Slab allocators: consistent ZERO_SIZE_PTR support and NULL result semantics
[linux-2.6-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
1da177e4
LT
98#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
543537bd 105#include <linux/string.h>
138ae663 106#include <linux/uaccess.h>
e498be7d 107#include <linux/nodemask.h>
dc85da15 108#include <linux/mempolicy.h>
fc0abb14 109#include <linux/mutex.h>
8a8b6502 110#include <linux/fault-inject.h>
e7eebaf6 111#include <linux/rtmutex.h>
6a2d7a95 112#include <linux/reciprocal_div.h>
1da177e4 113
1da177e4
LT
114#include <asm/cacheflush.h>
115#include <asm/tlbflush.h>
116#include <asm/page.h>
117
118/*
50953fe9 119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define DEBUG 1
130#define STATS 1
131#define FORCED_DEBUG 1
132#else
133#define DEBUG 0
134#define STATS 0
135#define FORCED_DEBUG 0
136#endif
137
1da177e4
LT
138/* Shouldn't this be in a header file somewhere? */
139#define BYTES_PER_WORD sizeof(void *)
87a927c7 140#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4
LT
141
142#ifndef cache_line_size
143#define cache_line_size() L1_CACHE_BYTES
144#endif
145
146#ifndef ARCH_KMALLOC_MINALIGN
147/*
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
b46b8f19
DW
152 * alignment larger than the alignment of a 64-bit integer.
153 * ARCH_KMALLOC_MINALIGN allows that.
154 * Note that increasing this value may disable some debug features.
1da177e4 155 */
b46b8f19 156#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
1da177e4
LT
157#endif
158
159#ifndef ARCH_SLAB_MINALIGN
160/*
161 * Enforce a minimum alignment for all caches.
162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
165 * some debug features.
166 */
167#define ARCH_SLAB_MINALIGN 0
168#endif
169
170#ifndef ARCH_KMALLOC_FLAGS
171#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
172#endif
173
174/* Legal flag mask for kmem_cache_create(). */
175#if DEBUG
50953fe9 176# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 177 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 178 SLAB_CACHE_DMA | \
5af60839 179 SLAB_STORE_USER | \
1da177e4 180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 181 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 182#else
ac2b898c 183# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 184 SLAB_CACHE_DMA | \
1da177e4 185 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 186 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
187#endif
188
189/*
190 * kmem_bufctl_t:
191 *
192 * Bufctl's are used for linking objs within a slab
193 * linked offsets.
194 *
195 * This implementation relies on "struct page" for locating the cache &
196 * slab an object belongs to.
197 * This allows the bufctl structure to be small (one int), but limits
198 * the number of objects a slab (not a cache) can contain when off-slab
199 * bufctls are used. The limit is the size of the largest general cache
200 * that does not use off-slab slabs.
201 * For 32bit archs with 4 kB pages, is this 56.
202 * This is not serious, as it is only for large objects, when it is unwise
203 * to have too many per slab.
204 * Note: This limit can be raised by introducing a general cache whose size
205 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
206 */
207
fa5b08d5 208typedef unsigned int kmem_bufctl_t;
1da177e4
LT
209#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
210#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
211#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
212#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 213
1da177e4
LT
214/*
215 * struct slab
216 *
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 */
221struct slab {
b28a02de
PE
222 struct list_head list;
223 unsigned long colouroff;
224 void *s_mem; /* including colour offset */
225 unsigned int inuse; /* num of objs active in slab */
226 kmem_bufctl_t free;
227 unsigned short nodeid;
1da177e4
LT
228};
229
230/*
231 * struct slab_rcu
232 *
233 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
234 * arrange for kmem_freepages to be called via RCU. This is useful if
235 * we need to approach a kernel structure obliquely, from its address
236 * obtained without the usual locking. We can lock the structure to
237 * stabilize it and check it's still at the given address, only if we
238 * can be sure that the memory has not been meanwhile reused for some
239 * other kind of object (which our subsystem's lock might corrupt).
240 *
241 * rcu_read_lock before reading the address, then rcu_read_unlock after
242 * taking the spinlock within the structure expected at that address.
243 *
244 * We assume struct slab_rcu can overlay struct slab when destroying.
245 */
246struct slab_rcu {
b28a02de 247 struct rcu_head head;
343e0d7a 248 struct kmem_cache *cachep;
b28a02de 249 void *addr;
1da177e4
LT
250};
251
252/*
253 * struct array_cache
254 *
1da177e4
LT
255 * Purpose:
256 * - LIFO ordering, to hand out cache-warm objects from _alloc
257 * - reduce the number of linked list operations
258 * - reduce spinlock operations
259 *
260 * The limit is stored in the per-cpu structure to reduce the data cache
261 * footprint.
262 *
263 */
264struct array_cache {
265 unsigned int avail;
266 unsigned int limit;
267 unsigned int batchcount;
268 unsigned int touched;
e498be7d 269 spinlock_t lock;
a737b3e2
AM
270 void *entry[0]; /*
271 * Must have this definition in here for the proper
272 * alignment of array_cache. Also simplifies accessing
273 * the entries.
274 * [0] is for gcc 2.95. It should really be [].
275 */
1da177e4
LT
276};
277
a737b3e2
AM
278/*
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
1da177e4
LT
281 */
282#define BOOT_CPUCACHE_ENTRIES 1
283struct arraycache_init {
284 struct array_cache cache;
b28a02de 285 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
286};
287
288/*
e498be7d 289 * The slab lists for all objects.
1da177e4
LT
290 */
291struct kmem_list3 {
b28a02de
PE
292 struct list_head slabs_partial; /* partial list first, better asm code */
293 struct list_head slabs_full;
294 struct list_head slabs_free;
295 unsigned long free_objects;
b28a02de 296 unsigned int free_limit;
2e1217cf 297 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
298 spinlock_t list_lock;
299 struct array_cache *shared; /* shared per node */
300 struct array_cache **alien; /* on other nodes */
35386e3b
CL
301 unsigned long next_reap; /* updated without locking */
302 int free_touched; /* updated without locking */
1da177e4
LT
303};
304
e498be7d
CL
305/*
306 * Need this for bootstrapping a per node allocator.
307 */
308#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
309struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
310#define CACHE_CACHE 0
311#define SIZE_AC 1
312#define SIZE_L3 (1 + MAX_NUMNODES)
313
ed11d9eb
CL
314static int drain_freelist(struct kmem_cache *cache,
315 struct kmem_list3 *l3, int tofree);
316static void free_block(struct kmem_cache *cachep, void **objpp, int len,
317 int node);
2ed3a4ef 318static int enable_cpucache(struct kmem_cache *cachep);
65f27f38 319static void cache_reap(struct work_struct *unused);
ed11d9eb 320
e498be7d 321/*
a737b3e2
AM
322 * This function must be completely optimized away if a constant is passed to
323 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 324 */
7243cc05 325static __always_inline int index_of(const size_t size)
e498be7d 326{
5ec8a847
SR
327 extern void __bad_size(void);
328
e498be7d
CL
329 if (__builtin_constant_p(size)) {
330 int i = 0;
331
332#define CACHE(x) \
333 if (size <=x) \
334 return i; \
335 else \
336 i++;
337#include "linux/kmalloc_sizes.h"
338#undef CACHE
5ec8a847 339 __bad_size();
7243cc05 340 } else
5ec8a847 341 __bad_size();
e498be7d
CL
342 return 0;
343}
344
e0a42726
IM
345static int slab_early_init = 1;
346
e498be7d
CL
347#define INDEX_AC index_of(sizeof(struct arraycache_init))
348#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 349
5295a74c 350static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
351{
352 INIT_LIST_HEAD(&parent->slabs_full);
353 INIT_LIST_HEAD(&parent->slabs_partial);
354 INIT_LIST_HEAD(&parent->slabs_free);
355 parent->shared = NULL;
356 parent->alien = NULL;
2e1217cf 357 parent->colour_next = 0;
e498be7d
CL
358 spin_lock_init(&parent->list_lock);
359 parent->free_objects = 0;
360 parent->free_touched = 0;
361}
362
a737b3e2
AM
363#define MAKE_LIST(cachep, listp, slab, nodeid) \
364 do { \
365 INIT_LIST_HEAD(listp); \
366 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
367 } while (0)
368
a737b3e2
AM
369#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
370 do { \
e498be7d
CL
371 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
373 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
374 } while (0)
1da177e4
LT
375
376/*
343e0d7a 377 * struct kmem_cache
1da177e4
LT
378 *
379 * manages a cache.
380 */
b28a02de 381
2109a2d1 382struct kmem_cache {
1da177e4 383/* 1) per-cpu data, touched during every alloc/free */
b28a02de 384 struct array_cache *array[NR_CPUS];
b5d8ca7c 385/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
386 unsigned int batchcount;
387 unsigned int limit;
388 unsigned int shared;
b5d8ca7c 389
3dafccf2 390 unsigned int buffer_size;
6a2d7a95 391 u32 reciprocal_buffer_size;
b5d8ca7c 392/* 3) touched by every alloc & free from the backend */
b5d8ca7c 393
a737b3e2
AM
394 unsigned int flags; /* constant flags */
395 unsigned int num; /* # of objs per slab */
1da177e4 396
b5d8ca7c 397/* 4) cache_grow/shrink */
1da177e4 398 /* order of pgs per slab (2^n) */
b28a02de 399 unsigned int gfporder;
1da177e4
LT
400
401 /* force GFP flags, e.g. GFP_DMA */
b28a02de 402 gfp_t gfpflags;
1da177e4 403
a737b3e2 404 size_t colour; /* cache colouring range */
b28a02de 405 unsigned int colour_off; /* colour offset */
343e0d7a 406 struct kmem_cache *slabp_cache;
b28a02de 407 unsigned int slab_size;
a737b3e2 408 unsigned int dflags; /* dynamic flags */
1da177e4
LT
409
410 /* constructor func */
343e0d7a 411 void (*ctor) (void *, struct kmem_cache *, unsigned long);
1da177e4 412
b5d8ca7c 413/* 5) cache creation/removal */
b28a02de
PE
414 const char *name;
415 struct list_head next;
1da177e4 416
b5d8ca7c 417/* 6) statistics */
1da177e4 418#if STATS
b28a02de
PE
419 unsigned long num_active;
420 unsigned long num_allocations;
421 unsigned long high_mark;
422 unsigned long grown;
423 unsigned long reaped;
424 unsigned long errors;
425 unsigned long max_freeable;
426 unsigned long node_allocs;
427 unsigned long node_frees;
fb7faf33 428 unsigned long node_overflow;
b28a02de
PE
429 atomic_t allochit;
430 atomic_t allocmiss;
431 atomic_t freehit;
432 atomic_t freemiss;
1da177e4
LT
433#endif
434#if DEBUG
3dafccf2
MS
435 /*
436 * If debugging is enabled, then the allocator can add additional
437 * fields and/or padding to every object. buffer_size contains the total
438 * object size including these internal fields, the following two
439 * variables contain the offset to the user object and its size.
440 */
441 int obj_offset;
442 int obj_size;
1da177e4 443#endif
8da3430d
ED
444 /*
445 * We put nodelists[] at the end of kmem_cache, because we want to size
446 * this array to nr_node_ids slots instead of MAX_NUMNODES
447 * (see kmem_cache_init())
448 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
449 * is statically defined, so we reserve the max number of nodes.
450 */
451 struct kmem_list3 *nodelists[MAX_NUMNODES];
452 /*
453 * Do not add fields after nodelists[]
454 */
1da177e4
LT
455};
456
457#define CFLGS_OFF_SLAB (0x80000000UL)
458#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
459
460#define BATCHREFILL_LIMIT 16
a737b3e2
AM
461/*
462 * Optimization question: fewer reaps means less probability for unnessary
463 * cpucache drain/refill cycles.
1da177e4 464 *
dc6f3f27 465 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
466 * which could lock up otherwise freeable slabs.
467 */
468#define REAPTIMEOUT_CPUC (2*HZ)
469#define REAPTIMEOUT_LIST3 (4*HZ)
470
471#if STATS
472#define STATS_INC_ACTIVE(x) ((x)->num_active++)
473#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
474#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
475#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 476#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
477#define STATS_SET_HIGH(x) \
478 do { \
479 if ((x)->num_active > (x)->high_mark) \
480 (x)->high_mark = (x)->num_active; \
481 } while (0)
1da177e4
LT
482#define STATS_INC_ERR(x) ((x)->errors++)
483#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 484#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 485#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
486#define STATS_SET_FREEABLE(x, i) \
487 do { \
488 if ((x)->max_freeable < i) \
489 (x)->max_freeable = i; \
490 } while (0)
1da177e4
LT
491#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
492#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
493#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
494#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
495#else
496#define STATS_INC_ACTIVE(x) do { } while (0)
497#define STATS_DEC_ACTIVE(x) do { } while (0)
498#define STATS_INC_ALLOCED(x) do { } while (0)
499#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 500#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
501#define STATS_SET_HIGH(x) do { } while (0)
502#define STATS_INC_ERR(x) do { } while (0)
503#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 504#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 505#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 506#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
507#define STATS_INC_ALLOCHIT(x) do { } while (0)
508#define STATS_INC_ALLOCMISS(x) do { } while (0)
509#define STATS_INC_FREEHIT(x) do { } while (0)
510#define STATS_INC_FREEMISS(x) do { } while (0)
511#endif
512
513#if DEBUG
1da177e4 514
a737b3e2
AM
515/*
516 * memory layout of objects:
1da177e4 517 * 0 : objp
3dafccf2 518 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
519 * the end of an object is aligned with the end of the real
520 * allocation. Catches writes behind the end of the allocation.
3dafccf2 521 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 522 * redzone word.
3dafccf2
MS
523 * cachep->obj_offset: The real object.
524 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
525 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
526 * [BYTES_PER_WORD long]
1da177e4 527 */
343e0d7a 528static int obj_offset(struct kmem_cache *cachep)
1da177e4 529{
3dafccf2 530 return cachep->obj_offset;
1da177e4
LT
531}
532
343e0d7a 533static int obj_size(struct kmem_cache *cachep)
1da177e4 534{
3dafccf2 535 return cachep->obj_size;
1da177e4
LT
536}
537
b46b8f19 538static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
539{
540 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
541 return (unsigned long long*) (objp + obj_offset(cachep) -
542 sizeof(unsigned long long));
1da177e4
LT
543}
544
b46b8f19 545static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
546{
547 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
548 if (cachep->flags & SLAB_STORE_USER)
b46b8f19
DW
549 return (unsigned long long *)(objp + cachep->buffer_size -
550 sizeof(unsigned long long) -
87a927c7 551 REDZONE_ALIGN);
b46b8f19
DW
552 return (unsigned long long *) (objp + cachep->buffer_size -
553 sizeof(unsigned long long));
1da177e4
LT
554}
555
343e0d7a 556static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
557{
558 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 559 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
560}
561
562#else
563
3dafccf2
MS
564#define obj_offset(x) 0
565#define obj_size(cachep) (cachep->buffer_size)
b46b8f19
DW
566#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
567#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
568#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
569
570#endif
571
1da177e4
LT
572/*
573 * Do not go above this order unless 0 objects fit into the slab.
574 */
575#define BREAK_GFP_ORDER_HI 1
576#define BREAK_GFP_ORDER_LO 0
577static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
578
a737b3e2
AM
579/*
580 * Functions for storing/retrieving the cachep and or slab from the page
581 * allocator. These are used to find the slab an obj belongs to. With kfree(),
582 * these are used to find the cache which an obj belongs to.
1da177e4 583 */
065d41cb
PE
584static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
585{
586 page->lru.next = (struct list_head *)cache;
587}
588
589static inline struct kmem_cache *page_get_cache(struct page *page)
590{
d85f3385 591 page = compound_head(page);
ddc2e812 592 BUG_ON(!PageSlab(page));
065d41cb
PE
593 return (struct kmem_cache *)page->lru.next;
594}
595
596static inline void page_set_slab(struct page *page, struct slab *slab)
597{
598 page->lru.prev = (struct list_head *)slab;
599}
600
601static inline struct slab *page_get_slab(struct page *page)
602{
ddc2e812 603 BUG_ON(!PageSlab(page));
065d41cb
PE
604 return (struct slab *)page->lru.prev;
605}
1da177e4 606
6ed5eb22
PE
607static inline struct kmem_cache *virt_to_cache(const void *obj)
608{
b49af68f 609 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
610 return page_get_cache(page);
611}
612
613static inline struct slab *virt_to_slab(const void *obj)
614{
b49af68f 615 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
616 return page_get_slab(page);
617}
618
8fea4e96
PE
619static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
620 unsigned int idx)
621{
622 return slab->s_mem + cache->buffer_size * idx;
623}
624
6a2d7a95
ED
625/*
626 * We want to avoid an expensive divide : (offset / cache->buffer_size)
627 * Using the fact that buffer_size is a constant for a particular cache,
628 * we can replace (offset / cache->buffer_size) by
629 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
630 */
631static inline unsigned int obj_to_index(const struct kmem_cache *cache,
632 const struct slab *slab, void *obj)
8fea4e96 633{
6a2d7a95
ED
634 u32 offset = (obj - slab->s_mem);
635 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
636}
637
a737b3e2
AM
638/*
639 * These are the default caches for kmalloc. Custom caches can have other sizes.
640 */
1da177e4
LT
641struct cache_sizes malloc_sizes[] = {
642#define CACHE(x) { .cs_size = (x) },
643#include <linux/kmalloc_sizes.h>
644 CACHE(ULONG_MAX)
645#undef CACHE
646};
647EXPORT_SYMBOL(malloc_sizes);
648
649/* Must match cache_sizes above. Out of line to keep cache footprint low. */
650struct cache_names {
651 char *name;
652 char *name_dma;
653};
654
655static struct cache_names __initdata cache_names[] = {
656#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
657#include <linux/kmalloc_sizes.h>
b28a02de 658 {NULL,}
1da177e4
LT
659#undef CACHE
660};
661
662static struct arraycache_init initarray_cache __initdata =
b28a02de 663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 664static struct arraycache_init initarray_generic =
b28a02de 665 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
666
667/* internal cache of cache description objs */
343e0d7a 668static struct kmem_cache cache_cache = {
b28a02de
PE
669 .batchcount = 1,
670 .limit = BOOT_CPUCACHE_ENTRIES,
671 .shared = 1,
343e0d7a 672 .buffer_size = sizeof(struct kmem_cache),
b28a02de 673 .name = "kmem_cache",
1da177e4
LT
674};
675
056c6241
RT
676#define BAD_ALIEN_MAGIC 0x01020304ul
677
f1aaee53
AV
678#ifdef CONFIG_LOCKDEP
679
680/*
681 * Slab sometimes uses the kmalloc slabs to store the slab headers
682 * for other slabs "off slab".
683 * The locking for this is tricky in that it nests within the locks
684 * of all other slabs in a few places; to deal with this special
685 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
686 *
687 * We set lock class for alien array caches which are up during init.
688 * The lock annotation will be lost if all cpus of a node goes down and
689 * then comes back up during hotplug
f1aaee53 690 */
056c6241
RT
691static struct lock_class_key on_slab_l3_key;
692static struct lock_class_key on_slab_alc_key;
693
694static inline void init_lock_keys(void)
f1aaee53 695
f1aaee53
AV
696{
697 int q;
056c6241
RT
698 struct cache_sizes *s = malloc_sizes;
699
700 while (s->cs_size != ULONG_MAX) {
701 for_each_node(q) {
702 struct array_cache **alc;
703 int r;
704 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
705 if (!l3 || OFF_SLAB(s->cs_cachep))
706 continue;
707 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
708 alc = l3->alien;
709 /*
710 * FIXME: This check for BAD_ALIEN_MAGIC
711 * should go away when common slab code is taught to
712 * work even without alien caches.
713 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
714 * for alloc_alien_cache,
715 */
716 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
717 continue;
718 for_each_node(r) {
719 if (alc[r])
720 lockdep_set_class(&alc[r]->lock,
721 &on_slab_alc_key);
722 }
723 }
724 s++;
f1aaee53
AV
725 }
726}
f1aaee53 727#else
056c6241 728static inline void init_lock_keys(void)
f1aaee53
AV
729{
730}
731#endif
732
8f5be20b
RT
733/*
734 * 1. Guard access to the cache-chain.
735 * 2. Protect sanity of cpu_online_map against cpu hotplug events
736 */
fc0abb14 737static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
738static struct list_head cache_chain;
739
1da177e4
LT
740/*
741 * chicken and egg problem: delay the per-cpu array allocation
742 * until the general caches are up.
743 */
744static enum {
745 NONE,
e498be7d
CL
746 PARTIAL_AC,
747 PARTIAL_L3,
1da177e4
LT
748 FULL
749} g_cpucache_up;
750
39d24e64
MK
751/*
752 * used by boot code to determine if it can use slab based allocator
753 */
754int slab_is_available(void)
755{
756 return g_cpucache_up == FULL;
757}
758
52bad64d 759static DEFINE_PER_CPU(struct delayed_work, reap_work);
1da177e4 760
343e0d7a 761static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
762{
763 return cachep->array[smp_processor_id()];
764}
765
a737b3e2
AM
766static inline struct kmem_cache *__find_general_cachep(size_t size,
767 gfp_t gfpflags)
1da177e4
LT
768{
769 struct cache_sizes *csizep = malloc_sizes;
770
771#if DEBUG
772 /* This happens if someone tries to call
b28a02de
PE
773 * kmem_cache_create(), or __kmalloc(), before
774 * the generic caches are initialized.
775 */
c7e43c78 776 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 777#endif
6cb8f913
CL
778 if (!size)
779 return ZERO_SIZE_PTR;
780
1da177e4
LT
781 while (size > csizep->cs_size)
782 csizep++;
783
784 /*
0abf40c1 785 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
786 * has cs_{dma,}cachep==NULL. Thus no special case
787 * for large kmalloc calls required.
788 */
4b51d669 789#ifdef CONFIG_ZONE_DMA
1da177e4
LT
790 if (unlikely(gfpflags & GFP_DMA))
791 return csizep->cs_dmacachep;
4b51d669 792#endif
1da177e4
LT
793 return csizep->cs_cachep;
794}
795
b221385b 796static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
797{
798 return __find_general_cachep(size, gfpflags);
799}
97e2bde4 800
fbaccacf 801static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 802{
fbaccacf
SR
803 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
804}
1da177e4 805
a737b3e2
AM
806/*
807 * Calculate the number of objects and left-over bytes for a given buffer size.
808 */
fbaccacf
SR
809static void cache_estimate(unsigned long gfporder, size_t buffer_size,
810 size_t align, int flags, size_t *left_over,
811 unsigned int *num)
812{
813 int nr_objs;
814 size_t mgmt_size;
815 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 816
fbaccacf
SR
817 /*
818 * The slab management structure can be either off the slab or
819 * on it. For the latter case, the memory allocated for a
820 * slab is used for:
821 *
822 * - The struct slab
823 * - One kmem_bufctl_t for each object
824 * - Padding to respect alignment of @align
825 * - @buffer_size bytes for each object
826 *
827 * If the slab management structure is off the slab, then the
828 * alignment will already be calculated into the size. Because
829 * the slabs are all pages aligned, the objects will be at the
830 * correct alignment when allocated.
831 */
832 if (flags & CFLGS_OFF_SLAB) {
833 mgmt_size = 0;
834 nr_objs = slab_size / buffer_size;
835
836 if (nr_objs > SLAB_LIMIT)
837 nr_objs = SLAB_LIMIT;
838 } else {
839 /*
840 * Ignore padding for the initial guess. The padding
841 * is at most @align-1 bytes, and @buffer_size is at
842 * least @align. In the worst case, this result will
843 * be one greater than the number of objects that fit
844 * into the memory allocation when taking the padding
845 * into account.
846 */
847 nr_objs = (slab_size - sizeof(struct slab)) /
848 (buffer_size + sizeof(kmem_bufctl_t));
849
850 /*
851 * This calculated number will be either the right
852 * amount, or one greater than what we want.
853 */
854 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
855 > slab_size)
856 nr_objs--;
857
858 if (nr_objs > SLAB_LIMIT)
859 nr_objs = SLAB_LIMIT;
860
861 mgmt_size = slab_mgmt_size(nr_objs, align);
862 }
863 *num = nr_objs;
864 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
865}
866
867#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
868
a737b3e2
AM
869static void __slab_error(const char *function, struct kmem_cache *cachep,
870 char *msg)
1da177e4
LT
871{
872 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 873 function, cachep->name, msg);
1da177e4
LT
874 dump_stack();
875}
876
3395ee05
PM
877/*
878 * By default on NUMA we use alien caches to stage the freeing of
879 * objects allocated from other nodes. This causes massive memory
880 * inefficiencies when using fake NUMA setup to split memory into a
881 * large number of small nodes, so it can be disabled on the command
882 * line
883 */
884
885static int use_alien_caches __read_mostly = 1;
886static int __init noaliencache_setup(char *s)
887{
888 use_alien_caches = 0;
889 return 1;
890}
891__setup("noaliencache", noaliencache_setup);
892
8fce4d8e
CL
893#ifdef CONFIG_NUMA
894/*
895 * Special reaping functions for NUMA systems called from cache_reap().
896 * These take care of doing round robin flushing of alien caches (containing
897 * objects freed on different nodes from which they were allocated) and the
898 * flushing of remote pcps by calling drain_node_pages.
899 */
900static DEFINE_PER_CPU(unsigned long, reap_node);
901
902static void init_reap_node(int cpu)
903{
904 int node;
905
906 node = next_node(cpu_to_node(cpu), node_online_map);
907 if (node == MAX_NUMNODES)
442295c9 908 node = first_node(node_online_map);
8fce4d8e 909
7f6b8876 910 per_cpu(reap_node, cpu) = node;
8fce4d8e
CL
911}
912
913static void next_reap_node(void)
914{
915 int node = __get_cpu_var(reap_node);
916
8fce4d8e
CL
917 node = next_node(node, node_online_map);
918 if (unlikely(node >= MAX_NUMNODES))
919 node = first_node(node_online_map);
920 __get_cpu_var(reap_node) = node;
921}
922
923#else
924#define init_reap_node(cpu) do { } while (0)
925#define next_reap_node(void) do { } while (0)
926#endif
927
1da177e4
LT
928/*
929 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
930 * via the workqueue/eventd.
931 * Add the CPU number into the expiration time to minimize the possibility of
932 * the CPUs getting into lockstep and contending for the global cache chain
933 * lock.
934 */
897e679b 935static void __cpuinit start_cpu_timer(int cpu)
1da177e4 936{
52bad64d 937 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
1da177e4
LT
938
939 /*
940 * When this gets called from do_initcalls via cpucache_init(),
941 * init_workqueues() has already run, so keventd will be setup
942 * at that time.
943 */
52bad64d 944 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 945 init_reap_node(cpu);
65f27f38 946 INIT_DELAYED_WORK(reap_work, cache_reap);
2b284214
AV
947 schedule_delayed_work_on(cpu, reap_work,
948 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
949 }
950}
951
e498be7d 952static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 953 int batchcount)
1da177e4 954{
b28a02de 955 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
956 struct array_cache *nc = NULL;
957
e498be7d 958 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
959 if (nc) {
960 nc->avail = 0;
961 nc->limit = entries;
962 nc->batchcount = batchcount;
963 nc->touched = 0;
e498be7d 964 spin_lock_init(&nc->lock);
1da177e4
LT
965 }
966 return nc;
967}
968
3ded175a
CL
969/*
970 * Transfer objects in one arraycache to another.
971 * Locking must be handled by the caller.
972 *
973 * Return the number of entries transferred.
974 */
975static int transfer_objects(struct array_cache *to,
976 struct array_cache *from, unsigned int max)
977{
978 /* Figure out how many entries to transfer */
979 int nr = min(min(from->avail, max), to->limit - to->avail);
980
981 if (!nr)
982 return 0;
983
984 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
985 sizeof(void *) *nr);
986
987 from->avail -= nr;
988 to->avail += nr;
989 to->touched = 1;
990 return nr;
991}
992
765c4507
CL
993#ifndef CONFIG_NUMA
994
995#define drain_alien_cache(cachep, alien) do { } while (0)
996#define reap_alien(cachep, l3) do { } while (0)
997
998static inline struct array_cache **alloc_alien_cache(int node, int limit)
999{
1000 return (struct array_cache **)BAD_ALIEN_MAGIC;
1001}
1002
1003static inline void free_alien_cache(struct array_cache **ac_ptr)
1004{
1005}
1006
1007static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1008{
1009 return 0;
1010}
1011
1012static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1013 gfp_t flags)
1014{
1015 return NULL;
1016}
1017
8b98c169 1018static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1019 gfp_t flags, int nodeid)
1020{
1021 return NULL;
1022}
1023
1024#else /* CONFIG_NUMA */
1025
8b98c169 1026static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1027static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1028
5295a74c 1029static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
1030{
1031 struct array_cache **ac_ptr;
8ef82866 1032 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1033 int i;
1034
1035 if (limit > 1)
1036 limit = 12;
1037 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1038 if (ac_ptr) {
1039 for_each_node(i) {
1040 if (i == node || !node_online(i)) {
1041 ac_ptr[i] = NULL;
1042 continue;
1043 }
1044 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1045 if (!ac_ptr[i]) {
b28a02de 1046 for (i--; i <= 0; i--)
e498be7d
CL
1047 kfree(ac_ptr[i]);
1048 kfree(ac_ptr);
1049 return NULL;
1050 }
1051 }
1052 }
1053 return ac_ptr;
1054}
1055
5295a74c 1056static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1057{
1058 int i;
1059
1060 if (!ac_ptr)
1061 return;
e498be7d 1062 for_each_node(i)
b28a02de 1063 kfree(ac_ptr[i]);
e498be7d
CL
1064 kfree(ac_ptr);
1065}
1066
343e0d7a 1067static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1068 struct array_cache *ac, int node)
e498be7d
CL
1069{
1070 struct kmem_list3 *rl3 = cachep->nodelists[node];
1071
1072 if (ac->avail) {
1073 spin_lock(&rl3->list_lock);
e00946fe
CL
1074 /*
1075 * Stuff objects into the remote nodes shared array first.
1076 * That way we could avoid the overhead of putting the objects
1077 * into the free lists and getting them back later.
1078 */
693f7d36 1079 if (rl3->shared)
1080 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1081
ff69416e 1082 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1083 ac->avail = 0;
1084 spin_unlock(&rl3->list_lock);
1085 }
1086}
1087
8fce4d8e
CL
1088/*
1089 * Called from cache_reap() to regularly drain alien caches round robin.
1090 */
1091static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1092{
1093 int node = __get_cpu_var(reap_node);
1094
1095 if (l3->alien) {
1096 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1097
1098 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1099 __drain_alien_cache(cachep, ac, node);
1100 spin_unlock_irq(&ac->lock);
1101 }
1102 }
1103}
1104
a737b3e2
AM
1105static void drain_alien_cache(struct kmem_cache *cachep,
1106 struct array_cache **alien)
e498be7d 1107{
b28a02de 1108 int i = 0;
e498be7d
CL
1109 struct array_cache *ac;
1110 unsigned long flags;
1111
1112 for_each_online_node(i) {
4484ebf1 1113 ac = alien[i];
e498be7d
CL
1114 if (ac) {
1115 spin_lock_irqsave(&ac->lock, flags);
1116 __drain_alien_cache(cachep, ac, i);
1117 spin_unlock_irqrestore(&ac->lock, flags);
1118 }
1119 }
1120}
729bd0b7 1121
873623df 1122static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1123{
1124 struct slab *slabp = virt_to_slab(objp);
1125 int nodeid = slabp->nodeid;
1126 struct kmem_list3 *l3;
1127 struct array_cache *alien = NULL;
1ca4cb24
PE
1128 int node;
1129
1130 node = numa_node_id();
729bd0b7
PE
1131
1132 /*
1133 * Make sure we are not freeing a object from another node to the array
1134 * cache on this cpu.
1135 */
62918a03 1136 if (likely(slabp->nodeid == node))
729bd0b7
PE
1137 return 0;
1138
1ca4cb24 1139 l3 = cachep->nodelists[node];
729bd0b7
PE
1140 STATS_INC_NODEFREES(cachep);
1141 if (l3->alien && l3->alien[nodeid]) {
1142 alien = l3->alien[nodeid];
873623df 1143 spin_lock(&alien->lock);
729bd0b7
PE
1144 if (unlikely(alien->avail == alien->limit)) {
1145 STATS_INC_ACOVERFLOW(cachep);
1146 __drain_alien_cache(cachep, alien, nodeid);
1147 }
1148 alien->entry[alien->avail++] = objp;
1149 spin_unlock(&alien->lock);
1150 } else {
1151 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1152 free_block(cachep, &objp, 1, nodeid);
1153 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1154 }
1155 return 1;
1156}
e498be7d
CL
1157#endif
1158
8c78f307 1159static int __cpuinit cpuup_callback(struct notifier_block *nfb,
b28a02de 1160 unsigned long action, void *hcpu)
1da177e4
LT
1161{
1162 long cpu = (long)hcpu;
343e0d7a 1163 struct kmem_cache *cachep;
e498be7d
CL
1164 struct kmem_list3 *l3 = NULL;
1165 int node = cpu_to_node(cpu);
1166 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
1167
1168 switch (action) {
38c3bd96 1169 case CPU_LOCK_ACQUIRE:
fc0abb14 1170 mutex_lock(&cache_chain_mutex);
38c3bd96
HC
1171 break;
1172 case CPU_UP_PREPARE:
8bb78442 1173 case CPU_UP_PREPARE_FROZEN:
a737b3e2
AM
1174 /*
1175 * We need to do this right in the beginning since
e498be7d
CL
1176 * alloc_arraycache's are going to use this list.
1177 * kmalloc_node allows us to add the slab to the right
1178 * kmem_list3 and not this cpu's kmem_list3
1179 */
1180
1da177e4 1181 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2
AM
1182 /*
1183 * Set up the size64 kmemlist for cpu before we can
e498be7d
CL
1184 * begin anything. Make sure some other cpu on this
1185 * node has not already allocated this
1186 */
1187 if (!cachep->nodelists[node]) {
a737b3e2
AM
1188 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1189 if (!l3)
e498be7d
CL
1190 goto bad;
1191 kmem_list3_init(l3);
1192 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 1193 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1194
4484ebf1
RT
1195 /*
1196 * The l3s don't come and go as CPUs come and
1197 * go. cache_chain_mutex is sufficient
1198 * protection here.
1199 */
e498be7d
CL
1200 cachep->nodelists[node] = l3;
1201 }
1da177e4 1202
e498be7d
CL
1203 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1204 cachep->nodelists[node]->free_limit =
a737b3e2
AM
1205 (1 + nr_cpus_node(node)) *
1206 cachep->batchcount + cachep->num;
e498be7d
CL
1207 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1208 }
1209
a737b3e2
AM
1210 /*
1211 * Now we can go ahead with allocating the shared arrays and
1212 * array caches
1213 */
e498be7d 1214 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4 1215 struct array_cache *nc;
63109846 1216 struct array_cache *shared = NULL;
3395ee05 1217 struct array_cache **alien = NULL;
cd105df4 1218
e498be7d 1219 nc = alloc_arraycache(node, cachep->limit,
4484ebf1 1220 cachep->batchcount);
1da177e4
LT
1221 if (!nc)
1222 goto bad;
63109846
ED
1223 if (cachep->shared) {
1224 shared = alloc_arraycache(node,
4484ebf1
RT
1225 cachep->shared * cachep->batchcount,
1226 0xbaadf00d);
63109846
ED
1227 if (!shared)
1228 goto bad;
1229 }
3395ee05
PM
1230 if (use_alien_caches) {
1231 alien = alloc_alien_cache(node, cachep->limit);
1232 if (!alien)
1233 goto bad;
1234 }
1da177e4 1235 cachep->array[cpu] = nc;
e498be7d
CL
1236 l3 = cachep->nodelists[node];
1237 BUG_ON(!l3);
e498be7d 1238
4484ebf1
RT
1239 spin_lock_irq(&l3->list_lock);
1240 if (!l3->shared) {
1241 /*
1242 * We are serialised from CPU_DEAD or
1243 * CPU_UP_CANCELLED by the cpucontrol lock
1244 */
1245 l3->shared = shared;
1246 shared = NULL;
e498be7d 1247 }
4484ebf1
RT
1248#ifdef CONFIG_NUMA
1249 if (!l3->alien) {
1250 l3->alien = alien;
1251 alien = NULL;
1252 }
1253#endif
1254 spin_unlock_irq(&l3->list_lock);
4484ebf1
RT
1255 kfree(shared);
1256 free_alien_cache(alien);
1da177e4 1257 }
1da177e4
LT
1258 break;
1259 case CPU_ONLINE:
8bb78442 1260 case CPU_ONLINE_FROZEN:
1da177e4
LT
1261 start_cpu_timer(cpu);
1262 break;
1263#ifdef CONFIG_HOTPLUG_CPU
5830c590 1264 case CPU_DOWN_PREPARE:
8bb78442 1265 case CPU_DOWN_PREPARE_FROZEN:
5830c590
CL
1266 /*
1267 * Shutdown cache reaper. Note that the cache_chain_mutex is
1268 * held so that if cache_reap() is invoked it cannot do
1269 * anything expensive but will only modify reap_work
1270 * and reschedule the timer.
1271 */
1272 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1273 /* Now the cache_reaper is guaranteed to be not running. */
1274 per_cpu(reap_work, cpu).work.func = NULL;
1275 break;
1276 case CPU_DOWN_FAILED:
8bb78442 1277 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1278 start_cpu_timer(cpu);
1279 break;
1da177e4 1280 case CPU_DEAD:
8bb78442 1281 case CPU_DEAD_FROZEN:
4484ebf1
RT
1282 /*
1283 * Even if all the cpus of a node are down, we don't free the
1284 * kmem_list3 of any cache. This to avoid a race between
1285 * cpu_down, and a kmalloc allocation from another cpu for
1286 * memory from the node of the cpu going down. The list3
1287 * structure is usually allocated from kmem_cache_create() and
1288 * gets destroyed at kmem_cache_destroy().
1289 */
1da177e4 1290 /* fall thru */
8f5be20b 1291#endif
1da177e4 1292 case CPU_UP_CANCELED:
8bb78442 1293 case CPU_UP_CANCELED_FROZEN:
1da177e4
LT
1294 list_for_each_entry(cachep, &cache_chain, next) {
1295 struct array_cache *nc;
4484ebf1
RT
1296 struct array_cache *shared;
1297 struct array_cache **alien;
e498be7d 1298 cpumask_t mask;
1da177e4 1299
e498be7d 1300 mask = node_to_cpumask(node);
1da177e4
LT
1301 /* cpu is dead; no one can alloc from it. */
1302 nc = cachep->array[cpu];
1303 cachep->array[cpu] = NULL;
e498be7d
CL
1304 l3 = cachep->nodelists[node];
1305
1306 if (!l3)
4484ebf1 1307 goto free_array_cache;
e498be7d 1308
ca3b9b91 1309 spin_lock_irq(&l3->list_lock);
e498be7d
CL
1310
1311 /* Free limit for this kmem_list3 */
1312 l3->free_limit -= cachep->batchcount;
1313 if (nc)
ff69416e 1314 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
1315
1316 if (!cpus_empty(mask)) {
ca3b9b91 1317 spin_unlock_irq(&l3->list_lock);
4484ebf1 1318 goto free_array_cache;
b28a02de 1319 }
e498be7d 1320
4484ebf1
RT
1321 shared = l3->shared;
1322 if (shared) {
63109846
ED
1323 free_block(cachep, shared->entry,
1324 shared->avail, node);
e498be7d
CL
1325 l3->shared = NULL;
1326 }
e498be7d 1327
4484ebf1
RT
1328 alien = l3->alien;
1329 l3->alien = NULL;
1330
1331 spin_unlock_irq(&l3->list_lock);
1332
1333 kfree(shared);
1334 if (alien) {
1335 drain_alien_cache(cachep, alien);
1336 free_alien_cache(alien);
e498be7d 1337 }
4484ebf1 1338free_array_cache:
1da177e4
LT
1339 kfree(nc);
1340 }
4484ebf1
RT
1341 /*
1342 * In the previous loop, all the objects were freed to
1343 * the respective cache's slabs, now we can go ahead and
1344 * shrink each nodelist to its limit.
1345 */
1346 list_for_each_entry(cachep, &cache_chain, next) {
1347 l3 = cachep->nodelists[node];
1348 if (!l3)
1349 continue;
ed11d9eb 1350 drain_freelist(cachep, l3, l3->free_objects);
4484ebf1 1351 }
38c3bd96
HC
1352 break;
1353 case CPU_LOCK_RELEASE:
fc0abb14 1354 mutex_unlock(&cache_chain_mutex);
1da177e4 1355 break;
1da177e4
LT
1356 }
1357 return NOTIFY_OK;
a737b3e2 1358bad:
1da177e4
LT
1359 return NOTIFY_BAD;
1360}
1361
74b85f37
CS
1362static struct notifier_block __cpuinitdata cpucache_notifier = {
1363 &cpuup_callback, NULL, 0
1364};
1da177e4 1365
e498be7d
CL
1366/*
1367 * swap the static kmem_list3 with kmalloced memory
1368 */
a737b3e2
AM
1369static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1370 int nodeid)
e498be7d
CL
1371{
1372 struct kmem_list3 *ptr;
1373
e498be7d
CL
1374 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1375 BUG_ON(!ptr);
1376
1377 local_irq_disable();
1378 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1379 /*
1380 * Do not assume that spinlocks can be initialized via memcpy:
1381 */
1382 spin_lock_init(&ptr->list_lock);
1383
e498be7d
CL
1384 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1385 cachep->nodelists[nodeid] = ptr;
1386 local_irq_enable();
1387}
1388
a737b3e2
AM
1389/*
1390 * Initialisation. Called after the page allocator have been initialised and
1391 * before smp_init().
1da177e4
LT
1392 */
1393void __init kmem_cache_init(void)
1394{
1395 size_t left_over;
1396 struct cache_sizes *sizes;
1397 struct cache_names *names;
e498be7d 1398 int i;
07ed76b2 1399 int order;
1ca4cb24 1400 int node;
e498be7d 1401
62918a03
SS
1402 if (num_possible_nodes() == 1)
1403 use_alien_caches = 0;
1404
e498be7d
CL
1405 for (i = 0; i < NUM_INIT_LISTS; i++) {
1406 kmem_list3_init(&initkmem_list3[i]);
1407 if (i < MAX_NUMNODES)
1408 cache_cache.nodelists[i] = NULL;
1409 }
1da177e4
LT
1410
1411 /*
1412 * Fragmentation resistance on low memory - only use bigger
1413 * page orders on machines with more than 32MB of memory.
1414 */
1415 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1416 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1417
1da177e4
LT
1418 /* Bootstrap is tricky, because several objects are allocated
1419 * from caches that do not exist yet:
a737b3e2
AM
1420 * 1) initialize the cache_cache cache: it contains the struct
1421 * kmem_cache structures of all caches, except cache_cache itself:
1422 * cache_cache is statically allocated.
e498be7d
CL
1423 * Initially an __init data area is used for the head array and the
1424 * kmem_list3 structures, it's replaced with a kmalloc allocated
1425 * array at the end of the bootstrap.
1da177e4 1426 * 2) Create the first kmalloc cache.
343e0d7a 1427 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1428 * An __init data area is used for the head array.
1429 * 3) Create the remaining kmalloc caches, with minimally sized
1430 * head arrays.
1da177e4
LT
1431 * 4) Replace the __init data head arrays for cache_cache and the first
1432 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1433 * 5) Replace the __init data for kmem_list3 for cache_cache and
1434 * the other cache's with kmalloc allocated memory.
1435 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1436 */
1437
1ca4cb24
PE
1438 node = numa_node_id();
1439
1da177e4 1440 /* 1) create the cache_cache */
1da177e4
LT
1441 INIT_LIST_HEAD(&cache_chain);
1442 list_add(&cache_cache.next, &cache_chain);
1443 cache_cache.colour_off = cache_line_size();
1444 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1ca4cb24 1445 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1da177e4 1446
8da3430d
ED
1447 /*
1448 * struct kmem_cache size depends on nr_node_ids, which
1449 * can be less than MAX_NUMNODES.
1450 */
1451 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1452 nr_node_ids * sizeof(struct kmem_list3 *);
1453#if DEBUG
1454 cache_cache.obj_size = cache_cache.buffer_size;
1455#endif
a737b3e2
AM
1456 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1457 cache_line_size());
6a2d7a95
ED
1458 cache_cache.reciprocal_buffer_size =
1459 reciprocal_value(cache_cache.buffer_size);
1da177e4 1460
07ed76b2
JS
1461 for (order = 0; order < MAX_ORDER; order++) {
1462 cache_estimate(order, cache_cache.buffer_size,
1463 cache_line_size(), 0, &left_over, &cache_cache.num);
1464 if (cache_cache.num)
1465 break;
1466 }
40094fa6 1467 BUG_ON(!cache_cache.num);
07ed76b2 1468 cache_cache.gfporder = order;
b28a02de 1469 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1470 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1471 sizeof(struct slab), cache_line_size());
1da177e4
LT
1472
1473 /* 2+3) create the kmalloc caches */
1474 sizes = malloc_sizes;
1475 names = cache_names;
1476
a737b3e2
AM
1477 /*
1478 * Initialize the caches that provide memory for the array cache and the
1479 * kmem_list3 structures first. Without this, further allocations will
1480 * bug.
e498be7d
CL
1481 */
1482
1483 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1484 sizes[INDEX_AC].cs_size,
1485 ARCH_KMALLOC_MINALIGN,
1486 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1487 NULL, NULL);
e498be7d 1488
a737b3e2 1489 if (INDEX_AC != INDEX_L3) {
e498be7d 1490 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1491 kmem_cache_create(names[INDEX_L3].name,
1492 sizes[INDEX_L3].cs_size,
1493 ARCH_KMALLOC_MINALIGN,
1494 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1495 NULL, NULL);
1496 }
e498be7d 1497
e0a42726
IM
1498 slab_early_init = 0;
1499
1da177e4 1500 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1501 /*
1502 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1503 * This should be particularly beneficial on SMP boxes, as it
1504 * eliminates "false sharing".
1505 * Note for systems short on memory removing the alignment will
e498be7d
CL
1506 * allow tighter packing of the smaller caches.
1507 */
a737b3e2 1508 if (!sizes->cs_cachep) {
e498be7d 1509 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1510 sizes->cs_size,
1511 ARCH_KMALLOC_MINALIGN,
1512 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1513 NULL, NULL);
1514 }
4b51d669
CL
1515#ifdef CONFIG_ZONE_DMA
1516 sizes->cs_dmacachep = kmem_cache_create(
1517 names->name_dma,
a737b3e2
AM
1518 sizes->cs_size,
1519 ARCH_KMALLOC_MINALIGN,
1520 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1521 SLAB_PANIC,
1522 NULL, NULL);
4b51d669 1523#endif
1da177e4
LT
1524 sizes++;
1525 names++;
1526 }
1527 /* 4) Replace the bootstrap head arrays */
1528 {
2b2d5493 1529 struct array_cache *ptr;
e498be7d 1530
1da177e4 1531 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1532
1da177e4 1533 local_irq_disable();
9a2dba4b
PE
1534 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1535 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1536 sizeof(struct arraycache_init));
2b2d5493
IM
1537 /*
1538 * Do not assume that spinlocks can be initialized via memcpy:
1539 */
1540 spin_lock_init(&ptr->lock);
1541
1da177e4
LT
1542 cache_cache.array[smp_processor_id()] = ptr;
1543 local_irq_enable();
e498be7d 1544
1da177e4 1545 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1546
1da177e4 1547 local_irq_disable();
9a2dba4b 1548 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1549 != &initarray_generic.cache);
9a2dba4b 1550 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1551 sizeof(struct arraycache_init));
2b2d5493
IM
1552 /*
1553 * Do not assume that spinlocks can be initialized via memcpy:
1554 */
1555 spin_lock_init(&ptr->lock);
1556
e498be7d 1557 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1558 ptr;
1da177e4
LT
1559 local_irq_enable();
1560 }
e498be7d
CL
1561 /* 5) Replace the bootstrap kmem_list3's */
1562 {
1ca4cb24
PE
1563 int nid;
1564
e498be7d 1565 /* Replace the static kmem_list3 structures for the boot cpu */
1ca4cb24 1566 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
e498be7d 1567
1ca4cb24 1568 for_each_online_node(nid) {
e498be7d 1569 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1570 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1571
1572 if (INDEX_AC != INDEX_L3) {
1573 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1574 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1575 }
1576 }
1577 }
1da177e4 1578
e498be7d 1579 /* 6) resize the head arrays to their final sizes */
1da177e4 1580 {
343e0d7a 1581 struct kmem_cache *cachep;
fc0abb14 1582 mutex_lock(&cache_chain_mutex);
1da177e4 1583 list_for_each_entry(cachep, &cache_chain, next)
2ed3a4ef
CL
1584 if (enable_cpucache(cachep))
1585 BUG();
fc0abb14 1586 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1587 }
1588
056c6241
RT
1589 /* Annotate slab for lockdep -- annotate the malloc caches */
1590 init_lock_keys();
1591
1592
1da177e4
LT
1593 /* Done! */
1594 g_cpucache_up = FULL;
1595
a737b3e2
AM
1596 /*
1597 * Register a cpu startup notifier callback that initializes
1598 * cpu_cache_get for all new cpus
1da177e4
LT
1599 */
1600 register_cpu_notifier(&cpucache_notifier);
1da177e4 1601
a737b3e2
AM
1602 /*
1603 * The reap timers are started later, with a module init call: That part
1604 * of the kernel is not yet operational.
1da177e4
LT
1605 */
1606}
1607
1608static int __init cpucache_init(void)
1609{
1610 int cpu;
1611
a737b3e2
AM
1612 /*
1613 * Register the timers that return unneeded pages to the page allocator
1da177e4 1614 */
e498be7d 1615 for_each_online_cpu(cpu)
a737b3e2 1616 start_cpu_timer(cpu);
1da177e4
LT
1617 return 0;
1618}
1da177e4
LT
1619__initcall(cpucache_init);
1620
1621/*
1622 * Interface to system's page allocator. No need to hold the cache-lock.
1623 *
1624 * If we requested dmaable memory, we will get it. Even if we
1625 * did not request dmaable memory, we might get it, but that
1626 * would be relatively rare and ignorable.
1627 */
343e0d7a 1628static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1629{
1630 struct page *page;
e1b6aa6f 1631 int nr_pages;
1da177e4
LT
1632 int i;
1633
d6fef9da 1634#ifndef CONFIG_MMU
e1b6aa6f
CH
1635 /*
1636 * Nommu uses slab's for process anonymous memory allocations, and thus
1637 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1638 */
e1b6aa6f 1639 flags |= __GFP_COMP;
d6fef9da 1640#endif
765c4507 1641
3c517a61 1642 flags |= cachep->gfpflags;
e1b6aa6f
CH
1643
1644 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1645 if (!page)
1646 return NULL;
1da177e4 1647
e1b6aa6f 1648 nr_pages = (1 << cachep->gfporder);
1da177e4 1649 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1650 add_zone_page_state(page_zone(page),
1651 NR_SLAB_RECLAIMABLE, nr_pages);
1652 else
1653 add_zone_page_state(page_zone(page),
1654 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1655 for (i = 0; i < nr_pages; i++)
1656 __SetPageSlab(page + i);
1657 return page_address(page);
1da177e4
LT
1658}
1659
1660/*
1661 * Interface to system's page release.
1662 */
343e0d7a 1663static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1664{
b28a02de 1665 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1666 struct page *page = virt_to_page(addr);
1667 const unsigned long nr_freed = i;
1668
972d1a7b
CL
1669 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1670 sub_zone_page_state(page_zone(page),
1671 NR_SLAB_RECLAIMABLE, nr_freed);
1672 else
1673 sub_zone_page_state(page_zone(page),
1674 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1675 while (i--) {
f205b2fe
NP
1676 BUG_ON(!PageSlab(page));
1677 __ClearPageSlab(page);
1da177e4
LT
1678 page++;
1679 }
1da177e4
LT
1680 if (current->reclaim_state)
1681 current->reclaim_state->reclaimed_slab += nr_freed;
1682 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1683}
1684
1685static void kmem_rcu_free(struct rcu_head *head)
1686{
b28a02de 1687 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1688 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1689
1690 kmem_freepages(cachep, slab_rcu->addr);
1691 if (OFF_SLAB(cachep))
1692 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1693}
1694
1695#if DEBUG
1696
1697#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1698static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1699 unsigned long caller)
1da177e4 1700{
3dafccf2 1701 int size = obj_size(cachep);
1da177e4 1702
3dafccf2 1703 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1704
b28a02de 1705 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1706 return;
1707
b28a02de
PE
1708 *addr++ = 0x12345678;
1709 *addr++ = caller;
1710 *addr++ = smp_processor_id();
1711 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1712 {
1713 unsigned long *sptr = &caller;
1714 unsigned long svalue;
1715
1716 while (!kstack_end(sptr)) {
1717 svalue = *sptr++;
1718 if (kernel_text_address(svalue)) {
b28a02de 1719 *addr++ = svalue;
1da177e4
LT
1720 size -= sizeof(unsigned long);
1721 if (size <= sizeof(unsigned long))
1722 break;
1723 }
1724 }
1725
1726 }
b28a02de 1727 *addr++ = 0x87654321;
1da177e4
LT
1728}
1729#endif
1730
343e0d7a 1731static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1732{
3dafccf2
MS
1733 int size = obj_size(cachep);
1734 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1735
1736 memset(addr, val, size);
b28a02de 1737 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1738}
1739
1740static void dump_line(char *data, int offset, int limit)
1741{
1742 int i;
aa83aa40
DJ
1743 unsigned char error = 0;
1744 int bad_count = 0;
1745
1da177e4 1746 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1747 for (i = 0; i < limit; i++) {
1748 if (data[offset + i] != POISON_FREE) {
1749 error = data[offset + i];
1750 bad_count++;
1751 }
b28a02de 1752 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1753 }
1da177e4 1754 printk("\n");
aa83aa40
DJ
1755
1756 if (bad_count == 1) {
1757 error ^= POISON_FREE;
1758 if (!(error & (error - 1))) {
1759 printk(KERN_ERR "Single bit error detected. Probably "
1760 "bad RAM.\n");
1761#ifdef CONFIG_X86
1762 printk(KERN_ERR "Run memtest86+ or a similar memory "
1763 "test tool.\n");
1764#else
1765 printk(KERN_ERR "Run a memory test tool.\n");
1766#endif
1767 }
1768 }
1da177e4
LT
1769}
1770#endif
1771
1772#if DEBUG
1773
343e0d7a 1774static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1775{
1776 int i, size;
1777 char *realobj;
1778
1779 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1780 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1781 *dbg_redzone1(cachep, objp),
1782 *dbg_redzone2(cachep, objp));
1da177e4
LT
1783 }
1784
1785 if (cachep->flags & SLAB_STORE_USER) {
1786 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1787 *dbg_userword(cachep, objp));
1da177e4 1788 print_symbol("(%s)",
a737b3e2 1789 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1790 printk("\n");
1791 }
3dafccf2
MS
1792 realobj = (char *)objp + obj_offset(cachep);
1793 size = obj_size(cachep);
b28a02de 1794 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1795 int limit;
1796 limit = 16;
b28a02de
PE
1797 if (i + limit > size)
1798 limit = size - i;
1da177e4
LT
1799 dump_line(realobj, i, limit);
1800 }
1801}
1802
343e0d7a 1803static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1804{
1805 char *realobj;
1806 int size, i;
1807 int lines = 0;
1808
3dafccf2
MS
1809 realobj = (char *)objp + obj_offset(cachep);
1810 size = obj_size(cachep);
1da177e4 1811
b28a02de 1812 for (i = 0; i < size; i++) {
1da177e4 1813 char exp = POISON_FREE;
b28a02de 1814 if (i == size - 1)
1da177e4
LT
1815 exp = POISON_END;
1816 if (realobj[i] != exp) {
1817 int limit;
1818 /* Mismatch ! */
1819 /* Print header */
1820 if (lines == 0) {
b28a02de 1821 printk(KERN_ERR
e94a40c5
DH
1822 "Slab corruption: %s start=%p, len=%d\n",
1823 cachep->name, realobj, size);
1da177e4
LT
1824 print_objinfo(cachep, objp, 0);
1825 }
1826 /* Hexdump the affected line */
b28a02de 1827 i = (i / 16) * 16;
1da177e4 1828 limit = 16;
b28a02de
PE
1829 if (i + limit > size)
1830 limit = size - i;
1da177e4
LT
1831 dump_line(realobj, i, limit);
1832 i += 16;
1833 lines++;
1834 /* Limit to 5 lines */
1835 if (lines > 5)
1836 break;
1837 }
1838 }
1839 if (lines != 0) {
1840 /* Print some data about the neighboring objects, if they
1841 * exist:
1842 */
6ed5eb22 1843 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1844 unsigned int objnr;
1da177e4 1845
8fea4e96 1846 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1847 if (objnr) {
8fea4e96 1848 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1849 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1850 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1851 realobj, size);
1da177e4
LT
1852 print_objinfo(cachep, objp, 2);
1853 }
b28a02de 1854 if (objnr + 1 < cachep->num) {
8fea4e96 1855 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1856 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1857 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1858 realobj, size);
1da177e4
LT
1859 print_objinfo(cachep, objp, 2);
1860 }
1861 }
1862}
1863#endif
1864
12dd36fa
MD
1865#if DEBUG
1866/**
911851e6
RD
1867 * slab_destroy_objs - destroy a slab and its objects
1868 * @cachep: cache pointer being destroyed
1869 * @slabp: slab pointer being destroyed
1870 *
1871 * Call the registered destructor for each object in a slab that is being
1872 * destroyed.
1da177e4 1873 */
343e0d7a 1874static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1875{
1da177e4
LT
1876 int i;
1877 for (i = 0; i < cachep->num; i++) {
8fea4e96 1878 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1879
1880 if (cachep->flags & SLAB_POISON) {
1881#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1882 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1883 OFF_SLAB(cachep))
b28a02de 1884 kernel_map_pages(virt_to_page(objp),
a737b3e2 1885 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1886 else
1887 check_poison_obj(cachep, objp);
1888#else
1889 check_poison_obj(cachep, objp);
1890#endif
1891 }
1892 if (cachep->flags & SLAB_RED_ZONE) {
1893 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1894 slab_error(cachep, "start of a freed object "
b28a02de 1895 "was overwritten");
1da177e4
LT
1896 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1897 slab_error(cachep, "end of a freed object "
b28a02de 1898 "was overwritten");
1da177e4 1899 }
1da177e4 1900 }
12dd36fa 1901}
1da177e4 1902#else
343e0d7a 1903static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1904{
12dd36fa 1905}
1da177e4
LT
1906#endif
1907
911851e6
RD
1908/**
1909 * slab_destroy - destroy and release all objects in a slab
1910 * @cachep: cache pointer being destroyed
1911 * @slabp: slab pointer being destroyed
1912 *
12dd36fa 1913 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1914 * Before calling the slab must have been unlinked from the cache. The
1915 * cache-lock is not held/needed.
12dd36fa 1916 */
343e0d7a 1917static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1918{
1919 void *addr = slabp->s_mem - slabp->colouroff;
1920
1921 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1922 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1923 struct slab_rcu *slab_rcu;
1924
b28a02de 1925 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1926 slab_rcu->cachep = cachep;
1927 slab_rcu->addr = addr;
1928 call_rcu(&slab_rcu->head, kmem_rcu_free);
1929 } else {
1930 kmem_freepages(cachep, addr);
873623df
IM
1931 if (OFF_SLAB(cachep))
1932 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1933 }
1934}
1935
a737b3e2
AM
1936/*
1937 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1938 * size of kmem_list3.
1939 */
a3a02be7 1940static void __init set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1941{
1942 int node;
1943
1944 for_each_online_node(node) {
b28a02de 1945 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1946 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1947 REAPTIMEOUT_LIST3 +
1948 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1949 }
1950}
1951
117f6eb1
CL
1952static void __kmem_cache_destroy(struct kmem_cache *cachep)
1953{
1954 int i;
1955 struct kmem_list3 *l3;
1956
1957 for_each_online_cpu(i)
1958 kfree(cachep->array[i]);
1959
1960 /* NUMA: free the list3 structures */
1961 for_each_online_node(i) {
1962 l3 = cachep->nodelists[i];
1963 if (l3) {
1964 kfree(l3->shared);
1965 free_alien_cache(l3->alien);
1966 kfree(l3);
1967 }
1968 }
1969 kmem_cache_free(&cache_cache, cachep);
1970}
1971
1972
4d268eba 1973/**
a70773dd
RD
1974 * calculate_slab_order - calculate size (page order) of slabs
1975 * @cachep: pointer to the cache that is being created
1976 * @size: size of objects to be created in this cache.
1977 * @align: required alignment for the objects.
1978 * @flags: slab allocation flags
1979 *
1980 * Also calculates the number of objects per slab.
4d268eba
PE
1981 *
1982 * This could be made much more intelligent. For now, try to avoid using
1983 * high order pages for slabs. When the gfp() functions are more friendly
1984 * towards high-order requests, this should be changed.
1985 */
a737b3e2 1986static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1987 size_t size, size_t align, unsigned long flags)
4d268eba 1988{
b1ab41c4 1989 unsigned long offslab_limit;
4d268eba 1990 size_t left_over = 0;
9888e6fa 1991 int gfporder;
4d268eba 1992
0aa817f0 1993 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1994 unsigned int num;
1995 size_t remainder;
1996
9888e6fa 1997 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1998 if (!num)
1999 continue;
9888e6fa 2000
b1ab41c4
IM
2001 if (flags & CFLGS_OFF_SLAB) {
2002 /*
2003 * Max number of objs-per-slab for caches which
2004 * use off-slab slabs. Needed to avoid a possible
2005 * looping condition in cache_grow().
2006 */
2007 offslab_limit = size - sizeof(struct slab);
2008 offslab_limit /= sizeof(kmem_bufctl_t);
2009
2010 if (num > offslab_limit)
2011 break;
2012 }
4d268eba 2013
9888e6fa 2014 /* Found something acceptable - save it away */
4d268eba 2015 cachep->num = num;
9888e6fa 2016 cachep->gfporder = gfporder;
4d268eba
PE
2017 left_over = remainder;
2018
f78bb8ad
LT
2019 /*
2020 * A VFS-reclaimable slab tends to have most allocations
2021 * as GFP_NOFS and we really don't want to have to be allocating
2022 * higher-order pages when we are unable to shrink dcache.
2023 */
2024 if (flags & SLAB_RECLAIM_ACCOUNT)
2025 break;
2026
4d268eba
PE
2027 /*
2028 * Large number of objects is good, but very large slabs are
2029 * currently bad for the gfp()s.
2030 */
9888e6fa 2031 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
2032 break;
2033
9888e6fa
LT
2034 /*
2035 * Acceptable internal fragmentation?
2036 */
a737b3e2 2037 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2038 break;
2039 }
2040 return left_over;
2041}
2042
38bdc32a 2043static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
f30cf7d1 2044{
2ed3a4ef
CL
2045 if (g_cpucache_up == FULL)
2046 return enable_cpucache(cachep);
2047
f30cf7d1
PE
2048 if (g_cpucache_up == NONE) {
2049 /*
2050 * Note: the first kmem_cache_create must create the cache
2051 * that's used by kmalloc(24), otherwise the creation of
2052 * further caches will BUG().
2053 */
2054 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2055
2056 /*
2057 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2058 * the first cache, then we need to set up all its list3s,
2059 * otherwise the creation of further caches will BUG().
2060 */
2061 set_up_list3s(cachep, SIZE_AC);
2062 if (INDEX_AC == INDEX_L3)
2063 g_cpucache_up = PARTIAL_L3;
2064 else
2065 g_cpucache_up = PARTIAL_AC;
2066 } else {
2067 cachep->array[smp_processor_id()] =
2068 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2069
2070 if (g_cpucache_up == PARTIAL_AC) {
2071 set_up_list3s(cachep, SIZE_L3);
2072 g_cpucache_up = PARTIAL_L3;
2073 } else {
2074 int node;
2075 for_each_online_node(node) {
2076 cachep->nodelists[node] =
2077 kmalloc_node(sizeof(struct kmem_list3),
2078 GFP_KERNEL, node);
2079 BUG_ON(!cachep->nodelists[node]);
2080 kmem_list3_init(cachep->nodelists[node]);
2081 }
2082 }
2083 }
2084 cachep->nodelists[numa_node_id()]->next_reap =
2085 jiffies + REAPTIMEOUT_LIST3 +
2086 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2087
2088 cpu_cache_get(cachep)->avail = 0;
2089 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2090 cpu_cache_get(cachep)->batchcount = 1;
2091 cpu_cache_get(cachep)->touched = 0;
2092 cachep->batchcount = 1;
2093 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2094 return 0;
f30cf7d1
PE
2095}
2096
1da177e4
LT
2097/**
2098 * kmem_cache_create - Create a cache.
2099 * @name: A string which is used in /proc/slabinfo to identify this cache.
2100 * @size: The size of objects to be created in this cache.
2101 * @align: The required alignment for the objects.
2102 * @flags: SLAB flags
2103 * @ctor: A constructor for the objects.
c59def9f 2104 * @dtor: A destructor for the objects (not implemented anymore).
1da177e4
LT
2105 *
2106 * Returns a ptr to the cache on success, NULL on failure.
2107 * Cannot be called within a int, but can be interrupted.
2108 * The @ctor is run when new pages are allocated by the cache
2109 * and the @dtor is run before the pages are handed back.
2110 *
2111 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2112 * the module calling this has to destroy the cache before getting unloaded.
2113 *
1da177e4
LT
2114 * The flags are
2115 *
2116 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2117 * to catch references to uninitialised memory.
2118 *
2119 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2120 * for buffer overruns.
2121 *
1da177e4
LT
2122 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2123 * cacheline. This can be beneficial if you're counting cycles as closely
2124 * as davem.
2125 */
343e0d7a 2126struct kmem_cache *
1da177e4 2127kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2
AM
2128 unsigned long flags,
2129 void (*ctor)(void*, struct kmem_cache *, unsigned long),
343e0d7a 2130 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1da177e4
LT
2131{
2132 size_t left_over, slab_size, ralign;
7a7c381d 2133 struct kmem_cache *cachep = NULL, *pc;
1da177e4
LT
2134
2135 /*
2136 * Sanity checks... these are all serious usage bugs.
2137 */
a737b3e2 2138 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
0aa817f0 2139 size > KMALLOC_MAX_SIZE || dtor) {
a737b3e2
AM
2140 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2141 name);
b28a02de
PE
2142 BUG();
2143 }
1da177e4 2144
f0188f47 2145 /*
8f5be20b
RT
2146 * We use cache_chain_mutex to ensure a consistent view of
2147 * cpu_online_map as well. Please see cpuup_callback
f0188f47 2148 */
fc0abb14 2149 mutex_lock(&cache_chain_mutex);
4f12bb4f 2150
7a7c381d 2151 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2152 char tmp;
2153 int res;
2154
2155 /*
2156 * This happens when the module gets unloaded and doesn't
2157 * destroy its slab cache and no-one else reuses the vmalloc
2158 * area of the module. Print a warning.
2159 */
138ae663 2160 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2161 if (res) {
b4169525 2162 printk(KERN_ERR
2163 "SLAB: cache with size %d has lost its name\n",
3dafccf2 2164 pc->buffer_size);
4f12bb4f
AM
2165 continue;
2166 }
2167
b28a02de 2168 if (!strcmp(pc->name, name)) {
b4169525 2169 printk(KERN_ERR
2170 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2171 dump_stack();
2172 goto oops;
2173 }
2174 }
2175
1da177e4
LT
2176#if DEBUG
2177 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2178#if FORCED_DEBUG
2179 /*
2180 * Enable redzoning and last user accounting, except for caches with
2181 * large objects, if the increased size would increase the object size
2182 * above the next power of two: caches with object sizes just above a
2183 * power of two have a significant amount of internal fragmentation.
2184 */
87a927c7
DW
2185 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2186 2 * sizeof(unsigned long long)))
b28a02de 2187 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2188 if (!(flags & SLAB_DESTROY_BY_RCU))
2189 flags |= SLAB_POISON;
2190#endif
2191 if (flags & SLAB_DESTROY_BY_RCU)
2192 BUG_ON(flags & SLAB_POISON);
2193#endif
1da177e4 2194 /*
a737b3e2
AM
2195 * Always checks flags, a caller might be expecting debug support which
2196 * isn't available.
1da177e4 2197 */
40094fa6 2198 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2199
a737b3e2
AM
2200 /*
2201 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2202 * unaligned accesses for some archs when redzoning is used, and makes
2203 * sure any on-slab bufctl's are also correctly aligned.
2204 */
b28a02de
PE
2205 if (size & (BYTES_PER_WORD - 1)) {
2206 size += (BYTES_PER_WORD - 1);
2207 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2208 }
2209
a737b3e2
AM
2210 /* calculate the final buffer alignment: */
2211
1da177e4
LT
2212 /* 1) arch recommendation: can be overridden for debug */
2213 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2214 /*
2215 * Default alignment: as specified by the arch code. Except if
2216 * an object is really small, then squeeze multiple objects into
2217 * one cacheline.
1da177e4
LT
2218 */
2219 ralign = cache_line_size();
b28a02de 2220 while (size <= ralign / 2)
1da177e4
LT
2221 ralign /= 2;
2222 } else {
2223 ralign = BYTES_PER_WORD;
2224 }
ca5f9703
PE
2225
2226 /*
87a927c7
DW
2227 * Redzoning and user store require word alignment or possibly larger.
2228 * Note this will be overridden by architecture or caller mandated
2229 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2230 */
87a927c7
DW
2231 if (flags & SLAB_STORE_USER)
2232 ralign = BYTES_PER_WORD;
2233
2234 if (flags & SLAB_RED_ZONE) {
2235 ralign = REDZONE_ALIGN;
2236 /* If redzoning, ensure that the second redzone is suitably
2237 * aligned, by adjusting the object size accordingly. */
2238 size += REDZONE_ALIGN - 1;
2239 size &= ~(REDZONE_ALIGN - 1);
2240 }
ca5f9703 2241
a44b56d3 2242 /* 2) arch mandated alignment */
1da177e4
LT
2243 if (ralign < ARCH_SLAB_MINALIGN) {
2244 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2245 }
a44b56d3 2246 /* 3) caller mandated alignment */
1da177e4
LT
2247 if (ralign < align) {
2248 ralign = align;
1da177e4 2249 }
a44b56d3 2250 /* disable debug if necessary */
b46b8f19 2251 if (ralign > __alignof__(unsigned long long))
a44b56d3 2252 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2253 /*
ca5f9703 2254 * 4) Store it.
1da177e4
LT
2255 */
2256 align = ralign;
2257
2258 /* Get cache's description obj. */
e94b1766 2259 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
1da177e4 2260 if (!cachep)
4f12bb4f 2261 goto oops;
1da177e4
LT
2262
2263#if DEBUG
3dafccf2 2264 cachep->obj_size = size;
1da177e4 2265
ca5f9703
PE
2266 /*
2267 * Both debugging options require word-alignment which is calculated
2268 * into align above.
2269 */
1da177e4 2270 if (flags & SLAB_RED_ZONE) {
1da177e4 2271 /* add space for red zone words */
b46b8f19
DW
2272 cachep->obj_offset += sizeof(unsigned long long);
2273 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2274 }
2275 if (flags & SLAB_STORE_USER) {
ca5f9703 2276 /* user store requires one word storage behind the end of
87a927c7
DW
2277 * the real object. But if the second red zone needs to be
2278 * aligned to 64 bits, we must allow that much space.
1da177e4 2279 */
87a927c7
DW
2280 if (flags & SLAB_RED_ZONE)
2281 size += REDZONE_ALIGN;
2282 else
2283 size += BYTES_PER_WORD;
1da177e4
LT
2284 }
2285#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2286 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2287 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2288 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2289 size = PAGE_SIZE;
2290 }
2291#endif
2292#endif
2293
e0a42726
IM
2294 /*
2295 * Determine if the slab management is 'on' or 'off' slab.
2296 * (bootstrapping cannot cope with offslab caches so don't do
2297 * it too early on.)
2298 */
2299 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2300 /*
2301 * Size is large, assume best to place the slab management obj
2302 * off-slab (should allow better packing of objs).
2303 */
2304 flags |= CFLGS_OFF_SLAB;
2305
2306 size = ALIGN(size, align);
2307
f78bb8ad 2308 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2309
2310 if (!cachep->num) {
b4169525 2311 printk(KERN_ERR
2312 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4
LT
2313 kmem_cache_free(&cache_cache, cachep);
2314 cachep = NULL;
4f12bb4f 2315 goto oops;
1da177e4 2316 }
b28a02de
PE
2317 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2318 + sizeof(struct slab), align);
1da177e4
LT
2319
2320 /*
2321 * If the slab has been placed off-slab, and we have enough space then
2322 * move it on-slab. This is at the expense of any extra colouring.
2323 */
2324 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2325 flags &= ~CFLGS_OFF_SLAB;
2326 left_over -= slab_size;
2327 }
2328
2329 if (flags & CFLGS_OFF_SLAB) {
2330 /* really off slab. No need for manual alignment */
b28a02de
PE
2331 slab_size =
2332 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2333 }
2334
2335 cachep->colour_off = cache_line_size();
2336 /* Offset must be a multiple of the alignment. */
2337 if (cachep->colour_off < align)
2338 cachep->colour_off = align;
b28a02de 2339 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2340 cachep->slab_size = slab_size;
2341 cachep->flags = flags;
2342 cachep->gfpflags = 0;
4b51d669 2343 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2344 cachep->gfpflags |= GFP_DMA;
3dafccf2 2345 cachep->buffer_size = size;
6a2d7a95 2346 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2347
e5ac9c5a 2348 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2349 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2350 /*
2351 * This is a possibility for one of the malloc_sizes caches.
2352 * But since we go off slab only for object size greater than
2353 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2354 * this should not happen at all.
2355 * But leave a BUG_ON for some lucky dude.
2356 */
6cb8f913 2357 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2358 }
1da177e4 2359 cachep->ctor = ctor;
1da177e4
LT
2360 cachep->name = name;
2361
2ed3a4ef
CL
2362 if (setup_cpu_cache(cachep)) {
2363 __kmem_cache_destroy(cachep);
2364 cachep = NULL;
2365 goto oops;
2366 }
1da177e4 2367
1da177e4
LT
2368 /* cache setup completed, link it into the list */
2369 list_add(&cachep->next, &cache_chain);
a737b3e2 2370oops:
1da177e4
LT
2371 if (!cachep && (flags & SLAB_PANIC))
2372 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2373 name);
fc0abb14 2374 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2375 return cachep;
2376}
2377EXPORT_SYMBOL(kmem_cache_create);
2378
2379#if DEBUG
2380static void check_irq_off(void)
2381{
2382 BUG_ON(!irqs_disabled());
2383}
2384
2385static void check_irq_on(void)
2386{
2387 BUG_ON(irqs_disabled());
2388}
2389
343e0d7a 2390static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2391{
2392#ifdef CONFIG_SMP
2393 check_irq_off();
e498be7d 2394 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2395#endif
2396}
e498be7d 2397
343e0d7a 2398static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2399{
2400#ifdef CONFIG_SMP
2401 check_irq_off();
2402 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2403#endif
2404}
2405
1da177e4
LT
2406#else
2407#define check_irq_off() do { } while(0)
2408#define check_irq_on() do { } while(0)
2409#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2410#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2411#endif
2412
aab2207c
CL
2413static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2414 struct array_cache *ac,
2415 int force, int node);
2416
1da177e4
LT
2417static void do_drain(void *arg)
2418{
a737b3e2 2419 struct kmem_cache *cachep = arg;
1da177e4 2420 struct array_cache *ac;
ff69416e 2421 int node = numa_node_id();
1da177e4
LT
2422
2423 check_irq_off();
9a2dba4b 2424 ac = cpu_cache_get(cachep);
ff69416e
CL
2425 spin_lock(&cachep->nodelists[node]->list_lock);
2426 free_block(cachep, ac->entry, ac->avail, node);
2427 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2428 ac->avail = 0;
2429}
2430
343e0d7a 2431static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2432{
e498be7d
CL
2433 struct kmem_list3 *l3;
2434 int node;
2435
a07fa394 2436 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2437 check_irq_on();
b28a02de 2438 for_each_online_node(node) {
e498be7d 2439 l3 = cachep->nodelists[node];
a4523a8b
RD
2440 if (l3 && l3->alien)
2441 drain_alien_cache(cachep, l3->alien);
2442 }
2443
2444 for_each_online_node(node) {
2445 l3 = cachep->nodelists[node];
2446 if (l3)
aab2207c 2447 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2448 }
1da177e4
LT
2449}
2450
ed11d9eb
CL
2451/*
2452 * Remove slabs from the list of free slabs.
2453 * Specify the number of slabs to drain in tofree.
2454 *
2455 * Returns the actual number of slabs released.
2456 */
2457static int drain_freelist(struct kmem_cache *cache,
2458 struct kmem_list3 *l3, int tofree)
1da177e4 2459{
ed11d9eb
CL
2460 struct list_head *p;
2461 int nr_freed;
1da177e4 2462 struct slab *slabp;
1da177e4 2463
ed11d9eb
CL
2464 nr_freed = 0;
2465 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2466
ed11d9eb 2467 spin_lock_irq(&l3->list_lock);
e498be7d 2468 p = l3->slabs_free.prev;
ed11d9eb
CL
2469 if (p == &l3->slabs_free) {
2470 spin_unlock_irq(&l3->list_lock);
2471 goto out;
2472 }
1da177e4 2473
ed11d9eb 2474 slabp = list_entry(p, struct slab, list);
1da177e4 2475#if DEBUG
40094fa6 2476 BUG_ON(slabp->inuse);
1da177e4
LT
2477#endif
2478 list_del(&slabp->list);
ed11d9eb
CL
2479 /*
2480 * Safe to drop the lock. The slab is no longer linked
2481 * to the cache.
2482 */
2483 l3->free_objects -= cache->num;
e498be7d 2484 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2485 slab_destroy(cache, slabp);
2486 nr_freed++;
1da177e4 2487 }
ed11d9eb
CL
2488out:
2489 return nr_freed;
1da177e4
LT
2490}
2491
8f5be20b 2492/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2493static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2494{
2495 int ret = 0, i = 0;
2496 struct kmem_list3 *l3;
2497
2498 drain_cpu_caches(cachep);
2499
2500 check_irq_on();
2501 for_each_online_node(i) {
2502 l3 = cachep->nodelists[i];
ed11d9eb
CL
2503 if (!l3)
2504 continue;
2505
2506 drain_freelist(cachep, l3, l3->free_objects);
2507
2508 ret += !list_empty(&l3->slabs_full) ||
2509 !list_empty(&l3->slabs_partial);
e498be7d
CL
2510 }
2511 return (ret ? 1 : 0);
2512}
2513
1da177e4
LT
2514/**
2515 * kmem_cache_shrink - Shrink a cache.
2516 * @cachep: The cache to shrink.
2517 *
2518 * Releases as many slabs as possible for a cache.
2519 * To help debugging, a zero exit status indicates all slabs were released.
2520 */
343e0d7a 2521int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2522{
8f5be20b 2523 int ret;
40094fa6 2524 BUG_ON(!cachep || in_interrupt());
1da177e4 2525
8f5be20b
RT
2526 mutex_lock(&cache_chain_mutex);
2527 ret = __cache_shrink(cachep);
2528 mutex_unlock(&cache_chain_mutex);
2529 return ret;
1da177e4
LT
2530}
2531EXPORT_SYMBOL(kmem_cache_shrink);
2532
2533/**
2534 * kmem_cache_destroy - delete a cache
2535 * @cachep: the cache to destroy
2536 *
72fd4a35 2537 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2538 *
2539 * It is expected this function will be called by a module when it is
2540 * unloaded. This will remove the cache completely, and avoid a duplicate
2541 * cache being allocated each time a module is loaded and unloaded, if the
2542 * module doesn't have persistent in-kernel storage across loads and unloads.
2543 *
2544 * The cache must be empty before calling this function.
2545 *
2546 * The caller must guarantee that noone will allocate memory from the cache
2547 * during the kmem_cache_destroy().
2548 */
133d205a 2549void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2550{
40094fa6 2551 BUG_ON(!cachep || in_interrupt());
1da177e4 2552
1da177e4 2553 /* Find the cache in the chain of caches. */
fc0abb14 2554 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2555 /*
2556 * the chain is never empty, cache_cache is never destroyed
2557 */
2558 list_del(&cachep->next);
1da177e4
LT
2559 if (__cache_shrink(cachep)) {
2560 slab_error(cachep, "Can't free all objects");
b28a02de 2561 list_add(&cachep->next, &cache_chain);
fc0abb14 2562 mutex_unlock(&cache_chain_mutex);
133d205a 2563 return;
1da177e4
LT
2564 }
2565
2566 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2567 synchronize_rcu();
1da177e4 2568
117f6eb1 2569 __kmem_cache_destroy(cachep);
8f5be20b 2570 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2571}
2572EXPORT_SYMBOL(kmem_cache_destroy);
2573
e5ac9c5a
RT
2574/*
2575 * Get the memory for a slab management obj.
2576 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2577 * always come from malloc_sizes caches. The slab descriptor cannot
2578 * come from the same cache which is getting created because,
2579 * when we are searching for an appropriate cache for these
2580 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2581 * If we are creating a malloc_sizes cache here it would not be visible to
2582 * kmem_find_general_cachep till the initialization is complete.
2583 * Hence we cannot have slabp_cache same as the original cache.
2584 */
343e0d7a 2585static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2586 int colour_off, gfp_t local_flags,
2587 int nodeid)
1da177e4
LT
2588{
2589 struct slab *slabp;
b28a02de 2590
1da177e4
LT
2591 if (OFF_SLAB(cachep)) {
2592 /* Slab management obj is off-slab. */
5b74ada7 2593 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
3c517a61 2594 local_flags & ~GFP_THISNODE, nodeid);
1da177e4
LT
2595 if (!slabp)
2596 return NULL;
2597 } else {
b28a02de 2598 slabp = objp + colour_off;
1da177e4
LT
2599 colour_off += cachep->slab_size;
2600 }
2601 slabp->inuse = 0;
2602 slabp->colouroff = colour_off;
b28a02de 2603 slabp->s_mem = objp + colour_off;
5b74ada7 2604 slabp->nodeid = nodeid;
1da177e4
LT
2605 return slabp;
2606}
2607
2608static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2609{
b28a02de 2610 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2611}
2612
343e0d7a 2613static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2614 struct slab *slabp)
1da177e4
LT
2615{
2616 int i;
2617
2618 for (i = 0; i < cachep->num; i++) {
8fea4e96 2619 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2620#if DEBUG
2621 /* need to poison the objs? */
2622 if (cachep->flags & SLAB_POISON)
2623 poison_obj(cachep, objp, POISON_FREE);
2624 if (cachep->flags & SLAB_STORE_USER)
2625 *dbg_userword(cachep, objp) = NULL;
2626
2627 if (cachep->flags & SLAB_RED_ZONE) {
2628 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2629 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2630 }
2631 /*
a737b3e2
AM
2632 * Constructors are not allowed to allocate memory from the same
2633 * cache which they are a constructor for. Otherwise, deadlock.
2634 * They must also be threaded.
1da177e4
LT
2635 */
2636 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2637 cachep->ctor(objp + obj_offset(cachep), cachep,
a35afb83 2638 0);
1da177e4
LT
2639
2640 if (cachep->flags & SLAB_RED_ZONE) {
2641 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2642 slab_error(cachep, "constructor overwrote the"
b28a02de 2643 " end of an object");
1da177e4
LT
2644 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2645 slab_error(cachep, "constructor overwrote the"
b28a02de 2646 " start of an object");
1da177e4 2647 }
a737b3e2
AM
2648 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2649 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2650 kernel_map_pages(virt_to_page(objp),
3dafccf2 2651 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2652#else
2653 if (cachep->ctor)
a35afb83 2654 cachep->ctor(objp, cachep, 0);
1da177e4 2655#endif
b28a02de 2656 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2657 }
b28a02de 2658 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2659 slabp->free = 0;
2660}
2661
343e0d7a 2662static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2663{
4b51d669
CL
2664 if (CONFIG_ZONE_DMA_FLAG) {
2665 if (flags & GFP_DMA)
2666 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2667 else
2668 BUG_ON(cachep->gfpflags & GFP_DMA);
2669 }
1da177e4
LT
2670}
2671
a737b3e2
AM
2672static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2673 int nodeid)
78d382d7 2674{
8fea4e96 2675 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2676 kmem_bufctl_t next;
2677
2678 slabp->inuse++;
2679 next = slab_bufctl(slabp)[slabp->free];
2680#if DEBUG
2681 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2682 WARN_ON(slabp->nodeid != nodeid);
2683#endif
2684 slabp->free = next;
2685
2686 return objp;
2687}
2688
a737b3e2
AM
2689static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2690 void *objp, int nodeid)
78d382d7 2691{
8fea4e96 2692 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2693
2694#if DEBUG
2695 /* Verify that the slab belongs to the intended node */
2696 WARN_ON(slabp->nodeid != nodeid);
2697
871751e2 2698 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2699 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2700 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2701 BUG();
2702 }
2703#endif
2704 slab_bufctl(slabp)[objnr] = slabp->free;
2705 slabp->free = objnr;
2706 slabp->inuse--;
2707}
2708
4776874f
PE
2709/*
2710 * Map pages beginning at addr to the given cache and slab. This is required
2711 * for the slab allocator to be able to lookup the cache and slab of a
2712 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2713 */
2714static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2715 void *addr)
1da177e4 2716{
4776874f 2717 int nr_pages;
1da177e4
LT
2718 struct page *page;
2719
4776874f 2720 page = virt_to_page(addr);
84097518 2721
4776874f 2722 nr_pages = 1;
84097518 2723 if (likely(!PageCompound(page)))
4776874f
PE
2724 nr_pages <<= cache->gfporder;
2725
1da177e4 2726 do {
4776874f
PE
2727 page_set_cache(page, cache);
2728 page_set_slab(page, slab);
1da177e4 2729 page++;
4776874f 2730 } while (--nr_pages);
1da177e4
LT
2731}
2732
2733/*
2734 * Grow (by 1) the number of slabs within a cache. This is called by
2735 * kmem_cache_alloc() when there are no active objs left in a cache.
2736 */
3c517a61
CL
2737static int cache_grow(struct kmem_cache *cachep,
2738 gfp_t flags, int nodeid, void *objp)
1da177e4 2739{
b28a02de 2740 struct slab *slabp;
b28a02de
PE
2741 size_t offset;
2742 gfp_t local_flags;
e498be7d 2743 struct kmem_list3 *l3;
1da177e4 2744
a737b3e2
AM
2745 /*
2746 * Be lazy and only check for valid flags here, keeping it out of the
2747 * critical path in kmem_cache_alloc().
1da177e4 2748 */
cfce6604 2749 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
1da177e4 2750
a06d72c1 2751 local_flags = (flags & GFP_LEVEL_MASK);
2e1217cf 2752 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2753 check_irq_off();
2e1217cf
RT
2754 l3 = cachep->nodelists[nodeid];
2755 spin_lock(&l3->list_lock);
1da177e4
LT
2756
2757 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2758 offset = l3->colour_next;
2759 l3->colour_next++;
2760 if (l3->colour_next >= cachep->colour)
2761 l3->colour_next = 0;
2762 spin_unlock(&l3->list_lock);
1da177e4 2763
2e1217cf 2764 offset *= cachep->colour_off;
1da177e4
LT
2765
2766 if (local_flags & __GFP_WAIT)
2767 local_irq_enable();
2768
2769 /*
2770 * The test for missing atomic flag is performed here, rather than
2771 * the more obvious place, simply to reduce the critical path length
2772 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2773 * will eventually be caught here (where it matters).
2774 */
2775 kmem_flagcheck(cachep, flags);
2776
a737b3e2
AM
2777 /*
2778 * Get mem for the objs. Attempt to allocate a physical page from
2779 * 'nodeid'.
e498be7d 2780 */
3c517a61
CL
2781 if (!objp)
2782 objp = kmem_getpages(cachep, flags, nodeid);
a737b3e2 2783 if (!objp)
1da177e4
LT
2784 goto failed;
2785
2786 /* Get slab management. */
3c517a61
CL
2787 slabp = alloc_slabmgmt(cachep, objp, offset,
2788 local_flags & ~GFP_THISNODE, nodeid);
a737b3e2 2789 if (!slabp)
1da177e4
LT
2790 goto opps1;
2791
e498be7d 2792 slabp->nodeid = nodeid;
4776874f 2793 slab_map_pages(cachep, slabp, objp);
1da177e4 2794
a35afb83 2795 cache_init_objs(cachep, slabp);
1da177e4
LT
2796
2797 if (local_flags & __GFP_WAIT)
2798 local_irq_disable();
2799 check_irq_off();
e498be7d 2800 spin_lock(&l3->list_lock);
1da177e4
LT
2801
2802 /* Make slab active. */
e498be7d 2803 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2804 STATS_INC_GROWN(cachep);
e498be7d
CL
2805 l3->free_objects += cachep->num;
2806 spin_unlock(&l3->list_lock);
1da177e4 2807 return 1;
a737b3e2 2808opps1:
1da177e4 2809 kmem_freepages(cachep, objp);
a737b3e2 2810failed:
1da177e4
LT
2811 if (local_flags & __GFP_WAIT)
2812 local_irq_disable();
2813 return 0;
2814}
2815
2816#if DEBUG
2817
2818/*
2819 * Perform extra freeing checks:
2820 * - detect bad pointers.
2821 * - POISON/RED_ZONE checking
1da177e4
LT
2822 */
2823static void kfree_debugcheck(const void *objp)
2824{
1da177e4
LT
2825 if (!virt_addr_valid(objp)) {
2826 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2827 (unsigned long)objp);
2828 BUG();
1da177e4 2829 }
1da177e4
LT
2830}
2831
58ce1fd5
PE
2832static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2833{
b46b8f19 2834 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2835
2836 redzone1 = *dbg_redzone1(cache, obj);
2837 redzone2 = *dbg_redzone2(cache, obj);
2838
2839 /*
2840 * Redzone is ok.
2841 */
2842 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2843 return;
2844
2845 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2846 slab_error(cache, "double free detected");
2847 else
2848 slab_error(cache, "memory outside object was overwritten");
2849
b46b8f19 2850 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2851 obj, redzone1, redzone2);
2852}
2853
343e0d7a 2854static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2855 void *caller)
1da177e4
LT
2856{
2857 struct page *page;
2858 unsigned int objnr;
2859 struct slab *slabp;
2860
3dafccf2 2861 objp -= obj_offset(cachep);
1da177e4 2862 kfree_debugcheck(objp);
b49af68f 2863 page = virt_to_head_page(objp);
1da177e4 2864
065d41cb 2865 slabp = page_get_slab(page);
1da177e4
LT
2866
2867 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2868 verify_redzone_free(cachep, objp);
1da177e4
LT
2869 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2870 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2871 }
2872 if (cachep->flags & SLAB_STORE_USER)
2873 *dbg_userword(cachep, objp) = caller;
2874
8fea4e96 2875 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2876
2877 BUG_ON(objnr >= cachep->num);
8fea4e96 2878 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2879
871751e2
AV
2880#ifdef CONFIG_DEBUG_SLAB_LEAK
2881 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2882#endif
1da177e4
LT
2883 if (cachep->flags & SLAB_POISON) {
2884#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2885 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2886 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2887 kernel_map_pages(virt_to_page(objp),
3dafccf2 2888 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2889 } else {
2890 poison_obj(cachep, objp, POISON_FREE);
2891 }
2892#else
2893 poison_obj(cachep, objp, POISON_FREE);
2894#endif
2895 }
2896 return objp;
2897}
2898
343e0d7a 2899static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2900{
2901 kmem_bufctl_t i;
2902 int entries = 0;
b28a02de 2903
1da177e4
LT
2904 /* Check slab's freelist to see if this obj is there. */
2905 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2906 entries++;
2907 if (entries > cachep->num || i >= cachep->num)
2908 goto bad;
2909 }
2910 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2911bad:
2912 printk(KERN_ERR "slab: Internal list corruption detected in "
2913 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2914 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2915 for (i = 0;
264132bc 2916 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2917 i++) {
a737b3e2 2918 if (i % 16 == 0)
1da177e4 2919 printk("\n%03x:", i);
b28a02de 2920 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2921 }
2922 printk("\n");
2923 BUG();
2924 }
2925}
2926#else
2927#define kfree_debugcheck(x) do { } while(0)
2928#define cache_free_debugcheck(x,objp,z) (objp)
2929#define check_slabp(x,y) do { } while(0)
2930#endif
2931
343e0d7a 2932static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2933{
2934 int batchcount;
2935 struct kmem_list3 *l3;
2936 struct array_cache *ac;
1ca4cb24
PE
2937 int node;
2938
2939 node = numa_node_id();
1da177e4
LT
2940
2941 check_irq_off();
9a2dba4b 2942 ac = cpu_cache_get(cachep);
a737b3e2 2943retry:
1da177e4
LT
2944 batchcount = ac->batchcount;
2945 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2946 /*
2947 * If there was little recent activity on this cache, then
2948 * perform only a partial refill. Otherwise we could generate
2949 * refill bouncing.
1da177e4
LT
2950 */
2951 batchcount = BATCHREFILL_LIMIT;
2952 }
1ca4cb24 2953 l3 = cachep->nodelists[node];
e498be7d
CL
2954
2955 BUG_ON(ac->avail > 0 || !l3);
2956 spin_lock(&l3->list_lock);
1da177e4 2957
3ded175a
CL
2958 /* See if we can refill from the shared array */
2959 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2960 goto alloc_done;
2961
1da177e4
LT
2962 while (batchcount > 0) {
2963 struct list_head *entry;
2964 struct slab *slabp;
2965 /* Get slab alloc is to come from. */
2966 entry = l3->slabs_partial.next;
2967 if (entry == &l3->slabs_partial) {
2968 l3->free_touched = 1;
2969 entry = l3->slabs_free.next;
2970 if (entry == &l3->slabs_free)
2971 goto must_grow;
2972 }
2973
2974 slabp = list_entry(entry, struct slab, list);
2975 check_slabp(cachep, slabp);
2976 check_spinlock_acquired(cachep);
714b8171
PE
2977
2978 /*
2979 * The slab was either on partial or free list so
2980 * there must be at least one object available for
2981 * allocation.
2982 */
2983 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
2984
1da177e4 2985 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2986 STATS_INC_ALLOCED(cachep);
2987 STATS_INC_ACTIVE(cachep);
2988 STATS_SET_HIGH(cachep);
2989
78d382d7 2990 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 2991 node);
1da177e4
LT
2992 }
2993 check_slabp(cachep, slabp);
2994
2995 /* move slabp to correct slabp list: */
2996 list_del(&slabp->list);
2997 if (slabp->free == BUFCTL_END)
2998 list_add(&slabp->list, &l3->slabs_full);
2999 else
3000 list_add(&slabp->list, &l3->slabs_partial);
3001 }
3002
a737b3e2 3003must_grow:
1da177e4 3004 l3->free_objects -= ac->avail;
a737b3e2 3005alloc_done:
e498be7d 3006 spin_unlock(&l3->list_lock);
1da177e4
LT
3007
3008 if (unlikely(!ac->avail)) {
3009 int x;
3c517a61 3010 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3011
a737b3e2 3012 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3013 ac = cpu_cache_get(cachep);
a737b3e2 3014 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3015 return NULL;
3016
a737b3e2 3017 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3018 goto retry;
3019 }
3020 ac->touched = 1;
e498be7d 3021 return ac->entry[--ac->avail];
1da177e4
LT
3022}
3023
a737b3e2
AM
3024static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3025 gfp_t flags)
1da177e4
LT
3026{
3027 might_sleep_if(flags & __GFP_WAIT);
3028#if DEBUG
3029 kmem_flagcheck(cachep, flags);
3030#endif
3031}
3032
3033#if DEBUG
a737b3e2
AM
3034static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3035 gfp_t flags, void *objp, void *caller)
1da177e4 3036{
b28a02de 3037 if (!objp)
1da177e4 3038 return objp;
b28a02de 3039 if (cachep->flags & SLAB_POISON) {
1da177e4 3040#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3041 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3042 kernel_map_pages(virt_to_page(objp),
3dafccf2 3043 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3044 else
3045 check_poison_obj(cachep, objp);
3046#else
3047 check_poison_obj(cachep, objp);
3048#endif
3049 poison_obj(cachep, objp, POISON_INUSE);
3050 }
3051 if (cachep->flags & SLAB_STORE_USER)
3052 *dbg_userword(cachep, objp) = caller;
3053
3054 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3055 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3056 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3057 slab_error(cachep, "double free, or memory outside"
3058 " object was overwritten");
b28a02de 3059 printk(KERN_ERR
b46b8f19 3060 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3061 objp, *dbg_redzone1(cachep, objp),
3062 *dbg_redzone2(cachep, objp));
1da177e4
LT
3063 }
3064 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3065 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3066 }
871751e2
AV
3067#ifdef CONFIG_DEBUG_SLAB_LEAK
3068 {
3069 struct slab *slabp;
3070 unsigned objnr;
3071
b49af68f 3072 slabp = page_get_slab(virt_to_head_page(objp));
871751e2
AV
3073 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3074 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3075 }
3076#endif
3dafccf2 3077 objp += obj_offset(cachep);
4f104934 3078 if (cachep->ctor && cachep->flags & SLAB_POISON)
a35afb83 3079 cachep->ctor(objp, cachep, 0);
a44b56d3
KH
3080#if ARCH_SLAB_MINALIGN
3081 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3082 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3083 objp, ARCH_SLAB_MINALIGN);
3084 }
3085#endif
1da177e4
LT
3086 return objp;
3087}
3088#else
3089#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3090#endif
3091
8a8b6502
AM
3092#ifdef CONFIG_FAILSLAB
3093
3094static struct failslab_attr {
3095
3096 struct fault_attr attr;
3097
3098 u32 ignore_gfp_wait;
3099#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3100 struct dentry *ignore_gfp_wait_file;
3101#endif
3102
3103} failslab = {
3104 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4 3105 .ignore_gfp_wait = 1,
8a8b6502
AM
3106};
3107
3108static int __init setup_failslab(char *str)
3109{
3110 return setup_fault_attr(&failslab.attr, str);
3111}
3112__setup("failslab=", setup_failslab);
3113
3114static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3115{
3116 if (cachep == &cache_cache)
3117 return 0;
3118 if (flags & __GFP_NOFAIL)
3119 return 0;
3120 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3121 return 0;
3122
3123 return should_fail(&failslab.attr, obj_size(cachep));
3124}
3125
3126#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3127
3128static int __init failslab_debugfs(void)
3129{
3130 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3131 struct dentry *dir;
3132 int err;
3133
824ebef1 3134 err = init_fault_attr_dentries(&failslab.attr, "failslab");
8a8b6502
AM
3135 if (err)
3136 return err;
3137 dir = failslab.attr.dentries.dir;
3138
3139 failslab.ignore_gfp_wait_file =
3140 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3141 &failslab.ignore_gfp_wait);
3142
3143 if (!failslab.ignore_gfp_wait_file) {
3144 err = -ENOMEM;
3145 debugfs_remove(failslab.ignore_gfp_wait_file);
3146 cleanup_fault_attr_dentries(&failslab.attr);
3147 }
3148
3149 return err;
3150}
3151
3152late_initcall(failslab_debugfs);
3153
3154#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3155
3156#else /* CONFIG_FAILSLAB */
3157
3158static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3159{
3160 return 0;
3161}
3162
3163#endif /* CONFIG_FAILSLAB */
3164
343e0d7a 3165static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3166{
b28a02de 3167 void *objp;
1da177e4
LT
3168 struct array_cache *ac;
3169
5c382300 3170 check_irq_off();
8a8b6502 3171
9a2dba4b 3172 ac = cpu_cache_get(cachep);
1da177e4
LT
3173 if (likely(ac->avail)) {
3174 STATS_INC_ALLOCHIT(cachep);
3175 ac->touched = 1;
e498be7d 3176 objp = ac->entry[--ac->avail];
1da177e4
LT
3177 } else {
3178 STATS_INC_ALLOCMISS(cachep);
3179 objp = cache_alloc_refill(cachep, flags);
3180 }
5c382300
AK
3181 return objp;
3182}
3183
e498be7d 3184#ifdef CONFIG_NUMA
c61afb18 3185/*
b2455396 3186 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3187 *
3188 * If we are in_interrupt, then process context, including cpusets and
3189 * mempolicy, may not apply and should not be used for allocation policy.
3190 */
3191static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3192{
3193 int nid_alloc, nid_here;
3194
765c4507 3195 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18
PJ
3196 return NULL;
3197 nid_alloc = nid_here = numa_node_id();
3198 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3199 nid_alloc = cpuset_mem_spread_node();
3200 else if (current->mempolicy)
3201 nid_alloc = slab_node(current->mempolicy);
3202 if (nid_alloc != nid_here)
8b98c169 3203 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3204 return NULL;
3205}
3206
765c4507
CL
3207/*
3208 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3209 * certain node and fall back is permitted. First we scan all the
3210 * available nodelists for available objects. If that fails then we
3211 * perform an allocation without specifying a node. This allows the page
3212 * allocator to do its reclaim / fallback magic. We then insert the
3213 * slab into the proper nodelist and then allocate from it.
765c4507 3214 */
8c8cc2c1 3215static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3216{
8c8cc2c1
PE
3217 struct zonelist *zonelist;
3218 gfp_t local_flags;
765c4507
CL
3219 struct zone **z;
3220 void *obj = NULL;
3c517a61 3221 int nid;
8c8cc2c1
PE
3222
3223 if (flags & __GFP_THISNODE)
3224 return NULL;
3225
3226 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3227 ->node_zonelists[gfp_zone(flags)];
3228 local_flags = (flags & GFP_LEVEL_MASK);
765c4507 3229
3c517a61
CL
3230retry:
3231 /*
3232 * Look through allowed nodes for objects available
3233 * from existing per node queues.
3234 */
aedb0eb1 3235 for (z = zonelist->zones; *z && !obj; z++) {
3c517a61 3236 nid = zone_to_nid(*z);
aedb0eb1 3237
02a0e53d 3238 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3c517a61
CL
3239 cache->nodelists[nid] &&
3240 cache->nodelists[nid]->free_objects)
3241 obj = ____cache_alloc_node(cache,
3242 flags | GFP_THISNODE, nid);
3243 }
3244
cfce6604 3245 if (!obj) {
3c517a61
CL
3246 /*
3247 * This allocation will be performed within the constraints
3248 * of the current cpuset / memory policy requirements.
3249 * We may trigger various forms of reclaim on the allowed
3250 * set and go into memory reserves if necessary.
3251 */
dd47ea75
CL
3252 if (local_flags & __GFP_WAIT)
3253 local_irq_enable();
3254 kmem_flagcheck(cache, flags);
3c517a61 3255 obj = kmem_getpages(cache, flags, -1);
dd47ea75
CL
3256 if (local_flags & __GFP_WAIT)
3257 local_irq_disable();
3c517a61
CL
3258 if (obj) {
3259 /*
3260 * Insert into the appropriate per node queues
3261 */
3262 nid = page_to_nid(virt_to_page(obj));
3263 if (cache_grow(cache, flags, nid, obj)) {
3264 obj = ____cache_alloc_node(cache,
3265 flags | GFP_THISNODE, nid);
3266 if (!obj)
3267 /*
3268 * Another processor may allocate the
3269 * objects in the slab since we are
3270 * not holding any locks.
3271 */
3272 goto retry;
3273 } else {
b6a60451 3274 /* cache_grow already freed obj */
3c517a61
CL
3275 obj = NULL;
3276 }
3277 }
aedb0eb1 3278 }
765c4507
CL
3279 return obj;
3280}
3281
e498be7d
CL
3282/*
3283 * A interface to enable slab creation on nodeid
1da177e4 3284 */
8b98c169 3285static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3286 int nodeid)
e498be7d
CL
3287{
3288 struct list_head *entry;
b28a02de
PE
3289 struct slab *slabp;
3290 struct kmem_list3 *l3;
3291 void *obj;
b28a02de
PE
3292 int x;
3293
3294 l3 = cachep->nodelists[nodeid];
3295 BUG_ON(!l3);
3296
a737b3e2 3297retry:
ca3b9b91 3298 check_irq_off();
b28a02de
PE
3299 spin_lock(&l3->list_lock);
3300 entry = l3->slabs_partial.next;
3301 if (entry == &l3->slabs_partial) {
3302 l3->free_touched = 1;
3303 entry = l3->slabs_free.next;
3304 if (entry == &l3->slabs_free)
3305 goto must_grow;
3306 }
3307
3308 slabp = list_entry(entry, struct slab, list);
3309 check_spinlock_acquired_node(cachep, nodeid);
3310 check_slabp(cachep, slabp);
3311
3312 STATS_INC_NODEALLOCS(cachep);
3313 STATS_INC_ACTIVE(cachep);
3314 STATS_SET_HIGH(cachep);
3315
3316 BUG_ON(slabp->inuse == cachep->num);
3317
78d382d7 3318 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3319 check_slabp(cachep, slabp);
3320 l3->free_objects--;
3321 /* move slabp to correct slabp list: */
3322 list_del(&slabp->list);
3323
a737b3e2 3324 if (slabp->free == BUFCTL_END)
b28a02de 3325 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3326 else
b28a02de 3327 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3328
b28a02de
PE
3329 spin_unlock(&l3->list_lock);
3330 goto done;
e498be7d 3331
a737b3e2 3332must_grow:
b28a02de 3333 spin_unlock(&l3->list_lock);
3c517a61 3334 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3335 if (x)
3336 goto retry;
1da177e4 3337
8c8cc2c1 3338 return fallback_alloc(cachep, flags);
e498be7d 3339
a737b3e2 3340done:
b28a02de 3341 return obj;
e498be7d 3342}
8c8cc2c1
PE
3343
3344/**
3345 * kmem_cache_alloc_node - Allocate an object on the specified node
3346 * @cachep: The cache to allocate from.
3347 * @flags: See kmalloc().
3348 * @nodeid: node number of the target node.
3349 * @caller: return address of caller, used for debug information
3350 *
3351 * Identical to kmem_cache_alloc but it will allocate memory on the given
3352 * node, which can improve the performance for cpu bound structures.
3353 *
3354 * Fallback to other node is possible if __GFP_THISNODE is not set.
3355 */
3356static __always_inline void *
3357__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3358 void *caller)
3359{
3360 unsigned long save_flags;
3361 void *ptr;
3362
824ebef1
AM
3363 if (should_failslab(cachep, flags))
3364 return NULL;
3365
8c8cc2c1
PE
3366 cache_alloc_debugcheck_before(cachep, flags);
3367 local_irq_save(save_flags);
3368
3369 if (unlikely(nodeid == -1))
3370 nodeid = numa_node_id();
3371
3372 if (unlikely(!cachep->nodelists[nodeid])) {
3373 /* Node not bootstrapped yet */
3374 ptr = fallback_alloc(cachep, flags);
3375 goto out;
3376 }
3377
3378 if (nodeid == numa_node_id()) {
3379 /*
3380 * Use the locally cached objects if possible.
3381 * However ____cache_alloc does not allow fallback
3382 * to other nodes. It may fail while we still have
3383 * objects on other nodes available.
3384 */
3385 ptr = ____cache_alloc(cachep, flags);
3386 if (ptr)
3387 goto out;
3388 }
3389 /* ___cache_alloc_node can fall back to other nodes */
3390 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3391 out:
3392 local_irq_restore(save_flags);
3393 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3394
3395 return ptr;
3396}
3397
3398static __always_inline void *
3399__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3400{
3401 void *objp;
3402
3403 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3404 objp = alternate_node_alloc(cache, flags);
3405 if (objp)
3406 goto out;
3407 }
3408 objp = ____cache_alloc(cache, flags);
3409
3410 /*
3411 * We may just have run out of memory on the local node.
3412 * ____cache_alloc_node() knows how to locate memory on other nodes
3413 */
3414 if (!objp)
3415 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3416
3417 out:
3418 return objp;
3419}
3420#else
3421
3422static __always_inline void *
3423__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3424{
3425 return ____cache_alloc(cachep, flags);
3426}
3427
3428#endif /* CONFIG_NUMA */
3429
3430static __always_inline void *
3431__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3432{
3433 unsigned long save_flags;
3434 void *objp;
3435
824ebef1
AM
3436 if (should_failslab(cachep, flags))
3437 return NULL;
3438
8c8cc2c1
PE
3439 cache_alloc_debugcheck_before(cachep, flags);
3440 local_irq_save(save_flags);
3441 objp = __do_cache_alloc(cachep, flags);
3442 local_irq_restore(save_flags);
3443 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3444 prefetchw(objp);
3445
3446 return objp;
3447}
e498be7d
CL
3448
3449/*
3450 * Caller needs to acquire correct kmem_list's list_lock
3451 */
343e0d7a 3452static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3453 int node)
1da177e4
LT
3454{
3455 int i;
e498be7d 3456 struct kmem_list3 *l3;
1da177e4
LT
3457
3458 for (i = 0; i < nr_objects; i++) {
3459 void *objp = objpp[i];
3460 struct slab *slabp;
1da177e4 3461
6ed5eb22 3462 slabp = virt_to_slab(objp);
ff69416e 3463 l3 = cachep->nodelists[node];
1da177e4 3464 list_del(&slabp->list);
ff69416e 3465 check_spinlock_acquired_node(cachep, node);
1da177e4 3466 check_slabp(cachep, slabp);
78d382d7 3467 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3468 STATS_DEC_ACTIVE(cachep);
e498be7d 3469 l3->free_objects++;
1da177e4
LT
3470 check_slabp(cachep, slabp);
3471
3472 /* fixup slab chains */
3473 if (slabp->inuse == 0) {
e498be7d
CL
3474 if (l3->free_objects > l3->free_limit) {
3475 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3476 /* No need to drop any previously held
3477 * lock here, even if we have a off-slab slab
3478 * descriptor it is guaranteed to come from
3479 * a different cache, refer to comments before
3480 * alloc_slabmgmt.
3481 */
1da177e4
LT
3482 slab_destroy(cachep, slabp);
3483 } else {
e498be7d 3484 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3485 }
3486 } else {
3487 /* Unconditionally move a slab to the end of the
3488 * partial list on free - maximum time for the
3489 * other objects to be freed, too.
3490 */
e498be7d 3491 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3492 }
3493 }
3494}
3495
343e0d7a 3496static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3497{
3498 int batchcount;
e498be7d 3499 struct kmem_list3 *l3;
ff69416e 3500 int node = numa_node_id();
1da177e4
LT
3501
3502 batchcount = ac->batchcount;
3503#if DEBUG
3504 BUG_ON(!batchcount || batchcount > ac->avail);
3505#endif
3506 check_irq_off();
ff69416e 3507 l3 = cachep->nodelists[node];
873623df 3508 spin_lock(&l3->list_lock);
e498be7d
CL
3509 if (l3->shared) {
3510 struct array_cache *shared_array = l3->shared;
b28a02de 3511 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3512 if (max) {
3513 if (batchcount > max)
3514 batchcount = max;
e498be7d 3515 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3516 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3517 shared_array->avail += batchcount;
3518 goto free_done;
3519 }
3520 }
3521
ff69416e 3522 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3523free_done:
1da177e4
LT
3524#if STATS
3525 {
3526 int i = 0;
3527 struct list_head *p;
3528
e498be7d
CL
3529 p = l3->slabs_free.next;
3530 while (p != &(l3->slabs_free)) {
1da177e4
LT
3531 struct slab *slabp;
3532
3533 slabp = list_entry(p, struct slab, list);
3534 BUG_ON(slabp->inuse);
3535
3536 i++;
3537 p = p->next;
3538 }
3539 STATS_SET_FREEABLE(cachep, i);
3540 }
3541#endif
e498be7d 3542 spin_unlock(&l3->list_lock);
1da177e4 3543 ac->avail -= batchcount;
a737b3e2 3544 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3545}
3546
3547/*
a737b3e2
AM
3548 * Release an obj back to its cache. If the obj has a constructed state, it must
3549 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3550 */
873623df 3551static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3552{
9a2dba4b 3553 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3554
3555 check_irq_off();
3556 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3557
3cdc0ed0 3558 if (cache_free_alien(cachep, objp))
729bd0b7
PE
3559 return;
3560
1da177e4
LT
3561 if (likely(ac->avail < ac->limit)) {
3562 STATS_INC_FREEHIT(cachep);
e498be7d 3563 ac->entry[ac->avail++] = objp;
1da177e4
LT
3564 return;
3565 } else {
3566 STATS_INC_FREEMISS(cachep);
3567 cache_flusharray(cachep, ac);
e498be7d 3568 ac->entry[ac->avail++] = objp;
1da177e4
LT
3569 }
3570}
3571
3572/**
3573 * kmem_cache_alloc - Allocate an object
3574 * @cachep: The cache to allocate from.
3575 * @flags: See kmalloc().
3576 *
3577 * Allocate an object from this cache. The flags are only relevant
3578 * if the cache has no available objects.
3579 */
343e0d7a 3580void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3581{
7fd6b141 3582 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3583}
3584EXPORT_SYMBOL(kmem_cache_alloc);
3585
a8c0f9a4 3586/**
b8008b2b 3587 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
a8c0f9a4
PE
3588 * @cache: The cache to allocate from.
3589 * @flags: See kmalloc().
3590 *
3591 * Allocate an object from this cache and set the allocated memory to zero.
3592 * The flags are only relevant if the cache has no available objects.
3593 */
3594void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3595{
3596 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3597 if (ret)
3598 memset(ret, 0, obj_size(cache));
3599 return ret;
3600}
3601EXPORT_SYMBOL(kmem_cache_zalloc);
3602
1da177e4
LT
3603/**
3604 * kmem_ptr_validate - check if an untrusted pointer might
3605 * be a slab entry.
3606 * @cachep: the cache we're checking against
3607 * @ptr: pointer to validate
3608 *
3609 * This verifies that the untrusted pointer looks sane:
3610 * it is _not_ a guarantee that the pointer is actually
3611 * part of the slab cache in question, but it at least
3612 * validates that the pointer can be dereferenced and
3613 * looks half-way sane.
3614 *
3615 * Currently only used for dentry validation.
3616 */
b7f869a2 3617int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
1da177e4 3618{
b28a02de 3619 unsigned long addr = (unsigned long)ptr;
1da177e4 3620 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3621 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3622 unsigned long size = cachep->buffer_size;
1da177e4
LT
3623 struct page *page;
3624
3625 if (unlikely(addr < min_addr))
3626 goto out;
3627 if (unlikely(addr > (unsigned long)high_memory - size))
3628 goto out;
3629 if (unlikely(addr & align_mask))
3630 goto out;
3631 if (unlikely(!kern_addr_valid(addr)))
3632 goto out;
3633 if (unlikely(!kern_addr_valid(addr + size - 1)))
3634 goto out;
3635 page = virt_to_page(ptr);
3636 if (unlikely(!PageSlab(page)))
3637 goto out;
065d41cb 3638 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3639 goto out;
3640 return 1;
a737b3e2 3641out:
1da177e4
LT
3642 return 0;
3643}
3644
3645#ifdef CONFIG_NUMA
8b98c169
CH
3646void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3647{
3648 return __cache_alloc_node(cachep, flags, nodeid,
3649 __builtin_return_address(0));
3650}
1da177e4
LT
3651EXPORT_SYMBOL(kmem_cache_alloc_node);
3652
8b98c169
CH
3653static __always_inline void *
3654__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3655{
343e0d7a 3656 struct kmem_cache *cachep;
97e2bde4
MS
3657
3658 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3659 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3660 return cachep;
97e2bde4
MS
3661 return kmem_cache_alloc_node(cachep, flags, node);
3662}
8b98c169
CH
3663
3664#ifdef CONFIG_DEBUG_SLAB
3665void *__kmalloc_node(size_t size, gfp_t flags, int node)
3666{
3667 return __do_kmalloc_node(size, flags, node,
3668 __builtin_return_address(0));
3669}
dbe5e69d 3670EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3671
3672void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3673 int node, void *caller)
3674{
3675 return __do_kmalloc_node(size, flags, node, caller);
3676}
3677EXPORT_SYMBOL(__kmalloc_node_track_caller);
3678#else
3679void *__kmalloc_node(size_t size, gfp_t flags, int node)
3680{
3681 return __do_kmalloc_node(size, flags, node, NULL);
3682}
3683EXPORT_SYMBOL(__kmalloc_node);
3684#endif /* CONFIG_DEBUG_SLAB */
3685#endif /* CONFIG_NUMA */
1da177e4
LT
3686
3687/**
800590f5 3688 * __do_kmalloc - allocate memory
1da177e4 3689 * @size: how many bytes of memory are required.
800590f5 3690 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3691 * @caller: function caller for debug tracking of the caller
1da177e4 3692 */
7fd6b141
PE
3693static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3694 void *caller)
1da177e4 3695{
343e0d7a 3696 struct kmem_cache *cachep;
1da177e4 3697
97e2bde4
MS
3698 /* If you want to save a few bytes .text space: replace
3699 * __ with kmem_.
3700 * Then kmalloc uses the uninlined functions instead of the inline
3701 * functions.
3702 */
3703 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
3704 if (unlikely(cachep == NULL))
3705 return NULL;
7fd6b141
PE
3706 return __cache_alloc(cachep, flags, caller);
3707}
3708
7fd6b141 3709
1d2c8eea 3710#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3711void *__kmalloc(size_t size, gfp_t flags)
3712{
871751e2 3713 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3714}
3715EXPORT_SYMBOL(__kmalloc);
3716
7fd6b141
PE
3717void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3718{
3719 return __do_kmalloc(size, flags, caller);
3720}
3721EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3722
3723#else
3724void *__kmalloc(size_t size, gfp_t flags)
3725{
3726 return __do_kmalloc(size, flags, NULL);
3727}
3728EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3729#endif
3730
1da177e4
LT
3731/**
3732 * kmem_cache_free - Deallocate an object
3733 * @cachep: The cache the allocation was from.
3734 * @objp: The previously allocated object.
3735 *
3736 * Free an object which was previously allocated from this
3737 * cache.
3738 */
343e0d7a 3739void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3740{
3741 unsigned long flags;
3742
ddc2e812
PE
3743 BUG_ON(virt_to_cache(objp) != cachep);
3744
1da177e4 3745 local_irq_save(flags);
898552c9 3746 debug_check_no_locks_freed(objp, obj_size(cachep));
873623df 3747 __cache_free(cachep, objp);
1da177e4
LT
3748 local_irq_restore(flags);
3749}
3750EXPORT_SYMBOL(kmem_cache_free);
3751
1da177e4
LT
3752/**
3753 * kfree - free previously allocated memory
3754 * @objp: pointer returned by kmalloc.
3755 *
80e93eff
PE
3756 * If @objp is NULL, no operation is performed.
3757 *
1da177e4
LT
3758 * Don't free memory not originally allocated by kmalloc()
3759 * or you will run into trouble.
3760 */
3761void kfree(const void *objp)
3762{
343e0d7a 3763 struct kmem_cache *c;
1da177e4
LT
3764 unsigned long flags;
3765
6cb8f913 3766 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3767 return;
3768 local_irq_save(flags);
3769 kfree_debugcheck(objp);
6ed5eb22 3770 c = virt_to_cache(objp);
f9b8404c 3771 debug_check_no_locks_freed(objp, obj_size(c));
873623df 3772 __cache_free(c, (void *)objp);
1da177e4
LT
3773 local_irq_restore(flags);
3774}
3775EXPORT_SYMBOL(kfree);
3776
343e0d7a 3777unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3778{
3dafccf2 3779 return obj_size(cachep);
1da177e4
LT
3780}
3781EXPORT_SYMBOL(kmem_cache_size);
3782
343e0d7a 3783const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3784{
3785 return cachep->name;
3786}
3787EXPORT_SYMBOL_GPL(kmem_cache_name);
3788
e498be7d 3789/*
0718dc2a 3790 * This initializes kmem_list3 or resizes varioius caches for all nodes.
e498be7d 3791 */
343e0d7a 3792static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3793{
3794 int node;
3795 struct kmem_list3 *l3;
cafeb02e 3796 struct array_cache *new_shared;
3395ee05 3797 struct array_cache **new_alien = NULL;
e498be7d
CL
3798
3799 for_each_online_node(node) {
cafeb02e 3800
3395ee05
PM
3801 if (use_alien_caches) {
3802 new_alien = alloc_alien_cache(node, cachep->limit);
3803 if (!new_alien)
3804 goto fail;
3805 }
cafeb02e 3806
63109846
ED
3807 new_shared = NULL;
3808 if (cachep->shared) {
3809 new_shared = alloc_arraycache(node,
0718dc2a 3810 cachep->shared*cachep->batchcount,
a737b3e2 3811 0xbaadf00d);
63109846
ED
3812 if (!new_shared) {
3813 free_alien_cache(new_alien);
3814 goto fail;
3815 }
0718dc2a 3816 }
cafeb02e 3817
a737b3e2
AM
3818 l3 = cachep->nodelists[node];
3819 if (l3) {
cafeb02e
CL
3820 struct array_cache *shared = l3->shared;
3821
e498be7d
CL
3822 spin_lock_irq(&l3->list_lock);
3823
cafeb02e 3824 if (shared)
0718dc2a
CL
3825 free_block(cachep, shared->entry,
3826 shared->avail, node);
e498be7d 3827
cafeb02e
CL
3828 l3->shared = new_shared;
3829 if (!l3->alien) {
e498be7d
CL
3830 l3->alien = new_alien;
3831 new_alien = NULL;
3832 }
b28a02de 3833 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3834 cachep->batchcount + cachep->num;
e498be7d 3835 spin_unlock_irq(&l3->list_lock);
cafeb02e 3836 kfree(shared);
e498be7d
CL
3837 free_alien_cache(new_alien);
3838 continue;
3839 }
a737b3e2 3840 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3841 if (!l3) {
3842 free_alien_cache(new_alien);
3843 kfree(new_shared);
e498be7d 3844 goto fail;
0718dc2a 3845 }
e498be7d
CL
3846
3847 kmem_list3_init(l3);
3848 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3849 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3850 l3->shared = new_shared;
e498be7d 3851 l3->alien = new_alien;
b28a02de 3852 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3853 cachep->batchcount + cachep->num;
e498be7d
CL
3854 cachep->nodelists[node] = l3;
3855 }
cafeb02e 3856 return 0;
0718dc2a 3857
a737b3e2 3858fail:
0718dc2a
CL
3859 if (!cachep->next.next) {
3860 /* Cache is not active yet. Roll back what we did */
3861 node--;
3862 while (node >= 0) {
3863 if (cachep->nodelists[node]) {
3864 l3 = cachep->nodelists[node];
3865
3866 kfree(l3->shared);
3867 free_alien_cache(l3->alien);
3868 kfree(l3);
3869 cachep->nodelists[node] = NULL;
3870 }
3871 node--;
3872 }
3873 }
cafeb02e 3874 return -ENOMEM;
e498be7d
CL
3875}
3876
1da177e4 3877struct ccupdate_struct {
343e0d7a 3878 struct kmem_cache *cachep;
1da177e4
LT
3879 struct array_cache *new[NR_CPUS];
3880};
3881
3882static void do_ccupdate_local(void *info)
3883{
a737b3e2 3884 struct ccupdate_struct *new = info;
1da177e4
LT
3885 struct array_cache *old;
3886
3887 check_irq_off();
9a2dba4b 3888 old = cpu_cache_get(new->cachep);
e498be7d 3889
1da177e4
LT
3890 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3891 new->new[smp_processor_id()] = old;
3892}
3893
b5d8ca7c 3894/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3895static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3896 int batchcount, int shared)
1da177e4 3897{
d2e7b7d0 3898 struct ccupdate_struct *new;
2ed3a4ef 3899 int i;
1da177e4 3900
d2e7b7d0
SS
3901 new = kzalloc(sizeof(*new), GFP_KERNEL);
3902 if (!new)
3903 return -ENOMEM;
3904
e498be7d 3905 for_each_online_cpu(i) {
d2e7b7d0 3906 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
a737b3e2 3907 batchcount);
d2e7b7d0 3908 if (!new->new[i]) {
b28a02de 3909 for (i--; i >= 0; i--)
d2e7b7d0
SS
3910 kfree(new->new[i]);
3911 kfree(new);
e498be7d 3912 return -ENOMEM;
1da177e4
LT
3913 }
3914 }
d2e7b7d0 3915 new->cachep = cachep;
1da177e4 3916
d2e7b7d0 3917 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
e498be7d 3918
1da177e4 3919 check_irq_on();
1da177e4
LT
3920 cachep->batchcount = batchcount;
3921 cachep->limit = limit;
e498be7d 3922 cachep->shared = shared;
1da177e4 3923
e498be7d 3924 for_each_online_cpu(i) {
d2e7b7d0 3925 struct array_cache *ccold = new->new[i];
1da177e4
LT
3926 if (!ccold)
3927 continue;
e498be7d 3928 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3929 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3930 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3931 kfree(ccold);
3932 }
d2e7b7d0 3933 kfree(new);
2ed3a4ef 3934 return alloc_kmemlist(cachep);
1da177e4
LT
3935}
3936
b5d8ca7c 3937/* Called with cache_chain_mutex held always */
2ed3a4ef 3938static int enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3939{
3940 int err;
3941 int limit, shared;
3942
a737b3e2
AM
3943 /*
3944 * The head array serves three purposes:
1da177e4
LT
3945 * - create a LIFO ordering, i.e. return objects that are cache-warm
3946 * - reduce the number of spinlock operations.
a737b3e2 3947 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3948 * bufctl chains: array operations are cheaper.
3949 * The numbers are guessed, we should auto-tune as described by
3950 * Bonwick.
3951 */
3dafccf2 3952 if (cachep->buffer_size > 131072)
1da177e4 3953 limit = 1;
3dafccf2 3954 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3955 limit = 8;
3dafccf2 3956 else if (cachep->buffer_size > 1024)
1da177e4 3957 limit = 24;
3dafccf2 3958 else if (cachep->buffer_size > 256)
1da177e4
LT
3959 limit = 54;
3960 else
3961 limit = 120;
3962
a737b3e2
AM
3963 /*
3964 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3965 * allocation behaviour: Most allocs on one cpu, most free operations
3966 * on another cpu. For these cases, an efficient object passing between
3967 * cpus is necessary. This is provided by a shared array. The array
3968 * replaces Bonwick's magazine layer.
3969 * On uniprocessor, it's functionally equivalent (but less efficient)
3970 * to a larger limit. Thus disabled by default.
3971 */
3972 shared = 0;
364fbb29 3973 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3974 shared = 8;
1da177e4
LT
3975
3976#if DEBUG
a737b3e2
AM
3977 /*
3978 * With debugging enabled, large batchcount lead to excessively long
3979 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3980 */
3981 if (limit > 32)
3982 limit = 32;
3983#endif
b28a02de 3984 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
3985 if (err)
3986 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3987 cachep->name, -err);
2ed3a4ef 3988 return err;
1da177e4
LT
3989}
3990
1b55253a
CL
3991/*
3992 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
3993 * necessary. Note that the l3 listlock also protects the array_cache
3994 * if drain_array() is used on the shared array.
1b55253a
CL
3995 */
3996void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3997 struct array_cache *ac, int force, int node)
1da177e4
LT
3998{
3999 int tofree;
4000
1b55253a
CL
4001 if (!ac || !ac->avail)
4002 return;
1da177e4
LT
4003 if (ac->touched && !force) {
4004 ac->touched = 0;
b18e7e65 4005 } else {
1b55253a 4006 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4007 if (ac->avail) {
4008 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4009 if (tofree > ac->avail)
4010 tofree = (ac->avail + 1) / 2;
4011 free_block(cachep, ac->entry, tofree, node);
4012 ac->avail -= tofree;
4013 memmove(ac->entry, &(ac->entry[tofree]),
4014 sizeof(void *) * ac->avail);
4015 }
1b55253a 4016 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4017 }
4018}
4019
4020/**
4021 * cache_reap - Reclaim memory from caches.
05fb6bf0 4022 * @w: work descriptor
1da177e4
LT
4023 *
4024 * Called from workqueue/eventd every few seconds.
4025 * Purpose:
4026 * - clear the per-cpu caches for this CPU.
4027 * - return freeable pages to the main free memory pool.
4028 *
a737b3e2
AM
4029 * If we cannot acquire the cache chain mutex then just give up - we'll try
4030 * again on the next iteration.
1da177e4 4031 */
7c5cae36 4032static void cache_reap(struct work_struct *w)
1da177e4 4033{
7a7c381d 4034 struct kmem_cache *searchp;
e498be7d 4035 struct kmem_list3 *l3;
aab2207c 4036 int node = numa_node_id();
7c5cae36
CL
4037 struct delayed_work *work =
4038 container_of(w, struct delayed_work, work);
1da177e4 4039
7c5cae36 4040 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4041 /* Give up. Setup the next iteration. */
7c5cae36 4042 goto out;
1da177e4 4043
7a7c381d 4044 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4045 check_irq_on();
4046
35386e3b
CL
4047 /*
4048 * We only take the l3 lock if absolutely necessary and we
4049 * have established with reasonable certainty that
4050 * we can do some work if the lock was obtained.
4051 */
aab2207c 4052 l3 = searchp->nodelists[node];
35386e3b 4053
8fce4d8e 4054 reap_alien(searchp, l3);
1da177e4 4055
aab2207c 4056 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4057
35386e3b
CL
4058 /*
4059 * These are racy checks but it does not matter
4060 * if we skip one check or scan twice.
4061 */
e498be7d 4062 if (time_after(l3->next_reap, jiffies))
35386e3b 4063 goto next;
1da177e4 4064
e498be7d 4065 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4066
aab2207c 4067 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4068
ed11d9eb 4069 if (l3->free_touched)
e498be7d 4070 l3->free_touched = 0;
ed11d9eb
CL
4071 else {
4072 int freed;
1da177e4 4073
ed11d9eb
CL
4074 freed = drain_freelist(searchp, l3, (l3->free_limit +
4075 5 * searchp->num - 1) / (5 * searchp->num));
4076 STATS_ADD_REAPED(searchp, freed);
4077 }
35386e3b 4078next:
1da177e4
LT
4079 cond_resched();
4080 }
4081 check_irq_on();
fc0abb14 4082 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4083 next_reap_node();
7c5cae36 4084out:
a737b3e2 4085 /* Set up the next iteration */
7c5cae36 4086 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4087}
4088
4089#ifdef CONFIG_PROC_FS
4090
85289f98 4091static void print_slabinfo_header(struct seq_file *m)
1da177e4 4092{
85289f98
PE
4093 /*
4094 * Output format version, so at least we can change it
4095 * without _too_ many complaints.
4096 */
1da177e4 4097#if STATS
85289f98 4098 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4099#else
85289f98 4100 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4101#endif
85289f98
PE
4102 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4103 "<objperslab> <pagesperslab>");
4104 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4105 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4106#if STATS
85289f98 4107 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4108 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4109 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4110#endif
85289f98
PE
4111 seq_putc(m, '\n');
4112}
4113
4114static void *s_start(struct seq_file *m, loff_t *pos)
4115{
4116 loff_t n = *pos;
85289f98 4117
fc0abb14 4118 mutex_lock(&cache_chain_mutex);
85289f98
PE
4119 if (!n)
4120 print_slabinfo_header(m);
b92151ba
PE
4121
4122 return seq_list_start(&cache_chain, *pos);
1da177e4
LT
4123}
4124
4125static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4126{
b92151ba 4127 return seq_list_next(p, &cache_chain, pos);
1da177e4
LT
4128}
4129
4130static void s_stop(struct seq_file *m, void *p)
4131{
fc0abb14 4132 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4133}
4134
4135static int s_show(struct seq_file *m, void *p)
4136{
b92151ba 4137 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
b28a02de
PE
4138 struct slab *slabp;
4139 unsigned long active_objs;
4140 unsigned long num_objs;
4141 unsigned long active_slabs = 0;
4142 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4143 const char *name;
1da177e4 4144 char *error = NULL;
e498be7d
CL
4145 int node;
4146 struct kmem_list3 *l3;
1da177e4 4147
1da177e4
LT
4148 active_objs = 0;
4149 num_slabs = 0;
e498be7d
CL
4150 for_each_online_node(node) {
4151 l3 = cachep->nodelists[node];
4152 if (!l3)
4153 continue;
4154
ca3b9b91
RT
4155 check_irq_on();
4156 spin_lock_irq(&l3->list_lock);
e498be7d 4157
7a7c381d 4158 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4159 if (slabp->inuse != cachep->num && !error)
4160 error = "slabs_full accounting error";
4161 active_objs += cachep->num;
4162 active_slabs++;
4163 }
7a7c381d 4164 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4165 if (slabp->inuse == cachep->num && !error)
4166 error = "slabs_partial inuse accounting error";
4167 if (!slabp->inuse && !error)
4168 error = "slabs_partial/inuse accounting error";
4169 active_objs += slabp->inuse;
4170 active_slabs++;
4171 }
7a7c381d 4172 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4173 if (slabp->inuse && !error)
4174 error = "slabs_free/inuse accounting error";
4175 num_slabs++;
4176 }
4177 free_objects += l3->free_objects;
4484ebf1
RT
4178 if (l3->shared)
4179 shared_avail += l3->shared->avail;
e498be7d 4180
ca3b9b91 4181 spin_unlock_irq(&l3->list_lock);
1da177e4 4182 }
b28a02de
PE
4183 num_slabs += active_slabs;
4184 num_objs = num_slabs * cachep->num;
e498be7d 4185 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4186 error = "free_objects accounting error";
4187
b28a02de 4188 name = cachep->name;
1da177e4
LT
4189 if (error)
4190 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4191
4192 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4193 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4194 cachep->num, (1 << cachep->gfporder));
1da177e4 4195 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4196 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4197 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4198 active_slabs, num_slabs, shared_avail);
1da177e4 4199#if STATS
b28a02de 4200 { /* list3 stats */
1da177e4
LT
4201 unsigned long high = cachep->high_mark;
4202 unsigned long allocs = cachep->num_allocations;
4203 unsigned long grown = cachep->grown;
4204 unsigned long reaped = cachep->reaped;
4205 unsigned long errors = cachep->errors;
4206 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4207 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4208 unsigned long node_frees = cachep->node_frees;
fb7faf33 4209 unsigned long overflows = cachep->node_overflow;
1da177e4 4210
e498be7d 4211 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 4212 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 4213 reaped, errors, max_freeable, node_allocs,
fb7faf33 4214 node_frees, overflows);
1da177e4
LT
4215 }
4216 /* cpu stats */
4217 {
4218 unsigned long allochit = atomic_read(&cachep->allochit);
4219 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4220 unsigned long freehit = atomic_read(&cachep->freehit);
4221 unsigned long freemiss = atomic_read(&cachep->freemiss);
4222
4223 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4224 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4225 }
4226#endif
4227 seq_putc(m, '\n');
1da177e4
LT
4228 return 0;
4229}
4230
4231/*
4232 * slabinfo_op - iterator that generates /proc/slabinfo
4233 *
4234 * Output layout:
4235 * cache-name
4236 * num-active-objs
4237 * total-objs
4238 * object size
4239 * num-active-slabs
4240 * total-slabs
4241 * num-pages-per-slab
4242 * + further values on SMP and with statistics enabled
4243 */
4244
15ad7cdc 4245const struct seq_operations slabinfo_op = {
b28a02de
PE
4246 .start = s_start,
4247 .next = s_next,
4248 .stop = s_stop,
4249 .show = s_show,
1da177e4
LT
4250};
4251
4252#define MAX_SLABINFO_WRITE 128
4253/**
4254 * slabinfo_write - Tuning for the slab allocator
4255 * @file: unused
4256 * @buffer: user buffer
4257 * @count: data length
4258 * @ppos: unused
4259 */
b28a02de
PE
4260ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4261 size_t count, loff_t *ppos)
1da177e4 4262{
b28a02de 4263 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4264 int limit, batchcount, shared, res;
7a7c381d 4265 struct kmem_cache *cachep;
b28a02de 4266
1da177e4
LT
4267 if (count > MAX_SLABINFO_WRITE)
4268 return -EINVAL;
4269 if (copy_from_user(&kbuf, buffer, count))
4270 return -EFAULT;
b28a02de 4271 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4272
4273 tmp = strchr(kbuf, ' ');
4274 if (!tmp)
4275 return -EINVAL;
4276 *tmp = '\0';
4277 tmp++;
4278 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4279 return -EINVAL;
4280
4281 /* Find the cache in the chain of caches. */
fc0abb14 4282 mutex_lock(&cache_chain_mutex);
1da177e4 4283 res = -EINVAL;
7a7c381d 4284 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4285 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4286 if (limit < 1 || batchcount < 1 ||
4287 batchcount > limit || shared < 0) {
e498be7d 4288 res = 0;
1da177e4 4289 } else {
e498be7d 4290 res = do_tune_cpucache(cachep, limit,
b28a02de 4291 batchcount, shared);
1da177e4
LT
4292 }
4293 break;
4294 }
4295 }
fc0abb14 4296 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4297 if (res >= 0)
4298 res = count;
4299 return res;
4300}
871751e2
AV
4301
4302#ifdef CONFIG_DEBUG_SLAB_LEAK
4303
4304static void *leaks_start(struct seq_file *m, loff_t *pos)
4305{
871751e2 4306 mutex_lock(&cache_chain_mutex);
b92151ba 4307 return seq_list_start(&cache_chain, *pos);
871751e2
AV
4308}
4309
4310static inline int add_caller(unsigned long *n, unsigned long v)
4311{
4312 unsigned long *p;
4313 int l;
4314 if (!v)
4315 return 1;
4316 l = n[1];
4317 p = n + 2;
4318 while (l) {
4319 int i = l/2;
4320 unsigned long *q = p + 2 * i;
4321 if (*q == v) {
4322 q[1]++;
4323 return 1;
4324 }
4325 if (*q > v) {
4326 l = i;
4327 } else {
4328 p = q + 2;
4329 l -= i + 1;
4330 }
4331 }
4332 if (++n[1] == n[0])
4333 return 0;
4334 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4335 p[0] = v;
4336 p[1] = 1;
4337 return 1;
4338}
4339
4340static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4341{
4342 void *p;
4343 int i;
4344 if (n[0] == n[1])
4345 return;
4346 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4347 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4348 continue;
4349 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4350 return;
4351 }
4352}
4353
4354static void show_symbol(struct seq_file *m, unsigned long address)
4355{
4356#ifdef CONFIG_KALLSYMS
871751e2 4357 unsigned long offset, size;
a5c43dae 4358 char modname[MODULE_NAME_LEN + 1], name[KSYM_NAME_LEN + 1];
871751e2 4359
a5c43dae 4360 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4361 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4362 if (modname[0])
871751e2
AV
4363 seq_printf(m, " [%s]", modname);
4364 return;
4365 }
4366#endif
4367 seq_printf(m, "%p", (void *)address);
4368}
4369
4370static int leaks_show(struct seq_file *m, void *p)
4371{
b92151ba 4372 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
871751e2
AV
4373 struct slab *slabp;
4374 struct kmem_list3 *l3;
4375 const char *name;
4376 unsigned long *n = m->private;
4377 int node;
4378 int i;
4379
4380 if (!(cachep->flags & SLAB_STORE_USER))
4381 return 0;
4382 if (!(cachep->flags & SLAB_RED_ZONE))
4383 return 0;
4384
4385 /* OK, we can do it */
4386
4387 n[1] = 0;
4388
4389 for_each_online_node(node) {
4390 l3 = cachep->nodelists[node];
4391 if (!l3)
4392 continue;
4393
4394 check_irq_on();
4395 spin_lock_irq(&l3->list_lock);
4396
7a7c381d 4397 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4398 handle_slab(n, cachep, slabp);
7a7c381d 4399 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4400 handle_slab(n, cachep, slabp);
871751e2
AV
4401 spin_unlock_irq(&l3->list_lock);
4402 }
4403 name = cachep->name;
4404 if (n[0] == n[1]) {
4405 /* Increase the buffer size */
4406 mutex_unlock(&cache_chain_mutex);
4407 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4408 if (!m->private) {
4409 /* Too bad, we are really out */
4410 m->private = n;
4411 mutex_lock(&cache_chain_mutex);
4412 return -ENOMEM;
4413 }
4414 *(unsigned long *)m->private = n[0] * 2;
4415 kfree(n);
4416 mutex_lock(&cache_chain_mutex);
4417 /* Now make sure this entry will be retried */
4418 m->count = m->size;
4419 return 0;
4420 }
4421 for (i = 0; i < n[1]; i++) {
4422 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4423 show_symbol(m, n[2*i+2]);
4424 seq_putc(m, '\n');
4425 }
d2e7b7d0 4426
871751e2
AV
4427 return 0;
4428}
4429
15ad7cdc 4430const struct seq_operations slabstats_op = {
871751e2
AV
4431 .start = leaks_start,
4432 .next = s_next,
4433 .stop = s_stop,
4434 .show = leaks_show,
4435};
4436#endif
1da177e4
LT
4437#endif
4438
00e145b6
MS
4439/**
4440 * ksize - get the actual amount of memory allocated for a given object
4441 * @objp: Pointer to the object
4442 *
4443 * kmalloc may internally round up allocations and return more memory
4444 * than requested. ksize() can be used to determine the actual amount of
4445 * memory allocated. The caller may use this additional memory, even though
4446 * a smaller amount of memory was initially specified with the kmalloc call.
4447 * The caller must guarantee that objp points to a valid object previously
4448 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4449 * must not be freed during the duration of the call.
4450 */
fd76bab2 4451size_t ksize(const void *objp)
1da177e4 4452{
6cb8f913 4453 if (unlikely(ZERO_OR_NULL_PTR(objp)))
00e145b6 4454 return 0;
1da177e4 4455
6ed5eb22 4456 return obj_size(virt_to_cache(objp));
1da177e4 4457}