*
3620 * Skip calling cache_free_alien() when the platform is not numa.
3621 * This will avoid cache misses that happen while accessing slabp (which
3622 * is per page memory reference) to get nodeid. Instead use a global
3623 * variable to skip the call, which is mostly likely to be present in
3624 * the cache.
3625 */
b6e68bc1 3626 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3627 return;
3628
1da177e4
LT
3629 if (likely(ac->avail < ac->limit)) {
3630 STATS_INC_FREEHIT(cachep);
e498be7d 3631 ac->entry[ac->avail++] = objp;
1da177e4
LT
3632 return;
3633 } else {
3634 STATS_INC_FREEMISS(cachep);
3635 cache_flusharray(cachep, ac);
e498be7d 3636 ac->entry[ac->avail++] = objp;
1da177e4
LT
3637 }
3638}
3639
3640/**
3641 * kmem_cache_alloc - Allocate an object
3642 * @cachep: The cache to allocate from.
3643 * @flags: See kmalloc().
3644 *
3645 * Allocate an object from this cache. The flags are only relevant
3646 * if the cache has no available objects.
3647 */
343e0d7a 3648void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3649{
36555751
EGM
3650 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3651
ca2b84cb
EGM
3652 trace_kmem_cache_alloc(_RET_IP_, ret,
3653 obj_size(cachep), cachep->buffer_size, flags);
36555751
EGM
3654
3655 return ret;
1da177e4
LT
3656}
3657EXPORT_SYMBOL(kmem_cache_alloc);
3658
0f24f128 3659#ifdef CONFIG_TRACING
85beb586
SR
3660void *
3661kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
36555751 3662{
85beb586
SR
3663 void *ret;
3664
3665 ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3666
3667 trace_kmalloc(_RET_IP_, ret,
3668 size, slab_buffer_size(cachep), flags);
3669 return ret;
36555751 3670}
85beb586 3671EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3672#endif
3673
1da177e4 3674#ifdef CONFIG_NUMA
8b98c169
CH
3675void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3676{
36555751
EGM
3677 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3678 __builtin_return_address(0));
3679
ca2b84cb
EGM
3680 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3681 obj_size(cachep), cachep->buffer_size,
3682 flags, nodeid);
36555751
EGM
3683
3684 return ret;
8b98c169 3685}
1da177e4
LT
3686EXPORT_SYMBOL(kmem_cache_alloc_node);
3687
0f24f128 3688#ifdef CONFIG_TRACING
85beb586
SR
3689void *kmem_cache_alloc_node_trace(size_t size,
3690 struct kmem_cache *cachep,
3691 gfp_t flags,
3692 int nodeid)
36555751 3693{
85beb586
SR
3694 void *ret;
3695
3696 ret = __cache_alloc_node(cachep, flags, nodeid,
36555751 3697 __builtin_return_address(0));
85beb586
SR
3698 trace_kmalloc_node(_RET_IP_, ret,
3699 size, slab_buffer_size(cachep),
3700 flags, nodeid);
3701 return ret;
36555751 3702}
85beb586 3703EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3704#endif
3705
8b98c169
CH
3706static __always_inline void *
3707__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3708{
343e0d7a 3709 struct kmem_cache *cachep;
97e2bde4
MS
3710
3711 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3712 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3713 return cachep;
85beb586 3714 return kmem_cache_alloc_node_trace(size, cachep, flags, node);
97e2bde4 3715}
8b98c169 3716
0bb38a5c 3717#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3718void *__kmalloc_node(size_t size, gfp_t flags, int node)
3719{
3720 return __do_kmalloc_node(size, flags, node,
3721 __builtin_return_address(0));
3722}
dbe5e69d 3723EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3724
3725void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3726 int node, unsigned long caller)
8b98c169 3727{
ce71e27c 3728 return __do_kmalloc_node(size, flags, node, (void *)caller);
8b98c169
CH
3729}
3730EXPORT_SYMBOL(__kmalloc_node_track_caller);
3731#else
3732void *__kmalloc_node(size_t size, gfp_t flags, int node)
3733{
3734 return __do_kmalloc_node(size, flags, node, NULL);
3735}
3736EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3737#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3738#endif /* CONFIG_NUMA */
1da177e4
LT
3739
3740/**
800590f5 3741 * __do_kmalloc - allocate memory
1da177e4 3742 * @size: how many bytes of memory are required.
800590f5 3743 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3744 * @caller: function caller for debug tracking of the caller
1da177e4 3745 */
7fd6b141
PE
3746static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3747 void *caller)
1da177e4 3748{
343e0d7a 3749 struct kmem_cache *cachep;
36555751 3750 void *ret;
1da177e4 3751
97e2bde4
MS
3752 /* If you want to save a few bytes .text space: replace
3753 * __ with kmem_.
3754 * Then kmalloc uses the uninlined functions instead of the inline
3755 * functions.
3756 */
3757 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3758 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3759 return cachep;
36555751
EGM
3760 ret = __cache_alloc(cachep, flags, caller);
3761
ca2b84cb
EGM
3762 trace_kmalloc((unsigned long) caller, ret,
3763 size, cachep->buffer_size, flags);
36555751
EGM
3764
3765 return ret;
7fd6b141
PE
3766}
3767
7fd6b141 3768
0bb38a5c 3769#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3770void *__kmalloc(size_t size, gfp_t flags)
3771{
871751e2 3772 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3773}
3774EXPORT_SYMBOL(__kmalloc);
3775
ce71e27c 3776void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3777{
ce71e27c 3778 return __do_kmalloc(size, flags, (void *)caller);
7fd6b141
PE
3779}
3780EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3781
3782#else
3783void *__kmalloc(size_t size, gfp_t flags)
3784{
3785 return __do_kmalloc(size, flags, NULL);
3786}
3787EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3788#endif
3789
1da177e4
LT
3790/**
3791 * kmem_cache_free - Deallocate an object
3792 * @cachep: The cache the allocation was from.
3793 * @objp: The previously allocated object.
3794 *
3795 * Free an object which was previously allocated from this
3796 * cache.
3797 */
343e0d7a 3798void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3799{
3800 unsigned long flags;
3801
3802 local_irq_save(flags);
898552c9 3803 debug_check_no_locks_freed(objp, obj_size(cachep));
3ac7fe5a
TG
3804 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3805 debug_check_no_obj_freed(objp, obj_size(cachep));
a947eb95 3806 __cache_free(cachep, objp, __builtin_return_address(0));
1da177e4 3807 local_irq_restore(flags);
36555751 3808
ca2b84cb 3809 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3810}
3811EXPORT_SYMBOL(kmem_cache_free);
3812
1da177e4
LT
3813/**
3814 * kfree - free previously allocated memory
3815 * @objp: pointer returned by kmalloc.
3816 *
80e93eff
PE
3817 * If @objp is NULL, no operation is performed.
3818 *
1da177e4
LT
3819 * Don't free memory not originally allocated by kmalloc()
3820 * or you will run into trouble.
3821 */
3822void kfree(const void *objp)
3823{
343e0d7a 3824 struct kmem_cache *c;
1da177e4
LT
3825 unsigned long flags;
3826
2121db74
PE
3827 trace_kfree(_RET_IP_, objp);
3828
6cb8f913 3829 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3830 return;
3831 local_irq_save(flags);
3832 kfree_debugcheck(objp);
6ed5eb22 3833 c = virt_to_cache(objp);
f9b8404c 3834 debug_check_no_locks_freed(objp, obj_size(c));
3ac7fe5a 3835 debug_check_no_obj_freed(objp, obj_size(c));
a947eb95 3836 __cache_free(c, (void *)objp, __builtin_return_address(0));
1da177e4
LT
3837 local_irq_restore(flags);
3838}
3839EXPORT_SYMBOL(kfree);
3840
343e0d7a 3841unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3842{
3dafccf2 3843 return obj_size(cachep);
1da177e4
LT
3844}
3845EXPORT_SYMBOL(kmem_cache_size);
3846
e498be7d 3847/*
183ff22b 3848 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3849 */
83b519e8 3850static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3851{
3852 int node;
3853 struct kmem_list3 *l3;
cafeb02e 3854 struct array_cache *new_shared;
3395ee05 3855 struct array_cache **new_alien = NULL;
e498be7d 3856
9c09a95c 3857 for_each_online_node(node) {
cafeb02e 3858
3395ee05 3859 if (use_alien_caches) {
83b519e8 3860 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3861 if (!new_alien)
3862 goto fail;
3863 }
cafeb02e 3864
63109846
ED
3865 new_shared = NULL;
3866 if (cachep->shared) {
3867 new_shared = alloc_arraycache(node,
0718dc2a 3868 cachep->shared*cachep->batchcount,
83b519e8 3869 0xbaadf00d, gfp);
63109846
ED
3870 if (!new_shared) {
3871 free_alien_cache(new_alien);
3872 goto fail;
3873 }
0718dc2a 3874 }
cafeb02e 3875
a737b3e2
AM
3876 l3 = cachep->nodelists[node];
3877 if (l3) {
cafeb02e
CL
3878 struct array_cache *shared = l3->shared;
3879
e498be7d
CL
3880 spin_lock_irq(&l3->list_lock);
3881
cafeb02e 3882 if (shared)
0718dc2a
CL
3883 free_block(cachep, shared->entry,
3884 shared->avail, node);
e498be7d 3885
cafeb02e
CL
3886 l3->shared = new_shared;
3887 if (!l3->alien) {
e498be7d
CL
3888 l3->alien = new_alien;
3889 new_alien = NULL;
3890 }
b28a02de 3891 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3892 cachep->batchcount + cachep->num;
e498be7d 3893 spin_unlock_irq(&l3->list_lock);
cafeb02e 3894 kfree(shared);
e498be7d
CL
3895 free_alien_cache(new_alien);
3896 continue;
3897 }
83b519e8 3898 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
0718dc2a
CL
3899 if (!l3) {
3900 free_alien_cache(new_alien);
3901 kfree(new_shared);
e498be7d 3902 goto fail;
0718dc2a 3903 }
e498be7d
CL
3904
3905 kmem_list3_init(l3);
3906 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3907 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3908 l3->shared = new_shared;
e498be7d 3909 l3->alien = new_alien;
b28a02de 3910 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3911 cachep->batchcount + cachep->num;
e498be7d
CL
3912 cachep->nodelists[node] = l3;
3913 }
cafeb02e 3914 return 0;
0718dc2a 3915
a737b3e2 3916fail:
0718dc2a
CL
3917 if (!cachep->next.next) {
3918 /* Cache is not active yet. Roll back what we did */
3919 node--;
3920 while (node >= 0) {
3921 if (cachep->nodelists[node]) {
3922 l3 = cachep->nodelists[node];
3923
3924 kfree(l3->shared);
3925 free_alien_cache(l3->alien);
3926 kfree(l3);
3927 cachep->nodelists[node] = NULL;
3928 }
3929 node--;
3930 }
3931 }
cafeb02e 3932 return -ENOMEM;
e498be7d
CL
3933}
3934
1da177e4 3935struct ccupdate_struct {
343e0d7a 3936 struct kmem_cache *cachep;
acfe7d74 3937 struct array_cache *new[0];
1da177e4
LT
3938};
3939
3940static void do_ccupdate_local(void *info)
3941{
a737b3e2 3942 struct ccupdate_struct *new = info;
1da177e4
LT
3943 struct array_cache *old;
3944
3945 check_irq_off();
9a2dba4b 3946 old = cpu_cache_get(new->cachep);
e498be7d 3947
1da177e4
LT
3948 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3949 new->new[smp_processor_id()] = old;
3950}
3951
b5d8ca7c 3952/* Always called with the cache_chain_mutex held */
a737b3e2 3953static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3954 int batchcount, int shared, gfp_t gfp)
1da177e4 3955{
d2e7b7d0 3956 struct ccupdate_struct *new;
2ed3a4ef 3957 int i;
1da177e4 3958
acfe7d74
ED
3959 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3960 gfp);
d2e7b7d0
SS
3961 if (!new)
3962 return -ENOMEM;
3963
e498be7d 3964 for_each_online_cpu(i) {
7d6e6d09 3965 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 3966 batchcount, gfp);
d2e7b7d0 3967 if (!new->new[i]) {
b28a02de 3968 for (i--; i >= 0; i--)
d2e7b7d0
SS
3969 kfree(new->new[i]);
3970 kfree(new);
e498be7d 3971 return -ENOMEM;
1da177e4
LT
3972 }
3973 }
d2e7b7d0 3974 new->cachep = cachep;
1da177e4 3975
15c8b6c1 3976 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 3977
1da177e4 3978 check_irq_on();
1da177e4
LT
3979 cachep->batchcount = batchcount;
3980 cachep->limit = limit;
e498be7d 3981 cachep->shared = shared;
1da177e4 3982
e498be7d 3983 for_each_online_cpu(i) {
d2e7b7d0 3984 struct array_cache *ccold = new->new[i];
1da177e4
LT
3985 if (!ccold)
3986 continue;
7d6e6d09
LS
3987 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
3988 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3989 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
1da177e4
LT
3990 kfree(ccold);
3991 }
d2e7b7d0 3992 kfree(new);
83b519e8 3993 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
3994}
3995
b5d8ca7c 3996/* Called with cache_chain_mutex held always */
83b519e8 3997static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3998{
3999 int err;
4000 int limit, shared;
4001
a737b3e2
AM
4002 /*
4003 * The head array serves three purposes:
1da177e4
LT
4004 * - create a LIFO ordering, i.e. return objects that are cache-warm
4005 * - reduce the number of spinlock operations.
a737b3e2 4006 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4007 * bufctl chains: array operations are cheaper.
4008 * The numbers are guessed, we should auto-tune as described by
4009 * Bonwick.
4010 */
3dafccf2 4011 if (cachep->buffer_size > 131072)
1da177e4 4012 limit = 1;
3dafccf2 4013 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 4014 limit = 8;
3dafccf2 4015 else if (cachep->buffer_size > 1024)
1da177e4 4016 limit = 24;
3dafccf2 4017 else if (cachep->buffer_size > 256)
1da177e4
LT
4018 limit = 54;
4019 else
4020 limit = 120;
4021
a737b3e2
AM
4022 /*
4023 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4024 * allocation behaviour: Most allocs on one cpu, most free operations
4025 * on another cpu. For these cases, an efficient object passing between
4026 * cpus is necessary. This is provided by a shared array. The array
4027 * replaces Bonwick's magazine layer.
4028 * On uniprocessor, it's functionally equivalent (but less efficient)
4029 * to a larger limit. Thus disabled by default.
4030 */
4031 shared = 0;
364fbb29 4032 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4033 shared = 8;
1da177e4
LT
4034
4035#if DEBUG
a737b3e2
AM
4036 /*
4037 * With debugging enabled, large batchcount lead to excessively long
4038 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4039 */
4040 if (limit > 32)
4041 limit = 32;
4042#endif
83b519e8 4043 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
1da177e4
LT
4044 if (err)
4045 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4046 cachep->name, -err);
2ed3a4ef 4047 return err;
1da177e4
LT
4048}
4049
1b55253a
CL
4050/*
4051 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4052 * necessary. Note that the l3 listlock also protects the array_cache
4053 * if drain_array() is used on the shared array.
1b55253a 4054 */
68a1b195 4055static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
1b55253a 4056 struct array_cache *ac, int force, int node)
1da177e4
LT
4057{
4058 int tofree;
4059
1b55253a
CL
4060 if (!ac || !ac->avail)
4061 return;
1da177e4
LT
4062 if (ac->touched && !force) {
4063 ac->touched = 0;
b18e7e65 4064 } else {
1b55253a 4065 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4066 if (ac->avail) {
4067 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4068 if (tofree > ac->avail)
4069 tofree = (ac->avail + 1) / 2;
4070 free_block(cachep, ac->entry, tofree, node);
4071 ac->avail -= tofree;
4072 memmove(ac->entry, &(ac->entry[tofree]),
4073 sizeof(void *) * ac->avail);
4074 }
1b55253a 4075 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4076 }
4077}
4078
4079/**
4080 * cache_reap - Reclaim memory from caches.
05fb6bf0 4081 * @w: work descriptor
1da177e4
LT
4082 *
4083 * Called from workqueue/eventd every few seconds.
4084 * Purpose:
4085 * - clear the per-cpu caches for this CPU.
4086 * - return freeable pages to the main free memory pool.
4087 *
a737b3e2
AM
4088 * If we cannot acquire the cache chain mutex then just give up - we'll try
4089 * again on the next iteration.
1da177e4 4090 */
7c5cae36 4091static void cache_reap(struct work_struct *w)
1da177e4 4092{
7a7c381d 4093 struct kmem_cache *searchp;
e498be7d 4094 struct kmem_list3 *l3;
7d6e6d09 4095 int node = numa_mem_id();
bf6aede7 4096 struct delayed_work *work = to_delayed_work(w);
1da177e4 4097
7c5cae36 4098 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4099 /* Give up. Setup the next iteration. */
7c5cae36 4100 goto out;
1da177e4 4101
7a7c381d 4102 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4103 check_irq_on();
4104
35386e3b
CL
4105 /*
4106 * We only take the l3 lock if absolutely necessary and we
4107 * have established with reasonable certainty that
4108 * we can do some work if the lock was obtained.
4109 */
aab2207c 4110 l3 = searchp->nodelists[node];
35386e3b 4111
8fce4d8e 4112 reap_alien(searchp, l3);
1da177e4 4113
aab2207c 4114 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4115
35386e3b
CL
4116 /*
4117 * These are racy checks but it does not matter
4118 * if we skip one check or scan twice.
4119 */
e498be7d 4120 if (time_after(l3->next_reap, jiffies))
35386e3b 4121 goto next;
1da177e4 4122
e498be7d 4123 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4124
aab2207c 4125 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4126
ed11d9eb 4127 if (l3->free_touched)
e498be7d 4128 l3->free_touched = 0;
ed11d9eb
CL
4129 else {
4130 int freed;
1da177e4 4131
ed11d9eb
CL
4132 freed = drain_freelist(searchp, l3, (l3->free_limit +
4133 5 * searchp->num - 1) / (5 * searchp->num));
4134 STATS_ADD_REAPED(searchp, freed);
4135 }
35386e3b 4136next:
1da177e4
LT
4137 cond_resched();
4138 }
4139 check_irq_on();
fc0abb14 4140 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4141 next_reap_node();
7c5cae36 4142out:
a737b3e2 4143 /* Set up the next iteration */
7c5cae36 4144 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4145}
4146
158a9624 4147#ifdef CONFIG_SLABINFO
1da177e4 4148
85289f98 4149static void print_slabinfo_header(struct seq_file *m)
1da177e4 4150{
85289f98
PE
4151 /*
4152 * Output format version, so at least we can change it
4153 * without _too_ many complaints.
4154 */
1da177e4 4155#if STATS
85289f98 4156 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4157#else
85289f98 4158 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4159#endif
85289f98
PE
4160 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4161 "<objperslab> <pagesperslab>");
4162 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4163 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4164#if STATS
85289f98 4165 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4166 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4167 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4168#endif
85289f98
PE
4169 seq_putc(m, '\n');
4170}
4171
4172static void *s_start(struct seq_file *m, loff_t *pos)
4173{
4174 loff_t n = *pos;
85289f98 4175
fc0abb14 4176 mutex_lock(&cache_chain_mutex);
85289f98
PE
4177 if (!n)
4178 print_slabinfo_header(m);
b92151ba
PE
4179
4180 return seq_list_start(&cache_chain, *pos);
1da177e4
LT
4181}
4182
4183static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4184{
b92151ba 4185 return seq_list_next(p, &cache_chain, pos);
1da177e4
LT
4186}
4187
4188static void s_stop(struct seq_file *m, void *p)
4189{
fc0abb14 4190 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4191}
4192
4193static int s_show(struct seq_file *m, void *p)
4194{
b92151ba 4195 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
b28a02de
PE
4196 struct slab *slabp;
4197 unsigned long active_objs;
4198 unsigned long num_objs;
4199 unsigned long active_slabs = 0;
4200 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4201 const char *name;
1da177e4 4202 char *error = NULL;
e498be7d
CL
4203 int node;
4204 struct kmem_list3 *l3;
1da177e4 4205
1da177e4
LT
4206 active_objs = 0;
4207 num_slabs = 0;
e498be7d
CL
4208 for_each_online_node(node) {
4209 l3 = cachep->nodelists[node];
4210 if (!l3)
4211 continue;
4212
ca3b9b91
RT
4213 check_irq_on();
4214 spin_lock_irq(&l3->list_lock);
e498be7d 4215
7a7c381d 4216 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4217 if (slabp->inuse != cachep->num && !error)
4218 error = "slabs_full accounting error";
4219 active_objs += cachep->num;
4220 active_slabs++;
4221 }
7a7c381d 4222 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4223 if (slabp->inuse == cachep->num && !error)
4224 error = "slabs_partial inuse accounting error";
4225 if (!slabp->inuse && !error)
4226 error = "slabs_partial/inuse accounting error";
4227 active_objs += slabp->inuse;
4228 active_slabs++;
4229 }
7a7c381d 4230 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4231 if (slabp->inuse && !error)
4232 error = "slabs_free/inuse accounting error";
4233 num_slabs++;
4234 }
4235 free_objects += l3->free_objects;
4484ebf1
RT
4236 if (l3->shared)
4237 shared_avail += l3->shared->avail;
e498be7d 4238
ca3b9b91 4239 spin_unlock_irq(&l3->list_lock);
1da177e4 4240 }
b28a02de
PE
4241 num_slabs += active_slabs;
4242 num_objs = num_slabs * cachep->num;
e498be7d 4243 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4244 error = "free_objects accounting error";
4245
b28a02de 4246 name = cachep->name;
1da177e4
LT
4247 if (error)
4248 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4249
4250 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4251 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4252 cachep->num, (1 << cachep->gfporder));
1da177e4 4253 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4254 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4255 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4256 active_slabs, num_slabs, shared_avail);
1da177e4 4257#if STATS
b28a02de 4258 { /* list3 stats */
1da177e4
LT
4259 unsigned long high = cachep->high_mark;
4260 unsigned long allocs = cachep->num_allocations;
4261 unsigned long grown = cachep->grown;
4262 unsigned long reaped = cachep->reaped;
4263 unsigned long errors = cachep->errors;
4264 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4265 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4266 unsigned long node_frees = cachep->node_frees;
fb7faf33 4267 unsigned long overflows = cachep->node_overflow;
1da177e4 4268
e92dd4fd
JP
4269 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4270 "%4lu %4lu %4lu %4lu %4lu",
4271 allocs, high, grown,
4272 reaped, errors, max_freeable, node_allocs,
4273 node_frees, overflows);
1da177e4
LT
4274 }
4275 /* cpu stats */
4276 {
4277 unsigned long allochit = atomic_read(&cachep->allochit);
4278 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4279 unsigned long freehit = atomic_read(&cachep->freehit);
4280 unsigned long freemiss = atomic_read(&cachep->freemiss);
4281
4282 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4283 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4284 }
4285#endif
4286 seq_putc(m, '\n');
1da177e4
LT
4287 return 0;
4288}
4289
4290/*
4291 * slabinfo_op - iterator that generates /proc/slabinfo
4292 *
4293 * Output layout:
4294 * cache-name
4295 * num-active-objs
4296 * total-objs
4297 * object size
4298 * num-active-slabs
4299 * total-slabs
4300 * num-pages-per-slab
4301 * + further values on SMP and with statistics enabled
4302 */
4303
7b3c3a50 4304static const struct seq_operations slabinfo_op = {
b28a02de
PE
4305 .start = s_start,
4306 .next = s_next,
4307 .stop = s_stop,
4308 .show = s_show,
1da177e4
LT
4309};
4310
4311#define MAX_SLABINFO_WRITE 128
4312/**
4313 * slabinfo_write - Tuning for the slab allocator
4314 * @file: unused
4315 * @buffer: user buffer
4316 * @count: data length
4317 * @ppos: unused
4318 */
68a1b195 4319static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4320 size_t count, loff_t *ppos)
1da177e4 4321{
b28a02de 4322 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4323 int limit, batchcount, shared, res;
7a7c381d 4324 struct kmem_cache *cachep;
b28a02de 4325
1da177e4
LT
4326 if (count > MAX_SLABINFO_WRITE)
4327 return -EINVAL;
4328 if (copy_from_user(&kbuf, buffer, count))
4329 return -EFAULT;
b28a02de 4330 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4331
4332 tmp = strchr(kbuf, ' ');
4333 if (!tmp)
4334 return -EINVAL;
4335 *tmp = '\0';
4336 tmp++;
4337 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4338 return -EINVAL;
4339
4340 /* Find the cache in the chain of caches. */
fc0abb14 4341 mutex_lock(&cache_chain_mutex);
1da177e4 4342 res = -EINVAL;
7a7c381d 4343 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4344 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4345 if (limit < 1 || batchcount < 1 ||
4346 batchcount > limit || shared < 0) {
e498be7d 4347 res = 0;
1da177e4 4348 } else {
e498be7d 4349 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4350 batchcount, shared,
4351 GFP_KERNEL);
1da177e4
LT
4352 }
4353 break;
4354 }
4355 }
fc0abb14 4356 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4357 if (res >= 0)
4358 res = count;
4359 return res;
4360}
871751e2 4361
7b3c3a50
AD
4362static int slabinfo_open(struct inode *inode, struct file *file)
4363{
4364 return seq_open(file, &slabinfo_op);
4365}
4366
4367static const struct file_operations proc_slabinfo_operations = {
4368 .open = slabinfo_open,
4369 .read = seq_read,
4370 .write = slabinfo_write,
4371 .llseek = seq_lseek,
4372 .release = seq_release,
4373};
4374
871751e2
AV
4375#ifdef CONFIG_DEBUG_SLAB_LEAK
4376
4377static void *leaks_start(struct seq_file *m, loff_t *pos)
4378{
871751e2 4379 mutex_lock(&cache_chain_mutex);
b92151ba 4380 return seq_list_start(&cache_chain, *pos);
871751e2
AV
4381}
4382
4383static inline int add_caller(unsigned long *n, unsigned long v)
4384{
4385 unsigned long *p;
4386 int l;
4387 if (!v)
4388 return 1;
4389 l = n[1];
4390 p = n + 2;
4391 while (l) {
4392 int i = l/2;
4393 unsigned long *q = p + 2 * i;
4394 if (*q == v) {
4395 q[1]++;
4396 return 1;
4397 }
4398 if (*q > v) {
4399 l = i;
4400 } else {
4401 p = q + 2;
4402 l -= i + 1;
4403 }
4404 }
4405 if (++n[1] == n[0])
4406 return 0;
4407 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4408 p[0] = v;
4409 p[1] = 1;
4410 return 1;
4411}
4412
4413static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4414{
4415 void *p;
4416 int i;
4417 if (n[0] == n[1])
4418 return;
4419 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4420 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4421 continue;
4422 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4423 return;
4424 }
4425}
4426
4427static void show_symbol(struct seq_file *m, unsigned long address)
4428{
4429#ifdef CONFIG_KALLSYMS
871751e2 4430 unsigned long offset, size;
9281acea 4431 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4432
a5c43dae 4433 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4434 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4435 if (modname[0])
871751e2
AV
4436 seq_printf(m, " [%s]", modname);
4437 return;
4438 }
4439#endif
4440 seq_printf(m, "%p", (void *)address);
4441}
4442
4443static int leaks_show(struct seq_file *m, void *p)
4444{
b92151ba 4445 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
871751e2
AV
4446 struct slab *slabp;
4447 struct kmem_list3 *l3;
4448 const char *name;
4449 unsigned long *n = m->private;
4450 int node;
4451 int i;
4452
4453 if (!(cachep->flags & SLAB_STORE_USER))
4454 return 0;
4455 if (!(cachep->flags & SLAB_RED_ZONE))
4456 return 0;
4457
4458 /* OK, we can do it */
4459
4460 n[1] = 0;
4461
4462 for_each_online_node(node) {
4463 l3 = cachep->nodelists[node];
4464 if (!l3)
4465 continue;
4466
4467 check_irq_on();
4468 spin_lock_irq(&l3->list_lock);
4469
7a7c381d 4470 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4471 handle_slab(n, cachep, slabp);
7a7c381d 4472 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4473 handle_slab(n, cachep, slabp);
871751e2
AV
4474 spin_unlock_irq(&l3->list_lock);
4475 }
4476 name = cachep->name;
4477 if (n[0] == n[1]) {
4478 /* Increase the buffer size */
4479 mutex_unlock(&cache_chain_mutex);
4480 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4481 if (!m->private) {
4482 /* Too bad, we are really out */
4483 m->private = n;
4484 mutex_lock(&cache_chain_mutex);
4485 return -ENOMEM;
4486 }
4487 *(unsigned long *)m->private = n[0] * 2;
4488 kfree(n);
4489 mutex_lock(&cache_chain_mutex);
4490 /* Now make sure this entry will be retried */
4491 m->count = m->size;
4492 return 0;
4493 }
4494 for (i = 0; i < n[1]; i++) {
4495 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4496 show_symbol(m, n[2*i+2]);
4497 seq_putc(m, '\n');
4498 }
d2e7b7d0 4499
871751e2
AV
4500 return 0;
4501}
4502
a0ec95a8 4503static const struct seq_operations slabstats_op = {
871751e2
AV
4504 .start = leaks_start,
4505 .next = s_next,
4506 .stop = s_stop,
4507 .show = leaks_show,
4508};
a0ec95a8
AD
4509
4510static int slabstats_open(struct inode *inode, struct file *file)
4511{
4512 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4513 int ret = -ENOMEM;
4514 if (n) {
4515 ret = seq_open(file, &slabstats_op);
4516 if (!ret) {
4517 struct seq_file *m = file->private_data;
4518 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4519 m->private = n;
4520 n = NULL;
4521 }
4522 kfree(n);
4523 }
4524 return ret;
4525}
4526
4527static const struct file_operations proc_slabstats_operations = {
4528 .open = slabstats_open,
4529 .read = seq_read,
4530 .llseek = seq_lseek,
4531 .release = seq_release_private,
4532};
4533#endif
4534
4535static int __init slab_proc_init(void)
4536{
7b3c3a50 4537 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
a0ec95a8
AD
4538#ifdef CONFIG_DEBUG_SLAB_LEAK
4539 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4540#endif
a0ec95a8
AD
4541 return 0;
4542}
4543module_init(slab_proc_init);
1da177e4
LT
4544#endif
4545
00e145b6
MS
4546/**
4547 * ksize - get the actual amount of memory allocated for a given object
4548 * @objp: Pointer to the object
4549 *
4550 * kmalloc may internally round up allocations and return more memory
4551 * than requested. ksize() can be used to determine the actual amount of
4552 * memory allocated. The caller may use this additional memory, even though
4553 * a smaller amount of memory was initially specified with the kmalloc call.
4554 * The caller must guarantee that objp points to a valid object previously
4555 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4556 * must not be freed during the duration of the call.
4557 */
fd76bab2 4558size_t ksize(const void *objp)
1da177e4 4559{
ef8b4520
CL
4560 BUG_ON(!objp);
4561 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4562 return 0;
1da177e4 4563
6ed5eb22 4564 return obj_size(virt_to_cache(objp));
1da177e4 4565}
b1aabecd 4566EXPORT_SYMBOL(ksize);